Mueller, Julia S.; Grabowski, Timothy B.; Brewer, Shannon K.; Worthington, Thomas A.
2017-01-01
Decreases in the abundance and diversity of stream fishes in the North American Great Plains have been attributed to habitat fragmentation, altered hydrological and temperature regimes, and elevated levels of total dissolved solids and total suspended solids. Pelagic-broadcast spawning cyprinids, such as the Arkansas River Shiner Notropis girardi, may be particularly vulnerable to these changing conditions because of their reproductive strategy. Our objectives were to assess the effects of temperature, total dissolved solids, and total suspended solids on the developmental and survival rates of Arkansas River Shiner larvae. Results suggest temperature had the greatest influence on the developmental rate of Arkansas River Shiner larvae. However, embryos exposed to the higher levels of total dissolved solids and total suspended solids reached developmental stages earlier than counterparts at equivalent temperatures. Although this rapid development may be beneficial in fragmented waters, our data suggest it may be associated with lower survival rates. Furthermore, those embryos incubating at high temperatures, or in high levels of total dissolved solids and total suspended solids resulted in less viable embryos and larvae than those incubating in all other temperature, total dissolved solid, and total suspended solid treatment groups. As the Great Plains ecoregion continues to change, these results may assist in understanding reasons for past extirpations and future extirpation threats as well as predict stream reaches capable of sustaining Arkansas River Shiners and other species with similar early life-history strategies.
Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.
1996-01-01
Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.
Water quality of Lake Whitney, north-central Texas
Strause, Jeffrey L.; Andrews, Freeman L.
1983-01-01
Seasonal temperature variations and variations in the concentration of dissolved oxygen result in dissolved iron, dissolved manganese, total inorganic nitrogen, and total phosphorus being recycled within the lake; however, no significant accumulations of these constituents were detected.
Tanner, Dwight Q.; Bragg, Heather M.
2002-03-06
At times in July and August 2001, the total-dissolved-gas probe at Warrendale could not be positioned below the minimum compensation depth because the river was too shallow at that location. Consequently, degassing at probe depth may have occurred, and total dissolved gas may have been larger in locations with greater depths.
Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.
2003-01-01
The variances to the States of Oregon and Washington water-quality standards for total dissolved gas were exceeded at six of the seven monitoring sites. The sites at Camas and Bonneville forebay had the most days exceeding the variance of 115% saturation. The forebay exceedances may have been the result of the cumulative effects of supersaturated water moving downstream through the lower Columbia River. Apparently, the levels of total dissolved gas did not decrease rapidly enough downstream from the dams before reaching the next site. From mid-July to mid-September, water temperatures were usually above 20 degrees Celsius at each of the seven lower Columbia River sites. According to the Oregon water-quality standard, when the temperature of the lower Columbia River exceeds 20 degrees Celsius, no measurable temperature increase resulting from anthropogenic activities is allowed. Transient increases of about 1 degree Celsius were noted at the John Day forebay site, due to localized solar heating.
Effects of Environmental and Anthropogenic Factors on Water Quality in the Rock Creek Watershed
2016-04-08
factors playing an augmenting role. The authors found a seasonal relationship with temperature , pH, and dissolved oxygen (DO). Additionally, they...2011 ), and nutrients (2013). In 1994, a Public Health Advisory ( fish consumption advisory) which is still in place today, was issued by the D.C...Dissolved Solids (TDS) Escherichia coli (E.coli) Temperature Dissolved Oxygen (DO) Total Colifonns - Electrical Conductivity (EC) Nitrate (N03-N
Galloway, Joel M.; Ortiz, Roderick F.; Bales, Jerad D.; Mau, David P.
2008-01-01
Pueblo Reservoir is west of Pueblo, Colorado, and is an important water resource for southeastern Colorado. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. In anticipation of increased population growth, the cities of Colorado Springs, Fountain, Security, and Pueblo West have proposed building a pipeline that would be capable of conveying 78 million gallons of raw water per day (240 acre-feet) from Pueblo Reservoir. The U.S. Geological Survey, in cooperation with Colorado Springs Utilities and the Bureau of Reclamation, developed, calibrated, and verified a hydrodynamic and water-quality model of Pueblo Reservoir to describe the hydrologic, chemical, and biological processes in Pueblo Reservoir that can be used to assess environmental effects in the reservoir. Hydrodynamics and water-quality characteristics in Pueblo Reservoir were simulated using a laterally averaged, two-dimensional model that was calibrated using data collected from October 1985 through September 1987. The Pueblo Reservoir model was calibrated based on vertical profiles of water temperature and dissolved-oxygen concentration, and water-quality constituent concentrations collected in the epilimnion and hypolimnion at four sites in the reservoir. The calibrated model was verified with data from October 1999 through September 2002, which included a relatively wet year (water year 2000), an average year (water year 2001), and a dry year (water year 2002). Simulated water temperatures compared well to measured water temperatures in Pueblo Reservoir from October 1985 through September 1987. Spatially, simulated water temperatures compared better to measured water temperatures in the downstream part of the reservoir than in the upstream part of the reservoir. Differences between simulated and measured water temperatures also varied through time. Simulated water temperatures were slightly less than measured water temperatures from March to May 1986 and 1987, and slightly greater than measured data in August and September 1987. Relative to the calibration period, simulated water temperatures during the verification period did not compare as well to measured water temperatures. In general, simulated dissolved-oxygen concentrations for the calibration period compared well to measured concentrations in Pueblo Reservoir. Spatially, simulated concentrations deviated more from the measured values at the downstream part of the reservoir than at other locations in the reservoir. Overall, the absolute mean error ranged from 1.05 (site 1B) to 1.42 milligrams per liter (site 7B), and the root mean square error ranged from 1.12 (site 1B) to 1.67 milligrams per liter (site 7B). Simulated dissolved oxygen in the verification period compared better to the measured concentrations than in the calibration period. The absolute mean error ranged from 0.91 (site 5C) to 1.28 milligrams per liter (site 7B), and the root mean square error ranged from 1.03 (site 5C) to 1.46 milligrams per liter (site 7B). Simulated total dissolved solids generally were less than measured total dissolved-solids concentrations in Pueblo Reservoir from October 1985 through September 1987. The largest differences between simulated and measured total dissolved solids were observed at the most downstream sites in Pueblo Reservoir during the second year of the calibration period. Total dissolved-solids data were not available from reservoir sites during the verification period, so in-reservoir specific-conductance data were compared to simulated total dissolved solids. Simulated total dissolved solids followed the same patterns through time as the measured specific conductance data during the verification period. Simulated total nitrogen concentrations compared relatively well to measured concentrations in the Pueblo Reservoir model. The absolute mean error ranged from 0.21 (site 1B) to 0.27 milligram per liter as nitrogen (sites 3B and 7
NASA Technical Reports Server (NTRS)
Suemoto, S. H.; Mathias, K. E.
1974-01-01
The Bureau of Reclamation has erected at its Geothermal Resource Development site two experimental test vehicles for the purpose of desalting hot fluids of geothermal origin. Both plants have as a feed source geothermal well Mesa 6-1 drilled to a total depth of 8,030 feet and having a bottom hole temperature of 400 F. Formation fluid collected at the surface contained 24,800 mg/1 total dissolved solids. The dissolved solids consist mainly of sodium chloride. A multistage distillation (3-stage) plant has been operated intermittently for one year with no operational problems. Functioning at steady-state conditions with a liquid feed rate of 70 g/m and a temperature of 221 F, the final brine blowdown temperature was 169 F. Product water was produced at a rate of about 2 g/m; average total dissolved solids content of the product was 170 mg/1. A product quality of 27.5 mg/1 at a pH of 9.5 was produced from the first stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chuck; Scofield, Ben; Pavlik, Deanne
2003-03-01
A slightly dryer than normal year yielded flows in Lake Roosevelt that were essentially equal to the past ten year average. Annual mean inflow and outflow were 3,160.3 m3/s and 3,063.4 m3/s respectively. Mean reservoir elevation was 387.2 m above sea level at the Grand Coulee Dam forebay. The forebay elevation was below the mean elevation for a total of 168 days. During the first half of the 2000 forebay elevation changed at a rate of 0.121 m/d and during the last half changed at a rate of 0.208 m/d. The higher rate of elevation change earlier in the yearmore » is due to the drawdown to accommodate spring runoff. Mean annual water retention time was 40 days. Annual mean total dissolved gas was 108%. Total dissolved gas was greatest at upriver locations (110% = US/Canada Border annual mean) and decreased moving toward Grand Coulee Dam (106% = Grand Coulee Dam Forebay annual mean). Total dissolved gas was greatest in May (122% reservoir wide monthly mean). Gas bubble trauma was observed in 16 fish primarily largescale suckers and was low in severity. Reservoir wide mean temperatures were greatest in August (19.5 C) and lowest in January (5.5 C). The Spokane River and Sanpoil River Arms experienced higher temperatures than the mainstem reservoir. Brief stratification was observed at the Sanpoil River shore location in July. Warm water temperatures in the Spokane Arm contributed to low dissolved oxygen concentrations in August (2.6 mg/L at 33 m). However, decomposition of summer algal biomass was likely the main cause of depressed dissolved oxygen concentrations. Otherwise, dissolved oxygen profiles were relatively uniform throughout the water column across other sampling locations. Annual mean Secchi depth throughout the reservoir was 5.7 m. Nutrient concentrations were generally low, however, annual mean total phosphorus (0.016 mg/L) was in the mesotrophic range. Annual mean total nitrogen was in the meso-oligotrophic range. Total nitrogen to total phosphorus ratios were large (31:1 annual mean) likely indicating phosphorus limitations to phytoplankton.« less
Water-quality data for Smith and Bybee Lakes, Portland, Oregon, June to November, 1982
Clifton, Daphne G.
1983-01-01
Water-quality monitoring at Smith and Bybee Lakes included measurement of water temperature, dissolved oxygen concentration and percent saturation, pH, specific conductance, lake depth, alkalinity, dissolved carbon, total dissolved solids, secchi disk light transparency, nutrients, and chlorophyll a and b. In addition, phytoplankton, zooplankton, and benthic invertebrate populations were identified and enumerated. Lakebed sediment was analyzed for particle size, volatile solids, immediate oxygen demand, trace metals, total organic carbon, nutrients, and organic constituents. (USGS)
Application and evaluation of scale dissolver treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fielder, G.D.
1994-12-31
In order to provide an improved basis for the design of barium sulfate scale dissolver treatments both laboratory testing and monitoring of field applications were carried out. The deleterious effects of mixing produced water with dissolver prior to contacting scale are shown. Increasing total dissolved solids (TDS) levels can reduce dissolution depending upon temperature. Precomplexation with divalent cations reduces the capacity of the dissolver to solubilize solid scales. Magnesium may adversely affect dissolver performance at elevated temperatures. Several oil and gas wells were closely monitored during initial flowback after treatment. Samples were collected on a frequent basis and analyzed formore » pH, dissolver content, chlorides and various cations. The resulting data were used to construct flowback profiles for evaluation of the treatments. Evidence of scale dissolution is presented. The presence of an incompatible flush brine was discovered in one case and possible reverse order of addition of preflush and dissolver in another. The importance of establishing and following treatment procedures is briefly discussed.« less
Farrah, S R; Bitton, G
1983-01-01
The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant. PMID:6401978
Ryberg, Karen R.
2006-01-01
This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for total nitrite plus nitrate. Regression equations also were used to estimate daily constituent loads. Load estimates can be used by water-quality managers for comparison of current water-quality conditions to water-quality standards expressed as total maximum daily loads (TMDLs). TMDLs are a measure of the maximum amount of chemical constituents that a water body can receive and still meet established water-quality standards. The peak loads generally occurred in June and July when streamflow also peaked.
Shen, Xia; Liu, Shengyun; Li, Ran; Ou, Yangming
2014-09-01
Water temperature not only affects the solubility of gas in water but can also be an important factor in the dissipation process of supersaturated total dissolved gas (TDG). The quantitative relationship between the dissipation process and temperature has not been previously described. This relationship affects the accurate evaluation of the dissipation process and the subsequent biological effects. This article experimentally investigates the impact of temperature on supersaturated TDG dissipation in static and turbulent conditions. The results show that the supersaturated TDG dissipation coefficient increases with the temperature and turbulence intensity. The quantitative relationship was verified by straight flume experiments. This study enhances our understanding of the dissipation of supersaturated TDG. Furthermore, it provides a scientific foundation for the accurate prediction of the dissipation process of supersaturated TDG in the downstream area and the negative impacts of high dam projects on aquatic ecosystems. Copyright © 2014. Published by Elsevier B.V.
The Colorado River in the Grand Canyon.
ERIC Educational Resources Information Center
Speece, Susan
1991-01-01
An assessment of the water quality of the Colorado River in the Grand Canyon was made, using the following parameters: dissolved oxygen, water temperature, hydrogen ion concentration, total dissolved solids, turbidity, and ammonium/nitrogen levels. These parameters were used to provide some clue as to the "wellness" and stability of the…
Chemical quality of water in abandoned zinc mines in northeastern Oklahoma and southeastern Kansas
Playton, Stephen J.; Davis, Robert Ellis; McClaflin, Roger G.
1978-01-01
Onsite measurements of pH, specific conductance, and water temperature show that water temperatures in seven mine shafts in northeastern Oklahoma and southeastern Kansas is stratified. With increasing sampling depth, specific conductance and water temperature tend to increase, and pH tends to decrease. Concentrations of dissolved solids and chemical constituents in mine-shaft water, such as total, and dissolved metals and dissolved sulfate also increase with depth. The apparently unstable condition created by cooler, denser water overlying warmer, less-dense water is offset by the greater density of the lower water strata due to higher dissolved solids content.Correlation analysis showed that several chemical constituents and properties of mine-shaft water, including dissolved solids, total hardness, and dissolved sulfate, calcium, magnesium, and lithium, are linearly related to specific conductance. None of the constituents or properties of mine-shaft water tested had a significant linear relationship to pH. However, when values of dissolved aluminum, zinc, and nickel were transformed to natural or Napierian logarithms, significant linear correlation to pH resulted. During the course of the study - September 1975 to June 1977 - the water level in a well penetrating the mine workings rose at an average rate of 1.2 feet per month. Usually, the rate of water-level rise was greater than average after periods of relatively high rainfall, and lower than average during periods of relatively low rainfall.Water in the mine shafts is unsuited for most uses without treatment. The inability of current domestic water treatment practices to remove high concentrations of toxic metals, such as cadmium and lead, precludes use of the water for a public supply.
Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.
2006-01-01
For the eight monitoring stations in water year 2006, an average of 99.1% of the total-dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent stations.
Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.
2005-01-01
For the eight monitoring sites in water year 2005, an average of 98.2% of the total-dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value, based on calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites.
Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew
2004-01-01
For the seven monitoring sites used to regulate spill in water year 2004, an average of 99.0% of the total- dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value, based on calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites.
Jiang, Xia; Jin, Xiangcan; Yao, Yang; Li, Lihe; Wu, Fengchang
2008-04-01
Effects of biological activity, light, temperature and oxygen on the phosphorus (P) release processes at the sediment and water interface of a shallow lake, Taihu Lake, China, were investigated. The results show that organisms at the sediment and water interface can stimulate P release from sediments, and their metabolism can alter the surrounding micro-environmental conditions. The extent of P release and its effects on P concentration in the overlying water were affected by factors such as light, temperature and dissolved oxygen. The organism biomass increased as temperature increased, which was beneficial for P release. Dissolved total phosphorus (DTP) and dissolved inorganic phosphorus (DIP) concentrations in the corresponding overlying water were mainly controlled by light. P release occurred in both aerobic and anoxic conditions with the presence of organisms. However in the presence of light , P release in an anoxic environment was much greater than in an aerobic environment, which may stimulate alga bloom and result in an increase in total phosphorus (TP) in the overlying water. This information aids the understanding of P biogeochemical cycling at the interface and its relationship with eutrophication in shallow lakes.
Ortiz, Roderick F.
2013-01-01
The purpose of the Arkansas Valley Conduit (AVC) is to deliver water for municipal and industrial use within the boundaries of the Southeastern Colorado Water Conservancy District. Water supplied through the AVC would serve two needs: (1) to supplement or replace existing poor-quality water to communities downstream from Pueblo Reservoir; and (2) to meet a portion of the AVC participants’ projected water demands through 2070. The Bureau of Reclamation (Reclamation) initiated an Environmental Impact Statement (EIS) to address the potential environmental consequences associated with constructing and operating the proposed AVC, entering into a conveyance contract for the Pueblo Dam north-south outlet works interconnect (Interconnect), and entering into a long-term excess capacity master contract (Master Contract). Operational changes, as a result of implementation of proposed EIS alternatives, could change the hydrodynamics and water-quality conditions in Pueblo Reservoir. An interagency agreement was initiated between Reclamation and the U.S. Geological Survey to accurately simulate hydrodynamics and water quality in Pueblo Reservoir for projected demands associated with four of the seven proposed EIS alternatives. The four alternatives submitted to the USGS for scenario simulation included various combinations (action or no action) of the proposed Arkansas Valley Conduit, Master Contract, and Interconnect options. The four alternatives were the No Action, Comanche South, Joint Use Pipeline North, and Master Contract Only. Additionally, scenario simulations were done that represented existing conditions (Existing Conditions scenario) in Pueblo Reservoir. Water-surface elevations, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, total iron, and algal biomass (measured as chlorophyll-a) were simulated. Each of the scenarios was simulated for three contiguous water years representing a wet, average, and dry annual hydrologic cycle. Each selected simulation scenario also was evaluated for differences in direct/indirect effects and cumulative effects on a particular scenario. Analysis of the results for the direct/indirect- and cumulative-effects analyses indicated that, in general, the results were similar for most of the scenarios and comparisons in this report focused on results from the direct/indirect-effects analyses. Scenario simulations that represented existing conditions in Pueblo Reservoir were compared to the No Action scenario to assess changes in water quality from current demands (2006) to projected demands in 2070. Overall, comparisons of the results between the Existing Conditions and the No Action scenarios for water-surface elevations, water temperature, and dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, and total iron concentrations indicated that the annual median values generally were similar for all three simulated years. Additionally, algal groups and chlorophyll-a concentrations (algal biomass) were similar for the Existing Conditions and the No Action scenarios at site 7B in the epilimnion for the simulated period (Water Year 2000 through 2002). The No Action scenario also was compared individually to the Comanche South, Joint Use Pipeline North, and Master Contract Only scenarios. These comparisons were made to describe changes in the annual median, 85th percentile, or 15th percentile concentration between the No Action scenario and each of the other three simulation scenarios. Simulated water-surface elevations, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, total iron, algal groups, and chlorophyll-a concentrations in Pueblo Reservoir generally were similar between the No Action scenario and each of the other three simulation scenarios.
Ockerman, Darwin J.; Roussel, Meghan C.
2009-01-01
The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers and the San Antonio River Authority, configured, calibrated, and tested a Hydrological Simulation Program ? FORTRAN watershed model for the approximately 238-square-mile Leon Creek watershed in Bexar County, Texas, and used the model to simulate streamflow and water quality (focusing on loads and yields of selected constituents). Streamflow in the model was calibrated and tested with available data from five U.S. Geological Survey streamflow-gaging stations for 1997-2004. Simulated streamflow volumes closely matched measured streamflow volumes at all streamflow-gaging stations. Total simulated streamflow volumes were within 10 percent of measured values. Streamflow volumes are greatly influenced by large storms. Two months that included major floods accounted for about 50 percent of all the streamflow measured at the most downstream gaging station during 1997-2004. Water-quality properties and constituents (water temperature, dissolved oxygen, suspended sediment, dissolved ammonia nitrogen, dissolved nitrate nitrogen, and dissolved and total lead and zinc) in the model were calibrated using available data from 13 sites in and near the Leon Creek watershed for varying periods of record during 1992-2005. Average simulated daily mean water temperature and dissolved oxygen at the most downstream gaging station during 1997-2000 were within 1 percent of average measured daily mean water temperature and dissolved oxygen. Simulated suspended-sediment load at the most downstream gaging station during 2001-04 (excluding July 2002 because of major storms) was 77,700 tons compared with 74,600 tons estimated from a streamflow-load regression relation (coefficient of determination = .869). Simulated concentrations of dissolved ammonia nitrogen and dissolved nitrate nitrogen closely matched measured concentrations after calibration. At the most downstream gaging station, average simulated monthly mean concentrations of dissolved ammonia and nitrate concentrations during 1997-2004 were 0.03 and 0.37 milligram per liter, respectively. For the most downstream station, the measured and simulated concentrations of dissolved and total lead and zinc for stormflows during 1993-97 after calibration do not match particularly closely. For base-flow conditions during 1997-2004 at the most downstream station, the simulated/measured match is better. For example, median simulated concentration of total lead (for 2,041 days) was 0.96 microgram per liter, and median measured concentration (for nine samples) of total lead was 1.0 microgram per liter. To demonstrate an application of the Leon Creek watershed model, streamflow constituent loads and yields for suspended sediment, dissolved nitrate nitrogen, and total lead were simulated at the mouth of Leon Creek (outlet of the watershed) for 1997-2004. The average suspended-sediment load was 51,800 tons per year. The average suspended-sediment yield was 0.34 ton per acre per year. The average load of dissolved nitrate at the outlet of the watershed was 802 tons per year. The corresponding yield was 10.5 pounds per acre per year. The average load of lead at the outlet was 3,900 pounds per year. The average lead yield was 0.026 pound per acre per year. The degree to which available rainfall data represent actual rainfall is potentially the most serious source of measurement error associated with the Leon Creek model. Major storms contribute most of the streamflow loads for certain constituents. For example, the three largest stormflows contributed about 64 percent of the entire suspended-sediment load at the most downstream station during 1997-2004.
Water quality of Tampa Bay, Florida, June 1972-May 1976
Goetz, Carole L.; Goodwin, Carl R.
1980-01-01
A comprehensive assessment of the water quality of Tampa Bay, Florida, was initiated in 1970 to provide background information to evaluate the effects of widening and deepening the ship channel to the port of Tampa. This report provides results of water-quality sampling in the bay from 1972 to 1976, prior to dredging. Measurements of temperature, dissolved oxygen, pH, turbidity, specific conductance, biochemical oxygen demand, and total organic carbon were made as well as measurements for several nutrient, metal, and pesticide parameters. Many parameters were measured at as many as three points in the vertical. These data indicate that Tampa Bay is well-mixed vertically with little density stratification. Time histories of average temperature, dissolved oxygen, pH, turbidity, specific conductance and nutrient values within four subareas of Tampa Bay are given to reveal seasonal or other trends during the period of record. Temperature, dissolved oxygen, pH, turbidity, specific conductance, nutrient, biochemical oxygen demand, total organic carbon, and metal data are also presented as areal distributions. Nutrient concentrations were generally higher in Hillsborough Bay than in other sub-areas of Tampa Bay. Biochemical oxygen demand, total organic carbon, and total organic nitrogen distribution patterns show regions of highest concentrations to be along bay shorelines near population centers. Of the metals analyzed, all were present in concentrations of less than 1 milligram per liter. (USGS)
Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques
2015-10-01
This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the complexed form. A high degree of deterioration of the reservoir was confirmed by the results of this study.
Ye, Lin-Lin; Wu, Xiao-Dong; Kong, Fan-Xiang; Liu, Bo; Yan, De-Zhi
2015-03-01
Surface water samples of Yincungang and Chendonggang Rivers were collected from September 2012 to August 2013 in Lake Taihu. Water temperature, Chlorophyll a and bacterial abundance were analyzed, as well as dissolved organic carbon (DOC) concentrations, stable carbon isotope of DOC (Δ13C(DOC)), specific UV absorbance (SUVA254 ) and dissolved carbohydrates concentrations. Δ13C(DOC) ranged from -27.03% per thousand ± 0.30% per thousand to -23.38%per thousand ± 0.20% per thousand, indicating a terrestrial source. Both the autochthonous and allochthonous sources contributed to the carbohydrates pool in the tributaries. Significant differences in PCHO (polysaccharides) and MCHO (monosaccharides) concentrations were observed between spring-summer and autumn-winter (P < 0.01, n = 12; P < 0.01, n = 12), which might be caused by the variation in the sources and bioavailability of carbohydrates. PCHO contributed a major fraction to TCHO (total dissolved carbohydrates) in autumn and winter, which could be explained by the accumulation of undegradable PCHO limited by the low water temperature; MCHO contributed a major fraction to TCHO in spring and summer, which might be caused by the transformation from PCHO by microbes at high water temperature.
Bird, Susan M.; Fram, Miranda S.; Crepeau, Kathryn L.
2003-01-01
An analytical method has been developed for the determination of dissolved organic carbon concentration in water samples. This method includes the results of the tests used to validate the method and the quality-control practices used for dissolved organic carbon analysis. Prior to analysis, water samples are filtered to remove suspended particulate matter. A Shimadzu TOC-5000A Total Organic Carbon Analyzer in the nonpurgeable organic carbon mode is used to analyze the samples by high temperature catalytic oxidation. The analysis usually is completed within 48 hours of sample collection. The laboratory reporting level is 0.22 milligrams per liter.
Drought effects on water quality in the South Platte River Basin, Colorado
Sprague, Lori A.
2005-01-01
Twenty-three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite-plus-nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water-derived calcium bicarbonate type base flow likely led to elevated pH and specific-conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.
Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.
2007-01-01
For the eight monitoring sites in water year 2007, an average of 99.5% of the total-dissolved-gas data were received in real time by the USGS satellite downlink and were within 1% saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. Data received from the sites ranged from 97.9% to 100.0% complete.
Water quality and phytoplankton of the tidal Potomac River, August-November 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodward, J.C.; Manning, P.D.; Shultz, D.J.
1984-01-01
In the summer of 1983, a prolonged blue-green algal bloom, consisting predominantly of Microcystis, occurred in the Potomac River downstream of Washington, DC. Ten longitudinal sampling trips were made between August 3 and November 9, 1983, primarily in the freshwater tidal Potomac River between Memorial Bridge and Quantico, Va. Samples were depth-integrated and composited across the river at each major station and analyzed for dissolved and total nitrogen species, dissolved and total phosphorus species, dissolved silica, chlorophyll-a, pheophytin, and suspended sediment. In addition, phytoplankton were enumerated and identified. Point samples were taken for chlorophyll-a and pheophytin, and measurements were mademore » of dissolved oxygen, pH, conductance, temperature, and Secchi disc transparency. Some supplementary data are presented from points between major stations and in tributaries to the tidal Potomac River. 14 refs., 3 figs., 8 tabs.« less
Investigating aquifer contamination and groundwater quality in eastern Terai region of Nepal.
Mahato, Sanjay; Mahato, Asmita; Karna, Pankaj Kumar; Balmiki, Nisha
2018-05-21
This study aims at assessing the groundwater quality of the three districts of Eastern Terai region of Nepal viz. Morang, Jhapa, Sunsari using physicochemical characteristics and statistical approach so that possible contamination of water reservoir can be understood. pH, temperature, conductivity, turbidity, color, total dissolved solids, fluorides, ammonia, nitrates, chloride, total hardness, calcium hardness, calcium, magnesium, total alkalinity, iron, manganese, arsenic have to be analyzed to know the present status of groundwater quality. Results revealed that the value of analyzed parameters were within the acceptable limits for drinking water recommended by World Health Organization except for pH, turbidity, ammonia and iron. As per Nepal Drinking Water Quality Standards, fluoride and manganese too were not complying with the permissible limit. Electrical conductivity, total dissolved solids, chloride, total hardness, calcium hardness, manganese, and total alkalinity show good positive correlation with major water quality parameters. Calcium, magnesium, total hardness, calcium hardness and total alkalinity greatly influences total dissolved solids and electrical conductivity. ANOVA, Tukey, and clustering highlight the significance of three districts. Groundwater can be considered safe, but there is always a chance of contamination through chemical wastes in the heavily industrialized area of Morang and Sunsari Industrial corridor.
Environmental setting of benchmark streams in agricultural areas of eastern Wisconsin
Rheaume, S.J.; Stewart, J.S.; Lenz, B.N.
1996-01-01
Differences in land use/land cover, and riparian vegetation and instream habitat characteristics are presented. Summaries of field measurements of water temperature, pH, specific conductance and concentrations of dissolved oxygen, total organic plus ammonia nitrogen, dissolved ammonium, nitrate plus nitrte as nitrogen, total phosphorus, dissolved orthophosphate, and atrazine are listed. Concentrations of dissolved oxygen for the sampled streams ranged from 6 A to 14.3 and met the standards set by the Wisconsin Department of Natural Resources (WDNR) for supporting fish and aquatic life. Specific conductance ranged from 98 to 753 u,Scm with values highest in RHU's 1 and 3, where streams are underlain by carbonate bedrock. Median pH did not vary greatly among the four RHU's and ranged from 6.7 to 8.8 also meeting the WDNR standards. Concentrations of total organic plus ammonia nitrogen, dissolved ammonium, total phosphorus, and dissolved orthophosphate show little variation between streams and are generally low, compared to concentrations measured in agriculturally-affected streams in the same RHU's during the same sampling period. Concentrations of the most commonly used pesticide in the study unit, atrazine, were low in all streams, and most concentrations were below trn 0.1 u,g/L detection limit. Riparian vegetation for the benchmark streams were characterized by lowland species of the native plant communities described by John T. Curtis in the "Vegetation of Wisconsin." Based on the environmental setting and water-quality information collected to date, these streams appear to show minimal adverse effects from human activity.
NASA Astrophysics Data System (ADS)
Balakrishnan, S.; Chelladurai, G.; Mohanraj, J.; Poongodi, J.
2017-07-01
Physico-chemical parameters were determined along the Vellapatti, Tharuvaikulam and Threspuram coastal waters, southeast coast of India. All the physico-chemical parameters such as sea surface temperature, salinity, pH, total alkalinity, total suspended solids, dissolved oxygen and nutrients like nitrate, nitrite, inorganic phosphate and reactive silicate were studied for a period of 12 months (June 2014-May 2015). Sea surface temperature varied from 26.4 to 29.7 °C. Salinity varied from 26.1 and 36.2 ‰, hydrogen ion concentration ranged between 8.0 and 8.5. Variation in dissolved oxygen content was from 4.125 to 4.963 mg l-1. Total alkalinity ranged from 64 to 99 mg/l. Total suspended solids ranged from 24 to 97 mg/l. Concentrations of nutrients, viz. nitrates (2.047-4.007 μM/l), nitrites (0.215-0.840 μM/l), phosphates (0.167-0.904 µM/l), total phosphorus (1.039-3.479 μM/l), reactive silicates (3.737-8.876 μM/l) ammonia (0.078-0.526 μM/l) and also varied independently.
Water quality assessment of sacred glacial Lake Satopanth of Garhwal Himalaya, India
NASA Astrophysics Data System (ADS)
Sharma, Ramesh C.; Kumar, Rahul
2017-12-01
Satopanth Lake is a glacial lake, located at an altitude of 4600 m above sea level in Garhwal Himalaya of Uttarakhand state in India where an attempt was made to assess the water quality. A total of sixteen physico-chemical parameters including temperature, hardness, alkalinity, dissolved oxygen, conductivity, pH, calcium, magnesium, chlorides, nitrates, sulphates and phosphates were recorded during 2014 and 2015 between June and August in ice-free period. The mean values of pH ranged from 6.85 to 7.10; water temperature fluctuated from 0.1 to 0.3 °C; dissolved oxygen varied from 5.90 to 6.0 mg.L-1; free CO2 varied from 8.40 to 8.60 mg.L-1; total dissolved solids varied from 88.0 to 89.5 mg.L-1; calcium from 7.88 to 7.95 mg.L-1; magnesium from 0.53 to 0.66 mg.L-1. All the physico-chemical values were within the prescribed WHO/BIS limit for drinking water. Water Quality Index (WQI) calculated based on these parameters also revealed the excellent quality of lake water.
Tanner, Dwight Q.; Johnston, Matthew W.; Bragg, Heather M.
2002-12-10
From mid-July to mid-September, water temperatures were usually above 20 degrees Celsius at each of the seven lower Columbia River sites in operation. According to the Oregon water-quality standard, when the temperature of the lower Columbia River exceeds 20 degrees Celsius, no measurable temperature increase resulting from anthropogenic activities is allowed.
The Geographic Information System applied to study schistosomiasis in Pernambuco
Barbosa, Verônica Santos; Loyo, Rodrigo Moraes; Guimarães, Ricardo José de Paula Souza e; Barbosa, Constança Simões
2017-01-01
ABSTRACT OBJECTIVE Diagnose risk environments for schistosomiasis in coastal localities of Pernambuco using geoprocessing techniques. METHODS A coproscopic and malacological survey were carried out in the Forte Orange and Serrambi areas. Environmental variables (temperature, salinity, pH, total dissolved solids and water fecal coliform dosage) were collected from Biomphalaria breeding sites or foci. The spatial analysis was performed using ArcGis 10.1 software, applying the kernel estimator, elevation map, and distance map. RESULTS In Forte Orange, 4.3% of the population had S. mansoni and were found two B. glabrata and 26 B. straminea breeding sites. The breeding sites had temperatures of 25ºC to 41ºC, pH of 6.9 to 11.1, total dissolved solids between 148 and 661, and salinity of 1,000 d. In Serrambi, 4.4% of the population had S. mansoni and were found seven B. straminea and seven B. glabrata breeding sites. Breeding sites had temperatures of 24ºC to 36ºC, pH of 7.1 to 9.8, total dissolved solids between 116 and 855, and salinity of 1,000 d. The kernel estimator shows the clusters of positive patients and foci of Biomphalaria, and the digital elevation map indicates areas of rainwater concentration. The distance map shows the proximity of the snail foci with schools and health facilities. CONCLUSIONS Geoprocessing techniques prove to be a competent tool for locating and scaling the risk areas for schistosomiasis, and can subsidize the health services control actions. PMID:29166439
Ikaite solubility in seawater-derived brines at 1 atm and sub-zero temperatures to 265 K
NASA Astrophysics Data System (ADS)
Papadimitriou, Stathys; Kennedy, Hilary; Kennedy, Paul; Thomas, David N.
2013-05-01
The concentration-based (stoichiometric) equilibrium solubility product of ikaite (CaCO3·6H2O) in seawater and cryogenic seawater-derived brines was determined at 1 atm total pressure over the temperature range from -1.1 to -7.5 °C and the salinity range from 34 to 124 in temperature-salinity pairs representative of sea ice brines. The solubility measurements were obtained in solutions that were undersaturated and supersaturated with respect to ikaite by equilibration with CO2/N2 gas mixtures of known pCO2 (20-400 μatm). The solutions were then equilibrated with synthetic ikaite (seed) for up to 3 months in a closed system. Arrival of the solid-solution system at a long-term chemical equilibrium was indicated by attainment of constant chemical solution composition with respect to total dissolved calcium, total dissolved inorganic carbon, and total alkalinity. Using these measurements, the stoichiometric equilibrium solubility product of ikaite (Ksp,ikaite∗=[Ca][CO32-], in molkgsolution-2) was determined, with the carbonate ion concentration computed from the measured total alkalinity and total dissolved inorganic carbon concentrations. The computed carbonate ion concentration and, by extension, the Ksp,ikaite∗ are both contingent on solving the system of equations that describe the parameters of the CO2 system in seawater by extrapolation to the experimental salinity and temperature conditions. The results show that the pKsp,ikaite∗=-logKsp,ikaite∗ in seawater of salinity 34 at -1.1 °C was 5.362 ± 0.004 and that the pKsp,ikaite∗ in sea ice at the freezing point of brines of salinity greater than 34 can be described as a function of temperature (T, in K) by the equation, pKsp,ikaite∗=-15489.09608+623443.70216T-1+2355.14596lnT, in the temperature range of 265.15 K < T < 271.15 K (-8 °C < t < -2 °C). Brines of low pCO2 (20 μatm) yielded a much slower (>1 month) approach to chemical equilibrium when incubated without seeding ikaite crystals. Simple modeling indicated that ikaite should not precipitate from sea ice brines evolving under closed system conditions with respect to CO2 exchange. To facilitate ikaite precipitation, brine pCO2 reduction due to photosynthesis or CO2 degassing, or both, is necessary.
Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; ...
2017-05-19
Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.
Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less
NASA Astrophysics Data System (ADS)
Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.
2017-08-01
Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.
Modeling hydrodynamics, temperature and water quality in Henry Hagg Lake, Oregon, 2000-2003
Sullivan, Annette B.; Rounds, Stewart A.
2004-01-01
The two-dimensional model CE-QUAL-W2 was used to simulate hydrodynamics, temperature, and water quality in Henry Hagg Lake, Oregon, for the years 2000 through 2003. Input data included lake bathymetry, meteorologic conditions, tributary inflows, tributary temperature and water quality, and lake outflows. Calibrated constituents included lake hydrodynamics, water temperature, orthophosphate, total phosphorus, ammonia, algae, chlorophyll a, zooplankton, and dissolved oxygen. Other simulated constituents included nitrate, dissolved and particulate organic matter, dissolved solids, and suspended sediment. Two algal groups (blue-green algae, and all other algae) were included in the model to simulate the lakes algal communities. Measured lake stage data were used to calibrate the lakes water balance; calibration of water temperature and water quality relied upon vertical profile data taken in the deepest part of the lake near the dam. The model initially was calibrated with data from 200001 and tested with data from 200203. Sensitivity tests were performed to examine the response of the model to specific parameters and coefficients, including the light-extinction coefficient, wind speed, tributary inflows of phosphorus, nitrogen and organic matter, sediment oxygen demand, algal growth rates, and zooplankton feeding preference factors.
Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.
2007-01-30
At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previousmore » work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at both sites are then presented in both text and graphics. The findings and recommendations for further research are discussed, followed by a listing of the references cited in the report.« less
Taylor, Howard E.; Peart, D.B.; Antweiler, Ronald C.; Brinton, T.I.; Campbell, W.L.; Barbarino, J.R.; Roth, D.A.; Hart, R.J.; Averett, R.C.
1996-01-01
Two water-quality synoptic studies were made on the Colorado River in the Grand Canyon, Arizona. Field measurements and the collection of water samples for laboratory analysis were made at 10 mainstem and 6 tributary sites every 6 hours for a 48-hour period on November 5-6, 1990, and again on June 18-20, 1991. Field measurements included discharge, alkalinity, water temperature, light penetration, pH, specific conductance, and dissolved oxygen. Water samples were collected for the laboratory analysis of major and minor ions (calcium, magnesium, sodium, potassium, strontium, chloride, sulfate, silica as SiO2), trace elements (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, lead, lithium, manganese, molybdenum, nickel, selenium, thallium, uranium, vanadium and zinc), and nutrients (phosphate, nitrate, ammonium, nitrite, total dissolved nitrogen, total dissolved phosphorus and dissolved organic carbon). Biological measurements included drift (benthic invertebrates and detrital material), and benthic invertebrates from the river bottom.
Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon
Sullivan, Annett B.; Rounds, Stewart A.; Sobieszczyk, Steven; Bragg, Heather M.
2007-01-01
Detroit Lake is a large reservoir on the North Santiam River in west-central Oregon. Water temperature and suspended sediment are issues of concern in the river downstream of the reservoir. A CE-QUAL-W2 model was constructed to simulate hydrodynamics, water temperature, total dissolved solids, and suspended sediment in Detroit Lake. The model was calibrated for calendar years 2002 and 2003, and for a period of storm runoff from December 1, 2005, to February 1, 2006. Input data included lake bathymetry, meteorology, reservoir outflows, and tributary inflows, water temperatures, total dissolved solids, and suspended sediment concentrations. Two suspended sediment size groups were modeled: one for suspended sand and silt with particle diameters larger than 2 micrometers, and another for suspended clay with particle diameters less than or equal to 2 micrometers. The model was calibrated using lake stage data, lake profile data, and data from a continuous water-quality monitor on the North Santiam River near Niagara, about 6 kilometers downstream of Detroit Dam. The calibrated model was used to estimate sediment deposition in the reservoir, examine the sources of suspended sediment exiting the reservoir, and examine the effect of the reservoir on downstream water temperatures.
Kelly, Brian P.
2002-01-01
A detailed ground-water sampling plan was developed and executed for 64 monitoring wells in the city of Independence well field to characterize ground-water quality in the 10-year zone of contribution. Samples were collected from monitoring wells, combined Independence well field pumpage, and the Missouri River at St. Joseph, Missouri, from 1998 through 2000. In 328 ground-water samples from the 64 monitoring wells and combined well field pumpage samples, specific conductance values ranged from 511 to 1,690 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.4 to 7.7, water temperature ranged from 11.3 to 23.6 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 3.3 milligrams per liter. In 12 samples from the combined well field pumpage samples, specific conductance values ranged from 558 to 856 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.9 to 7.7, water temperature ranged from 5.8 to 22.9 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 2.4 milligrams per liter. In 45 Missouri River samples, specific conductance values ranged from 531 to 830 microsiemens per centimeter at 25 degrees Celsius, pH ranged from 7.2 to 8.7, water temperature ranged from 0 to 30 degrees Celsius, and dissolved oxygen concentrations ranged from 5.0 to 17.6 milligrams per liter. The secondary maximum contaminant level for sulfate in drinking water was exceeded once in samples from two monitoring wells, the maximum contaminant level (MCL) for antimony was exceeded once in a sample from one monitoring well, and the MCL for barium was exceeded once in a sample from one monitoring well. The MCL for iron was exceeded in samples from all monitoring wells except two. The MCL for manganese was exceeded in all samples from monitoring wells and combined well field pumpage. Enzyme linked immunoassay methods indicate total benzene, toluene, ethyl benzene, and xylene (BTEX) was detected in samples from five wells. The highest total BTEX concentration was less than the MCL of toluene, ethyl benzene, or xylene but greater than the MCL for benzene. Total BTEX was not detected in samples from any well more than once. Atrazine was detected in samples from nine wells, and exceeded the MCL once in a sample from one well. Alachlor was detected in samples from 22 wells but the MCL was never exceeded in any sample. Samples from five wells analyzed for a large number of organic compounds indicate concentrations of volatile organic compounds did not exceed the MCL for drinking water. No semi-volatile organic compounds were detected; dieldrin was detected in one well sample, and no other pesticides, herbicides, polychlorinated biphenyls, or polychlorinated napthalenes were detected. Dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphorus, alachlor, and atrazine analyses were used to determine the spatial and temporal variability of agricultural chemicals in ground water. Detection frequencies for dissolved ammonia increased with well depth, decreased with depth for dissolved nitrite plus nitrate, and remained relatively constant with depth for dissolved orthophosphorus. Maximum concentrations of dissolved ammonia, dissolved nitrite plus nitrate, and dissolved orthophosphorus were largest in the shallowest wells and decreased with depth, which may indicate the land surface as the source. However, median concentrations increased with depth for dissolved ammonia, were less than the detection limit for dissolved nitrite plus nitrate, and decreased with depth for dissolved orthophosphorus. This pattern does not indicate a well-defined single source for these constituents. Dissolved orthophosphorus median concentrations were similar, but decreased slightly with depth, and may indicate the land surface as the source. Seasonal variability of dissolved ammonia, dissolved nitrite plus nitrate, a
NASA Astrophysics Data System (ADS)
Aung, T. T.; Fujii, T.; Amo, M.; Suzuki, K.
2017-12-01
Understanding potential of methane flux from the Pleistocene fore-arc basin filled turbiditic sedimentary formation along the eastern Nankai Trough is important in the quantitative assessment of gas hydrate resources. We considered generated methane could exist in sedimentary basin in the forms of three major components, and those are methane in methane hydrate, free gas and methane dissolved in water. Generation of biomethane strongly depends on microbe activity and microbes in turn survive in diverse range of temperature, salinity and pH. This study aims to understand effect of reaction temperature and total organic carbon on generation of biomethane and its components. Biomarker analysis and cultural experiment results of the core samples from the eastern Nankai Trough reveal that methane generation rate gets peak at various temperature ranging12.5°to 35°. Simulation study of biomethane generation was made using commercial basin scale simulator, PetroMod, with different reaction temperature and total organic carbon to predict how these effect on generation of biomethane. Reaction model is set by Gaussian distribution with constant hydrogen index and standard deviation of 1. Series of simulation cases with peak reaction temperature ranging 12.5°to 35° and total organic carbon of 0.6% to 3% were conducted and analyzed. Simulation results show that linear decrease in generation potential while increasing reaction temperature. But decreasing amount becomes larger in the model with higher total organic carbon. At higher reaction temperatures, >30°, extremely low generation potential was found. This is due to the fact that the source formation modeled is less than 1 km in thickness and most of formation do not reach temperature more than 30°. In terms of the components, methane in methane hydrate and free methane increase with increasing TOC. Drastic increase in free methane was observed in the model with 3% of TOC. Methane amount dissolved in water shows almost same for all models.
Francis E. Walter Dam and Reservoir Project, Water Quality Data Report (RCS-DAEN-CWE-15).
1980-12-01
downstream, as well as within, the lake. Analysis of these samples rives an understanding of the effect of the lake on water quality: • . The...regulation, are available for analysis . Water quality data;I (temperature, dissolved oxygen, conductivity, pH, phosphorous, total dissolved solids...depresses the pH following a rain storm. If the source of tre acid water is Fhallow lakes and swamps~lignin and tannin concentrations would be high
Jiang, Yang; Ju, Meiting; Li, Weizun; Ren, Qingbin; Liu, Le; Chen, Yu; Yang, Qian; Hou, Qidong; Liu, Yiliang
2015-12-01
Keep composting matrix in continuous collision and friction under a relatively high-temperature can significantly accelerate the progress of composting. A bioreactor was designed according to the novel process. Using this technology, organic fertilizer could be produced within 96h. The electric conductivity (EC) and pH value reached to a stable value of 2.35mS/cm and 7.7 after 96h of fermentation. The total carbon/total nitrogen (TC/TN) and dissolved carbon/dissolved nitrogen (DC/DN) ratio was decrease from 27.3 and 36.2 to 17.4 and 7.6 respectively. In contrast, it needed 24days to achieve the similar result in traditional static composting (TSC). Compost particles with different size were analyzed to explore the rapid degradation mechanism of food waste. The evidence of anaerobic fermentation was firstly discovered in aerobic composting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Terry, J.E.; Morris, E.E.; Bryant, C.T.
1982-01-01
The Arkansas Department of Pollution Control and Ecology and U.S. Geological Survey conducted a water quality assessment be made of the White River and, that a steady-state digital model be calibrated and used as a tool for simulating changes in nutrient loading. The city of Fayetteville 's wastewater-treatment plant is the only point-source discharger of waste effluent to the river. Data collected during synoptic surveys downstream from the wastewater-treatment plan indicate that temperature, dissolved oxygen, dissolved solids, un-ionized ammonia, total phosphorus, and floating solids and depositable materials did not meet Arkansas stream standards. Nutrient loadings below the treatment plant result in dissolved oxygen concentrations as low as 0.0 milligrams per liter. Biological surveys found low macroinvertebrate organism diversity and numerous dead fish. Computed dissolved oxygen deficits indicate that benthic demands are the most significant oxygen sinks in the river downstream from the wastewater-treatment plant. Benthic oxygen demands range from 2.8 to 11.0 grams per meter squared per day. Model projections indicate that for 7-day, 10-year low-flow conditions and water temperature of 29 degrees Celsius, daily average dissolved oxygen concentrations of 6.0 milligrams per liter can be maintained downstream from the wastewater-treatment plant if effluent concentrations of ultimate carbonaceous biochemical oxygen demand and ammonia nitrogen are 7.5 (5.0 5-day demand) and 2 milligrams per liter respectively. Model sensitivity analysis indicate that dissolved oxygen concentrations were most sensitive to changes in stream temperature. (USGS)
Quality of Surface Water in Missouri, Water Year 2007
Otero-Benitez, William; Davis, Jerri V.
2009-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2007 water year (October 1, 2006 through September 30, 2007), data were collected at 67 stations including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, dissolved nitrite plus nitrte, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations, which primarily have been classified in groups corresponding to the physiography of the State, main land use, or unique station types. In addition, a summary of hydrologic conditions in the State during water year 2007 is presented.
Liscum, Fred; Goss, R.L.; Paul, E.M.
1987-01-01
The third approach was a comparison at each site of the mean, maximum, and minimum values computed for seven constituents that did not correlate with discharge. These constituents or properties of water were temperature, pH, dissolved oxygen, dissolved oxygen percent saturation, total-coliform bacteria, fecal-conform bacteria, and fecal-streptococci bacteria. The only consistent water-quality changes observed were with the three bacteria groups, which were decreased by flood-water detention.
Serratore, Patrizia; Ostanello, Fabio; Passalacqua, Pier Luca; Zavatta, Emanuele; Bignami, Giorgia; Serraino, Andrea; Giacometti, Federica
2016-09-20
The present work describes a retrospective study aiming to verify a possible correlation between the environmental conditions (temperature, salinity and dissolved oxygen), the abundance of Vibrio spp., and the prevalence of V. parahaemolyticus and V. vulnificus in the Manila clam R. philippinarum harvested in Sacca di Goro, Emilia-Romagna Region, Northern Italy. On the whole, 104 samples, collected in the period 2007-2015 and submitted to microbiological analyses (isolation and genotyping), have been reconsidered for Vibrio spp. load, V. parahaemolyticus prevalence (total, gene marker toxRP; potentially pathogenic, gene markers tdh and/or trh) and V. vulnificus prevalence (total, gene markers vvh A and hsp) together with environmental data obtained from the monitoring activity of the Emilia-Romagna Regional Agency for the Prevention, the Environment and the Energy. Environmental data have been processed to calculate the median of each, assessing the seasonal range of seawater temperature (warmer months: April-October, T°C >16.45°C; cooler months November-March, T°C <16.45°C), salinity (
Avigliano, Esteban; Schenone, Nahuel
2016-08-01
The South American Atlantic rainforest is a one-of-a-kind ecosystem considered as a biodiversity hotspot; however, in the last decades, it was intensively reduced to 7 % of its original surface. Water resources and water quality are one of the main goods and services this system provides to people. For monitoring and management recommendations, the present study is focused on (1) determining the nutrient content (nitrate, nitrite, ammonium, and phosphate) and physiochemical parameters (temperature, pH, electrical conductivity, turbidity, dissolved oxygen, and total dissolved solids) in surface water from 24 rainforest mountain rivers in Argentina, (2) analyzing the human health risk, (3) assessing the environmental distribution of the determined pollutants, and (4) analyzing water quality indices (WQIobj and WQImin). In addition, for total coliform bacteria, a dataset was used from literature. Turbidity, total dissolved solids, and nitrite (NO2 (-)) exceeded the guideline value recommended by national or international guidelines in several sampling stations. The spatial distribution pattern was analyzed by Principal Component Analysis and Factor Analysis (PCA/FA) showing well-defined groups of rivers. Both WQI showed good adjustment (R (2) = 0.89) and rated water quality as good or excellent in all sampling sites (WQI > 71). Therefore, this study suggests the use of the WQImin for monitoring water quality in the region and also the water treatment of coliform, total dissolved solids, and turbidity.
La Camera, R. J.; Browning, S.B.
1988-01-01
Selected hydrologic data were collected from August 1984 through July 1985 at three sites on the lower part of Edgewood Creek, and at a recently constructed sediment-catchment basin that captures and retains runoff from developed areas in the lower Edgewood Creek drainage. The data were collected to quantify the discharge of selected constituents downstream from recent and planned watershed restoration projects, and to Lake Tahoe. Contained in this report are the results of quantitative analyses of 39 water samples for: total and dissolved ammonium, organic nitrogen, nitrite, nitrate, phosphorus, and orthophosphorus; suspended sediment; total iron, manganese, and zinc; and dissolved temperature, specific conductance, pH, and dissolved oxygen; summary statistics (means and standard deviations), and computations of instantaneous loads. On the basis of mean values, about 80% of the total nitrogen load at each of the three Edgewood Creek sites is in the form of organic nitrogen, 12% is in the form of nitrate nitrogen, 7% is in the form of ammonium nitrogen, and 1% is in the form of nitrite nitrogen. The percentage of total phosphorus load in the form of orthophosphorus at the three stream sites varies somewhat with time, but is generally greater at the two downstream sites than at the upstream site. In addition, the percentage of the total phosphorus load that is present in the dissolved state generally is greater at the two downstream sites than at the upstream site. (Lantz-PTT)
Blackwell, Karen Dyer; Oliver, James D
2008-04-01
While numerous studies have characterized the distribution and/or ecology of various pathogenic Vibrio spp., here we have simultaneously examined several estuarine sites for Vibrio vulnificus, V. cholerae, and V. parahaemolyticus. For a one year period, waters and sediment were monitored for the presence of these three pathogens at six different sites on the east coast of North Carolina in the United States. All three pathogens, identified using colony hybridization and PCR methods, occurred in these estuarine environments, although V. cholerae occurred only infrequently and at very low levels. Seventeen chemical, physical, and biological parameters were investigated, including salinity, water temperature, turbidity, dissolved oxygen, levels of various inorganic nutrients and dissolved organic carbon, as well as total vibrios, total coliforms, and E. coli. We found each of the Vibrio spp. in water and sediment to correlate to several of these environmental measurements, with water temperature and total Vibrio levels correlating highly (P<0.0001) with occurrence of the three pathogens. Thus, these two parameters may represent simple assays for characterizing the potential public health hazard of estuarine waters.
Crone, Brian C; Garland, Jay L; Sorial, George A; Vane, Leland M
2016-11-01
The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10-30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11-100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Microporous membranes can recover up to 98.9% of dissolved methane in AnMBR effluents which have low COD and SS concentrations. Sequential Down-flow Hanging Sponge (DHS) reactors have been used to recover between 57 and 88% of dissolved methane from Upflow Anaerobic Sludge Blanket (UASB) reactor effluent at concentrations of greater than 30% and oxidize the rest for a 99% removal of total dissolved methane. They can also remove 90% of suspended solids and COD in UASB effluents and produce a high quality effluent. In situ degassing can increase process stability, COD removal, biomass retention, and headspace methane concentrations. A model for estimating energy consumption associated with membrane-based dissolved methane recovery predicts that recovered dissolved and headspace methane may provide all the energy required for operation of an anaerobic system treating DWW at psychrophilic temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Predicting the Fate and Effects of Resuspended Metal Contaminated Sediments
2015-12-23
force on the sediment. Over the course of the experiment, dissolved and particulate metal concentrations, dissolved oxygen , temperature , turbidity, pH...dissolved oxygen , and temperature . A 16-hour multiple resuspension was also implemented in the SeFEC, intended to replicate intermittent ship traffic...was sampled at the end of hours 4, 8, 12, and 16. Samples were analyzed for: dissolved metals, pH, dissolved oxygen , and temperature (three
Water-quality data for the Russian River Basin, Mendocino and Sonoma Counties, California, 2005-2010
Anders, Robert; Davidek, Karl; Stoeckel, Donald M.
2011-01-01
Field measurements included discharge, barometric pressure, dissolved oxygen, pH, specific conductance, temperature, and turbidity. All samples were analyzed for nutrients, major ions, trace metals, total and dissolved organic carbon, organic wastewater compounds, standard bacterial indicators, and the stable isotopes of hydrogen and oxygen. Standard bacterial indicators included total coliform, Escherichia coli, enterococci, and Clostridium perfringens for the period 2005 through 2007, and total and fecal coliform, and enterococci for 2010. In addition, enrichment of enterococci was performed on all surface-water samples collected during summer 2006, for detection of the human-associated enterococcal surface protein in Enterococcus faecium to assess the presence of sewage effluent in the Russian River. Other analyses included organic wastewater compounds of bed sediment samples collected from four Russian River sites during 2005; carbon-13 isotopic values of the dissolved inorganic carbon for surface-water and groundwater samples collected during 2006; human-use pharmaceuticals on Russian River samples collected during 2007 and 2010; and the radiogenic isotopes tritium and carbon-14 for groundwater samples collected during 2008.
Quality of surface water in Missouri, water year 2015
Barr, Miya N.; Heimann, David C.
2016-11-14
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During water year 2015 (October 1, 2014, through September 30, 2015), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak streamflows, monthly mean streamflows, and 7-day low flows is presented.
Quality of surface water in Missouri, water year 2011
Barr, Miya N.
2012-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2011 water year (October 1, 2010, through September 30, 2011), data were collected at 75 stations—72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.
Quality of surface water in Missouri, water year 2012
Barr, Miya N.
2014-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2012 water year (October 1, 2011, through September 30, 2012), data were collected at 81 stations—73 Ambient Water-Quality Monitoring Network stations, 6 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 78 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.
Quality of surface water in Missouri, water year 2014
Barr, Miya N.
2015-12-18
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2014 water year (October 1, 2013, through September 30, 2014), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.
Quality of surface water in Missouri, water year 2013
Barr, Miya N.; Schneider, Rachel E.
2014-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2013 water year (October 1, 2012, through September 30, 2013), data were collected at 79 stations—73 Ambient Water-Quality Monitoring Network stations, 4 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 76 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.
Quality of surface water in Missouri, water year 2010
Barr, Miya N.
2011-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2010 water year (October 1, 2009 through September 30, 2010), data were collected at 75 stations-72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.
Quality of Surface Water in Missouri, Water Year 2008
Otero-Benitez, William; Davis, Jerri V.
2009-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2008 water year (October 1, 2007, through September 30, 2008), data were collected at 67 stations, including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.
A Multi-Pumping Flow System for In Situ Measurements of Dissolved Manganese in Aquatic Systems
Meyer, David; Prien, Ralf D.; Dellwig, Olaf; Waniek, Joanna J.; Schuffenhauer, Ingo; Donath, Jan; Krüger, Siegfried; Pallentin, Malte; Schulz-Bull, Detlef E.
2016-01-01
A METals In Situ analyzer (METIS) has been used to determine dissolved manganese (II) concentrations in the subhalocline waters of the Gotland Deep (central Baltic Sea). High-resolution in situ measurements of total dissolved Mn were obtained in near real-time by spectrophotometry using 1-(2-pyridylazo)-2-naphthol (PAN). PAN is a complexing agent of dissolved Mn and forms a wine-red complex with a maximum absorbance at a wavelength of 562 nm. Results are presented together with ancillary temperature, salinity, and dissolved O2 data. Lab calibration of the analyzer was performed in a pressure testing tank. A detection limit of 77 nM was obtained. For validation purposes, discrete water samples were taken by using a pump-CTD system. Dissolved Mn in these samples was determined by an independent laboratory based method (inductively coupled plasma–optical emission spectrometry, ICP-OES). Mn measurements from both METIS and ICP-OES analysis were in good agreement. The results showed that the in situ analysis of dissolved Mn is a powerful technique reducing dependencies on heavy and expensive equipment (pump-CTD system, ICP-OES) and is also cost and time effective. PMID:27916898
Ranalli, Anthony J.
2008-01-01
The Pine River Watershed Stakeholders Group was created in December 1997 to allow local participation in addressing water-quality issues in Los Pi?os River watershed, including Vallecito Reservoir in southwestern Colorado. One water-quality issue identified by the stakeholder group is to increase the understanding of the current water quality of Vallecito Reservoir, its two major inflows, and its outflow. The U.S. Geological Survey (USGS), in cooperation with volunteers from the Pine River Watershed Stakeholders Group and the U.S. Environmental Protection Agency (USEPA), U.S. Bureau of Reclamation (BOR), Colorado Department of Public Health and Environment (CDPHE), Pine River Irrigation District, Southern Ute Tribe, San Juan Basin Health Department, and San Juan Resource Conservation and Development, collected water-quality samples from Vallecito Reservoir, its two major inflows, and its outflow between August 1999 and November 2002 at about monthly intervals from April through November. The water-quality samples were analyzed for total and dissolved metals (aluminum, arsenic, cadmium, copper, chromium, iron, lead, manganese, mercury, nickel, silver, and zinc), dissolved major ions (calcium, magnesium, sodium, potassium, chloride, bicarbonate, and sulfate), dissolved silica, dissolved organic carbon (DOC), ultraviolet (UV) absorbance at 254 and 280 nanometers, nutrients (total organic nitrogen, dissolved organic nitrogen, dissolved ammonia, dissolved nitrate, total phosphorus, dissolved phosphorus, and orthophosphate), chlorophyll-a (reservoir only), and suspended sediment (inlets to the reservoir only). Measurements of field properties (pH, specific conductance, water temperature, and dissolved oxygen) were also made at each sampling site each time a water-quality sample was collected. This report documents (1) sampling sites and times of sample collection, (2) sample-collection methods, (3) laboratory analytical methods, and (4) responsibilities of each agency/group involved in the project. The report also provides the environmental and quality-control data collected during the project and provides an interpretation of the quality-control data (field blanks and field duplicates) to assess the quality of the environmental data. This report provides a baseline data set against which future changes in water quality can be assessed.
Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.; Elliott, Sarah M.; Magdalene, Suzanne
2018-01-05
Lake St. Croix is a naturally impounded, riverine lake that makes up the last 40 kilometers of the St. Croix River. Substantial land-use changes during the past 150 years, including increased agriculture and urban development, have reduced Lake St. Croix water-quality and increased nutrient loads delivered to Lake St. Croix. A recent (2012–13) total maximum daily load phosphorus-reduction plan set the goal to reduce total phosphorus loads to Lake St. Croix by 20 percent by 2020 and reduce Lake St. Croix algal bloom frequencies. The U.S. Geological Survey, in cooperation with the National Park Service, developed a two-dimensional, carbon-based, laterally averaged, hydrodynamic and water-quality model, CE–QUAL–W2, that addresses the interaction between nutrient cycling, primary production, and trophic dynamics to predict responses in the distribution of water temperature, oxygen, and chlorophyll a. Distribution is evaluated in the context of habitat for lake sturgeon, including a combination of temperature and dissolved oxygen conditions termed oxy-thermal habitat.The Lake St. Croix CE–QUAL–W2 model successfully reproduced temperature and dissolved oxygen in the lake longitudinally (from upstream to downstream), vertically, and temporally over the seasons. The simulated water temperature profiles closely matched the measured water temperature profiles throughout the year, including the prediction of thermocline transition depths (often within 1 meter), the absolute temperature of the thermocline transitions (often within 1.0 degree Celsius), and profiles without a strong thermocline transition. Simulated dissolved oxygen profiles matched the trajectories of the measured dissolved oxygen concentrations at multiple depths over time, and the simulated concentrations matched the depth and slope of the measured concentrations.Additionally, trends in the measured water-quality data were captured by the model simulation, gaining some potential insights into the underlying mechanisms of critical Lake St. Croix metabolic processes. The CE–QUAL–W2 model tracked nitrate plus nitrite, total nitrogen, and total phosphorus throughout the year. Inflow nutrient contributions (loads), largely dominated by upstream St. Croix River loads, were the most important controls on Lake St. Croix water quality. Close to 60 percent of total phosphorus to the lake was from phosphorus derived from organic matter, and about 89 percent of phosphorus to Lake St. Croix was delivered by St. Croix River inflows. The Lake St. Croix CE–QUAL–W2 model offered potential mechanisms for the effect of external and internal loadings on the biotic response regarding the modeled algal community types of diatoms, green algae, and blue-green algae. The model also suggested the seasonal dominance of blue-green algae in all four pools of the lake.A sensitivity analysis was completed to test the total maximum daily load phosphorus-reduction scenario responses of total phosphorus and chlorophyll a. The modeling indicates that phosphorus reductions would result in similar Lake St. Croix reduced concentrations, although chlorophyll a concentrations did not decrease in the same proportional amounts as the total phosphorus concentrations had decreased. The smaller than expected reduction in algal growth rates highlighted that although inflow phosphorus loads are important, other constituents also can affect the algal response of the lake, such as changes in light penetration and the breakdown of organic matter releasing nutrients.The available habitat suitable for lake sturgeon was evaluated using the modeling results to determine the total volume of good-growth habitat, optimal growth habitat, and lethal temperature habitat. Overall, with the calibrated model, the fish habitat volume in general contained a large proportion of good-growth habitat and a sustained period of optimal growth habitat in the summer. Only brief periods of lethal oxy-thermal habitat were present in Lake St. Croix during the model simulation.
Hydrologic and water-quality data from Mountain Island Lake, North Carolina, 1994-97
Sarver, K.M.; Steiner, B.C.
1998-01-01
Continuous-record water-level gages were established at three sites on Mountain Island Lake and one site downstream from Mountain Island Dam. The water level of Mountain Island Lake is controlled by Duke Power Company releases at Cowans Ford Dam (upstream) and Mountain Island Dam (downstream). Water levels on Mountain Island Lake measured just downstream from Cowans Ford Dam fluctuated 11.15 feet during the study. Water levels just upstream from the Mountain Island Lake forebay fluctuated 6.72 feet during the study. About 3 miles downstream from Mountain Island Dam, water levels fluctuated 5.31 feet. Sampling locations included 14 sites in Mountain Island Lake, plus one downstream river site. At three sites, automated instruments recorded water temperature, dissolved-oxygen concentration, and specific conductance at 15-minute intervals throughout the study. Water temperatures recorded continuously during the study ranged from 4.2 to 35.2 degrees Celsius, and dissolved-oxygen concentrations ranged from 2.1 to 11.8 milligrams per liter. Dissolved-oxygen concentrations generally were inversely related to water temperature, with lowest dissolved-oxygen concentrations typically recorded in the summer. Specific conductance values recorded continuously during the study ranged from 33 to 89 microsiemens per centimeter; however, mean monthly values were fairly consistent throughout the study at all sites (50 to 61 microsiemens per centimeter). In addition, vertical profiles of water temperature, dissolved-oxygen concentration, specific conductance, and pH were measured at all sampling locations during 24 site visits. Water-quality constituent concentrations were determined for seven reservoir sites and the downstream river site during 17 sampling trips. Water-quality samples were routinely analyzed for biochemical oxygen demand, fecal coliform bacteria, hardness, alkalinity, total and volatile suspended solids, nutrients, total organic carbon, chlorophyll, iron, calcium, and magnesium; the samples were analyzed less frequently for trace metals, volatile organic compounds, semivolatile organic compounds, and pesticides. Maximum dissolved nitrite plus nitrate concentrations determined during the study were 0.348 milligram per liter in the mainstem sites and 2.77 milligrams per liter in the coves. Maximum total phosphorus concentrations were 0.143 milligram per liter in the mainstem sites and 0.600 milligram per liter in the coves. Fecal coliform and chlorophyll a concentrations were less than or equal to 160 colonies per 100 milliliters and 13 micrograms per liter, respectively, in all samples. Trace metals detected in at least one sample included arsenic, chromium, copper, lead, nickel, zinc, and antimony. Concentrations of all trace metals (except zinc) were 5.0 micrograms per liter or less; the maximum zinc concentration was 80 micrograms per liter. One set of bottom material samples was collected from Gar Creek and McDowell Creek for chemical analysis and analyzed for nutrients, trace metals, organochlorine pesticides, and semivolatile organic compounds. The only organochlorine pesticide identified in either sample was p,p'-DDE at an estimated concentration of 0.8 microgram per kilogram. Twenty semivolatile organic compounds, mainly polyaromatic hydrocarbons and plasticizers, were identified.
Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.
2008-01-01
Water analyses are reported for 157 samples collected from numerous hot springs, their overflow drainages, and Lemonade Creek in Yellowstone National Park (YNP) during 2003-2005. Water samples were collected and analyzed for major and trace constituents from ten areas of YNP including Terrace and Beryl Springs in the Gibbon Canyon area, Norris Geyser Basin, the West Nymph Creek thermal area, the area near Nymph Lake, Hazle Lake, and Frying Pan Spring, Lower Geyser Basin, Washburn Hot Springs, Mammoth Hot Springs, Potts Hot Spring Basin, the Sulphur Caldron area, and Lemonade Creek near the Solfatara Trail. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, and sulfur redox distribution in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved onsite. Water temperature, specific conductance, pH, Eh (redox potential relative to the Standard Hydrogen Electrode), and dissolved hydrogen sulfide were measured onsite at the time of sampling. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally minutes to hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved-iron and ferrous-iron concentrations often were measured onsite in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride-generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methyl mercury were determined by cold-vapor atomic-fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved nitrite were determined by colorimetry or chemiluminescence. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.
Controlled short residence time coal liquefaction process
Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.
1982-05-04
Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -455.degree. C. is an amount at least equal to that obtainable by performing the process under the same conditions except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent.
Mobilization of major inorganic ions during experimental diagenesis of characterized peats
Bailey, A.M.; Cohen, A.D.; Orem, W.H.; Blackson, J.H.
2000-01-01
Laboratory experiments were undertaken to study changes in concentrations of major inorganic ions during simulated burial of peats to about 1.5 km. Cladium, Rhizophora, and Cyrilla peats were first analyzed to determine cation distributions among fractions of the initial materials and minerals in residues from wet oxidation. Subsamples of the peats (80 g) were then subjected to increasing temperatures and pressures in steps of 5??C and 300 psi at 2-day intervals and produced solutions collected. After six steps, starting from 30??C and 300 psi, a final temperature of 60??C and a final pressure of 2100 psi were achieved. The system was then allowed to stand for an additional 2 weeks at 60??C and 2100 psi. Treatments resulted in highly altered organic solids resembling lignite and expelled solutions of systematically varying compositions. Solutions from each step were analyzed for Na+, Ca2+, Mg2+, total dissolved Si (Si(T)), Cl-, SO42-, and organic acids and anions (OAAs). Some data on total dissolved Al (Al(T)) were also collected. Mobilization of major ions from peats during these experiments is controlled by at least three processes: (1) loss of dissolved ions in original porewater expelled during compaction, (2) loss of adsorbed cations as adsorption sites are lost during modification of organic solids, and (3) increased dissolution of inorganic phases at later steps due to increased temperatures (Si(T)) and increased complexing by OAAs (Al(T)). In general, results provide insight into early post-burial inorganic changes occurring during maturation of terrestrial organic matter. (C) 2000 Elsevier Science B.V. All rights reserved.
Han, Bin; Cao, Lei; Zheng, Li; Zang, Jia-ye; Wang, Xiao-ru
2012-01-01
Using three pipe clamp solenoid valves to replace the traditional six-port valve for sample quota, a set of multi-channel flow injection analyzer was designed in the present paper. The authors optimized optimum instrumental testing condition, and realized determination and analysis of total dissolved nitrogen in seawaters. The construction of apparatus is simple and it has the potential to be used for analysis of total dissolved nitrogen. The sample throughput of total dissolved nitrogen was 27 samples per hour. The linear range of total dissolved nitrogen was 50.0-1 000.0 microgN x L(-3) (r > or = 0.999). The detection limit was 7.6 microgN x L(-3). The recovery of total dissolved nitrogen was 87.3%-107.2%. The relative standard deviation for total dissolved nitrogen was 1.35%-6.32% (n = 6). After the t-test analysis, it does not have the significance difference between this method and national standard method. It is suitable for fast analysis of total dissolved nitrogen in seawater.
Ball, James W.; McMleskey, R. Blaine; Nordstrom, D. Kirk
2010-01-01
Water analyses are reported for 104 samples collected from numerous thermal and non-thermal features in Yellowstone National Park (YNP) during 2006-2008. Water samples were collected and analyzed for major and trace constituents from 10 areas of YNP including Apollinaris Spring and Nymphy Creek along the Norris-Mammoth corridor, Beryl Spring in Gibbon Canyon, Norris Geyser Basin, Lower Geyser Basin, Crater Hills, the Geyser Springs Group, Nez Perce Creek, Rabbit Creek, the Mud Volcano area, and Washburn Hot Springs. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, iron, nitrogen, and sulfur redox species in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved on-site. Water temperature, specific conductance, pH, emf (electromotive force or electrical potential), and dissolved hydrogen sulfide were measured on-site at the time of sampling. Dissolved hydrogen sulfide was measured a few to several hours after sample collection by ion-specific electrode on samples preserved on-site. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally a few to several hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved iron and ferrous iron concentrations often were measured on-site in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methylmercury were determined by cold-vapor atomic fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. For many samples, concentrations of dissolved fluoride also were determined by ion-specific electrode. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.
NASA Astrophysics Data System (ADS)
Araya, F. Z.; Abdul-Aziz, O. I.
2017-12-01
This study utilized a systematic data analytics approach to determine the relative linkages of stream dissolved oxygen (DO) with the hydro-climatic and biogeochemical drivers across the U.S. Pacific Coast. Multivariate statistical techniques of Pearson correlation matrix, principal component analysis, and factor analysis were applied to a complex water quality dataset (1998-2015) at 35 water quality monitoring stations of USGS NWIS and EPA STORET. Power-law based partial least squares regression (PLSR) models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to reliably estimate the relative linkages by resolving multicollinearity (Nash-Sutcliffe Efficiency, NSE = 0.50-0.94). Based on the dominant drivers, four environmental regimes have been identified and adequately described the system-data variances. In Pacific North West and Southern California, water temperature was the most dominant driver of DO in majority of the streams. However, in Central and Northern California, stream DO was controlled by multiple drivers (i.e., water temperature, pH, stream flow, and total phosphorus), exhibiting a transitional environmental regime. Further, total phosphorus (TP) appeared to be the limiting nutrient for most streams. The estimated linkages and insights would be useful to identify management priorities to achieve healthy coastal stream ecosystems across the Pacific Coast of U.S.A. and similar regions around the world. Keywords: Data analytics, water quality, coastal streams, dissolved oxygen, environmental regimes, Pacific Coast, United States.
NASA Astrophysics Data System (ADS)
Hu, Rui; Liu, Quan
2017-04-01
During the engineering projects with artificial ground freezing (AFG) techniques in coastal area, the freezing effect is affected by groundwater salinity. Based on the theories of artificially frozen soil and heat transfer in porous material, and with the assumption that only the variations of total dissolved solids (TDS) impact on freezing point and thermal conductivity, a numerical model of an AFG project in a saline aquifer was established and validated by comparing the simulated temperature field with the calculated temperature based on the analytic solution of rupak (reference) for single-pipe freezing temperature field T. The formation and development of freezing wall were simulated with various TDS. The results showed that the variety of TDS caused the larger temperature difference near the frozen front. With increasing TDS in the saline aquifer (1 35g/L), the average thickness of freezing wall decreased linearly and the total formation time of the freezing wall increased linearly. Compared with of the scenario of fresh-water (<1g/L), the average thickness of frozen wall decreased by 6% and the total formation time of the freezing wall increased by 8% with each increasing TDS of 7g/L. Key words: total dissolved solids, freezing point, thermal conductivity, freezing wall, numerical simulation Reference D.J.Pringel, H.Eicken, H.J.Trodahl, etc. Thermal conductivity of landfast Antarctic and Arctic sea ice[J]. Journal of Geophysical Research, 2007, 112: 1-13. Lukas U.Arenson, Dave C.Sego. The effect of salinity on the freezing of coarse- grained sand[J]. Canadian Geotechnical Journal, 2006, 43: 325-337. Hui Bing, Wei Ma. Laboratory investigation of the freezing point of saline soil[J]. Cold Regions Science and Technology, 2011, 67: 79-88.
Kuhn, Gerhard; Stevens, Michael R.; Elliott, John G.
2003-01-01
The U.S. Geological Survey, in cooperation with the Colorado River Water Conservation District, collected and analyzed baseline streamflow and water-quality information for Elkhead Creek and water-quality and trophic-state information for Elkhead Reservoir from July 1995 through September 2001. In the study area, Elkhead Creek is a meandering, alluvial stream dominated by snowmelt in mountainous headwaters that produces most of the annual discharge volume and discharge peaks during late spring and early summer. During most of water year 1996 (a typical year), daily mean discharge at station 09246400 (downstream from the reservoir) was similar to daily mean discharge at station 09246200 (upstream from the reservoir). Flow-duration curves for stations 09246200 and 09246400 were nearly identical, except for discharges less than about 10 cubic feet per second. Specific conductance generally had an inverse relation to discharge in Elkhead Creek. During late fall and winter when discharge was small and derived mostly from ground water, specific conductance was high, whereas during spring and early summer, when discharge was large and derived mostly from snowmelt, specific conductance was low. Water temperatures in Elkhead Creek were smallest during winter, about 0.0 degrees Celsius (oC), and largest during summer, about 20?25oC. Concentrations of major ions, nutrients, trace elements, organic carbon, and suspended sediment in Elkhead Creek indicated no substantial within-year variability and no substantial differences in variability from one year to the next. A seasonal pattern in the concentration data was evident for most constituents. The seasonal concentration pattern for most of the dissolved constituents followed the seasonal pattern of specific conductance, whereas some nutrients, some trace elements, and suspended sediment followed the seasonal pattern of discharge. Statistical differences between station 09246200 (upstream from the reservoir) and station 09246400 (downstream from the reservoir) were indicated for specific conductance, dissolved calcium, magnesium, sodium, and sulfate, acid-neutralizing capacity, and dissolved solids. Trend analysis indicated upward temporal trends for pH, dissolved ammonia plus organic nitrogen, total nitrogen, and total phosphorus at station 09246200; upward temporal trends for dissolved and total ammonia plus organic nitrogen, total nitrogen, and total phosphorus were indicated at station 09246400. No downward trends were indicated for any constituents. Annual loads for dissolved constituents during water years 1996?2001 were consistently larger at station 09246400 than at station 09246200, except for silica and sulfate. Mean monthly loads for dissolved constituents followed the seasonal pattern of discharge, indicating that most of the annual loads were transported during March?June. Annual dissolved nutrient loads at stations 09246400 and 09246200 were not substantially different, except for total phosphorus and total nitrogen loads, which were smaller at the downstream station than at the upstream station, most likely due to biological uptake and settling in the reservoir. Mean annual suspended-sediment load during water years 1996?2001 was about 87-percent smaller at the downstream station than at the upstream station. Temperature in Elkhead Reservoir varied seasonally, from about 0oC during winter when ice develops on the reservoir to about 20oC during summer. Specific conductance varied from minimums of 138 to 169 microsiemens per centimeter at 25oC (?S/cm) during snowmelt inflow to maximums of 424 to 610 ?S/cm during early spring low flow (April). Median pH in the reservoir ranged from 7.2 to 8.0 at all sites near the surface. Median dissolved oxygen ranged from 7.1 to 7.2 milligrams per liter (mg/L) in near-surface samples and from 4.8 to 5.6 mg/L in near-bottom samples. During reservoir stratification, specific conductance generally was largest in the e
Simmler, Michael; Bommer, Jérôme; Frischknecht, Sarah; Christl, Iso; Kotsev, Tsvetan; Kretzschmar, Ruben
2017-12-01
Mining activities have contaminated many riverine floodplains with arsenic (As). When floodplain soils become anoxic under water-saturated conditions, As can be released from the solid phase. Several microbially-driven As solubilization processes and numerous influential factors were recognized in the past. However, the interplay and relative importance of soil properties and the influence of environmental factors such as temperature remain poorly understood, especially considering the (co)variation of soil properties in a floodplain. We conducted anoxic microcosm experiments at 10, 17.5, and 25 °C using 65 representative soils from the mining-impacted Ogosta River floodplain in Bulgaria. To investigate the processes of As solubilization and its quantitative variation we followed the As and Fe redox dynamics in the solid and the dissolved phase and monitored a range of other solution parameters including pH, Eh, dissolved organic C, and dissolved Mn. We related soil properties to dissolved As observed after 20 days of microcosm incubation to identify key soil properties for As solubilization. Our results evidenced reductive dissolution of As-bearing Fe(III)-oxyhydroxides as the main cause for high solubilization. The availability of nutrients, most likely organic C as the source of energy for microorganisms, was found to limit this process. Following the vertical nutrient gradient common in vegetated soil, we observed several hundred μM dissolved As after 1-2 weeks for some topsoils (0-20 cm), while for subsoils (20-40 cm) with comparable total As levels only minor solubilization was observed. While high Mn contents were found to inhibit As solubilization, the opposite applied for higher temperature (Q 10 2.3-6.1 for range 10-25 °C). Our results suggest that flooding of nutrient-rich surface layers might be more problematic than water-saturation of nutrient-poor subsoil layers, especially in summer floodings when soil temperature is higher than in winter or spring. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Zhengchao; Li, Qian P.
2016-09-01
This study reports the first comprehensive exploration of the spatial patterns of dissolved and particulate polyunsaturated aldehydes (PUAs), their physical and biological controlling factors, and their potential biogeochemical influences in the Pearl River Estuary (PRE) of the northern South China Sea (NSCS). High levels of total particulate PUAs (0-41 nM) and dissolved PUAs (0.10-0.37 nM) were observed with substantial spatial variation during an intense summer phytoplankton bloom outside the PRE mouth. We found the particulate PUAs strongly correlated with temperature within the high chlorophyll bloom, while showing a generally positive correlation with chlorophyll-a for the entire region. Additionally, the Si/N ratio significantly correlated with the particulate PUAs along the estuary suggesting the important role of silica on PUA production in this region. The dissolved PUAs counterparts exhibited a positive correlation with chlorophyll-a within the high chlorophyll bloom, but a negatively one with temperature outside, reflecting the essential bio-physical coupling effects on the dissolved PUAs distributions in the ocean. Biogeochemical implications of PUAs on the coastal ecosystem include not only the deleterious restriction of high PUAs-producing diatom bloom on copepod population, but also the profound influence of particulate PUAs on the microbial cycling of organic carbon in the NSCS.
Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments.
Delsontro, Tonya; McGinnis, Daniel F; Sobek, Sebastian; Ostrovsky, Ilia; Wehrli, Bernhard
2010-04-01
Methane emission pathways and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using gas traps indicated very high ebullition rates, but due to the stochastic nature of ebullition a mass balance approach was crucial to deduce system-wide methane sources and losses. Methane diffusion from the sediment was generally low and seasonally stable and did not account for the high concentration of dissolved methane measured in the reservoir discharge. A strong positive correlation between water temperature and the observed dissolved methane concentration enabled us to quantify the dissolved methane addition from bubble dissolution using a system-wide mass balance. Finally, knowing the contribution due to bubble dissolution, we used a bubble model to estimate bubble emission directly to the atmosphere. Our results indicated that the total methane emission from Lake Wohlen was on average >150 mg CH(4) m(-2) d(-1), which is the highest ever documented for a midlatitude reservoir. The substantial temperature-dependent methane emissions discovered in this 90-year-old reservoir indicate that temperate water bodies can be an important but overlooked methane source.
High-pressure liquid-monopropellant strand combustion.
NASA Technical Reports Server (NTRS)
Faeth, G. M.
1972-01-01
Examination of the influence of dissolved gases on the state of the liquid surface during high-pressure liquid-monopropellant combustion through the use of a strand burning experiment. Liquid surface temperatures were measured, using fine-wire thermocouples, during the strand combustion of ethyl nitrate, normal propyl nitrate, and propylene glycol dinitrate at pressures up to 81 atm. These measurements were compared with the predictions of a variable-property gas-phase analysis assuming an infinite activation energy for the decomposition reaction. The state of the liquid surface was estimated using a conventional low-pressure phase equilibrium model, as well as a high-pressure version that considered the presence of dissolved combustion-product gases in the liquid phase. The high-pressure model was found to give a superior prediction of measured liquid surface temperatures. Computed total pressures required for the surface to reach its critical mixing point during strand combustion were found to be in the range from 2.15 to 4.62 times the critical pressure of the pure propellant. Computed dissolved gas concentrations at the liquid surface were in the range from 35 to 50% near the critical combustion condition.
Zhang, Lisha; Zhang, Songhe; Lv, Xiaoyang; Qiu, Zheng; Zhang, Ziqiu; Yan, Liying
2018-08-15
This study investigated the alterations in biomass, nutrients and dissolved organic matter concentration in overlying water and determined the bacterial 16S rRNA gene in biofilms attached to plant residual during the decomposition of Myriophyllum verticillatum. The 55-day decomposition experimental results show that plant decay process can be well described by the exponential model, with the average decomposition rate of 0.037d -1 . Total organic carbon, total nitrogen, and organic nitrogen concentrations increased significantly in overlying water during decomposition compared to control within 35d. Results from excitation emission matrix-parallel factor analysis showed humic acid-like and tyrosine acid-like substances might originate from plant degradation processes. Tyrosine acid-like substances had an obvious correlation to organic nitrogen and total nitrogen (p<0.01). Decomposition rates were positively related to pH, total organic carbon, oxidation-reduction potential and dissolved oxygen but negatively related to temperature in overlying water. Microbe densities attached to plant residues increased with decomposition process. The most dominant phylum was Bacteroidetes (>46%) at 7d, Chlorobi (20%-44%) or Proteobacteria (25%-34%) at 21d and Chlorobi (>40%) at 55d. In microbes attached to plant residues, sugar- and polysaccharides-degrading genus including Bacteroides, Blvii28, Fibrobacter, and Treponema dominated at 7d while Chlorobaculum, Rhodobacter, Methanobacterium, Thiobaca, Methanospirillum and Methanosarcina at 21d and 55d. These results gain the insight into the dissolved organic matter release and bacterial community shifts during submerged macrophytes decomposition. Copyright © 2018 Elsevier B.V. All rights reserved.
Physical and chemical properties of San Francisco Bay, California, 1980
Ota, Allan Y.; Schemel, L.E.; Hager, S.W.
1989-01-01
The U.S. Geological Survey conducted hydrologic investigations in both the deep water channels and the shallow-water regions of the San Francisco Bay estuarine system during 1980. Cruises were conducted regularly, usually at two-week intervals. Physical and chemical properties presented in this report include temperature , salinity, suspended particulate matter, turbidity, extinction coefficient, partial pressure of CO2, partial pressure of oxygen , dissolved organic carbon, particulate organic carbon, discrete chlorophyll a, fluorescence of photosynthetic pigments, dissolved silica, dissolved phosphate, nitrate plus nitrite, nitrite, ammonium, dissolved inorganic nitrogen, dissolved nitrogen, dissolved phosphorus, total nitrogen, and total phosphorus. Analytical methods are described. The body of data contained in this report characterizes hydrologic conditions in San Francisco Bay during a year with an average rate of freshwater inflow to the estuary. Concentrations of dissolved silica (discrete-sample) ranged from 3.8 to 310 micro-M in the northern reach of the bay, whereas the range in the southern reach was limited to 63 to 150 micro-M. Concentrations of phosphate (discrete-sample) ranged from 1.3 to 4.4 micro-M in the northern reach, which was narrow in comparison with that of 2.2 to 19.0 micro-M in the southern reach. Concentrations of nitrate plus nitrite (discrete-sample) ranged from near zero to 53 micro-M in the northern reach, and from 2.3 to 64 micro-M in the southern reach. Concentrations of nitrite (discrete-sample) were low in both reaches, exhibiting a range from nearly zero to approximately 2.3 micro-M. Concentrations of ammonium (discrete-sample) ranged from near zero to 14.2 micro-M in the northern reach, and from near zero to 8.3 micro-M in the southern reach. (USGS)
Streamflow and water-quality conditions, Wilsons Creek and James River, Springfield area, Missouri
Berkas, Wayne R.
1982-01-01
A network of water-quality-monitoring stations was established upstream and downstream from the Southwest Wastewater-Treatment Plant on Wilsons Creek to monitor the effects of sewage effluent on water quality. Data indicate that 82 percent of the time the flow in Wilsons Creek upstream from the wastewater-treatment plant is less than the effluent discharged from the plant. On October 15, 1977, an advanced wastewater-treatment facility was put into operation. Of the four water-quality indicators measured at the monitoring stations (specific conductance, dissolved oxygen, pH, and water temperature), only dissolved oxygen showed improvement downstream from the plant. During urban runoff, the specific conductance momentarily increased and dissolved-oxygen concentration momentarily decreased in Wilsons Creek upstream from the plant. Urban runoff was found to have no long-term effects on specific conductance and dissolved oxygen downstream from the plant before or after the addition of the advanced wastewater-treatment facility. Data collected monthly from the James River showed that the dissolved-oxygen concentrations and the total nitrite plus nitrate nitrogen concentrations increased, whereas the dissolved-manganese concentrations decreased after the advanced wastewater-treatment facility became operational.
NASA Astrophysics Data System (ADS)
Yaşar Korkanç, Selma; Kayıkçı, Sedef; Korkanç, Mustafa
2017-05-01
The aim of this study is to investigate the water pollution in the Akkaya Dam watershed spatially and temporally and put forward management suggestions in a watershed scale. For this purpose, monthly water sampling was performed from 11 sampling stations on streams that fed the dam. According to land surveys they have a potential to inflict pollution to the dam. Thus the physical and chemical parameters (i.e. pH, dissolved oxygen, electrical conductivity, temperature, chemical oxygen demand, turbidity and suspended solids) were monitored monthly for 1-year period. Chloride, sulfate, total nitrogen, ammonium, nitrite, nitrate were monitored for a 6-month period, and the results were evaluated in accordance with the Turkish Regulation of Surface Water Quality Management. Results of the study show that the most important reasons for the pollution in the dam are caused by domestic and industrial wastewaters, which were released to the system without being treated, or without being sufficiently treated, and also of agricultural activities. It was determined that electrical conductivity, dissolved oxygen, turbidity, chemical oxygen demand, suspended solids, nitrite, nitrate, total nitrogen, sulfate, and chloride parameters which were high at the sampling stations where domestic and industrial wastewaters discharge were present. pH and temperature demonstrate a difference at a significant level by seasons. As a result of the study, it was determined that the water was of IVth quality in terms of nitrate, chemical oxygen demand, and total nitrogen, and it was of IIIrd quality water with respect to ammonium, electrical conductivity, and dissolved oxygen. It was observed that the dam outflow water was of IVth quality with respect to nitrate, chemical oxygen demand, and total nitrogen, and of IIIrd quality with respect to dissolved oxygen and electrical conductivity. It is considered that the pollution problem in the Akkaya Dam can only be resolved with prevention studies on a watershed scale. Therefore, coordination between the institutions is necessary. The preparation for the integrated water management plan of the watershed will provide a significant contribution to the solution of the water quality problem.
Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995
Haggard, Brian; Green, W. Reed
2002-01-01
The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.
Excess air during aquifer storage and recovery in an arid basin (Las Vegas Valley, USA)
NASA Astrophysics Data System (ADS)
Solomon, D. Kip; Cole, Erin; Leising, Joseph F.
2011-02-01
The Las Vegas Valley Water District in Nevada, USA, has operated an artificial recharge (AR) program since 1989. In summer 2001, observations of gas exsolving from tap water prompted a study that revealed total dissolved gas (TDG) pressures approaching 2 atm with a gas composition that it is predominantly air. Measurements of TDG pressure at well heads and in the distribution system indicated two potential mechanisms for elevated TDG pressures: (1) air entrainment during AR operations, and (2) temperature changes between the winter recharge season and the summer withdrawal season. Air entrainment during pumping was investigated by intentionally allowing the forebay (upstream reservoir) of a large pumping station to drawdown to the point of vortex formation. This resulted in up to a 0.7 atm increase in TDG pressure. In general, the solubility of gases in water decreases as the temperature increases. In the Las Vegas Valley, water that acquired a modest amount of dissolved gas during winter artificial recharge operations experienced an increase in dissolved gas pressure (0.04 atm/°C) as the water warmed in the subsurface. A combination of air entrainment during AR operations and its amplification by temperature increase after recharge can account for most of the observed amounts of excess gas at this site.
NASA Astrophysics Data System (ADS)
Uwimana, Abias; van Dam, Anne; Gettel, Gretchen; Bigirimana, Bonfils; Irvine, Kenneth
2017-09-01
Agricultural intensification may accelerate the loss of wetlands, increasing the concentrations of nutrients and sediments in downstream water bodies. The objective of this study was to assess the effects of land use and land cover and river discharge on water quality in the Migina catchment, southern Rwanda. Rainfall, discharge and water quality (total nitrogen, total phosphorus, total suspended solids, dissolved oxygen, conductivity, pH, and temperature) were measured in different periods from May 2009 to June 2013. In 2011, measurements were done at the outlets of 3 sub-catchments (Munyazi, Mukura and Akagera). Between May 2012 and May 2013 the measurements were done in 16 reaches of Munyazi dominated by rice, vegetables, grass/forest or ponds/reservoirs. Water quality was also measured during two rainfall events. Results showed seasonal trends in water quality associated with high water flows and farming activities. Across all sites, the total suspended solids related positively to discharge, increasing 2-8 times during high flow periods. Conductivity, temperature, dissolved oxygen, and pH decreased with increasing discharge, while total nitrogen and total phosphorus did not show a clear pattern. The total suspended solids concentrations were consistently higher downstream of reaches dominated by rice and vegetable farming. For total nitrogen and total phosphorus results were mixed, but suggesting higher concentration of total nitrogen and total phosphorus during the dry and early rainy (and farming) season, and then wash out during the rainy season, with subsequent dilution at the end of the rains. Rice and vegetable farming generate the transport of sediment as opposed to ponds/reservoir and grass/forest.
Higgins, Matthew J; Beightol, Steven; Mandahar, Ushma; Suzuki, Ryu; Xiao, Steven; Lu, Hung-Wei; Le, Trung; Mah, Joshua; Pathak, Bipin; DeClippeleir, Haydee; Novak, John T; Al-Omari, Ahmed; Murthy, Sudhir N
2017-10-01
A study was performed to evaluate the effect of thermal hydrolysis pretreatment (THP) temperature on subsequent digestion performance and operation, as well as downstream parameters such as dewatering and cake quality. A blend of primary and secondary solids from the Blue Plains treatment plant in Washington, DC was dewatered to about 16% total solids (TS), and thermally hydrolyzed at five different temperatures 130, 140, 150, 160, 170 °C. The thermally hydrolyzed solids were then fed to five separate, 10 L laboratory digesters using the same feed concentration, 10.5% TS and a solids retention time (SRT) of 15 days. The digesters were operated over a six month period to achieve steady state conditions. The higher thermal hydrolysis temperatures generally improved the solids reduction and methane yields by about 5-6% over the temperature range. The increased temperature reduced viscosity of the solids and increased the cake solids after dewatering. The dissolved organic nitrogen and UV absorbance generally increased at the higher THP temperatures. Overall, operating at a higher temperature improved performance with a tradeoff of higher dissolved organic nitrogen and UV adsorbing materials in the return liquor. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques.
Gholizadeh, Mohammad Haji; Melesse, Assefa M; Reddi, Lakshmi
2016-08-16
Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water's surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).
A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques
Gholizadeh, Mohammad Haji; Melesse, Assefa M.; Reddi, Lakshmi
2016-01-01
Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). PMID:27537896
Quality of surface water in Missouri, water year 2009
Barr, Miya N.
2010-01-01
The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.
The Effect of Pressure and Temperature on Mid-Infrared Sensing of Dissolved Hydrocarbons in Water.
Heath, Charles; Myers, Matthew; Pejcic, Bobby
2017-12-19
Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy using a polymer coated internal reflection element/waveguide is an established sensor platform for the detection of a range of organic and hydrocarbon molecules dissolved in water. The polymer coating serves two purposes: to concentrate hydrocarbons from the aqueous phase and to exclude water along with other interfering molecules from the surface of the internal reflection element. Crucial to reliable quantification and analytical performance is the calibration of the ATR-FTIR sensor which is commonly performed in water under mild ambient conditions (i.e., 25 °C and 1 atm). However, there is a pressing need to monitor environmental and industrial processes/events that may occur at high pressures and temperatures where this calibration approach is unsuitable. Using a ruggedized optical fiber probe with a diamond-based ATR, we have conducted mid-infrared sensor experiments to understand the influence of high pressure (up to 207 bar) and temperature (up to 80 °C) on the detection of toluene and naphthalene dissolved in water. Using a poly(isobutylene) film, we have shown that the IR spectroscopic response is relatively unaffected by changes in pressure; however, a diminished response was observed with increasing temperature. We reveal that changes in the refractive index of the polymer film with temperature have only a minor effect on sensitivity. A more plausible explanation for the observed significant change in sensor response with temperature is that the partitioning process is exothermic and becomes less favorable with increasing temperature. This Article shows that the sensitivity is relatively invariant to pressure; however, the thermal variations are significant and need to be considered when quantifying the concentration of hydrocarbons in water.
Passive Biobarrier for Treating Co-mingled Perchlorate and RDX in Groundwater at an Active Range
2016-05-12
and Groundwater Temperature ............................. 102 6.1.2 Dissolved Oxygen (DO) and Oxidation Reduction Potential (ORP...22 or equivalent). Parameters, including temperature , conductivity, dissolved oxygen , oxidation-reduction potential (ORP), turbidity, and pH were...3% for temperature and specific conductivity, and % for dissolved oxygen , ORP, and turbidity. When parameters were stable according to the above
2015-07-01
19 Table 3. Temperature , dissolved oxygen , pH, and wind...21 Table 4. Temperature , dissolved oxygen , and pH measured in the study plots following treatment, Fort Peck Lake, MT, 2012...quality, particularly temperature , pH, dissolved oxygen , and nutrient cycling (Prentki et al. 1979; Carpenter and Lodge 1986, Frodge et al. 1990; Boylen
Antweiler, Ronald C.; Smith, Richard L.; Voytek, Mary A.; Bohlke, John Karl; Richards, Kevin D.
2005-01-01
Methods of data collection and results of analyses are presented for Lagrangian and synoptic water-quality data collected from two agricultural drainages, the Iroquois River in northwestern Indiana and Sugar Creek in northwestern Indiana and northeastern Illinois. During six separate sampling trips, in April, June and September 1999, May 2000, September 2001 and April 2002, 152 discrete water samples were collected to characterize the water chemistry over the course of 2 to 4 days on each of these drainages. Data were collected for nutrients, major inorganic constituents, dissolved organic carbon, trace elements, dissolved gases, total bacterial cell counts, chlorophyll-a concentrations, and suspended sediment concentrations. In addition, field measurements of streamflow, pH, specific conductance, water temperature, and dissolved oxygen concentration were made during all trips except April 1999.
Short residence time coal liquefaction process including catalytic hydrogenation
Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.
1982-05-18
Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone, the hydrogen pressure in the preheating-reaction zone being at least 1,500 psig (105 kg/cm[sup 2]), reacting the slurry in the preheating-reaction zone at a temperature in the range of between about 455 and about 500 C to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid to substantially immediately reduce the temperature of the reaction effluent to below 425 C to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C[sub 5]-454 C is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent. The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance. 6 figs.
Short residence time coal liquefaction process including catalytic hydrogenation
Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.
1982-05-18
Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -454.degree. C. is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent (83) and recycled as process solvent (16). The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance.
NASA Astrophysics Data System (ADS)
Mouzon, N. R.; Null, S. E.
2014-12-01
Human impacts from land and water development have degraded water quality and altered the physical, chemical, and biological integrity of Nevada's Walker River. Reduced instream flows and increased nutrient concentrations affect native fish populations through warm daily stream temperatures and low nightly dissolved oxygen concentrations. Water rights purchases are being considered to maintain instream flows, improve water quality, and enhance habitat for native fish species, such as Lahontan cutthroat trout. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate streamflows, temperatures, and dissolved oxygen concentrations in the Walker River. We simulate thermal and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that water purchases most enhance native trout habitat. Stream temperatures and dissolved oxygen concentrations are proxies for trout habitat. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach currently acts as a water quality barrier for fish passage.
Radhakrishnan, Kirthi; Haworth, Kevin J.; Huang, Shao-Ling; Klegerman, Melvin E.; McPherson, David D.; Holland, Christy K.
2016-01-01
Echogenic liposomes (ELIP) are multifunctional ultrasound contrast agents (UCAs) with a lipid shell encapsulating both air and an aqueous core. ELIP are being developed for molecular imaging and image-guided therapeutic delivery. Stability of the echogenicity of ELIP in physiologic conditions is crucial to their successful translation to clinical use. In this study we determined the effects of the surrounding media’s dissolved air concentration, temperature transition and hydrodynamic pressure on the echogenicity of a chemically modified formulation of ELIP to promote stability and echogenicity. ELIP samples were diluted in porcine plasma or whole blood and pumped through a pulsatile flow system with adjustable hydrodynamic pressures and temperature. B-mode images were acquired using a clinical diagnostic scanner every 5 s for a total duration of 75 s. Echogenicity in porcine plasma was assessed as a function of total dissolved gas saturation. ELIP were added to plasma at room temperature (22 °C) or body temperature (37 °C) and pumped through a system maintained at 22 °C or 37 °C to study the effect of temperature transitions on ELIP echogenicity. Echogenicity at normotensive (120/80 mmHg) and hypertensive pressures (145/90 mmHg) was measured. ELIP were echogenic in plasma and whole blood at body temperature under normotensive to hypertensive pressures. Warming of samples from room temperature to body temperature did not alter echogenicity. However, in plasma cooled rapidly from body temperature to room temperature or in degassed plasma, ELIP lost echogenicity within 20 s at 120/80 mmHg. The stability of echogenicity of a modified ELIP formulation was determined in vitro at body temperature, physiologic gas concentration and throughout the physiologic pressure range. However, proper care should be taken to ensure that ELIP are not cooled rapidly from body temperature to room temperature as they will lose their acoustic properties. Further in vivo investigations will be needed to evaluate the optimal usage of ELIP as blood pool contrast agents. PMID:22929652
Révész, Kinga M.; Doctor, Daniel H.
2014-01-01
The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.
NASA Astrophysics Data System (ADS)
Garber, Jonathan H.
1984-06-01
The decomposition of cultured marine phytoplankton ( Skeletonema costatum) and natural estuarine seston from Narragansett Bay, RI, was studied at two temperatures (8°C and 18°C) in bottles containing sterile bay-water (30‰) and in bay-water with micro-organisms small enough to pass through a glass fibre filter (nominally < 1μ). About 50% of the particulate organic nitrogen (PON) and particulate phosphorus (PP) was immediately released to the water in dissolved organic forms from both types of organic matter. Comparison of changes in the dissolved organic nitrogen (DON) fraction in the sterile and non-sterile systems indicated that nearly all of the DON initially released was subsequently remineralized. Ammonification proceeded only in non-sterile bay-water. 20-25% of the PP was converted to dissolved inorganic-P (DIP) fraction after only 7 h in both sterile and non-sterile bay-water. Following autolytic releases of DON, DOP and DIP the initial rates of N and P remineralization were temperature dependent: Q 10 values for PON and PP decay during first phase of microbially mediated decomposition ranged from 1·3 to 6·4. Rates of remineralization then slowed so that about equal amounts of nutrients were remineralized (45-50% of the N and 57-60% of the P in the phytoplankton and 60-63% of the N and 36-60% of the P in the natural seston) after 30 days storage at either temperature. During 30 days of decomposition in non-sterile seawater the N/P ratios in the dissolved inorganic fractions converged on the ratios of total-N/total-P initially present in the bottles. Kinetic analysis of the decay of total organic-N (TON) and total organic-P (TOP) in the non-sterile systems and analysis of similar sets found in the literature showed that the initial stages of the decomposition of N and P from planktonic POM in vitro could be modelled as the sequential decay, at first-order rates, of two particulate fractions. The first, more labile, fraction comprised about 60% of the particulate N and P. First-order rate constants (- k, base e) for decomposition during the 1st and 2nd phases were 0·02 to 0·2 day -1 and 0·003 to 0·02 day -1, respectively. The decay rates are far too slow to account for the 'rapid in situ recycling' of nutrients needed to support phytoplankton production when other means of nutrient resupply (by advection, fixation, rainfall, etc.) are very low.
Bragg, Heather M.; Johnston, Matthew W.
2016-04-15
All quality-assurance values exceed the criteria established by the U.S. Army Corps of Engineers TDG monitoring plan. Criteria for data completeness (95-percent) were met at seven of the eight monitoring stations. Deleted data at the John Day tailwater station resulted in data completeness below criteria.
NASA Astrophysics Data System (ADS)
Qu, Jiangqi; Jia, Chengxia; Zhao, Meng; Li, Wentong; Liu, Pan; Yang, Mu; Zhang, Qingjing
2018-02-01
Miyun reservoir is a typical temperate deep reservoir located in the northeast of Beijing, China. In order to explore the effect of thermal stratification on microbial community diversity, structure and its influencing environmental factors, stratified sampling at three sites was conducted during the summer period. Field observations indicate that the water temperature and dissolved oxygen concentrations dropped to 11.9 °C and 1.57 mg/L, respectively, leading to the development of anoxia in the hypolimnetic layer. The Illumina Miseq sequencing results showed that microbial communities from different thermal stratification showed obvious differences, the highest microbial diversity and richness in the hypolimnion samples. RDA ordination analysis suggested that the microbial communities in the epilimnion and metalimnion were mainly affected by water temperature, pH and dissolved oxygen, while total nitrogen was the key environmental factor which shaped the microbial structure in hypolimnion.
Total mercury and methylmercury in high altitude surface snow from the French Alps.
Marusczak, Nicolas; Larose, Catherine; Dommergue, Aurélien; Yumvihoze, Emmanuel; Lean, David; Nedjai, Rachid; Ferrari, Christophe
2011-09-01
Surface snow samples were collected weekly from the 31st of December 2008 to the 21st of June 2009 from Lake Bramant in the French Alps. Total mercury (THg), total dissolved mercury (THgD), methylmercury (MeHg) and particle distributions in surface snow were analyzed. Results showed that THg concentrations, MeHg concentrations and particle load increased with snow surface temperature, which is an indicator of rising temperatures as the season progresses. Significant correlations between MeHg and snow surface temperature and MeHg and total particles greater than 10 μm were observed. This suggests that the MeHg found in the snow originates from atmospheric deposition processes rather than in situ snowpack sources. This study suggests that an important post-winter atmospheric deposition of MeHg and THg occurs on summital zones of the French Alps and it is likely that this contamination originates from the surrounding valleys. Copyright © 2011 Elsevier B.V. All rights reserved.
On the losses of dissolved CO(2) during champagne serving.
Liger-Belair, Gérard; Bourget, Marielle; Villaume, Sandra; Jeandet, Philippe; Pron, Hervé; Polidori, Guillaume
2010-08-11
Pouring champagne into a glass is far from being consequenceless with regard to its dissolved CO(2) concentration. Measurements of losses of dissolved CO(2) during champagne serving were done from a bottled Champagne wine initially holding 11.4 +/- 0.1 g L(-1) of dissolved CO(2). Measurements were done at three champagne temperatures (i.e., 4, 12, and 18 degrees C) and for two different ways of serving (i.e., a champagne-like and a beer-like way of serving). The beer-like way of serving champagne was found to impact its concentration of dissolved CO(2) significantly less. Moreover, the higher the champagne temperature is, the higher its loss of dissolved CO(2) during the pouring process, which finally constitutes the first analytical proof that low temperatures prolong the drink's chill and helps it to retain its effervescence during the pouring process. The diffusion coefficient of CO(2) molecules in champagne and champagne viscosity (both strongly temperature-dependent) are suspected to be the two main parameters responsible for such differences. Besides, a recently developed dynamic-tracking technique using IR thermography was also used in order to visualize the cloud of gaseous CO(2) which flows down from champagne during the pouring process, thus visually confirming the strong influence of champagne temperature on its loss of dissolved CO(2).
Dinsmore, K J; Billett, M F; Dyson, K E
2013-07-01
The aquatic pathway is increasingly being recognized as an important component of catchment carbon and greenhouse gas (GHG) budgets, particularly in peatland systems due to their large carbon store and strong hydrological connectivity. In this study, we present a complete 5-year data set of all aquatic carbon and GHG species from an ombrotrophic Scottish peatland. Measured species include particulate and dissolved forms of organic carbon (POC, DOC), dissolved inorganic carbon (DIC), CO2 , CH4 and N2 O. We show that short-term variability in concentrations exists across all species and this is strongly linked to discharge. Seasonal cyclicity was only evident in DOC, CO2 and CH4 concentration; however, temperature correlated with monthly means in all species except DIC. Although the temperature correlation with monthly DOC and POC concentrations appeared to be related to biological productivity in the terrestrial system, we suggest the temperature correlation with CO2 and CH4 was primarily due to in-stream temperature-dependent solubility. Interannual variability in total aquatic carbon concentration was strongly correlated with catchment gross primary productivity (GPP) indicating a strong potential terrestrial aquatic linkage. DOC represented the largest aquatic carbon flux term (19.3 ± 4.59 g C m(-2) yr(-1) ), followed by CO2 evasion (10.0 g C m(-2) yr(-1) ). Despite an estimated contribution to the total aquatic carbon flux of between 8 and 48%, evasion estimates had the greatest uncertainty. Interannual variability in total aquatic carbon export was low in comparison with variability in terrestrial biosphere-atmosphere exchange, and could be explained primarily by temperature and precipitation. Our results therefore suggest that climatic change is likely to have a significant impact on annual carbon losses through the aquatic pathway, and as such, aquatic exports are fundamental to the understanding of whole catchment responses to climate change. © 2013 Blackwell Publishing Ltd.
Environmental Influences on the Fish Assemblage of the Humber Estuary, U.K.
NASA Astrophysics Data System (ADS)
Marshall, S.; Elliott, M.
1998-02-01
Salinity, temperature, turbidity and dissolved oxygen were measured in conjunction with a series of fish samples taken by a 2 m beam trawl from 14 sites throughout the Humber estuary, U.K., over the period April 1992 to November 1994. Sediment type was not measured as the literature indicates that the area is homogeneous. The influences of environmental factors and the characteristics of the fish assemblage were analysed using a range of multivariate techniques, including two-way indicator species analysis, canonical correspondence analysis, principal components analysis and Spearman rank correlation. The analyses indicate that salinity is the dominant factor influencing the distribution of the species, with temperature also having a major influence. Of the species examined, whiting (Merlangius merlangus), sole (Solea solea), flounder (Pleuronectes flesus), sprat (Sprattus sprattus) and herring (Clupea harengus) showed a correlation in distribution to temperature, sole, plaice (Pleuronectes platessa), pogge (Agonus cataphractus) and stickleback (Gasterosteus aculeatus) to salinity, and whiting, flounder, pogge and stickleback to dissolved oxygen. Only cod (Gadus morhua) showed a correlation with tidal state, while whiting, pogge and stickleback were correlated to depth. Unlike in some other estuaries, turbidity did not influence the composition of the fish assemblage. Temperature and salinity fluctuations appear to influence different aspects of the community, with temperature proving to be the best predictor of total abundance, while salinity influenced the species richness and total biomass. The analyses demonstrate the most important variables with regard to environmental-biotic interactions, although they also indicate that the variables measured do not account for all of the observed variation in fish biomass and abundance.
A dinoflagellate Cochlodinium geminatum bloom in the Zhujiang (Pearl) River estuary in autumn 2009
NASA Astrophysics Data System (ADS)
Ke, Zhixin; Huang, Liangmin; Tan, Yehui; Song, Xingyu
2012-05-01
A severe Cochlodinium geminatum red tide (>300 km2) was observed in the Zhujiang (Pearl) River estuary, South China Sea in autumn 2009. We evaluated the environmental conditions and phytoplankton community structure during the outbreak. The red tide water mass had significantly higher dissolved inorganic phosphate (DIP), ammonia, and temperature, but significantly lower nitrite, nitrate, dissolved inorganic nitrogen (DIN), and DIN/DIP relative to the non-red-tide zones. The phytoplankton assemblage was dominated by dinoflagellates and diatoms during the red tide. C. geminatum was the most abundant species, with a peak density of 4.13×107 cell/L, accounting for >65% of the total phytoplankton density. The DIN/DIP ratio was the most important predictor of species, accounting for 12.45% of the total variation in the phytoplankton community. Heavy phosphorus loading, low precipitation, and severe saline intrusion were likely responsible for the bloom of C. geminatum.
Water-quality and ground-water-level data, Bernalillo County, central New Mexico, 1995
Rankin, D.R.
1996-01-01
Water-quality and ground-water-level data were collected in two areas of eastern Bernalillo County in central New Mexico between March and July of 1995. Fifty-one wells, two springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County and nine wells in the northeast area of the city of Albuquerque were sampled. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; dissolved arsenic, boron, iron, and manganese; and methylene blue active substances. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, temperature, and alkalinity were measured in the field at the time of sample collection. Ground- water-level and well-depth measurements were made at the time of sample collection when possible. Water-quality data, ground- water-level data, and well-depth data are presented in tabular form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.
2006-11-15
Some fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Snake River downstream of Hells Canyon Dam at temperatures that exceed 13?C and at intergravel dissolved oxygen concentrations that are less than 8 mg O2/L. Although water temperature declines and dissolved oxygen increases soon after spawning, these temperature and dissolved oxygen levels do not meet the water quality standards established by the states of Oregon and Idaho for salmonid spawning. Our objective was to determine if temperatures from 13 to 17 C and dissolved oxygen levels from 4 to greater than 8 mg O2/L during the first 40 days ofmore » incubation followed by declining temperature and rising dissolved oxygen affected survival, development, and growth of Snake River fall Chinook salmon embryos, alevins, and fry. During the first 40 days of incubation, temperatures were adjusted downward approximately 0.2 C/day and oxygen was increased in increments of 2 mg O2/L to mimic the thermal and oxygen regime of the Snake River where these fish spawn. At 40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal and dissolved oxygen profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures equal to or greater than 17?C, and a rapid decline in survival occurred between 16.5 C and 17 C, with no significant difference in survival at temperatures less than or equal to 16.5 C. Initial dissolved oxygen levels as low as 4 mg O2/L over a range of initial temperatures from 15 to 16.5 C did not affect embryo survival to emergence. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. The number of days from fertilization to eyed egg, hatch, and emergence was highly related to temperature and dissolved oxygen; it took from 6 to 10 days longer to reach hatch at 4 mg O2/L than at saturation and up to 24 days longer to reach emergence. In contrast, within each dissolved oxygen treatment, it took about 20 days longer to reach hatch at 13 C than at 16.5 C (no data for 17 C) and up to 41 days longer to reach emergence. Overall, this study indicates that exposure to water temperatures up to 16.5 C will not have deleterious impacts on survival or growth from egg to emergence if temperatures decline at a rate of greater than or equal to 0.2 C/day following spawning. Although fall Chinook salmon survived low initial dissolved oxygen levels, the delay in emergence could have significant long-term effects on their survival. Thus, an exemption to the state water quality standards for temperature but not oxygen may be warranted in the Snake River where fall Chinook salmon spawn.« less
Applicability of NASQAN data for ecosystem assessments on the Missouri River
Blevins, Dale W.; Fairchild, James
2001-01-01
The effectiveness of ecological restoration efforts on large developed rivers is often unknown because comprehensive ecological monitoring programs are often absent. Although Eulerian water-quality monitoring programs, such as the National Stream Quality Accounting Network (NASQAN) program, are more common, they are usually not designed for ecological assessment. Therefore, this paper addresses the value of NASQAN for ecological assessments on the Missouri River and identifies potential program additions and modifications to assess certain ecological changes in physical habitat, biological structure and function, and ecotoxicity. Five additional sites: The analysis of chlorophyll, mercury, ATP, potential endocrine disruptors, total trace elements, and selected total hydrophobic organics; and the hourly measurement of dissolved oxygen, turbidity, and temperature are recommended. Hourly measurements would require an entirely new operational aspect to NASQAN. However, the presence of data loggers and satellite transmitters in the gauging stations at all NASQAN sites substantially improves the feasibility of continuous water-quality monitoring. The use of semipermeable membrane devices (SPMDs) to monitor dissolved bioaccumulating organics and trace elements, identification and enumeration of zooplankton, and characterization of the bioavailability of organic matter are also recommended. The effect of biological processes on the conservative assumptions that are used in flux and source determinations of NASQAN constituents are also evaluated. Organic carbon, organic nitrogen, dissolved phosphate, and dissolved inorganic nitrogen are the NASQAN constituents most vulnerable to biological processes and thus violation of conservative assumptions.
Fusé, Victoria S; Priano, M Eugenia; Williams, Karen E; Gere, José I; Guzmán, Sergio A; Gratton, Roberto; Juliarena, M Paula
2016-10-01
The global methane (CH 4 ) emission of lakes is estimated at between 6 and 16 % of total natural CH 4 emissions. However, these values have a high uncertainty due to the wide variety of lakes with important differences in their morphological, biological, and physicochemical parameters and the relatively scarse data from southern mid-latitude lakes. For these reasons, we studied CH 4 fluxes and CH 4 dissolved in water in a typical shallow lake in the Pampean Wetland, Argentina, during four periods of consecutive years (April 2011-March 2015) preceded by different rainfall conditions. Other water physicochemical parameters were measured and meteorological data were reported. We identified three different states of the lake throughout the study as the result of the irregular alternation between high and low rainfall periods, with similar water temperature values but with important variations in dissolved oxygen, chemical oxygen demand, water turbidity, electric conductivity, and water level. As a consequence, marked seasonal and interannual variations occurred in CH 4 dissolved in water and CH 4 fluxes from the lake. These temporal variations were best reflected by water temperature and depth of the Secchi disk, as a water turbidity estimation, which had a significant double correlation with CH 4 dissolved in water. The mean CH 4 fluxes values were 0.22 and 4.09 mg/m 2 /h for periods with low and high water turbidity, respectively. This work suggests that water temperature and turbidity measurements could serve as indicator parameters of the state of the lake and, therefore, of its behavior as either a CH 4 source or sink.
Chemical composition and variability of the waters of the Edwards Plateau, central Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groeger, A.W.; Gustafson, J.J.
1994-12-31
The surface waters of the karstic Edwards Plateau, southcentral Texas, are quite similar in many of their chemical characteristics. The ionic composition of the water was dominated by calcium and alkalinity (mostly bicarbonate) acquired through limestone weathering, and the ionic composition (in equivalents) was Ca>Mg>Na>K and alkalinity >Cl and SO{sub 4}. The median specific conductance and total dissolved solids ranged from 394 to 535 {mu}S cm{sup {minus}1} and 220 and 327 mg L{sup {minus}1}, respectively. The streams were always near or at supersaturation with respect to calcium carbonate, and the dynamics of calcium carbonate dissolution and precipitation tended to maintainmore » the dissolved substances at a fairly constant level. This may have been enhanced by the intimate contact of water and bedrock characteristic of karst drainages. Specific conductance, Ca, and alkalinity all decreased at higher summer temperatures. Many of the streams on the plateau maintained a constant level or actually increased concentrations of total dissolved substances at increased flow rates. These waters acquired significant quantities of solute as they flow through the confine Edwards Aquifer, including alkalinity, Ca, Mg, Na, Cl, and NO{sub 3}.« less
Controls on the quality of harvested rainwater in residential systems
NASA Astrophysics Data System (ADS)
Sojka, S. L.; Phung, D.; Hollingsworth, C.
2014-12-01
Rainwater harvesting systems, in which runoff from roofs is collected and used for irrigation, toilets and other purposes, present a viable solution to limited freshwater supplies and excess stormwater runoff. However, a lack of data on the quality of harvested rainwater hinders adoption of rainwater harvesting systems and makes development of rainwater harvesting regulations difficult. We conducted monthly surveys of 6 existing residential rainwater harvesting systems ranging in age from 1 to 11 years measuring pH, temperature, dissolved oxygen, total suspended solids, dissolved organic carbon, and coliform bacteria. We also examined a subset of the samples for iron, lead, mercury and arsenic. Many of the systems routinely met the water quality requirements for non-potable use without additional treatment, which is often required by regulations. In addition, while previous studies have shown that roof runoff contains heavy metals, the water in all systems showed very low or undetectable levels of metal contamination. Coliform bacteria concentration ranged from 20 to greater than 1400 CFU's per 100 mL and correlated with total suspended solids, which ranged from 2 - 7 mg l-1. The relationship between suspended solids and bacteria population was confirmed in a controlled experiment on the impact of filtering the rainwater before storage. Filtration decreased total suspended solids and total coliforms and increased dissolved oxygen concentration. This project provides insight into the effects of system design and a baseline assessment of the quality of harvested rainwater in existing systems.
Zhang, Ming-Kui; Wang, Yang; Huang, Chao
2011-12-01
By the method of site-specific observation, and selecting 27 field plots with 7 planting patterns in Shaoxing county of Zhejiang Province as test objects, this paper studied the characteristics of nitrogen (N) and phosphorous (P) runoff losses, loads, and their affecting factors in the croplands with different planting patterns in riverine plain area of the Province under natural rainfall. The mean annual runoff loads of total P, dissolved P, and particulate P from the field plots were 4.75, 0.74 and 4.01 kg x hm(-2), respectively, and the load of particulate P was much higher than that of dissolved P. The mean annual runoff loads of total N, dissolved total N, dissolved organic N, NH4(+)-N, and NO3(-)-N were 21.87, 17.19, 0.61, 3.63 and 12.95 kg x hm(-2), respectively, and the load of different fractions of dissolved total N was in the sequence of NO3(-)-N > NH4(+)-N > dissolved organic N. As for the field plots with different planting patterns, the runoff loads of total N, dissolved total N, dissolved organic N, and NO3(-)-N were in the sequence of fallow land < nursery land < single late rice field < double rice field < rape (or wheat)-single late rice field < wheat-early rice-late rice field < vegetable field, while those of total P and particulate P were in the sequence of fallow land < nursery land < single late rice field and double rice field < wheat-early rice-late rice field < rape (wheat)-single late rice field < vegetable field. No significant difference was observed in the load of water-dissolved P among the test plots with different planting patterns. The runoff losses of N and P mainly occurred in crop growth period, and the proportions of N and P losses in the growth period increased with increasing multiple crop index. The runoff losses of total N, dissolved N, and NO3(-)-N were mainly related to the application rate of N fertilizer, and soil NO3(-)-N content also had obvious effects on the runoff losses of total N and dissolved N. The runoff loss of dissolved organic N was related not only to N application rate, but also to soil total N and organic carbon. The runoff loss of NH4(+)-N was mainly related to soil available NH4(+)-N, but not related to N application rate. The runoff losses of total P and particulate P were related to both P application rate and soil available P, while the runoff loss of water dissolved P was less related to P application rate but had relations to soil total P and available P.
Characterization of urban runoff pollution between dissolved and particulate phases.
Wei, Zhang; Simin, Li; Fengbing, Tang
2013-01-01
To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.
Rocha, R R A; Thomaz, S M; Carvalho, P; Gomes, L C
2009-06-01
The need for prediction is widely recognized in limnology. In this study, data from 25 lakes of the Upper Paraná River floodplain were used to build models to predict chlorophyll-a and dissolved oxygen concentrations. Akaike's information criterion (AIC) was used as a criterion for model selection. Models were validated with independent data obtained in the same lakes in 2001. Predictor variables that significantly explained chlorophyll-a concentration were pH, electrical conductivity, total seston (positive correlation) and nitrate (negative correlation). This model explained 52% of chlorophyll variability. Variables that significantly explained dissolved oxygen concentration were pH, lake area and nitrate (all positive correlations); water temperature and electrical conductivity were negatively correlated with oxygen. This model explained 54% of oxygen variability. Validation with independent data showed that both models had the potential to predict algal biomass and dissolved oxygen concentration in these lakes. These findings suggest that multiple regression models are valuable and practical tools for understanding the dynamics of ecosystems and that predictive limnology may still be considered a powerful approach in aquatic ecology.
Impact of proposed Washington State water quality standards on Hanford
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corley, J.P.; Selby, J.M.
1967-11-03
The proposed regulation relating to Water Quality Standards for Interstate and Coastal Waters of the State of Washington contains eight standards. Standards are established for Total Coliform Organisms, Dissolved Oxygen, Temperature, Radioactivity, pH, Turbidity, Toxic or Deleterious Material, and Aesthetic Values. The Columbia River from the Washington-Oregon border to Priest Rapids is designated as class A water. Additionally, special temperature requirements are defined for this reach of the river. This report reviews the measured and projected conditions in this reach of the river in relation to these standards. 4 figs.
Low temperature dissolution flowsheet for plutonium metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, W. E.; Almond, P. M.; Rudisill, T. S.
2016-05-01
The H-Canyon flowsheet used to dissolve Pu metal for PuO 2 production utilizes boiling HNO 3. SRNL was requested to develop a complementary dissolution flowsheet at two reduced temperature ranges. The dissolution and H 2 generation rates of Pu metal were investigated using a dissolving solution at ambient temperature (20-30 °C) and for an intermediate temperature of 50-60 °C. Additionally, the testing included an investigation of the dissolution rates and characterization of the off-gas generated from the ambient temperature dissolution of carbon steel cans and the nylon bags that contain the Pu metal when charged to the dissolver.
Luostarinen, Sari A; Rintala, Jukka A
2005-01-01
Anaerobic on-site treatment of synthetic black water (BW) and dairy parlour wastewater (DPWW) was studied in two-phased upflow anaerobic sludge blanket (UASB)-septic tanks at low temperatures (10-20 degrees C). At all temperatures, total chemical oxygen demand (COD(t)) removal was above 90% with BW and above 80% with DPWW and removal of total suspended solids (TSS) above 90% with both wastewaters. Moreover, dissolved COD (COD(dis)) removal was approx. 70% with both wastewaters indicating good biological activity of the sludges. With BW, a single-phased reactor was found sufficient for good COD removals, while with DPWW, a two-phased process was required. Temperature optimum of reactor sludges was still 35 degrees C after long (398d) operation. Most of the nutrients from BW were removed with TSS, while with DPWW nutrient removal was low. In conclusion, UASB-septic tank was found feasible for (pre)treatment of BW and DPWW at low temperatures.
Oliveira, S A; Bicudo, C E M
2017-01-01
Limnological features of two reservoirs were studied in dry (August 2013) and rainy (January 2014) periods to evaluate the water quality that supply the city of Guarulhos, southeast Brazil. Water samples were collected in three depths and the following characteristics were measured: alkalinity, dissolved O2, free and total CO2, HCO3, soluble reactive silica, dissolved and total nitrogen and phosphorus, and chlorophyll-a. Water transparency was also measured and temperature, pH and electric conductivity profiles were obtained. Great seasonal and low spatial variability of the water characteristics occurred in the reservoirs. High values of water transparency, free CO2 availability, and low of pH, soluble reactive silica and total and dissolved nutrients values were recorded at the dry period, and different conditions were found at the rainy season. The two reservoirs were characterized by low nutrients, chlorophyll-a and turbidity, and high transparency, these features being typical of oligotrophic systems. The two reservoirs still remain under low anthropogenic impact conditions, and are presently considered reference systems for the SPMR, São Paulo Metropolitan Region. The need for actions that will reduce the input of nutrients from the neighboring cities and the main tributaries of the hydrographic basin is emphasized to maintain the ecological quality of the reservoirs and their reference conditions among the SPRM reservoirs.
The extent and pathways of nitrogen loss in turfgrass systems: Age impacts.
Chen, Huaihai; Yang, Tianyou; Xia, Qing; Bowman, Daniel; Williams, David; Walker, John T; Shi, Wei
2018-05-11
Nitrogen loss from fertilized turf has been a concern for decades, with most research focused on inorganic (NO 3 - ) leaching. The present work examined both inorganic and organic N species in leachate and soil N 2 O emissions from intact soil cores of a bermudagrass chronosequence (1, 15, 20, and 109 years old) collected in both winter and summer. Measurements of soil N 2 O emissions were made daily for 3 weeks, while leachate was sampled once a week. Four treatments were established to examine the impacts of fertilization and temperature: no N, low N at 30 kg N ha -1 , and high N at 60 kg N ha -1 , plus a combination of high N and temperature (13 °C in winter or 33 °C in summer compared to the standard 23 °C). Total reactive N loss generally showed a "cup" pattern of turf age, being lowest for the 20 years old. Averaged across all intact soil cores sampled in winter and summer, organic N leaching accounted for 51% of total reactive N loss, followed by inorganic N leaching at 41% and N 2 O-N efflux at 8%. Proportional loss among the fractions varied with grass age, season, and temperature and fertilization treatments. While high temperature enhanced total reactive N loss, it had little influence on the partitioning of loss among dissolved organic N, inorganic N and N 2 O-N when C availability was expected to be high in summer due to rhizodeposition and root turnover. This effect of temperature was perhaps due to higher microbial turnover in response to increased C availability in summer. However when C availability was low in winter, warming might mainly affect microbial growth efficiency and therefore partitioning of N. This work provides a new insight into the interactive controls of warming and substrate availability on dissolved organic N loss from turfgrass systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Bragg, Heather M.; Johnston, Matthew W.
2015-01-01
All quality-assurance values exceed the criteria established by the U.S. Army Corps of Engineers TDG monitoring plan. Criteria for data completeness (95 percent) were met at six of the eight monitoring stations. Deleted data at the John Day tailwater station and missed transmissions at the Camas station resulted in data completeness below criteria.
Rosen, Michael R.
2003-01-01
Analysis of trends in nitrate and total dissolved-solids concentrations over time in Carson Valley, Nevada, indicates that 56 percent of 27 monitoring wells that have long-term records of nitrate concentrations show increasing trends, 11 percent show decreasing trends, and 33 percent have not changed. Total dissolved-solids concentrations have increased in 52 percent of these wells and are stable in 48 percent. None of these wells show decreasing trends in total dissolved-solids concentrations. The wells showing increasing trends in nitrate and total dissolved-solids concentrations were always in areas that use septic waste-disposal systems. Therefore, the primary cause of these increases is likely the increase in septic-tank usage over the past 40 years.
Impact on water quality of land uses along Thamalakane-Boteti River: An outlet of the Okavango Delta
NASA Astrophysics Data System (ADS)
Masamba, Wellington R. L.; Mazvimavi, Dominic
Botswana is a semiarid country and yet has one of the world’s famous wetlands: the Okavango Delta. The Thamalakane-Boteti River is one of the Delta’s outlets. The water quality of the Thamalakane-Boteti River was determined and related to its utilisation. The major land uses along the Thamalakane River within Maun are residential areas, lodges, hotels, and grazing by cattle and donkeys. The water is used as a source of water for livestock, wildlife in a game park, horticulture and domestic applications including drinking. The river is also used for fishing. To check whether these activities negatively impact on the water quality, pH, electrical conductivity, dissolved oxygen, temperature, total dissolved nitrogen and phosphorus, Faecal coliforms and Faecal streptococci and selected metals were determined from July 2005 to January 2006. The pH was near neutral except for the southern most sampling sites where values of up to 10.3 were determined. Dissolved oxygen varied from 2 mg/l to 8 mg/l. Sodium (range 0.6-3.2 mg/l), K (0.3-3.6 mg/l), Fe (1.6-6.9 mg/l) conductivity (56-430 μS/cm) and Mg (0.2-6.7 mg/l) increased with increased distance from the Delta, whereas lead showed a slight decline. Total dissolved phosphorus was low (up to 0.02 mg/l) whereas total dissolved nitrogen was in the range 0.08-1.5 mg/l. Faecal coliform (range 0-48 CFU/100 ml) and Faecal streptococci (40-260 CFU/100 ml) were low for open waters with multiple uses. The results indicate that there is possibility of pollution with organic matter and nitrogen. It is recommended that more monitoring of water quality needs to be done and the sources of pollution identified.
Modeling water quality in the Tualatin River, Oregon, 1991-1997
Rounds, Stewart A.; Wood, Tamara M.
2001-01-01
The calibration of a model of flow, temperature, and water quality in the Tualatin River, Oregon, originally calibrated for the summers of 1991 through 1993, was extended to the summers of 1991 through 1997. The model is now calibrated for a total period of 42 months during the May through October periods of 7 hydrologically distinct years. Based on a modified version of the U.S. Army Corps of Engineers model CE-QUAL-W2, this model provides a good fit to the measured data for streamflow, water temperature, and water quality constituents such as chloride, ammonia, nitrate, total phosphorus, orthophosphate, phytoplankton, and dissolved oxygen. In particular, the model simulates ammonia concentrations and the effects of instream ammonia nitrification very well, which is critical to ongoing efforts to revise ammonia regulations for the Tualatin River. In addition, the model simulates the timing, duration, and relative size of algal blooms with sufficient accuracy to provide important insights for regulators and managers of this river.Efforts to limit the size of algal blooms through phosphorus control measures are apparent in the model simulations, which show this limitation on algal growth. Such measures are largely responsible for avoiding violations of the State of Oregon maximum pH standard of 8.5 in recent years, but they have not yet reduced algal biomass levels below the State of Oregon nuisance phytoplankton growth guideline of 15 ?g/L chlorophyll-a.Most of the dynamics of the instream dissolved oxygen concentrations are captured by the model. About half of the error in the simulated dissolved oxygen concentrations is directly attributable to error in the size of the simulated phytoplankton population. To achieve greater accuracy in simulating dissolved oxygen, therefore, it will be necessary to increase accuracy in the simulation of Tualatin River phytoplankton.Future efforts may include the introduction of multiple algal groups in the model. This model of the Tualatin River continues to be used as a quantitative tool to aid in the management of this important resource.
Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander
NASA Astrophysics Data System (ADS)
Demuth, O. J.
1984-06-01
The velocity pump reaction turbine (VPRT) was evaluated as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360(F) geothermal resource, 60 F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120 F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.77, with plant geofluid effectiveness values ranging as high as 9.5 watt hr-lbm geofluid for the 360 F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.
Bernstein, Hans C; Beam, Jacob P; Kozubal, Mark A; Carlson, Ross P; Inskeep, William P
2013-08-01
The role of dissolved oxygen as a principal electron acceptor for microbial metabolism was investigated within Fe(III)-oxide microbial mats that form in acidic geothermal springs of Yellowstone National Park (USA). Specific goals of the study were to measure and model dissolved oxygen profiles within high-temperature (65-75°C) acidic (pH = 2.7-3.8) Fe(III)-oxide microbial mats, and correlate the abundance of aerobic, iron-oxidizing Metallosphaera yellowstonensis organisms and mRNA gene expression levels to Fe(II)-oxidizing habitats shown to consume oxygen. In situ oxygen microprofiles were obtained perpendicular to the direction of convective flow across the aqueous phase/Fe(III)-oxide microbial mat interface using oxygen microsensors. Dissolved oxygen concentrations dropped from ∼ 50-60 μM in the bulk-fluid/mat surface to below detection (< 0.3 μM) at a depth of ∼ 700 μm (∼ 10% of the total mat depth). Net areal oxygen fluxes into the microbial mats were estimated to range from 1.4-1.6 × 10(-4) μmol cm(-2) s(-1) . Dimensionless parameters were used to model dissolved oxygen profiles and establish that mass transfer rates limit the oxygen consumption. A zone of higher dissolved oxygen at the mat surface promotes Fe(III)-oxide biomineralization, which was supported using molecular analysis of Metallosphaera yellowstonensis 16S rRNA gene copy numbers and mRNA expression of haem Cu oxidases (FoxA) associated with Fe(II)-oxidation. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Kipyab, Pamela C; Khaemba, Battan M; Mwangangi, Joseph M; Mbogo, Charles M
2015-04-11
Members of the Anopheles gambiae complex are the main transmitters of malaria. Anopheles merus is a member of the complex found along the Kenyan coast because it breeds in saline waters. An entomological study was conducted in Garithe Malindi District, to investigate the physicochemical and environmental factors affecting the distribution of An. merus. Field and laboratory studies were used to investigate the breeding habitats of the subspecies. Mosquito larvae were sampled using standard dipping technique from small pockets of pools, ponds, hoof prints, road drain, wells and mangrove swamps found in Garithe. All 3(rd) and 4(th) instars of Anopheles larvae sampled were identified microscopically into species. A representative of Anopheles gambiae complex was then identified to specific sibling species using r-DNA PCR technique. The habitats were characterized based on temperature, conductivity, salinity, dissolved oxygen, total dissolved solids, pH, size, distance to nearest house, canopy coverage, surface debris, presence of algae, emergent plants, turbidity and habitat types. A total of 159 morphologically identified late stage instar Anopheles gambiae s.l larvae were selected for r-DNA analysis by PCR. Out of these, 60.4% (n = 96) were Anopheles merus, 8.8% (n = 14) were Anopheles arabiensis, 18.2% (n = 29) were Anopheles gambiae s.s and 12.6% (n = 20) were unknown. Using paired t-test (t (121) = -3.331, P = 0.001) a significantly high proportion of An. merus was observed in all habitats compared to An. arabiensis, and An. gambiae s. s. In habitat characterization, Pearson's correlation analysis test showed different parameters being associated with the occurrence of An. merus larvae in the different habitats sampled. Six out of the 55 correlation coefficients (10.9%) were statistically significant, suggesting non-random association between some pairs of variables. Those that had a significantly high positive correlation with An. merus included temperature, salinity, conductivity, total dissolved solids and algae. Different physicochemical parameters and environmental parameters affect the occurrence of An. merus. In this study, higher temperatures accelerate the growth of the larvae and aids in growth of micro-organisms and algae which are food sources for the larvae. Saline waters favour the growth and development of An. merus larvae; they are also able to develop in a range of saline waters. Conductivity, total dissolved solids and canopy coverage are among the important factors influencing the development and abundance of An. merus larvae in their habitats. Habitat type also influences the abundance of An. merus larvae. They mainly prefer to breed in pools and ponds, but not swamps, hoof prints and wells.
Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.
2011-01-01
For the eight monitoring stations in water year 2010, a total of 99.7 percent of the TDG data were received in real time and were within 1-percent saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent stations. Data received from the individual stations ranged from 98.4 to 100.0 percent complete.
Tanner, Dwight Q.; Bragg, Heather M.; and Johnston, Matthew W.
2010-01-01
For the eight monitoring stations in water year 2009, a total of 99.2 percent of the TDG data were received in real time by the USGS satellite downlink and were within 1-percent saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. Data received from the individual stations ranged from 97.0 to 100.0 percent complete.
Slack, L.J.
1987-01-01
Lake Tuscaloosa, created in 1969 by the impoundment of North River, provides the primary water supply for Tuscaloosa, Alabama , and surrounding areas. This report describes the percent contribution of major tributaries to the mean inflow to the lake; water quality; and changes in water quality in the lake and selected tributaries. During base flow, about 60% of the total flow into Lake Tuscaloosa is contributed by Binion and Carroll Creeks, which drain only 22% of the Lake Tuscaloosa basin. Binion and Carroll Creek basins are underlain primarily by sand and gravel deposits of the Coker Formation. Mean inflow to the lake was 1,150 cu ft/sec during 1983, a wet year, and 450 cu ft/sec during 1985, a relatively dry year. More than 80% of the total inflow during both years was contributed by North River and Binion, Cripple, and Carroll Creeks. About 59% was contributed by North River during those years. Except for pH, sulfate, and dissolved and total recoverable iron and manganese, the water quality of the tributaries is generally within drinking water limits and acceptable for most uses. The water quality of Lake Tuscaloosa is generally within drinking water limits and acceptable for most uses. The maximum and median concentrations of sulfate increased every year at the dam from 1979 to 1985 (7.2 to 18 mg/L and 6.2 to 14 mg/L, respectively). The dissolved solids concentrations for water at the dam have varied (1979-86) from 27 to 43 mg/L; the sulfate, 5.2 to 18 mg/L; and the dissolved iron, 10 to 250 micrograms/L--all within the recommended drinking water limits. However, concentrations of dissolved manganese and total recoverable iron and manganese at the dam commonly exceeded the recommended drinking water limits. In November 1985, after the summer warmup and increase in biological activity, the water quality at five depth profiles sites on Lake Tuscaloosa was acceptable for most uses, generally. However, a dissolved oxygen concentration of 1 mg/L or less was observed within 5 to 10 ft of the bottom for several depth profiles. At depths > 35 to 40 ft (out of a total depth of about 50 to 100 ft) the dissolved oxygen concentration was < 5 mg/L at several sites. By mid-January 1986, the temperature and dissolved oxygen depth profiles were virtually constant from top to bottom of the lake at all five sites; this indicated that lake turnover was complete. However, significant variation existed in pH depth profiles. (Author 's abstract)
Radhakrishnan, Kirthi; Haworth, Kevin J; Huang, Shao-Ling; Klegerman, Melvin E; McPherson, David D; Holland, Christy K
2012-11-01
Echogenic liposomes (ELIP) are multifunctional ultrasound contrast agents (UCAs) with a lipid shell encapsulating both air and an aqueous core. ELIP are being developed for molecular imaging and image-guided therapeutic delivery. Stability of the echogenicity of ELIP in physiologic conditions is crucial to their successful translation to clinical use. In this study, we determined the effects of the surrounding media's dissolved air concentration, temperature transition and hydrodynamic pressure on the echogenicity of a chemically modified formulation of ELIP to promote stability and echogenicity. ELIP samples were diluted in porcine plasma or whole blood and pumped through a pulsatile flow system with adjustable hydrodynamic pressures and temperature. B-mode images were acquired using a clinical diagnostic scanner every 5 s for a total duration of 75 s. Echogenicity in porcine plasma was assessed as a function of total dissolved gas saturation. ELIP were added to plasma at room temperature (22 °C) or body temperature (37 °C) and pumped through a system maintained at 22 °C or 37 °C to study the effect of temperature transitions on ELIP echogenicity. Echogenicity at normotensive (120/80 mmHg) and hypertensive pressures (145/90 mmHg) was measured. ELIP were echogenic in plasma and whole blood at body temperature under normotensive to hypertensive pressures. Warming of samples from room temperature to body temperature did not alter echogenicity. However, in plasma cooled rapidly from body temperature to room temperature or in degassed plasma, ELIP lost echogenicity within 20 s at 120/80 mmHg. The stability of echogenicity of a modified ELIP formulation was determined in vitro at body temperature, physiologic gas concentration and throughout the physiologic pressure range. However, proper care should be taken to ensure that ELIP are not cooled rapidly from body temperature to room temperature as they will lose their echogenic properties. Further in vivo investigations will be needed to evaluate the optimal usage of ELIP as blood pool contrast agents. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases
Wei, Zhang; Simin, Li; Fengbing, Tang
2013-01-01
To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444
Williams, Richard J; Boorman, David B
2012-04-15
The River Kennet in southern England shows a clear diurnal signal in both water temperature and dissolved oxygen concentrations through the summer months. The water quality model QUESTOR was applied in a stepwise manner (adding modelled processes or additional data) to simulate the flow, water temperature and dissolved oxygen concentrations along a 14 km reach. The aim of the stepwise model building was to find the simplest process-based model which simulated the observed behaviour accurately. The upstream boundary used was a diurnal signal of hourly measurements of water temperature and dissolved oxygen. In the initial simulations, the amplitude of the signal quickly reduced to zero as it was routed through the model; a behaviour not seen in the observed data. In order to keep the correct timing and amplitude of water temperature a heating term had to be introduced into the model. For dissolved oxygen, primary production from macrophytes was introduced to better simulate the oxygen pattern. Following the modifications an excellent simulation of both water temperature and dissolved oxygen was possible at an hourly resolution. It is interesting to note that it was not necessary to include nutrient limitation to the primary production model. The resulting model is not sufficiently proven to support river management but suggests that the approach has some validity and merits further development. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Enhanced dissolved lipid production as a response to the sea surface warming
NASA Astrophysics Data System (ADS)
Novak, Tihana; Godrijan, Jelena; Pfannkuchen, Daniela Marić; Djakovac, Tamara; Mlakar, Marina; Baricevic, Ana; Tanković, Mirta Smodlaka; Gašparović, Blaženka
2018-04-01
The temperature increase in oceans reflects on marine ecosystem functioning and surely has consequences on the marine carbon cycle and carbon sequestration. In this study, we examined dissolved lipid, lipid classes and dissolved organic carbon (DOC) production in the northern Adriatic Sea, isolated diatom Chaetoceros pseudocurvisetus batch cultures grown in a wide temperature range (10-30 °C) and in contrasting nutrient regimes, phosphorus (P)-depleted and P-replete conditions. Additionally, lipids and DOC were analyzed in the northern Adriatic (NA) in two stations characterized with different P availability, occupied from February to August 2010 that covered a temperature range from 9.3 to 31.1 °C. To gain insight into factors governing lipid and lipid classes' production in the NA, apart from temperature (T), Chlorophyll a, phytoplankton community abundance and structure, nutrient concentrations were measured together with hydrographic parameters. We found enhanced accumulation of dissolved lipids, particulary glycolipids, with increasing T, especially during the highest in situ temperature. The effect of T on enhanced dissolved lipid release is much more pronounced under P-deplete conditions indicating that oligotrophic regions might be more vulnerable to T rise. Temperature between 25 and 30 °C is a threshold T range for C. pseudocurvisetus, at which a significant part of lipid production is directed toward the dissolved phase. Unlike monocultures, there are multiple factors influencing produced lipid composition, distribution and cycling in the NA that may counteract the T influence. The possible role of enhanced dissolved lipid concentration for carbon sequestration at elevated T is discussed. On the one hand, lipids are buoyant and do not sink, which enhances their retention at the surface layer. In addition, they are surface active, and therefore prone to adsorb on sinking particles, contributing to the C sequestration.
Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.
2003-01-01
Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.
Hydrothermal Plume Activity at Teahitia Seamount: Re-Awakening of the Society Islands Hot-Spot?
NASA Astrophysics Data System (ADS)
German, C. R.; Xu, G.; Yeo, I. A.; Walker, S. L.; Moffett, J.; Cutter, G. A.; Devey, C. W.; Hyvernaud, O.; Reymond, D.; Resing, J. A.
2016-12-01
We report results from a combined mapping and CTD-rosette investigation of the summit of Teahitia Seamount, Society Islands hot-spot, that indicates that high temperature venting may have been present by late 2013 at a site that only hosted low-temperature vents ( 30°C) when previously visited by submersible, 25 years earlier. In 2013, a non-buoyant hydrothermal plume containing high concentrations (>100nmol/L) of both dissolved and total dissolvable Fe was observed at an apparent rise-height of 110-140m above a seafloor source at 1500-1530m water depth, implying a heat-flux for the underlying venting of 13-35MW. From a comparison to the past evolution of venting at Loihi seamount (Hawaii), coupled with an examination of recent seismicity detected by the Polynesian Seismic Network, we hypothesize that venting at Teahitia may have undergone perturbation only recently and that this, in turn, may be linked to a re-awakening of the Society Islands hotspot.
NASA Astrophysics Data System (ADS)
Clegg, Simon L.; Whitfield, Michael
1995-06-01
The calculation of the percentage of un-ionised ammonia in estuarine water and seawater requires values of the stoichiometric dissociation constant of ammonia, defined by: K*a/mol kg -1 = mNH 3mH +/ mNH +4, where m denotes molality. A thermodynamic model of seawater, including dissolved NH 3 and NH +4, is developed using an extended Pitzer formalism parameterised from available data. The model is validated using emf measurements for cells containing artificial seawater with added HCl, and NH 4Cl, and NH 3 over a range of temperatures and salinities. Calculated values of K*a are tabulated from 0 to 40 ppt salinity and -2 to 40°C, on both a free ( mH +) and total ( mH + + mHSO -4) hydrogen ion basis for use with pH measurements made on the corresponding scales. Accuracy (in K*a) is likely to be better than 5% at all temperatures and salinities.
Water chemistry in the rives of the permafrost regions on the eastern Qinghai-Tibetan Plateau
NASA Astrophysics Data System (ADS)
Wu, X.; Ma, X.; Ye, L.; Liu, G.
2017-12-01
Qinghai-Tibetan is the largest middle-low latitude permafrost areas on the world. There are several large rivers in the plateau, and the changes of the water resources of these rivers are associated with the water resource security of more than 1.35 billion people. Due to the high gradients, these rivers have a tremendous amount of potential energy for electricity output. To promote economic and social development and provide clean energy, hydropower development has taken place on several rivers which originate on the Qinghai-Tibetan Plateau. Since dam construction affect the flow velocity, water temperature, sediments delivery as well as organic matter and nitrogen, it is important to investigate the river chemistry in the head rivers of the reservoirs. We examined the water physio-chemical characteristics in the rivers under the typical vegetation types in the eastern Qinghai-Tibetan Plateau, and further analyzed their relationship to vegetation. The results showed that the total suspended sediment in the rivers were higher within the catchment of alpine steppe, with the lowest dissolved organic carbon content. In contrast, the rivers within the meadow had the highest dissolved organic carbon and lowest total suspension sediment. The dissolved organic carbon significantly positively correlated with the proportions of the meadow and wet meadow in the catchment. The pH, turbidity, and SUVA254 and dissolved organic carbon also correlated with each other. The results suggest that the vegetation type strongly affect the water chemistry in the permafrost regions on the Qinghai-Tibetan Plateau.
Process for coal liquefaction in staged dissolvers
Roberts, George W.; Givens, Edwin N.; Skinner, Ronald W.
1983-01-01
There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.
Downing, Bryan D.; Pellerin, Brian A.; Bergamaschi, Brian A.; Saraceno, John Franco; Kraus, Tamara E.C.
2012-01-01
Field-deployable sensors designed to continuously measure the fluorescence of colored dissolved organic matter (FDOM) in situ are of growing interest. However, the ability to make FDOM measurements that are comparable across sites and over time requires a clear understanding of how instrument characteristics and environmental conditions affect the measurements. In particular, the effects of water temperature and light attenuation by both colored dissolved material and suspended particles may be significant in settings such as rivers and streams. Using natural standard reference materials, we characterized the performance of four commercially-available FDOM sensors under controlled laboratory conditions over ranges of temperature, dissolved organic matter (DOM) concentrations, and turbidity that spanned typical environmental ranges. We also examined field data from several major rivers to assess how often attenuation artifacts or temperature effects might be important. We found that raw (uncorrected) FDOM values were strongly affected by the light attenuation that results from dissolved substances and suspended particles as well as by water temperature. Observed effects of light attenuation and temperature agreed well with theory. Our results show that correction of measured FDOM values to account for these effects is necessary and feasible over much of the range of temperature, DOM concentration, and turbidity commonly encountered in surface waters. In most cases, collecting high-quality FDOM measurements that are comparable through time and between sites will require concurrent measurements of temperature and turbidity, and periodic discrete sample collection for laboratory measurement of DOM.
Huntington, Thomas G.; Culbertson, Charles W.; Fuller, Christopher; Glibert, Patricia; Sturtevant, Luke
2014-01-01
The U.S. Geological Survey and Acadia National Park (ANP) collaborated on a study of nutrient inputs into Bass Harbor Marsh Estuary on Mount Desert Island, Maine, to better understand ongoing eutrophication, oceanic nutrient inputs, and potential management solutions. This report includes the estimation of loads of nitrate, ammonia, total dissolved nitrogen, and total dissolved phosphorus to the estuary derived from runoff within the watershed and oceanic inputs during summers 2011 and 2012. Nutrient outputs from the estuary were also monitored, and nutrient inputs in direct precipitation to the estuary were calculated. Specific conductance, water temperature, and turbidity were monitored at the estuary outlet. This report presents a first-order analysis of the potential effects of projected sea-level rise on the inundated area and estuary volume. Historical aerial photographs were used to investigate the possibility of widening of the estuary channel over time. The scope of this report also includes analysis of sediment cores collected from the estuary and fringing marsh surfaces to assess the sediment mass accumulation rate. Median concentrations of nitrate, ammonium, and total dissolved phosphorus on the flood tide were approximately 25 percent higher than on the ebb tide during the 2011 and 2012 summer seasons. Higher concentrations on the flood tide suggest net assimilation of these nutrients in biota within the estuary. The dissolved organic nitrogen fraction dominated the dissolved nitrogen fraction in all tributaries. The median concentration of dissolved organic nitrogen was about twice as high on the on the ebb tide than the flood tide, indicating net export of dissolved organic nitrogen from the estuary. The weekly total oceanic inputs of nitrate, ammonium, and total dissolved phosphorus to the estuary were usually much larger than inputs from runoff or direct precipitation. The estuary was a net sink for nitrate and ammonium in most weeks during both years. Oceanic inputs of nitrate and ammonium were an important source of inorganic nitrogen to the estuary in both years. In both years, the total seasonal inputs of ammonium to the estuary in flood tides were much larger than the inputs from watershed runoff or direct precipitation. In 2011, the total seasonal input of nitrate from flood tides to the estuary was more than twice as large the inputs from watershed runoff and precipitation, but in 2012, the inputs from flood tides were only marginally larger than the inputs from watershed runoff and precipitation. Turbidity was measured intermittently in 2012, and the pattern that emerged from the measurements indicated that the estuary was a source of particulate matter to the ocean rather than the ocean being a source to the estuary. From the nutrient budgets determined for the estuary it is evident that oceanic sources of nitrate and ammonium are an important part of the supply of nutrients that are contributing to the growth of macroalgae in the estuary. The relative importance of these oceanic nutrients compared with sources within the watershed typically increases as the summer progresses and runoff decreases. It is likely that rising sea levels, estimated by the National Oceanic and Atmospheric Administration to be 11 centimeters from 1950 through 2006 in nearby Bar Harbor, have resulted in an increase in oceanic inputs (tidal volume and nutrients derived from oceanic sources).
Argonne Geothermal Geochemical Database v2.0
Harto, Christopher
2013-05-22
A database of geochemical data from potential geothermal sources aggregated from multiple sources as of March 2010. The database contains fields for the location, depth, temperature, pH, total dissolved solids concentration, chemical composition, and date of sampling. A separate tab contains data on non-condensible gas compositions. The database contains records for over 50,000 wells, although many entries are incomplete. Current versions of source documentation are listed in the dataset.
Ren, Qingkai; Yu, Yang; Zhu, Suiyi; Bian, Dejun; Huo, Mingxin; Zhou, Dandan; Huo, Hongliang
2017-06-01
A novel micro-pressure swirl reactor (MPSR) was designed and applied to treat domestic wastewater at low temperature by acclimating microbial biomass with steadily decreasing temperature from 15 to 3 °C. Chemical oxygen demand (COD) was constantly removed by 85% and maintained below 50 mg L -1 in the effluent during the process. When the air flow was controlled at 0.2 m 3 h -1 , a swirl circulation was formed in the reactor, which created a dissolved oxygen (DO) gradient with a low DO zone in the center and a high DO zone in the periphery for denitrification and nitrification. 81% of total nitrogen was removed by this reactor, in which ammonium was reduced by over 90%. However, denitrification was less effective because of the presence of low levels of oxygen. The progressively decreasing temperature favored acclimation of psychrophilic bacteria in the reactor, which replaced mesophilic bacteria in the process of treatment.
Crustacean communities in coastal ephemeral pools in the Araucanía region (38° S, Chile).
De Los Ríos-Escalante, P; Acevedo, P
2016-01-01
The fauna communities of ephemeral pools in southern Chile are characterized by heterogeneity of crustacean taxa; nevertheless, no detailed studies exist of their community structure. The aim of the present study was to analyze the crustacean community structure in two groups of ephemeral pools (Puaucho and Nigue pools) in the coastal zone of the Araucanía region. A correlation matrix was made by species abundance against temperature, conductivity, pH and total dissolved solids. In a second step, a null model for species co-occurrence was applied to the total data and to each group. The results for total data revealed a significant direct relation between the abundance of H. costera, C. dubia and Mesocyclops. For the Puaucho pools, the same results were found together with direct associations with total dissolved solids, conductivity and pH. Finally, different results were found for the Nigue pools, with no clear significant associations, either direct or indirect, between the abundance of different crustacean taxa and abiotic parameters. These results were supported by the co-occurrence null model analysis, which revealed the presence of regulator factors for the total data, and for each of the two groups. Ecological topics are discussed with emphasis on meta-community dynamics.
Summary and evaluation of the quality of stormwater in Denver, Colorado, 2006-2010
Stevens, Michael R.; Slaughter, Cecil B.
2012-01-01
Stormwater in the Denver area was sampled by the U.S. Geological Survey, in cooperation with the Urban Drainage and Flood Control District, in a network of 5 monitoring stations - 3 on the South Platte River and 2 on streams tributary to the South Platte River, Sand Creek, and Toll Gate Creek beginning in January 2006 and continuing through December 2010. Stormwater samples were analyzed at the U.S. Geological Survey National Water Quality Laboratory during 2006-2010 for water-quality properties such as pH, specific conductance, hardness, and residue on evaporation at 105 degrees Celsius; for constituents such as major ions (calcium, magnesium), organic carbon and nutrients, including ammonia plus organic nitrogen, ammonia, dissolved nitrite plus nitrate, total phosphorus, and orthophosphate; and for metals, including total recoverable and dissolved phases of copper, lead, manganese, and zinc. Samples collected during selected storms were also analyzed for bacteriological indicators such as Escherichia coli and fecal coliform at the Metro Wastewater Reclamation Laboratory. About 200 stormwater samples collected during storms characterize the quality of storm runoff during 2006-2010. In general, the quality of stormwater (2006-2010) has improved for many water-quality constituents, many of which had lower values and concentrations than those in stormwater collected in 2002-2005. However, the physical basis, processes, and the role of dilution that account for these changes are complex and beyond the scope of this report. The water-quality sampling results indicate few exceptions to standards except for dissolved manganese, dissolved zinc, and Escherichia coli. Stormwater collected at the South Platte River below Union Avenue station had about 10 percent acute or chronic dissolved manganese exceedances in samples; samples collected at the South Platte River at Denver station had less than 5 percent acute or chronic dissolved manganese exceedances. In contrast, samples collected at Toll Gate Creek above 6th Avenue at Aurora station, Sand Creek at mouth near Commerce City station, and the South Platte River at Henderson station, each had about 30 to 50 percent exceedances of both acute and chronic dissolved manganese standards. Of the samples collected at Sand Creek at mouth near Commerce City, 1 sample exceeded the acute standard and 4 samples exceeded the chronic standard for dissolved zinc, but no samples collected from the other sites exceeded either standard for zinc. Almost all samples of stormwater analyzed for Escherichia coli exceeded Colorado numeric standards. A numerical standard for fecal coliform is no longer applicable as of 2004. Results from the 2002-2005 study indicated that the general quality of stormwater had improved during 2002-2005 compared to 1998-2001, having fewer exceedances of Colorado standards, and showing downward trends for many water-quality values and concentrations. These trends coincided with general downward or relatively similar mean streamflows for the 2002-2005 compared to 1998-2001, which indicates that dilution may be a smaller influence on values and concentrations than other factors. For this report, downward trends were indicated for many constituents at each station during 2006-2010 compared to 2002-2005. The trends for mean streamflow for 2006-2010 compared to 2002-2005 are upward at all sites except for the South Platte River at Henderson, indicating that dilution by larger flows could be a factor in the downward concentration trends. At the South Platte River below Union Avenue station, downward trends were indicated for hardness, dissolved ammonia, dissolved orthophosphate, and dissolved copper. Upward trends at South Platte River below Union Avenue were indicated for pH. At the South Platte River at Denver station, downward trends were indicated for total ammonia plus organic nitrogen, dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphate, total phosphorus, dissolved organic carbon, and dissolved lead, manganese, and zinc, and total recoverable zinc. An upward trend in properties and constituents at South Platte River at Denver was indicated for pH. At Toll Gate Creek above 6th Avenue at Aurora, downward trends were indicated for residue on evaporation, total ammonia plus organic nitrogen, dissolved ammonia, dissolved orthophosphate, total phosphorus, and total recoverable copper, lead, manganese, and zinc. Upward trends in properties and constituents at Toll Gate Creek above 6th Avenue at Aurora were indicated for pH, specific conductance, and dissolved nitrite plus nitrate. At Sand Creek at mouth near Commerce City, downward trends were indicated for hardness, dissolved calcium, total ammonia plus organic nitrogen, and dissolved ammonia, orthophosphate, manganese, and zinc. An upward trend in properties and constituents at Sand Creek at mouth near Commerce City was indicated for pH. Downward trends at South Platte River at Henderson were indicated for specific conductance, hardness, dissolved magnesium, residue on evaporation, total ammonia plus organic nitrogen, dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphate, total phosphorus, dissolved lead and manganese, and total recoverable copper, lead, manganese, and zinc.
Telling, Jon; Anesio, Alexandre M.; Tranter, Martyn; Fountain, Andrew G.; Nylen, Thomas; Hawkings, Jon; Singh, Virendra B.; Kaur, Preeti; Musilova, Michaela; Wadham, Jemma L.
2014-01-01
The seasonal melting of ice entombed cryoconite holes on McMurdo Dry Valley glaciers provides oases for life in the harsh environmental conditions of the polar desert where surface air temperatures only occasionally exceed 0°C during the Austral summer. Here we follow temporal changes in cryoconite hole biogeochemistry on Canada Glacier from fully frozen conditions through the initial stages of spring thaw toward fully melted holes. The cryoconite holes had a mean isolation age from the glacial drainage system of 3.4 years, with an increasing mass of aqueous nutrients (dissolved organic carbon, total nitrogen, total phosphorus) with longer isolation age. During the initial melt there was a mean nine times enrichment in dissolved chloride relative to mean concentrations of the initial frozen holes indicative of an ionic pulse, with similar mean nine times enrichments in nitrite, ammonium, and dissolved organic matter. Nitrate was enriched twelve times and dissolved organic nitrogen six times, suggesting net nitrification, while lower enrichments for dissolved organic phosphorus and phosphate were consistent with net microbial phosphorus uptake. Rates of bacterial production were significantly elevated during the ionic pulse, likely due to the increased nutrient availability. There was no concomitant increase in photosynthesis rates, with a net depletion of dissolved inorganic carbon suggesting inorganic carbon limitation. Potential nitrogen fixation was detected in fully melted holes where it could be an important source of nitrogen to support microbial growth, but not during the ionic pulse where nitrogen availability was higher. This study demonstrates that ionic pulses significantly alter the timing and magnitude of microbial activity within entombed cryoconite holes, and adds credence to hypotheses that ionic enrichments during freeze-thaw can elevate rates of microbial growth and activity in other icy habitats, such as ice veins and subglacial regelation zones. PMID:25566210
Telling, Jon; Anesio, Alexandre M; Tranter, Martyn; Fountain, Andrew G; Nylen, Thomas; Hawkings, Jon; Singh, Virendra B; Kaur, Preeti; Musilova, Michaela; Wadham, Jemma L
2014-01-01
The seasonal melting of ice entombed cryoconite holes on McMurdo Dry Valley glaciers provides oases for life in the harsh environmental conditions of the polar desert where surface air temperatures only occasionally exceed 0°C during the Austral summer. Here we follow temporal changes in cryoconite hole biogeochemistry on Canada Glacier from fully frozen conditions through the initial stages of spring thaw toward fully melted holes. The cryoconite holes had a mean isolation age from the glacial drainage system of 3.4 years, with an increasing mass of aqueous nutrients (dissolved organic carbon, total nitrogen, total phosphorus) with longer isolation age. During the initial melt there was a mean nine times enrichment in dissolved chloride relative to mean concentrations of the initial frozen holes indicative of an ionic pulse, with similar mean nine times enrichments in nitrite, ammonium, and dissolved organic matter. Nitrate was enriched twelve times and dissolved organic nitrogen six times, suggesting net nitrification, while lower enrichments for dissolved organic phosphorus and phosphate were consistent with net microbial phosphorus uptake. Rates of bacterial production were significantly elevated during the ionic pulse, likely due to the increased nutrient availability. There was no concomitant increase in photosynthesis rates, with a net depletion of dissolved inorganic carbon suggesting inorganic carbon limitation. Potential nitrogen fixation was detected in fully melted holes where it could be an important source of nitrogen to support microbial growth, but not during the ionic pulse where nitrogen availability was higher. This study demonstrates that ionic pulses significantly alter the timing and magnitude of microbial activity within entombed cryoconite holes, and adds credence to hypotheses that ionic enrichments during freeze-thaw can elevate rates of microbial growth and activity in other icy habitats, such as ice veins and subglacial regelation zones.
Rankin, D.R.
2000-01-01
Bernalillo County officials recognize the importance of monitoring water quality and ground-water levels in rapidly developing areas. For this reason, water-quality and ground-water- level data were collected from 87 wells, 3 springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County between January 1990 and June 1999. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; methylene blue active substances; and dissolved arsenic. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, air and water temperature, alkalinity, and dissolved oxygen were measured in the field at the time of sample collection. Ground-water levels were measured at the time of sample collection. From January 1990 through June 1993, water-quality and ground- water-level data were collected monthly from an initial set of 20 wells; these data were published in a 1995 report. During 1995, water samples and ground-water-level data were collected and analyzed from the initial set of 20 wells and from an additional 31 wells, 2 springs, and the Ojo Grande Acequia; these data were published in a 1996 report. Additional water-quality and ground-water-level data have been collected from sites in the east mountain area: 34 wells and the acequia during 1997, 14 wells and 1 spring during 1998, and 6 wells during 1999. Water-quality and ground- water-level data collected in the east mountain area during 1995 through 1999 are presented in tables. In addition, temporal trends for ground-water levels, concentrations of total and dissolved nitrite plus nitrate, concentrations of dissolved chloride, and specific conductance are presented for 20 selected wells in water-quality and water- level hydrographs.
Living with a large reduction in permited loading by using a hydrograph-controlled release scheme
Conrads, P.A.; Martello, W.P.; Sullins, N.R.
2003-01-01
The Total Maximum Daily Load (TMDL) for ammonia and biochemical oxygen demand for the Pee Dee, Waccamaw, and Atlantic Intracoastal Waterway system near Myrtle Beach, South Carolina, mandated a 60-percent reduction in point-source loading. For waters with a naturally low background dissolved-oxygen concentrations, South Carolina anti-degradation rules in the water-quality regulations allows a permitted discharger a reduction of dissolved oxygen of 0.1 milligrams per liter (mg/L). This is known as the "0.1 rule." Permitted dischargers within this region of the State operate under the "0.1 rule" and cannot cause a cumulative impact greater than 0.1 mg/L on dissolved-oxygen concentrations. For municipal water-reclamation facilities to serve the rapidly growing resort and retirement community near Myrtle Beach, a variable loading scheme was developed to allow dischargers to utilize increased assimilative capacity during higher streamflow conditions while still meeting the requirements of a recently established TMDL. As part of the TMDL development, an extensive real-time data-collection network was established in the lower Waccamaw and Pee Dee River watershed where continuous measurements of streamflow, water level, dissolved oxygen, temperature, and specific conductance are collected. In addition, the dynamic BRANCH/BLTM models were calibrated and validated to simulate the water quality and tidal dynamics of the system. The assimilative capacities for various streamflows were also analyzed. The variable-loading scheme established total loadings for three streamflow levels. Model simulations show the results from the additional loading to be less than a 0.1 mg/L reduction in dissolved oxygen. As part of the loading scheme, the real-time network was redesigned to monitor streamflow entering the study area and water-quality conditions in the location of dissolved-oxygen "sags." The study reveals how one group of permit holders used a variable-loading scheme to implement restrictive permit limits without experiencing prohibitive capital expenditures or initiating a lengthy appeals process.
Tobin, R.L.
1993-01-01
Streamflow, sediment, and water-quality data are summarized for 6 sites on the White River, Colorado for water years 1975-88. Correlation techniques were used to estimate annual data for unmeasured years. Annual stream discharge in the main stem of the White River ranged from about 200,000 to about 1 million acre-feet. Generally, bedload was less than/= 3.3 percent of total sediment load. Annual suspended-sediment loads ranged from about 2,100 tons at the upstream sites on the North Fork and South Fork of the White River to about 2 million tons at the most downstream site. Average annual suspended-sediment loads ranged from about 11,000 tons at the upstream sites to about 705,000 tons at the most downstream site. Annual capacity losses in a 50,000 acre-ft reservoir could range from less than 0.01 percent near upstream sites to about 2.5 percent near downstream sites. Maximum water temperatures in the White River ranged from less than 20 to 25 C in summer. Specific conductance ranged from 200 to 1,000 microsiemens/cm. Generally, values of pH ranged from 7.6 to 8.8, and concentrations of dissolved oxygen were greater than 6.0 mg/L. In small streamflows, values of pH and dissolved oxygen were affected by biologic processes. Composition of dissolved solids in the White River was mostly calcium, bicarbonate, and(or) sulfate. Changes in the composition of dissolved solids caused by the changes in the concentrations of sodium and sulfate were greatest in small stream discharges. Annual loads of dissolved solids ranged from 21,100 tons in the South Fork to about 480,000 tons at the most downstream site. Total solids transport in the White River was mostly as dissolved solids at upstream sites and mostly as suspended sediment at downstream sites. Concentration ranges of nutrients and trace constituents were determined.
Novel Tool for Simultaneous Carbon and Nitrogen Stable Isotope Analyses in Aqueous Samples
NASA Astrophysics Data System (ADS)
Federherr, E.; Schmidt, T. C.; Cerli, C.; Kalbitz, K.; Kupka, H. J.; Lange, L.; Dunsbach, R.; Panetta, R. J.; Kasson, A.
2014-12-01
Investigation of transformation and transport processes of carbon and nitrogen in ecosystems plays an important role to understand and predict their dynamics and role in biogeochemistry. Consequently, suitable and accurate methods for concentration as well as stable isotopic composition analysis of carbon and nitrogen in waters and aqueous solutions play a significant role. Traditionally dissolved carbon and nitrogen stable isotope analysis (SIA) is performed using either offline sample preparation followed by elemental analysis isotope ratio mass spectrometry (EA/IRMS) or modified wet chemical oxidation based device coupled to IRMS. Recently we presented a high temperature combustion system (HTC), which significantly improves upon these methods for dissolved organic carbon (DOC) SIA. The analysis of δ15N of dissolved nitrogen still has large limitations. Its low concentration makes EA/IRMS laborious, time and sample consuming. Systems based on wet chemical oxidation-IRMS bare the risk of sensitivity loss as well as of fractionation due to incomplete mineralization. In addition, the high solubility of molecular nitrogen in water remains a technical challenge, as it requires additional separation steps to distinguish between physically dissolved nitrogen and bound nitrogen. Further development of our HTC system lead to the implementation of the δ15N determination which now coupled, into a novel total organic carbon (TOC) analyzing system, especially designed for SIA of both, carbon and nitrogen. Integrated, innovative purge and trap technique (peak focusing) for nitrogen with aluminosilicate adsorber and peltier element based cooling system, in combination with high injection volume (up to 3 mL) as well as favorable carrier gas flow significantly improves sensitivity. Down to 1ppm and less total nitrogen can be measured with precision of ≤ 0.5‰. To lower the background caused by physically dissolved nitrogen new, membrane-vacuum based, degasser was designed for online separation of physically dissolved nitrogen. This novel HTC system, "iso TOC cube", provides an innovative tool with large potential in investigation of biogeochemical carbon and nitrogen cycles.
Al-Shami, Salman; Rawi, Che Salmah M; Nor, Siti Azizah M; Ahmad, Abu Hassan; Ali, Arshad
2010-02-01
Morphological deformities in parts of the head capsule of Chironomus spp. larvae inhabiting three polluted rivers (Permatang Rawa [PRR], Pasir [PR], and Kilang Ubi [KUR]) in the Juru River Basin, northeastern peninsular Malaysia, were studied. Samples of the fourth-instar larvae at one location in each river were collected monthly from November 2007 to March 2008 and examined for deformities of the mentum, antenna, mandible, and epipharyngis. At each sample location, in situ measurements of water depth, river width, water pH, dissolved oxygen, and water temperature were made. Samples of river water and benthic sediments were also collected monthly from each larval sample location in each river and taken to the laboratory for appropriate analysis. Total suspended solids (TSSs), ammonium-N, nitrate-N, phosphate-P, chloride, sulfate, and aluminum content in water were analyzed. Total organic matter and nonresidual metals in the sediment samples were also analyzed. Among the three rivers, the highest mean deformity (47.17%) was recorded in larvae collected from KUR that received industrial discharges from surrounding garment and rubber factories, followed by PRR (33.71%) receiving primarily residues of fertilizers and pesticides from adjacent rice fields, and PR (30.34%) contaminated primarily by anthropogenic wastes from the surrounding residential areas. Among the various head capsule structures, deformity of the mentum was strongly reflective of environmental stress and amounted to 27.9, 20.87, and 30.19% in the PRR, PR, and KUR, respectively. Calculated Lenat's toxic score index satisfactorily explained the influence of prevailing environmental variables on the severity of mentum deformities. Redundancy analysis and forward selection selected TSSs, sediment Zn, Mn, Cu, and Ni, and water pH, dissolved oxygen, water temperature, total organic matter, nitrate-N, chloride, phosphate-P, ammonium-N, sulfate, and aluminum as parameters that significantly affected some proportion of deformities. The total deformities correlated closely with deformities of mentum but only weakly with deformities in other parts of head. The total deformity incidence was strongly correlated with high contents of sediment Mn and Ni. The mentum and epipharyngis deformities incidence was highly correlated with an increase of TSSs, total aluminum, and ammonium-N and a decrease in pH and dissolved oxygen.
Modeling Total Dissolved Gas for Optimal Operation of Multireservoir Systems
Politano, Marcela; Castro, Alejandro; Hadjerioua, Boualem
2017-02-09
One important environmental issue of hydropower in the Columbia and Snake River Basins (Pacific Northwest region of United States) is elevated total dissolved gas (TDG) downstream of a dam, which has the potential to cause gas bubble disease in affected fish. Gas supersaturation in the Columbia River Basin primarily occurs due to dissolution of bubbles entrained during spill events. This paper presents a physically based TDG model that can be used to optimize spill operations in multireservoir hydropower systems. Independent variables of the model are forebay TDG, tailwater elevation, spillway and powerhouse discharges, project head, and environmental parameters such asmore » temperature and atmospheric pressure. The model contains seven physically meaningful experimental parameters, which were calibrated and validated against TDG data collected downstream of Rock Island Dam (Washington) from 2008 to 2012. In conclusion, a sensitivity analysis was performed to increase the understanding of the relationships between TDG downstream of the dam and processes such as air entrainment, lateral powerhouse flow, and dissolution.« less
The effect of anthropogenic activities to the decrease of water quality
NASA Astrophysics Data System (ADS)
Sidabutar, N. V.; Namara, I.; Hartono, D. M.; Soesilo, T. E. B.
2017-05-01
The raw water in Jakarta is supplied from Jatiluhur Dam, which is distributed pass through West Tarum Canal with an open canal about 70 km long. This water quality does not meet the standard set by the government and heavily polluted by anthropogenic activities along its river. This research uses a quantitative research approach with the mix-method. This research did an in-depth interview with inhabitants along the riverbank about their daily activity. The water along the riverbank is polluted by anthropogenic activities, such as: first: domestic activities (washing, cooking, and bathing), second: littering into the river, and third: discharging waste water from households into the river. This present research measures water quality for parameters pH, temperature, Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Total Dissolved Solid (TDS), Total Suspended Solid (TSS), and Fecal coliform. In this social segment, it is shown that pH, DO, TDS and Fecal coliformin the downstream part are worse than in the upstream.
Urban Streams as Transporters or Transformers of Carbon and Nutrients: Does Size Matter?
NASA Astrophysics Data System (ADS)
Wood, K. L.; Kaushal, S.
2017-12-01
Urbanization degrades water quality, channel form/ function, and related ecosystem services. Biological and hydrological responses to urbanization vary between sites potentially due to watershed size, channel size, and geomorphology along the broader urban watershed continuum. We investigated if/when the size of a stream can influence water quality in urban watersheds. We conducted high-frequency sampling of a small polluted headwater stream and a large restored stream in the Anacostia watershed, Washington D.C. metro area. Temperature, pH, conductivity, discharge, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured 2-3 times a week at two locations near the University of Maryland campus. DOC showed strong positive linear relationships with discharge at both sites, but TDN showed significant but contrasting linear relationships in the small polluted headwater site vs. the larger restored stream. In the larger restored stream, TDN significantly decreased with increasing water temperatures, which potentially suggested biological uptake. In the headwater stream, TDN concentrations significantly increased with increasing temperature, which suggests a possible seasonal input from terrestrial or in-stream sources. Interestingly, there were significant relationships between DIC and DOC in the larger restored stream, which suggested that there may have been a biological coupling of carbon forms due to stream ecosystem metabolism. Differences in relationships between TDN, DIC, and DOC and discharge, pH, and water temperatures may indicate the effects of stream size and floodplain restoration on water chemistry responses to human inputs. Larger streams may show greater potential for biogeochemical transformations, and stream size may need to be better evaluated in efforts to prioritize restoration strategies.
Sorenson, Jason R.; Granato, Gregory E.; Smith, Kirk P.
2018-01-10
Flow-proportional composite water samples were collected in water years 2013 and 2014 by the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, from the Blackstone River at Millville, Massachusetts (U.S. Geological Survey station 01111230), about 0.5 mile from the border with Rhode Island. Samples were collected in order to better understand the dynamics of selected nutrient and metal constituents, assist with planning, guide activities to meet water-quality goals, and provide real-time water-quality information to the public. An automated system collected the samples at 14-day intervals to determine total and dissolved nitrogen and phosphorus concentrations, to provide accurate monthly nutrient concentration data, and to calculate monthly load estimates. Concentrations of dissolved trace metals and total aluminum were determined from 4-day composite water samples that were collected twice monthly by the automated system. Results from 4-day composites provide stakeholders with information to evaluate trace metals on the basis of chronic 4-day exposure criteria for aquatic life, and the potential to use the biotic ligand model to evaluate copper concentrations. Nutrient, trace metal, suspended sediment, dissolved organic carbon, and chlorophyll a concentrations were determined from discrete samples collected at the Millville station and from across the stream transect at the upstream railroad bridge, and these concentrations served as a means to evaluate the representativeness of the Millville point location.Analytical results from samples collected with the automated flow-proportional sampling system provided the means to calculate monthly and annual loading data. Total nitrogen and total phosphorus loads in water year (WY) 2013 were about 447,000 and 36,000 kilograms (kg), respectively. In WY 2014, annual loads of total nitrogen and total phosphorus were about 342,000 and 21,000 kg, respectively. Total nitrogen and total phosphorus loads from WYs 2013 and 2014 were about 56 and 65 percent lower than those reported for WYs 2008 and 2009. The higher loads in 2008 and 2009 may be explained by the higher than average flows in WY 2009 and by facility upgrades made by wastewater treatment facilities in the basin.Median loads were determined from composite samples collected with the automated system between October 2012 and October 2014. Median dissolved cadmium and chromium 4-day loads were 0.55 and 0.84 kg, respectively. Dissolved copper and total lead median 4-day loads were 8.02 and 1.42 kg, respectively. The dissolved nickel median 4-day load was 5.45 kg, and the dissolved zinc median 4-day load was 36 kg. Median total aluminum 4-day loads were about 197 kg.Spearman’s rank correlation analyses were used with discrete sample concentrations and continuous records of temperature, specific conductance, turbidity, and chlorophyll a to identify correlations between variables that could be used to develop regression equations for estimating real-time concentrations of constituents. Correlation coefficients were generated for flow, precipitation, antecedent precipitation, physical parameters, and chemical constituents. A 95-percent confidence limit for each value of Spearman’s rho was calculated, and multiple linear regression analysis using ordinary least squares regression techniques was used to develop regression equations for concentrations of total phosphorus, total nitrogen, suspended sediment concentration, total copper, and total aluminum. Although the correlations are based on the limited amount of data collected as part of this study, the potential to monitor water-quality changes in real time may be of value to resource managers and decision makers.
Distributions and seasonal variations of dissolved carbohydrates in the Jiaozhou Bay, China
NASA Astrophysics Data System (ADS)
Yang, Gui-Peng; Zhang, Yan-Ping; Lu, Xiao-Lan; Ding, Hai-Bing
2010-06-01
Surface seawater samples were collected in the Jiaozhou Bay, a typical semi-closed basin located at the western part of the Shandong Peninsula, China, during four cruises. Concentrations of monosaccharides (MCHO), polysaccharides (PCHO) and total dissolved carbohydrates (TCHO) were measured with the 2,4,6-tripyridyl- s-triazine spectroscopic method. Concentrations of TCHO varied from 10.8 to 276.1 μM C for all samples and the ratios of TCHO to dissolved organic carbon (DOC) ranged from 1.1 to 67.9% with an average of 10.1%. This result indicated that dissolved carbohydrates were an important constituent of DOC in the surface seawater of the Jiaozhou Bay. In all samples, the concentrations of MCHO ranged from 2.9 to 65.9 μM C, comprising 46.1 ± 16.6% of TCHO on average, while PCHO ranged from 0.3 to 210.2 μM C, comprising 53.9 ± 16.6% of TCHO on average. As a major part of dissolved carbohydrates, the concentrations of PCHO were higher than those of MCHO. MCHO and PCHO accumulated in January and July, with minimum average concentration in April. The seasonal variation in the ratios of TCHO to DOC was related to water temperature, with high values in January and low values in July and October. The concentrations of dissolved carbohydrates displayed a decreasing trend from the coastal to the central areas. Negative correlations between concentrations of TCHO and salinity in July suggested that riverine input around the Jiaozhou Bay had an important effect on the concentrations of dissolved carbohydrates in surface seawater. The pattern of distributions of MCHO and PCHO reported in this study added to the global picture of dissolved carbohydrates distribution.
NASA Technical Reports Server (NTRS)
Mckeown, Anderson B; Hibbard, Robert R
1955-01-01
The effect of dissolved oxygen in the filter-clogging characteristics of three JP-4 and two JP-5 fuels was studied at 300 degrees to 400 degrees F in a bench- scale rig, employing filter paper as the filter medium. The residence time of the fuel at the high temperature was approximately 6 seconds. For these conditions, the clogging characteristics of the fuels increased with both increasing temperature and increasing concentration of dissolved oxygen. The amount of insoluble material formed at high temperatures necessary to produce clogging of filters was very small, of the order of 1 milligram per gallon of fuel.
Evaluation of the Multi-Chambered Treatment Train, a retrofit water-quality management device
Corsi, Steven R.; Greb, Steven R.; Bannerman, Roger T.; Pitt, Robert E.
1999-01-01
This paper presents the results of an evaluation of the benefits and efficiencies of a device called the Multi-Chambered Treatment Train (MCTT), which was installed below the pavement surface at a municipal maintenance garage and parking facility in Milwaukee, Wisconsin. Flow-weighted water samples were collected at the inlet and outlet of the device during 15 storms, and the efficiency of the device was based on reductions in the loads of 68 chemical constituents and organic compounds. High reduction efficiencies were achieved for all particulate-associated constituents, including total suspended solids (98 percent), total phosphorus (88 percent), and total recoverable zinc (91 percent). Reduction rates for dissolved fractions of the constituents were substantial, but somewhat lower (dissolved solids, 13 percent; dissolved phosphorus, 78 percent; dissolved zinc, 68 percent). The total dissolved solids load, which originated from road salt storage, was more than four times the total suspended solids load. No appreciable difference was detected between particle-size distributions in inflow and outflow samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J.; Torres, M.; Verba, C.
The accurate quantification of the rare earth element (REE) dissolved concentrations in natural waters are often inhibited by their low abundances in relation to other dissolved constituents such as alkali, alkaline earth elements, and dissolved solids. The high abundance of these constituents can suppress the overall analytical signal as well as create isobaric interferences on the REEs during analysis. Waters associated with natural gas operations on black shale plays are characterized by high salinities and high total dissolved solids (TDS) contents >150,000 mg/L. Methods used to isolate and quantify dissolved REEs in seawater were adapted in order to develop themore » capability of analyzing REEs in waters that are high in TDS. First, a synthetic fluid based on geochemical modelling of natural brine formation fluids was created within the Marcellus black shale with a TDS loading of 153,000 mg/L. To this solution, 1,000 ng/mL of REE standards was added based on preliminary analyses of experimental fluids reacted at high pressure and temperature with Marcellus black shale. These synthetic fluids were then run at three different dilution levels of 10, 100, and 1,000–fold dilutions through cation exchange columns using AG50-X8 exchange resin from Eichrom Industries. The eluent from the cation columns were then sent through a seaFAST2 unit directly connected to an inductively coupled plasma mass spectrometer (ICP-MS) to analyze the REEs. Percent recoveries of the REEs ranged from 80–110% and fell within error for the external reference standard used and no signal suppression or isobaric interferences on the REEs were observed. These results demonstrate that a combined use of cation exchange columns and seaFAST2 instrumentation are effective in accurately quantifying the dissolved REEs in fluids that are >150,000 mg/L in TDS and have Ba:Eu ratios in excess of 380,000.« less
NASA Astrophysics Data System (ADS)
Robador, Alberto; Brüchert, Volker; Steen, Andrew D.; Arnosti, Carol
2010-04-01
Extracellular enzymatic hydrolysis of high-molecular weight organic matter is the initial step in sedimentary organic carbon degradation and is often regarded as the rate-limiting step. Temperature effects on enzyme activities may therefore exert an indirect control on carbon mineralization. We explored the temperature sensitivity of enzymatic hydrolysis and its connection to subsequent steps in anoxic organic carbon degradation in long-term incubations of sediments from the Arctic and the North Sea. These sediments were incubated under anaerobic conditions for 24 months at temperatures of 0, 10, and 20 °C. The short-term temperature response of the active microbial community was tested in temperature gradient block incubations. The temperature optimum of extracellular enzymatic hydrolysis, as measured with a polysaccharide (chondroitin sulfate), differed between Arctic and temperate habitats by about 8-13 °C in fresh sediments and in sediments incubated for 24 months. In both Arctic and temperate sediments, the temperature response of chondroitin sulfate hydrolysis was initially similar to that of sulfate reduction. After 24 months, however, hydrolysis outpaced sulfate reduction rates, as demonstrated by increased concentrations of dissolved organic carbon (DOC) and total dissolved carbohydrates. This effect was stronger at higher incubation temperatures, particularly in the Arctic sediments. In all experiments, concentrations of volatile fatty acids (VFA) were low, indicating tight coupling between VFA production and consumption. Together, these data indicate that long-term incubation at elevated temperatures led to increased decoupling of hydrolytic DOC production relative to fermentation. Temperature increases in marine sedimentary environments may thus significantly affect the downstream carbon mineralization and lead to the increased formation of refractory DOC.
Method to Estimate the Dissolved Air Content in Hydraulic Fluid
NASA Technical Reports Server (NTRS)
Hauser, Daniel M.
2011-01-01
In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated temperatures.
Evaluation of eutrophication of Ostravice river depending on the chemical and physical parameters
NASA Astrophysics Data System (ADS)
Hlavac, A.; Melcakova, I.; Novakova, J.; Svehlakova, H.; Slavikova, L.; Klimsa, L.; Bartkova, M.
2017-10-01
The main objective of this study was to evaluate which selected environmental parameters in rivers affect the concentration of chlorophyll a and the distribution of macrozoobenthos. The data were collected on selected profiles of the Ostravice mountain river in the Moravian-Silesian Region. The examined chemical and physical parameters include dissolved oxygen (DO), flow rate, oxidation-reduction potential (ORP), conductivity, temperature, pH, total nitrogen and phosphorus concentration.
Jones, Clain A.; Nimick, D.A.; McCleskey, R. Blaine
2004-01-01
Diel (24 hr) cycles in dissolved metal and As concentrations have been documented in many northern Rocky Mountain streams in the U.S.A. The cause(s) of the cycles are unknown, although temperature- and pH-dependent sorption reactions have been cited as likely causes. A light/dark experiment was conducted to isolate temperature and pH as variables affecting diel metal cycles in Prickly Pear Creek, Montana. Light and dark chambers containing sediment and a strand of macrophyte were placed in the stream to simulate instream temperature oscillations. Photosynthesis-induced pH changes were allowed to proceed in the light chambers while photosynthesis was prevented in the dark chambers. Water samples were collected periodically for 22 hr in late July 2001 from all chambers and the stream. In the stream, dissolved Zn concentrations increased by 300% from late afternoon to early morning, while dissolved As concentrations exhibited the opposite pattern, increasing 33% between early morning and late afternoon. Zn and As concentrations in the light chambers showed similar, though less pronounced, diel variations. Conversely, Zn and As concentrations in the dark chambers had no obvious diel variation, indicating that light, or light-induced reactions, caused the variation. Temperature oscillations were nearly identical between light and dark chambers, strongly suggesting that temperature was not controlling the diel variations. As expected, pH was negatively correlated (P < 0.01) with dissolved Zn concentrations and positively correlated with dissolved As concentrations in both the light and dark chambers. From these experiments, photosynthesis-induced pH changes were determined to be the major cause of the diel dissolved Zn and As cycles in Prickly Pear Creek. Further research is necessary in other streams to verify that this finding is consistent among streams having large differences in trace-element concentrations and mineralogy of channel substrate. ?? 2004 Kluwer Academic Publishers.
Fidalgo, Adriana de O; Kleinert, Astrid de M P
2010-01-01
We describe the environment effects on the amount and quality of resources collected by Melipona rufiventris Lepeletier in the Atlantic Forest at Ubatuba city, São Paulo state, Brazil (44º48'W, 23º22'S). Bees carrying pollen and/or nectar were captured at nest entrances during 5 min every hour, from sunrise to sunset, once a month. Pollen loads were counted and saved for acetolysis. Nectar was collected, the volume was determined and the total dissolved solids were determined by refractometer. Air temperature, relative humidity and light intensity were also registered. The number of pollen loads reached its maximum value between 70% and 90% of relative humidity and 18ºC and 23ºC; for nectar loads this range was broader, 50-90% and 20-30ºC. The number of pollen loads increased as relative humidity rose (rs = 0.401; P < 0.01) and high temperatures had a strong negative influence on the number of pollen loads collected (rs = -0.228; P < 0.01). The number of nectar loads positively correlated with temperature (rs = 0.244; P < 0.01) and light intensity (rs = 0.414; P < 0.01). The percentage of total dissolved solids (TDS) on nectar loads positively correlated with temperature and light intensity (rs = 0.361; P < 0.01 and rs = 0.245; P < 0.01), negatively correlated with relative humidity (rs = -0.629; P < 0.01), and it increased along the day. Most nectar loads had TDS between 11% and 30%, with an average of 24.7%. The volume measures did not show any pattern. Important pollen sources were Sapindaceae, Anacardiaceae, Rubiaceae, Arecaceae, Solanaceae and Myrtaceae; nectar sources were Sapindaceae, Fabaceae, Rubiaceae, Arecaceae and Solanaceae.
Arauzo, M; Valladolid, M
2003-06-01
Populations of Moina micrura and Brachionus rubens in a deep waste treatment pond were exposed to the natural short-term fluctuations of unionised ammonia (90-min intervals of monitoring) that occur in the course of a day during a summer algal bloom. Under natural conditions, three replicate experiments were conducted in which water temperature, pH, dissolved oxygen, total ammonia, unionised ammonia, phytoplankton biomass and zooplankton (number of living and dead organisms, mortality rate and instant mortality) were studied. The time-course of unionised ammonia concentration was consistent with those shown by temperature, pH, phytoplankton biomass, dissolved oxygen, Moina micrura mortality and Brachionus rubens mortality. On the other hand, temperature, pH and dissolved oxygen never exceeded the tolerance ranges described for Moina and Brachionus, which led us to attribute the cause of zooplankton mortality to unionised ammonia toxicity. Mortality rates of 63%, 27% and 34% were recorded for Moina in each replicate experiment. Brachionus was less affected, with mortalities of 7.3%, 6.2% and 6.0%. These results confirm previous field observations (Water Res. 34(14) (2000) 3666; Water Res. 37(5) (2003) 1048) that attributed a reduction in zooplankton biomass during certain periods of summer (algal blooms) to a harmful side-effect of an excessive increase in phytoplankton biomass: high photosynthetic activity during these periods of proliferation of algae gives rise to an increased pH (>/=8) and, subsequently, leads to production of unionised ammonia (toxic for aquatic organisms) from its ionised fraction.
NASA Astrophysics Data System (ADS)
Yudono, B.; Purwaningrum, W.; Estuningsih, S. P.; Kaffah, S.
2017-05-01
Recovery tests of crude oil by using bio surfactant of indigenous bacteria Pseudomonas peli, Pseudomonas citronellolis, Burkholderia glumae and Bacillus firmus. The bio surfactants were prepared with the variation concentrations of molasses carbon source; 0, 5, 10, 15, 20, and 25 %. The results showed that 10 g samples, which concentration 18.64% TPH could be dissolved in the bio surfactant 10%. Optimally in the molasses carbon source concentrations for each bacterium at 5, 10, 20 and 15 % with oil recovery as much as 31.92, 17.65, 22.32, and 14.38 % respectively. Oil components which extracted by bio surfactant were analyzed by using GLC (Gas Liquid Chromatography). The bio surfactants of Pseudomonas peli could dissolve oil fraction temperatures; 139.85; 144.69; 149.98; 1.55.03: 174.22 °C, Pseudomonas citronellolis could dissolve oil fraction temperatures; 139.13; 142.64;147.99; 155.03; 159.85; 164.50 °C, Burkholderia glumae could dissolve oil fraction temperatures 144.69; 149.98; 155.03; 159.85; 164.50 °C, and Bacillus firmus could dissolve oil fraction temperatures; 149.98; 155.03; 158.46; 164.50 °C.
K.R. Matthews; N.H. Berg
1997-01-01
Habitat use by rainbow trout Oncorhynchus mykiss is described for a southern California stream where the summer water temperatures typically exceed the lethal limits for trout (>25) C). During August 1994, water temperature, dissolved oxygen (DO), and trout distribution were monitored in two adjacent pools in Sespe Creek, Ventura County, where summer water...
ERIC Educational Resources Information Center
Carpenter, Matt
2009-01-01
The purpose of this study was to determine whether increased levels of UV radiation and temperatures from global warming have a significant impact on dissolved oxygen (DO) output from the alga, "Euglena," which affects other organisms in the ecosystem. The original hypothesis stated that if temperature was increased along with exposure time to…
Sandra M. Clinton; Rick T. Edwards; Stuart E.G. Findlay
2010-01-01
We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were...
Long term in situ monitoring of total dissolved iron concentrations on the MoMAR observatory
NASA Astrophysics Data System (ADS)
Laes-Huon, Agathe; Legrand, Julien; Tanguy, Virginie; Cathalot, Cecile; Blandin, Jérôme; Rolin, Jean-Francois; Sarradin, Pierre-Marie
2015-04-01
Nowadays the scientific community wants relevant monitoring with an increase in spatial and temporal distribution of key chemicals. The hydrothermal ecosystems characterized by strong physico-chemical gradients are also of particular interest as they present an unique fauna, sustained by microbial chemosynthesis. The characterization of the chemical environment in the hydrothermal vent ecosystems implies the use of in situ instrumentation which is a serious challenge in the marine environment (Prien et al. 2007). The CHEMINI (CHEmical MINIaturised analyser), presented here, is a chemical in situ analyser specialized for deep sea uses (Vuillemin et al. 2007). It was first deployed on the autonomous deep sea observatory MoMAR (Monitoring of the Mid-Atlantic Ridge, FIXO3, Fixed point Open Ocean Observatories) in 2010. The first part of the presentation will focus on the description of the CHEMINI, then on the results obtained on the MoMAR observatory during the last 4 years. CHEMINI, implemented on the TEMPO ecological module determined total dissolved iron concentrations associated with an optode and a temperature probe. Several months of total iron concentrations, of T°C and videos were recorded permitting the study of the temporal dynamics of faunal assemblages and their habitat on the Lucky strike vent (-1700m, Cuvelier et al. 2011). Long term in situ analysis of total dissolved iron (31st of August 2013 - 23rd of February 2014, [DFe] = 7.12 +- 2.11 µmol L-1, n = 519) at the Eiffel Tower edifice is presented in details. The daily analyzed in situ standard (25µmol.L-1) showed an excellent reproducibility (1.07%, n=522). CHEMINI was reliable, robust over time for in situ analysis. The averaged total dissolved iron concentrations for the 6 months period remain low but they correlated significantly with temperature showing a spectra frequency with a maximal contribution around 4-5 days for both variables. The analytical results will be commented and the future technical challenges will be discussed in this presentation. References: Cuvelier, D, Sarrazin,J, Colaco A. Copley J.T., Glover A.G. Paul, A. Tyler, Serrao Santos R., Desbruyères D. (2011), Community dynamics over 14 years at the Eiffel Tower hydrothermal edifice on the Mid-Atlantic Ridge, Limnol. Oceanogr., 56(5), 1624-1640 Prien, R. (2007), The future of chemical in situ sensors, Mar. Chem., 107 (3), 422-432. Vuillemin, R., Le Roux, D., Dorval, P., Bucas, K., Sudreau, J.P., Hamon, M., Le Gall, C., Sarradin, P.M., 2009. CHEMINI: A new in situ CHEmical MINIaturized analyzer. Deep Sea Res. Part Oceanogr. Res. Pap. 56, 1391-1399.
Cravotta, Charles A.; Brightbill, Robin A.; Langland, Michael J.
2010-01-01
Acidic mine drainage (AMD) from legacy anthracite mines has contaminated Swatara Creek in eastern Pennsylvania. Intermittently collected base-flow data for 1959–1986 indicate that fish were absent immediately downstream from the mined area where pH ranged from 3.5 to 7.2 and concentrations of sulfate, dissolved iron, and dissolved aluminum were as high as 250, 2.0, and 4.7 mg/L, respectively. However, in the 1990s, fish returned to upper Swatara Creek, coinciding with the implementation of AMD treatment (limestone drains, limestone diversion wells, limestone sand, constructed wetlands) in the watershed. During 1996–2006, as many as 25 species of fish were identified in the reach downstream from the mined area, with base-flow pH from 5.8 to 7.6 and concentrations of sulfate, dissolved iron, and dissolved aluminum as high as 120, 1.2, and 0.43 mg/L, respectively. Several of the fish taxa are intolerant of pollution and low pH, such as river chub (Nocomis icropogon) and longnose dace (Rhinichthys cataractae). Cold-water species such as brook trout (Salvelinus fontinalis) and warm-water species such as rock bass (Ambloplites rupestris) varied in predominance depending on stream flow and stream temperature. Storm flow data for 1996–2007 indicated pH, alkalinity, and sulfate concentrations decreased as the stream flow and associated storm-runoff component increased, whereas iron and other metal concentrations were poorly correlated with stream flow because of hysteresis effects (greater metal concentrations during rising stage than falling stage). Prior to 1999, pH\\5.0 was recorded during several storm events; however, since the implementation of AMD treatments, pH has been maintained near neutral. Flow-adjusted trends for1997–2006 indicated significant increases in calcium; decreases in hydrogen ion, dissolved aluminum, dissolved and total manganese, and total iron; and no change in sulfate or dissolved iron in Swatara Creek immediately downstream from the mined area. The increased pH and calcium from limestone in treatment systems can be important for mitigating toxic effects of dissolved metals. Thus, treatment of AMD during the 1990s improved pH buffering, reduced metals transport, and helped to decrease metals toxicity to fish.
Stable carbon isotopes of HCO3- in oil-field waters-implications for the origin of CO2
Carothers, W.W.; Kharaka, Y.K.
1980-01-01
The ??13C values of dissolved HCO3- in 75 water samples from 15 oil and gas fields (San Joaquin Valley, Calif., and the Houston-Galveston and Corpus Christi areas of Texas) were determined to study the sources of CO2 of the dissolved species and carbonate cements that modify the porosity and permeability of many petroleum reservoir rocks. The reservoir rocks are sandstones which range in age from Eocene through Miocene. The ??13C values of total HCO3- indicate that the carbon in the dissolved carbonate species and carbonate cements is mainly of organic origin. The range of ??13C values for the HCO3- of these waters is -20-28 per mil relative to PDB. This wide range of ??13C values is explained by three mechanisms. Microbiological degradation of organic matter appears to be the dominant process controlling the extremely low and high ??13C values of HCO3- in the shallow production zones where the subsurface temperatures are less than 80??C. The extremely low ??13C values (< -10 per mil) are obtained in waters where concentrations of SO42- are more than 25 mg/l and probably result from the degradation of organic acid anions by sulfate-reducing bacteria (SO42- + CH3COO- ??? 2HCO3- + HS-). The high ??13C values probably result from the degradation of these anions by methanogenic bacteria (CH3COO- + H2O ai HCO3- + CH4). Thermal decarboxylation of short-chain aliphatic acid anions (principally acetate) to produce CO2 and CH4 is probably the major source of CO2 for production zones with subsurface temperatures greater than 80??C. The ??13C values of HCO3- for waters from zones with temperatures greater than 100??C result from isotopic equilibration between CO2 and CH4. At these high temperatures, ??13C values of HCO3- decrease with increasing temperatures and decreasing concentrations of these acid anions. ?? 1980.
NASA Astrophysics Data System (ADS)
Kołaska, Sylwia; Jeż-Walkowiak, Joanna; Dymaczewski, Zbysław
2018-02-01
The paper presents characteristics of Debina infiltration intake which provides water for Poznan and neighbouring communes. The evaluation of effectiveness of infiltration process has been done based on the quality parameters of river water and infiltration water. The analysed water quality parameters are as follows: temperature, iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, carbonate hardness, pH, heavy metals, detergents and microorganisms. The paper also includes an assessment of the impact of flood conditions on the quality of infiltration water and operation of infiltration intake. In this part of the paper the following parameters were taken into account: iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, the total number of microorganisms in 36°C (mesophilic), the total number of microorganisms in 22°C (psychrophilic), coli bacteria, Clostridium perfringens, Escherichia coli, Enterococci. Analysis of the effects of flood on infiltration process leads to the following conclusions: the deterioration of infiltration water quality was due to the deterioration of river water quality, substantial shortening of groundwater passage and partial disappearance of the aeration zone. The observed deterioration of infiltration water quality did not affect the treated water quality, produced at water treatment plant.
Subanky, Suvendran
2017-01-01
Chunnakam and Vadamaradchi are two major aquifer systems in Jaffna Peninsula, Sri Lanka. This study was performed to compare water quality in the domestic wells in these aquifers and to assess the efficacy of household water treatments for treating contaminated water. Replicate well water samples were collected from each aquifer and pH, dissolved oxygen (DO), conductivity, total dissolved solids (TDS), salinity, temperature, total solids (TS), total hardness (TH), chemical oxygen demand (COD), oil and grease (OG), nitrate N (N), and total phosphate (TP) were measured. The sampled water from the domestic wells was filtered through commercial mineral filter and Moringa oleifera leaf powder and boiled at 100°C for 10 minutes and the TH, OG, N, and TP were measured. Both OG and N in Chunnakam were significantly higher and the DO were significantly lower than those of Vadamaradchi. TH, N, and OG of some wells exceeded the drinking water quality standards established by Sri Lanka Standards Institution. Moringa oleifera leaf powder filtration reduced N significantly and filtering through commercial mineral filter reduced OG, TH, and N significantly. Boiling at 100°C could remove TH significantly but may cause significant increase in N which might result in health impacts. PMID:29181225
Wijeyaratne, W M Dimuthu Nilmini; Subanky, Suvendran
2017-01-01
Chunnakam and Vadamaradchi are two major aquifer systems in Jaffna Peninsula, Sri Lanka. This study was performed to compare water quality in the domestic wells in these aquifers and to assess the efficacy of household water treatments for treating contaminated water. Replicate well water samples were collected from each aquifer and pH, dissolved oxygen (DO), conductivity, total dissolved solids (TDS), salinity, temperature, total solids (TS), total hardness (TH), chemical oxygen demand (COD), oil and grease (OG), nitrate N (N), and total phosphate (TP) were measured. The sampled water from the domestic wells was filtered through commercial mineral filter and Moringa oleifera leaf powder and boiled at 100°C for 10 minutes and the TH, OG, N, and TP were measured. Both OG and N in Chunnakam were significantly higher and the DO were significantly lower than those of Vadamaradchi. TH, N, and OG of some wells exceeded the drinking water quality standards established by Sri Lanka Standards Institution. Moringa oleifera leaf powder filtration reduced N significantly and filtering through commercial mineral filter reduced OG, TH, and N significantly. Boiling at 100°C could remove TH significantly but may cause significant increase in N which might result in health impacts.
Pawar, Prabhakar R
2013-10-15
Surface water samples were collected from substations along Sheva creek and Dharamtar creek mangrove ecosystems of Uran (Raigad), Navi Mumbai, west coast of India. Water samples were collected fortnightly from April 2009 to March 2011 during spring low and high tides and were analyzed for pH, Temperature, Turbidity, Total solids (TS), Total dissolved solids (TDS), Total suspended solids (TSS), Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Carbon dioxide (CO2), Chemical oxygen demand (COD), Salinity, Orthophosphate (O-PO4), Nitrite-nitrogen (NO2-N), Nitrate-nitrogen (NO3-N), and Silicates. Variables like pH, turbidity, TDS, salinity, DO, and BOD show seasonal variations. Higher content of O-PO4, NO3-N, and silicates is recorded due to discharge of domestic wastes and sewage, effluents from industries, oil tanking depots and also from maritime activities of Jawaharlal Nehru Port Trust (JNPT), hectic activities of Container Freight Stations (CFS), and other port wastes. This study reveals that water quality from mangrove ecosystems of Uran is deteriorating due to industrial pollution and that mangrove from Uran is facing the threat due to anthropogenic stress. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hydrology and water quality in 13 watersheds in Gwinnett County, Georgia, 2001–15
Aulenbach, Brent T.; Joiner, John K.; Painter, Jaime A.
2017-02-23
The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds in Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and currently [2016] includes 13 watersheds.As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured every 15 minutes for water years 2001–15 at 12 of the 13 watershed monitoring stations and for water years 2010–15 at the other watershed. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally.The 13 watersheds were characterized for basin slope, population density, land use for 2012, and the percentage of impervious area from 2000 to 2014. Several droughts occurred during the study period—water years 2002, 2007–08, and 2011–12. Watersheds with the highest percentage of impervious areas had the highest runoff ratios, which is the portion of precipitation that occurs as runoff. Watershed base-flow indexes, the ratio of base-flow runoff to total runoff, were inversely correlated with watershed impervious area.Flood-frequency estimates were computed for 13 streamgages in the study area that have 10 or more years of annual peak flow data through water year 2015, using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows. Kendall’s tau nonparametric test was used to determine the statistical significance of trends in the annual peak flows, with none of the 13 streamgages exhibiting significant trends.A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples.Seasonality and long-term trends were identified for the period water years 2001–15 for 10 constituents—total nitrogen, total nitrate plus nitrite, total phosphorus, dissolved phosphorus, total organic carbon, total suspended solids, suspended-sediment concentration, total lead, total zinc, and total dissolved solids. Seasonal patterns were present in most watersheds for all constituents except total dissolved solids, and the watersheds had fairly similar patterns of higher concentrations in the summer and lower concentrations in the winter. A linear long-term trend analysis of residual concentrations from the flow-only load estimation model (without time-trend terms) identified significant trends in 67 of the 130 constituent-watershed combinations. Seventy percent of the significant trends were negative. Total organic carbon and total dissolved solids had predominantly positive trends. Total phosphorus, total suspended solids, suspended-sediment concentration, total lead, and total zinc had only negative trends. The other three constituents exhibited fewer trends, both positive and negative.Streamwater loads were estimated annually for the 13-year period water years 2003–15 for the same 10 constituents in the trend analysis. Loads were estimated using a regression-model-based approach developed by the USGS for the Gwinnett County LTTM program that accommodates the use of storm-event composited samples. Concentrations were modeled as a function of discharge, base flow, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion.Although the amount of annual runoff was the primary factor in variations in annual loads, climatic conditions (classified as dry, average, or wet) affected annual loads beyond what was attributed to climatic-related variations in annual runoff. Significant negative trends in loads were estimated for the combined area of the watersheds for all constituents except dissolved phosphorus, total organic carbon, and total dissolved solids. The trend analysis indicated that total suspended solids and suspended-sediment concentration loads in the study area were decreasing by 57,000 and 87,000 pounds per day per year, respectively.Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (as either total suspended solids or suspended-sediment concentrations), along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc), and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appeared to be associated with watersheds that had a low percentage of high-density development.
NASA Astrophysics Data System (ADS)
Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.
2016-12-01
More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.
Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Asbill, Jessica R.; Wellman, Roy E.; Stewart, Marc A.; Johnston, Matthew W.; Sogutlugil, I. Ertugrul
2011-01-01
A hydrodynamic, water temperature, and water-quality model was constructed for a 20-mile reach of the Klamath River downstream of Upper Klamath Lake, from Link River to Keno Dam, for calendar years 2006-09. The two-dimensional, laterally averaged model CE-QUAL-W2 was used to simulate water velocity, ice cover, water temperature, specific conductance, dissolved and suspended solids, dissolved oxygen, total nitrogen, ammonia, nitrate, total phosphorus, orthophosphate, dissolved and particulate organic matter, and three algal groups. The Link-Keno model successfully simulated the most important spatial and temporal patterns in the measured data for this 4-year time period. The model calibration process provided critical insights into water-quality processes and the nature of those inputs and processes that drive water quality in this reach. The model was used not only to reproduce and better understand water-quality conditions that occurred in 2006-09, but also to test several load-reduction scenarios that have implications for future water-resources management in the river basin. The model construction and calibration process provided results concerning water quality and transport in the Link-Keno reach of the Klamath River, ranging from interesting circulation patterns in the Lake Ewauna area to the nature and importance of organic matter and algae. These insights and results include: * Modeled segment-average water velocities ranged from near 0.0 to 3.0 ft/s in 2006 through 2009. Travel time through the model reach was about 4 days at 2,000 ft3/s and 12 days at 700 ft3/s flow. Flow direction was aligned with the upstream-downstream channel axis for most of the Link-Keno reach, except for Lake Ewauna. Wind effects were pronounced at Lake Ewauna during low-flow conditions, often with circulation in the form of a gyre that rotated in a clockwise direction when winds were towards the southeast and in a counterclockwise direction when winds were towards the northwest. * Water temperatures ranged from near freezing in winter to near 30 degrees C at some locations and periods in summer; seasonal water temperature patterns were similar at the inflow and outflow. Although vertical temperature stratification was not present at most times and locations, weak stratification could persist for periods up to 1-2 weeks, especially in the downstream parts of the reach. Thermal stratification was important in controlling vertical variations in water quality. * The specific conductance, and thus density, of tributaries within the reach usually was higher than that of the river itself, so that inflows tended to sink below the river surface. This was especially notable for inflows from the Klamath Straits Drain, which tended to sink to the bottom of the Klamath River at its confluence and not mix vertically for several miles downstream. * The model was able to capture most of the seasonal changes in the algal population by modeling that population with three algal groups: blue-green algae, diatoms, and other algae. The blooms of blue-green algae, consisting mostly of Aphanizomenon flos aquae that entered from Upper Klamath Lake, were dominant, dwarfing the populations of the other two algae groups in summer. A large part of the blue-green algae population that entered this reach from upstream tended to settle out, die, and decompose, especially in the upper part of the Link-Keno reach. Diatoms reached a maximum in spring and other algae in midsummer. * Organic matter, occurring in both dissolved and particulate forms, was critical to the water quality of this reach of the Klamath River, and was strongly tied to nutrient and dissolved-oxygen dynamics. Dissolved and particulate organic matter were subdivided into labile (quickly decaying) and refractory (slowing decaying) groups for modeling purposes. The particulate matter in summer, consisting largely of dead blue-green algae, decayed quickly. Consequently, this particulate matt
Stuntebeck, Todd D.; Komiskey, Matthew J.; Peppler, Marie C.; Owens, David W.; Frame, Dennis R.
2011-01-01
A cooperative study between the U.S. Geological Survey, the University of Wisconsin (UW)-Madison Discovery Farms program (Discovery Farms), and the UW-Platteville Pioneer Farm program (Pioneer Farm) was developed to identify typical ranges and magnitudes, temporal distributions, and principal factors affecting concentrations and yields of sediment, nutrients, and other selected constituents in runoff from agricultural fields. Hydrologic and water-quality data were collected year-round at 23 edge-of-field monitoring stations on 5 privately owned Discovery Farms and on Pioneer Farm during water years 2003-8. The studied farms represented landscapes, soils, and farming systems typical of livestock farms throughout southern Wisconsin. Each farm employed a variety of soil, nutrient, and water-conservation practices to help minimize sediment and nutrient losses from fields and to improve crop productivity. This report summarizes the precipitation-runoff relations and water-quality characteristics measured in edge-of-field runoff for 26 "farm years" (aggregate years of averaged station data from all 6 farms for varying monitoring periods). A relatively wide range of constituents typically found in agricultural runoff were measured: suspended sediment, phosphorus (total, particulate, dissolved reactive, and total dissolved), and nitrogen (total, nitrate plus nitrite, organic, ammonium, total Kjeldahl and total Kjeldahl-dissolved), chloride, total solids, total suspended solids, total volatile suspended solids, and total dissolved solids. Mean annual precipitation was 32.8 inches for the study period, about 3 percent less than the 30-year mean. Overall mean annual runoff was 2.55 inches per year (about 8 percent of precipitation) and the distribution was nearly equal between periods of frozen ground (54 percent) and unfrozen ground (46 percent). Mean monthly runoff was highest during two periods: February to March and May to June. Ninety percent of annual runoff occurred between January and the end of June. Event mean concentrations of suspended sediment in runoff during unfrozen-ground periods were significantly higher (p2= 0.92), indicating that the sources of nitrogen and phosphorus in runoff were likely similar. Analysis of runoff, concentration, and yield data on annual, monthly, and seasonal time scales, when combined with precipitation, soil moisture, soil temperature, and on-farm field-activity information, revealed conditions in which runoff was most likely. The analysis also revealed the effects that field conditions and the timing of field-management activities-most notably, manure applications and tillage-had on the quantity and quality of surface runoff from agricultural fields.
NASA Astrophysics Data System (ADS)
Gasparovic, Blazenka; Novak, Tihana; Godrijan, Jelena; Mlakar, Marina; MAric, Daniela; Djakovac, Tamara
2017-04-01
Marine dissolved organic matter (OM) represents one of the largest active pools of organic carbon in the global carbon cycle. Oceans and seas are responsible for half of global primary production. Ocean warming caused by climate change is already starting to impact the marine life that necessary will have impact on ocean productivity. The partition of OM production by phytoplankton (major OM producer in seas and ocens) in the conditions of rising temperatures may considerably change. This has implications for the export of organic matter from the photic zone. In this study, we set out to see how annual temperature changes between 10 and 30 C in the Northern Adriatic (Mediterranean) affect production of DOM and particularly dissolved lipids and lipid classes. We have sampled at two stations being oligotrophic and mesotrophic where we expected different system reaction to temperature changes. In addition, we performed microcosm incubations covering temperature range of the NA with nutrient amendments to test whether changes in the available nutrients would reflect those of dissolved OM in the NA. We have selected to work with extracellular OM produced during growth of diatom Chaetoceros curvisetus cultures according to the criteria that genera Chaetoceros are important component of the phytoplankton in the NA and are often among bloom-forming taxa. Details on the dissolved lipid and lipid classes production as plankton responce to rising temperature will be discussed.
Li, Ming; Peng, Qiang; Xiao, Man
2016-01-01
Fortnightly investigations at 12 sampling sites in Meiliang Bay and Gonghu Bay of Lake Taihu (China) were carried out from June to early November 2010. The relationship between abiotic factors and cell density of different Microcystis species was analyzed using the interval maxima regression (IMR) to determine the optimum temperature and nutrient concentrations for growth of different Microcystis species. Our results showed that cell density of all the Microcystis species increased along with the increase of water temperature, but Microcystis aeruginosa adapted to a wide range of temperatures. The optimum total dissolved nitrogen concentrations for M. aeruginosa, Microcystis wesenbergii, Microcystis ichthyoblabe, and unidentified Microcystis were 3.7, 2.0, 2.4, and 1.9 mg L(-1), respectively. The optimum total dissolved phosphorus concentrations for different species were M. wesenbergii (0.27 mg L(-1)) > M. aeruginosa (0.1 mg L(-1)) > M. ichthyoblabe (0.06 mg L(-1)) ≈ unidentified Microcystis, and the iron (Fe(3+)) concentrations were M. wesenbergii (0.73 mg L(-1)) > M. aeruginosa (0.42 mg L(-1)) > M. ichthyoblabe (0.35 mg L(-1)) > unidentified Microcystis (0.09 mg L(-1)). The above results suggest that if phosphorus concentration was reduced to 0.06 mg L(-1) or/and iron concentration was reduced to 0.35 mg L(-1) in Lake Taihu, the large colonial M. wesenbergii and M. aeruginosa would be replaced by small colonial M. ichthyoblabe and unidentified Microcystis. Thereafter, the intensity and frequency of the occurrence of Microcystis blooms would be reduced by changing Microcystis species composition.
2002-01-31
salinity , water temperature, dissolved oxy- gen and water clarity. Since temporal variation in the Chesapeake Bay ecosystem is high, the effects of year...temperature (p ɘ.001; ψ = 2.42) had significant impacts on squid catch probability, although the effects were con- founded by a water temperature × salinity ...commonly encountered in such waters during VIMS Trawl Surveys The synergistic and independent effects of salinity , water temperature and dissolved oxygen
León Robles, A; Acedo Félix, E; Gomez-Gil, B; Quiñones Ramírez, E I; Nevárez-Martínez, M; Noriega-Orozco, L
2013-12-01
Members of the genus Vibrio are common in aquatic environments. Among them are V. cholerae, V. vulnificus, V. parahaemolyticus and V. mimicus. Several studies have shown that environmental factors, such as temperature, salinity, and dissolved oxygen, are involved in their epidemiology. Therefore, the main objective of this study is to determine if there is a correlation between the presence/amount of V. cholerae, V, vulnificus, V. parahaemolyticus and V. mimicus and the environmental conditions of the seawater off the coast of Guaymas, México. Quantification of all four pathogenic bacteria was performed using the most probable number method, and suspected colonies were identified by polymerase chain reaction (PCR). Correlations were found using principal component analysis. V. parahaemolyticus was the most abundant and widely distributed bacteria, followed by V. vulnificus, V. mimicus and V. cholerae. Positive correlations between V. parahaemolyticus, V. vulnificus and V. mimicus with temperature, salinity, electric conductivity, and total dissolved solids were found. The abundance of V. cholerae was mainly affected by the sampling site and not by physicochemical parameters.
Oldham, V E; Swenson, M M; Buck, K N
2014-02-15
Total dissolved copper (Cu) and Cu speciation were examined from inshore waters of Bermuda, in October 2009 and July-August 2010, to determine the relationship between total dissolved Cu, Cu-binding ligands and bioavailable, free, hydrated Cu(2+) concentrations. Speciation was performed using competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV). Mean total dissolved Cu concentrations ranged from 1.4 nM to 19.2 nM, with lowest concentrations at sites further from shore, consistent with previous measurements in the Sargasso Sea, and localized Cu enrichment inshore in enclosed harbors. Ligand concentrations exceeded dissolved [Cu] at most sites, and [Cu(2+)] were correspondingly low at those sites, typically <10(-13) M. One site, Hamilton Harbour, was found to have [Cu] in excess of ligands, resulting in [Cu(2+)] of 10(-10.7) M, and indicating that Cu may be toxic to phytoplankton here. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K. C.; Anthony, P.; Thalasso, F.
2013-12-01
Armando Sepulveda-Jauregui,* Katey M. Walter Anthony,* Karla Martinez-Cruz,* ** Peter Anthony,* and Frederic Thalasso**. * Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska. ** Biotechnology and Bioengineering Department, Cinvestav, Mexico city, D. F., Mexico. Northern lakes are important reservoirs and sources to the atmosphere of methane (CH4), a potent greenhouse gas. It is estimated that northern lakes (> 55 °N) contribute about 20% of the total global lake methane emissions, and that emissions from these lakes will increase with climate warming. Temperature rise enhances methane production directly by providing the kinetic energy to methanogenesis, and indirectly by supplying organic matter from thawing permafrost. Warmer lakes also store less methane since methane's solubility is inversely related to temperature. Alaskan lakes are located in three well-differentiated permafrost classes: yedoma permafrost with high labile carbon stocks, non-yedoma permafrost with lower carbon stocks, and areas without permafrost, also with generally lower carbon stocks. We sampled dissolved methane from 42 Alaskan lakes located in these permafrost cover classes along a north-south Alaska transect from Prudhoe Bay to the Kenai Peninsula during open-water conditions in summer 2011. We sampled 26 of these lakes in April, toward the end of the winter ice-covered period. Our results indicated that the largest dissolved methane concentrations occurred in interior Alaska thermokarst lakes formed in yedoma-type permafrost during winter and summer, with maximal concentrations of 17.19 and 12.76 mg L-1 respectively. In these lakes, emission of dissolved gases as diffusion during summer and storage release in spring were 18.4% and 17.4% of the annual emission budget, while ebullition (64.2 %) comprised the rest. Dissolved oxygen was inversely correlated with dissolved methane concentrations in both seasons; the absence of O2 enhances methane production, while high concentration of O2 could favor methane oxidation. These relationships suggest that permafrost type, and specifically the availability of permafrost organic matter, influences methane cycling in Alaskan lakes.
NASA Astrophysics Data System (ADS)
Szczepański, M.; Szajdak, L.; Bogacz, A.
2009-04-01
The investigation of peatland is used to show the water quality functioning with respect to different forms of nitrogen and carbon. The purification of ground water by the transect of 4.5 km long consisting organic soils (peat-moorsh soils) was estimated. This transect is located in the Agroecological Landscape Park in Turew, 40 km South-West of Poznan, West Polish Lowland. There is this transect along Wyskoć ditch. pH, the contents of total and dissolved organic carbon, total nitrogen, N-NO3-, N-NH4+ was measured. Additionally C/N factors of peats were estimated. The investigation has shown the impact of the peatland located on the secondary transformed peat - moorsh soils on the lowering of total nitrogen, ammonium, and nitrates as well as total and dissolved organic carbon in ground water. Peat-moorsh soils were described and classified according to Polish hydrogenic soil classification and World Reference Base Soil Notation. There are these investigated points along to Wyskoc ditch. Two times a month during entire vegetation season the following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo: samples of peat, from the depth of 0-20 cm, samples of water from the ditch, samples of ground water from wells established for this investigation. Samples of peat-moorsh soils were collected at the depth 0-20 cm. Soils were sampled two times a month from 10 sites of each site. Samples were air dried and crushed to pass a 1 mm-mesh sieve. These 10 sub-samples were mixed for the reason of preparing a "mean sample", which used for the determination of pH (in 1M KCl), dissolved organic carbon (DOC), total organic carbon (TOC), total nitrogen (Ntotal), and N-NO3- as well as N-NH4+. In water from Wyskoć ditch pH, Ntotal, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) was measured. Ground water samples were collected from four wells established for this investigation. The water was filtered by the middle velocity separation and pH, N-total, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) ware measured. Peatland located on the secondary transformed peat - moorsh soils has revealed the lowering in ground water: nitrates 38.5%, N-organic 10%, N-total 24.5%, ammonium 38.7%, dissolved total carbon 33.1%, dissolved total inorganic carbon 10%, and dissolved organic carbon 57.5%. The dissolution of soil organic matter from peat-moorsh soils in broad range of pH and ionic strength was investigated. The rates of the reaction were calculated from the kinetics of first order reaction model. The investigations have shown the impact of the properties of secondary transformed peat-moorsh soils on the rates of the dissolution of organic matter.
Wehmeyer, Loren L.; Wagner, Chad R.
2011-01-01
The relation between dam releases and dissolved-oxygen concentration, saturation and deficit, downstream from Roanoke Rapids Dam in North Carolina was evaluated from 2005 to 2009. Dissolved-oxygen data collected at four water-quality monitoring stations downstream from Roanoke Rapids Dam were used to determine if any statistical relations or discernible quantitative or qualitative patterns linked Roanoke River in-stream dissolved-oxygen levels to hydropower peaking at Roanoke Rapids Dam. Unregulated tributaries that inundate and drain portions of the Roanoke River flood plain are crucial in relation to in-stream dissolved oxygen. Hydropower peaking from 2005 to 2009 both inundated and drained portions of the flood plain independently of large storms. The effects of these changes in flow on dissolved-oxygen dynamics are difficult to isolate, however, because of (1) the variable travel time for water to move down the 112-mile reach of the Roanoke River from Roanoke Rapids Dam to Jamesville, North Carolina, and (2) the range of in-situ conditions, particularly inundation history and water temperature, in the flood plain. Statistical testing was conducted on the travel-time-adjusted hourly data measured at each of the four water-quality stations between May and November 2005-2009 when the weekly mean flow was 5,000-12,000 cubic feet per second (a range when Roanoke Rapids Dam operations likely affect tributary and flood-plain water levels). Results of this statistical testing indicate that at the 99-percent confidence interval dissolved-oxygen levels downstream from Roanoke Rapids Dam were lower during peaking weeks than during non-peaking weeks in three of the five years and higher in one of the five years; no data were available for weeks with peaking in 2007. For the four years of statistically significant differences in dissolved oxygen between peaking and non-peaking weeks, three of the years had statistically signficant differences in water temperature. Years with higher water temperature during peaking had lower dissolved oxygen during peaking. Only 2009 had no constistent statistically significant water-temperature difference at all sites, and dissolved-oxygen levels downstream from Roanoke Rapids Dam during peaking weeks that year were lower than during non-peaking weeks. Between 2005 and 2009, daily mean dissolved-oxygen concentrations below the State standard occurred during only 1 of the 17 (6 percent) peaking weeks, with no occurrence of instantaneous dissolved-oxygen concentrations below the State standard. This occurrence was during a 9-day period in July 2005 when the daily maximum air temperatures approached or exceeded 100 degrees Fahrenheit, and the draining of the flood plains from peaking operations was followed by consecutive days of low flows.
Czeslik, C.; Royer, C.; Hazlett, T.; Mantulin, W.
2003-01-01
The preservation of enzyme activity and protein binding capacity upon protein adsorption at solid interfaces is important for biotechnological and medical applications. Because these properties are partly related to the protein flexibility and mobility, we have studied the internal dynamics and the whole-body reorientational rates of two enzymes, staphylococcal nuclease (SNase) and hen egg white lysozyme, over the temperature range of 20–80°C when the proteins are adsorbed at the silica/water interface and, for comparison, when they are dissolved in buffer. The data were obtained using a combination of two experimental techniques, total internal reflection fluorescence spectroscopy and time-resolved fluorescence anisotropy measurements in the frequency domain, with the protein Trp residues as intrinsic fluorescence probes. It has been found that the internal dynamics and the whole-body rotation of SNase and lysozyme are markedly reduced upon adsorption over large temperature ranges. At elevated temperatures, both protein molecules appear completely immobilized and the fractional amplitudes for the whole-body rotation, which are related to the order parameter for the local rotational freedom of the Trp residues, remain constant and do not approach zero. This behavior indicates that the angular range of the Trp reorientation within the adsorbed proteins is largely restricted even at high temperatures, in contrast to that of the dissolved proteins. The results of this study thus provide a deeper understanding of protein activity at solid surfaces. PMID:12668461
Code of Federal Regulations, 2013 CFR
2013-07-01
... specifies the limitation for the metal in the dissolved or valent or total form; or (2) In establishing... the metal in the dissolved or valent or total form to carry out the provisions of the CWA; or (3) All approved analytical methods for the metal inherently measure only its dissolved form (e.g., hexavalent...
Code of Federal Regulations, 2012 CFR
2012-07-01
... specifies the limitation for the metal in the dissolved or valent or total form; or (2) In establishing... the metal in the dissolved or valent or total form to carry out the provisions of the CWA; or (3) All approved analytical methods for the metal inherently measure only its dissolved form (e.g., hexavalent...
Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.; Verplanck, Philip L.; Sturtevant, Sabin A.
2002-01-01
Sixty-seven water analyses are reported for samples collected from 44 hot springs and their overflow drainages and two ambient-temperature acid streams in Yellowstone National Park (YNP) during 1990-2000. Thirty-seven analyses are reported for 1999, 18 for June of 2000, and 12 for September of 2000. These water samples were collected and analyzed as part of research investigations in YNP on microbially mediated sulfur oxidation in stream water, arsenic and sulfur redox speciation in hot springs, and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. Most samples were collected from sources in the Norris Geyser Basin. Two ambient-temperature acidic stream systems, Alluvium and Columbine Creeks and their tributaries in Brimstone Basin, were studied in detail. Analyses were performed at or near the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability of the constituent and whether or not it could be preserved effectively. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity, acidity, and F were determined within a few days of sample collection by titration with acid, titration with base, and ion-selective electrode or ion chromatography (IC), respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by IC. Concentrations of Br, Cl, NH4, NO2, NO3, SO4, Fe(II), and Fe(total) were determined within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li and K were determined by flame atomic absorption spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), K, Li, Mg, Mn, Na, Ni, Pb, Se, Si, Sr, V, and Zn were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of Cd, Cr, Cu, Pb, and Sb were determined by Zeeman-corrected graphitefurnace atomic-absorption spectrometry. Trace concentrations of As(total) and As(III) were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Concentrations of Cl, NO3, Br, and SO4 were determined by IC. Concentrations of Fe(II) and Fe(total) were determined by the ferrozine colorimetric method. Concentrations of NO2 were determined by colorimetry using matrix-matched standards. Concentrations of NH4 were determined by IC, with reanalysis by colorimetry where separation of Na and NH4 peaks was poor. Dissolved organic carbon (DOC) concentrations were determined by the wet persulfate oxidation method.
Aluminium, gallium, and molybdenum toxicity to the tropical marine microalga Isochrysis galbana.
Trenfield, Melanie A; van Dam, Joost W; Harford, Andrew J; Parry, David; Streten, Claire; Gibb, Karen; van Dam, Rick A
2015-08-01
There is a shortage of established chronic toxicity test methods for assessing the toxicity of contaminants to tropical marine organisms. The authors tested the suitability of the tropical microalga Isochrysis galbana for use in routine ecotoxicology and assessed the effects of 72-h exposures to copper (Cu, a reference toxicant), aluminium (Al), gallium (Ga), and molybdenum (Mo), key metals of alumina refinery discharge, on the growth of I. galbana at 3 temperatures: 24 °C, 28 °C, and 31 °C. The sensitivity of both I. galbana and the test method was validated by the response to Cu exposure, with 10% and 50% effect concentrations (EC10 and EC50) of 2.5 μg/L and 18 μg/L, respectively. The EC10 and EC50 values for total Al at 28 °C were 640 μg/L and 3045 μg/L, respectively. The toxicity of both Cu and Al at 24 °C and 31 °C was similar to that at 28 °C. There was no measurable toxicity from dissolved Ga exposures of up to 6000 μg/L or exposures to dissolved Mo of up to 9500 μg/L. Solubility limits at 28 °C for the dissolved fractions (<10 kDa) of Al, Ga, and Mo were approximately 650 μg/L Al, >7000 μg/L Ga, and >6000 μg/L Mo. In test solutions containing >650 μg/L total Al, dissolved and precipitated forms of Al were present, with precipitated Al becoming more dominant as total Al increased. The test method proved suitable for routine ecotoxicology, with I. galbana showing sensitivity to Cu but Al, Ga, and Mo exhibiting little to no toxicity to this species. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Xie, M.; Mayer, U. K.; MacQuarrie, K. T. B.
2017-12-01
Water with total dissolved sulfide in excess of 1 mmol L-1is widely found in groundwater at intermediate depths in sedimentary basins, including regions of the Michigan basin in southeastern Ontario, Canada. Conversely, at deeper and shallower depths, relatively low total dissolved sulfide concentrations have been reported. The mechanisms responsible for the occurrence of these brackish sulfide-containing waters are not fully understood. Anaerobic microbial sulfate reduction is a common process resulting in the formation of high sulfide concentrations. Sulfate reduction rates depend on many factors including the concentration of sulfate, the abundance of organic substances, redox conditions, temperature, salinity and the species of sulfate reducing bacteria (SRB). A sedimentary basin-specific conceptual model considering the effect of salinity on the rate of sulfate reduction was developed and implemented in the reactive transport model MIN3P-THCm. Generic 2D basin-scale simulations were undertaken to provide a potential explanation for the dissolved sulfide distribution observed in the Michigan basin. The model is 440 km in the horizontal dimension and 4 km in depth, and contains fourteen sedimentary rock units including shales, sandstones, limestones, dolostone and evaporites. The main processes considered are non-isothermal density dependent flow, kinetically-controlled mineral dissolution/precipitation and its feedback on hydraulic properties, cation exchange, redox reactions, biogenic sulfate reduction, and hydromechanical coupling due to glaciation-deglaciation events. Two scenarios were investigated focusing on conditions during an interglacial period and the transient evolution during a glaciation-deglaciation cycle. Inter-glaciation simulations illustrate that the presence of high salinity brines strongly suppress biogenic sulfate reduction. The transient simulations show that glaciation-deglaciation cycles can have an impact on the maximum depth of elevated sulfide concentrations due to freshwater ingress and enhanced mixing. In all simulations the highest concentrations of total sulfide occur at depths of approximately 150 m, while concentrations at depths greater than 300 m typically remain below 0.03 mmol L-1, comparing well with observational data.
2017-01-01
65 5-15. Dissolved oxygen and temperature data from T = 34 month (2015) post-remedy...Continuous measurements of dissolved oxygen and temperature in SEA Ring chambers placed at 3-meter depth at Chollas Creek mouth (CC1-B) and adjacent to...which the organisms would be exposed, such as salinity and temperature . This action provided valuable data to determine if any effects observed were
Seasonal microbial and environmental parameters at Crocker Reef, Florida Keys, 2014–2015
Kellogg, Christina A.; Yates, Kimberly K.; Lawler, Stephanie N.; Moore, Christopher S.; Smiley, Nathan A.
2015-11-04
Microbial measurements included enumeration of total bacteria, enumeration of virus-like particles, and plate counts of Vibrio spp. colony-forming units (CFU). These measurements were intended to give a sense of any seasonal changes in the total microbial load and to provide an indication of water quality. Additional environmental parameters measured included water temperature, salinity, dissolved oxygen, and pH. Four sites (table 1) were intensively sampled for periods of approximately 48 hours during summer (July 2014) and winter (January–February 2015), during which water samples were collected every 4 hours for analysis, except when prevented by weather conditions.
Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.
2012-01-01
For the eight monitoring stations in water year 2011, a total of 93.5 percent of the TDG data were received in real time and were within 1-percent saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. Data received from the Cascade Island site were only 34.9% complete because the equipment was destroyed by high water. The other stations ranged from 99.6 to 100 percent complete.
Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.
2013-01-01
For the eight monitoring stations in water year 2012, a total of 97.0 percent of the TDG data were received in real time and were within 1-percent saturation of the expected value on the ba-sis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent sites. Data received from the Cascade Island site were only 77.8 percent complete because the equipment was destroyed by high water. The other stations ranged from 98.9 to 100.0 percent complete.
Moura, A N; Dantas, E W; Oliveira, H S B; Bittencourt-Oliveira, M C
2011-05-01
This study analysed vertical and temporal variations of cyanobacteria in a potable water supply in northeastern Brazil. Samples were collected from four reservoir depths in the four months; September and December 2007; and March and June 2008. The water samples for the determination of nutrients and cyanobacteria were collected using a horizontal van Dorn bottle. The samples were preserved in 4% formaldehyde for taxonomic analysis using an optical microscope, and water aliquots were preserved in acetic Lugol solution for determination of density using an inverted microscope. High water temperatures, alkaline pH, low transparency, high phosphorous content and limited nitrogen content were found throughout the study. Dissolved oxygen stratification occurred throughout the study period whereas temperature stratification occurred in all sampling months, with the exception of June. No significant vertical differences were recorded for turbidity or total and dissolved forms of nutrients. There were high levels of biomass arising from Planktothrix agardhii, Cylindrospermopsis raciborskii, Geitlerinema amphibium and Pseudanabaena catenata. The study demonstrates that, in a tropical eutrophic environment with high temperatures throughout the water column, perennial multi-species cyanobacterial blooms, formed by species capable of regulating their position in the water column (those that have gas vesicles for buoyancy), are dominant in the photic and aphotic strata.
Li, Haiyan; Li, Mingyi; Zhang, Xiaoran
2013-01-01
The effects of pH, temperature, dissolved oxygen (DO), and flow rate on the phosphorus (P) release processes at the sediment and water interface in rainwater pipes were investigated. The sampling was conducted in a residential storm sewer of North Li Shi Road in Xi Cheng District of Beijing on August 3, 2011. The release rate of P increased with the increase of pH from 8 to 10. High temperature is favorable for the release of P. The concentration of total phosphorus (TP) in the overlying water increased as the concentration of DO decreased. With the increase of flow rate from 0.7 m s−1 to 1.1 m s−1, the concentration of TP in the overlying water increased and then tends to be stable. Among all the factors examined in the present study, the flow rate is the primary influence factor on P release. The cumulative amount of P release increased with the process of pipeline runoff in the rainfall events with high intensities and shorter durations. Feasible measures such as best management practices and low-impact development can be conducted to control the P release on urban sediments by slowing down the flow rate. PMID:24349823
Effects of physical and morphometric factors on nutrient removal properties in agricultural ponds.
Saito, M; Onodera, S; Okubo, K; Takagi, S; Maruyama, Y; Jin, G; Shimizu, Y
2015-01-01
Effects of physical and morphometric factors on nutrient removal properties were studied in small agricultural ponds with different depths, volumes, and residence times in western Japan. Average residence time was estimated to be >15 days, and it tended to decrease from summer to winter because of the increase in water withdrawal for agricultural activity. Water temperature was clearly different between the surface and bottom layers; this indicates that thermal stratification occurred in summer. Chlorophyll-a was significantly high (>20 μg/L) in the surface layer (<0.5 m) and influenced by the thermal stratification. Removal ratios of dissolved total nitrogen (DTN) and dissolved total phosphorus in the ponds were estimated to be 53-98% and 39-98% in August and 10-92% and 36-57% in December, respectively. Residence time of the ponds was longer in August than in December, and DTN removal, in particular, was more significant in ponds with longer residence time. Our results suggest residence time is an important factor for nitrogen removal in small agricultural ponds as well as large lakes.
Water chemistry of surface waters affected by the Fourmile Canyon wildfire, Colorado, 2010-2011
McCleskey, R. Blaine; Writer, Jeffrey H.; Murphy, Sheila F.
2012-01-01
In September 2010, the Fourmile Canyon fire burned about 23 percent of the Fourmile Creek watershed in Boulder County, Colo. Water-quality sampling of Fourmile Creek began within a month after the wildfire to assess its effects on surface-water chemistry. Water samples were collected from five sites along Fourmile Creek (above, within, and below the burned area) monthly during base flow, twice weekly during snowmelt runoff, and at higher frequencies during storm events. Stream discharge was also monitored. Water-quality samples were collected less frequently from an additional 6 sites on Fourmile Creek, from 11 tributaries or other inputs, and from 3 sites along Boulder Creek. The pH, electrical conductivity, temperature, specific ultraviolet absorbance, total suspended solids, and concentrations (dissolved and total) of major cations (calcium, magnesium, sodium, and potassium), anions (chloride, sulfate, alkalinity, fluoride, and bromide), nutrients (nitrate, ammonium, and phosphorus), trace metals (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, mercury, lithium, manganese, molybdenum, nickel, lead, rubidium, antimony, selenium, strontium, vanadium, and zinc), and dissolved organic carbon are here reported for 436 samples collected during 2010 and 2011.
Nagorski, Sonia A.; Neal, Edward G.; Brabets, Timothy P.
2013-01-01
Glacier Bay National Park and Preserve (GBNPP), Alaska, like many pristine high latitude areas, is exposed to atmospherically deposited contaminants such as mercury (Hg). Although the harmful effects of Hg are well established, information on this contaminant in southeast Alaska is scarce. Here, we assess the level of this contaminant in several aquatic components (water, sediments, and biological tissue) in three adjacent, small streams in GBNPP that drain contrasting landscapes but receive similar atmospheric inputs: Rink Creek, Salmon River, and Good River. Twenty water samples were collected from 2009 to 2011 and processed and analyzed for total mercury and methylmercury (filtered and particulate), and dissolved organic carbon quantity and quality. Ancillary stream water parameters (discharge, pH, dissolved oxygen, specific conductance, and temperature) were measured at the time of sampling. Major cations, anions, and nutrients were measured four times. In addition, total mercury was analyzed in streambed sediment in 2010 and in juvenile coho salmon and several taxa of benthic macroinvertebrates in the early summer of 2010 and 2011.
Scale-dependent temporal variations in stream water geochemistry.
Nagorski, Sonia A; Moore, Iohnnie N; McKinnon, Temple E; Smith, David B
2003-03-01
A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.
Scale-dependent temporal variations in stream water geochemistry
Nagorski, S.A.; Moore, J.N.; McKinnon, Temple E.; Smith, D.B.
2003-01-01
A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.
Three-Dimensional Water and Carbon Cycle Modeling at High Spatial-Temporal Resolutions
NASA Astrophysics Data System (ADS)
Liao, C.; Zhuang, Q.
2017-12-01
Terrestrial ecosystems in cryosphere are very sensitive to the global climate change due to the presence of snow covers, mountain glaciers and permafrost, especially when the increase in near surface air temperature is almost twice as large as the global average. However, few studies have investigated the water and carbon cycle dynamics using process-based hydrological and biogeochemistry modeling approach. In this study, we used three-dimensional modeling approach at high spatial-temporal resolutions to investigate the water and carbon cycle dynamics for the Tanana Flats Basin in interior Alaska with emphases on dissolved organic carbon (DOC) dynamics. The results have shown that: (1) lateral flow plays an important role in water and carbon cycle, especially in dissolved organic carbon (DOC) dynamics. (2) approximately 2.0 × 104 kg C yr-1 DOC is exported to the hydrological networks and it compromises 1% and 0.01% of total annual gross primary production (GPP) and total organic carbon stored in soil, respectively. This study has established an operational and flexible framework to investigate and predict the water and carbon cycle dynamics under the changing climate.
Hadas, Ora; Kaplan, Aaron; Sukenik, Assaf
2015-01-01
The long-term record of cyanobacteria abundance in Lake Kinneret (Sea of Galilee), Israel, demonstrates changes in cyanobacteria abundance and composition in the last five decades. New invasive species of the order Nostocales (Aphanizomenon ovalisporum and Cylindrospermopsis raciborskii) became part of the annual phytoplankton assemblage during summer-autumn. Concomitantly, bloom events of Microcystis sp. (Chroococcales) during winter-spring intensified. These changes in cyanobacteria pattern may be partly attributed to the management policy in Lake Kinneret’s vicinity and watershed aimed to reduce effluent discharge to the lake and partly to climate changes in the region; i.e., increased water column temperature, less wind and reduced precipitation. The gradual decrease in the concentration of total and dissolved phosphorus and total and dissolved nitrogen and an increase in alkalinity, pH and salinity, combined with the physiological features of cyanobacteria, probably contributed to the success of cyanobacteria. The data presented here indicate that the trend of the continuous decline of nutrients may not be sufficient to reduce and to control the abundance and proliferation of toxic and non-toxic cyanobacteria. PMID:25664964
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... physical and chemical water quality parameters (such as temperature, dissolved oxygen, pH, and conductivity... unknown. High temperatures can reduce dissolved oxygen concentrations in the water, which slows growth... encystment, increase oxygen consumption, reduce the speed in which they orient themselves in the substrate...
Characterization of the quality of water, bed sediment, and fish in Mittry Lake, Arizona, 2014–15
Hermosillo, Edyth; Coes, Alissa L.
2017-03-01
Water, bed-sediment, and fish sampling was conducted in Mittry Lake, Arizona, in 2014–15 to establish current water-quality conditions of the lake. The parameters of temperature, dissolved-oxygen concentration, specific conductance, and alkalinity were measured in the field. Water samples were collected and analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, dissolved organic carbon, dissolved pesticides, bacteria, and suspended-sediment concentrations. Bed-sediment and fish samples were analyzed for trace elements, halogenated compounds, total mercury, and methylmercury.U.S. Environmental Protection Agency secondary maximum contaminant levels in drinking water were exceeded for sulfate, chloride, and manganese in the water samples. Trace-element concentrations were relatively similar between the inlet, middle, and outlet locations. Concentrations for nutrients in all water samples were below the Arizona Department of Environmental Quality’s water-quality standards for aquatic and wildlife uses, and all bacteria levels were below the Arizona Department of Environmental Quality’s recommended recreational water-quality criteria. Three out of 81 pesticides were detected in the water samples.Trace-element concentrations in bed sediment were relatively consistent between the inlet, middle, and outlet locations. Lead, manganese, nickel, and zinc concentrations, however, decreased from the inlet to outlet locations. Concentrations for lead, nickel, and zinc in some bed-sediment samples exceeded consensus-based sediment-quality guidelines probable effect concentrations. Eleven out of 61 halogenated compounds were detected in bed sediment at the inlet location, whereas three were detected at the middle location, and five were detected at the outlet location. No methylmercury was detected in bed sediment. Total mercury was detected in bed sediment at concentrations below the consensus-based sediment-quality guidelines probable effect concentration.Sixteen trace elements were detected in at least one of the fish-tissue samples, and trace-element concentrations were relatively consistent between the three fish-tissue samples. Seven halogenated compounds were detected in at least one of the whole-body fish samples; four to five compounds were detected in each fish. One fish-tissue sample exceeded the U.S. Environmental Protection Agency human health consumption criteria for methylmercury.
Knights, B.C.; Johnson, B.L.; Sandheinrich, M.B.
1995-01-01
We conducted a radiotelemetry study to examine the effects of dissolved oxygen (DO), water temperature, and current velocity on winter habitat selection by bluegills Lepomis macrochirus and black crappies Pomoxis nigromaculatus in the Finger Lakes backwater complex, Pool 5, on the upper Mississippi River. When DO was above 2 mg/L, both species selected areas with water temperature greater than 1 degree C and undetectable current. As dissolved oxygen concentrations fell below 2 mg/L, fish moved to areas with higher DO, despite water temperatures of 1 degree C and lower and current velocities of 1 cm/s. Areas with water temperature less than 1 degree C and current velocity greater than 1 cm/s were avoided. To incorporate the winter habitat requirements of bluegills and black crappies into habitat restoration projects, we recommend designs that allow the inflow of oxygenated water to maintain adequate DO without substantially decreasing temperature and increasing current velocity.
Cousins, Claire R; Fogel, Marilyn; Bowden, Roxane; Crawford, Ian; Boyce, Adrian; Cockell, Charles; Gunn, Matthew
2018-06-01
We investigated bacterial and archaeal communities along an ice-fed surficial hot spring at Kverkfjöll volcano-a partially ice-covered basaltic volcano at Vatnajökull glacier, Iceland, using biomolecular (16S rRNA, apsA, mcrA, amoA, nifH genes) and stable isotope techniques. The hot spring environment is characterized by high temperatures and low dissolved oxygen concentrations at the source (68°C and <1 mg/L (±0.1%)) changing to lower temperatures and higher dissolved oxygen downstream (34.7°C and 5.9 mg/L), with sulfate the dominant anion (225 mg/L at the source). Sediments are comprised of detrital basalt, low-temperature alteration phases and pyrite, with <0.4 wt. % total organic carbon (TOC). 16S rRNA gene profiles reveal that organisms affiliated with Hydrogenobaculum (54%-87% bacterial population) and Thermoproteales (35%-63% archaeal population) dominate the micro-oxic hot spring source, while sulfur-oxidizing archaea (Sulfolobales, 57%-82%), and putative sulfur-oxidizing and heterotrophic bacterial groups dominate oxic downstream environments. The δ 13 C org (‰ V-PDB) values for sediment TOC and microbial biomass range from -9.4‰ at the spring's source decreasing to -12.6‰ downstream. A reverse effect isotope fractionation of ~3‰ between sediment sulfide (δ 34 S ~0‰) and dissolved water sulfate (δ 34 S +3.2‰), and δ 18 O values of ~ -5.3‰ suggest pyrite forms abiogenically from volcanic sulfide, followed by abiogenic and microbial oxidation. These environments represent an unexplored surficial geothermal environment analogous to transient volcanogenic habitats during putative "snowball Earth" scenarios and volcano-ice geothermal environments on Mars. © 2018 John Wiley & Sons Ltd.
Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels
NASA Technical Reports Server (NTRS)
Freeman, K. H.; Hayes, J. M.
1992-01-01
Reports of the 13C content of marine particulate organic carbon are compiled and on the basis of GEOSECS data and temperatures, concentrations, and isotopic compositions of dissolved CO2 in the waters in which the related phytoplankton grew are estimated. In this way, the fractionation of carbon isotopes during photosynthetic fixation of CO2 is found to be significantly correlated with concentrations of dissolved CO2. Because ancient carbon isotopic fractionations have been determined from analyses of sedimentary porphyrins [Popp et al., 1989], the relationship between isotopic fractionation and concentrations of dissolved CO2 developed here can be employed to estimate concentrations of CO2 dissolved in ancient oceans and, in turn, partial pressures of CO2 in ancient atmospheres. The calculations take into account the temperature dependence of chemical and isotopic equilibria in the dissolved-inorganic-carbon system and of air-sea equilibria. Paleoenvironmental temperatures for each sample are estimated from reconstructions of paleogeography, latitudinal temperature gradients, and secular changes in low-latitude sea surface temperature. It is estimated that atmospheric partial pressures of CO2 were over 1000 micro atm 160 - 100 Ma ago, then declined to values near 300 micro atm during the next 100 Ma. Analysis of a high-resolution record of carbon isotopic fractionation at the Cenomanian-Turonian boundary suggests that the partial pressure of CO2 in the atmosphere was drawn down from values near 840 micro atm to values near 700 micro atm during the anoxic event.
Yoo, R H; Kim, J H; McCarty, P L; Bae, J H
2014-01-01
A laboratory staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was applied to the treatment of primary clarifier effluent from a domestic wastewater treatment plant with temperature decreasing from 25 to 10 °C. At all temperatures and with a total hydraulic retention time of 2.3 h, overall chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals were 89% and 94% or higher, with permeate COD and BOD5 of 30 and 7 mg/L or lower, respectively. No noticeable negative effects of low temperature on organic removal were found, although a slight increase to 3 mg/L in volatile fatty acids concentrations in the effluent was observed. Biosolids production was 0.01-0.03 kg volatile suspended solids/kg COD, which is far less than that with aerobic processes. Although the rate of trans-membrane pressure at the membrane flux of 9 L/m(2)/h increased as temperature decreased, the SAF-MBR was operated for longer than 200 d before chemical cleaning was needed. Electrical energy potential from combustion of the total methane production (gaseous and dissolved) was more than that required for system operation.
Basatnia, Nabee; Hossein, Seyed Abbas; Rodrigo-Comino, Jesús; Khaledian, Yones; Brevik, Eric C; Aitkenhead-Peterson, Jacqueline; Natesan, Usha
2018-04-29
Coastal lagoon ecosystems are vulnerable to eutrophication, which leads to the accumulation of nutrients from the surrounding watershed over the long term. However, there is a lack of information about methods that could accurate quantify this problem in rapidly developed countries. Therefore, various statistical methods such as cluster analysis (CA), principal component analysis (PCA), partial least square (PLS), principal component regression (PCR), and ordinary least squares regression (OLS) were used in this study to estimate total organic matter content in sediments (TOM) using other parameters such as temperature, dissolved oxygen (DO), pH, electrical conductivity (EC), nitrite (NO 2 ), nitrate (NO 3 ), biological oxygen demand (BOD), phosphate (PO 4 ), total phosphorus (TP), salinity, and water depth along a 3-km transect in the Gomishan Lagoon (Iran). Results indicated that nutrient concentration and the dissolved oxygen gradient were the most significant parameters in the lagoon water quality heterogeneity. Additionally, anoxia at the bottom of the lagoon in sediments and re-suspension of the sediments were the main factors affecting internal nutrient loading. To validate the models, R 2 , RMSECV, and RPDCV were used. The PLS model was stronger than the other models. Also, classification analysis of the Gomishan Lagoon identified two hydrological zones: (i) a North Zone characterized by higher water exchange, higher dissolved oxygen and lower salinity and nutrients, and (ii) a Central and South Zone with high residence time, higher nutrient concentrations, lower dissolved oxygen, and higher salinity. A recommendation for the management of coastal lagoons, specifically the Gomishan Lagoon, to decrease or eliminate nutrient loadings is discussed and should be transferred to policy makers, the scientific community, and local inhabitants.
NASA Astrophysics Data System (ADS)
Spector, J.
2016-12-01
The Lower Colorado River in Austin, Texas receives nitrogen-rich runoff and treated wastewater effluent and is subject to periodic water releases from the Longhorn Dam, which cause fluctuations in groundwater stage downstream. This research examined groundwater denitrification at the Hornsby Bend riparian area (located approximately 24 km downstream of downtown Austin) and characterized how dam-induced hyporheic exchange affects denitrification rates. Conductivity, temperature, water level, and dissolved oxygen concentrations were measured continuously throughout flood pulses for six months using dataloggers installed in a transect of seven monitoring wells on the river bank. Hourly samples were collected using an autosampler in one monitoring well (MW-5) during various flood conditions during the six month monitoring period. Water samples were analyzed for total organic carbon, total nitrogen, anions (NO3- and NO2-), NH4+ concentrations, alkalinity, and specific ultraviolet absorbance (SUVA) to characterize dissolved organic matter. Following large flood events (up to 4 m of water level stage increase), average conductivity increased 300 µs/centimeter in MW-5 as the water level receded. Analysis of water samples indicated that NO3- reduction occurred as conductivity and alkalinity increased. In addition, NH4+ concentrations increased during high conductivity periods. Increased denitrification activity corresponded with high SUVA. High conductivity and alkalinity increase the availability of electron donors (HCO3- and CO32-) and enhances denitrification potential. Higher SUVA values indicate increased dissolved organic carbon aromaticity and corresponding NO3- reduction. Additionally, changes in dissolved organic matter lability indicate the residence times of possible reactive organic carbon in the riparian area. This study has implications for determining advantageous geochemical conditions for hyporheic zone denitrification following large flood events.
DIEL FLUX OF DISSOLVED CARBOHYDRATE IN A SALT MARSH AND A SIMULATED ESTUARINE ECOSYSTEM
The concentrations of total dissolved carbohydrate (TCHO), monosaccharide (MCHO) and polysaccharide (PCHO) were followed over a total of ten diel cycles in a salt marsh and a 13 cu m seawater tank simulating an estuarine ecosystem. Their patterns are compared to those for total d...
Catchment-wide impacts on water quality: the use of 'snapshot' sampling during stable flow
NASA Astrophysics Data System (ADS)
Grayson, R. B.; Gippel, C. J.; Finlayson, B. L.; Hart, B. T.
1997-12-01
Water quality is usually monitored on a regular basis at only a small number of locations in a catchment, generally focused at the catchment outlet. This integrates the effect of all the point and non-point source processes occurring throughout the catchment. However, effective catchment management requires data which identify major sources and processes. As part of a wider study aimed at providing technical information for the development of integrated catchment management plans for a 5000 km 2 catchment in south eastern Australia, a 'snapshot' of water quality was undertaken during stable summer flow conditions. These low flow conditions exist for long periods so water quality at these flow levels is an important constraint on the health of in-stream biological communities. Over a 4 day period, a study of the low flow water quality characteristics throughout the Latrobe River catchment was undertaken. Sixty-four sites were chosen to enable a longitudinal profile of water quality to be established. All tributary junctions and sites along major tributaries, as well as all major industrial inputs were included. Samples were analysed for a range of parameters including total suspended solids concentration, pH, dissolved oxygen, electrical conductivity, turbidity, flow rate and water temperature. Filtered and unfiltered samples were taken from 27 sites along the main stream and tributary confluences for analysis of total N, NH 4, oxidised N, total P and dissolved reactive P concentrations. The data are used to illustrate the utility of this sampling methodology for establishing specific sources and estimating non-point source loads of phosphorous, total suspended solids and total dissolved solids. The methodology enabled several new insights into system behaviour including quantification of unknown point discharges, identification of key in-stream sources of suspended material and the extent to which biological activity (phytoplankton growth) affects water quality. The costs and benefits of the sampling exercise are reviewed.
Modular Aquatic Simulation System 1D
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-04-19
MASS1 simulates open channel hydrodynamics and transport in branched channel networks, using cross-section averaged forms of the continuity, momentum, and convection diffusion equations. Thermal energy transport (temperature), including meteorological influences is supported. The thermodynamics of total dissolved gas (TDG) can be directly simulated. MASS1 has been developed over the last 20 years. It is currently being used on DOE projects that require MASS1 to beopen source. Hence, the authors would like to distribute MASS1 in source form.
Water-quality data from five Oregon stream basins
Miller, Timothy L.
1979-01-01
The U.S. Geological Survey collected water-quality data in five Oregon stream basins during summer low-flow conditions in 1977 and 1978. During the two sampling periods, a total of 18 different sites were sampled. Several sites were sampled twice in 1977, and some sites were sampled in both 1977 and 1978. Included in the sampling were diel trace of dissolved oxygen, temperature, specific conductance, pH, and solar radiation. In addition, periphyton and benthic invertebrate samples were collected and identified.
Trihalomethane and nonpurgeable total organic-halide formation potentials of the Mississippi river
Rathbun, R.E.
1996-01-01
Trihalomethane and nonpurgeable total organic-hallide formation potentials were determined for water samples from 12 sites along the Mississippi River from Minneapolis, MN, to New Orleans, LA, for the summer and fall of 1991 and the spring of 1992. The formation potentials increased with distance upstream, approximately paralleling the increase of the dissolved organic- carbon concentration. The pH and the dissolved organic-carbon and free- chlorine concentrations were significant variables in the prediction of the formation potentials. The trihalomethane formation potential increased as the pH increased, whereas the nonpurgeable total organic-halide formation potential decreased. All formation potentials increased as the dissolved organic-carbon and free-chlorine concentrations increased, with the dissolved organic-carbon concentration having a much greater effect.
Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006
Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.
2008-01-01
The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of Upper Klamath Lake revealed few differences in water quality dynamics. Median daily temperatures were higher in nearshore areas, and dissolved oxygen concentrations were periodically higher as well during periods of high AFA bloom. Differences between the two areas in water quality conditions potentially harmful to fish were not statistically significant (p < 0.05). Chlorophyll a concentrations varied temporally and spatially throughout Upper Klamath Lake. Chlorophyll a concentrations indicated an algal bloom in late June and early July that was followed by an algae bloom decline in late July and early August and a subsequent recovery in mid-August. Sites in the deepest part of the lake, where some of the highest chlorophyll a concentrations were observed, were the same sites where the lowest dissolved oxygen concentrations and the highest un-ionized ammonia concentrations were recorded during the bloom decline, indicating cell senescence. Total phosphorus concentrations limited the initial algal bloom in late June and early July. The rate of net dissolved oxygen production (that is, production in excess of community respiration) and consumption (due to community respiration) in the lake water column as measured in light and dark bottles, respectively, ranged from 2.79 to -2.14 milligrams of oxygen per liter per hour. Net production rate generally correlated positively with chlorophyll a concentration, except episodically at a few sites where high chlorophyll a concentrations resulted in self-shading that inhibited photosynthesis. The depth of photic zone was inversely correlated with chlorophyll a concentration. Calculations of a 24-hour change in dissolved oxygen concentration indicated that oxygen-consuming processes predominated at the deep trench sites and oxygen-producing processes predominated at the shallow sites. In addition, calculations of the 24-hour change in dissolved oxygen indicate that oxygen-consuming processes in the water column di
Dynamics of planktonic prokaryotes and dissolved carbon in a subtropical coastal lake.
Fontes, Maria Luiza S; Tonetta, Denise; Dalpaz, Larissa; Antônio, Regina V; Petrucio, Maurício M
2013-01-01
To understand the dynamics of planktonic prokaryotes in a subtropical lake and its relationship with carbon, we conducted water sampling through four 48-h periods in Peri Lake for 1 year. Planktonic prokaryotes were characterized by the abundance and biomass of heterotrophic bacteria (HB) and of cyanobacteria (coccoid and filamentous cells). During all samplings, we measured wind speed, water temperature (WT), pH, dissolved oxygen (DO), precipitation, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and carbon dioxide (CO2). DOC was higher in the summer (average = 465 μM - WT = 27°C) and lower in the winter (average = 235 μM - WT = 17°C), with no significant variability throughout the daily cycles. CO2 concentrations presented a different pattern, with a minimum in the warm waters of the summer period (8.31 μM) and a maximum in the spring (37.13 μM). Daily trends were observed for pH, DO, WT, and CO2. At an annual scale, both biological and physical-chemical controls were important regulators of CO2. HB abundance and biomass were higher in the winter sampling (5.60 × 10(9) cells L(-1) and 20.83 μmol C L(-1)) and lower in the summer (1.87 × 10(9) cells L(-1) and 3.95 μmol C L(-1)). Filamentous cyanobacteria (0.23 × 10(8)-0.68 × 10(8) filaments L(-1)) produced up to 167.16 μmol C L(-1) as biomass (during the warmer period), whereas coccoid cyanobacteria contributed only 0.38 μmol C L(-1). Precipitation, temperature, and the biomass of HB were the main regulators of CO2 concentrations. Temperature had a negative effect on the concentration of CO2, which may be indirectly attributed to high heterotroph activity in the autumn and winter periods. DOC was positively correlated with the abundance of total cyanobacteria and negatively with HB. Thus, planktonic prokaryotes have played an important role in the dynamics of both dissolved inorganic and organic carbon in the lake.
Dynamics of Planktonic Prokaryotes and Dissolved Carbon in a Subtropical Coastal Lake
Fontes, Maria Luiza S.; Tonetta, Denise; Dalpaz, Larissa; Antônio, Regina V.; Petrucio, Maurício M.
2013-01-01
To understand the dynamics of planktonic prokaryotes in a subtropical lake and its relationship with carbon, we conducted water sampling through four 48-h periods in Peri Lake for 1 year. Planktonic prokaryotes were characterized by the abundance and biomass of heterotrophic bacteria (HB) and of cyanobacteria (coccoid and filamentous cells). During all samplings, we measured wind speed, water temperature (WT), pH, dissolved oxygen (DO), precipitation, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and carbon dioxide (CO2). DOC was higher in the summer (average = 465 μM – WT = 27°C) and lower in the winter (average = 235 μM – WT = 17°C), with no significant variability throughout the daily cycles. CO2 concentrations presented a different pattern, with a minimum in the warm waters of the summer period (8.31 μM) and a maximum in the spring (37.13 μM). Daily trends were observed for pH, DO, WT, and CO2. At an annual scale, both biological and physical-chemical controls were important regulators of CO2. HB abundance and biomass were higher in the winter sampling (5.60 × 109 cells L−1 and 20.83 μmol C L−1) and lower in the summer (1.87 × 109 cells L−1 and 3.95 μmol C L−1). Filamentous cyanobacteria (0.23 × 108–0.68 × 108 filaments L−1) produced up to 167.16 μmol C L−1 as biomass (during the warmer period), whereas coccoid cyanobacteria contributed only 0.38 μmol C L−1. Precipitation, temperature, and the biomass of HB were the main regulators of CO2 concentrations. Temperature had a negative effect on the concentration of CO2, which may be indirectly attributed to high heterotroph activity in the autumn and winter periods. DOC was positively correlated with the abundance of total cyanobacteria and negatively with HB. Thus, planktonic prokaryotes have played an important role in the dynamics of both dissolved inorganic and organic carbon in the lake. PMID:23579926
The total flow concept for geothermal energy conversion
NASA Technical Reports Server (NTRS)
Austin, A. L.
1974-01-01
A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.
Modeling the Losses of Dissolved CO(2) from Laser-Etched Champagne Glasses.
Liger-Belair, Gérard
2016-04-21
Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate definitely impacts champagne tasting by modifying the neuro-physicochemical mechanisms responsible for aroma release and flavor perception. On the basis of theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics, and mass transfer equations, a global model is proposed, depending on various parameters of both the wine and the glass itself, which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses. The question of champagne temperature was closely examined, and its role on the modeled losses of dissolved CO2 was corroborated by a set of experimental data.
Galloway, Joel M.; Green, W. Reed
2006-01-01
Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas. The purpose of this report is to describe the ambient hydrologic and water-quality conditions in Beaver Lake and its inflows and describe a two-dimensional model developed to simulate the hydrodynamics and water quality of Beaver Lake from 2001 through 2003. Water-quality samples were collected at the three main inflows to Beaver Lake; the White River near Fayetteville, Richland Creek at Goshen, and War Eagle Creek near Hindsville. Nutrient concentrations varied among the tributaries because of land use and contributions of nutrients from point sources. The median concentrations of total ammonia plus organic nitrogen were greater for the White River than Richland and War Eagle Creeks. The greatest concentrations of nitrite plus nitrate and total nitrogen, however, were observed at War Eagle Creek. Phosphorus concentrations were relatively low, with orthophosphorus and dissolved phosphorus concentrations mostly below the laboratory reporting limit at the three sites. War Eagle Creek had significantly greater median orthophosphorus and total phosphorus concentrations than the White River and Richland Creek. Dissolved organic-carbon concentrations were significantly greater at the White River than at War Eagle and Richland Creeks. The White River also had significantly greater turbidity than War Eagle Creek and Richland Creek. The temperature distribution in Beaver Lake exhibits the typical seasonal cycle of lakes and reservoirs located within similar latitudes. Beaver Lake is a monomictic system, in which thermal stratification occurs annually during the summer and fall and complete mixing occurs in the winter. Isothermal conditions exist throughout the winter and early spring. Nitrogen concentrations varied temporally, longitudinally, and vertically in Beaver Lake for 2001 through 2003. Nitrite plus nitrate concentrations generally decreased from the upstream portion of Beaver Lake to the downstream portion and generally were greater in the hypolimnion. Total ammonia plus organic nitrogen concentrations also decreased from the upstream end of Beaver Lake to the downstream end and were substantially greater in the hypolimnion of Beaver Lake. Phosphorus concentrations mostly were near or below laboratory detection limits in the epilimnion and metalimnion in Beaver Lake and were substantially greater in the hypolimnion in the upstream and middle parts of the reservoir. Measured total and dissolved organic carbon in Beaver Lake was relatively uniform spatially, longitudinally, and vertically in the reservoir from January 2001 through December 2003. Chlorophyll a concentrations measured at sites in the upstream portion of the lake were significantly greater than at the other sites in the downstream portion of Beaver Lake. During the study period, water clarity in Beaver Lake was significantly greater at the downstream end of the reservoir than at the upstream end. The greatest Secchi depths at the downstream end of the reservoir generally were observed in 2001 compared to 2002 and 2003, but did not have a seasonal pattern as observed at sites in the middle and upstream portion of the reservoir. Similar to Secchi depth results, turbidity results indicated greater water clarity in the downstream portion of Beaver Lake compared to the upstream portion. Turbidity also was greater in the hypolimnion than in the epilimnion in the reservoir during the stratification season. A two-dimensional, laterally averaged, hydrodynamic, and water-quality model using CE-QUAL-W2 Version 3.1 was developed for Beaver Lake and calibrated based on vertical profiles of temperature and dissolved oxygen, and water-quality constituent concentrations collected at various depths at four sites in the reservoir from April 2001 to April 2003. Simulated temperatures and dissolved-oxygen concentrations compared reasonably well with measured t
Water quality of Lake Austin and Town Lake, Austin, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, F.L.; Wells, F.C.; Shelby, W.J.
1988-01-01
Lake Austin and Town Lake are impoundments on the Colorado River in Travis County, central Texas, and are a source of water for municipal industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Small vertical temperature variations in both lakes were attributed to shallow depths in the lakes and short retention times of water in the lakes during the summer months. The largest areal variations in dissolved oxygen generally occur in Lake Austin during the summer as a result of releases of water from below the thermocline in Lake Travis. Except formore » iron, manganese, and mercury, dissolved concentrations of trace elements in water collected from Lake Austin and Town Lake did not exceed the primary or secondary drinking water standards set by the US Environmental Protection Agency. Little or no effect of stormwater runoff on temperature, dissolved oxygen, or minor elements could be detected in either Lake Austin or Town Lake. Little seasonal or areal variation was noted in nitrogen concentrations in Lake Austin or Town lake. Total phosphorus concentrations generally were small in both lakes. Increased concentrations of nitrogen and phosphorus were detected after storm runoff inflow in Town Lake, but not in Lake Austin; densities of fecal-coliform bacteria increased in Lake Austin and Town Lake, but were substantially greater in Town Lake than in Lake Austin. 18 refs., 38 figs., 59 tabs.« less
Rapid high temperature field test method for evaluation of geothermal calcite scale inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asperger, R.G.
1982-08-01
A test method is described which allows the rapid field testing of calcite scale inhibitors in high- temperature geothermal brines. Five commercial formulations, chosen on the basis of laboratory screening tests, were tested in brines with low total dissolved solids at ca 500 F. Four were found to be effective; of these, 2 were found to be capable of removing recently deposited scale. One chemical was tested in the full-flow brine line for 6 wks. It was shown to stop a severe surface scaling problem at the well's control valve, thus proving the viability of the rapid test method. (12more » refs.)« less
Treatment of kitchen wastewater using Eichhornia crassipes
NASA Astrophysics Data System (ADS)
Parwin, Rijwana; Karar Paul, Kakoli
2018-03-01
The efficiency of Eichhornia crassipes for treatment of raw kitchen wastewater was studied in the present research work. An artificial wetland of 30 liter capacity was created for phytoremediation of kitchen wastewater using Eichhornia crassipes. Kitchen wastewater samples were collected from hostel of an educational institute in India. Samples were characterized based on physical and chemical parameters such as pH, turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid. The physico-chemical parameter of kitchen wastewater samples were analysed for durations of 0 (initial day), 4 and 8 days. After 8 days of retention period, it was observed that pH value increases from 6.25 to 6.63. However, percentage reduction for turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid were found to be 74.71%, 50%, 78.75%, 60.28%, 25.31%, 33.33%, 15.38% and 69.97%, respectively. Hence water hyacinth (Eichhornia crassipes) is found efficient and easy to handle and it can be used for low cost phytoremediation technique.
Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils
Neff, J.C.; Hooper, D.U.
2002-01-01
Climatic change may influence decomposition dynamics in arctic and boreal ecosystems, affecting both atmospheric CO2 levels, and the flux of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) to aquatic systems. In this study, we investigated landscape-scale controls on potential production of these compounds using a one-year laboratory incubation at two temperatures (10?? and 30??C). We measured the release of CO2, DOC and DON from tundra soils collected from a variety of vegetation types and climatic regimes: tussock tundra at four sites along a latitudinal gradient from the interior to the north slope of Alaska, and soils from additional vegetation types at two of those sites (upland spruce at Fairbanks, and wet sedge and shrub tundra at Toolik Lake in northern Alaska). Vegetation type strongly influenced carbon fluxes. The highest CO2 and DOC release at the high incubation temperature occurred in the soils of shrub tundra communities. Tussock tundra soils exhibited the next highest DOC fluxes followed by spruce and wet sedge tundra soils, respectively. Of the fluxes, CO2 showed the greatest sensitivity to incubation temperatures and vegetation type, followed by DOC. DON fluxes were less variable. Total CO2 and total DOC release were positively correlated, with DOC fluxes approximately 10% of total CO2 fluxes. The ratio of CO2 production to DOC release varied significantly across vegetation types with Tussock soils producing an average of four times as much CO2 per unit DOC released compared to Spruce soils from the Fairbanks site. Sites in this study released 80-370 mg CO2-C g soil C-1 and 5-46 mg DOC g soil C-1 at high temperatures. The magnitude of these fluxes indicates that arctic carbon pools contain a large proportion of labile carbon that could be easily decomposed given optimal conditions. The size of this labile pool ranged between 9 and 41% of soil carbon on a g soil C basis, with most variation related to vegetation type rather than climate.
Dantas, Enio W; Moura, Ariadne N; Bittencourt-Oliveira, Maria do Carmo
2011-12-01
This study investigated the dynamics of cyanobacteria in two deep, eutrophic reservoirs in a semi-arid region of Brazil during periods of stratification and destratification. Four collections were carried out at each reservoir at two depths at three-month intervals. The following abiotic variables were analyzed: water temperature, dissolved oxygen, pH, turbidity, water transparency, total phosphorus, total dissolved phosphorus, orthophosphate and total nitrogen. Phytoplankton density was quantified for the determination of the biomass of cyanobacteria. The data were analyzed using CCA. Higher mean phytoplankton biomass values (29.8 mm(3).L(-1)) occurred in the period of thermal stratification. A greater similarity in the phytoplankton communities also occurred in this period and was related to the development of cyanobacteria, mainly Cylindrospermopsis raciborskii (>3.9 mm(3).L(-1)). During the period of thermal destratification, this species co-dominated the environment with Planktothrix agardhii, Geitlerinema amphibium, Microcystis aeruginosa and Merismopedia tenuissima, as well as with diatoms and phytoflagellates. Environmental instability and competition among algae hindered the establishment of blooms more during the mixture period than during the stratification period. Thermal changes in the water column caused by climatologic events altered other physiochemical conditions of the water, leading to changes in the composition and biomass of the cyanobacterial community in tropical reservoirs.
Kamjunke, Norbert; Oosterwoud, Marieke R; Herzsprung, Peter; Tittel, Jörg
2016-04-01
Enhanced concentrations of dissolved organic matter (DOM) in freshwaters are an increasing problem in drinking water reservoirs. In this study we investigated bacterial DOM degradation rates in the tributaries of the reservoirs and tested the hypotheses that (1) DOM degradation is high enough to decrease DOM loads to reservoirs considerably, (2) DOM degradation is affected by stream hydrology, and (3) phosphorus addition may stimulate bacterial DOM degradation. Bacterial biomass production, which was used as a measure of DOM degradation, was highest in summer, and was usually lower at upstream than at downstream sites. An important proportion of bacterial production was realized in epilithic biofilms. Production of planktonic and biofilm bacteria was related to water temperature. Planktonic production weakly correlated to DOM quality and to total phosphorus concentration. Addition of soluble reactive phosphorus did not stimulate bacterial DOM degradation. Overall, DOM was considerably degraded in summer at low discharge levels, whereas degradation was negligible during flood events (when DOM load in reservoirs was high). The ratio of DOM degradation to total DOM release was negatively related to discharge. On annual average, only 0.6-12% of total DOM released by the catchments was degraded within the tributaries. Copyright © 2016 Elsevier B.V. All rights reserved.
An experimental study on the cavitation of water with dissolved gases
NASA Astrophysics Data System (ADS)
Li, Buxuan; Gu, Youwei; Chen, Min
2017-12-01
Cavitation inception is generally determined by the tensile strengths of liquids. Investigations on the tensile strength of water, which is essential in many fields, will help understand the promotion/prevention of cavitation and related applications in water. Previous experimental studies, however, vary in their conclusions about the value of tensile strength of water; the difference is commonly attributed to the existence of impurities in water. Dissolved gases, especially oxygen and nitrogen from the air, are one of the most common kinds of impurities in water. The influence of these gases on the tensile strength of water is still unclear. This study investigated the effects of dissolved gases on water cavitation through experiments. Cavitation in water is generated by acoustic method. Water samples are prepared with dissolved oxygen and nitrogen in different gas concentrations. Results show that under the same temperature, the tensile strength of water with dissolved oxygen or nitrogen decreases with increased gas concentration compared with that of ultrapure water. Under the same gas concentration and temperature, water with dissolved oxygen shows a lower tensile strength than that with dissolved nitrogen. Possible reasons of these results are also discussed.
Biver, Marc; Filella, Montserrat
2016-05-03
The toxicity of Cd being well established and that of Te suspected, the bulk, surface-normalized steady-state dissolution rates of two industrially important binary tellurides-polycrystalline cadmium and bismuth tellurides- were studied over the pH range 3-11, at various temperatures (25-70 °C) and dissolved oxygen concentrations (0-100% O2 in the gas phase). The behavior of both tellurides is strikingly different. The dissolution rates of CdTe monotonically decreased with increasing pH, the trend becoming more pronounced with increasing temperature. Activation energies were of the order of magnitude associated with surface controlled processes; they decreased with decreasing acidity. At pH 7, the CdTe dissolution rate increased linearly with dissolved oxygen. In anoxic solution, CdTe dissolved at a finite rate. In contrast, the dissolution rate of Bi2Te3 passed through a minimum at pH 5.3. The activation energy had a maximum in the rate minimum at pH 5.3 and fell below the threshold for diffusion control at pH 11. No oxygen dependence was detected. Bi2Te3 dissolves much more slowly than CdTe; from one to more than 3.5 orders of magnitude in the Bi2Te3 rate minimum. Both will readily dissolve under long-term landfill deposition conditions but comparatively slowly.
NASA Astrophysics Data System (ADS)
Susilowati, Agustine; Aspiyanto, Maryati, Yati; Melanie, Hakiki; Lotulung, Puspa D.
2017-01-01
Purifying broccoli (Brassica oleracea L.) fermented by Lactic Acid Bacteria (LAB) using mixture of L. bulgaricus, S. thermopillus, L. acidophillusand Bifidobacteriumbifidum and fructooligosaccharides (FOS) as carbon source have been performed to recover biomass concentrate for probiotic and antioxidant. Purification of fermented broccoli was conducted through microfiltration (MF) membrane of 0.15 µm at stirrer rotation speed 400 rpm, room temperature and pressure 40 psia for 30 minutes. Fermented broccoli produced via fermentation process with fermentation time 0 (initial) and 48 hours, and LAB concentration 10% and 20% (v/v) represented as biomass of A, B, C and D. The experimental result showed that based on selectivity of total organic acids, separating optimization was achieved at biomass D (fermentation time 48 hours and mixed LAB culture concentration 20%). Concentrate composition produced in this condition were total acids 6.04%, total solids 24.31%, total polyphenol 0.0252%, reducing sugar 68.25 mg/mL, total sugars 30.89 mg/mL, and dissolved protein 28.54 mg/mL with pH 3.94. In this condition, recovery of biomass concentrate of D for total acids 5.64 folds, total solids 1.82 folds, total polyphenol 3.03 folds, reducing sugar 1.16 folds, total sugars 1.19 folds, and dissolved protein 0.67 folds compared with feed (initial process). Identification of monomer of biomass concentrate D as polyphenol derivatives at T2,01 and T3.01 gave monomer with molecular weight (MW) 192.78 Dalton (Da.), and monomer with MW 191.08, 191.49 and 192.07 Da., while lactic acid derivatives showed MW 251.13, 251.6 and 252.14, and monomer with MW 250.63, 252.14 and 254.22 Da.
Gas buildup in Lake Nyos, Cameroon: The recharge process and its consequences
Evans, William C.; Kling, G.W.; Tuttle, M.L.; Tanyileke, G.; White, L.D.
1993-01-01
The gases dissolved in Lake Nyos, Cameroon, were quantified recently (December 1989 and September 1990) by two independent techniques: in-situ measurements using a newly designed probe and laboratory analyses of samples collected in pre-evacuated stainless steel cylinders. The highest concentrations of CO2 and CH4 were 0.30 mol/kg and 1.7 mmol/kg, respectively, measured in cylinders collected 1 m above lake bottom. Probe measurements of in-situ gas pressure at three different stations showed that horizontal variations in total dissolved gas were negligible. Total dissolved-gas pressure near the lake bottom is 1.06 MPa (10.5 atm), 50% as high as the hydrostatic pressure of 2.1 MPa (21 atm). Comparing the CO2 profile constructed from the 1990 data to one obtained in May 1987 shows that CO2 concentrations have increased at depths to below 150 m. Based on these profiles, the average rate of CO2 input to bottom waters was 2.6 ?? 108 mol/a. Increased deep-water temperatures require an average heat flow of 0.32 MW into the hypolimnion over the same time period. The transport rates of CO2, heat, and major ions into the hypolimnion suggest that a low-temperature reservoir of free CO2 exists a short distance below lake bottom and that convective cycling of lake water through the sediments is involved in transporting the CO2 into the lake from the underlying diatreme. Increased CH4 concentrations at all depths below the oxycline and a high 14C content (41% modern) in the CH4 4 m above lake bottom show that much of the CH4 is biologically produced within the lake. The CH4 production rate may vary with time, but if the CO2 recharge rate remains constant, CO2 saturation of the entire hypolimnion below 50 m depth would require ???140 a, given present-day concentrations. ?? 1993.
Trends in the quality of water in New Jersey streams, water years 1998-2007
Hickman, R. Edward; Gray, Bonnie J.
2010-01-01
Trends were determined in flow-adjusted values of selected water-quality characteristics measured year-round during water years 1998-2007 (October 1, 1997, through September 30, 2007) at 70 stations on New Jersey streams. Water-quality characteristics included in the analysis are dissolved oxygen, pH, total dissolved solids, total phosphorus, total organic nitrogen plus ammonia, and dissolved nitrate plus nitrite. In addition, trend tests also were conducted on measurements of dissolved oxygen made only during the growing season, April to September. Nearly all the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the New Jersey Department of Environmental Protection Ambient Surface-Water Quality Monitoring Network. Monotonic trends in flow-adjusted values of water quality were determined by use of procedures in the ESTREND computer program. A 0.05 level of significance was selected to indicate a trend. Results of tests were not reported if there were an insufficient number of measurements or insufficient number of detected concentrations, or if the results of the tests were affected by a change in data-collection methods. Trends in values of dissolved oxygen, pH, and total dissolved solids were identified using the Seasonal Kendall test. Trends or no trends in year-round concentrations of dissolved oxygen were determined for 66 stations; decreases at 4 stations and increases at 0 stations were identified. Trends or no trends in growing-season concentrations of dissolved oxygen were determined for 65 stations; decreases at 4 stations and increases at 4 stations were identified. Tests of pH values determined trends or no trends at 26 stations; decreases at 2 stations and increases at 3 stations were identified. Trends or no trends in total dissolved solids were reported for all 70 stations; decreases at 0 stations and increases at 24 stations were identified. Trends in total phosphorus, total organic nitrogen plus ammonia, and dissolved nitrate plus nitrite were identified by use of Tobit regression. Two sets of trend tests were conducted-one set with all measurements and a second set with all measurements except the most extreme outlier if one could be identified. The result of the test with all measurements is reported if the results of the two tests are equivalent. The result of the test without the outlier is reported if the results of the two tests are not equivalent. Trends or no trends in total phosphorus were determined for 69 stations. Decreases at 12 stations and increases at 5 stations were identified. Of the five stations on the Delaware River included in this study, decreases in concentration were identified at four. Trends or no trends in total organic nitrogen plus ammonia were determined for 69 stations. Decreases and increases in concentrations were identified at six and nine stations, respectively. Trends or no trends in dissolved nitrate plus nitrite were determined for 66 stations. Decreases and increases in concentration were identified at 4 and 19 stations, respectively.
Sulfide scaling in low enthalpy geothermal environments; A survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Criaud, A.; Fouillac, C.
1989-01-01
A review of the sulfide scaling phenomena in low-temperature environments is presented. While high-temperature fluids tend to deposit metal sulfides because of their high concentrations of dissolved metals and variations of temperature, pressure and fluid chemistry, low temperature media are characterized by very low metal content but much higher dissolved sulfide. In the case of the goethermal wells of the Paris Basin, detailed studies demonstrate that the relatively large concentrations of chloride and dissolved sulfide are responsible for corrosion and consequent formation of iron sulfide scale composed of mackinawite, pyrite and pyrrhotite. The effects of the exploitation schemes are farmore » less important than the corrosion of the casings. The low-enthalpy fluids that do not originate from sedimentary aquifers (such as in Iceland and Bulgaria), have a limited corrosion potential, and the thin sulfide film that appears may prevent the progress of corrosion.« less
Measurement in a marine environment using low cost sensors of temperature and dissolved oxygen
Godshall, F.A.; Cory, R.L.; Phinney, D.E.
1974-01-01
Continuous records of physical parameters of the marine environment are difficult as well as expensive to obtain. This paper describes preliminary results of an investigative program with the purpose of developing low cost time integrating measurement and averaging devices for water temperature and dissolved oxygen. Measurements were made in an estuarine area of the Chesapeake Bay over two week periods. With chemical thermometers average water temperature for the two week period was found to be equal to average water temperature measured with thermocouples plus or minus 1.0 C. The slow diffusion of oxygen through the semipermiable sides of plastic bottles permitted the use of water filled bottles to obtain averaged oxygen measurements. Oxygen measurements for two week averaging times using 500 ml polyethylene bottles were found to vary from conventionally measured and averaged dissolved oxygen by about 1.8 mg/l. ?? 1974 Estuarine Research Federation.
Selbig, William R.; Buer, Nicolas
2018-05-11
Three permeable pavement surfaces - asphalt (PA), concrete (PC), and interlocking pavers (PIP) - were evaluated side-by-side to measure changes to the infiltrative capacity and water quality of stormwater runoff originating from a conventional asphalt parking lot in Madison, Wisconsin. During the 24-month monitoring period (2014-16), all three permeable pavements resulted in statistically significant reductions in the cumulative load of solids (total suspended solids and suspended sediment), total phosphorus, Escherichia coli (E. coli), and Enterococci. Most of the removal occurred through capture and retention in the void spaces of each permeable surface and aggregate base. The largest reduction in total suspended solids was for PC at 80 percent, followed by PIP and PA at 69 and 65 percent, respectively. Reductions (generally less than 50 percent) in total phosphorus also were observed, which might have been tempered by increases in the dissolved fraction observed in PIP and PA. Conversely, PC results indicated a slight reduction in dissolved phosphorus but failed to meet statistical significance. E. coli and Enterococci were reduced by about 80 percent for PC, almost twice the amount observed for PIP and PA.Results for the PIP and PC surfaces initially indicated higher pollutant load reduction than results for the PA surface. The efficiency of PIP and PC surfaces capturing sediment, however, led to a decline in infiltration rates that resulted in more runoff flowing over, not through, the permeable surface. This result led to a decline in treatment until the permeable surface was partially restored through maintenance practices, to which PIP responded more dramatically than PC or PA. Conversely, the PA surface was capable of infiltrating most of the influent runoff volume during the monitoring period and, thus, continued to provide some level of treatment. The combined effect of underdrain and overflow drainage resulted in similar pollutant treatment for all three permeable surfaces.Temperatures below each permeable surface generally followed changes in air temperature with a more gradual response observed in deeper layers. Therefore, permeable pavement may do little to mitigate heated runoff during summer. During winter, deeper layers remained above freezing even when air temperature was below freezing. Although temperatures were not high enough to melt snow or ice accumulated on the surface, temperatures below each permeable pavement did allow void spaces to remain open, which promoted infiltration of melted ice and snow as air temperatures rose above freezing. These open void spaces could potentially reduce the need for application of deicing agents in winter because melted snow and ice would infiltrate, thereby preventing refreezing of pooled water in what is known as the “black ice” effect.
Dissolved oxygen, stream temperature, and fish habitat response to environmental water purchases.
Null, Sarah E; Mouzon, Nathaniel R; Elmore, Logan R
2017-07-15
Environmental water purchases are increasingly used for ecological protection. In Nevada's Walker Basin (western USA), environmental water purchases augment streamflow in the Walker River and increase lake elevation of terminal Walker Lake. However, water quality impairments like elevated stream temperatures and low dissolved oxygen concentrations also limit ecosystems and species, including federally-threatened Lahontan cutthroat trout. In this paper, we prioritize water volumes and locations that most enhance water quality for riverine habitat from potential environmental water rights purchases. We monitored and modeled streamflows, stream temperatures, and dissolved oxygen concentrations using River Modeling System, an hourly, physically-based hydrodynamic and water quality model. Modeled environmental water purchases ranged from average daily increases of 0.11-1.41 cubic meters per second (m 3 /s) during 2014 and 2015, two critically dry years. Results suggest that water purchases consistently cooled maximum daily stream temperatures and warmed nightly minimum temperatures. This prevented extremely low dissolved oxygen concentrations below 5.0 mg/L, but increased the duration of moderate conditions between 5.5 and 6.0 mg/L. Small water purchases less than approximately 0.71 m 3 /s per day had little benefit for Walker River habitat. Dissolved oxygen concentrations were affected by upstream environmental conditions, where suitable upstream water quality improved downstream conditions and vice versa. Overall, this study showed that critically dry water years degrade environmental water quality and habitat, but environmental water purchases of at least 0.71 m 3 /s were promising for river restoration. Published by Elsevier Ltd.
Microwave Thermal Hydrolysis Of Sewage Sludge As A Pretreatment Stage For Anaerobic Digestion
NASA Astrophysics Data System (ADS)
Qiao, W.; Wang, W.; Xun, R.
2008-02-01
This article focuses on the effects of microwave thermal hydrolysis on sewage sludge anaerobic digestion. Volatile suspended solid (VSS) and COD solubilization of treated sludge were investigated. It was found that the microwave hydrolysis provided a rapid and efficient process to release organics from sludge. The increase of organic dissolution ratio was not obvious when holding time was over 5 min. The effect of the VSS solubilization was mainly dependent on temperature. The highest value of VSS dissolving ratio, 36.4%, was obtained at 170 °C for 30 min. COD dissolving ratio was about 25% at 170 °C. BMP test of excess sludge and mixture of primary and excess sludge proved the increase of methane production. Total biogas production of microwave treated mixture sludge increased by 12.9% to 20.2% over control after 30 days digestion. For excess sludge, biogas production was 11.1% to 25.9% higher than untreated sludge.
Saksena, D N; Gaidhane, D M; Singh, H
2006-01-01
The coastal saline soils, Kharlands, have great potential for their use in aquaculture. This study has been taken up to understand the limnology of the ponds in Kharland area for assessing their prawn culture potential. This study was carried out during September, 1999 to August, 2001. Each Kharland pond has an area of 0.045 hectare. During the study, depth of pond water was 47.7 to 120.0 cm, temperature varied from 25.7 to 34.5 degrees C; transparency from nil to 65.0 cm; specific conductivity from 1.78 to 94.5 microS.cm(-1); total dissolved solids from 0.89 to 27.55 ppt; pH 5.42 to 8.25; dissolved oxygen 1.6 to 8 mg.l(-1); free carbon dioxide 10.00 to 44.00 mg.l(-1); total alkalinity 5.00 to 142.00 mg.l(-1); salinity 0.45 to 39.55 ppt; total hardness 245.00 to 5945.00; calcium 56.05 to 1827.6; magnesium 110.74 to 4507.75 mg.l(-1); dissolved organic matter 1.45 to 9.68 mg.l(-1); ammonia 1.00-8.00 microg.l(-1); nitrite nil to 20.00 micro l(-1) and nitrate 7.5 to 17.5 microg.l(-1). These Kharland ponds are unique in physio-chemical characteristics during their seasonal cycle. From July to October, these ponds have nearly freshwater while from November to May pond water becomes saline. Thus, there is a great possibility of taking up monoculture of both the freshwater and brackish water prawns as well as polyculture of prawns and fishes in the Kharland ponds.
Study of Groundwater Physical Characteristics: A Case Study at District of Pekan, Pahang
NASA Astrophysics Data System (ADS)
Hashim, M. M. M.; Zawawi, M. H.; Samuding, K.; Dominic, J. A.; Zulkurnain, M. H.; Mohamad, K.
2018-04-01
A study of groundwater physical characteristic has been conducted at Pahang Tua, Pekan, Tanjung Batu and Nenasi, Pahang. There are several locations of tube well selected in this study. Four of five locations are situated in the coastal area and another one is located outside of coastal line. The purposes of this study are to identify the physical characteristic of groundwater (temperature, pH, electrical conductivity (EC), total dissolved solids (TDS) and salinity) and to identify the influence of sampling location and tube well depth to its physical characteristics. The results from the in-situ measurement were identified the physical characteristic groundwater for each tube well location. The result shows that temperature and pH for all groundwater samples almost in the same value but for the electrical conductivity, salinity and total dissolved solid have significant difference that related to location and depth of the tube well. The Pekan tube well with 80m depth and 2km distance from the sea have the highest value of EC, TDS and salinity (14460.53µS/cm, 7230.63 ppm and 8.32 PSU) compared to Nenasi with 30m depth of tube well and 0.65km distance from the sea. The EC, TDS and salinity value recorded are 1454.3253µS/cm, 727.00 ppm and 0.72 PSU. From the result of EC, TDS and salinity, it shows that the deeper tube well in the coastal area will obtained higher value of EC, TDS and salinity.
Monchamp, Marie-Eve; Pick, Frances R.; Beisner, Beatrix E.; Maranger, Roxane
2014-01-01
The eutrophication of freshwaters is a global health concern as lakes with excess nutrients are often subject to toxic cyanobacterial blooms. Although phosphorus is considered the main element regulating cyanobacterial biomass, nitrogen (N) concentration and more specifically the availability of different N forms may influence the overall toxicity of blooms. In this study of three eutrophic lakes prone to cyanobacterial blooms, we examined the effects of nitrogen species and concentrations and other environmental factors in influencing cyanobacterial community structure, microcystin (MC) concentrations and MC congener composition. The identification of specific MC congeners was of particular interest as they vary widely in toxicity. Different nitrogen forms appeared to influence cyanobacterial community structure leading to corresponding effects on MC concentrations and composition. Total MC concentrations across the lakes were largely explained by a combination of abiotic factors: dissolved organic nitrogen, water temperature and ammonium, but Microcystis spp. biomass was overall the best predictor of MC concentrations. Environmental factors did not appear to affect MC congener composition directly but there were significant associations between specific MC congeners and particular species. Based on redundancy analyses (RDA), the relative biomass of Microcystis aeruginosa was associated with MC-RR, M. wesenbergii with MC-LA and Aphanizomenon flos-aquae with MC-YR. The latter two species are not generally considered capable of MC production. Total nitrogen, water temperature, ammonium and dissolved organic nitrogen influenced the cyanobacterial community structure, which in turn resulted in differences in the dominant MC congener and the overall toxicity. PMID:24427318
April Mason; Y. Jun Xu; Philip Saksa; Adrienne Viosca; Johnny M. Grace; John Beebe; Richard Stich
2007-01-01
Low dissolved oxygen (DO) concentrations in streams can be linked to both natural conditions and human activities. In Louisiana, natural stream conditions such as low flow, high temperature and high organic content, often result in DO levels already below current water quality criteria, making it difficult to develop standards for Best Management Practices (BMPs)....
A Wave Glider for Studies of Biofouling and Ocean Productivity
2017-11-07
sensors for conductivity, water and air temperature , dissolved oxygen , chlorophyll-a fluorescence, wind speed and direction, barometric pressure, and...endurance, reduce fuel consumption , and reduce carbon emissions. During deployments, vessels encounter a range of planktonic assemblages and ocean...with an acoustic Doppler current profiler, an optical camera system, and standard sensors for conductivity, water and air temperature , dissolved
Guo, Yuedong; Song, Changchun; Wan, Zhongmei; Tan, Wenwen; Lu, Yongzheng; Qiao, Tianhua
2014-11-01
Permafrost soils act as large sinks of organic carbon but are highly sensitive to interference such as changes in land use, which can greatly influence dissolved carbon loads in streams. This study examines the effects of long-term land reclamation on seasonal concentrations of dissolved carbons in the upper reaches of the Nenjiang River, northeast China. A comparison of streams in natural and agricultural systems shows that the dissolved organic carbon (DOC) concentration is much lower in the agricultural stream (AG) than in the two natural streams (WAF, wetland dominated; FR, forest dominated), suggesting that land use change is associated with reduced DOC exporting capacity. Moreover, the fluorescence indexes and the ratio of dissolved carbon to nitrogen also differ greatly between the natural and agricultural streams, indicating that the chemical characteristics and the origin of the DOC released from the whole reaches are also altered to some extent. Importantly, the exporting concentration of dissolved inorganic carbon (DIC) and its proportion of total dissolved carbon (TDC) substantially increase following land reclamation, which would largely alter the carbon cycling processes in the downstream fluvial system. Although the strong association between the stream discharge and the DOC concentration was unchanged, the reduction in total soil organic carbon following land reclamation led to remarkable decline of the total flux and exporting coefficient of the dissolved carbons. The results suggest that dissolved carbons in permafrost streams have been greatly affected by changes in land use since the 1970s, and the changes in the concentration and chemical characteristics of dissolved carbons will last until the alteration in both the traditional agriculture pattern and the persistent reclamation activities.
Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.
2010-01-01
This report summarizes comprehensive findings from a 4-year-long field investigation to document baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water-quality collections and fish community assessments were conducted on as many as 16 sampling dates at roughly quarterly intervals from July 2005 to April 2009. The water-quality measurements included total suspended solids and total (particulate plus dissolved) selenium. With one exception, fish were surveyed with baited minnow traps at quarterly intervals during the same time period. However, in July 2007, fish surveys were not conducted because we lacked permission from the California Department of Fish and Game for incidental take of desert pupfish (Cyprinodon macularius), an endangered species. During April and October 2006-08, water samples also were collected from seven intensively monitored drains (which were selected from the 29 total drains) for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices [particulate organic detritus, filamentous algae, net plankton, and midge (chironomid) larvae], and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for pupfish, which we were not permitted to sacrifice for selenium determinations. Water quality (temperature, dissolved oxygen, pH, specific conductance, and turbidity) values were typical of surface waters in a hot, arid climate. A few drains exhibited brackish, near-anoxic conditions, especially during summer and fall when water temperatures occasionally exceeded 30 degrees Celsius. Total selenium concentrations in water were directly correlated with salinity and inversely correlated with total suspended-solids concentrations. Although pupfish were found in several drains, sometimes in relatively high numbers, the fish faunas of most drains and ponds were dominated by nonnative species, especially mosquitofish, mollies, and red shiner (Cyprinella lutrensis). Dissolved selenium in water samples from the seven intensively monitored drains ranged from 0.700 to 32.8 micrograms per liter (?g/L), with selenate as the major constituent. Selenium concentrations in other matrices varied widely among drains and ponds, with one drain (Trifolium 18) exhibiting especially high concentrations in food chain matrices [particulate organic detritus, 5.98-58.0 micrograms of selenium per gram (?g Se/g); midge larvae, 12.7-50.6 ?g Se/g] and in fish (mosquitofish, 13.2-20.2 ?g Se/g; sailfin mollies, 12.8-30.4 ?g Se/g; all concentrations are based on dry weights). Although selenium was accumulated by all trophic levels, biomagnification (defined as a progressive increase in selenium concentration from one trophic level to the next higher level) in midge larvae and fish occurred only at lower exposure concentrations. Judging mostly from circumstantial evidence, the health and wellbeing of poeciliids and pupfish are not believed to be threatened by ambient exposure to selenium in the drains and ponds.
Bell, Richard W.; Hays, Phillip D.
2007-01-01
The hot springs of Hot Springs National Park consist of a mixture of water from two recharge components: a primary hot-water component and a secondary cold-water component. Widespread distribution of fractures enables mixing of the hot- and cold-water components of flow near the discharge area for the springs. Urbanization in the area near the hot springs of Hot Springs National Park has increased the potential for degradation of the quality of surface-water runoff and locally derived ground-water recharge to the hot springs. Previous studies by the U.S. Geological Survey have indicated that water from some cold-water springs and wells in the vicinity of Hot Springs, Arkansas, showed evidence of contamination and that water from locally derived cold-water recharge might contribute 25 percent of the total flow to the hot springs after storms. Water samples were collected during base-flow conditions at nine hot springs and two cold-water springs in September 2000. Nine hot springs and one cold-water spring were resampled in October 2001 after a storm that resulted in a measurable decrease in water temperature in selected hot springs. Water samples were analyzed for a variety of dissolved chemical constituents (nutrients, major ions, trace elements, pesticides, semivolatile compounds, isotopes, and radiochemicals), physical properties, field measurements, and bacteria. Comparison of analyses of samples collected during base-flow conditions from the springs in 2000 and during a storm event in 2001 with the results from earlier studies dating back to the late 1800's indicates that little change in major, minor, and trace constituent chemistry has occurred and that the water continues to be of excellent quality. Water-quality data show distinguishable differences in water chemistry of the springs during base-flow and stormflow conditions, indicating changing input of cold-water recharge relative to hot-water recharge. Silica, total dissolved solids, strontium, barium, and sulfate show statistically significant differences between the median values of base-flow and stormflow samples. While variations in these constituents do not degrade water quality, the differences do provide evidence of variability in the factors controlling water quality of the hot springs and show that water quality is influenced by the locally derived, cold-water component of flow to the springs. Water temperature was measured continuously (3-minute intervals) between August 2000 and October 2002 at four hot springs. Continuous water-temperature data at the springs provide no indication of persistent long-term change in water temperature through time. Short time-scale water-temperature decreases occur in response to mixing of hot-springs water with locally derived recharge after storm events; the magnitude of these decreases varied inversely with the amount of rainfall. Maximum decreases in water temperature for specific storms had a non-linear relation with the amount of precipitation measured for the events. Response time for water temperature to begin decreasing from baseline temperature as a result of storm recharge was highly variable. Some springs began decreasing from baseline temperature as quickly as 1 hour after the beginning of a storm; one spring had an 8-hour minimum response time to show a storm-related temperature decrease. Water-quality, water-temperature, isotopic, and radiochemical data provide multiple lines of evidence supporting the importance of the contribution of cold-water recharge to hot springs. All the springs sampled indicated some measure of influence from local recharge. Binary mixing models using silica and total dissolved solids indicate that cold-water recharge from stormflow contributes an estimated 10 to 31 percent of the flow of hot springs. Models using water temperature indicate that cold-water recharge from stormflow contributes an estimated 1 to 35 percent of the flow of the various hot springs. Alth
Liu, Zhijun; Kieffer, Janna M; Kingery, William L; Huddleston, David H; Hossain, Faisal
2007-11-01
Several inland water bodies in the St. Louis Bay watershed have been identified as being potentially impaired due to low level of dissolved oxygen (DO). In order to calculate the total maximum daily loads (TMDL), a standard watershed model supported by U.S. Environmental Protection Agency, Hydrological Simulation Program Fortran (HSPF), was used to simulate water temperature, DO, and bio-chemical oxygen demand (BOD). Both point and non-point sources of BOD were included in watershed modeling. The developed model was calibrated at two time periods: 1978 to 1986 and 2000 to 2001 with simulated DO closely matched the observed data and captured the seasonal variations. The model represented the general trend and average condition of observed BOD. Water temperature and BOD decay are the major factors that affect DO simulation, whereas nutrient processes, including nitrification, denitrification, and phytoplankton cycle, have slight impacts. The calibrated water quality model provides a representative linkage between the sources of BOD and in-stream DO\\BOD concentrations. The developed input parameters in this research could be extended to similar coastal watersheds for TMDL determination and Best Management Practice (BMP) evaluation.
Waki, Miyoko; Yasuda, Tomoko; Fukumoto, Yasuyuki; Béline, Fabrice; Magrí, Albert
2018-02-01
Swine wastewater was treated in two continuously aerated activated sludge (AS) systems at high (AS1: 1.7-2.6 mg/L) and low (AS2: 0.04-0.08 mg/L) dissolved oxygen (DO), and at three temperatures (10, 20, and 30 °C). Biochemical oxygen demand (BOD) removal was >94.8%. Meanwhile, total nitrogen (N) removal was significantly higher in AS2, at 64, 89, and 88%, than in AS1, at 12, 24, and 46%, for 10, 20, and 30 °C, respectively. The experimental data were considered in a simulation study using an AS model for BOD and N removal, which also included nitrite, free ammonia, free nitrous acid, and temperature. Simulations at high-DO showed that ammonium was partly oxidized into nitrate but not removed, whereas at low-DO ammonium was removed mainly through the nitrite shortcut in simultaneous nitrification-denitrification. This study demonstrates that treatment at low-DO is an effective method for removing N, and modelling a helpful tool for its optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Catalán, Javier
2017-04-19
Spectroscopic evidence of the DPH molecules presented in this work allows us to show that the excitation spectrum in n-hexane, obtained by direct immersion in liquid nitrogen, exhibits a peak of origin at 395 nm, with an unexpected intensity, that together with the corresponding peak of origin at 398 nm because of its emission eliminate the abnormal Stokes displacement shown by this compound at room temperature. To the above mentioned explanation we add that the corresponding spectra of DPH dissolved in two structural isomers of n-hexane, 2-methylpentane and 3-methylpentane, do not present these 0-0 transitions (at 395 nm) of DPH. A structural explanation for the peak of origin detected at 395 nm in n-hexane is clear-cut, that is, the experimental evidence totally discards the need to explain the photophysics of the DPH molecules based on the existence of an underlying phantom state (1Ag) as proposed by Hudson and Kohler. This conclusion is strongly supported by monitoring the behavior shown by the DPH spectra obtained by slowly lowering down the temperature of the corresponding solution from 293 to 77 K.
Effect of woody and herbaceous plants on chemical weathering of basalt material
NASA Astrophysics Data System (ADS)
Mark, N.; Dontsova, K.; Barron-Gafford, G. A.
2011-12-01
Worldwide, semi-arid landscapes are transitioning from shallow-rooted grasslands to mixed vegetation savannas composed of deeper-rooted shrubs. These contrasting growth forms differentially drive below-ground processes because they occupy different soil horizons, are differentially stressed by periods of drought, and unequally stimulate soil weathering. Our study aims to determine the effect of woody and herbaceous plants on weathering of granular basalt serving as a model for soil. We established pots with velvet mesquite (Prosopis veluntina), sideoats grama (Bouteloua curtipendula), and bare-soil pots within two temperature treatments in University of Arizona Biosphere 2. The Desert biome served as the ambient temperature treatment, while the Savanna biome was maintained 4°C warmer to simulate projected air temperatures if climate change continues unabated. Rhizon water samplers were installed at a depth of one inch from the soil surface to monitor root zone exudates (total dissolved carbon and nitrogen), dissolved inorganic carbon, and lithogenic elements resulting from basalt weathering. Soil leachates were collected through the course of the experiment. The anion content of the leachates was determined using the ICS-5000 Reagent-Free ion chromatography system. Dissolved carbon and nitrogen were analyzed by combustion using the Shimadzu TOC-VCSH with TN module. Metals and metalloids were measured using inductively coupled plasma mass spectrometry. Irrigation of the pots was varied in time to simulate periods of drought and determine the effect of stress on root exudation. Leachates from all treatments displayed higher pH and electrical conductivity than water used for irrigation indicating weathering. On average, leachates from the potted grasses displayed higher pH and electrical conductivity than mesquites. This agreed with higher concentrations of organic carbon, a measure of root exudation, and inorganic carbon, measure of soil respiration. Both organic acids exuded by plants and respired CO2 have been linked to mineral weathering. Increased weathering in grass treatments also resulted in higher concentrations of plant nutrients. No effect of temperature on plant exudation or basalt weathering was observed in the course of the experiment. This work links physiological plant responses to temperature and water stress by two vegetation types with below-ground processes that result in soil evolution.
Zhao, Yaqi; Huang, Lei; Chen, Yucheng
2018-07-01
Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.
Wesolowski, Edwin A.
1996-01-01
Two separate studies to simulate the effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota, have been completed. In the first study, the Red River at Fargo Water-Quality Model was calibrated and verified for icefree conditions. In the second study, the Red River at Fargo Ice-Cover Water-Quality Model was verified for ice-cover conditions.To better understand and apply the Red River at Fargo Water-Quality Model and the Red River at Fargo Ice-Cover Water-Quality Model, the uncertainty associated with simulated constituent concentrations and property values was analyzed and quantified using the Enhanced Stream Water Quality Model-Uncertainty Analysis. The Monte Carlo simulation and first-order error analysis methods were used to analyze the uncertainty in simulated values for six constituents and properties at sites 5, 10, and 14 (upstream to downstream order). The constituents and properties analyzed for uncertainty are specific conductance, total organic nitrogen (reported as nitrogen), total ammonia (reported as nitrogen), total nitrite plus nitrate (reported as nitrogen), 5-day carbonaceous biochemical oxygen demand for ice-cover conditions and ultimate carbonaceous biochemical oxygen demand for ice-free conditions, and dissolved oxygen. Results are given in detail for both the ice-cover and ice-free conditions for specific conductance, total ammonia, and dissolved oxygen.The sensitivity and uncertainty of the simulated constituent concentrations and property values to input variables differ substantially between ice-cover and ice-free conditions. During ice-cover conditions, simulated specific-conductance values are most sensitive to the headwatersource specific-conductance values upstream of site 10 and the point-source specific-conductance values downstream of site 10. These headwater-source and point-source specific-conductance values also are the key sources of uncertainty. Simulated total ammonia concentrations are most sensitive to the point-source total ammonia concentrations at all three sites. Other input variables that contribute substantially to the variability of simulated total ammonia concentrations are the headwater-source total ammonia and the instream reaction coefficient for biological decay of total ammonia to total nitrite. Simulated dissolved-oxygen concentrations at all three sites are most sensitive to headwater-source dissolved-oxygen concentration. This input variable is the key source of variability for simulated dissolved-oxygen concentrations at sites 5 and 10. Headwatersource and point-source dissolved-oxygen concentrations are the key sources of variability for simulated dissolved-oxygen concentrations at site 14.During ice-free conditions, simulated specific-conductance values at all three sites are most sensitive to the headwater-source specific-conductance values. Headwater-source specificconductance values also are the key source of uncertainty. The input variables to which total ammonia and dissolved oxygen are most sensitive vary from site to site and may or may not correspond to the input variables that contribute the most to the variability. The input variables that contribute the most to the variability of simulated total ammonia concentrations are pointsource total ammonia, instream reaction coefficient for biological decay of total ammonia to total nitrite, and Manning's roughness coefficient. The input variables that contribute the most to the variability of simulated dissolved-oxygen concentrations are reaeration rate, sediment oxygen demand rate, and headwater-source algae as chlorophyll a.
Cary, L.E.
1989-01-01
Data for selected water quality variables were evaluated for trends at two sampling stations--Flathead River at Flathead, British Columbia (Flathead station) and Flathead River at Columbia Falls, Montana (Columbia Falls station). The results were compared between stations. The analyses included data from water years 1975-86 at the Flathead station and water years 1979-86 at the Columbia Falls station. The seasonal Kendall test was applied to adjusted concentrations for variables related to discharge and to unadjusted concentrations for the remaining variables. Slope estimates were made for variables with significant trends unless data were reported as less than the detection limit. At the Flathead station, concentrations of dissolved solids, calcium, magnesium, sodium, dissolved nitrite plus nitrate nitrogen, ammonia nitrogen (total and dissolved), total organic nitrogen, and total phosphorus increased during the study period. Concentrations of total nitrite plus nitrate nitrogen and dissolved iron decreased during the same period. At the Columbia Falls station, concentrations increased for calcium and magnesium and decreased for sulfate and dissolved phosphorus. No trends were detected for 10 other variables tested at each station. Data for the Flathead station were reanalyzed for water years 1979-86. Trends in the data increased for magnesium and dissolved nitrite plus nitrate nitrogen and decreased for dissolved iron. Magnesium was the only variable that displayed a trend (increasing) at both stations. The increasing trends that were detected probably will not adversely affect the water quality of the Flathead River in the near future. (USGS)
Yang, Jon; Verba, Circe; Torres, Marta; ...
2018-02-01
Rare earth elements (REEs) are economically important to modern society and the rapid growth of technologies dependent on REEs has placed considerable economic pressure on their sourcing. This study addresses whether REEs could be released as a byproduct of natural gas extraction from a series of experiments that were designed to simulate hydraulic fracturing of black shale under various pressure (25 and 27.5 MPa) and temperature (50, 90, 130 °C) conditions. The dissolved REEs in the reacted fluids displayed no propensity for the REEs to be released from black shale under high pressure and temperature conditions, a result that ismore » consistent across the different types of fluids investigated. Overall, there was a net loss of REEs from the fluid. These changes in dissolved REEs were greatest at the moment the fluids first contacted the shale and before the high temperature and high pressure conditions were imposed, although the magnitude of these changes (10 -4 μg/g) were small compared to the magnitude of the total REE content present in the solid shale samples (10 2 μg/g). These results highlight the variability and complexity of hydraulic fracturing systems and indicate that REE may not serve as robust tracers for fracturing fluid-shale reactions. Additionally, the results suggest that significant quantities of REEs may not be byproducts of hydraulically fractured shales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jon; Verba, Circe; Torres, Marta
Rare earth elements (REEs) are economically important to modern society and the rapid growth of technologies dependent on REEs has placed considerable economic pressure on their sourcing. This study addresses whether REEs could be released as a byproduct of natural gas extraction from a series of experiments that were designed to simulate hydraulic fracturing of black shale under various pressure (25 and 27.5 MPa) and temperature (50, 90, 130 °C) conditions. The dissolved REEs in the reacted fluids displayed no propensity for the REEs to be released from black shale under high pressure and temperature conditions, a result that ismore » consistent across the different types of fluids investigated. Overall, there was a net loss of REEs from the fluid. These changes in dissolved REEs were greatest at the moment the fluids first contacted the shale and before the high temperature and high pressure conditions were imposed, although the magnitude of these changes (10 -4 μg/g) were small compared to the magnitude of the total REE content present in the solid shale samples (10 2 μg/g). These results highlight the variability and complexity of hydraulic fracturing systems and indicate that REE may not serve as robust tracers for fracturing fluid-shale reactions. Additionally, the results suggest that significant quantities of REEs may not be byproducts of hydraulically fractured shales.« less
The Effects of Elevated pCO2, Hypoxia and Temperature on ...
Estuarine fish are acclimated to living in an environment with rapid and frequent changes in temperature, salinity, pH, and dissolved oxygen (DO) levels; the physiology of these organisms is well suited to cope with extreme thermal, hypercapnic, and hypoxic stress. While the adverse effects of low dissolved oxygen levels on estuarine fish has been well-documented, the interaction between low DO and elevated pCO2 is not well understood. There is some evidence that low DO and elevated pCO2 interact antagonistically, however little information exists on how projected changes of pCO2 levels in near-shore waters may affect estuarine species, and how these changes may specifically interact with dissolved oxygen and temperature. We explored the survivability of 7-day post fertilization sheepshead minnow, Cyprinodon variegatus, using short term exposure to the combined effects of elevated pCO2 (~1300 µatm; IPCC RCP 8.5) and low dissolved oxygen levels (~2 mg/L). Additionally, we determined if the susceptibility of these fish to elevated pCO2 and low DO was influenced by increases in temperature from 27.5°C to 35°C. Results from this study and future studies will be used to identify estuarine species and lifestages sensitive to the combined effects of elevated pCO2 and low dissolved oxygen. This project was created in order to better understand the interactive effects of projected pCO2 levels and hypoxia in estuarine organisms. This work is currently focused on the se
Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA
Hurwitz, Shaul; Clor, Laura; McCleskey, R. Blaine; Nordstrom, D. Kirk; Hunt, Andrew G.; Evans, William C.
2016-01-01
Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO2 mainly derived from magma and N2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO2 and N2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.
Climate-water quality relationships in Texas reservoirs
Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo
2015-01-01
Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.
Temperature-driven decoupling of key phases of organic matter degradation in marine sediments.
Weston, Nathaniel B; Joye, Samantha B
2005-11-22
The long-term burial of organic carbon in sediments results in the net accumulation of oxygen in the atmosphere, thereby mediating the redox state of the Earth's biosphere and atmosphere. Sediment microbial activity plays a major role in determining whether particulate organic carbon is recycled or buried. A diverse consortium of microorganisms that hydrolyze, ferment, and terminally oxidize organic compounds mediates anaerobic organic matter mineralization in anoxic sediments. Variable temperature regulation of the sequential processes, leading from the breakdown of complex particulate organic carbon to the production and subsequent consumption of labile, low-molecular weight, dissolved intermediates, could play a key role in controlling rates of overall organic carbon mineralization. We examined sediment organic carbon cycling in a sediment slurry and in flow through bioreactor experiments. The data show a variable temperature response of the microbial functional groups mediating organic matter mineralization in anoxic marine sediments, resulting in the temperature-driven decoupling of the production and consumption of organic intermediates. This temperature-driven decoupling leads to the accumulation of labile, low-molecular weight, dissolved organic carbon at low temperatures and low-molecular weight dissolved organic carbon limitation of terminal metabolism at higher temperatures.
Mercury-free dissolution of aluminum-clad fuel in nitric acid
Christian, Jerry D.; Anderson, Philip A.
1994-01-01
A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed.
Mercury-free dissolution of aluminum-clad fuel in nitric acid
Christian, J.D.; Anderson, P.A.
1994-11-15
A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed. 5 figs.
Del Rosario, Katie L; Humphrey, Charles P; Mitra, Siddhartha; O'Driscoll, Michael A
2014-01-01
On-site wastewater treatment systems (OWS) are a potentially significant non-point source of nutrients to groundwater and surface waters, and are extensively used in coastal North Carolina. The goal of this study was to determine the treatment efficiency of four OWS in reducing total dissolved nitrogen (TDN) and dissolved organic carbon (DOC) concentrations before discharge to groundwater and/or adjacent surface water. Piezometers were installed for groundwater sample collection and nutrient analysis at four separate residences that use OWS. Septic tank effluent, groundwater, and surface water samples (from an adjacent stream) were collected four times during 2012 for TDN and DOC analysis and pH, temperature, electrical conductivity, and dissolved oxygen measurements. Treatment efficiencies from the tank to the groundwater beneath the drainfields ranged from 33 to 95% for TDN and 45 to 82% for DOC, although dilution accounted for most of the concentration reductions. There was a significant positive correlation between nitrate concentration and separation distance from trench bottom to water table and a significant negative correlation between DOC concentration and separation distance. The TDN and DOC transport (>15 m) from two OWS with groundwater saturated drainfield trenches was significant.
Stach, Robert; Pejcic, Bobby; Crooke, Emma; Myers, Matthew; Mizaikoff, Boris
2015-12-15
The use of mid-infrared sensors based on conventional spectroscopic equipment for oil spill monitoring and fingerprinting in aqueous systems has to date been mainly confined to laboratory environments. This paper presents a portable-based mid-infrared attenuated total reflectance (MIR-ATR) sensor system that was used to quantify a number of environmentally relevant hydrocarbon contaminants in marine water. The sensor comprises a polymer-coated diamond waveguide in combination with a room-temperature operated pyroelectric detector, and the analytical performance was optimized by evaluating the influence of polymer composition, polymer film thickness, and solution flow rate on the sensor response. Uncertainties regarding the analytical performance and instrument specifications for dissolved oil detection were investigated using real-world seawater matrices. The reliability of the sensor was tested by exposition to known volumes of different oils; crude oil and diesel samples were equilibrated with seawater and then analyzed using the developed MIR-ATR sensor system. For validation, gas chromatographic measurements were performed revealing that the MIR-ATR sensor is a promising on-site monitoring tool for determining the concentration of a range of dissolved oil components in seawater at ppb to ppm levels.
[Causes of jellyfish blooms and their influence on marine environment].
Qu, Chang-feng; Song, Jin-ming; Li, Ning
2014-12-01
Jellyfish blooms have damaged the normal composition and function of marine ecosystem and ecological environments, which have been one of the new marine ecological disasters. In this study, we summarized the possible inducements of jellyfish blooms, and the influences of jellyfish blooms on biogenic elements, dissolved oxygen, seawater acidity and biological community were discussed emphatically. The results showed that jellyfish blooms had a close contact with its physiological structure and life history, which had favorable characteristics including simple body struc- ture, rapid growth, thriving reproduction and short generation interval to tolerate harsh environment better. Jellyfish abundance increased rapidly when it encountered suitable conditions. The temperature variations of seawater might be the major inducing factor which could result in jellyfish blooms. Jellyfish blooms may benefit from warmer temperature that could increase the food availability of jellyfish and promote jellyfish reproduction, especially for warm temperate jellyfish species. Eutrophication, climate change, overfishing, alien invasions and habitat modification were all possible important contributory factors of jellyfish blooms. Jellyfish could significantly influence the form distribution and biogeochemical cycling of biogenic elements. Jellyfish excreted NH4+ and P04(3-) at a rate of 59.1-91.5 micromol N x kg(-1) x h(-1) and 1.1-1.8 micromol P x kg(-1) x h(-1), which could meet about 8%-10% and 21.6% of the phytoplankton primary production requirement of N and P, respectively. Live jellyfish released dissolved organic carbon (DOC) at a rate of 1.0 micromol C x g(-1) x d(-1). As jellyfish decomposing, the effluxes of total N and total P were 4000 micromol N x kg(-1) x d(-1) and 120 micromol P x kg(-1) x d(-1), respectively, while the efflux of DOC reached 30 micromol C x g(-1) x d(-1). Jellyfish decomposition could cause seawater acidification and lowered level of dissolved oxygen and finally made the ambient water become acidic and hypoxic. The pH decreased by 1.3, while the mean dissolved oxygen demand reached 32.8 micromol x kg(-1) x h(-1). Jellyfish blooms also influenced the marine organism community, which might reduce the biomass of some fish and zooplankton, increase the amount of bacterioplankton, indirectly .increase the quantity of phytoplankton and lead to abnormal primary production.
Effects of elevated total dissolved solids on bivalves
A series of experiments were performed to assess the toxicity of different dominant salt recipes of excess total dissolved solids (TDS) to organisms in mesocosms. Multiple endpoints were measured across trophic levels. We report here the effects of four different TDS recipes on b...
COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS
Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...
Eddins, W.H.; Crawford, J.K.
1984-01-01
In 1979-81, water samples were collected from 119 sites on streams throughout the City of Charlotte and Mecklenburg County, North Carolina, and were analyzed for specific conductance, dissolved chloride, hardness, pH, total alkalinity, total phosphorus, trace elements, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, silver, and zinc and biological measures including dissolved oxygen, biochemical oxygen demand, fecal coliform bacteria, and fecal streptococcus bacteria. Sampling was conducted during both low flow (base flow) and high flow. Several water-quality measures including pH, total arsenic, total cadmium, total chromium, total copper, total iron, total lead, total manganese, total mercury, total silver, total zinc, dissolved oxygen, and fecal coliform bacteria at times exceeded North Carolina water-quality standards in various streams. Runoff from non-point sources appears to contribute more to the deterioration of streams in Charlotte and Mecklenburg County than point-source effluents. Urban and industrial areas contribute various trace elements. Residential and rural areas and municipal waste-water treatment plants contribute high amounts of phosphorus.
Ball, James W.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Schoonen, Martin A.A.; Xu, Yong
2001-01-01
Fifty-eight water analyses are reported for samples collected from 19 hot springs and their overflow drainages and one ambient-temperature acid stream in Yellowstone National Park (YNP) during 1996-98. These water samples were collected and analyzed as part of research investigations on microbially mediated sulfur oxidation in stream waters and sulfur redox speciation in hot springs in YNP and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. The research on sulfur redox speciation in hot springs is a collaboration with the State University of New York at Stony Brook, Northern Arizona University, and the U.S. Geological Survey (USGS). One ambient-temperature acidic stream system, Alluvium Creek and its tributaries in Brimstone Basin, was studied in detail. Analyses were performed adjacent to the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability and preservability of the constituent. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity and F were determined within a few days of sample collection by titration and by ion-selective electrode, respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by ion chromatography (IC). Concentrations of Cl, SO4, and Br were determined by IC within a few days of sample collection. Concentrations of Fe(II) and Fe(total) were determined by ultraviolet/visible spectrophotometry within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li, Na, and K were determined by flame atomic absorption (Li) and emission (Na, K) spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), Mg, Mn, Ni, Pb, Si, Sr, V, and Zn were determined by inductively-coupled plasma optical emission spectrometry. Trace concentrations of Cd, Se, As(total), Ni, and Pb were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Trace concentrations of As(total) and As(III) were determined by hydride generation using a flow-injection analysis system.
Dissolved carbon biogeochemistry and export in mangrove-dominated rivers of the Florida Everglades
NASA Astrophysics Data System (ADS)
Ho, David T.; Ferrón, Sara; Engel, Victor C.; Anderson, William T.; Swart, Peter K.; Price, René M.; Barbero, Leticia
2017-05-01
The Shark and Harney rivers, located on the southwest coast of Florida, USA, originate in the freshwater, karstic marshes of the Everglades and flow through the largest contiguous mangrove forest in North America. In November 2010 and 2011, dissolved carbon source-sink dynamics was examined in these rivers during SF6 tracer release experiments. Approximately 80 % of the total dissolved carbon flux out of the Shark and Harney rivers during these experiments was in the form of inorganic carbon, either via air-water CO2 exchange or longitudinal flux of dissolved inorganic carbon (DIC) to the coastal ocean. Between 42 and 48 % of the total mangrove-derived DIC flux into the rivers was emitted to the atmosphere, with the remaining being discharged to the coastal ocean. Dissolved organic carbon (DOC) represented ca. 10 % of the total mangrove-derived dissolved carbon flux from the forests to the rivers. The sum of mangrove-derived DIC and DOC export from the forest to these rivers was estimated to be at least 18.9 to 24.5 mmol m-2 d-1, a rate lower than other independent estimates from Shark River and from other mangrove forests. Results from these experiments also suggest that in Shark and Harney rivers, mangrove contribution to the estuarine flux of dissolved carbon to the ocean is less than 10 %.
Jiang, Yu; Shang, Yu; Wang, Hongyu; Yang, Kai
2016-12-01
The start-up of an aerobic granular sludge (AGS) reactor at low temperature was more difficult than at ambient temperature.The rapid formation and characteristics of AGS in a sequencing batch airlift reactor at low temperature were investigated. The nutrient removal ability of the system was also evaluated. It was found that compact granules with clear boundary were formed within 10 days and steady state was achieved within 25 days. The settling properties of sludge were improved with the increasing secretion of extracellular polymeric substances and removal performances of pollutants were enhanced along with granulation. The average removal efficiencies of COD, NH4(+)-N, total nitrogen (TN), total phosphorus (TP) after aerobic granules maturing were over 90.9%, 94.7%, 75.4%, 80.2%, respectively. The rise of temperature had little impact on pollutant biodegradation while the variation of dissolved oxygen caused obvious changes in TN and TP removal rates. COD concentrations of effluents were below 30 mg l(-1) in most cycles of operation with a wide range of organic loading rates (0.6-3.0 kg COD m(-3) d(-1)). The rapid granulation and good performance of pollutant reduction by the system might provide an alternate for wastewater treatment in cold regions.
Lorenz, David L.; Robertson, Dale M.; Hall, David W.; Saad, David A.
2009-01-01
Many actions have been taken to reduce nutrient and suspended-sediment concentrations and the amount of nutrients and sediment transported in streams as a result of the Clean Water Act and subsequent regulations. This report assesses how nutrient and suspended-sediment concentrations and loads in selected streams have changed during recent years to determine if these actions have been successful. Flow-adjusted and overall trends in concentrations and trends in loads from 1993 to 2004 were computed for total nitrogen, dissolved ammonia, total organic nitrogen plus ammonia, dissolved nitrite plus nitrate, total phosphorus, dissolved phosphorus, total suspended material (total suspended solids or suspended sediment), and total suspended sediment for 49 sites in the Upper Mississippi, Ohio, Red, and Great Lakes Basins. Changes in total nitrogen, total phosphorus, and total suspended-material loads were examined from 1975 to 2003 at six sites to provide a longer term context for the data examined from 1993 to 2004. Flow-adjusted trends in total nitrogen concentrations at 19 of 24 sites showed tendency toward increasing concentrations, and overall trends in total nitrogen concentrations at 16 of the 24 sites showed a general tendency toward increasing concentrations. The trends in these flow-adjusted total nitrogen concentrations are related to the changes in fertilizer nitrogen applications. Flow-adjusted trends in dissolved ammonia concentrations from 1993 to 2004 showed a widespread tendency toward decreasing concentrations. The widespread, downward trends in dissolved ammonia concentrations indicate that some of the ammonia reduction goals of the Clean Water Act are being met. Flow-adjusted and overall trends in total organic plus ammonia nitrogen concentrations from 1993 to 2004 did not show a distinct spatial pattern. Flow-adjusted and overall trends in dissolved nitrite plus nitrate concentrations from 1993 to 2004 also did not show a distinct spatial pattern. Flow-adjusted trends in total phosphorus concentrations were upward at 24 of 40 sites. Overall trends in total phosphorus concentrations were mixed and showed no spatial pattern. Flow-adjusted and overall trends in dissolved phosphorus concentrations were consistently downward at all of the sites in the eastern part of the basins studied. The reduction in phosphorus fertilizer use and manure production east of the Mississippi River could explain most of the observed trends in dissolved phosphorus. Flow-adjusted trends in total suspended-material concentrations showed distinct spatial patterns of increasing tendencies throughout the western part of the basins studied and in Illinois and decreasing concentrations throughout most of Wisconsin, Iowa, and in the eastern part of the basins studied. Flow-adjusted trends in total phosphorus were strongly related to the flow-adjusted trends in suspended materials. The trends in the flow-adjusted suspended-sediment concentrations from 1993 to 2004 resembled those for suspended materials. The long-term, nonmonotonic trends in total nitrogen, total phosphorus, and suspended-material loads for 1975 to 2003 were described by local regression, LOESS, smoothing for six sites. The statistical significance of those trends cannot be determined; however, the long-term changes found for annual streamflow and load data indicate that the monotonic trends from 1993 to 2004 should not be extrapolated backward in time.
Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.
2008-01-01
For the eight monitoring stations in water year 2008, an average of 99.6 percent of the TDG data were received in real time by the USGS satellite downlink and were within 1-percent saturation of the expected value on the basis of calibration data, replicate quality-control measurements in the river, and comparison to ambient river conditions at adjacent stations. Data received from the individual stations ranged from 98.8 to 100.0 percent complete.
Clow, David W.; Rhoades, Charles; Briggs, Jenny S.; Caldwell, Megan K.; Lewis, William M.
2011-01-01
Pine forest in northern Colorado and southern Wyoming, USA, are experiencing the most severe mountain pine beetle epidemic in recorded history, and possible degradation of drinking-water quality is a major concern. The objective of this study was to investigate possible changes in soil and water chemistry in Grand County, Colorado in response to the epidemic, and to identify major controlling influences on stream-water nutrients and C in areas affected by the mountain pine beetle. Soil moisture and soil N increased in soils beneath trees killed by the mountain pine beetle, reflecting reduced evapotranspiration and litter accumulation and decay. No significant changes in stream-water NO3-">NO3- or dissolved organic C were observed; however, total N and total P increased, possibly due to litter breakdown or increased productivity related to warming air temperatures. Multiple-regression analyses indicated that % of basin affected by mountain pine beetles had minimal influence on stream-water NO3-">NO3- and dissolved organic C; instead, other basin characteristics, such as percent of the basin classified as forest, were much more important.
Said, Khaled S A; Shuhaimi-Othman, M; Ahmad, A K
2012-05-01
A study of water quality parameters (temperature, conductivity, total dissolved solid, dissolved oxygen, pH and water hardness) in Ampang Hilir Lake was conducted in January, April, July and October 2010. The water quality parameters were tested and recorded at different sampling stations chosen randomly using Hydrolab Data Sonde 4 and Surveyor 4 a water quality multi probe (USA). Six metals which were cadmium, chromium, lead, nickel, zinc and copper were determined in five different compartments of the lake namely water, total suspended solids, plankton, sediment and fish. The metals concentration were determined by Inductively Coupled Plasma Mass Spectrometer (ICP-MS), Perkin Elmer Elan, model 9000.The water quality parameters were compared with National Water Quality Standard (NWQS Malaysia) while metal concentrations were compared with Malaysian and international standards. The study shows that water quality parameters are of class 2. This condition is suitable for recreational activities where body contact is allowed and suitable for sensitive fishing activities. Furthermore, metal concentrations were found to be lower than the international standards, therefore toxic effects for these metals would be rarely observed and the adverse effects to aquatic organisms would not frequently occur.
A recent conceptual model links high bulk electrical conductivities at hydrocarbon impacted sites to higher total dissolved solids (TDS) resulting from enhanced mineral weathering due to acids produced during biodegradation. In this study, we investigated the vertical distributio...
THE DETERMINATION OF TOTAL ORGANIC HALIDE IN WATER: A COMPARATIVE STUDY OF TWO INSTRUMENTS
Total organic halide (TOX) analyzers are commonly used to measure the amount of dissolved halogenated organic byproducts in disinfected waters. ecause of the lack of information on the identity of disinfection byproducts, rigorous testing of the dissolved organic halide (DOX) pro...
Trend analysis of selected water-quality constituents in the Verde River Basin, central Arizona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldys, S.
1990-01-01
Temporal trends of eight water quality constituents at six data collection sites in the Verde River basin in central Arizona were investigated using seasonal Kendall tau and ordinary least-squares regression methods of analysis. The constituents are dissolved solids, dissolved sulfate, dissolved arsenic, total phosphorus, pH, total nitrite plus nitrate-nitrogen, dissolved iron, and fecal coliform bacteria. Increasing trends with time in dissolved-solids concentrations of 7 to 8 mg/L/yr at Verde River near Camp Verde were found at significant level. An increasing trend in dissolved-sulfate concentrations of 3.59 mg/L/yr was also found at Verde River near Camp Verde, although at nonsignificant levels.more » Statistically significant decreasing trends with time in dissolved-solids and dissolved-sulfate concentrations were found at Verde River above Horseshoe Reservoir, which is downstream from Verde River near Camp Verde. Observed trends in the other constituents do not indicate the emergence of water quality problems in the Verde River basin. Analysis of the eight water quality constituents generally indicate nonvarying concentration levels after adjustment for seasonality and streamflow were made.« less
Lambert, Mary S; Ozbay, Gulnihal; Richards, Gary P
2009-08-01
We evaluated the quality of seawater and ribbed mussels (Gukensia demissa) at six sites along the West Coast of Assateague Island National Seashore (ASIS), a barrier island popular with tourists and fishermen. Parameters evaluated were summertime temperature, pH, salinity, dissolved oxygen, total phosphorus, total ammonia nitrogen, and nitrite levels for seawater and total heterotrophic plate counts and total Vibrionaceae levels for the ribbed mussels. Approximately 150 feral horses (Equus caballus) are located on ASIS and, combined with agricultural runoff from animals and croplands, local wildlife, and anthropogenic inputs, contribute to nutrient loads affecting water and shellfish quality. The average monthly dissolved oxygen for June was 2.65 mg L(-1), below the minimum acceptable threshold of 3.0 mg L(-1). Along Chincoteague Bay, total phosphorus generally exceeded the maximum level of 0.037 mg L(-1), as set by the Maryland Coastal Bays Program management objective for seagrasses, with a high of 1.92 mg L(-1) in June, some 50-fold higher than the recommended threshold. Total ammonia nitrogen approached levels harmful to fish, with a maximum recorded value of 0.093 mg L(-1). Levels of total heterotrophic bacteria spiked to 9.5 x 10(6) cells g(-1) of mussel tissue in August in Sinepuxent Bay, leading to mussels which exceeded acceptable standards for edible bivalves by 19-fold. An average of 76% of the bacterial isolates were in the Vibrionaceae family. Together, these data suggest poor stewardship of our coastal environment and the need for new intervention strategies to reduce chemical and biological contamination of our marine resources.
Method of synthesis of proton conducting materials
Garzon, Fernando Henry; Einsla, Melinda Lou; Mukundan, Rangachary
2010-06-15
A method of producing a proton conducting material, comprising adding a pyrophosphate salt to a solvent to produce a dissolved pyrophosphate salt; adding an inorganic acid salt to a solvent to produce a dissolved inorganic acid salt; adding the dissolved inorganic acid salt to the dissolved pyrophosphate salt to produce a mixture; substantially evaporating the solvent from the mixture to produce a precipitate; and calcining the precipitate at a temperature of from about 400.degree. C. to about 1200.degree. C.
A SURROGATE SUBCHRONIC TOXICITY TEST METHOD FOR WATERS WITH HIGH TOTAL DISSOLVED SOLIDS
Total dissolved solids (TDS) are often identified as a toxicant in whole-effluent toxicity (WET) testing. The primary test organism used in WET testing, Ceriodaphnia dubia, is very sensitive to TDS ions, which can be problematic when differentiating the toxicity of TDS from those...
Total organic halide (TOX) analyzers are commonly used to measure the amount of dissolved halogenated organic byproducts in disinfected waters. Because of the lack of information on the identity of disinfection byproducts, rigorous testing of the dissolved organic halide (DOX) pr...
Community-Level Effects of Excess Total Dissolved Solids Doses Using Model Streams
Model stream chronic dosing studies (42 days) were conducted with four different total dissolved solids (TDS) recipes. The recipes differed in their relative dominance of major ions. One was made from sodium and calcium chloride salts only. Another was similar to the first, but a...
TOTAL DISSOLVED AND BIOAVAILABLE METALS AT LAKE TEXOMA MARINAS
Dissolved metals in water and total metals in sediments have been measured at marina areas in Lake Texoma during June 1999 to October 2001, and October 2001, respectively. The metals most often found in the highest concentrations in marina water were Na and Ca, followed by Mg an...
Joiner, John K.; Aulenbach, Brent T.; Landers, Mark N.
2014-01-01
The U.S. Geological Survey, in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds of Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and was expanded to another six watersheds in 2001. As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured continuously at the 12 watershed monitoring stations for water years 2004–09. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally. The 12 watersheds were characterized for basin slope, population density, land use for 2009, and the percentage of impervious area from 2000 to 2009. Precipitation in water years 2004–09 was about 18 percent below average, and the county experienced exceptional drought conditions and below average runoff in water years 2007 and 2008. Watershed water yields, the percentage of precipitation that results in runoff, typically are lower in low precipitation years and are higher for watersheds with the highest percentages of impervious areas. A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance, however, decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples. Seasonal patterns and long-term trends in flow-adjusted water-quality concentrations were identified for five representative constituents—total nitrogen, total phosphorus, total zinc, total dissolved solids, and total suspended solids. Seasonal patterns for all five constituents were fairly similar, with higher concentrations in the summer and lower concentrations in the winter. Significant linear long-term trends in stormflow composite concentrations were identified for 36 of the 60 constituent-watershed combinations (5 constituents multiplied by 12 watersheds) for the period of record through water year 2011. Significant trends typically were decreasing for total nitrogen, total phosphorus, total suspended solids, and total zinc and increasing for total dissolved solids. Total dissolved solids and total suspended solids trends had the largest magnitude changes per year. Stream water loads were estimated for 10 water-quality constituents. These estimates represent the cumulative effects of watershed characteristics, hydrologic processes, biogeochemical processes, climatic variability, and human influences on watershed water quality. Yields, in load per unit area, were used to compare loads from watersheds with different sizes. A load estimation approach developed for the Gwinnett County LTTM program that incorporates storm-event composited samples was used with some minor modifications. This approach employs the commonly used regression-model method. Concentrations were modeled as a function of discharge, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion. The amount of annual runoff is the primary factor in determining the amount of annual constituent loads. Below average runoff during water years 2004–09, especially during water years 2006–08, resulted in corresponding below average loads. Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (total suspended solids and suspended-sediment concentrations) along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc) and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appear to be associated with watersheds that have a low percentage of high-density development. Total suspended solids yields were lower in drought years, water years 2007–08, from the combined effects of less runoff and the result of fewer, lower magnitude storms, which likely resulted in less surface erosion and lower stream sediment transport.
NASA Astrophysics Data System (ADS)
Xiao, Qian; Lu, Zhanpeng; Chen, Junjie; Yao, Meiyi; Chen, Zhen; Ejaz, Ahsan
2016-11-01
The effects of temperature, solution composition and dissolved oxygen on the corrosion rate and electrochemical behavior of an A508III low alloy steel in boric acid solution with lithium hydroxide at 25-95 °C are investigated. In aerated solutions, increasing the boric acid concentration increases the corrosion rate and the anodic current density. The corrosion rate in deaerated solutions increases with increasing temperature. A corrosion rate peak value is found at approximately 75 °C in aerated solutions. Increasing temperature increases the oxygen diffusion coefficient, decreases the dissolved oxygen concentration, accelerates the hydrogen evolution reaction, and accelerates both the active dissolution and the film forming reactions. Increasing dissolved oxygen concentration does not significantly affect the corrosion rate at 50 and 60 °C, increases the corrosion rate at 70 and 80 °C, and decreases the corrosion rate at 87.5 and 95 °C in a high concentration boric acid solution with lithium hydroxide.
Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2005
Hoilman, Gene R.; Lindenberg, Mary K.; Wood, Tamara M.
2008-01-01
During June-October 2005, water quality data were collected from Upper Klamath and Agency Lakes in Oregon, and meteorological data were collected around and within Upper Klamath Lake. Data recorded at two continuous water quality monitors in Agency Lake showed similar temperature patterns throughout the field season, but data recorded at the northern site showed more day-to-day variability for dissolved oxygen concentration and saturation after late June and more day-to-day variability for pH and specific conductance values after mid-July. Data recorded from the northern and southern parts of Agency Lake showed more comparable day-to-day variability in dissolved oxygen concentrations and pH from September through the end of the monitoring period. For Upper Klamath Lake, seasonal (late July through early August) lows of dissolved oxygen concentrations and saturation were coincident with a seasonal low of pH values and seasonal highs of ammonia and orthophosphate concentrations, specific conductance values, and water temperatures. Patterns in these parameters, excluding water temperature, were associated with bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae in Upper Klamath Lake. In Upper Klamath Lake, water temperature in excess of 28 degrees Celsius (a high stress threshold for Upper Klamath Lake suckers) was recorded only once at one site during the field season. Large areas of Upper Klamath Lake had periods of dissolved oxygen concentration of less than 4 milligrams per liter and pH value greater than 9.7, but these conditions were not persistent throughout days at most sites. Dissolved oxygen concentrations in Upper Klamath Lake on time scales of days and months appeared to be influenced, in part, by bathymetry and prevailing current flow patterns. Diel patterns of water column stratification were evident, even at the deepest sites. This diel pattern of stratification was attributable to diel wind speed patterns and the shallow nature of most of Upper Klamath Lake. Timing of the daily extreme values of dissolved oxygen concentration, pH, and water temperature was less distinct with increased water column depth. Chlorophyll a concentrations varied spatially and temporally throughout Upper Klamath Lake. Location greatly affected algal concentrations, in turn affecting nutrient and dissolved oxygen concentrations - some of the highest chlorophyll a concentrations were associated with the lowest dissolved oxygen concentrations and the highest un-ionized ammonia concentrations. The occurrence of the low dissolved oxygen and high un-ionized ammonia concentrations coincided with a decline in algae resulting from cell death, as measured by concentrations of chlorophyll a. Dissolved oxygen production rates in experiments were as high as 1.47 milligrams of oxygen per liter per hour, and consumption rates were as much as -0.73 milligrams of oxygen per liter per hour. Dissolved oxygen consumption rates measured in this study were comparable to those measured in a 2002 Upper Klamath Lake study, and a higher rate of dissolved oxygen consumption was recorded in dark bottles positioned higher in the water column. Data, though inconclusive, indicated that a decreasing trend of dissolved oxygen productivity through July could have contributed to the decreasing dissolved oxygen concentrations and percent saturation recorded in Upper Klamath Lake during this time. Phytoplankton self-shading was evident from a general inverse relation between depth of photic zone and chlorophyll a concentrations. This shading caused net dissolved oxygen consumption during daylight hours in lower parts of the water column that would otherwise have been in the photic zone. Meteorological data collected in and around Upper Klamath Lake showed that winds were likely to come from a broad range of westerly directions in the northern one-third of the lake, but tended to come from a narrow range of northwesterly directions
Qu, Chang-feng; Song, Jin-ming; Li, Ning; Li, Xue-gang; Yuan, Hua-mao; Duan, Li-qin
2016-01-01
Abstract: Jellyfish bloom has been increasing in Chinese seas and decomposition after jellyfish bloom has great influences on marine ecological environment. We conducted the incubation of Nemopilema nomurai decomposing to evaluate its effect on carbon, nitrogen and phosphorus recycling of water column by simulated experiments. The results showed that the processes of jellyfish decomposing represented a fast release of biogenic elements, and the release of carbon, nitrogen and phosphorus reached the maximum at the beginning of jellyfish decomposing. The release of biogenic elements from jellyfish decomposition was dominated by dissolved matter, which had a much higher level than particulate matter. The highest net release rates of dissolved organic carbon and particulate organic carbon reached (103.77 ± 12.60) and (1.52 ± 0.37) mg · kg⁻¹ · h⁻¹, respectively. The dissolved nitrogen was dominated by NH₄⁺-N during the whole incubation time, accounting for 69.6%-91.6% of total dissolved nitrogen, whereas the dissolved phosphorus was dominated by dissolved organic phosphorus during the initial stage of decomposition, being 63.9%-86.7% of total dissolved phosphorus and dominated by PO₄³⁻-P during the late stage of decomposition, being 50.4%-60.2%. On the contrary, the particulate nitrogen was mainly in particulate organic nitrogen, accounting for (88.6 ± 6.9) % of total particulate nitrogen, whereas the particulate phosphorus was mainly in particulate. inorganic phosphorus, accounting for (73.9 ±10.5) % of total particulate phosphorus. In addition, jellyfish decomposition decreased the C/N and increased the N/P of water column. These indicated that jellyfish decomposition could result in relative high carbon and nitrogen loads.
Electrodeposition of crystalline GaAs on liquid gallium electrodes in aqueous electrolytes.
Fahrenkrug, Eli; Gu, Junsi; Maldonado, Stephen
2013-01-09
Crystalline GaAs (c-GaAs) has been prepared directly through electroreduction of As(2)O(3) dissolved in an alkaline aqueous solution at a liquid gallium (Ga(l)) electrode at modest temperatures (T ≥ 80 °C). Ga(l) pool electrodes yielded consistent electrochemical behavior, affording repetitive measurements that illustrated the interdependences of applied potential, concentration of dissolved As(2)O(3), and electrodeposition temperature on the quality of the resultant c-GaAs(s). Raman spectra indicated the composition of the resultant film was strongly dependent on both the electrodeposition temperature and dissolved concentration of As(2)O(3) but not to the applied bias. For electrodepositions performed either at room temperature or with high (≥0.01 M) concentrations of dissolved As(2)O(3), Raman spectra of the electrodeposited films were consistent with amorphous As(s). X-ray diffractograms of As(s) films collected after thermal annealing indicated metallurgical alloying occurred only at temperatures in excess of 200 °C. Optical images and Raman spectra separately showed the composition of the as-electrodeposited film in dilute (≤0.001 M) solutions of dissolved As(2)O(3)(aq) was pure c-GaAs(s) at much lower temperatures than 200 °C. Diffractograms and transmission electron microscopy performed on as-prepared films confirmed the identity of c-GaAs(s). The collective results thus provide the first clear demonstration of an electrochemical liquid-liquid-solid (ec-LLS) process involving a liquid metal that serves simultaneously as an electrode, a solvent/medium for crystal growth, and a coreactant for the synthesis of a polycrystalline semiconductor. The presented data serve as impetus for the further development of the ec-LLS process as a controllable, simple, and direct route for technologically important optoelectronic materials such as c-GaAs(s).
NASA Astrophysics Data System (ADS)
Laraque, Alain; Moquet, Jean-Sébastien; Alkattan, Rana; Steiger, Johannes; Mora, Abrahan; Adèle, Georges; Castellanos, Bartolo; Lagane, Christèle; Lopez, José Luis; Perez, Jesus; Rodriguez, Militza; Rosales, Judith
2013-07-01
Seasonal variations of total dissolved fluxes of the lower Orinoco River were calculated taking into account four complete hydrological cycles during a five-year period (2005-2010). The modern concentrations of total dissolved solids (TDS) of the Orinoco surface waters were compared with data collected during the second half of the last century published in the literature. This comparison leads to the conclusion that chemical composition did not evolve significantly at least over the last thirty to forty years. Surface waters of the Orinoco at Ciudad Bolivar are between bicarbonated calcic and bicarbonated mixed. In comparison to mean values of concentrations of total dissolved solids (TDS) of world river surface waters (89.2 mg l-1), the Orinoco River at Ciudad Bolivar presents mainly low mineralized surface waters (2005-10: TDS 30 mg l-1). The TDS fluxes passing at this station in direction to the Atlantic Ocean between 2005 and 2010 were estimated at 30 × 106 t yr-1, i.e. 36 t km-2 yr-1. It was observed that the seasonal variations (dry season vs wet season) of total dissolved fluxes (TDS and dissolved organic carbon (DOC)) are mainly controlled by discharge variations. Two groups of elements have been defined from dilution curves and molar ratio diagrams. Ca2+, Mg2+, HCO3-, Cl- and Na+ mainly come from the same geographic and lithologic area, the Andes. K+ and SiO2 essentially come from the Llanos and the Guayana Shield. These findings are important for understanding fundamental geochemical processes within the Orinoco River basin, but also as a baseline study in the perspective of the development of numerous mining activities related with aluminum and steel industries; and the plans of the Venezuelan government to construct new fluvial ports on the lower Orinoco for the transport of hydrocarbons.
David E. Pelster; Randall K. Kolka; Ellie E. Prepas
2009-01-01
Nitrate, ammonium, total dissolved nitrogen (TDN), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and flux were measured for one year in bulk deposition and throughfall from three stand types (upland deciduous, upland conifer and wetland conifer) on the Boreal Plain, Canada. Annual (November 2006 to October 2007 water year) flux...
More on the losses of dissolved CO(2) during champagne serving: toward a multiparameter modeling.
Liger-Belair, Gérard; Parmentier, Maryline; Cilindre, Clara
2012-11-28
Pouring champagne into a glass is far from being inconsequential with regard to the dissolved CO(2) concentration found in champagne. Three distinct bottle types, namely, a magnum bottle, a standard bottle, and a half bottle, were examined with regard to their loss of dissolved CO(2) during the service of successively poured flutes. Whatever the bottle size, a decreasing trend is clearly observed with regard to the concentration of dissolved CO(2) found within a flute (from the first to the last one of a whole service). Moreover, when it comes to champagne serving, the bottle size definitely does matter. The higher the bottle volume, the better its buffering capacity with regard to dissolved CO(2) found within champagne during the pouring process. Actually, for a given flute number in a pouring data series, the concentration of dissolved CO(2) found within the flute was found to decrease as the bottle size decreases. The impact of champagne temperature (at 4, 12, and 20 °C) on the losses of dissolved CO(2) found in successively poured flutes for a given standard 75 cL bottle was also examined. Cold temperatures were found to limit the decreasing trend of dissolved CO(2) found within the successively poured flutes (from the first to the last one of a whole service). Our experimental results were discussed on the basis of a multiparameter model that accounts for the major physical parameters that influence the loss of dissolved CO(2) during the service of a whole bottle type.
Christensen, V.G.
2001-01-01
Because of the considerable wildlife benefits offered by the Quivira National Wildlife Refuge in south-central Kansas, there is a desire to ensure suitable water quality. To assess the quality of water flowing from Rattlesnake Creek into the refuge, the U.S. Geological Survey collected periodic water samples from December 1998 through June 2001 and analyzed the samples for physical properties, dissolved solids, total suspended solids, suspended sediment, major ions, nutrients, metals, pesticides, and indicator bacteria. Concentrations of 10 of the 125 chemicals analyzed did not meet water-quality criteria to protect aquatic life and drinking water in a least one sample. These were pH, turbidity, dissolved oxygen, dissolved solids, sodium, chloride, phosphorus, total coliform bacteria, E. coli bacteria, and fecal coliform bacteria. No metal or pesticide concentrations exceeded water-quality criteria. Twenty-two of the 43 metals analyzed were not detected, and 36 of the 46 pesticides analyzed were not detected. Because dissolved solids, sodium, chloride, fecal coliform bacteria, and other chemicals that are a concern for the health and habitat of fish and wildlife at the refuge cannot be measured continuously, regression equations were developed from a comparison of the analytical results of periodic samples and in-stream monitor measurements of specific conductance, pH, water temperature, turbidity, and dissolved oxygen. A continuous record of estimated chemical concentrations was developed from continuously recorded in-stream measurements. Annual variation in water quality was evaluated by comparing 1999 and 2000 sample data- the 2 years for which complete data sets were available. Median concentrations of alkalinity, fluoride, nitrate, and fecal coliform bacteria were smaller or did not change from 1999 to 2000. Dissolved solids, total suspended solids, sodium, chloride, sulfate, total organic nitrogen, and total phosphorus had increases in median concentrations from 1999 to 2000. Increases in the median concentrations of the major ions were expected due to decreased rainfall in 2000 and very low streamflow late in the year. Increases for solids and nutrients may have been due to the unusually high streamflow in the early spring of 2000. This was the time of year when fields were tilled, exposing solids and nutrients that were transported with runoff to Rattlesnake Creek. Load estimates indicate the chemical mass transported into the refuge and can be used in the development of total maximum daily loads (as specified by the U.S. Environmental Protection Agency) for water-quality contaminants in Rattlesnake Creek. Load estimates also were used to evaluate seasonal variation in water quality. Seasonal variation was most pronounced in the estimates of nutrient loads, and most of the nutrient load transported to the refuge occurred during just a few periods of surface runoff in the spring and summer. This information may be used by resource managers to determine when water-diversion strategies would be most beneficial. Load estimates also were used to calculate yields, which are useful for site comparisons. The continuous and real-time nature of the record of estimated concentrations, loads, and yields may be important for resource managers, recreationalists, or others for evaluating water-diversion strategies, making water-use decisions, or assessing the environmental effects of chemicals in time to prevent adverse effects on fish or other aquatic life at the refuge.
Dissolved trace elements in a nitrogen-polluted river near to the Liaodong Bay in Northeast China.
Bu, Hongmei; Song, Xianfang; Guo, Fen
2017-01-15
Dissolved trace element concentrations (Ba, Fe, Mn, Si, Sr, and Zn) were investigated in the Haicheng River near to the Liaodong Bay in Northeast China during 2010. Dissolved Ba, Fe, Mn, and Sr showed significant spatial variation, whereas dissolved Fe, Mn, and Zn displayed seasonal variations. Conditions such as water temperature, pH, and dissolved oxygen were found to have an important impact on redox reactions involving dissolved Ba, Fe, and Zn. Dissolved Fe and Mn concentrations were regulated by adsorption or desorption of Fe/Mn oxyhydroxides and the effects of organic carbon complexation on dissolved Ba and Sr were found to be significant. The sources of dissolved trace elements were found to be mainly from domestic sewage, industrial waste, agricultural surface runoff, and natural origin, with estimated seasonal and annual river fluxes established as important inputs of dissolved trace elements from the Haicheng River into the Liaodong Bay or Bohai Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.
27 CFR 19.385 - Making alcohol or water solutions of denaturants.
Code of Federal Regulations, 2014 CFR
2014-04-01
... alcohol or water solutions of denaturants. If a proprietor uses a denaturant that is difficult to dissolve... working temperature, the proprietor may liquefy or dissolve the denaturant in a small amount of spirits or...
27 CFR 19.385 - Making alcohol or water solutions of denaturants.
Code of Federal Regulations, 2012 CFR
2012-04-01
... alcohol or water solutions of denaturants. If a proprietor uses a denaturant that is difficult to dissolve... working temperature, the proprietor may liquefy or dissolve the denaturant in a small amount of spirits or...
Journey, Celeste A.; Caldwell, Andral W.; Feaster, Toby D.; Petkewich, Mattew D.; Bradley, Paul M.
2011-01-01
The U.S. Geological Survey, in cooperation with Spartanburg Water, evaluated the concentrations, loads, and yields of suspended sediment, dissolved ammonia, dissolved nitrate plus nitrite, total organic nitrogen, total nitrogen, dissolved orthophosphate, dissolved phosphorus, and total phosphorus at sites in the South Pacolet, North Pacolet, and Pacolet Rivers in northern South Carolina and southwestern North Carolina from October 1, 2005, to September 30, 2009 (water years 2006 to 2009). Nutrient and sediment loads and yields also were computed for the intervening subbasin of the Pacolet River not represented by the South and North Pacolet River Basins. Except for a few outliers, the majority of the measurements of total nitrogen concentrations were well below the U.S. Environmental Protection Agency recommended guideline of 0.69 milligram per liter for streams and rivers in the nutrient ecoregion IX, which includes the study area within the Pacolet River Basin. Dissolved orthophosphate, dissolved phosphorus, and total phosphorus concentrations were significantly lower at the South Pacolet River site compared to the North Pacolet and Pacolet River sites. About 90 percent of the total phosphorus concentrations at the South Pacolet River site were below the U.S. Environmental Protection Agency recommended guideline of 0.37 milligram per liter, and more than 75 percent of the total phosphorus concentrations at the North Pacolet and Pacolet River sites were above that guideline. At all sites, minimum annual nutrient loads for the estimation period were observed during water year 2008 when severe drought conditions were present. An estimated mean annual total nitrogen load of 37,770 kilograms per year and yield of 2.63 kilograms per hectare per year were determined for the South Pacolet River site for the estimation period. The North Pacolet River site had a mean annual total nitrogen load of 65,890 kilograms per year and yield of 2.19 kilograms per hectare per year. The Pacolet River had a mean annual total nitrogen load of 99,780 kilograms per year and yield of 1.82 kilograms per hectare per year. Mean annual total phosphorus loads of 2,576; 9,404; and 11,710 kilograms per year and yields of 0.180, 0.313, and 0.213 kilograms per hectare per year were estimated at the South Pacolet, North Pacolet, and Pacolet River sites, respectively. Annually, the intervening subbasin of the Pacolet River contributed negligible amounts of total nitrogen and total phosphorus loads, and large losses of dissolved nitrate plus nitrite and orthophosphate loads were determined for the subbasin. Biological (algal) uptake in the two reservoirs in this intervening area was considered the likely explanation for the loss of these constituents. Estimated mean annual suspended-sediment loads were 21,190,000; 9,895,000; and 6,547,000 kilograms per year at the South Pacolet, North Pacolet, and Pacolet River sites, respectively. In the intervening Pacolet River subbasin, computed annual suspended-sediment loads were consistently negative, indicating large percentage losses in annual suspended-sediment load. Sedimentation processes in the two reservoirs are the most likely explanations for these apparent losses. At all sites, the winter season tended to have the highest estimated seasonal dissolved orthophosphate and dissolved nitrate plus nitrite fluxes, and the summer and fall seasons tended to have the lowest fluxes. The reverse pattern, however, was observed in the intervening drainage area in the Pacolet River where the lowest fluxes of dissolved orthophosphate and nitrate plus nitrite occurred during the winter and spring seasons and the highest occurred during the summer and fall seasons. Synoptic samples were collected during a high-flow event in August 2009 at eight sites that represented shoreline and minor tributary drainages. The South Pacolet River site was identified as contributing greater than 80 percent of the cumulative nutrient and sediment l
Du, Haixia; Li, Fusheng
2017-02-01
The characteristics of dissolved organic matter (DOM) formed in aerobic and anaerobic digestion of excess activated sludge (EAS) was investigated for three total solid (TS) concentrations (1.2, 2.3 and 5.2%) and three temperatures (5, 20 and 35 °C). The results on the overall concentration of DOM evaluated by TOC showed significantly higher values in anaerobic than aerobic digestion (2.8-6.9 times for TS 1.2-5.2% at 20 °C). Data analysis with a first-order sequential reaction model revealed that higher occurrence of DOM in anaerobic digestion was a result of comparatively faster hydrolysis (1.3-5.5 times for TS 1.2-5.2% at 20 °C; 1.4-49.3 times for temperatures 5-35 °C with TS 1.2%) and slower degradation (0.3-1.0 times for TS 1.2-5.2% at 20 °C; 0.5-8.3 times for temperatures 5-35 °C with TS 1.2%). In aerobic digestion, more humic substances were formed; while, in anaerobic digestion, proteins and aromatic amino acids were the major constituents. For both digestions, except for a few exceptions, proteins and humic substances increased as the TS concentration increased; and increasing the temperature led to a decrease in the content of proteins formed in both aerobic and anaerobic digestion, and an increase in the content of humic substances in the aerobic digestion. The UV-absorbing DOM constituents were highly heterogeneous, and were comparatively larger in anaerobic digestion; and did not change significantly with the TS concentrations and temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhou, Wen-Jun; Zhang, Yi-Ping; Schaefer, Douglas A.; Sha, Li-Qing; Deng, Yun; Deng, Xiao-Bao; Dai, Kai-Jie
2013-01-01
A two-year study (2009 ∼ 2010) was carried out to investigate the dynamics of different carbon (C) forms, and the role of stream export in the C balance of a 23.4-ha headwater catchment in a tropical seasonal rainforest at Xishuangbanna (XSBN), southwest China. The seasonal volumetric weighted mean (VWM) concentrations of total inorganic C (TIC) and dissolved inorganic C (DIC) were higher, and particulate inorganic C (PIC) and organic C (POC) were lower, in the dry season than the rainy season, while the VWM concentrations of total organic C (TOC) and dissolved organic C (DOC) were similar between seasons. With increased monthly stream discharge and stream water temperature (SWT), only TIC and DIC concentrations decreased significantly. The most important C form in stream export was DIC, accounting for 51.8% of the total C (TC) export; DOC, POC, and PIC accounted for 21.8%, 14.9%, and 11.5% of the TC export, respectively. Dynamics of C flux were closely related to stream discharge, with the greatest export during the rainy season. C export in the headwater stream was 47.1 kg C ha−1 yr−1, about 2.85% of the annual net ecosystem exchange. This finding indicates that stream export represented a minor contribution to the C balance in this tropical seasonal rainforest. PMID:23437195
Zhou, Wen-Jun; Zhang, Yi-Ping; Schaefer, Douglas A; Sha, Li-Qing; Deng, Yun; Deng, Xiao-Bao; Dai, Kai-Jie
2013-01-01
A two-year study (2009 ~ 2010) was carried out to investigate the dynamics of different carbon (C) forms, and the role of stream export in the C balance of a 23.4-ha headwater catchment in a tropical seasonal rainforest at Xishuangbanna (XSBN), southwest China. The seasonal volumetric weighted mean (VWM) concentrations of total inorganic C (TIC) and dissolved inorganic C (DIC) were higher, and particulate inorganic C (PIC) and organic C (POC) were lower, in the dry season than the rainy season, while the VWM concentrations of total organic C (TOC) and dissolved organic C (DOC) were similar between seasons. With increased monthly stream discharge and stream water temperature (SWT), only TIC and DIC concentrations decreased significantly. The most important C form in stream export was DIC, accounting for 51.8% of the total C (TC) export; DOC, POC, and PIC accounted for 21.8%, 14.9%, and 11.5% of the TC export, respectively. Dynamics of C flux were closely related to stream discharge, with the greatest export during the rainy season. C export in the headwater stream was 47.1 kg C ha(-1) yr(-1), about 2.85% of the annual net ecosystem exchange. This finding indicates that stream export represented a minor contribution to the C balance in this tropical seasonal rainforest.
Moore, C.R.
1989-01-01
This report presents physical, chemical, and biological data collected at 50 sampling sites on selected streams in Chester County, Pennsylvania from 1969 to 1980. The physical data consist of air and water temperature, stream discharge, suspended sediment, pH, specific conductance, and dissolved oxygen. The chemical data consist of laboratory determinations of total nutrients, major ions, and trace metals. The biological data consist of total coliform, fecal coliform, and fecal streptococcus bacteriological analyses, and benthicmacroinvertebrate population analyses. Brillouin's diversity index, maximum diversity, minimum diversity, and evenness for each sample, and median and mean Brilloiuin's diversity index, standard deviation, and standard error of the mean were calculated for the benthic-macroinvertebrate data for each site.
Fournier, R.O.; Kennedy, B.M.; Aoki, M.; Thompson, J.M.
1994-01-01
Opaline sinter samples collected at Yellowstone National Park (YNP) were analyzed for gold by neutron activation and for other trace elements by the inductively coupled plasma optical emission spectroscopy (ICP-OES) method. No correlation was found between Au and As, Sb, or total Fe in the sinters, although the sample containing the highest Au also contains the highest Sb. There also was no correlation of Au in the sinter with the H2S concentration in the discharged hot spring water or with the estimated temperature of last equilibration of the water with the surrounding rock. The Au in rhyolitic tuffs and lavas at YNP found within the Yellowstone caldera show the same range in Au as do those outside the caldera, while thermal waters from within this caldera all have been found to contain relatively low dissolved Au and to deposit sinters that contain relatively little Au. Therefore, it is not likely that variations in Au concentrations among these sinters simply reflect differences in leachable Au in the rocks through which the hydrothermal fluids have passed. Rather, variations in [H2S], the concentration of total dissolved sulfide, that result from different physical and chemical processes that occur in different parts of the hydrothermal system appear to exert the main control on the abundance of Au in these sinters. Hydrothermal fluids at YNP convect upward through a series of successively shallower and cooler reservoirs where water-rock chemical and isotopic reactions occur in response to changing temperature and pressure. In some parts of the system the fluids undergo decompressional boiling, and in other parts they cool conductively without boiling. Mixing of ascending water from deep in the system with shallow groundwaters is common. All three processes generally result in a decrease in [H2S] and destabilize dissolved gold bisulfide complexes in reservoir waters in the YNP system. Thus, different reservoirs in rocks of similar composition and at similar temperatures may contain waters with different [H2S] and [Au]. The [H2S] in a subsurface reservoir water is difficult to assess on the basis of analyses of hot spring waters because of uncertainties about steam loss during fluid ascent. However, the same processes that result in low [H2S] in reservoir waters also tend to result in decreases in the ratio of 3He 4He(R) dissolved in that water. Values of R relative to this ratio in air (Ra) attain values > 15 in YNP thermal waters. To date, all of the thermal waters at YNP that have R Ra values <9 have been found to deposit sinters with relatively low gold concentrations. These include all of the thermal waters that discharge from 180-215??C reservoirs at Upper, Midway, and Lower Geyser Basins within the western part of the Yellowstone caldera, and thermal waters at Norris Geyser Basin, outside the Yellowstone caldera, where some of the waters flow directly to the surface from a reservoir where the temperature is about 300??C. A high 3He 4He ratio in thermal water discharged at the surface does not guarantee high gold concentrations in the sinter deposited by this water. Boiling with loss of steam (the gas phase takes a separate route to the surface) during rapid upflow from the shallowest reservoir to the surface decreases the [H2S] and total He dissolved in the residual liquid without appreciably changing the 3He 4He ratio. This is because the isotopic composition of the He of the initial bulk fluid is unchanged and there is too little time for much radiogenic 4He to build back into the liquid during this rapid ascent from the near-surface reservoir. However, if boiling with phase separation and loss of steam occurs deep in the system, the 3He 4He ratio in the residual liquid, now depleted in H2S and total He, will be susceptible to dilution with radiogenic 4He that is acquired during the longer residence time underground. Some or all of the Au that comes out of solution when an initial gold bisulfide complex breaks
Dissolved organic carbon fluxes from soils in the Alaskan coastal temperate rainforest
NASA Astrophysics Data System (ADS)
D'Amore, D. V.; Edwards, R.; Hood, E. W.; Herendeen, P. A.; Valentine, D.
2011-12-01
Soil saturation and temperature are the primary factors that influence soil carbon cycling. Interactions between these factors vary by soil type, climate, and landscape position, causing uncertainty in predicting soil carbon flux from. The soils of the North American perhumid coastal temperate rainforest (NCTR) store massive amounts of carbon, yet there is no estimate of dissolved organic carbon (DOC) export from different soil types in the region. There are also no working models that describe the influence of soil saturation and temperature on the export of DOC from soils. To address this key information gap, we measured soil water table elevation, soil temperature, and soil and stream DOC concentrations to calculate DOC flux across a soil hydrologic gradient that included upland soils, forested wetland soils, and sloping bog soils in the NCTR of southeast Alaska. We found that increased soil temperature and frequent fluctuations of soil water tables promoted the export of large quantities of DOC from wetland soils and relatively high amounts of DOC from mineral soils. Average area-weighted DOC flux ranged from 7.7 to 33.0 g C m-2 y-1 across a gradient of hydropedologic soil types. The total area specific export of carbon as DOC for upland, forested wetland and sloping bog catchments was 77, 306, and 329 Kg C ha-1 y-1 respectively. The annual rate of carbon export from wetland soils in this region is among the highest reported in the literature. These findings highlight the importance of terrestrial-aquatic fluxes of DOC as a pathway for carbon loss in the NCTR.
Ecology of Vibrio vulnificus in estuarine waters of eastern North Carolina.
Pfeffer, Courtney S; Hite, M Frances; Oliver, James D
2003-06-01
While several studies on the ecology of Vibrio vulnificus in Gulf Coast environments have been reported, there is little information on the distribution of this pathogen in East Coast waters. Thus, we conducted a multiyear study on the ecology of V. vulnificus in estuarine waters of the eastern United States, employing extensive multiple regression analyses to reveal the major environmental factors controlling the presence of this pathogen, and of Vibrio spp., in these environments. Monthly field samplings were conducted between July 2000 and April 2002 at six different estuarine sites along the eastern coast of North Carolina. At each site, water samples were taken and nine physicochemical parameters were measured. V. vulnificus isolates, along with estuarine bacteria, Vibrio spp., Escherichia coli organisms, and total coliforms, were enumerated in samples from each site by using selective media. During the last 6 months of the study, sediment samples were also analyzed for the presence of vibrios, including V. vulnificus. Isolates were confirmed as V. vulnificus by using hemolysin gene PCR or colony hybridization. V. vulnificus was isolated only when water temperatures were between 15 and 27 degrees C, and its presence correlated with water temperature and dissolved oxygen and vibrio levels. Levels of V. vulnificus in sediments were low, and no evidence for an overwintering in this environment was found. Multiple regression analysis indicated that vibrio levels were controlled primarily by temperature, turbidity, and levels of dissolved oxygen, estuarine bacteria, and coliforms. Water temperature accounted for most of the variability in the concentrations of both V. vulnificus (47%) and Vibrio spp. (48%).
NASA Astrophysics Data System (ADS)
Loring, J. S.; Thompson, C. J.; Wang, Z.; Schaef, H. T.; Martin, P.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.
2011-12-01
Geologic sequestration of carbon dioxide holds promise for helping mitigate CO2 emissions generated from the burning of fossil fuels. Supercritical CO2 (scCO2) plumes containing variable water concentrations (wet scCO2) will displace aqueous solution and dominate the pore space adjacent to caprocks. It is important to understand possible mineral reactions with wet scCO2 to better predict long-term caprock integrity. We introduce novel in situ instrumentation that enables quantitative titrations of reactant minerals with water in scCO2 at temperatures and pressures relevant to target geologic reservoirs. The system includes both transmission and attenuated total reflection mid-infrared optics. Transmission infrared spectroscopy is used to measure concentrations of water dissolved in the scCO2, adsorbed on mineral surfaces, and incorporated into precipitated carbonates. Single-reflection attenuated total reflection infrared spectroscopy is used to monitor water adsorption, mineral dissolution, and carbonate precipitation reactions. Results are presented for the infrared spectroscopic titration of forsterite (Mg2SiO4), a model divalent metal silicate, with water in scCO2 at 100 bar and at both 50 and 75°C. The spectral data demonstrate that the quantitative speciation of water as either dissolved or adsorbed is important for understanding the types, growth rates, and amounts of carbonate precipitates formed. Relationships between dissolved/adsorbed water, water concentrations, and the role of liquid-like adsorbed water are discussed. Our results unify previous in situ studies from our laboratory based on infrared spectroscopy, nuclear magnetic resonance spectroscopy and X-ray diffraction.
Rice, Karen C.; Monti, Michele M.; Ettinger, Matthew R.
2005-01-01
Concentrated animal feeding operations (CAFOs) result from the consolidation of small farms with animals into larger operations, leading to a higher density of animals per unit of land on CAFOs than on small farms. The density of animals and subsequent concentration of animal wastes potentially can cause contamination of nearby ground and surface waters. This report summarizes water-quality data collected from agricultural sites in the Shenandoah Valley and Eastern Shore of Virginia. Five sites, three non-CAFO and two dairy-operation CAFO sites, were sampled in the Shenandoah Valley. Four sites, one non-CAFO and three poultry-operation CAFO sites were sampled on the Eastern Shore. All samples were collected during January and February 2004. Water samples were analyzed for the following parameters and constituents: temperature, specific conductance, pH, and dissolved oxygen; concentrations of the indicator organisms Escherichia coli (E. coli) and enterococci; bacterial isolates of E. coli, enterococci, Salmonella spp., and Campylobacter spp.; sensitivity to antibiotics of E. coli, enterococci, and Salmonella spp.; arsenic, cadmium, chromium3+, copper, nickel, and mercury; hardness, biological oxygen demand, nitrate, nitrite, ammonia, ortho-phosphate, total Kjeldahl nitrogen, chemical oxygen demand, total organic carbon, and dissolved organic carbon; and 45 dissolved organic compounds, which included a suite of antibiotic compounds.Data are presented in tables 5-21 and results of analyses of replicate samples are presented in tables 22-28. A summary of the data in tables 5-8 and 18-21 is included in the report.
Analysis of stream quality in the Yampa River Basin, Colorado and Wyoming
Wentz, Dennis A.; Steele, Timothy Doak
1980-01-01
Historic data show no significant water-temperature changes since 1951 for the Little Snake or Yampa Rivers, the two major streams of the Yampa River basin in Colorado and Wyoming. Regional analyses indicate that harmonic-mean temperature is negatively correlated with altitude. No change in specific conductance since 1951 was noted for the Little Snake River; however, specific conductance in the Yampa River has increaed 14 % since that time and is attributed to increased agricultural and municipal use of water. Site-specific relationships between major inorganic constituents and specific conductance for the Little Snake and Yampa Rivers were similar to regional relationships developed from both historic and recent (1975) data. These relationships provide a means for estimating concentrations of major inorganic constituents from specific conductance, which is easily measured. Trace-element and nutrient data collected from August 1975 through September 1976 at 92 sites in the Yampa River basin indicate that water-quality degradation occurred upstream from 3 sites. The degradation resulted from underground drainage from pyritic materials that probably are associated with coal at one site, discharge from powerplant cooling-tower blowdown water at a second site, and runoff from a small watershed containing a gas field at the third site. Ambient concentrations of dissolved and total iron and manganese frequently exceeded proposed Colorado water-quality standards. The concentrations of many dissolved and total trace elements and nutrients were greatest during March 1976. These were associated with larger suspended-sediment concentrations and smaller pH values than at other times of the year. (USGS)
Amend, Donald F.; Yasutake, William T.; Morgan, Reginald
1969-01-01
This study determined the influence of water temperature (55–68° F), dissolved oxygen (4–12 ppm), water hardness as CaCO3 (20–256 ppm), and chloride ions (to 2 mM) on the susceptibility of rainbow trout (Salmo gairdneri) to the acute toxicity of ethyl mercury phosphate (EMP). The fish were exposed for one hour to 0.125 ppm EMP, the active ingredient of Timsan, a commercial EMP formulation. The death rate because of the exposure to EMP increased with an increase in water temperature, a decrease in dissolved oxygen, and an increase in chloride ions; calcium appeared to have no effect. The effect of water temperature and dissolved oxygen was ascribed to changes in the respiration rate of the fish, and a chemical explanation is presented for the effect of chloride ions.
Isolated single-species exposures were conducted in parallel with 42 d mesocosm dosing studies that measured in-situ and whole community responses to different recipes of excess total dissolved solids (TDS). The studies were conducted with cultured species and native taxa from mo...
Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...
Total Dissolved Solids (TDS) dosing studies representing different sources of ions were conducted from 2011-2015. Emergence responses in stream mesocosms were compared to single-species exposures using a whole effluent testing (WET) format and an ex-situ method (single species te...
Gross, Eliza L.; Lindsey, Bruce D.; Rupert, Michael G.
2012-01-01
Field blank samples help determine the frequency and magnitude of contamination bias, and replicate samples help determine the sampling variability (error) of measured analyte concentrations. Quality control data were evaluated for calcium, magnesium, sodium, potassium, chloride, sulfate, fluoride, silica, and total dissolved solids. A 99-percent upper confidence limit is calculated from field blanks to assess the potential for contamination bias. For magnesium, potassium, chloride, sulfate, and fluoride, potential contamination in more than 95 percent of environmental samples is less than or equal to the common maximum reporting level. Contamination bias has little effect on measured concentrations greater than 4.74 mg/L (milligrams per liter) for calcium, 14.98 mg/L for silica, 4.9 mg/L for sodium, and 120 mg/L for total dissolved solids. Estimates of sampling variability are calculated for high and low ranges of concentration for major ions and total dissolved solids. Examples showing the calculation of confidence intervals and how to determine whether measured differences between two water samples are significant are presented.
Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Nishimura, Shin; Fujiwara, Hirotada
2012-01-01
Rubber materials, which are used for hydrogen gas seal, can dissolve hydrogen during exposure in high-pressure hydrogen gas. Dissolved hydrogen molecules were detected by solid state 1H NMR of the unfilled vulcanized acrylonitrile butadiene rubber. Two signals were observed at 4.5 ppm and 4.8 ppm, which were assignable to dissolved hydrogen, in the 1H NMR spectrum of NBR after being exposed 100 MPa hydrogen gas for 24 h at room temperature. These signals were shifted from that of gaseous hydrogen molecules. Assignment of the signals was confirmed by quantitative estimation of dissolved hydrogen and peak area of the signals.
The distribution of organic matter was studied in northern San Francisco Bay monthly through spring and summer 1996 along the salinity gradient from the Sacramento River to Central Bay. Dissolved constituents included monosaccharides (MONO), total carbohydrates (TCHO), dissolved ...
The stoichiometric dissociation constants of carbonic acid in seawater brines from 298 to 267 K
NASA Astrophysics Data System (ADS)
Papadimitriou, Stathys; Loucaides, Socratis; Rérolle, Victoire M. C.; Kennedy, Paul; Achterberg, Eric P.; Dickson, Andrew G.; Mowlem, Matthew; Kennedy, Hilary
2018-01-01
The stoichiometric dissociation constants of carbonic acid (K1C∗ and K2C∗) were determined by measurement of all four measurable parameters of the carbonate system (total alkalinity, total dissolved inorganic carbon, pH on the total proton scale, and CO2 fugacity) in natural seawater and seawater-derived brines, with a major ion composition equivalent to that of Reference Seawater, to practical salinity (SP) 100 and from 25 °C to the freezing point of these solutions and -6 °C temperature minimum. These values, reported in the total proton scale, provide the first such determinations at below-zero temperatures and for SP > 50. The temperature (T, in Kelvin) and SP dependence of the current pK1C∗ and pK2C∗ (as negative common logarithms) within the salinity and temperature ranges of this study (33 ≤ SP ≤ 100, -6 °C ≤ t ≤ 25 °C) is described by the following best-fit equations: pK1C∗ = -176.48 + 6.14528 SP0.5 - 0.127714 SP + 7.396 × 10-5SP2 + (9914.37 - 622.886 SP0.5 + 29.714 SP) T-1 + (26.05129 - 0.666812 SP0.5) lnT (σ = 0.011, n = 62), and pK2C∗ = -323.52692 + 27.557655 SP0.5 + 0.154922 SP - 2.48396 × 10-4 SP2 + (14763.287 - 1014.819 SP0.5 - 14.35223 SP) T-1 + (50.385807 - 4.4630415 SP0.5) lnT (σ = 0.020, n = 62). These functions are suitable for application to investigations of the carbonate system of internal sea ice brines with a conservative major ion composition relative to that of Reference Seawater and within the temperature and salinity ranges of this study.
Wright, Charles H.
1986-01-01
A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.
Variations in statewide water quality of New Jersey streams, water years 1998-2009
Heckathorn, Heather A.; Deetz, Anna C.
2012-01-01
Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations (control stations that are located on reaches of streams relatively unaffected by human activity) during water years 1998-2009. Results of tests on concentrations of total dissolved solids, dissolved chloride, dissolved nitrite plus nitrate, total phosphorus, and total nitrogen indicate a significant difference in water quality at Statewide Status stations but not at Background stations during the study period. Excluding water year 2009, all significant changes that were observed in the median concentrations were ultimately increases, except for total phosphorus, which varied significantly but in an inconsistent pattern during water years 1998-2009. Streamflow data aided in the interpretation of the results for this study. Extreme values of water-quality constituents generally followed inverse patterns of streamflow. Low streamflow conditions helped explain elevated concentrations of several constituents during water years 2001-02. During extreme drought conditions in 2002, maximum concentrations occurred for four of the six water-quality constituents examined in this study at Statewide Status stations (maximum concentration of 4,190 milligrams per liter of total dissolved solids) and three of six constituents at Background stations (maximum concentration of 179 milligrams per liter of total dissolved solids). The changes in water quality observed in this study parallel many of the findings from previous studies of trends in New Jersey.
NASA Astrophysics Data System (ADS)
Audette, Yuki; O'Halloran, Ivan; Voroney, Paul
2016-04-01
Transfer of dissolved phosphorus (P) in runoff water via streams is regulated mainly by both stream sediment P adsorption and precipitation processes. The adsorption capacity of stream sediments acting as a P sink was a great benefit to preserving water quality in downstream lakes in the past, as it minimized the effects of surplus P loading from watershed streams. However, with long-term continued P loading the capacity of the sediments to store P has diminished, and eventually converted stream sediments from P sinks to sources of dissolved P. This accumulation of 'legacy P' in stream sediments has become the major source of dissolved P and risk to downstream water quality. Agricultural best management practices (BMP) for P typically attempt to minimize the transfer of P from farmland. However, because of the limitation in sediment P adsorption capacity, adoption of BMPs, such as reduction of external P loading, may not result in an immediate improvement in water quality. The goal of the research is to chemically characterize the P forms contributing to legacy P in stream sediments located in the watershed connecting to Cook's Bay, one of three basins of Lake Simcoe, Ontario, Canada. This watershed receives the largest amount of external P loading and has the highest rate of sediment build-up, both of which are attributed to agriculture. Water samples were collected monthly at six study sites from October 2015 for analysis of pH, temperature, dissolved oxygen, total P, dissolved reactive P, particulate P, total N, NH4-N, NO3-N, TOC and other elements including Al, Fe, Mn, Mg, Ca, S, Na, K and Zn. Sediment core samples were collected in November 2015 and will continue to be collected in March, July and October 2016. Various forms of P in five vertical sections were characterized by sequential fractionation and solution 31P NMR spectroscopy techniques. Pore water, sediment texture and clay identification were performed. The concentration of total P in water samples were ~equal or less than the Ontario Provincial Water Quality Objectives (PWQO) of 0.03 mg P L-1 except at a site located in the stream in the Holland Marsh, which was ~7 times greater. Forms and distribution of P varied with sediment section and sampling site. The range of total sediment-P was from ~0.8 to 2.5 g P kg-1 sediment, and at some sites the mobile P forms accounted for > 75% of the total sediment-P. The study will continue to examine the temporal spatial and vertical distribution of P forms to predict the rates of P release under varying water chemistries. This basic research provides a fundamental approach for characterization of the legacy P in stream sediments, ultimately providing a better understanding of the linkage between changes in agricultural management practices affecting P losses from terrestrial sources and observed changes in surface water quality.
Bian, Wei; Zhang, Shuyan; Zhang, Yanzhuo; Li, Wenjing; Kan, Ruizhe; Wang, Wenxiao; Zheng, Zhaoming; Li, Jun
2017-02-01
A ratio control strategy was implemented in a continuous moving bed biofilm reactor (MBBR) to investigate the response to different temperatures. The control strategy was designed to maintain a constant ratio between dissolved oxygen (DO) and total ammonia nitrogen (TAN) concentrations. The results revealed that a stable nitritation in a biofilm reactor could be achieved via ratio control, which compensated the negative influence of low temperatures by stronger oxygen-limiting conditions. Even with a temperature as low as 6°C, stable nitritation could be achieved when the controlling ratio did not exceed 0.17. Oxygen-limiting conditions in the biofilm reactor were determined by the DO/TAN concentrations ratio, instead of the mere DO concentration. This ratio control strategy allowed the achievement of stable nitritation without complete wash-out of NOB from the reactor. Through the ratio control strategy full nitritation of sidestream wastewater was allowed; however, for mainstream wastewater, only partial nitritation was recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
Luostarinen, S; Rintala, J
2006-01-01
Anaerobic on-site treatment of black water (BW) and a mixture of black water and kitchen waste (BWKW) was studied in a two-phased upflow anaerobic sludge blanket septic tank (UASBst) at 10-20 degrees C. The processes were fed either continuously or discontinuously (twice per weekday). Moreover, BWKW was post-treated for nitrogen removal in an intermittently aerated moving bed biofilm reactor (MBBR) at 20 degrees C. Removal of total chemical oxygen demand (COD1) was efficient at minimum 90% with all three UASBst at all temperatures. Removal of dissolved COD (CODdis) was also high at approx. 70% with continuously fed BW and discontinuously fed BWKW, while with discontinuous BW feeding it was 20%. Temperature decrease had little effect on COD removals, though the need for phase 2 increased with decreasing temperature, especially with BWKW. Post-treatment of BWKW in MBBR resulted in approx. 50% nitrogen removal, but suffered from lack of carbon for denitrification. With carbon addition, removal of ca. 83% was achieved.
Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry.
Schenk, H Jochen; Espino, Susana; Visser, Ate; Esser, Bradley K
2016-04-01
A new method is described for measuring dissolved gas concentrations in small volumes of xylem sap using membrane inlet mass spectrometry. The technique can be used to determine concentrations of atmospheric gases, such as argon, as reported here, or for any dissolved gases and their isotopes for a variety of applications, such as rapid detection of trace gases from groundwater only hours after they were taken up by trees and rooting depth estimation. Atmospheric gas content in xylem sap directly affects the conditions and mechanisms that allow for gas removal from xylem embolisms, because gas can dissolve into saturated or supersaturated sap only under gas pressure that is above atmospheric pressure. The method was tested for red trumpet vine, Distictis buccinatoria (Bignoniaceae), by measuring atmospheric gas concentrations in sap collected at times of minimum and maximum daily temperature and during temperature increase and decline. Mean argon concentration in xylem sap did not differ significantly from saturation levels for the temperature and pressure conditions at any time of collection, but more than 40% of all samples were supersaturated, especially during the warm parts of day. There was no significant diurnal pattern, due to high variability between samples. © 2015 John Wiley & Sons Ltd.
Evaluation of a Prototype pCO2 Optical Sensor
NASA Astrophysics Data System (ADS)
Sanborn-Marsh, C.; Sutton, A.; Sabine, C. L.; Lawrence-Salvas, N.; Dietrich, C.
2016-12-01
Anthropogenic greenhouse gas emissions continue to rise, driving climate change and altering the ocean carbonate systems. Carbonate chemistry can be characterized by any two of the four parameters: pH, total alkalinity, dissolved inorganic carbon, and partial pressure of dissolved carbon dioxide gas (pCO2). To fully monitor these dynamic systems, researchers must deploy a more temporally and spatially comprehensive sensor network. Logistical challenges, such as the energy consumption, size, lifetime, depth range, and cost of pCO2 sensors have limited the network's reach so far. NOAA's Pacific Marine Environmental Laboratory has conducted assessment tests of a pCO2 optical sensor (optode), recently developed by Atamanchuk et al (2014). We hope to deploy this optode in the summer of 2017 on high-resolution moored profiler, along with temperature, salinity, and oxygen sensors. While most pCO2 optodes have energy consumptions of 3-10 W, this 36mm-diameter by 86mm-long instrument consumes a mere 7-80 mW. Initial testing showed that its accuracy varied within an absolute range of 2-75 μatm, depending on environmental conditions, including temperature, salinity, response time, and initial calibration. Further research independently examining the effects of each variable on the accuracy of the data will also be presented.
Are modern geothermal waters in northwest Nevada forming epithermal gold deposits?
Breit, George N.; Hunt, Andrew G.; Wolf, Ruth E.; Koenig, Alan E.; Fifarek, Richard; Coolbaugh, Mark F.
2010-01-01
Hydrothermal systems currently are active near some gold deposits in northwestern Nevada. Possible links of these modern systems to gold mineralization were evaluated by chemically and isotopically analyzing water samples from the Brady, Dixie Valley, Humboldt House, San Emidio-Empire, Soda Lake, and Wabuska geothermal areas. In addition, quartz veins from Humboldt House and the adjacent Florida Canyon Mine were analyzed to compare ore and gangue phases with those predicted to form from proximal hydrothermal fluids.Nearly all water samples are alkali-chloride-type. Total dissolved solids range from 800 to 3900 mg/L, and pH varies from 5.6 to 7.8. Geochemical modeling with SOLVEQ, WATCH, and CHILLER predict the precipitation of silica in all systems during cooling. Anhydrite, calcite, barite, pyrite, base-metal sulfides, and alumino-silicates are variably saturated at calculated reservoir temperatures and also precipitate during boiling/cooling of some fluids. Measured dissolved gold concentrations are low (<0.2μg/L), but are generally consistent with contents predicted by equilibrium of sampled solutions with elemental gold at reservoir temperatures. Although the modern geothermal waters can precipitate ore minerals, the low gold and other ore metal concentrations require very large fluid volumes to form a deposit of economic interest.
Huang, Zhuo; Ito, Kazuaki; Morita, Isamu; Yokota, Kuriko; Fukushi, Keiichi; Timerbaev, Andrei R; Watanabe, Shuichi; Hirokawa, Takeshi
2005-08-01
Using a novel high-sensitivity capillary electrophoretic method, vertical distributions of iodate, iodide, total inorganic iodine, dissolved organic iodine and total iodine in the North Pacific Ocean (0-5500 m) were determined without any sample pre-treatment other than UV irradiation before total iodine analysis. An extensive set of data demonstrated that the iodine behaviour in the ocean water collected during a cruise in the North Pacific Ocean in February-March 2003 was not conservative but correlated with variations in concentrations of dissolved oxygen and nutrient elements such as silicon, nitrogen and phosphorus. This suggests that the vertical distribution of iodine is associated with biological activities. The dissolved organic iodine was found in the euphotic zone in accord with observations elsewhere in the oceans. The vertical profile of dissolved organic iodine also appears to be related to biogeochemical activity. The concentrations of all measured iodine species vary noticeably above 1000 m but only minor latitudinal changes occur below 1000 m and slight vertical alterations can be observed below 2400 m. These findings are thought to reflect the stratification of nutrients and iodine species with different biological activities in the water column.
Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.
2015-09-02
Following coagulation, but prior to passage through the wetland cells, coagulation treatments transferred dissolved mercury and carbon to the particulate fraction relative to untreated source water: at the wetland cell inlets, the coagulation treatments decreased concentrations of filtered total mercury by 59–76 percent, filtered monomethyl mercury by 40–70 percent, and dissolved organic carbon by 65–86 percent. Passage through the wetland cells decreased the particulate fraction of mercury in wetland cells that received coagulant-treated water. Changes in total mercury, monomethyl mercury, and dissolved organic carbon concentrations resulting from wetland passage varied both by treatment and season. Despite increased monomethyl mercury in the filtered fraction during wetland passage between March and August, the coagulation-wetland systems generally decreased total mercury (filtered plus particulate) and monomethyl mercury (filtered plus particulate) concentrations relative to source water. Coagulation—either alone or in association with constructed wetlands—could be an effective way to decrease concentrations of mercury and dissolved organic carbon in surface water as well as the bioavailability of mercury in the Sacramento–San Joaquin Delta.
Effects of Simulated Land-Use Changes on Water Quality of Lake Maumelle, Arkansas
Hart, Rheannon M.; Westerman, Drew A.; Petersen, James C.; Green, W. Reed; De Lanois, Jeanne L.
2011-01-01
Lake Maumelle is one of two principal drinking-water supplies for the Little Rock and North Little Rock metropolitan areas. Lake Maumelle and the Maumelle River (its primary tributary) are more pristine than most other reservoirs and streams in the region. However, as the Lake Maumelle watershed becomes increasingly more urbanized and timber harvesting becomes more frequent, concerns about the sustainability of the quality of the water supply also have increased. Two models were developed to partially address these concerns. A Hydrological Simulation Program-FORTRAN model was developed using input data collected from October 2004 through 2008. A CE-QUAL-W2 model was developed to simulate reservoir hydrodynamics and selected water quality using the simulated output from the Hydrological Simulation Program-FORTRAN model from January 2005 through 2008. The Hydrological Simulation Program-FORTRAN watershed model was calibrated to five streamflow-gaging stations, and in general, these stations characterize a range of subwatershed areas with varying land-use types. Continuous streamflow data, discrete sediment concentration data, and other discrete water-quality data were used to calibrate the Lake Maumelle Hydrological Simulation Program-FORTRAN model. The CE-QUAL-W2 reservoir model was calibrated to water-quality data and reservoir pool altitude collected during January 2005 through December 2008 at three lake stations. In general, the overall simulation for the Hydrological Simulation Program-FORTRAN and CE-UAL-W2 models matched reasonably well to the measured data. In general, simulated and measured suspended-sediment concentrations during periods of base flow (streamflows not substantially influenced by runoff) agree reasonably well for Williams Junction (with differences-simulated minus measured value-generally ranging from -14 to 19 mg/L, and percent difference-relative to the measured value-ranging from -87 to 642 percent) and Wye (differences generally ranging from -2 to 14 mg/L, -62 to 251 percent); however, the Hydrological Simulation Program-FORTRAN model generally does not match the suspended-sediment concentrations for all stations during periods of stormflow (streamflow substantially influenced by runoff). Generally, this is also the case for fecal coliform bacteria numbers and total organic carbon and nutrient concentrations. In general, water temperature and dissolved-oxygen concentration simulations followed measured seasonal trends for all stations with the largest differences occurring during periods of lowest water temperatures (for temperature) or during the periods of lowest measured dissolved-oxygen concentrations (for dissolved oxygen). For the CE-QUAL-W2 model, simulated vertical distributions of temperatures and dissolved-oxygen concentrations agreed with measured distributions even for complex temperature profiles. Considering the oligotrophic-mesotrophic (low to intermediate primary productivity and associated low nutrient concentrations) condition of Lake Maumelle, simulated algae, phosphorus, and ammonia concentrations compared well with generally low measured values.
Autumn photoproduction of carbon monoxide in Jiaozhou Bay, China
NASA Astrophysics Data System (ADS)
Ren, Chunyan; Yang, Guipeng; Lu, Xiaolan
2014-06-01
Carbon monoxide (CO) plays a significant role in global warming and atmospheric chemistry. Global oceans are net natural sources of atmospheric CO. CO at surface ocean is primarily produced from the photochemical degradation of chromophoric dissolved organic matter (CDOM). In this study, the effects of photobleaching, temperature and the origin (terrestrial or marine) of CDOM on the apparent quantum yields (AQY) of CO were studied for seawater samples collected from Jiaozhou Bay. Our results demonstrat that photobleaching, temperature and the origin of CDOM strongly affected the efficiency of CO photoproduction. The concentration, absorbance and fluorescence of CDOM exponentially decreased with increasing light dose. Terrestrial riverine organic matter could be more prone to photodegradation than the marine algae-derived one. The relationships between CO AQY and the dissolved organic carbon-specific absorption coefficient at 254 nm for the photobleaching study were nonlinear, whereas those of the original samples were strongly linear. This suggests that: 1) terrestrial riverine CDOM was more efficient than marine algae-derived CDOM for CO photoproduction; 2) aromatic and olefinic moieties of the CDOM pool were affected more strongly by degradation processes than by aliphatic ones. Water temperature and the origin of CDOM strongly affected the efficiency of CO photoproduction. The photoproduction rate of CO in autumn was estimated to be 31.98 μmol m-2 d-1 and the total DOC photomineralization was equivalent to 3.25%-6.35% of primary production in Jiaozhou Bay. Our results indicate that CO photochemistry in coastal areas is important for oceanic carbon cycle.
Distribution of dissolved zinc in the western and central subarctic North Pacific
NASA Astrophysics Data System (ADS)
Kim, T.; Obata, H.; Gamo, T.
2016-02-01
Zinc (Zn) is an essential micronutrient for bacteria and phytoplankton in the ocean as it plays an important role in numerous enzyme systems involved in various metabolic processes. However, large-scale distributions of total dissolved Zn in the subarctic North Pacific have not been investigated yet. In this study, we investigated the distributions of total dissolved Zn to understand biogeochemical cycling of Zn in the western and central subarctic North Pacific as a Japanese GEOTRACES project. Seawater samples were collected during the R/V Hakuho-maru KH-12-4 GEOTRACES GP 02 cruise (from August to October 2012), by using acid-cleaned Teflon-coated X-type Niskin samplers. Total dissolved Zn in seawater was determined using cathodic stripping voltammetry (CSV) after UV-digestion. In this study, total dissolved Zn concentrations in the western and central subarctic North Pacific commonly showed Zn increase from surface to approximately 400-500 m, just above the oxygen minimum layer. However, in the western subarctic North Pacific, relatively higher Zn concentrations have also been observed at intermediate depths (800-1200 m), in comparison with those observed in deep waters. The relationship between Zn and Si in the western subarctic North Pacific showed that Zn is slightly enriched at intermediate depths. These results may indicate that there are additional sources of Zn to intermediate water of the western subarctic North Pacific.
Distribution and composition of dissolved amino acids in seawater at the Yap Trench
NASA Astrophysics Data System (ADS)
Yan, Y.; Xie, L.; Sun, C.; Yang, G.; Ding, H.
2017-12-01
The distributions and compositions of total hydrolyzed amino acids ( THAA) , dissolved combined amino acids ( DCAA) and dissolved free amino acids ( DFAA) were investigated after analyzing seawater samples collected from different depths by CTD and from the sediment-seawater interface by the Jiaolong submersible, at 4 stations located in the Yap Trench in June, 2016. The results showed that the average concentration of THAA was (2.44±0.85) μmol /L, while the average concentrations of DCAA and DFAA were (1.97±0.82) μmol /L and (0.47±0.34)μmol /L, respectively.The concentrations of THAA and DCAA displayed a decreasing trend from surface layer to deep layer. In the vertical distribution, the concentrations of THAA varied differently in superficial layer (above 1000 meters). THAA, DFAA and DCAA had a similar concentrations below 1000 meter depth. In the study area, major constituents of dissolved amino acids were methionine, threonine , histidine, glutamic acid , valine and glycine. At the Yap Trench, neutral dissolved amino acids were dominant in total dissolved amino acids. The trend of vertical distributions of various types of THAA, DFAA, and DCAA were similar with the total THAA, DFAA, and DCAA. In sediment-seawater interface, the seawater in the northwest of the trench has high concentrations of THAA and DCAA, while the concentrations of DFAA were similar in the seawater at the sediment-seawater interface.
Characteristic of leachate at Alor Pongsu Landfill Site, Perak, Malaysia: A comparative study
NASA Astrophysics Data System (ADS)
Nor Farhana Zakaria, Siti; Aziz, Hamidi Abdul
2018-04-01
Leachate is a harmful by product generated from the landfill site. Leachate contains a high concentration of pollutant which can cause serious pollution to environmental. In this study, characteristics of leachate in Alor Pongsu Landfill Site (APLS) were monitored and analyzed according to the Standard Methods for the Examination of Water and Wastewater (2005). Composition in leachate at APLS was monitored for one year starting from January 2015 until January 2016. Nine parameters were monitored including color, chemical oxygen demand (COD), biological oxygen demand (BOD5), ammoniacal nitrogen (NH3-N), biodegradability ratio (BOD5/COD), temperature, dissolved oxygen (DO), total dissolved solid (TDS) and pH. Based on the analysis, Alor Pongsu Landfill leachate was categorized as stabilized landfill leachate by referring to the BOD5/COD < 0.1. Comparison with allowable discharge limits for leachate shows that most of parameters exceeded the standard discharge limitation. Thus, proper treatment is needed before leachate can be discharged to the environment.
Wang, Lianfeng; Pan, Genxing; Shi, Shengli; Zhang, Lehua; Huang, Mingxing
2003-10-01
Different depths of soils under 6 tree stands in Lushan Botany Garden were sampled and water-digested at room temperature. The dissolved aluminum and organic carbon were then determined by colorimetry, using 8-hydroxylquilin and TOC Analyzer, respectively. The results indicated that even derived from a naturally identical soil type, the test soils exhibited a diverse solution chemistry, regarding with the Al speciation. The soil solutions under Japanese cedar, giant arborvitae and tea had lower pH values and higher contents of soluble aluminum than those under Giant dogwood, azalea and bamboo. Under giant arborvitae, the lowest pH and the highest content of total soluble aluminum and monomeric aluminum were found in soil solution. There was a significant correlation between soluble aluminum and DOC, which tended to depress the accumulation of toxic monomeric aluminum. The 6 tree stands could be grouped into 2 categories of solution chemistry, according to aluminum mobilization.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-06
... Ponchatoula Creek and Dissolved Ponchatoula River. oxygen. 041201 Bayou Labranche-- Dissolved Headwaters to Lake oxygen. Pontchartrain (Scenic) (Estuarine). 041805 Lake Borgne Canal (Violet Dissolved Canal)--MS River siphon oxygen. at Violet to Bayou Dupre (Scenic) (Estuarine). The EPA requests the public provide...
Hu, Wenchao; Wu, Chunde
2016-01-01
The feasibility of using enhanced coagulation, which combined polyaluminum chloride (PAC) with diatomite for improving coagulation performance and reducing the residual aluminum (Al), was discussed. The effects of PAC and diatomite dosage on the coagulation performance and residual Al were mainly investigated. Results demonstrated that the removal efficiencies of turbidity, dissolved organic carbon (DOC), and UV254 were significantly improved by the enhanced coagulation, compared with PAC coagulation alone. Meaningfully, the five forms of residual Al (total Al (TAl), total dissolved Al (TDAl), dissolved organic Al (DOAl), dissolved monomeric Al (DMAl), and dissolved organic monomeric Al (DOMAl)) all had different degrees of reduction in the presence of diatomite and achieved the lowest concentrations (0.185, 0.06, 0.053, 0.014, and 0 mg L(-1), respectively) at a PAC dose of 15 mg L(-1) and diatomite dose of 40 mg L(-1). In addition, when PAC was used as coagulant, the majority of residual Al existed in dissolved form (about 31.14-70.16%), and the content of DOMAl was small in the DMAl.
Pinto-Ibieta, F; Serrano, A; Jeison, D; Borja, R; Fermoso, F G
2016-07-01
Due to the low trace metals concentration in the Olive Mill Solid Waste (OMSW), a proposed strategy to improve its biomethanization is the supplementation of key metals to enhance the microorganism activity. Among essential trace metals, cobalt has been reported to have a crucial role in anaerobic degradation. This study evaluates the effect of cobalt supplementation to OMSW, focusing on the connection between fractionation of cobalt in the system and the biological response. The highest biological responses was found in a range from 0.018 to 0.035mg/L of dissolved cobalt (0.24-0.65mg total cobalt/L), reaching improvements up to 23% and 30% in the methane production rate and the methane yield coefficient, respectively. It was found that the dissolved cobalt fraction is more accurately related with the biological response than the total cobalt. The total cobalt is distorted by the contribution of dissolved and non-dissolved inert fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C
2014-01-01
The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.
A study of the capacitive deionisation performance under various operational conditions.
Mossad, Mohamed; Zou, Linda
2012-04-30
Capacitive deionisation (CDI) has many advantages over other desalination technologies due to its low energy consumption, less environmental pollution and low fouling potential. The objectives of this study are to investigate the effect of operational conditions on the CDI electrosorption efficiency and energy consumption, to identify ion selectivity in multi-ionic solutions and to probe the effect of dissolved reactive silica on the treatment efficiency. A series of laboratory scale experiments were conducted using a CDI unit with activated carbon electrodes. The electrosorption removal efficiency was inversely related to solution temperature, initial total dissolved salts (TDS) concentration and the applied flow rate. CDI energy consumption (kWh/m(3)) is directly related to the TDS concentration and inversely related to the flow rate. The kinetics analysis indicated that the electrosorption followed pseudo-first-order kinetics model. Ion selectivity on activated carbon electrodes followed the order of Fe(3+)>Ca(2+)>Mg(2+)>Na(+) for cations and SO(4)(2-)>Br(-)>Cl(-)>F(-)>NO(3)(-) for anions. It was found that the dissolved silica was not removed by CDI; no silica fouling was found. The deterioration of activated carbon electrodes was not observed at any time during experiment. Copyright © 2012 Elsevier B.V. All rights reserved.
Lin, Yu-Shih; Koch, Boris P.; Feseker, Tomas; Ziervogel, Kai; Goldhammer, Tobias; Schmidt, Frauke; Witt, Matthias; Kellermann, Matthias Y.; Zabel, Matthias; Teske, Andreas; Hinrichs, Kai-Uwe
2017-01-01
Ocean margin sediments have been considered as important sources of dissolved organic carbon (DOC) to the deep ocean, yet the contribution from advective settings has just started to be acknowledged. Here we present evidence showing that near-surface heating of sediment in the Guaymas Basin, a young extensional depression, causes mass production and discharge of reactive dissolved organic matter (DOM). In the sediment heated up to ~100 °C, we found unexpectedly low DOC concentrations in the pore waters, reflecting the combined effect of thermal desorption and advective fluid flow. Heating experiments suggested DOC production to be a rapid, abiotic process with the DOC concentration increasing exponentially with temperature. The high proportions of total hydrolyzable amino acids and presence of chemical species affiliated with activated hydrocarbons, carbohydrates and peptides indicate high reactivity of the DOM. Model simulation suggests that at the local scale, near-surface heating of sediment creates short and massive DOC discharge events that elevate the bottom-water DOC concentration. Because of the heterogeneous distribution of high heat flow areas, the expulsion of reactive DOM is spotty at any given time. We conclude that hydrothermal heating of young rift sediments alter deep-ocean budgets of bioavailable DOM, creating organic-rich habitats for benthic life. PMID:28327661
Costache, T A; Acién Fernández, F Gabriel; Morales, M M; Fernández-Sevilla, J M; Stamatin, I; Molina, E
2013-09-01
In this paper, the influence of culture conditions (irradiance, temperature, pH, and dissolved oxygen) on the photosynthesis rate of Scenedesmus almeriensis cultures is analyzed. Short-run experiments were performed to study cell response to variations in culture conditions, which take place in changing environments such as outdoor photobioreactors. Experiments were performed by subjecting diluted samples of cells to different levels of irradiance, temperature, pH, and dissolved oxygen concentration. Results demonstrate the existence of photoinhibition phenomena at irradiances higher than 1,000 μE/m(2) s; in addition to reduced photosynthesis rates at inadequate temperatures or pH-the optimal values being 35 °C and 8, respectively. Moreover, photosynthesis rate reduction at dissolved oxygen concentrations above 20 mg/l is demonstrated. Data have been used to develop an integrated model based on considering the simultaneous influence of irradiance, temperature, pH, and dissolved oxygen. The model fits the experimental results in the range of culture conditions tested, and it was validated using data obtained by the simultaneous variation of two of the modified variables. Furthermore, the model fits experimental results obtained from an outdoor culture of S. almeriensis performed in an open raceway reactor. Results demonstrate that photosynthetic efficiency is modified as a function of culture conditions, and can be used to determine the proximity of culture conditions to optimal values. Optimal conditions found (T = 35 °C, pH = 8, dissolved oxygen concentration <20 mg/l) allows to maximize the use of light by the cells. The developed model is a powerful tool for the optimal design and management of microalgae-based processes, especially outdoors, where the cultures are subject to daily culture condition variations.
NASA Astrophysics Data System (ADS)
Wang, Wankun; Wang, Fuchun; Lu, Fanghai
2017-12-01
Microwave alkaline roasting-water dissolving process was proposed to improve the germanium (Ge) extraction from zinc oxide (ZnO) dust. The effects of important parameters were investigated and the process conditions were optimized using response surface methodology (RSM). The Ge extraction is consistent with the linear polynomial model type. Alkali-material ratio, microwave heating temperature and leaching temperature are the significant factors for this process. The optimized conditions are obtained as follows, alkali-material ratio of 0.9 kg/kg, aging time of 1.12 day, microwave heating at 658 K for 10 min, liquid-solid ratio of 4.31 L/kg, leaching temperature at 330 K, leaching time of 47 min with the Ge extraction about 99.38%. It is in consistence with the predictive value of 99.31%. Compared to the existed alkaline roasting process heated by electric furnace in literature, the alkaline roasting temperature and holding time. It shows a good prospect on leaching Ge from ZnO dust with microwave alkaline roasting-water dissolving process.
Combined effects of acidification and hypoxia on the estuarine ctenophore, Mnemiopsis leidyi
Estuaries are transitive zones which experience large fluctuations in environmental parameters (temperature, dissolved oxygen, pH, etc.). The interactive effects of reduced dissolved oxygen (DO) and elevated pCO2 on estuarine organisms is not currently well understood. Ctenophore...
ERIC Educational Resources Information Center
Openshaw, Peter
1983-01-01
Describes a unit on river pollution and analytical methods to use in assessing temperature, pH, flow, calcium, chloride, dissolved oxygen, biochemical oxygen demand, dissolved nitrogen, detergents, heavy metals, sewage pollution, conductivity, and sediment cores. Suggests tests to be carried out and discusses significance of results. (JM)
SIMULATION OF DISSOLVED OXYGEN PROFILES IN A TRANSPARENT, DIMICTIC LAKE
Thrush Lake is a small, highly transparent lake in northeastern Minnesota. rom 1986 to 1991, vertical profiles of water temperature, dissolved oxygen, chlorophyll a concentration, underwater light irradiance, and Secchi depths were measured at monthly intervals during the ice-fre...
NASA Astrophysics Data System (ADS)
Rivaro, Paola; Luisa Abelmoschi, Maria; Grotti, Marco; Ianni, Carmela; Magi, Emanuele; Margiotta, Francesca; Massolo, Serena; Saggiomo, Vincenzo
2012-04-01
Surface water (<100 m) samples were collected from the Terra Nova Bay polynya region of the Ross Sea (Antarctica) in January 2006, with the aim of evaluating the individual and combined effects of hydrographic structure, iron and copper concentration and availability on the phytoplankton growth. The measurements were conducted within the framework of the Climatic Long Term Interaction for the Mass-balance in Antarctica (CLIMA) Project of the Programma Nazionale di Ricerca in Antartide activities. Dissolved oxygen, nutrients, phytoplankton pigments and concentration and complexation of dissolved trace metals were determined. Experimental data were elaborated by Principal Component Analysis (PCA). As a result of solar heating and freshwater inputs from melting sea-ice, the water column was strongly stratified with an Upper Mixed Layer 4-16 m deep. The integrated Chl a in the layer 0-100 m ranged from 60 mg m-2 to 235 mg m-2, with a mean value of 138 mg m-2. The pigment analysis showed that diatoms dominated the phytoplankton assemblage. Major nutrients were generally high, with the lowest concentration at the surface and they were never fully depleted. The Si:N drawdown ratio was close to the expected value of 1 for Fe-replete diatoms. We evaluated both the total and the labile dissolved fraction of Fe and Cu. The labile fraction was operationally defined by employing the chelating resin Chelex-100, which retains free and loosely bound trace metal species. The total dissolved Fe ranged from 0.48 to 3.02 nM, while the total dissolved Cu from 3.68 to 6.84 nM. The dissolved labile Fe ranged from below the detection limit (0.15 nM) to 1.22 nM, and the dissolved labile Cu from 0.31 to 1.59 nM, respectively. The labile fractions measured at 20 m were significantly lower than values in 40-100 m samples. As two stations were re-sampled 5 days later, we evaluated the short-term variability of the physical and biogeochemical properties. In particular, in a re-sampled station at 20 m, the total dissolved Fe increased and the total dissolved Cu decreased, while their labile fraction was relatively steady. As a result of the increase in total Fe, the percentage of the labile Fe decreased. An increase of the Si:N, Si:P and Si:FUCO ratios was measured also in the re-sampled station. On this basis, we speculated that a switch from a Fe-replete to a Fe-deplete condition was occurring.
The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP
NASA Astrophysics Data System (ADS)
Kiene, Ronald P.; Linn, Laura J.
2000-08-01
The algal osmolyte dimethylsulfoniopropionate (DMSP) is distributed globally in the marine euphotic zone, where it represents a major form of reduced sulfur. Previous investigations of DMSP cycling have focused mainly on its degradation to the volatile sulfur species dimethylsulfide (DMS) and little is known about the other possible fates of the sulfur. In this study 35S-DMSP was used to trace the biogeochemical fate of sulfur in the natural pool of dissolved DMSP in seawater. Dissolved 35S-DMSP added to seawater was degraded within hours, with the 35S partitioning into three major, relatively stable, operational pools: particulates, dissolved non-volatile degradation products (DNVS), and volatiles. The mean values for partitioning of DMSP obtained from 20 different seawater incubations were (in terms of sulfur): particulates (33%; range 6-85%;); DNVS (46%; range 21-74%); and volatiles (9%; range 2-21%). Oceanic water samples had lower incorporation of DMSP-S into particulates and higher incorporation into DNVS as compared with coastal-shelf samples. Transient accumulation of untransformed 35S-DMSP in bacteria accounted for some of the particulate 35S, but most of the cell-associated DMSP was rapidly transformed and the sulfur incorporated into relatively stable macromolecules. 35S-labeled DNVS accumulated steadily during DMSP metabolism and approximately half of this pool was confirmed to be sulfate, implying that oxidation of DMSP-sulfur takes place on time scales of minutes to hours. Volatile products were produced rapidly from 35S-DMSP, but most were consumed within 1-3 h. Experiments showed that methanethiol (MeSH) was the major volatile compound produced from tracer DMSP, with longer-lived DMS formed in lower amounts. Tracer additions of 35S-MeSH to seawater resulted in incorporation of sulfur into cellular macromolecules and DNVS, suggesting MeSH was an intermediate in the conversion of DMSP into these pools. Experiments with 35S-DMS revealed that turnover of DMS was much slower than for DMSP or MeSH, and the retention of the DMS-sulfur in particles was only a minor fraction of the total amount metabolized. The majority of the 35S-DMS was transformed into DNVS including sulfate. Temperature and DMSP concentration significantly affected the partitioning of sulfur during DMSP degradation, with lower temperatures and higher substrate concentrations causing a shift from particulate into volatile and non-volatile dissolved products. Our work demonstrates that natural turnover of dissolved DMSP results in minor net production of sulfur gases, and substantial production of previously unrecognized products (particulate and dissolved non-volatile sulfur). The main fates of DMSP are tied to assimilation and oxidation of the reduced sulfur by microorganisms, both of which may act as important controls on the production of climatically active DMS.
NASA Astrophysics Data System (ADS)
Zhang, Yong; Xie, Huixiang; Fichot, CéDric G.; Chen, Guohua
2008-12-01
We investigated the thermal (dark) production of carbon monoxide (CO) from dissolved organic matter (DOM) in the water column of the St. Lawrence estuarine system in spring 2007. The production rate, Qco, decreased seaward horizontally and downward vertically. Qco exhibited a positive, linear correlation with the abundance of chromophoric dissolved organic matter (CDOM). Terrestrial DOM was more efficient at producing CO than marine DOM. The temperature dependence of Qco can be characterized by the Arrhenius equation with the activation energies of freshwater samples being higher than those of salty samples. Qco remained relatively constant between pH 4-6, increased slowly between pH 6-8 and then rapidly with further rising pH. Ionic strength and iron chemistry had little influence on Qco. An empirical equation, describing Qco as a function of CDOM abundance, temperature, pH, and salinity, was established to evaluate CO dark production in the global coastal waters (depth < 200 m). The total coastal CO dark production from DOM was estimated to be from 0.46 to 1.50 Tg CO-C a-1 (Tg carbon from CO a-1). We speculated the global oceanic (coastal plus open ocean) CO dark production to be in the range from 4.87 to 15.8 Tg CO-C a-1 by extrapolating the coastal water-based results to blue waters (depth > 200 m). Both the coastal and global dark source strengths are significant compared to the corresponding photochemical CO source strengths (coastal: ˜2.9 Tg CO-C a-1; global: ˜50 Tg CO-C a-1). Steady state deepwater CO concentrations inferred from Qco and microbial CO uptake rates are <0.1 nmol L-1.
Long-term simulations of dissolved oxygen concentrations in Lake Trout lakes
NASA Astrophysics Data System (ADS)
Jabbari, A.; Boegman, L.; MacKay, M.; Hadley, K.; Paterson, A.; Jeziorski, A.; Nelligan, C.; Smol, J. P.
2016-02-01
Lake Trout are a rare and valuable natural resource that are threatened by multiple environmental stressors. With the added threat of climate warming, there is growing concern among resource managers that increased thermal stratification will reduce the habitat quality of deep-water Lake Trout lakes through enhanced oxygen depletion. To address this issue, a three-part study is underway, which aims to: analyze sediment cores to understand the past, develop empirical formulae to model the present and apply computational models to forecast the future. This presentation reports on the computational modeling efforts. To this end, a simple dissolved oxygen sub-model has been embedded in the one-dimensional bulk mixed-layer thermodynamic Canadian Small Lake Model (CSLM). This model is currently being incorporated into the Canadian Land Surface Scheme (CLASS), the primary land surface component of Environment Canada's global and regional climate modelling systems. The oxygen model was calibrated and validated by hind-casting temperature and dissolved oxygen profiles from two Lake Trout lakes on the Canadian Shield. These data sets include 5 years of high-frequency (10 s to 10 min) data from Eagle Lake and 30 years of bi-weekly data from Harp Lake. Initial results show temperature and dissolved oxygen was predicted with root mean square error <1.5 °C and <3 mgL-1, respectively. Ongoing work is validating the model, over climate-change relevant timescales, against dissolved oxygen reconstructions from the sediment cores and predicting future deep-water temperature and dissolved oxygen concentrations in Canadian Lake Trout lakes under future climate change scenarios. This model will provide a useful tool for managers to ensure sustainable fishery resources for future generations.
Belval, D.L.; Campbell, J.P.; Woodside, M.D.
1994-01-01
This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Virginia Department of Environmental Quality-- Division of Intergovernmental Coordination to monitor and estimate loads of selected nutrients and suspended solids discharged to Chesapeake Bay from two major tributaries in Virginia. From July 1988 through June 1990, monitoring consisted of collecting depth-integrated, cross-sectional samples from the James and Rappahannock Rivers during storm- flow conditions and at scheduled intervals. Water- quality constituents that were monitored included total suspended solids (residue, total at 105 degrees Celsius), dissolved nitrite plus nitrate, dissolved ammonia, total Kjeldahl nitrogen (ammonia plus organic), total nitrogen, total phosphorus, dissolved orthopohosphorus, total organic carbon, and dissolved silica. Daily mean load estimates of each constituent were computed by month, using a seven-parameter log-linear-regression model that uses variables of time, discharge, and seasonality. Water-quality data and constituent- load estimates are included in the report in tabular and graphic form. The data and load estimates provided in this report will be used to calibrate the computer modeling efforts of the Chesapeake Bay region, evaluate the water quality of the Bay and the major effects on the water quality, and assess the results of best-management practices in Virginia.
Feaster, Toby D.; Conrads, Paul
2000-01-01
In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate and validate the Branched Lagrangian Transport Model. The data include dye-tracer concentrations collected at six locations, stream-reaeration data collected at four locations, and water-quality and water-temperature data collected at nine locations. Hydraulic data for the Branched Lagrangian Transport Model were simulated by using the U.S. Geological Survey BRANCH one-dimensional, unsteady-flow model. Data that were used to calibrate and validate the BRANCH model included time-series of water-level and streamflow data at three locations. The domain of the hydraulic model and the transport model was a 57.3- and 43.5-mile reach of the river, respectively. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to changes in the boundary concentration inputs of water temperature and dissolved oxygen followed by sensitivity to the change in streamflow. A 35-percent increase in streamflow resulted in a negative normalized sensitivity index, indicating a decrease in dissolved-oxygen concentrations. The simulated dissolved-oxygen concentrations showed no significant sensitivity to changes in model input rate kinetics. To demonstrate the utility of the Branched Lagrangian Transport Model of the Wateree River, the model was used to simulate several hydrologic and water-quality scenarios to evaluate the effects on simulated dissolved-oxygen concentrations. The first scenario compared the 24-hour mean dissolved-oxygen concentrations for August 13, 1997, as simulated during the model validation, with simulations using two different streamflow patterns. The mean streamflow for August 13, 1997, was 2,000 cubic feet per second. Simulations were run using mean streamflows of 1,000 and 1,400 cubic feet per second while keeping the water-quality boundary conditions the same as were used during the validation simulations. When compared t
A review of permissible limits of drinking water
Kumar, Manoj; Puri, Avinash
2012-01-01
Water is one of the prime necessities of life. We can hardly live for a few days without water. In a man's body, 70-80% is water. Cell, blood, and bones contain 90%, 75%, and 22% water, respectively. The general survey reveals that the total surface area of earth is 51 crore km2 out of which 36.1 crore km2 is covered sea. In addition to this, we get water from rivers, lakes, tanks, and now on hills. In spite of such abundance, there is a shortage of soft water in the world. Physicochemical parameter of any water body plays a very important role in maintaining the fragile ecosystem that maintains various life forms. Present research paper deals with various water quality parameter, chlorides, dissolved oxygen, total iron, nitrate, water temperature, pH, total phosphorous, fecal coli form bacteria, and adverse effect of these parameters on human being. PMID:23112507
Liger-Belair, Gérard; Villaume, Sandra; Cilindre, Clara; Jeandet, Philippe
2009-03-11
Measurements of CO(2) fluxes outgassing from a flute poured with a standard Champagne wine initially holding about 11 g L(-1) of dissolved CO(2) were presented, in tasting conditions, all along the first 10 min following the pouring process. Experiments were performed at three sets of temperature, namely, 4 degrees C, 12 degrees C, and 20 degrees C, respectively. It was demonstrated that the lower the champagne temperature, the lower CO(2) volume fluxes outgassing from the flute. Therefore, the lower the champagne temperature, the lower its progressive loss of dissolved CO(2) concentration with time, which constitutes the first analytical proof that low champagne temperatures prolong the drink's chill and helps retains its effervescence. A correlation was also proposed between CO(2) volume fluxes outgassing from the flute poured with champagne and its continuously decreasing dissolved CO(2) concentration. Finally, the contribution of effervescence to the global kinetics of CO(2) release was discussed and modeled by the use of results developed over recent years. The temperature dependence of the champagne viscosity was found to play a major role in the kinetics of CO(2) outgassing from a flute. On the basis of this bubbling model, the theoretical influence of champagne temperature on CO(2) volume fluxes outgassing from a flute was discussed and found to be in quite good accordance with our experimental results.
Artificial neural network modeling of dissolved oxygen in reservoir.
Chen, Wei-Bo; Liu, Wen-Cheng
2014-02-01
The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.
Müller, Jonas; Schmidt, Dominik
2016-01-01
Summary Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine. PMID:28115896
Lin, Li; Zhu, Biao; Chen, Chengrong; Zhang, Zhenhua; Wang, Qi-Bing; He, Jin-Sheng
2016-08-16
Soils in the alpine grassland store a large amount of nitrogen (N) due to slow decomposition. However, the decomposition could be affected by climate change, which has profound impacts on soil N cycling. We investigated the changes of soil total N and five labile N stocks in the topsoil, the subsoil and the entire soil profile in response to three years of experimental warming and altered precipitation in a Tibetan alpine grassland. We found that warming significantly increased soil nitrate N stock and decreased microbial biomass N (MBN) stock. Increased precipitation reduced nitrate N, dissolved organic N and amino acid N stocks, but increased MBN stock in the topsoil. No change in soil total N was detected under warming and altered precipitation regimes. Redundancy analysis further revealed that soil moisture (26.3%) overrode soil temperature (10.4%) in explaining the variations of soil N stocks across the treatments. Our results suggest that precipitation exerted stronger influence than warming on soil N pools in this mesic and high-elevation grassland ecosystem. This indicates that the projected rise in future precipitation may lead to a significant loss of dissolved soil N pools by stimulating the biogeochemical processes in this alpine grassland.
Salari, Marjan; Salami Shahid, Esmaeel; Afzali, Seied Hosein; Ehteshami, Majid; Conti, Gea Oliveri; Derakhshan, Zahra; Sheibani, Solmaz Nikbakht
2018-04-22
Today, due to the increase in the population, the growth of industry and the variety of chemical compounds, the quality of drinking water has decreased. Five important river water quality properties such as: dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (ALK) and turbidity (TU) were estimated by parameters such as: electric conductivity (EC), temperature (T), and pH that could be measured easily with almost no costs. Simulate water quality parameters were examined with two methods of modeling include mathematical and Artificial Neural Networks (ANN). Mathematical methods are based on polynomial fitting with least square method and ANN modeling algorithms are feed-forward networks. All conditions/circumstances covered by neural network modeling were tested for all parameters in this study, except for Alkalinity. All optimum ANN models developed to simulate water quality parameters had precision value as R-value close to 0.99. The ANN model extended to simulate alkalinity with R-value equals to 0.82. Moreover, Surface fitting techniques were used to refine data sets. Presented models and equations are reliable/useable tools for studying water quality parameters at similar rivers, as a proper replacement for traditional water quality measuring equipment's. Copyright © 2018 Elsevier Ltd. All rights reserved.
Schneider, Volker; Müller, Jonas; Schmidt, Dominik
2016-12-01
Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine.
Lin, Li; Zhu, Biao; Chen, Chengrong; Zhang, Zhenhua; Wang, Qi-Bing; He, Jin-Sheng
2016-01-01
Soils in the alpine grassland store a large amount of nitrogen (N) due to slow decomposition. However, the decomposition could be affected by climate change, which has profound impacts on soil N cycling. We investigated the changes of soil total N and five labile N stocks in the topsoil, the subsoil and the entire soil profile in response to three years of experimental warming and altered precipitation in a Tibetan alpine grassland. We found that warming significantly increased soil nitrate N stock and decreased microbial biomass N (MBN) stock. Increased precipitation reduced nitrate N, dissolved organic N and amino acid N stocks, but increased MBN stock in the topsoil. No change in soil total N was detected under warming and altered precipitation regimes. Redundancy analysis further revealed that soil moisture (26.3%) overrode soil temperature (10.4%) in explaining the variations of soil N stocks across the treatments. Our results suggest that precipitation exerted stronger influence than warming on soil N pools in this mesic and high-elevation grassland ecosystem. This indicates that the projected rise in future precipitation may lead to a significant loss of dissolved soil N pools by stimulating the biogeochemical processes in this alpine grassland. PMID:27527683
Appraisal of storm-water quality near Salem, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, T.L.
Stormwater runoff for the period December 1979 to May 1981, at 13 sites in the vicinity of Salem, Oregon, was sampled and analyzed for water quality. Constituent concentrations for urban storm water were relatively small when compared to samples from Portland and Medford, Oregon and to samples from Denver, Colorado. The data indicated that levels of suspended sediment, ultimate CBOD (carbonaceous biochemical oxygen demand), and total lead increased with increased urbanization. Because of small chemical concentrations and winter high flow and low temperature conditions in the Willamette River, Salem storm water probably has little effect on biological or on mostmore » chemical conditions in the Willamette River. An analysis of data from a stormwater detention pond indicated that the facility was about 47% efficient in reducing suspended sediment loads. Precipitation samples collected at one site for a year were found to be acidic, with a median pH of 4.6. Median total lead concentration was 8 micrograms/L (ug/L) in precipitation, whereas the median total lead concentration in runoff from the 12 basins ranged from 8 to 110 ug/L. The median dissolved ammonia concentration in precipitation was larger than the median dissolved ammonia concentration at all 13 sites. In contrast, the median total Kjeldahl nitrogen concentration in precipitation samples was about half the median for streamwater concentrations. Median ratios of sulfate to chloride and nitrate to chloride in precipitation were much higher than ratios expected for sea water, suggesting anthropogenic sources for sulfate and nitrate. 24 refs., 6 figs., 7 tabs.« less
Bryson, Jeannie R.; Coupe, Richard H.; Manning, Michael A.
2007-01-01
The Mississippi Department of Environmental Quality is required to develop restoration and remediation plans for water bodies not meeting their designated uses, as stated in the U.S. Environmental Protection Agency's Clean Water Act section 303(d). The majority of streams in northwestern Mississippi are on the 303(d) list of water-quality limited waters. Agricultural effects on streams in northwestern Mississippi have reduced the number of unimpaired streams (reference streams) for water-quality comparisons. As part of an effort to develop an index to assess impairment, the U.S. Geological Survey collected water samples from 52 stream sites on the 303(d) list during May-June 2006, and analyzed the samples for nutrients and chlorophyll. The data were analyzed by trophic group as determined by total nitrogen concentrations. Seven constituents (nitrite plus nitrate, total Kjeldhal nitrogen, total phosphorus, orthophosphorus, total organic carbon, chlorophyll a, and pheophytina) and four physical property measurements (specific conductance, pH, turbidity, and dissolved oxygen) were determined to be significantly different (p < 0.05) between trophic groups. Total Kjeldhal nitrogen, turbidity, and dissolved oxygen were used as indicators of stream productivity with which to infer stream health. Streams having high total Kjeldhal nitrogen values and high turbidity values along with low dissolved oxygen concentrations were typically eutrophic abundant in nutrients), whereas streams having low total Kjeldhal nitrogen values and low turbidity values along with high dissolved oxygen concentrations were typically oligotrophic (deficient in nutrients).
Biogeochemical cycle of Mercury in an urban stream in Hartford CT
NASA Astrophysics Data System (ADS)
Aragon-jose, A. T.; Bushey, J. T.; Perkins, C.; Mendes, M.; Ulatowski, G.
2012-12-01
Mercury (Hg) toxicity and the potential for bioaccumulation in the food chain result in exposure risk even at low Hg levels. The presence of urban activities can substantially alter Hg fate and transport mechanisms and Hg biogeochemical cycles. Urban watersheds are characterized by high imperviousness and some may even be impacted by combined sewer overflows, both being fundamental factors contributing to Hg loading, mobilization, and shifts in bioavailability in urban watersheds. Research is still needed to characterize the fate and dynamics of Hg in urban streams. To address this gap in knowledge, we collected and characterized stream water and suspended sediment samples in the Park River watershed in Hartford, CT (USA) during baseflow and precipitation events. Sampling sites were selected across an urbanization gradient. Water samples are analyzed for total, dissolved, and particulate Hg and methyl Hg (MeHg), major ions (Cl-, NO3-, SO42-)-, total suspended solids (TSS), and dissolved organic carbon (DOC). Our results show that both total and dissolved Hg concentrations increase in the streams during precipitation events, however, the greatest portion of Hg is associated, and consequently transported, with suspended sediments, as suggested by the high correlation coefficient (R2 ~ 0.80) between TSS and total Hg. No significant correlation was observed between dissolved or total Hg and DOC, contrary to the observations in forested systems, which indicates that the sources and mechanisms governing mobilization and transport of dissolved Hg in an urban watershed differ from those at forested systems. However, during select events, a significant portion of Hg flux occurs in the dissolved phase. Unfiltered MeHg samples exhibited a similar pattern relative to the hydrograph to that of total Hg. Concentrations increase during the rising limb with TSS followed by a decrease as the storm progresses. Dissolved MeHg is mostly below our detection limit. Area normalized THg flux is generally higher at the more developed sites for all but the May storm, whereas the opposite trend is observed for MeHg except for the August storm, indicative of different sources of Hg contributing to the stream. To assist in elucidating the potential sources, dissolved organic matter in the water samples was analyzed for specific ultra violet absorbance at 254 nm (SUVA254) and for excitation-emission matrix (EEMs) to assess differences in organic matter loading to the stream. Additionally, Hg association with sediment was analyzed by collecting four sets of suspended sediment samples over 3-month periods at five sites across the watershed to assess potential sediment sources into the stream. Solid samples were analyzed for total carbon, nitrogen, and hydrogen, organic and inorganic carbon, mercury, acid volatile sulfide, chromium reducible sulfide, PAHs, QACs, and select metals.
Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of dissolved oxygen (DO), salinity, temperature, nutrients (nitrogen and phosphorus), and chlorophyll a in the Caloosahatchee Riv...
Wright, C.H.
1986-02-11
A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.
ERIC Educational Resources Information Center
Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam
2016-01-01
This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…
NASA Astrophysics Data System (ADS)
Susilowati, Agustine; Aspiyanto, Ghozali, Muhammad
2017-11-01
Fermentation on inulin hydrolysate as fructooligosaccharides (FOS) by Bifidobacterium bifidum as a result of hydrolysis by inulase enzyme of Scopulariopsis sp.-CBS1 fungi has been performed to bind cholesterol. Their applications on preparation of fermented pour beverages was conducted via a series of concentration process using dead-end Stirred Ultrafiltration Cell (SUFC) mode at stirrer rotation of 400 rpm, room temperature and pressure of 40 psia for 0 minute (pre-concentration process) as concentrate (A) and 45 minutes as concentrate (B), and drying process using vacuum dryer at 30 °C and 22 cm Hg for 0, 8, 16, 24, 32, 40 and 48 hours. Based on optimization of Total Dietary Fiber (TDF), the best time of drying process was achieved for 40 hours. Long time of drying process would increase TDF and total solids, decreased total acids, and fluctuated dissolved protein and Cholesterol Binding Capacity (CBC). At the optimum condition of drying process was get fermented inulin fiber powder from concentration processes using both UF as pre process (0 minute) as concentrate (A) and UF for 45 minutes as concentrate (B) with compositions of total solids of 92.31 % and 93.67 %, TDF of 59.07 % (dry weight) and 69.28 %, total acids of 7.03 % and 7.5 %, dissolved protein of 3.95 mg/mL and 3.05 mg/mL, and CBC pH 2 15.71 mg/g and 16.8 mg/g, respectively. Concentration process through dead-end SUFC mode gave distribution of particles with better smoothness level than without through dead-end SUFC mode.
Fish parasites as indicators of organic pollution in southern Brazil.
Lacerda, A C F; Roumbedakis, K; Bereta Junior, J G S; Nuñer, A P O; Petrucio, M M; Martins, M L
2018-05-01
Increasing urbanization along riverbanks is a constant source of stressors to the aquatic community, and the use of bioindicators is suitable to detect and monitor the effect of each stressor. We investigated the parasites of the 'cará' fish (Geophagus brasiliensis) as potential bioindicators in a river whose banks are subject to increasing anthropogenic pressure. Samples were taken at four points of the Sangradouro River, in Florianópolis, southern Brazil, bimonthly for 12 months. Water temperature, pH, dissolved oxygen, conductivity and salinity were measured at each point and water samples were taken for nutrient analysis (total nitrogen, nitrite, total ammonia nitrogen, total phosphorus, phosphate), and total and faecal coliforms. A generalized linear model (GLM) was constructed using the abundance of each parasite species as the response variable and biometric characteristic of the fish and water variables as possible predictors. Among the 137 fish examined, 114 (83.2%) were parasitized by at least one parasite species. Two species of ectoparasites (Sciadicleithrum guanduensis and Neascus-type metacercariae) and two species of endoparasites (Pandosentis aff. iracundus and Homalometron pseudopallidum) were observed. This is the first record of the genus Pandosentis in Brazilian waters and the first record of the species G. brasiliensis as a host for this parasite. Among the analysed groups of parasites, monogeneans and acanthocephalans proved to be the most sensitive to the concentrations of dissolved oxygen, faecal coliforms and total ammonia nitrogen in the water. Our study suggests that the abundance of both monoxenic and heteroxenous parasites can be negatively affected by organic pollution in the aquatic environment, reinforcing the potential of fish parasites as indicators of water quality.
Load limit of a UASB fed septic tank-treated domestic wastewater.
Lohani, Sunil Prasad; Bakke, Rune; Khanal, Sanjay N
2015-01-01
Performance of a 250 L pilot-scale up-flow anaerobic sludge blanket (UASB) reactor, operated at ambient temperatures, fed septic tank effluents intermittently, was monitored for hydraulic retention time (HRT) from 18 h to 4 h. The total suspended solids (TSS), total chemical oxygen demand (CODT), dissolved chemical oxygen demand (CODdis) and suspended chemical oxygen demand (CODss) removal efficiencies ranged from 20 to 63%, 15 to 56%, 8 to 35% and 22 to 72%, respectively, for the HRT range tested. Above 60% TSS and 47% CODT removal were obtained in the combined septic tank and UASB process. The process established stable UASB treatment at HRT≥6 h, indicating a hydraulic load design limit. The tested septic tank-UASB combined system can be a low-cost and effective on-site sanitation solution.
Selected papers in the hydrologic sciences, 1986
Subitzky, Seymour
1987-01-01
Water-quality data from long-term (24 years), fixed- station monitoring at the Cape Fear River at Lock 1 near Kelly, N.C., and various measures of basin development are correlated. Subbasin population, number of acres of cropland in the subbasin, number of people employed in manufacturing, and tons of fertilizer applied in the basin are considered as measures of basinwide development activity. Linear correlations show statistically significant posi- tive relations between both population and manufacturing activity and most of the dissolved constituents considered. Negative correlations were found between the acres of harvested cropland and most of the water-quality measures. The amount of fertilizer sold in the subbasin was not statistically related to the water-quality measures considered in this report. The statistical analysis was limited to several commonly used measures of water quality including specific conductance, pH, dissolved solids, several major dissolved ions, and a few nutrients. The major dissolved ions included in the analysis were calcium, sodium, potassium, magnesium, chloride, sulfate, silica, bicarbonate, and fluoride. The nutrients included were dissolved nitrite plus nitrate nitrogen, dissolved ammonia nitrogen, total nitrogen, dissolved phosphates, and total phosphorus. For the chemicals evaluated, manufacturing and population sources are more closely associated with water quality in the Cape Fear River at Lock 1 than are agricultural variables.
Lico, Michael S.
2004-01-01
Five lakes and their outlet streams in the Lake Tahoe Basin were sampled for nutrients during 2002-03. The lakes and streams sampled included Upper Echo, Lower Echo, Fallen Leaf, Spooner, and Marlette Lakes and Echo, Taylor, and Marlette Creeks. Water samples were collected to determine seasonal and spatial concentrations of dissolved nitrite plus nitrate, dissolved ammonia, total Kjeldahl nitrogen, dissolved orthophosphate, total phosphorus, and total bioreactive iron. These data will be used by Tahoe Regional Planning Agency in revising threshold values for waters within the Lake Tahoe Basin. Standard U.S. Geological Survey methods of sample collection and analysis were used and are detailed herein. Data collected during this study and summary statistics are presented in graphical and tabular form.
Beckwith, Michael A.
2003-01-01
Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore-processing areas in the upper Clark Fork in Montana and the South Fork Coeur d’Alene River in Idaho. Concentrations of dissolved lead in all 32 samples from the South Fork Coeur d’Alene River exceeded the Idaho chronic criterion for the protection of aquatic life at the median hardness level measured during the study. Concentrations of dissolved zinc in all samples collected at this site exceeded both the chronic and acute criteria at all hardness levels measured. When all data from all NROK sites were combined, median concentrations of dissolved arsenic, dissolved and total recoverable copper, total recoverable lead, and total recoverable zinc in the NROK study area appeared to be similar to or slightly smaller than median concentrations at sites in other NAWQA Program study areas in the Western United States affected by historical mining activities. Although the NROK median total recoverable lead concentration was the smallest among the three Western study areas compared, concentrations in several NROK samples were an order of magnitude larger than the maximum concentrations measured in the Upper Colorado River and Great Salt Lake Basins. Dissolved cadmium, dissolved lead, and total recoverable zinc concentrations at NROK sites were more variable than in the other study areas; concentrations ranged over almost three orders of magnitude between minimum and maximum values; the range of dissolved zinc concentrations in the NROK study area exceeded three orders of magnitude.
Chronic stress of rainbow trout Oncorhynchus mykiss at high altitude: a field study.
Hunt von Herbing, I; Pan, T-C F; Méndez-Sánchez, F; Garduño-Paz, M; Hernández-Gallegos, O; Ruiz-Gómez, M L; Rodríguez-Vargas, G
2015-07-01
The stress response of Oncorhynchus mykiss in high-altitude farms in central Mexico was investigated over two seasons: the cool (9·1-13·7° C) dry winter season, and the warmer (14·7-15·9° C), wetter summer season. Fish were subjected to an acute stress test followed by sampling of six physiological variables: blood cortisol, glucose, lactate, total antioxidant capacity, haemoglobin concentration and per cent packed cell volume (VPC %). Multivariate analyses revealed that lactate and total antioxidant capacity were significantly higher in the summer, when water temperatures were warmer and moderate hypoxia (4·9-5·3 mg l(-1) ) prevailed. In contrast, plasma cortisol was significantly higher in the winter (mean ± s.e.: 76·7 ± 4·0 ng ml(-1) ) when temperatures were cooler and dissolved oxygen levels higher (6·05-7·9 mg l(-1) ), than in the summer (22·7 ± 3·8 ng ml(-1) ). Haemoglobin concentrations (mg dl(-1) ) were not significantly different between seasons, but VPC % was significantly higher in the summer (50%) than in the winter (35%). These results suggest that in summer, effects of high altitude on farmed fish are exacerbated by stresses of high temperatures and hypoxia, resulting in higher blood lactate, increased total antioxidant capacity and elevated VPC % levels. © 2015 The Fisheries Society of the British Isles.
Bolke, E.L.; Waddell, Kidd M.
1975-01-01
The major tributaries to Flaming Gorge Reservoir contribute an average of about 97 percent of the total streamflow and 82 percent of the total load of dissolved solids. The Green River is the largest tributary, and for the 1957-72 water years it contributed 81 percent of the total streamflow and 70 percent of the total load of dissolved solids. The principal constituents in the tributary streamflow are calcium and sulfate during periods of lowest flow and calcium and bicarbonate during periods of highest flow.Flaming Gorge Dam was closed in November 1962, and the most significant load changes of chemical constituents due to the net effect of inflow, outflow, leaching, and chemical precipitation in the reservoir have been load changes of sulfate and bicarbonate. The average increase of dissolved load of sulfate in the reservoir for the 1969-72 water years was 110,000 tons (99,790 t) per year, which was 40,000 tons (36,287 t) per year less than for the 1963-66 water years. The average decrease of dissolved load of bicarbonate in the reservoir for 1969-72 was 40,000 tons (36,287 t) per year, which was the same as the decrease for 1963-66.Anaerobic conditions were observed in the deep, uncirculated part of the reservoir near the dam during the 1971 and 1972 water years, and anaerobic or near-anaerobic conditions were observed near the confluence of the Blacks Fork and Green River during the summers of 1971 and 1972.The water in Flaming Gorge Reservoir is in three distinct layers, and the upper two layers (the epilimnion and the metalimnion) mixed twice during each of the 1971-72 water years. The two circulation periods were in the spring and fall. The water in the deepest layer (the hypolimnion) did not mix with the waters of the upper zones because the density difference was too great and because the deep, narrow shape of the basin probably inhibits mixing.The depletion of flow in the Green River downstream from Flaming Gorge Dam between closure of the dam and the end of the 1972 water year was 4,500,000 acre-feet (5,550.8 hm3). Of this total, water stored in the reservoir accounted for 3,500,000 acre-feet (4,317.2 hm3), evaporation consumed 700,000 acre-feet (863.4 hm3), and 300,000 acre-feet (370.0 hm3) went into bank storage.The net load of dissolved solids added to the river system during the 1963-72 water years, due to leaching and chemical precipitation, was 1,730,000 tons (1,569,421 t). The leaching rate was 200,000 tons (181,436 t) per year for 1963-68,115,000 tons (104,326 t) per year for 1969-70 and 150,000 tons (136,077 t) per year for 1971-72. It appears that the leaching rates should decrease in the future since the reservoir level in 1972 was near maximum pool level.The most significant increase in concentration of the chemical constituents in the water below the reservoir involved the sulfate ion, which increased from about 115 milligrams per litre (42 percent of the anions) in 1957 to about 200 milligrams per litre (54 percent), in 1972. But the highest concentration, about 290 milligrams per litre (58 percent), occurred in 1963, immediately after closure of the dam.Prior to closure of the dam, the average monthly temperature of the Green River below the damsite ranged from 0°C to 19.5°C as compared to 3.5°C to 10.0°C after closure.
Journey, Celeste A.; Arrington, Jane M.; Beaulieu, Karen M.; Graham, Jennifer L.; Bradley, Paul M.
2011-01-01
Limnological conditions and the occurrence of taste-and-odor compounds were studied in two reservoirs in Spartanburg County, South Carolina, from May 2006 to June 2009. Lake William C. Bowen and Municipal Reservoir #1 are relatively shallow, meso-eutrophic, warm monomictic, cascading impoundments on the South Pacolet River. Overall, water-quality conditions and phytoplankton community assemblages were similar between the two reservoirs but differed seasonally. Median dissolved geosmin concentrations in the reservoirs ranged from 0.004 to 0.006 microgram per liter. Annual maximum dissolved geosmin concentrations tended to occur between March and May. In this study, peak dissolved geosmin production occurred in April and May 2008, ranging from 0.050 to 0.100 microgram per liter at the deeper reservoir sites. Peak dissolved geosmin production was not concurrent with maximum cyanobacterial biovolumes, which tended to occur in the summer (July to August), but was concurrent with a peak in the fraction of genera with known geosmin-producing strains in the cyanobacteria group. Nonetheless, annual maximum cyanobacterial biovolumes rarely resulted in cyanobacteria dominance of the phytoplankton community. In both reservoirs, elevated dissolved geosmin concentrations were correlated to environmental factors indicative of unstratified conditions and reduced algal productivity, but not to nutrient concentrations or ratios. With respect to potential geosmin sources, elevated geosmin concentrations were correlated to greater fractions of genera with known geosmin-producing strains in the cyanobacteria group and to biovolumes of a specific geosmin-producing cyanobacteria genus (Oscillatoria), but not to actinomycetes concentrations. Conversely, environmental factors that correlated with elevated cyanobacterial biovolumes were indicative of stable water columns (stratified conditions), warm water temperatures, reduced nitrogen concentrations, longer residence times, and high phosphorus concentrations in the hypolimnion. Biovolumes of Cylindrospermopsis, Planktolyngbya, Synechococcus, Synechocystis, and Aphanizomenon correlated with the greater cyanobacteria biovolumes and were the dominant taxa in the cyanobacteria group. Related environmental variables were selected as input into multiple logistic regression models to evaluate the likelihood that geosmin concentrations could exceed the threshold level for human detection. In Lake William C. Bowen, the likelihood that dissolved geosmin concentrations exceeded the human detection threshold was estimated by greater mixing zone depths and differences in the 30-day prior moving window averages of overflow and flowthrough at Lake Bowen dam and by lower total nitrogen concentrations. At the R.B. Simms Water Treatment Plant, the likelihood that total geosmin concentrations in the raw water exceeded the human detection threshold was estimated by greater outflow from Reservoir #1 and lower concentrations of dissolved inorganic nitrogen. Overall, both models indicated greater likelihood that geosmin could exceed the human detection threshold during periods of lower nitrogen concentrations and greater water movement in the reservoirs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Kwang-Soon; Lee, Chang Heon; Ahn, Hong-Joo
2013-07-01
Based on the regulation of the activity concentration of Cs-137, Co-58, Co-60, Fe-55, Ni-59, Ni-63, Sr-90, Nb-94, and Tc-99, and the total alpha from the radioactive waste acceptance criteria, the measurement of the activity concentration of these nuclides in low and intermediate levels of radioactive waste such as in paper, cotton, vinyl and plastic samples was investigated. A dry ashing method was applied to obtain a concentration effect of the samples. Owing to the temperature dependence of the volatility for cesium, the temperature of 300 to 650 deg. C was examined. It was found that 450 deg. C is themore » optimum dry ashing temperature. After dry ashing, the produced ash was dissolved with HNO{sub 3}, HCl, and HF by a high-performance microwave digestion system. The ash sample, for the most part, was completely dissolved with 10 mL of HNO{sub 3}, 4 mL of HCl, and 0.25 mL of HF by a high-performance microwave digestion system using a nova high temperature rotor at 250 deg. C for 90 min until reaching 0.2 g. To confirm the reliability of cesium loss after the performance of the dry ashing procedure, a cesium standard solution for AAS and a Cs-137 standard solution for gamma spectrometry were added to a paper towel or a planchet of stainless steel, respectively. Cesium was measured by AAS, ICP-MS, and gamma spectrometry. The volatility of cesium did not occur until 450 deg. C ashing. (authors)« less
Striped bass, temperature, and dissolved oxygen: a speculative hypothesis for environmental risk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coutant, C.C.
1985-01-01
Striped bass Morone saxatilis has a paradoxical record of distribution and abundance, including population declines in coastal waters and variable success of freshwater introductions. This record is analyzed for consistency with a hypothesis that striped bass are squeezed between their thermal and dissolved oxygen preferences or requirements. A commonality among diverse field and laboratory observations supports an inherent thermal niche for the species that changes to lower temperatures as fish age. This shift can cause local conditions, especially warm surface strata and deoxygenated deep water, to be incompatible with the success of large fish. Crowding due to temperature preferences alonemore » or coupled with avoidance of low oxygen concentrations can lead to pathology and overfishing, which may contribute to population declines. Through a mixture of evidence and conjecture, the thermal niche-dissolved oxygen hypothesis is proposed as a unified perspective of the habitat requirements of the species that can aid in its study and management. 139 references, 12 figures.« less
Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers.
Ma, G M; Jiang, J; Li, C R; Song, H T; Luo, Y T; Wang, H B
2015-04-01
Compared with conventional DGA (dissolved gas analysis) method for on-line monitoring of power transformers, FBG (fiber Bragg grating) hydrogen sensor represents marked advantages over immunity to electromagnetic field, time-saving, and convenience to defect location. Thus, a novel FBG hydrogen sensor based on Pd/Ag (Palladium/Silver) along with polyimide composite film to measure dissolved hydrogen concentration in large power transformers is proposed in this article. With the help of Pd/Ag composite coating, the enhanced performance on mechanical strength and sensitivity is demonstrated, moreover, the response time and sensitivity influenced by oil temperature are solved by correction lines. Sensitivity measurement and temperature calibration of the specific hydrogen sensor have been done respectively in the lab. And experiment results show a high sensitivity of 0.055 pm/(μl/l) with instant response time about 0.4 h under the typical operating temperature of power transformers, which proves a potential utilization inside power transformers to monitor the health status by detecting the dissolved hydrogen concentration.
Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.
2001-01-01
The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.
Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean
Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...
SIMULATED CLIMATE CHANGE EFFECTS ON DISSOLVED OXYGEN CHARACTERISTICS IN ICE-COVERED LAKES. (R824801)
A deterministic, one-dimensional model is presented which simulates daily dissolved oxygen (DO) profiles and associated water temperatures, ice covers and snow covers for dimictic and polymictic lakes of the temperate zone. The lake parameters required as model input are surface ...
Investigating Factors that Affect Dissolved Oxygen Concentration in Water
ERIC Educational Resources Information Center
Jantzen, Paul G.
1978-01-01
Describes activities that demonstrate the effects of factors such as wind velocity, water temperature, convection currents, intensity of light, rate of photosynthesis, atmospheric pressure, humidity, numbers of decomposers, presence of oxidizable ions, and respiration by plants and animals on the dissolved oxygen concentration in water. (MA)
Laser Calorimetry Spectroscopy for ppm-level Dissolved Gas Detection and Analysis
K. S., Nagapriya; Sinha, Shashank; R., Prashanth; Poonacha, Samhitha; Chaudhry, Gunaranjan; Bhattacharya, Anandaroop; Choudhury, Niloy; Mahalik, Saroj; Maity, Sandip
2017-01-01
In this paper we report a newly developed technique – laser calorimetry spectroscopy (LCS), which is a combination of laser absorption spectroscopy and calorimetry - for the detection of gases dissolved in liquids. The technique involves determination of concentration of a dissolved gas by irradiating the liquid with light of a wavelength where the gas absorbs, and measuring the temperature change caused by the absorbance. Conventionally, detection of dissolved gases with sufficient sensitivity and specificity was done by first extracting the gases from the liquid and then analyzing the gases using techniques such as gas chromatography. Using LCS, we have been able to detect ppm levels of dissolved gases without extracting them from the liquid. In this paper, we show the detection of dissolved acetylene in transformer oil in the mid infrared (MIR) wavelength (3021 nm) region. PMID:28218304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, D.C.; Johnson, C.J.
1979-09-01
In parts of the area, water for domestic use obtained from the fractured crystalline-rock aquifer contained excessive concentrations of dissolved fluoride, dissolved nitrite plus nitrate, dissolved solids, dissolved iron, dissolved manganese, dissolved zinc, coliform bacteria, gross alpha radiation, and gross beta radiation. Based on water-quality analyses from 26 wells located in small urbanized areas, water from 21 of the wells contained excessive concentrations of one or more constituents. Local variations in concentrations of 15 chemical constituents, specific conductance, and water temperature were statistically significant. Depths to water in 11 non-pumping wells ranged from 1 to 15 feet annually. Three-year trendsmore » in water-level changes in 6 of the 11 wells indicated a decrease in stored water in the aquifer.« less
Laser Calorimetry Spectroscopy for ppm-level Dissolved Gas Detection and Analysis.
K S, Nagapriya; Sinha, Shashank; R, Prashanth; Poonacha, Samhitha; Chaudhry, Gunaranjan; Bhattacharya, Anandaroop; Choudhury, Niloy; Mahalik, Saroj; Maity, Sandip
2017-02-20
In this paper we report a newly developed technique - laser calorimetry spectroscopy (LCS), which is a combination of laser absorption spectroscopy and calorimetry - for the detection of gases dissolved in liquids. The technique involves determination of concentration of a dissolved gas by irradiating the liquid with light of a wavelength where the gas absorbs, and measuring the temperature change caused by the absorbance. Conventionally, detection of dissolved gases with sufficient sensitivity and specificity was done by first extracting the gases from the liquid and then analyzing the gases using techniques such as gas chromatography. Using LCS, we have been able to detect ppm levels of dissolved gases without extracting them from the liquid. In this paper, we show the detection of dissolved acetylene in transformer oil in the mid infrared (MIR) wavelength (3021 nm) region.
Klamath River Water Quality Data from Link River Dam to Keno Dam, Oregon, 2008
Sullivan, Annett B.; Deas, Michael L.; Asbill, Jessica; Kirshtein, Julie D.; Butler, Kenna D.; Vaughn, Jennifer
2009-01-01
This report documents sampling and analytical methods and presents field data from a second year of an ongoing study on the Klamath River from Link River Dam to Keno Dam in south central Oregon; this dataset will form the basis of a hydrodynamic and water quality model. Water quality was sampled weekly at six mainstem and two tributary sites from early April through early November, 2008. Constituents reported herein include field-measured water-column parameters (water temperature, pH, dissolved oxygen concentration, specific conductance); total nitrogen and phosphorus; particulate carbon and nitrogen; total iron; filtered orthophosphate, nitrite, nitrite plus nitrate, ammonia, organic carbon, and iron; specific UV absorbance at 254 nanometers; chlorophyll a; phytoplankton and zooplankton enumeration and species identification; and bacterial abundance and morphological subgroups. Sampling program results indicated: *Most nutrient and carbon concentrations were lowest in spring, increased starting in mid-June, remained elevated in the summer, and decreased in fall. Dissolved nitrite plus nitrate had a different seasonal cycle and was below detection or at low concentration in summer. *Although total nitrogen and total phosphorus concentrations did not show large differences from upstream to downstream, filtered ammonia and orthophosphate concentrations increased in the downstream direction and particulate carbon and particulate nitrogen generally decreased in the downstream direction. *Large bacterial cells made up most of the bacteria biovolume, though cocci were the most numerous bacteria type. Cocci, with diameters of 0.1 to 0.2 micrometers, were smaller than the filter pore sizes used to separate dissolved from particulate matter. *Phytoplankton biovolumes were dominated by diatoms in spring and by the blue-green alga Aphanizomenon flos-aquae after mid-June. Another blue-green, Anabaena flos-aquae, was noted in samples from late May to late June. Phytoplankton biovolumes generally were highest at the upstream Link River and Railroad Bridge sites and decreased in the downstream direction. *Zooplankton densities were largest in late April. Populations were dominated by rotifers and copepods in early spring, and by rotifers and cladocerans in summer, with cladocerans most common at the most upstream site.
A survey of the carbonate system in the Levantine Mediterranean Sub-basin
NASA Astrophysics Data System (ADS)
El Rahman Hassoun, Abed; Gemayel, Elissar; Abboud-Abi Saab, Marie
2016-04-01
The carbonate system is very important since it regulates the pH of the seawater and controls the circulation of CO2 between the various natural reservoirs. Recently, several oceanographic cruises have been carried out to assess this system in the Mediterranean Sea. However, the measurements undertaken to quantify the carbonate system parameters in the Levantine Sub-basin remain scarce and occasional. In our study, we are compiling the occasional data taken near Lebanon and surveying the carbonate system in the Lebanese seawaters for the first time by fixing two stations off the Lebanese coast to study the monthly and annual variations of this system through the water column. The dominant processes changing the carbonate chemistry of a seawater can be described by considering changes in the total alkalinity (AT) and the total dissolved inorganic carbon (CT). To measure these parameters, the collected seawater samples are titrated via potentiometric acid titration using a closed cell (DOE, 1994). Further, the temperature and the salinity are measured in situ. Dissolved oxygen concentrations are measured using a Winkler iodometric titration. Nutrients (phosphates, nitrates, nitrites), chlorophyll a and phytoplankton populations are also studied. The compilation of the carbonate system data taken from the cruises conducted near Cyprus (MedSeA 2013, Meteor 84-3, BOUM, Meteor 51-2) indicate that the AT and CT averages are equal to 2617 ±15 and 2298 ± 9 μmol kg-1 respectively, showing high AT and CT concentrations compared to those measured in other Mediterranean sub-basins. Our survey will provide a brand new dataset that will be useful to better comprehend the carbonate system in the Mediterranean Sea in general and the actual situation of the water masses formation in the Levantine Sub-basin after the Eastern Mediterranean Transient (EMT) in particular. Moreover, this work will permit us to estimate the air-sea fluxes and to estimate the anthropogenic CO2 concentrations and the acidification rate in the Lebanese seawaters for the first time. Keywords: Total alkalinity, total dissolved inorganic carbon, carbonate system, Lebanon, Levantine Sub-basin, Mediterranean Sea.
Liu, Jinling; Feng, Xinbin; Zhu, Wei; Zhang, Xian; Yin, Runsheng
2012-01-01
The distribution and speciation of mercury in surface water of East River, Guangdong province, China were investigated. All told 63 water samples were collected during a bi-weekly sampling campaign from July 15th to 26th, 2009. Total mercury (THg) concentrations in water samples ranged from 11 to 49 ng/L. Maximum levels of THg were measured in the lower reaches of East River, where it passes through a major industrial area adjacent to Dongguang city. Higher ratios of dissolved mercury (THg (aq)) in proportion to THg were restricted to the downstream section of East River. Concentrations of the minor constituent methyl mercury varied in the range from 0.08 to 0.21 ng/L. On average, methyl mercury made up 0.8% and 0.56% of THg (aq) and THg, respectively. Dissolved species dominated the speciation of methyl mercury in proportions up to 81%, which may imply that methyl mercury is largely produced in situ within the river water. Environmental factors (such as water temperature, dissolved oxygen, etc.) are regarded to play an important role in Hg methylation processes were monitored and assessed. In an international perspective, East River must be classified as a polluted river with considerably sources within its industrial areas. The THg (aq) and particle mercury fluxes to the Pearl River Estuary by East River run-off were estimated to be 0.31 ± 0.11 and 0.17 ± 0.13 t/year, respectively. Hence, in total nearly 0.5 t Hg is annually released to the sea from the East River tributary.
Zuo, Xiaojun; Fu, Dafang; Li, He
2012-11-01
Heavy metal pollution in road runoff had caused widespread concern since the last century. However, there are little references on metal speciation in multiple environmental media (e.g., rain, road sediments, and road runoff). Our research targeted the investigation of metal speciation in rain, road sediments, and runoff; the analysis of speciation variation and mass balance of metals among rain, road sediments, and runoff; the selection of main factors by principal component analysis (PCA); and the establishment of equation to evaluate the impact of rain and road sediments to metals in road runoff. Sequential extraction procedure contains five steps for the chemical fractionation of metals. Flame atomic absorption spectrometry (Shimadzu, AA-6800) was used to determine metal speciation concentration, as well as the total and dissolved fractions. The dissolved fractions for both Cu and Zn were dominant in rain. The speciation distribution of Zn was different from that of Cu in road sediments, while speciation distribution of Zn is similar to that of Cu in runoff. The bound to carbonates for both Cu and Zn in road sediments were prone to be dissolved by rain. The levels of Cu and Zn in runoff were not obviously influenced by rain, but significantly influenced by road sediments. The masses for both Cu and Zn among rain, road sediments, and road runoff approximately meet the mass balance equation for all rainfall patterns. Five principal factors were selected for metal regression equation based on PCA, including rainfall, average rainfall intensity, antecedent dry periods, total suspended particles, and temperature. The established regression equations could be used to predict the effect of road runoff on receiving environments.
Hill, Dagne D; Owens, William E; Tchounwou, Paul B
2005-04-01
The objective of this research was to compare the chemical/physical parameters and bacterial qualities of selected surface water streams in Louisiana, including a natural stream (control) and an animal waste related stream. Samples were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols (LaMotte 2002). An analysis of biological oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total dissolved solids (TDS), conductivity, pH, temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, turbidity, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [9]. Results of the comparisons of the various surface water streams showed that phosphate levels, according to Mitchell and Stapp, were considered good for Lake Claiborne (control) and Bayou Dorcheat. The levels were found to be .001 mg/L and .007 mg/L respectively. Other streams associated with animal waste, had higher phosphate levels of 2.07 mg/L and 2.78 mg/L, respectively. Conductivity and total dissolved solids (TDS) levels were the lowest in Lake Claiborne and highest in the Hill Farm Research Station stream. It can be concluded from the data that some bacterial levels and various nutrient levels can be affected in water resources due to non-point source pollution. Many of these levels will remain unaffected.
Malassa, Husam; Al-Rimawi, Fuad; Al-Khatib, Mahmoud; Al-Qutob, Mutaz
2014-10-01
Rainwater samples harvested for drinking from the west part of Hebron (south of West Bank in Palestine), the largest city in the West Bank, were analyzed for the content of different trace heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Bi, and Pb) by inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to determine the water quality of harvested rainwater used for drinking of south West Bank (case study, Hebron area). A total of 44 water samples were collected in November 2012 from 44 house cisterns used to collect rainwater from the roofs of houses. The samples were analyzed for their pH, temperature, electrical conductivity, total dissolved solids, and different heavy metal contents. The pH of all water samples was within the US Environmental Protection Agency limits (6.5-8.5), while some water samples were found to exceed the allowed WHO limit for total dissolved solids (TDSs) in drinking water. Results showed that concentrations of the heavy metals vary significantly between the 44 samples. Results also showed that the concentration of five heavy metals (Cr, Mn, Ni, Ag, and Pb) is higher than the WHO limits for these heavy metals in drinking water. Overall, our findings revealed that harvested rainwater used for drinking of this part of south West Bank is contaminated with heavy metals that might affect human health.
Coeur d'Alene Lake, Idaho: Insights Gained From Limnological Studies of 1991-92 and 2004-06
Wood, Molly S.; Beckwith, Michael A.
2008-01-01
More than 100 years of mining and processing of metal-rich ores in northern Idaho's Coeur d'Alene River basin have resulted in widespread metal contamination of the basin's soil, sediment, water, and biota, including Coeur d'Alene Lake. Previous studies reported that about 85 percent of the bottom of Coeur d'Alene Lake is substantially enriched in antimony, arsenic, cadmium, copper, lead, mercury, silver, and zinc. Nutrients in the lake also are a major concern because they can change the lake's trophic status - or level of biological productivity - which could result in secondary releases of metals from contaminated lakebed sediments. This report presents insights into the limnological functioning of Coeur d'Alene Lake based on information gathered during two large-scale limnological studies conducted during calendar years 1991-92 and water years 2004-06. Both limnological studies reported that longitudinal gradients exist from north to south for decreasing water column transparency, loss of dissolved oxygen, and increasing total phosphorus concentrations. Gradients also exist for total lead, total zinc, and hypolimnetic dissolved oxygen concentrations, ranging from high concentrations in the central part of the lake to lower concentrations at the northern and southern ends of the lake. In the southern end of the lake, seasonal anoxia serves as a mechanism to release dissolved constituents such as phosphorus, nitrogen, iron, and manganese from lakebed sediments and from detrital material within the water column. Nonparametric statistical hypothesis tests at a significance level of a=0.05 were used to compare analyte concentrations among stations, between lake zones, and between study periods. The highest dissolved oxygen concentrations were measured in winter in association with minimum water temperatures, and the lowest concentrations were measured in the Coeur d'Alene Lake hypolimnion during late summer or autumn as prolonged thermal stratification restricted mixing of the oxygenated upper water column and the hypolimnion, where oxygen was consumed. Large differences in median concentrations of dissolved inorganic nitrogen were measured between the euphotic zone and hypolimnion in the deep areas of the lake. These differences in nitrogen concentrations were attributable to several limnological processes, including seasonal inflow plume routing, isolation from wind-driven circulation and associated hypolimnetic enrichment, phytoplanktonic assimilation during summer months, and benthic flux. Increased chlorophyll-a and total phosphorus concentrations were measured throughout the lake in the 2004-06 study compared with results from the 1991-92 study. No significant change in hypolimnetic dissolved inorganic nitrogen concentration throughout the lake was noted even though total nitrogen loads into the lake decreased between study periods. Total zinc and total lead decreased throughout the lake from the 1991-92 study to the 2004-06 study except in the southern part of the lake, where concentrations were typically low. Median detected nitrogen-to-phosphorus ratios decreased from the 1991-92 study to the 2004-06 study. Whereas the lake was clearly phosphorus-limited in 1991-92, in 2004-06 the lake may have been much closer to the boundary value of 7.2 that separates nitrogen from phosphorus limitation. However, due to changes in analytical reporting limits in the period between the two studies, the data are insufficiently certain to draw reliable conclusions with regard to limiting nutrients. For both studies, the trophic state of the lake was classified as oligotrophic (less productive) or mesotrophic (moderately productive), depending on the constituent used for classification. Internal circulation from wind-generated waves and changes in the lake's thermocline are important processes for distribution of water-quality constituents throughout Coeur d'Alene Lake. Surficial distribution of trace metals throughout most o
Carr, Jerry E.; Halasz, Stephen J.; Liscum, Fred
1980-01-01
This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes, in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents.
Water quality in the Sugar Creek basin, Bloomington and Normal, Illinois
Prugh, Byron J.
1978-01-01
Urban runoff and overflows from combined sewers affect water quantity and quality in Sugar Creek within the twin cities of Bloomington and Normal, Illinois. Water-quality data from five primary and eight secondary locations showed three basic types of responses to climatic and hydrologic stresses. Stream temperatures and concentrations of dissolved oxygen, ammonia nitrogen, total phosphorus, biochemical oxygen demand, and fecal bacteria showed seasonal variations. Specific conductivity, pH, chloride, and suspended solids concentrations varied more closely with stream discharges. Total organic carbon, total nitrogen, total phosphorus, biochemical oxygen demand, and fecal coliform and fecal streptococcal bacteria concentrations exhibited variations indicative of intial flushing action during storm runoff. Selected analyses for herbicides, insecticides, and other complex organic compounds in solution and in bed material showed that these constituents were coming from sources other than the municipal sanitary treatment plant effluent. Analyses for 10 common metals: arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc showed changes in concentrations below the municipal sanitary plant outfall. (Woodard-USGS)
Weon, S Y; Lee, S I; Koopman, B
2004-11-01
Effect of temperature and dissolved oxygen concentration on nitrification rate were investigated with enrichment cultures of nitrifying bacteria. Values of specific nitrite oxidation rate in the absence of ammonia were 2.9-12 times higher than maximum specific ammonia oxidation rates at the same temperatures. The presence of high ammonia levels reversed this relationship, causing maximum specific nitrite oxidation rates to fall to 19 to 45% as high as maximum specific ammonia oxidation rates. This result suggests that nitrification at high ammonia levels will invariably result in nitrite accumulation. The K(O2) for nitrite oxidation in the presence of high ammonia levels was higher than the K(O2) for ammonia oxidation when temperature exceeded 18 degrees C, whereas the opposite was true at lower temperatures. These results indicate that low oxygen tensions will exacerbate nitrite accumulation when water temperature is high.
Significance of dissolved methane in effluents of anaerobically ...
The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro
Modeling white sturgeon movement in a reservoir: The effect of water quality and sturgeon density
Sullivan, A.B.; Jager, H.I.; Myers, R.
2003-01-01
We developed a movement model to examine the distribution and survival of white sturgeon (Acipenser transmontanus) in a reservoir subject to large spatial and temporal variation in dissolved oxygen and temperature. Temperature and dissolved oxygen were simulated by a CE-QUAL-W2 model of Brownlee Reservoir, Idaho for a typical wet, normal, and dry hydrologic year. We compared current water quality conditions to scenarios with reduced nutrient inputs to the reservoir. White sturgeon habitat quality was modeled as a function of temperature, dissolved oxygen and, in some cases, suitability for foraging and depth. We assigned a quality index to each cell along the bottom of the reservoir. The model simulated two aspects of daily movement. Advective movement simulated the tendency for animals to move toward areas with high habitat quality, and diffusion simulated density dependent movement away from areas with high sturgeon density in areas with non-lethal habitat conditions. Mortality resulted when sturgeon were unable to leave areas with lethal temperature or dissolved oxygen conditions. Water quality was highest in winter and early spring and lowest in mid to late summer. Limiting nutrient inputs reduced the area of Brownlee Reservoir with lethal conditions for sturgeon and raised the average habitat suitability throughout the reservoir. Without movement, simulated white sturgeon survival ranged between 45 and 89%. Allowing movement raised the predicted survival of sturgeon under all conditions to above 90% as sturgeon avoided areas with low habitat quality. ?? 2003 Elsevier B.V. All rights reserved.
Use of tolerance values to diagnose water-quality stressors to aquatic biota in New England streams
Meador, M.R.; Carlisle, D.M.; Coles, J.F.
2008-01-01
Identification of stressors related to biological impairment is critical to biological assessments. We applied nationally derived tolerance indicator values for four water-quality variables to fish and benthic macroinvertebrate assemblages at 29 sites along an urban gradient in New England. Tolerance indicator values (TIVs), as biologically based predictors of water-quality variables, were determined for dissolved oxygen, nitrite plus nitrate (nitrate), total phosphorus, and water temperature for each site based on observed biological assemblages (TIVO), and for expected assemblages (TIVE). The quotient method, based on a ratio of the TIVs for observed and expected assemblages (tolerance units), was used to diagnose potential water-quality stressors. In addition, the ratio of measured water-quality values to water-quality criteria (water-quality units) was calculated for each water-quality variable to assess measured water-quality stressors. Results from a RIVPACS predictive model for benthic macroinvertebrates and Bray-Curtis dissimilarity for fish were used to classify sites into categories of good or impaired ecological condition. Significant differences were detected between good and impaired sites for all biological tolerance units (fish and benthic macroinvertebrate assemblages averaged) except for nitrate (P = 0.480), and for all water-quality units except for nitrate (P = 0.183). Diagnosis of water-quality stressors at selected sites was, in general, consistent with State-reported causes of impairment. Tolerance units for benthic macroinvertebrate and fish assemblages were significantly correlated for water temperature (P = 0.001, r = 0.63), dissolved oxygen (P = 0.001, r = 0.61), and total phosphorus (P = 0.001, r = 0.61), but not for nitrate (P = 0.059, r = -0.35). Differences between the two assemblages in site-specific diagnosis of water-quality stressors may be the result of differences in nitrate tolerance.
Geochemical characterisation of gases along the dead sea rift: Evidences of mantle-co2 degassing
NASA Astrophysics Data System (ADS)
Inguaggiato, C.; Censi, P.; D'Alessandro, W.; Zuddas, P.
2016-06-01
The Dead Sea Transform (DST) fault system, where a lateral displacement between the African and Arabian plates occurs, is characterised by anomalous heat flux in the Israeli area close to the border with Syria and Jordan. The concentration of He and CO2, and isotopic composition of He and total dissolved inorganic carbon were studied in cold and thermal waters collected along the DST, in order to investigate the source of volatiles and their relationship with the tectonic framework of the DST. The waters with higher temperature (up to 57.2 °C) are characterised by higher amounts of CO2 and helium (up to 55.72 and 1.91 ∗ 10- 2 cc l- 1, respectively). Helium isotopic data (R/Ra from 0.11 to 2.14) and 4He/20Ne ratios (0.41-106.86) show the presence of deep-deriving fluids consisting of a variable mixture of mantle and crust end-members, with the former reaching up to 35%. Carbon isotope signature of total dissolved carbon from hot waters falls within the range of magmatic values, suggesting the delivery of deep-seated CO2. The geographical distribution of helium isotopic data and isotopic carbon (CO2) values coupled with (CO2/3He ratios) indicate a larger contribution of mantle-derived fluids affecting the northern part of the investigated area, where the waters reach the highest temperature. These evidences suggest the occurrence of a favourable tectonic framework, including a Moho discontinuity up-rise and/or the presence of a deep fault system coupled with the recent magmatic activity recognised in the northern part of Israel.
Characterizing Dissolved Gases in Cryogenic Liquid Fuels
NASA Astrophysics Data System (ADS)
Richardson, Ian A.
Pressure-Density-Temperature-Composition (PrhoT-x) measurements of cryogenic fuel mixtures are a historical challenge due to the difficulties of maintaining cryogenic temperatures and precision isolation of a mixture sample. For decades NASA has used helium to pressurize liquid hydrogen propellant tanks to maintain tank pressure and reduce boil off. This process causes helium gas to dissolve into liquid hydrogen creating a cryogenic mixture with thermodynamic properties that vary from pure liquid hydrogen. This can lead to inefficiencies in fuel storage and instabilities in fluid flow. As NASA plans for longer missions to Mars and beyond, small inefficiencies such as dissolved helium in liquid propellant become significant. Traditional NASA models are unable to account for dissolved helium due to a lack of fundamental property measurements necessary for the development of a mixture Equation Of State (EOS). The first PrhoT-x measurements of helium-hydrogen mixtures using a retrofitted single-sinker densimeter, magnetic suspension microbalance, and calibrated gas chromatograph are presented in this research. These measurements were used to develop the first multi-phase EOS for helium-hydrogen mixtures which was implemented into NASA's Generalized Fluid System Simulation Program (GFSSP) to determine the significance of mixture non-idealities. It was revealed that having dissolved helium in the propellant does not have a significant effect on the tank pressurization rate but does affect the rate at which the propellant temperature rises. PrhoT-x measurements are conducted on methane-ethane mixtures with dissolved nitrogen gas to simulate the conditions of the hydrocarbon seas of Saturn's moon Titan. Titan is the only known celestial body in the solar system besides Earth with stable liquid seas accessible on the surface. The PrhoT-x measurements are used to develop solubility models to aid in the design of the Titan Submarine. NASA is currently designing the submarine to explore the depths of Titan's methane-ethane seas to study the evolution of hydrocarbons in the universe and provide a pathfinder for future submersible designs. In addition, effervescence and freezing liquid line measurements on various liquid methane-ethane compositions with dissolved gaseous nitrogen are presented from 1.5 bar to 4.5 bar and temperatures from 92 K to 96 K to improve simulations of the conditions of the seas. These measurements will be used to validate sea property and bubble incipience models for the Titan Submarine design.
Modelling Nitrogen Cycling in a Mariculture Ecosystem as a Tool to Evaluate its Outflow
NASA Astrophysics Data System (ADS)
Lefebvre, S.; Bacher, C.; Meuret, A.; Hussenot, J.
2001-03-01
A model was constructed to describe an intensive mariculture ecosystem growing sea bass ( Dicentrarchus labrax), located in the salt marshes of the Fiers d'Ars Bay on the French Atlantic coast, in order to assess nitrogen cycling within the system and nitrogen outflow from the system. The land-based system was separated into three main compartments: a seawater reservoir, fish ponds and a lagoon (sedimentation pond). Three submodels were built for simulation purposes: (1) a hydrological submodel which simulated water exchange; (2) a fish growth and excretion bioenergetic submodel; and (3) a nitrogen compound transformation and loss submodel (i.e. ammonification, nitrification and assimilation processes). A two-year sampling period of nitrogen water quality concentrations and fish growth was used to validate the model. The model fitted the observations of dissolved nitrogen components, fish growth and water fluxes on a daily basis in all the compartments. The dissolved inorganic nitrogen ranged widely and over time from 0·5 to 9 g N m -3within the system, depending on seawater supply and water temperature, without affecting fish growth. Fish feed was the most important input of nitrogen into the system. The mean average input of nitrogen in the feed was 205 kg N day -1, of which 19% was retained by fish, 4% accumulated in the sediment and 61% flowed from the system as dissolved components. The farm represented about 25% of the total dissolved nitrogen export from the bay, although the farm surface area was 100 times smaller than that of the bay.
Kuwabara, James S.; Topping, Brent R.; Moon, Gerald E.; Husby, Peter; Lincoff, Andrew; Carter, James L.; Croteau, Marie-Noële
2005-01-01
The water columns of four reservoirs (Almaden, Calero, Guadalupe and Lexington Reservoirs) and an abandoned quarry pit filled by Alamitos Creek drainage for recreational purposes (Lake Almaden) were sampled on September 14 and 15, 2004 to provide the first measurements of mercury accumulation by phytoplankton and zooplankton in lentic systems (bodies of standing water, as in lakes and reservoirs) within the Guadalupe River watershed, California. Because of widespread interest in ecosystem effects associated with historic mercury mining within and downgradient of the Guadalupe Riverwatershed, transfer of mercury to lower trophic-level organisms was examined. The propensity of mercury to bioaccumulate, particularly in phytoplankton and zooplankton at the base of the food web, motivated this attempt to provide information in support of developing trophic-transfer and solute-transport models for the watershed, and hence in support of subsequent evaluation of load-allocation strategies. Both total mercury and methylmercury were examined in these organisms. During a single sampling event, replicate samples from the reservoir water column were collected and processed for dissolved-total mercury, dissolved-methylmercury, phytoplankton mercury speciation, phytoplankton taxonomy and biomass, zooplankton mercury speciation, and zooplankton taxonomy and biomass. The timing of this sampling event was coordinated with sampling and analysis of fish from these five water bodies, during a period of the year when vertical stratification in the reservoirs generates a primary source of methylmercury to the watershed. Ancillary data, including dissolved organic carbon and trace-metal concentrations as well as vertical profiles of temperature, dissolved oxygen, specific conductance and pH, were gathered to provide a water-quality framework from which to compare the results for mercury. This work, in support of the Guadalupe River Mercury Total Maximum Daily Load (TMDL) Study, provides the first measurements of mercury trophic transfer through planktonic communities in this watershed. It is worth reemphasizing that this data set represents a single ?snap shot? of conditions in water bodies within the Guadalupe River watershed to: (1) fill gaps in trophic transfer information, and (2) provide a scientific basis for future process-based studies with enhanced temporal and spatial coverage. This electronic document was unconventionally formatted to enhance the accessibility of information to a wide range of interest groups.
Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian
2011-01-01
In 2004, the Total Maximum Daily Load (TMDL) for Total Phosphorus in the Assabet River, Massachusetts, was approved by the U.S. Environmental Protection Agency. The goal of the TMDL was to decrease the concentrations of the nutrient phosphorus to mitigate some of the instream ecological effects of eutrophication on the river; these effects were, for the most part, direct consequences of the excessive growth of aquatic macrophytes. The primary instrument effecting lower concentrations of phosphorus was to be strict control of phosphorus releases from four major wastewatertreatment plants in Westborough, Marlborough, Hudson, and Maynard, Massachusetts. The improvements to be achieved from implementing this control were lower concentrations of total and dissolved phosphorus in the river, a 50-percent reduction in aquatic-plant biomass, a 30-percent reduction in episodes of dissolved oxygen supersaturation, no low-flow dissolved oxygen concentrations less than 5.0 milligrams per liter, and a 90-percent reduction in sediment releases of phosphorus to the overlying water. In 2007, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated studies to evaluate conditions in the Assabet River prior to the upgrading of wastewater-treatment plants to remove more phosphorus from their effluents. The studies, completed in 2008, implemented a visual monitoring plan to evaluate the extent and biomass of the floating macrophyte Lemna minor (commonly known as lesser duckweed) in five impoundments and evaluated the potential for phosphorus flux from sediments in impounded and free-flowing reaches of the river. Hydrologically, the two study years 2007 and 2008 were quite different. In 2007, summer streamflows, although low, were higher than average, and in 2008, the flows were generally higher than in 2007. Visually, the effects of these streamflow differences on the distribution of Lemna were obvious. In 2007, large amounts of floating macrophytes accumulated behind bridge constrictions and dams; in 2008, high flows during the early part of the growing season carried floating macrophytes past bridges and over dams, minimizing accumulations. Samples of Lemna were collected and weighed to provide an estimate of Lemna biomass based on areal coverage during the summer growing seasons at eight sites in the five impoundments. Average estimated biomass during 2007 was approximately twice the 2008 biomass in each of the areas monitored. In 2007, in situ hyperspectral and high-resolution, multispectral data from the IKONOS satellite were obtained to evaluate the feasibility of using remote sensing to monitor the extent of aquatic plant growth in Assabet River impoundments. Three vegetation indices based on light reflectance were used to develop metrics with which the hyperspectral and satellite data were compared. The results of the comparisons confirmed that the high-resolution satellite imagery could differentiate among the common aquatic-plant associations found in the impoundments. The use of satellite imagery could counterbalance emphasis on the subjective judgment of a human observer, and airborne hyperspectral data can provide higher resolution imagery than multispectral satellite data. In 2007 and 2008, the potential for sediment flux of phosphorus was examined in free-flowing reaches of the river and in the two largest impoundments-Hudson and Ben Smith. These studies were undertaken to determine in situ flux rates prior to the implementation of the Assabet River Total Maximum Daily Load (TMDL) for phosphorus and to compare these rates with those used in the development and evaluation of the TMDL. Water samples collected from a chamber placed on the river bottom were analyzed for total phosphorus and orthophosphorus. Ambient dissolved oxygen concentrations and seasonal temperature differences appeared to affect the rates of sequestration and sediment release of phosphorus. When dissolved oxygen concentrations remained relatively high in the chambers and when the temperature was relatively low, the tendency was for phosphorus concentrations to decrease in the chambers, indicating sediment sequestration of phosphorus; when dissolved oxygen concentrations dropped to near zero and temperatures were warmest, phosphorus concentrations increased in the chambers, indicating phosphorus flux from the sediment. The rates of release and sequestration in the in situ studies were generally comparable with the rates determined in laboratory studies of Assabet River sediment cores for State and Federal agencies. Sediment-core and chamber studies produced substantial sediment fluxes to the water column only under extremely low-DO or anaerobic conditions rarely found in the Assabet River impoundments; thus, sediment is not likely to be a major phosphorus source, especially when compared to the wastewater effluent, which sustains higher ambient concentrations. The regulatory agencies now (2011) have substantial laboratory and field data with which to determine the required 90-percent reduction in phosphorus flux after the completion of upgrades to the wastewater-treatment plants that discharge to the Assabet River.
Water-quality conditions in Upper Klamath Lake, Oregon, 2002-04
Wood, Tamara M.; Hoilman, Gene R.; Lindenberg, Mary K.
2006-01-01
Eleven (2002) to 14 (2003 and 2004) continuous water-quality monitors that measured pH, dissolved oxygen, temperature, and specific conductance, were placed in Upper Klamath Lake to support a telemetry tracking study of endangered adult shortnose and Lost River suckers. Samples for the analysis of chlorophyll a and nutrients were collected at a subset of the water-quality monitor sites in each year. The seasonal pattern in the occurrence of supersaturated dissolved oxygen concentrations and high pH associated with photosynthetic activity, as well as the undersaturated dissolved oxygen concentrations associated with oxygen demand through respiration and decay in excess of photosynthetic production, were well described by the dynamics of the massive blooms of Aphanizomenon flos aquae (AFA) that occur each year. Data from the continuous monitors provided a means to quantify the occurrence, duration, and spatial extent of water-quality conditions potentially harmful to fish (dissolved- oxygen concentration less than 4 milligrams per liter, pH greater than 9.7, and temperature greater than 28 degrees Celsius) in the northern part of the lake, where the preferred adult sucker habitat is found. There were few observations of temperature greater than 28 degrees Celsius, suggesting that temperature is not a significant source of chronic stress to fish, although its role in the spread of disease is harder to define. Observations of pH greater than 9.7 were common during times when the AFA bloom was growing rapidly, so pH may be a source of chronic stress to fish. Dissolved oxygen concentrations less than 4 milligrams per liter were common in all 3 years at the deeper sites, in the lower part of the water column and for short periods during the day. Less common were instances of widespread low dissolved oxygen, throughout the water column and persisting through the entire day, but this was the character of a severe low dissolved oxygen event (LDOE) that culminated in the start of a fish die-off in 2003. Documented evidence indicates that LDOEs played a role in three fish die-offs in the mid-1990s as well. In the historical context of 15 years of climate and water-quality data, 3 out of 4 of the recent fish die-off years, 1996, 1997, and 2003, were characterized by low winds and high temperatures in July or August coincident with the start of the die-off. High temperatures accelerate the oxygen demanding processes that lead to a LDOE. The role of low winds remains inconclusive, but it could include the development of stratification in the water column and/or the alteration of the wind-driven circulation pattern. At a site centrally located in the study area, die-off years could be successfully identified in the historical data by screening for water characterized by exceptionally low chlorophyll a concentration, exceptionally low dissolved oxygen concentration throughout the water column (not just near the bottom), and exceptionally high ammonia concentration and water temperature, just prior to or coincident with the start of a fish die-off. These conditions indicate that a severe decline in the AFA bloom and conversion of most of the organic matter into inorganic form had taken place.
Seagrass carbon budgets provide valuable insight on the minimum requirements needed to maintain this valuable resource. Carbon budgets are a balance between C fixation, storage and loss rates, most of which are well characterized. However, relatively few measurements of dissolv...
USDA-ARS?s Scientific Manuscript database
Limited information is available to understand the chemical structure of biochar’s labile dissolved organic carbon (DOC) fraction that will change amended soil’s DOC composition. This study utilized the high sensitivity of fluorescence excitation-emission (EEM) spectrophotometry to understand the s...
Reconnaissance of water quality at four swine farms in Jackson County, Florida, 1993
Collins, J.J.
1996-01-01
The quality of ground water on four typical swine farms in Jackson County, Florida, was studied by analyzing water samples from wastewater lagoons, monitoring wells, and supply wells. Water samples were collected quarterly for 1 year and analyzed for the following dissolved species: nitrate, nitrite, ammonium nitrogen, phosphorus, potassium, sulfate, chloride, calcium, magnesium, fluoride, total ammonium plus organic nitrogen, total phosphorus, alkalinity, carbonate, and bicarbonate. Additionally, the following field constituents were determined in the water samples: temperature, specific conductance, pH, dissolved oxygen, and fecal streptococcus and fecal coliform bacteria. Chemical changes in swine waste as it leaches and migrates through the saturated zone were examined by comparing median values and ranges of water- quality data from farm wastewater in lagoons, shallow pond, shallow monitoring wells, and deeper farm supply wells. The effects of hydrogeologic settings and swine farmland uses on shallow ground-water quality were examined by comparing the shallow ground-water-quality data set with the results of the chemical analyses of water from the Upper Floridan aquifer, and to land uses adjacent to the monitoring wells. Substantial differences occur between the quality of diluted swine waste in the wastewater lagoons, and that of the water quality found in the shallow pond, and the ground water frm all but two of the monitoring wells of the four swine farms. The liquid from the wastewater lagoons and ground water from two wells adjacent to and down the regional gradient from a lagoon on one site, have relatively high values for the following properties and constituents: specific conductance, dissolved ammonia nitrogen, dissolved potassium, and dissolved chloride. Ground water from all other monitoring wells and farm supply wells and the surface water pond, have relatively much lower values for the same properties and constituents. To determine the relation between land uses and ground-water quality on the four swine farms, ground-water-quality data were divided according to the following land uses: confined operations in which swine are kept in houses and not allowed to roam freely, and unconfined operations in which swine are allowed to roam freely in determined areas. Confined operations had lagoons to receive the diluted swine wastes washed from the houses.
Harden, Stephen L.; Rogers, Shane W.; Jahne, Michael A.; Shaffer, Carrie E.; Smith, Douglas G.
2012-01-01
Study sites were sampled for laboratory analysis of nutrients, total suspended solids (TSS), and (or) fecal indicator bacteria (FIB). Nutrient analyses included measurement of dissolved ammonia, total and dissolved ammonia + organic nitrogen, dissolved nitrate + nitrite, dissolved orthophosphate, and total phosphorus. The FIB analyses included measurement of Escherichia coli and enterococci. Samples of wastewater at the swine facility were collected from a pipe outfall from the swine housing units, two storage lagoons, and the spray fields for analysis of nutrients, TSS, and FIB. Soil samples collected from a spray field were analyzed for FIB. Monitoring locations were established for collecting discharge and water-quality data during storm events at three in-field runoff sites and two sites on the headwater stream (one upstream and one downstream) next to the swine facility. Stormflow samples at the five monitoring locations were collected for four storm events during 2009 to 2010 and analyzed for nutrients, TSS, and FIB. Monthly water samples also were collected during base-flow conditions at all four stream sites for laboratory analysis of nutrients, TSS, and (or) FIB.
NASA Astrophysics Data System (ADS)
Wojciech Szajdak, Lech; Szczepański, Marek
2010-05-01
The investigation of peatland is used to show the water quality functioning with respect to different forms of nitrogen and carbon. The purification of ground water by the transect of 4.5 km long consisting organic soils (peat-moorsh soils) was estimated. This transect is located in the Agroecological Landscape Park in Turew, 40 km South-West of Poznan, West Polish Lowland. There is this transect along Wyskoć ditch. pH, the contents of total and dissolved organic carbon, total nitrogen, N-NO3-, N-NH4+ was measured. Additionally C/N factors of peats were estimated. The investigation has shown the impact of the peatland located on the secondary transformed peat - moorsh soils on the lowering of total nitrogen, ammonium, and nitrates as well as total and dissolved organic carbon in ground water. Peat-moorsh soils were described and classified according to Polish hydrogenic soil classification and World Reference Base Soil Notation. There are four investigated points along to Wyskoc ditch. Two times a month during entire vegetation season the following material was taken from this four chosen sites: samples of peat, from the depth of 0-20 cm, samples of water from the ditch, samples of ground water from wells established for this investigation. Samples of peat-moorsh soils were collected at the depth 0-20 cm. Soils were sampled two times a month from 10 sites of each site. Samples were air dried and crushed to pass a 1 mm-mesh sieve. These 10 sub-samples were mixed for the reason of preparing a 'mean sample', which used for the determination of pH (in 1M KCl), dissolved organic carbon (DOC), total organic carbon (TOC), total nitrogen (Ntotal), and N-NO3- as well as N-NH4+. In water from Wyskoć ditch pH, Ntotal, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) was measured. Ground water samples were collected from four wells established for this investigation. The water was filtered by the middle velocity separation and pH, N-total, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) ware measured. Peatland located on the secondary transformed peat - moorsh soils has revealed the lowering in ground water: nitrates 38.5%, N-organic 10%, N-total 24.5%, ammonium 38.7%, dissolved total carbon 33.1%, dissolved total inorganic carbon 10%, and dissolved organic carbon 57.5%. The elution of soil organic matter from peat-moorsh soils in broad range of pH and ionic strength was investigated. The rates of the reaction were calculated from the kinetics of first order reaction model. All experiments were repeated at different pH 6.0, 6.5, 7.0, 8.0, 8.5 of 0.5 M ammonium acetate buffer solution. The investigations have shown the impact of the properties of secondary transformed peat-moorsh soils on the rates of the dissolution of organic matter. The rates of organic matter elution for all samples of peats were significant different at four used wavelengths λ=272 nm, λ=320 nm, λ=465 nm, and λ=665 nm. It was observed that the rates increased between λ=272 nm and λ=320 nm and decreased from λ=465 nm to λ=665 nm. Although, the lowest values of the pseudo first-order rate constants measured at λ=665 nm for all samples of peats from four places ranged from 1.9524 10-4 s-1 to 2.7361 10-4 s-1. Therefore, the highest values of t0.5 ranged from 42.2 to 59.2 min for all samples from Zbęchy, Shelterbelt, Mostek and Hirudo. This work was supported by a grant No. N N305 3204 36 founded by Polish Ministry of Education.
Frick, Elizabeth A.; Gregory, M. Brian; Calhoun, Daniel L.; Hopkins, Evelyn H.
2002-01-01
Cumberland Island is the southernmost and largest barrier island along the coast of Georgia. The island contains about 2,500 acres of freshwater wetlands that are located in a variety of physical settings, have a wide range of hydroperiods, and are influenced to varying degrees by surface and ground water, rainwater, and seawater. In 1999-2000, the U.S. Geological Survey, in cooperation with the National Park Service, conducted a water-quality study of Cumberland Island National Seashore to document and interpret the quality of a representative subset of surface- and ground-water resources for management of the seashore's natural resources. As part of this study, historical ground-water, surface-water, and ecological studies conducted on Cumberland Island also were summarized. Surface-water samples from six wetland areas located in the upland area of Cumberland Island were collected quarterly from April 1999 to March 2000 and analyzed for major ions, nutrients, trace elements, and field water-quality constituents including specific conductance, pH, temperature, dissolved oxygen, alkalinity, tannin and lignin, and turbidity. In addition, water temperature and specific conductance were recorded continuously from two wetland areas located near the mean high-tide mark on the Atlantic Ocean beaches from April 1999 to July 2000. Fish and invertebrate communities from six wetlands were sampled during April and December 1999. The microbial quality of the near-shore Atlantic Ocean was assessed in seawater samples collected for 5 consecutive days in April 1999 at five beaches near campgrounds where most recreational water contact occurs. Ground-water samples were collected from the Upper Floridan aquifer in April 1999 and from the surficial aquifer in April 2000 at 11 permanent wells and 4 temporary wells (drive points), and were analyzed for major ions, nutrients, trace elements, and field water-quality constituents (conductivity, pH, temperature, dissolved oxygen, and alkalinity). Fecal-coliform bacteria concentrations were measured, but not detected, in samples collected from two domestic water-supply wells. During the 12-month period from April 1999 to March 2000 when water-quality and aquatic-community samples were collected, rainfall was 12.93 inches below the 30-year average rainfall. Constituent concentrations were highly variable among the different wetlands during the study period. Rainfall and tidal surges associated with tropical storms and hurricanes substantially influenced water quantity and quality, particularly in wetland areas directly influenced by tidal surges. Although surface waters on Cumberland Island are not used as sources of drinking water, exceedances of U.S. Environmental Protection Agency primary and secondary standards for drinking water were noted for comparative purposes. A nitrate concentration of 12 milligrams per liter in one sample from Whitney outflow was the only exceedance of a maximum contaminant level. Secondary standards were exceeded in 26 surface-water samples for the following constituents: pH (10 exceedances), chloride (8), sulfate (5), total dissolved solids (4), iron (2), fluoride (1), and manganese (1). The total-dissolved-solids concentrations and the relative abundance of major ions in surface-water samples collected from wetlands on Cumberland Island provide some insight into potential sources of water and influences on water quality. Major-ion chemistries of water samples from Whitney Lake, Willow Pond, and South End Pond 3 were sodium-chloride dominated, indicating direct influence from rainwater, salt aerosol, or inundation of marine waters. The remaining wetlands sampled had low total-dissolved-solids concentrations and mixed major-ion chemistries--North Cut Pond 2A was magnesium-sodium-chloride-sulfate dominated and Lake Retta and the two beach outflows were sodium-calcium-bicarbonate-chloride dominated. The higher percent calcium and bicarbonate in some wetlands sugg
Marijić, Vlatka Filipović; Perić, Mirela Sertić; Kepčija, Renata Matoničkin; Dragun, Zrinka; Kovarik, Ivana; Gulin, Vesna; Erk, Marijana
2016-01-01
The present study was undertaken to obtain a better understanding of the seasonal variability of total dissolved metal/metalloid levels and physicochemical parameters within small- to medium-size freshwater ecosystems in temperate climate region. The research was conducted in four seasons in the Sutla River, medium-size polluted, and the Črnomerec Stream, small-size unpolluted watercourse in Croatia. In the Sutla River, characterized by the rural/industrial catchment, physicochemical parameters and total dissolved metal concentrations of 21 trace and 4 macro elements were analysed downstream of the point source of pollution, the glass production facility, indicating for the first time their variability across four seasons. Based on dissolved oxygen, total dissolved solids, nutrient concentrations, conductivity and total chemical oxygen demand, quality status of the Sutla River was good, but moderate to poor during summer, what was additionally confirmed by the highest levels of the most of 25 measured metals/metalloids in summer. Comparison with the reference small-size watercourse, the Črnomerec Stream, indicated significant anthropogenic impact on the Sutla River, most evident for Fe, Mn, Mo, Ni, Pb, Rb and Tl levels (3-70-fold higher in the Sutla River across all seasons). Generally, presented results indicated significant decrease of the water quality in the anthropogenically impacted small- to medium-size watercourses in summer, regarding physicochemical water parameters and total dissolved metal/metalloid concentrations, and pointed to significant seasonality of these parameters. Confirmed seasonality of river ecological status indicates that seasonal assessment represents a prerequisite for proper classification of the water quality in small- to medium-size temperate rivers.
Kline, David I; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove
2015-01-01
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C) and lowest diel ranges (0.9 - 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.
Kline, David I.; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove
2015-01-01
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 – 6.6°C) and lowest diel ranges (0.9 – 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 – 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems. PMID:26039687
Chaplin, Jeffrey J.; Crawford, J. Kent; Brightbill, Robin A.
2009-01-01
Mortalities of young-of-the-year (YOY) smallmouth bass (Micropterus dolomieu) recently have occurred in the Susquehanna River due to Flavobacterium columnare, a bacterium that typically infects stressed fish. Stress factors include but are not limited to elevated water temperature and low dissolved oxygen during times critical for survival and development of smallmouth bass (May 1 through July 31). The infections were first discovered in the Susquehanna River and major tributaries in the summer months of 2005 but also were prevalent in 2007. The U.S. Geological Survey, Pennsylvania Fish and Boat Commission, Pennsylvania Department of Environmental Protection, and PPL Corporation worked together to monitor dissolved oxygen, water temperature, pH, and specific conductance on a continuous basis at seven locations from May through mid October 2008. In addition, nutrient concentrations, which may affect dissolved-oxygen concentrations, were measured once in water and streambed sediment at 25 locations. Data from water-quality meters (sondes) deployed as pairs showed daily minimum dissolved-oxygen concentration at YOY smallmouth-bass microhabitats in the Susquehanna River at Clemson Island and the Juniata River at Howe Township Park were significantly lower (p-value < 0.0001) than nearby main-channel habitats. The average daily minimum dissolved-oxygen concentration during the critical period (May 1-July 31) was 1.1 mg/L lower in the Susquehanna River microhabitat and 0.3 mg/L lower in the Juniata River. Daily minimum dissolved-oxygen concentrations were lower than the applicable national criterion (5.0 mg/L) in microhabitat in the Susquehanna River at Clemson Island on 31 days (of 92 days in the critical period) compared to no days in the corresponding main-channel habitat. In the Juniata River, daily minimum dissolved-oxygen concentration in the microhabitat was lower than 5.0 mg/L on 20 days compared to only 5 days in the main-channel habitat. The maximum time periods that dissolved oxygen was less than 5.0 mg/L in microhabitats of the Susquehanna and Juniata Rivers were 8.5 and 5.5 hours, respectively. Dissolved-oxygen concentrations lower than the national criterion generally occurred during nighttime and early-morning hours between midnight and 0800. The lowest instantaneous dissolved-oxygen concentrations measured in microhabitats during the critical period were 3.3 mg/L for the Susquehanna River at Clemson Island (June 11, 2008) and 4.1 mg/L for the Juniata River at Howe Township Park (July 22, 2008). Comparison of 2008 data to available continuous-monitoring data from 1974 to 1979 in the Susquehanna River at Harrisburg, Pa., indicates the critical period of 2008 had an average daily mean dissolved-oxygen concentration that was 1.1 mg/L lower (p-value < 0.0001) than in the 1970s and an average daily mean water temperature that was 0.8 deg C warmer (p-value = 0.0056). Streamflow was not significantly different (p-value = 0.0952) between the two time periods indicating that it is not a likely explanation for the differences in water quality. During the critical period in 2008, dissolved-oxygen concentrations were lower in the Susquehanna River at Harrisburg, Pa., than in the Delaware River at Trenton, N.J., or Allegheny River at Acmetonia near Pittsburgh, Pa. Daily minimum dissolved-oxygen concentrations were below the national criterion of 5.0 mg/L on 6 days during the critical period in the Susquehanna River at Harrisburg compared to no days in the Delaware River at Trenton and the Allegheny River at Acmetonia. Average daily mean water temperature in the Susquehanna River at Harrisburg was 1.8 deg C warmer than in the Delaware River at Trenton and 3.4 deg C warmer than in the Allegheny River at Acmetonia. These results indicate that any stress induced by dissolved oxygen or other environmental conditions is likely to be magnified by elevated temperature in the Susquehanna River at Harrisburg compared to the Delaw
[Geochemical distribution of dissolved bismuth in the Yellow Sea and East China Sea].
Wu, Xiao-Dan; Song, Jin-Ming; Wu, Bin; Li, Xue-Gang
2014-01-01
Occurrence level, geochemical distribution of dissolved bismuth and its coupling relationship to eco-environment were investigated in the Yellow Sea and East China Sea to explore the source and influencing factors. The results showed that the concentration of dissolved bismuth was within the range of 0-0. 029 microg x L(-1) at the surface and 0.001-0.189 microg x L(-1) at the bottom, with the averages of 0.008 and 0.016 microg x L(-1), respectively. Horizontally, low value of dissolved bismuth exhibited the bidirectional extension feature, indicating that it could trace the path of Changjiang Diluted Water. High value of dissolved bismuth was observed where the Subei Costal Current and Yellow Sea Warm Current flowed and the Changjiang Diluted Water and Zhejiang-Fujian Coastal Current met, suggesting that it was controlled by the cycle of current system. Vertically, the coastal water was fully mixed by water convection and eddy mixing, and was divided from the stratified water by strong tidal front, which blocked the transport of dissolved bismuth to the open sea. Thus, the concentration in front area was significantly higher than that in the open sea. Diurnal variation of dissolved bismuth was related to the hydrodynamic conditions (tide, suspension and thermocline) instead of the environmental factors (temperature and salinity). Positive relationship to SPM (suspended particulate matter) clarified that bismuth was prone to release from solid phase to liquid phase. Furthermore, conditions with temperature ranging 22-27 degrees C, salinity ranging 28-31 and pH ranging 7.9-8.1 were shown to be optimal for the release process.
What's in the mud?: Water-rock-microbe interactions in thermal mudpots and springs
NASA Astrophysics Data System (ADS)
Dahlquist, G. R.; Cox, A. D.
2016-12-01
Limited aspects of mudpot geochemistry, mineralogy, and microbiology have been previously investigated in a total of 58 mudpots in Yellowstone National Park (YNP), Kamchatka, Iceland, Italy, Valles Caldera, New Mexico, Nicaragua, and the Stefanos hydrothermal crater, Greece (Allen and Day, 1935; Raymahashay, 1968; Shevenell, 1987; Bradley, 2005; Prokofeva, 2006; Bortnikova, 2007; Kaasalainen, 2012; Szynkiewicz, 2012; Hynek, 2013; Pol, 2014; Kanellopoulos, 2016). The composition of 35 mudpots was analyzed for aqueous geochemistry of filtrate and solid phase characterization. Here mudpots are defined as thermal features with viscosities between 5 and 100 centipoise at the approximate temperature of the mudpot, which was measured by an Ofite hand cranked viscometer. Analogous samples of nearby hot springs provide comparisons between mudpots and non-viscous thermal features. Aqueous geochemistry from mudpots was obtained by a novel two-step filtration process consisting of gravity prefiltration by a 100 or 50 micron trace metal cleaned polyethylene bag filter followed by syringe filtration with 0.8/0.2 Supor membrane filters. This filtered sample water was preserved and analyzed for water isotopes, major anions and cations, dissolved organic carbon, and trace metals. Mudpot meter readings show dissolved oxygen values ranging from below the detection limit of 0.156 to 22.5uM, pH values ranging from 1.41 to 6.08, and temperatures ranging from 64.8 to 92.5°C. Mudpots and turbid hot springs exhibited an inverse relationship between dissolved rare earth element concentrations and dissolved calcium concentrations (where calcium concentrations > 0.4mM). Mudpots altered existing surficial geology to form clays, primarily kaolinite, montmorillionite, and alunite. This hydrothermal alteration leaches metals, allowing mudpots to concentrate metals. DNA was extracted from mudpot solids and amplified with eukaryotic, bacterial, archaeal, and universal primers, which yielded only bacterial and archaeal amplicons. Water, rock, and microbial communities interact to form diverse mudpots. The range of chemical conditions surveyed in YNP mudpots suggests varying underlying rock units, seasonal water variations, and sources of organic matter drastically affect geobiochemical characteristics.
NASA Astrophysics Data System (ADS)
Martens, Christopher S.; Mendlovitz, Howard P.; Seim, Harvey; Lapham, Laura; D'Emidio, Marco
2016-07-01
Within months of the BP Macondo Wellhead blowout, elevated methane concentrations within the water column revealed a significant retention of light hydrocarbons in deep waters plus corresponding dissolved oxygen (DO) deficits. However, chemical plume tracking efforts were hindered by a lack of in situ monitoring capabilities. Here, we describe results from in situ time-series, lander-based investigations of physical and biogeochemical processes controlling dissolved oxygen, and methane at Mississippi Canyon lease block 118 ( 18 km from the oil spill) conducted shortly after the blowout through April 2012. Multiple sensor arrays plus open-cylinder flux chambers (;chimneys;) deployed from a benthic lander collected oxygen, methane, pressure, and current speed and direction data within one meter of the seafloor. The ROVARD lander system was deployed for an initial 21-day test experiment (9/13/2010-10/04/2010) at 882 m depth before a longer 160-day deployment (10/24/2011-4/01/2012) at 884 m depth. Temporal variability in current directions and velocities and water temperatures revealed strong influences of bathymetrically steered currents and overlying along-shelf flows on local and regional water transport processes. DO concentrations and temperature were inversely correlated as a result of water mass mixing processes. Flux chamber measurements during the 160-day deployment revealed total oxygen utilization (TOU) averaging 11.6 mmol/m2 day. Chimney DO concentrations measured during the 21-day deployment exhibited quasi-daily variations apparently resulting from an interaction between near inertial waves and the steep topography of an elevated scarp immediately adjacent to the 21-day deployment site that modulated currents at the top of the chimney. Variability in dissolved methane concentrations suggested significant temporal variability in gas release from nearby hydrocarbon seeps and/or delivery by local water transport processes. Free-vehicle (lander) monitoring over time scales of months to years utilizing in situ sensors can provide an understanding of processes controlling water transport, respiration and the fate and impacts of accidental and natural gas and oil releases.
Investigation of air solubility in jet A fuel at high pressures
NASA Technical Reports Server (NTRS)
Rupprecht, S. D.; Faeth, G. M.
1981-01-01
The solubility and density properties of saturated mixtures of fuels and gases were measured. The fuels consisted of Jet A and dodecane, the gases were air and nitrogen. The test range included pressures of 1.03 to 10.34 MPa and temperatures of 298 to 373 K. The results were correlated successfully, using the Soave equation of state. Over this test range, dissolved gas concentrations were roughly proportional to pressure and increased slightly with increasing temperature. Mixture density was relatively independent of dissolved gas concentration.
Brinda, S; Bragadeeswaran, S
2005-01-01
Studies on the economically important juvenile fin-fishes such as Elops machnata, Chanos chanos, Lates calcarifer, Epinephelus sp., Sillago sihama, Etroplus suratensis, Mugil cephalus, Liza parsia and Liza tade with relation to the hydrographical parameters as rainfall, temperature, salinity, dissolved oxygen and pH of Vellar estuary during September 2001 to August 2002. The simple correlation co-efficient showed positive significance against juvenile density with water temperature and dissolved oxygen. The influence of hydrographical parameters to the fin-fishes and its abundance is discussed.
Shokoohi, Reza; Rahmani, Alireza; Asgari, Ghorban; Dargahi, Abdollah; Vaziri, Yaser; Abbasi, Mohammad Attar
2017-01-01
Sludge stabilization process in terms of operational, environmental and economic indexes is the most important stage of treatment and its disposal. This study was aimed to determine the performance of Autothermal Thermophilic Aerobic Digestion (ATAD) system as one of the low-cost and biocompatible methods of sludge treatment. This study has been done using a laboratory scale Autothermal Thermophilic Aerobic Digestion (ATAD). The reactor was consisted of two polyethylene tanks with a final capacity of 100 L for each tank. Both tanks with all fittings were installed on a metal frame. The variables of study were temperature, dissolved oxygen, pH, volatile organic compounds, total solids, COD and the number of Ascaris eggs and fecal coliforms per gram of dry matter of the sludge. The temperature was measured hourly and the pH and dissolved oxygen were measured and controlled twice per day. One-way ANNOVA was applied to analyze reasults. According to the results, the temperature of sludge increased from 11.7-61.2°C by biological reactions. Pathogen organisms were reduced from 80×106 to 503 in number during 72 h. After 6 days pathogen organisms and Ascaris eggs were removed completely. Volatile organic compounds and COD were reduced 42 and 38.3% respectively during the 6 days. It is concluded that the performance of ATAD in removing organic compounds from wastewater sludge were desirable. Resulted sludge from stabilization process were appropriate for use in agriculture as a soil supplement and met the indexes of class A sludge according to EPA's standards (CFR 40 Part 503).
Yue, Wei-Zhong; Sun, Cui-Ci; Shi, Ping; Engel, Anja; Wang, You-Shao; He, Wei-Hong
2018-01-01
The surface microlayer (SML) in marine systems is often characterized by an enrichment of biogenic, gel-like particles, such as the polysaccharide-containing transparent exopolymer particles (TEP) and the protein-containing Coomassie stainable particles (CSP). This study investigated the distribution of TEP and CSP, in the SML and underlying water, as well as their bio-physical controlling factors in Daya Bay, an area impacted by warm discharge from two Nuclear power plants (Npp's) and aquaculture during a research cruise in July 2014. The SML had higher proportions of cyanobacteria and of pico-size Chl a contrast to the underlayer water, particularly at the nearest outlet station characterized by higher temperature. Diatoms, dinoflagellates and chlorophyll a were depleted in the SML. Both CSP and TEP abundance and total area were enriched in the SML relative to the underlying water, with enrichment factors (EFs) of 1.5-3.4 for CSP numbers and 1.32-3.2 for TEP numbers. Although TEP and CSP showed highest concentration in the region where high productivity and high nutrient concertation were observed, EFs of gels and of dissolved organic carbon (DOC) and dissolved acidic polysaccharide (> 1 kDa), exhibited higher values near the outlet of the Npp's than in the adjacent waters. The positive relation between EF's of gels and temperature and the enrichment of cyanobacteria in the SML may be indicative of future conditions in a warmer ocean, suggesting potential effects on adjusting phytoplankton community, biogenic element cycling and air-sea exchange processes.
NASA Astrophysics Data System (ADS)
Varli, D.; Yilmaz, K. K.
2016-12-01
Effective management of water resources requires understanding and quantification of interaction between groundwater and surface water bodies. Moreover, the exchange processes have recently received increasing attention due to important influences on biogeochemical and ecological status of watersheds. In this study we investigated the exchange processes between surface water and groundwater along Kirmir stream - a controlled stream nearby Kizilcahamam, Ankara, Turkey. At the first stage, potential stream reaches where the exchange processes could occur were pinpointed using geological and geomorphological information. Then, thermal remote sensing was utilized to further narrow down the potential locations in which interaction could occur at a smaller scale. Nested piezometers were installed at identified locations to observe the variations in vertical hydraulic gradient over time. Differential discharge measurements were performed to understand the gains and losses along the stream reach. Streambed temperature measurements were taken at two different depths for a period of time using temperature loggers to calculate the vertical fluid fluxes through the streambed at various locations. Basic water quality field parameters (temperature, electrical conductivity, total dissolved solid amount, dissolved oxygen, pH and oxidation - reduction potential) were measured along the stream reach, from surface water and the piezometers as wells as from the nearby springs and wells. Chloride mass balance was performed to find the contribution of groundwater and chloride concentrations were associated with the geology of the area. This hierarchical, multi-scale methodology provided an efficient and effective way to determine the locations and the direction of groundwater and surface water exchange processes within the study area.
Evan S. Kane; Merritt R. Turetsky; Jennifer W. Harden; A. David McGuire; James M. Waddington
2010-01-01
Boreal wetland carbon cycling is vulnerable to climate change in part because hydrology and the extent of frozen ground have strong influences on plant and microbial functions. We examined the response of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) across an experimental manipulation of water table position (both raised and lowered water table...
Dissolved and Particulate 230Th - 232Th systematics in the Central Equatorial Pacific Ocean
NASA Astrophysics Data System (ADS)
Lopez, G. I.; Marcantonio, F.
2013-12-01
To complement our work in the eastern Equatorial Pacific, we have measured total and dissolved 230Th and 232Th in the central Equatorial Pacific at two sites, one at 8°N and the other at the equator (ML1208-03CTD; 00° 13.166' S, 155° 57.668' W and ML1208-12CTD; 8° 19.989' N, 159° 18.000' W). The two seawater casts were collected in May 2012 during an NSF-funded "Line Islands" cruise to test for the extent of advection or diffusion of dissolved 230Th from the oligotrophic North Pacific gyre (low particle flux) to the more productive equatorial region (high particle flux). Our thorium results are similar to previous data published for the western and central North Pacific Ocean. Dissolved 230Th concentrations range from 1.1 fg/kg at 100 m to 30.8 fg/kg at 4400 m, while dissolved 232Th concentrations span from 8.1 pg/kg at 900 m to 19.7 pg/kg at 4400 m. The pattern of the dissolved 230Th profile at 8°N is essentially linear from the surface to 2000 m. From 2000 m to 3000 m, the dissolved 230Th concentrations are constant, and then from 3000 m to the bottom, the profile is linear again. At the same site, the particulate fraction of the total seawater 230Th increases exponentially from about 0% at the surface to 38% at 4400 m. From 0 to 3000 m at 8°N, dissolved 232Th concentrations display a relatively constant pattern (variability of about 20%). From 3000 m to 4400 m, dissolved 232Th contents are more variable, but generally increase toward greater depths. The proportion of 232Th in the particulate fraction of the total seawater sample increases exponentially with depth to a value of 58% in the bottommost sample. We will present additional data from the equator and assess the particulate dynamics that control the distribution of thorium isotopes in central equatorial Pacific seawater.
de Aguiar Netto, Antenor Oliveira; Garcia, Carlos Alexandre Borges; Hora Alves, José do Patrocínio; Ferreira, Robério Anastácio; Gonzaga da Silva, Marinoé
2013-05-01
The Poxim River is one of Sergipe State's major waterways. It supplies water to the State capital, Aracaju, but is threatened by urban and agricultural developments that compromise both the quantity and the quality of the water. This has direct impacts on the daily lives of the region's population. In this work, a multivariate analytical approach was used to investigate the physical and chemical characteristics of the water in the river basin. Four sampling campaigns were undertaken, in November 2005, and in February, May, and September 2006, at 15 sites distributed along the Poxim. The parameters analyzed were conductivity, turbidity, color, total dissolved solids, dissolved oxygen, alkalinity, hardness, chlorophyll-a, and nutrients (total phosphorus, dissolved orthophosphate, nitrite, nitrate, ammoniacal nitrogen, and total nitrogen). Dissolved oxygen contents were very low in the Poxim-Açu River (1.0-2.8), the Poxim River (1.6-4.6), and the estuarine region (1.7-5.1), due to the dumping of wastes and discharges of domestic and industrial effluents containing organic matter into fluvial and estuarine regions of the Poxim. Factor analysis identified five components that were indicative of the quality of the water, and that explained 81.73 % of the total variance.
Medalie, Laura
2014-01-01
Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.
Influence of environmental properties on macrobenthos in the northwest Indian shelf.
Jayaraj, K A; Jayalakshmi, K V; Saraladevi, K
2007-04-01
The paper deals with the standing stock of macrobenthic infauna and associated environmental factors influencing the benthic community in the shelf region of the northwest Indian coast. The data were collected onboard FORV Sagar Sampada during the winter monsoon (January-February, 2003) to understand the community structure and the factors influencing the benthic distribution. The environmental parameters, sediment characteristics and macrobenthic infauna were collected at 26 stations distributed in the depths between 30 and 200 m extending from Mormugao to Porbander. Total benthic abundance was high in lower depths (50-75 m), and low values noticed at 30 m depth contour was peculiar. Polychaetes were the dominant group and were more abundant in shallow and middle depths with moderate organic matter, clay and relatively high dissolved oxygen. On the other hand crustaceans and molluscs were more abundant in deeper areas having sandy sediment and low temperature. High richness and diversity of whole benthic groups observed in deeper depths counter balanced the opposite trend shown by polychaete species. Generally benthos preferred medium grain sized texture with low organic matter and high organic matter had an adverse effect especially on filter feeders. Deposit feeding polychaetes dominated in shallow depths while carnivore species in the middle depths. Ecologically, benthos were controlled by a combination of factors such as temperature, salinity, dissolved oxygen, sand and organic matter and no single factor could be considered as an ecological master factor.
Habitat characteristics of larval mosquitoes in zoos of South Carolina, USA.
Tuten, Holly C
2011-06-01
To investigate whether the unique assemblage of habitats in zoos could affect mosquito oviposition behavior and to provide zoos with suggestions for mosquito control, larvae were sampled and associated habitat variables were measured in 2 zoos in South Carolina, U.S.A. Fifty-nine sites were sampled from March 2008 to January 2009. A total of 1630 larvae representing 16 species was collected and identified. The dominant species was Aedes albopictus (46.0%), followed by Ae. triseriatus (23.6%), Culex restuans (12.4%), and Cx. pipiens complex (9.7%). Principal components and multiple logistic regression analyses showed that across both zoos the distribution of Ae. albopictus larvae was predicted by ambient and site temperature, precipitation, dissolved oxygen, and container habitats. The distribution of Ae. triseriatus larvae was predicted by natural containers and shade height < or =2 m. Overall larval mosquito presence (regardless of species) was predicted by ambient and site temperature, precipitation, dissolved oxygen, presence of natural habitats, and absence of aquatic vegetation. Additionally, C8 values of pairwise species associations indicated significant habitat-based relationships between Ae. albopictus and Ae. triseriatus, and Cx. pipiens complex and Cx. restuans. In general, species-habitat associations conformed to previously published studies. Recommendations to zoo personnel include elimination of artificial container habitats, reduction of shade sources < or =2 m over aquatic habitats, use of approved mosquito larvicides, and training in recognizing and mitigating larval mosquito habitats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, J.E.; Halasz, S.J.; Liscum, F.
1980-11-01
This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysismore » of principal and selected minor dissolved constituents.« less
Weber, Frank-Andreas; Hofacker, Anke F; Voegelin, Andreas; Kretzschmar, Ruben
2010-01-01
Arsenic (As) in soils and sediments is commonly mobilized when anoxic conditions promote microbial iron (Fe) and As reduction. Recent laboratory studies and field observations have suggested a decoupling between Fe and As reduction and release, but the links between these processes are still not well understood. In microcosm experiments, we monitored the formation of Fe(II) and As(III) in the porewater and in the soil solid-phase during flooding of a contaminated floodplain soil at temperatures of 23, 14, and 5 degrees C. At all temperatures, flooding induced the development of anoxic conditions and caused increasing concentrations of dissolved Fe(II) and As(III). Decreasing the temperature from 23 to 14 and 5 degrees C strongly slowed down soil reduction and Fe and As release. Speciation of As in the soil solid-phase by X-ray absorption spectroscopy (XAS) and extraction of the Fe(II) that has formed by reductive Fe(III) (hydr)oxide dissolution revealed that less than 3.9% of all As(III) and less than 3.2% of all Fe(II) formed during 52 days of flooding at 23 degrees C were released into the porewater, although 91% of the initially ascorbate-extractable Fe and 66% of the total As were reduced. The amount of total As(III) formed during soil reduction was linearly correlated to the amount of total Fe(II) formed, indicating that the rate of As(V) reduction was controlled by the rate of microbial Fe(III) (hydr)oxide reduction.
Evaluation of milk quality in delivering sterilized milk with soft tank transportation system.
Tsukamoto, C; Rula, Sa; Asano, H; Ando, K
2009-09-01
A new transportation system is proposed recently to improve the defects of liquid transportation by tank trucks. This method is called "soft tank transportation system"; a driver installs a sac-like container (soft tank), which is made from a tarpaulin with high-pressure resistant-waterproof zippers, in a general cargo vehicle. To evaluate the quality of sterilized milk by using the soft tank transportation system, ground and marine transportation for a long distance which took about 36 h from the shipper's loading to the receiver's unloading in a high-temperature summer season (average outside temperature was 33.4 degrees C) were carried out. Although the difference of milk temperature before and after the delivery varied from -0.7 to +1.4 degrees C, there was no difference in milk quality (fat, nonfat solids, total dissolved solids, and pH) and no coliform bacteria were detected. It can be evaluated that sterilized milk was carried in keeping good conditions by soft tank transportation system.
NASA Astrophysics Data System (ADS)
Findik, Özlem
2013-09-01
A highland reservoir in the West Black Sea region of Turkey which belongs to the Mediterranean climatic zone was examined. Both littoral and profundal zones were sampled from October 2009 to September 2010, to determine taxonomic composition, biodiversity and abundance of benthic invertebrates as well as the seasonal variation of these measures. A total of 35 taxa were identified, of which 12 belong to Chironomidae and 10 to Oligochaeta groups. The highest diversity and abundance of benthic macroinvertebrates were found at the littoral stations. Macroinvertebrates showed significant positive correlations with water temperature and NO2 and NO3 concentrations, and negative correlation with dissolved oxygen.
Ebbert, James C.
2003-01-01
The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1°C (degrees Celsius) at river mile 4.9 and 19.6°C at river mile 1.8 exceeded the water-quality standard of 18°C at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River.Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The lower limit allowed by the water-quality standard is 8 mg/L. Concentrations of dissolved oxygen measured in a cross section of the Puyallup River estuary at high tide on September 12, 2002, ranged from 9.9 to 10.2 mg/L in fresh water at the surface and from 8.1 to 8.4 mg/L in salt water near the riverbed. These values were within limits set by Washington State water-quality standards for dissolved oxygen of 8 mg/L in fresh water and 6 mg/L in marine water.
Matsuura, Norihisa; Hatamoto, Masashi; Sumino, Haruhiko; Syutsubo, Kazuaki; Yamaguchi, Takashi; Ohashi, Akiyoshi
2015-03-15
A two-stage closed downflow hanging sponge (DHS) reactor was used as a post-treatment to prevent methane being emitted from upflow anaerobic sludge blanket (UASB) effluents containing unrecovered dissolved methane. The performance of the closed DHS reactor was evaluated using real municipal sewage at ambient temperatures (10-28 °C) for one year. The first stage of the closed DHS reactor was intended to recover dissolved methane from the UASB effluent and produce a burnable gas with a methane concentration greater than 30%, and its recovery efficiency was 57-88%, although the amount of dissolved methane in the UASB effluent fluctuated in the range of 46-68 % of methane production greatly depending on the temperature. The residual methane was oxidized and the remaining organic carbon was removed in the second closed DHS reactor, and this reactor performed very well, removing more than 99% of the dissolved methane during the experimental period. The rate at which air was supplied to the DHS reactor was found to be one of the most important operating parameters. Microbial community analysis revealed that seasonal changes in the methane-oxidizing bacteria were key to preventing methane emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Waldron, M.C.; Wiley, J.B.
1996-01-01
The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.
Dissolved oxygen, dissolved nitrous oxide, and water temperature in reservoirs.This dataset is associated with the following publication:Beaulieu , J., C. Nietch , and J. Young. Source or sink: Insight on controls of nitrous oxide biogeochemistry from a 20 reservoir survey. Journal of Geophysical Research - Biogeosciences. American Geophysical Union, Washington, DC, USA, 120(10): 1995-2010, (2015).
Rates of manganese oxidation in aqueous systems
Hem, J.D.
1981-01-01
The rate of crystal growth of Mn3O4 (hausmannite) and ??MnOOH (feitknechtite) in aerated aqueous manganous perchlorate systems, near 0.01 M in total manganese, was determined at pH levels ranging from 7.00 to 9.00 and at temperatures from 0.5 to 37.4??C. The process is autocatalytic, but becomes psuedo first-order in dissolved Mn2+ activity when the amount of precipitate surface is large compared to the amount of unreacted manganese. Reaction rates determined by titrations using an automated pH-stat were fitted to an equation for precipitate growth. The rates are proportional to surface area of oxide and degree of supersaturation with respect to Mn2+. The oxide obtained at the higher temperature was Mn3O4, but at 0.5?? C only ??MnOOH was formed. At intermediate temperatures, mixtures of these solids were formed. The rate of precipitation of hausmannite is strongly influenced by temperature, and that of feitknechtite much less so. The difference in activation energy may be related to differences in crystal structure of the oxides and the geometry of polymeric hydroxy ion precursors. ?? 1981.
27 CFR 30.1 - Gauging of distilled spirits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... correcting hydrometer indications at temperatures between 0 and 100 degrees Fahrenheit to true proof. If distilled spirits contain dissolved solids, temperature correction of the hydrometer reading by the use of...
Silver concentrations and selected hydrologic data in the Upper Colorado River basin, 1991-92
Johncox, D.A.
1993-01-01
The U.S. Geological Survey, in cooperation with the Colorado River Water Conservation District and the Northern Colorado Water Conservancy District, collected water and sediment samples in May and September 1991 and 1992 from nine stream-sampling sites and three lake-sampling sites within the Upper Colorado River Basin upstream from Kremmling, Colorado. Data were collected to determine the present (1992) conditions of the Upper Colorado River Basin regarding silver concentrations in the water and sediment. Lake-water and stream-water samples were analyzed for concentrations of total recoverable silver, dissolved silver, and suspended solids. Lake- and stream-bottom material was analyzed for concentrations of total recoverable silver. Additional data collected were streamflow, specific conductance, pH, and water temperature. Transparency (Secchi-disk measurements) also was measured in the lakes.
C-1s NEXAFS spectroscopy reveals chemical fractionation of humic acid by cation-induced coagulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christl,I.; Kretzschmar, R.
2007-01-01
The influence of cation-induced coagulation on the chemical composition of dissolved and coagulated fractions of humic acid was investigated in batch coagulation experiments for additions of aluminum at pH 4 and 5, iron at pH 4, and calcium and lead at pH 6. The partitioning of organic carbon and metals was determined by analyzing total organic carbon and total metal contents of the dissolved phase. Both the dissolved and the coagulated humic acid fractions were characterized using synchrotron scanning transmission X-ray microscopy (STXM) and C-1s near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Intensities of {pi}* transitions of carboxyl carbon andmore » {sigma}* transitions of alkyl, O-alkyl, and carboxyl carbon decreased with increasing metal concentration for the dissolved humic acid fractions. This decrease was accompanied by an increase of the respective intensities in the coagulated fraction as shown for lead. Intensities of aromatic and phenolic carbon were affected to a larger extent only by aluminum and iron additions. The changes observed in the C-1s NEXAFS spectra coincided with an increasing removal of organic carbon from the dissolved phase with increasing total metal concentrations. We conclude that humic acid was chemically fractionated by cation-induced coagulation, which preferentially removed functional groups involved in metal-cation binding from solution.« less
Geohydrology and water quality of Kalamazoo County, Michigan, 1986-88
Rheaume, S.J.
1990-01-01
Thick, glacial sand and gravel deposits provide most ground-water supplies in Kalamazoo County. These deposits range in thickness from 50 to about 600 feet in areas that overlie buried bedrock valleys. Most domestic wells completed at depths of less than 75 feet in the sands and gravels yield adequate water supplies. Most industry, public supply, and irrigation wells completed at depths of 100 to 200 feet yield 1,000 gallons per minute or more. The outwash plains include the most productive of the glacial aquifers in the county. The Coldwater Shale of Mississippian age, which underlies the glacial deposits in most of the county, usually yields only small amounts of largely mineralized water. Ground-water levels in Kalamazoo County reflect short- and long-term changes in precipitation and local pumpage. Ground-water levels increase in the spring and decline in the fall. Ground-water recharge rates, for different geologic settings, were estimated from ground-water runoff to the streams. Recharge rates ranged from 10.86 to 5.87 inches per year. A countywide-average ground-water recharge rate is estimated to be 9.32 inches per year. Chemical quality of precipitation and dry fallout at two locations in Kalamazoo County were similar to that of other areas in the State. Total deposition of dissolved sulfate is 30.7 pounds per acre per year, of total nitrogen is 13.2 pounds per acre per year, and of total phosphorus is 0.3 pounds per acre per year. Rainfall and snow data indicated that the pH of precipitation is inversely proportional to its specific conductance. Water of streams and rivers of Kalamazoo County is predominately of the calcium bicarbonate type, although dissolved sulfate concentrations are slightly larger in streams in the southeastern and northwestern parts of the county. The water in most streams is hard to very hard. Concentrations of dissolved chloride in streams draining urban-industrial areas are slightly larger than at other locations. Concentrations of total nitrogen and total phosphorus in streams are directly proportional to streamflow. Except for elevated concentrations of iron, none of the trace elements in streams exceeded maximum contaminant levels for drinking water established by the U.S. Environmental Protection Agency. Pesticides were detected in some streams. Ground water in the surficial aquifers is of the calcium bicarbonate type, although sodium, sulfate, and chloride ions predominate at some locations. Specific conductance and hardness and concentrations of total dissolved-solids slightly exceed statewide averages. Concentrations of dissolved sodium and dissolved chloride in 6 wells were greater than most natural ground waters in the State, indicating possible contamination from road salts. Water samples from 6 of the 46 wells sampled contained concentrations of total nitrate as nitrogen greater than 10.0 milligrams per liter. Elevated concentrations of total nitrate as nitrogen in water from wells in rural-agricultural areas probably are related to fertilizer applications. Results of partial chemical analyses by the Michigan Department of Public Health indicates specific conductance, and concentrations of hardness, dissolved fluoride, and total iron are fairly uniform throughout the county. Concentrations of dissolved sodium, dissolved chloride, and total nitrate as nitrogen differed among townships. Pesticides were detected in water from only one well. Water from five wells contained volatile organics. A map of susceptibility of ground water to contamination in Kalamazoo County was developed using a system created by the U.S. Environmental Protection Agency. Seven geohydrologic factors that affect and control ground-water movement are mapped and composited onto a countywide map. All seven factors have some effect on countywide susceptibility, but the most important factors are depth to water and composition of the materials above the aquifer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellgraph, Brian J.; Carter, Kathleen M.; Chamness, Michele A.
High mortality of hatchery-reared juvenile fall Chinook salmon emigrating from the Clearwater River was previously measured at the confluence of the Snake and Clearwater rivers; however, the causative mechanism of mortality is unknown. To elucidate potential mechanisms, the predation susceptibility of juvenile fall Chinook salmon was assessed during simulated passage from the Clearwater River and through the confluence of the Clearwater and Snake rivers, with and without cool water flow augmentation. Emigrant-sized juvenile salmon were acclimated to temperatures typical of the Clearwater River when cool water augmentation is discharged from Dworshak Dam (10°C to 17°C) and during temperatures that wouldmore » be present without augmentation (17°C to 24°C), and were then exposed to smallmouth bass within temperatures typical of the Snake River in summer (17°C to 24°C). Slightly supersaturated total dissolved gas concentrations of 105% were also simulated to more closely approximate gas conditions of both rivers in summer. Predation susceptibility of juvenile salmon acclimated at 10°C or 17°C and exposed to predators at 17°C did not differ. However, for salmon exposed to predators at 24°C, predation susceptibility was arguably higher for juvenile salmon acclimated at 10°C (a 14°C increase) than for salmon acclimated at 17°C or 24°C (7°C and 0°C increases, respectively). These results indicate that predation susceptibility may be higher when a relatively large temperature difference exists between the Clearwater and Snake rivers; that is, when cool water flow augmentation is occurs in summer. However, further research is needed to determine if high confluence mortality measured in previous studies is related to cool water augmentation and, ultimately, whether or not this mortality has a population-level effect on the dynamics of wild Snake River fall Chinook salmon.« less
Water quality parameters response to temperature change in small shallow lakes
NASA Astrophysics Data System (ADS)
Xu, Lei; Li, Hua; Liang, Xinqiang; Yao, Yuxin; Zhou, Li; Cui, Xinyi
Effects of temperature (T) on water quality of three small shallow lakes in Taihu Lake region of China were investigated. The annual temperature was classified into three levels: low temperature (LT, 4 °C < T ⩽ 10 °C), middle temperature (MT, 10 °C < T ⩽ 20 °C), and high temperature (HT, 20 °C < T ⩽ 30 °C). Results showed that total nitrogen (TN) and total phosphorus (TP) concentrations might go to a fixed value (or range) in small shallow lakes receiving domestic sewage and farm drainage water. Nitrogen concentrations in the lakes were mainly in the form of nitrate (NO3-) at above concerned three temperature levels, and nitrogen concentrations in the forms of TN, TIN, and NO3- were increased with the increase of nutrient input. At the LT and MT levels, there was a series of good cubic curve relationships between temperatures and three N forms (TN, NO3- and NH4+). The temperatural inflexion change points in the curves were nearly at 7 °C and 14 °C, respectively. However, no significant relationship between temperature and any water quality parameter was observed at the HT level. The significant relationship of TIN to TN, NO3- to TN and NH4+ to dissolve oxygen (DO) was exist in three temperature portions, and TP to Chemical oxygen demand (COD, determined by potassium permanganate oxidation methods) in LT and MT, TP to pH or DO in HT also exist. COD were less than 6 mg L-1 at each temperature level, and pH values were the largest in HT than it in LT or MT. Thus, changes between temperature and water quality parameters (TN, NO3-, NH4+ and TP) obviously nearly in 7 °C or 14 °C in lakes show that water self-purification of natural small shallow lakes were obviously with temperature changed.
NASA Astrophysics Data System (ADS)
Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.
2012-03-01
Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an average input of approximately 13 kg C ha-1 yr-1 that could be as high as 24 kg C ha-1 yr-1 in high dust years and approaches that of autotrophic C fixation in barren soils.
NASA Astrophysics Data System (ADS)
Zarazua, G.; Ávila-Pérez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martínez, T.
2006-11-01
The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 μg/L) > Mn (300 μg/L) > Cu (66 μg/L) > Cr (21 μg/L) > Pb (15 μg/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits.
Shirokova, L S; Pokrovsky, O S; Moreva, O Yu; Chupakov, A V; Zabelina, S A; Klimov, S I; Shorina, N V; Vorobieva, T Ya
2013-10-01
The colloidal distribution and size fractionation of organic carbon (OC), major elements and trace elements (TE) were studied in a seasonally stratified, organic-rich boreal lake, Lake Svyatoe, located in the European subarctic zone (NW Russia, Arkhangelsk region). This study took place over the course of 4 years in both winter and summer periods using an in situ dialysis technique (1 kDa, 10 kDa and 50 kDa) and traditional frontal filtration and ultrafiltration (5, 0.22 and 0.025 μm). We observed a systematic difference in dissolved elements and colloidal fractions between summer and winter periods with the highest proportion of organic and organo-ferric colloids (1 kDa-0.22 μm) observed during winter periods. The anomalously hot summer of 2010 in European Russia produced surface water temperatures of approximately 30°C, which were 10° above the usual summer temperatures and brought about crucial changes in element speciation and size fractionation. In August 2010, the concentration of dissolved organic carbon (DOC) decreased by more than 30% compared to normal period, while the relative proportion of organic colloids decreased from 70-80% to only 20-30% over the full depth of the water column. Similarly, the proportion of colloidal Fe decreased from 90-98% in most summers and winters to approximately 60-70% in August 2010. During this hot summer, measurable and significant (>30% compared to other periods) decreases in the colloidal fractions of Ca, Mg, Sr, Ba, Al, Ti, Ni, As, V, Co, Y, all rare earth elements (REEs), Zr, Hf, Th and U were also observed. In addition, dissolved (<0.22 μm) TE concentrations decreased by a factor of 2 to 6 compared to previously investigated periods. The three processes most likely responsible for such a crucial change in element biogeochemistry with elevated water temperature are 1) massive phytoplankton bloom, 2) enhanced mineralization (respiration) of allochthonous dissolved organic matter by heterotrophic aerobic bacterioplankton and 3) photo-degradation of DOM and photo-chemical liberation of organic-bound TE. While the first process may have caused significant decreases in the total dissolved concentration of micronutrients (a factor of 2 to 5 for Cr, Mn, Fe, Ni, Cu, Zn and Cd and a factor of >100 for Co), the second and third factors could have brought about the decrease of allochthonous DOC concentration as well as the concentration and proportion of organic and organo-mineral colloidal forms of non-essential low-soluble trace elements present in the form of organic colloids (Al, Y, Ti, Zr, Hf, Th, Pb, all REEs). It can be hypothesized that climate warming in high latitudes capable of significantly raising surface water temperatures will produce a decrease in the colloidal fraction of most trace elements and, as a result, an increase in the most labile low molecular weight LMW(<1 kDa) fraction. Copyright © 2013 Elsevier B.V. All rights reserved.
Characterization of heavy metal desorption from road-deposited sediment under acid rain scenarios.
Zhao, Bo; Liu, An; Wu, Guangxue; Li, Dunzhu; Guan, Yuntao
2017-01-01
Road-deposited sediments (RDS) on urban impervious surfaces are important carriers of heavy metals. Dissolved heavy metals that come from RDS influenced by acid rain, are more harmful to urban receiving water than particulate parts. RDS and its associated heavy metals were investigated at typical functional areas, including industrial, commercial and residential sites, in Guangdong, Southern China, which was an acid rain sensitive area. Total and dissolved heavy metals in five particle size fractions were analyzed using a shaking method under acid rain scenarios. Investigated heavy metals showed no difference in the proportion of dissolved fraction in the solution under different acid rain pHs above 3.0, regardless of land use. Dissolved loading of heavy metals related to organic carbon content were different in runoff from main traffic roads of three land use types. Coarse particles (>150μm) that could be efficiently removed by conventional street sweepers, accounted for 55.1%-47.1% of the total dissolved metal loading in runoff with pH3.0-5.6. The obtained findings provided a significant scientific basis to understand heavy metal release and influence of RDS grain-size distribution and land use in dissolved heavy metal pollution affected by acid rain. Copyright © 2016. Published by Elsevier B.V.
Kim, Eun-Ah; Nguyen, Hang Vo-Minh; Oh, Hae Sung; Hur, Jin; Choi, Jung Hyun
2016-03-01
This study investigated the effects of various soil conditions, including drying-rewetting, nitrogen deposition, and temperature rise, on the quantities and the composition of dissolved organic matter leached from forest and wetland soils. A set of forest and wetland soils with and without the nitrogen deposition were incubated in the growth chambers under three different temperatures. The moisture contents were kept constant, except for two-week drying intervals. Comparisons between the original and the treated samples revealed that drying-rewetting was a crucial environmental factor driving changes in the amount of dissolved organic carbon (DOC). The DOC was also notably increased by the nitrogen deposition to the dry forest soil and was affected by the temperature of the dry wetland soil. A parallel factor (PARAFAC) analysis identified three sub-fractions of the fluorescent dissolved organic matter (FDOM) from the fluorescence excitation-emission matrices (EEMs), and their compositions depended on drying-rewetting. The data as a whole, including the DOC and PARAFAC components and other optical indices, were possibly explained by the two main variables, which were closely related with the PARAFAC components and DOC based on principal component analysis (PCA). Our results suggested that the DOC and PARAFAC component information could provide a comprehensive interpretation of the changes in the soil-leached DOM in response to the different environmental conditions.
Longitudinal nuclear spin relaxation of ortho- and para-hydrogen dissolved in organic solvents.
Aroulanda, Christie; Starovoytova, Larisa; Canet, Daniel
2007-10-25
The longitudinal relaxation time of ortho-hydrogen (the spin isomer directly observable by NMR) has been measured in various organic solvents as a function of temperature. Experimental data are perfectly interpreted by postulating two mechanisms, namely intramolecular dipolar interaction and spin-rotation, with activation energies specific to these two mechanisms and to the solvent in which hydrogen is dissolved. This permits a clear separation of the two contributions at any temperature. Contrary to the self-diffusion coefficients at a given temperature, the rotational correlation times extracted from the dipolar relaxation contribution do not exhibit any definite trend with respect to solvent viscosity. Likewise, the spin-rotation correlation time obeys Hubbard's relation only in the case of hydrogen dissolved in acetone-d6, yielding in that case a spin-rotation constant in agreement with literature data. Concerning para-hydrogen, which is NMR-silent, the only feasible approach is to dissolve para-enriched hydrogen in these solvents and to follow the back-conversion of the para-isomer into the ortho-isomer. Experimentally, this conversion has been observed to be exponential, with a time constant assumed to be the relaxation time of the singlet state (the spin state of the para-isomer). A theory, based on intermolecular dipolar interactions, has been worked out for explaining the very large values of these relaxation times which appear to be solvent-dependent.
Determination of total dissolved solids in water analysis
Howard, C.S.
1933-01-01
The figure for total dissolved solids, based on the weight of the residue on evaporation after heating for 1 hour at 180??C., is reasonably close to the sum of the determined constituents for most natural waters. Waters of the carbonate type that are high in magnesium may give residues that weigh less than the sum. Natural waters of the sulfate type usually give residues that are too high on account of incomplete drying.
Weiskel, Peter K.; Barbaro, Jeffrey R.; DeSimone, Leslie A.
2016-09-23
The tidal creek sampling stations established in the 1990s were resampled in 2003–4 and 2010–11 to evaluate potential effects of the treated wastewater plume on creek water quality. The annual medians of the 2011 biweekly nitrate and total dissolved nitrogen concentrations were determined for each station and compared to the annual medians of biweekly samples for the baseline years 1994, 1995, and 1996. At all stations, the 2011 median nitrate concentrations were within the range of medians for the 3 baseline years. A similar result was obtained for total dissolved nitrogen. We conclude that the 2011 creek samples, collected approximately 8 years after the shallow plume segment was first detected beneath the marsh, do not show evidence of elevated nitrate or total dissolved nitrogen concentrations attributable to discharge of either the shallow or deep segments of the treated wastewater plume.
NASA Astrophysics Data System (ADS)
Somlai, Celia; Natchimuthu, Sivakiruthika; Bastviken, David; Lorke, Andreas
2015-04-01
Quantifying the role of inland water systems in terms of carbon sinks and sources and their connection to the terrestrial ecosystems and landscapes is fundamental for improving the balance approach of regional and global carbon budgets. Recent research showed that freshwater bodies emit significant amounts of CO2 and CH4 into the atmosphere. The extent of the emissions from small streams and headwaters, however, remains uncertain due to a limited availability of data. Studies have shown that headwater systems receive most of the terrestrial organic carbon, have the highest dissolved CO2 concentration and the highest gas exchange velocities and cover the largest fractional surface area within fluvial networks. The gas exchange between inland waters and the atmosphere is controlled by two factors: the difference between the dissolved gas concentration and its atmospheric equilibrium concentration, and the gas exchange velocity. The direct measurement of the dissolved gas concentration of greenhouse gases can be measured straightforwardly, for example, by gas chromatography from headspace extraction of water sample. In contrast, direct measurement of gas exchange velocity is more complex and time consuming, as simultaneous measurements with a volatile and nonvolatile inert tracer gas are needed. Here we analyze measurements of gas exchange velocities, concentrations and fluxes of dissolved CO2 and CH4, as well as loads of total organic and inorganic carbon in 10 reaches in headwater streams in Southwest Sweden. We compare the gas exchange velocities measured directly through tracer injections with those estimated through various empirical approaches, which are based on modelled and measured current velocity, stream depth and slope. Furthermore, we estimate the resulting uncertainties of the flux estimates. We also present different time series of dissolved CO2, CH4 and O2 concentration, water temperature, barometric pressure, electro conductivity, and pH values measured during the period of tracer injection.
A Study on Generation Ice Containing Ozone
NASA Astrophysics Data System (ADS)
Yoshimura, Kenji; Koyama, Shigeru; Yamamoto, Hiromi
Ozone has the capability of sterilization and deodorization due to high oxidation power. It is also effective for the conservation of perishable foods and purification of water. However, ozone has a disadvantage, that is, conservation of ozone is difficult because it changes back into oxygen. Recently, ice containing ozone is taken attention for the purpose of its conservation. The use of ice containing ozone seems to keep food fresher when we conserve and transport perishable foods due to effects of cooling and sterilization of ice containing ozone. In the present study, we investigated the influence of temperatures of water dissolving ozone on the timewise attenuations of ozone concentration in water. We also investigated the influence of cooling temperature, ice diameter, initial temperatures of water dissolving ozone and container internal pressure of the water dissolving ozone on ozone concentration in the ice. In addition, we investigated the influence of the ice diameter on the timewise attenuations of ozone concentration in the ice. It was confirmed that the solidification experimental data can be adjusted by a correlation between ozone concentration in the ice and solidification time.
Solution and shock-induced exsolution of argon in vitreous carbon
NASA Technical Reports Server (NTRS)
Gazis, Carey; Ahrens, Thomas J.
1991-01-01
To add to the knowledge of noble gas solution and exsolution in carbonaceus material, experiments were performed on vitreous carbon. Ar-rich vitreous carbon samples were prepared under vapor-saturated conditions using argon as the pressurizing medium. Solubility data were obtained for temperatures of 773 to 973 K and pressures of 250 to 1500 bars. Up to 7 wt pct Ar was dissolved in the carbon. The solubility data were compared to a thermodynamic model of argon atoms dissolving into a fixed population of 'holes' in the carbon. Two variations of the model yielded estimates of the enthalpy of solution of Ar in vitreous carbon equal to about -4700 cal/mole. Preliminary shock experiments showed that 28 percent of the total argon was released by driving 4 GPa shocks into the argon-rich carbon. It was demonstrated that shock-induced argon loss is not simply caused by the impact-induced diminution of grain size. The present value of shock pressure required for partial impact devolatilization of Ar from carbon is below the range (5-30 GPa) at which H2O is released from phyllosilicates.
Ma, Bin; Bao, Peng; Wei, Yan; Zhu, Guibing; Yuan, Zhiguo; Peng, Yongzhen
2015-01-01
Achieving nitrogen removal from domestic wastewater using anaerobic ammonium oxidation (anammox) has the potential to make wastewater treatment energy-neutral or even energy-positive. The challenge is to suppress the growth of nitrite-oxidizing bacteria (NOB). This study presents a promising method based on intermittent aeration with low dissolved oxygen to limit NOB growth, thereby providing an advantage to anammox bacteria to form a partnership with the ammonium-oxidizing bacteria (AOB). The results showed that NOB was successfully suppressed using that method, with the relative abundance of NOB maintained between 2.0–2.6%, based on Fluorescent in-situ Hybridization. Nitrogen could be effectively removed from domestic wastewater with anammox at a temperature above 20 °C, with an effluent total nitrogen (TN) concentration of 6.6 ± 2.7 mg/L, while the influent TN and soluble chemical oxygen demand were 62.6 ± 3.1 mg/L and 88.0 ± 8.1 mg/L, respectively. PMID:26354321
Hamelin, Stéphanie; Planas, Dolors; Amyot, Marc
2015-02-01
Within wetlands, epiphytes and macrophytes play an important role in storage and transfer of metals, through the food web. However, there is a lack of information about spatial and temporal changes in their metal levels, including those of mercury (Hg), a key priority contaminant of aquatic systems. We assessed total mercury (THg) and methylmercury (MeHg) concentrations of epiphyte/macrophyte complexes in Lake St. Pierre, a large fluvial lake of the St. Lawrence River (Québec, Canada). THg and MeHg concentrations were ten fold higher in epiphytes than in macrophytes. THg concentrations in epiphytes linearly decreased as a function of the autotrophic index, suggesting a role of algae in epiphyte Hg accumulation, and % of MeHg in epiphytes reached values as high as 74%. Spatio-temporal variability in THg and MeHg concentrations in epiphytes and macrophytes were influenced by water temperature, available light, host species, water level, dissolved organic carbon and dissolved oxygen. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Roznyatovskaya, Nataliya V.; Roznyatovsky, Vitaly A.; Höhne, Carl-Christoph; Fühl, Matthias; Gerber, Tobias; Küttinger, Michael; Noack, Jens; Fischer, Peter; Pinkwart, Karsten; Tübke, Jens
2017-09-01
Catholyte in all-vanadium redox-flow battery (VRFB) which consists of vanadium salts dissolved in sulphuric acid is known to be stabilized by phosphoric acid to slow down the thermal aging at temperatures higher than 40 °C. To reveal the role of phosphoric acid, the thermally-induced aggregation is investigated using variable-temperature 51V, 31P, 17O, 1H nuclear magnetic resonance (NMR) spectroscopy and dynamic light scattering (DLS). The results indicate that the thermal stabilization of vanadium(V) electrolyte is attained by the involvement of monomeric and dimeric vanadium(V) species in the reaction with phosphoric acid which is concurrent to the formation of neutral hydroxo-aqua vanadium(V) precipitation precursor. The dimers are stabilized by counter ions due to association reaction or if such stabilization is not possible, precipitation of vanadium pentoxide is favored. The evolution of particles size distributions at 50 °C in electrolyte samples containing 1.6 M vanadium and 4.0 M total sulphate and the pathways of precipitate formation are discussed. The optimal total phosphate concentration is found to be of 0.15 M. However, the induction time is assumed to be dependent not only on the total phosphate concentrations, but also on the ratio of total vanadium(V) to sulphate concentrations.
Site Specific Metal Criteria Developed Using Kentucky Division of Water Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kszos, L.A.; Phipps, T.L.
1999-10-09
Alternative limits for Cu, Ni, Pb, and Zn were developed for treated wastewater from four outfalls at a Gaseous Diffusion Plant. Guidance from the Kentucky Division of Water (KDOW) was used to (1) estimate the toxicity of the effluents using water fleas (Ceriodaphnia dubia) and fathead minnow (Pimephales promelas) larvae; (2) determine total recoverable and dissolved concentrations of Cu, Pb, Ni, and Zn ; (3) calculate ratios of dissolved metal (DM) to total recoverable metal (TRM); and (4) assess chemical characteristics of the effluents. Three effluent samples from each outfall were collected during each of six test periods; thus, amore » total of 18 samples from each outfall were evaluated for toxicity, DM and TRM. Subsamples were analyzed for alkalinity, hardness, pH, conductivity, and total suspended solids. Short-term (6 or 7 d), static renewal toxicity tests were conducted according to EPA methodology. Ceriodaphnia reproduction was reduced in one test of effluent from Outfall A , and effluent from Outfall B was acutely toxic to both test species during one test. However, the toxicity was not related to the metals present in the effluents. Of the 18 samples from each outfall, more than 65% of the metal concentrations were estimated quantities. With the exception of two total recoverable Cu values in Outfall C, all metal concentrations were below the permit limits and the federal water quality criteria. Ranges of TR for all outfalls were: Cd, ,0.1-0.4 {micro}g/L; Cr,1.07-3.93 {micro}g/L; Cu, 1.59-7.24 {micro}g/L; Pb, <0.1-3.20 {micro}g/L; Ni, 0.82-10.7 {micro}g/L, Zn, 4.75-67.3 {micro}g/L. DM:TRM ratios were developed for each outfall. The proportion of dissolved Cu in the effluents ranged from 67 to 82%; the proportion of dissolved Ni ranged from 84 to 91%; and the proportion of dissolved Zn ranged from 74 to 94%. The proportion of dissolved Pb in the effluents was considerably lower (37-51%). TRM and/or DM concentrations of Cu, Ni, Pb, or Zn differed significantly from outfall to outfall but the DM:TRM ratios for Cu, Ni, and Pb did not. Through the use of the KDOW method, the total recoverable metal measured in an effluent is adjusted by the proportion of dissolved metal present. The resulting alternative total recoverable metal concentration is reported in lieu of the measured total recoverable concentration for determining compliance with permit limits. For example, the monthly average permit limit for Pb in Outfall B (3 {micro}g/L) was exceeded at the Gaseous Diffusion Plant. Through the use of the KDOW method for calculating an alternative total recoverable metal concentration, 4.98 {micro}g Pb/L in Outfall B would be reported as 3.00 {micro}g/L, a difference of > 39%. Thus, the alternative, calculated total recoverable metal concentration provides the discharger with a ''cushion'' for meeting permit limits.« less
Zhong, Xinyan; Shang, Ruishu; Huang, Lihong
2016-01-01
Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, PCO2, variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide. PMID:27907043
Duan, Yiping; Feng, Mingshi; Zhong, Xinyan; Shang, Ruishu; Huang, Lihong
2016-01-01
Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, [Formula: see text], variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide.
Index of stations: surface-water data-collection network of Texas, September 1998
Gandara, Susan C.; Barbie, Dana L.
1999-01-01
As of September 30, 1998, the surface-water data-collection network of Texas (table 1) included 313 continuous-recording streamflow stations (D), 22 gage-height record only stations (G), 23 crest-stage partial-record stations (C), 39 flood-hydrograph partial-record stations (H), 25 low-flow partial-record stations (L), 1 continuous-recording temperature station (M1), 25 continuous-recording temperature and conductivity stations (M2), 3 continuous-recording temperature, conductivity, and dissolved oxygen stations (M3), 13 continuous-recording temperature, conductivity, dissolved oxygen, and pH stations (M4), 5 daily chemical-quality stations (Qd), 133 periodic chemical-quality stations (Qp), 16 reservoir/lake surveys for water quality (Qs), and 70 continuous or daily reservoir-content stations (R). Plate 1 identifies the major river basins in Texas and shows the location of the stations listed in table 1.
Controlling Processes on Carbonate Chemistry across the Pacific
NASA Astrophysics Data System (ADS)
Hartman, S. E.
2016-12-01
The SWIRE NOC Ocean Monitoring System (SNOMS) project is an innovative programme helping to answer important questions about global climate change by using a commercial ship of opportunity to measure carbon in the surface of the ocean. Daily sampling coupled to continuous underway observation from a ship of opportunity (MV Shengking) provides new insights into the processes controlling variability in the carbonate system across the Pacific. The ships track runs from Vancouver (Canada) to Brisbane (Australia). Daily samples were taken on-board and measurements of Total alkalinity (TA) and total dissolved inorganic carbon (DIC) were determined. This was alongside measurements of nutrients and continuous records of temperature, salinity, chlorophyll-fluorescence, carbon dioxide and dissolved oxygen (DO). These sensor based measurements were validated using the discrete samples. Carbon dioxide calculated from DIC and TA showed an offset from the sensor data of up to 8uatm. This and comparisons with climatology were used to calibrate the sensor data. The data have been compared with previous data from the MV Pacific Celebes that ran a similar route until 2012. The data show a clear increase in seawater carbon dioxide, tracking the atmospheric increases. Along track the partial pressure of seawater carbon dioxide varied by over 150 uatm. The highest values were seen just south of the equator in the Pacific, which is an important source region for carbon dioxide to the atmosphere.
Maeng, Sung Kyu; Ameda, Emmanuel; Sharma, Saroj K; Grützmacher, Gesche; Amy, Gary L
2010-07-01
Natural treatment systems such as bank filtration (BF) and artificial recharge (via an infiltration basin) are a robust barrier for many organic micropollutants (OMPs) and may represent a low-cost alternative compared to advanced drinking water treatment systems. This study analyzes a comprehensive database of OMPs at BF and artificial recharge (AR) sites located near Lake Tegel in Berlin (Germany). The focus of the study was on the derivation of correlations between the removal efficiencies of OMPs and key factors influencing the performance of BF and AR. At the BF site, shallow monitoring wells located close to the Lake Tegel source exhibited oxic conditions followed by prolonged anoxic conditions in deep monitoring wells and a production well. At the AR site, oxic conditions prevailed from the recharge pond along monitoring wells to the production well. Long residence times of up to 4.5 months at the BF site reduced the temperature variation during soil passage between summer and winter. The temperature variations were greater at the AR site as a consequence of shorter residence times. Deep monitoring wells and the production well located at the BF site were under the influence of ambient groundwater and old bank filtrate (up to several years of age). Thus, it is important to account for mixing with native groundwater and other sources (e.g., old bank filtrate) when estimating the performance of BF with respect to removal of OMPs. Principal component analysis (PCA) was used to investigate correlations between OMP removals and hydrogeochemical conditions with spatial and temporal parameters (e.g., well distance, residence time and depth) from both sites. Principal component-1 (PC1) embodied redox conditions (oxidation-reduction potential and dissolved oxygen), and principal component-2 (PC2) embodied degradation potential (e.g., total organic carbon and dissolved organic carbon) with the calcium carbonate dissolution potential (Ca(2+) and HCO(3)(-)) for the BF site. These two PCs explained a total variance of 55% at the BF site. At the AR site, PCA revealed redox conditions (PC1) and degradation potential with temperature (PC2) as principal components, which explained a total variance of 56%. Copyright 2010 Elsevier Ltd. All rights reserved.
Summary of the river-quality assessment of the upper Chattahoochee River basin, Georgia
Cherry, R.N.; Faye, R.E.; Stamer, J.K.; Kleckner, R.L.
1980-01-01
The river-quality assessment of the Upper Chattahoochee River Basin included studies of (1) the impact of heat loads on river quality, (2) sediment transport and deposition, (3) magnitude and nature of point and nonpoint discharges, and (4) phytoplankton growth in the river and reservoirs. The combined thermal effects of flow regulation and powerplants effluents resulted in mean daily river temperature downstream of the powerplants about equal to or less than computed natural temperatures. The average annual river temperature in 1976 was 14.0 ? Celsius just upstream of the Atkinson-McDonough thermoelectric powerplants and 16.0 ? Celsius just downstream from the powerplants. During a low-flow period in June 1977 the heat load from the two powerplants caused an increase in river temperatures of about 7 ? Celsius and a subsequent decrease in the dissolved-oxygen concentration of about 0.2 milligrams per liter. During the June low-flow period, point sources contributed 63 percent of the ultimate biochemical oxygen demand and 97 percent of ammonium as nitrogen at the Franklin station. Oxidation of ultimate biochemical demand and ammonium caused dissolved-oxygen concentrations to decrease from about 8.0 milligrams per liter at river mile 299 to about 4.5 milligrams per liter at river mile 271. Dissolved orthophosphate is the nutrient presently limiting phytoplankton growth in the West Point Lake when water temperatures are greater than about 26 ? Celsius.
Seasonality of water quality and diarrheal disease counts in urban and rural settings in south India
NASA Astrophysics Data System (ADS)
Kulinkina, Alexandra V.; Mohan, Venkat R.; Francis, Mark R.; Kattula, Deepthi; Sarkar, Rajiv; Plummer, Jeanine D.; Ward, Honorine; Kang, Gagandeep; Balraj, Vinohar; Naumova, Elena N.
2016-02-01
The study examined relationships among meteorological parameters, water quality and diarrheal disease counts in two urban and three rural sites in Tamil Nadu, India. Disease surveillance was conducted between August 2010 and March 2012; concurrently water samples from street-level taps in piped distribution systems and from household storage containers were tested for pH, nitrate, total dissolved solids, and total and fecal coliforms. Methodological advances in data collection (concurrent prospective disease surveillance and environmental monitoring) and analysis (preserving temporality within the data through time series analysis) were used to quantify independent effects of meteorological conditions and water quality on diarrheal risk. The utility of a local calendar in communicating seasonality is also presented. Piped distribution systems in the study area showed high seasonal fluctuations in water quality. Higher ambient temperature decreased and higher rainfall increased diarrheal risk with temperature being the predominant factor in urban and rainfall in rural sites. Associations with microbial contamination were inconsistent; however, disease risk in the urban sites increased with higher median household total coliform concentrations. Understanding seasonal patterns in health outcomes and their temporal links to environmental exposures may lead to improvements in prospective environmental and disease surveillance tailored to addressing public health problems.
Heat transfer from Atlantic waters to sea ice in the Arctic Ocean: Evidence from dissolved argon
NASA Astrophysics Data System (ADS)
Moore, R. M.; Spitzer, W.
1990-11-01
In an attempt to determine whether the temperature and salinity properties of Arctic Ocean waters above the Atlantic water temperature maximum are the result of heat transfer to sea-ice, dissolved Ar has been measured as a temperature tracer. Consistent with such a hypothesis, it is found that there is a transition from supersaturation of Ar in the upper waters to undersaturation below a depth of 275m. Using the known dependence of the solubility of Ar on T and S, and assuming that the water was originally equilibrated with the atmosphere at 760mm Hg, it has been calculated that ca. 0.6° C of cooling can be attributed to transfer of heat to sea-ice.
Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars
Black, S.K.; Hames, B.R.; Myers, M.D.
1998-03-24
A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.
Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars
Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.
1998-01-01
A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.
Simulated Hothouse Climate at the P-Tr and implications for the mass extinction (Invited)
NASA Astrophysics Data System (ADS)
Winguth, A. M.; Winguth, C.
2013-12-01
The Permian-Triassic Boundary (P-Tr, ~251.5 Ma) marks the largest mass extinction of the Phanerozoic, with a reduction of marine family diversity of 60% and an extinction of marine organisms of 90%, and is characterized by large oscillatory excursions of carbon isotopes, wide-spread anoxia and extreme sea surface temperatures, reaching over 40 C in the equatorial Tethys. Anthropogenic emissions from fossil fuel burning over the next centuries will probably lead to a transition into a hothouse world with an ice-free climate analog to that at the P-Tr. The P-Tr global warming has been linked to greenhouse emissions from the Siberian Traps and associated coal-bed intrusions and likely led to severe environmental consequences, such as a decline in the dissolved oxygen concentration and marine productivity. In order to understand these changes, the pole-to-equator heat transport and feedbacks in the climate system have been explored with climate simulations, temperature reconstructions, climate-sensitive sediments, and the distribution of biomes. The response of the ocean circulation to a perturbation of ~4,900 PgC, comparable to the total Earth's fossil fuel inventory, leads to a global temperature increase by 3-4 C and an increase in ocean stratification. The pole-to-equator gradient changes remain small, because an ice-free world already existed during the Late Permian, with an atmospheric CO2 concentration of ~4x the preindustrial value, prior to the carbon pulse. However, the climatic changes might have been amplified by feedback processes. The greenhouse-induced warming could have led to a weakening of the Hadley cell and an associated decrease in the trade winds and equatorial primary productivity. A decline of cloud condensation nuclei due to these changes would lead to reduction of the cloud optical depth, particularly in high latitudes. Results from a climate simulation with reduced optical depth suggest a polar warming of ~5-7 C and a reduction of the pole-to-equator temperature gradient by 2-4 C, an increase in ocean stratification, a decline in marine productivity, and widespread low-oxygen concentrations throughout the Late Permian/Early Triassic deep sea. The recently observed rise in present-day deep-sea temperatures, slowdown of the overturning circulation, and decline in dissolved oxygen in the North Pacific and Equatorial Pacific could be the first signs of a transition to a more stratified ocean with lower dissolved oxygen concentrations in the deep water.
Experimental evidence for carbonate precipitation and CO 2 degassing during sea ice formation
NASA Astrophysics Data System (ADS)
Papadimitriou, S.; Kennedy, H.; Kattner, G.; Dieckmann, G. S.; Thomas, D. N.
2004-04-01
Chemical and stable carbon isotopic modifications during the freezing of artificial seawater were measured in four 4 m 3 tank incubations. Three of the four incubations were inoculated with a nonaxenic Antarctic diatom culture. The 18 days of freezing resulted in 25 to 27 cm thick ice sheets overlying the residual seawater. The ice phase was characterized by a decrease in temperature from -1.9 to -2.2°C in the under-ice seawater down to -6.7°C in the upper 4 cm of the ice sheet, with a concurrent increase in the salinity of the under-ice seawater and brine inclusions of the ice sheet as a result of physical concentration of major dissolved salts by expulsion from the solid ice matrix. Measurements of pH, total dissolved inorganic carbon (C T) and its stable isotopic composition (δ 13C T) all exhibited changes, which suggest minimal effect by biological activity during the experiment. A systematic drop in pH and salinity-normalized C T by up to 0.37 pH SWS units and 376 μmol C kg -1 respectively at the lowest temperature and highest salinity part of the ice sheet were coupled with an equally systematic 13C enrichment of the C T. Calculations based on the direct pH and C T measurements indicated a steady increase in the in situ concentration of dissolved carbon dioxide (CO 2(aq)) with time and increasing salinity within the ice sheet, partly due to changes in the dissociation constants of carbonic acid in the low temperature-high salinity range within sea ice. The combined effects of temperature and salinity on the solubility of CO 2 over the range of conditions encountered during this study was a slight net decrease in the equilibrium CO 2(aq) concentration as a result of the salting-out overriding the increase in solubility with decreasing temperature. Hence, the increase in the in situ CO 2(aq) concentration lead to saturation or supersaturation of the brine inclusions in the ice sheet with respect to atmospheric pCO 2 (≈3.5 × 10 -4 atm). When all physico-chemical processes are considered, we expect CO 2 degassing and carbonate mineral precipitation from the brine inclusions of the ice sheet, which were saturated or highly supersaturated with respect to both the anhydrous (calcite, aragonite, vaterite) and hydrated (ikaite) carbonate minerals.
Vertical dissolved inorganic nitrogen fluxes in marsh and mudflat areas of the yangtze estuary.
Deng, Huanguang; Wang, Dongqi; Chen, Zhenlou; Liu, Jie; Xu, Shiyuan; White, John R
2014-03-01
Nitrogen (N) is a dominant macronutrient in many river-dominated coastal systems, and excess concentrations can drive eutrophication, the effects of which can include hypoxia and algal blooms. The Yangtze River in China transports a large amount of dissolved inorganic N. Therefore, it is important to understand the role of the marsh and mudflat areas within the estuary on processing this exogenous N load. In situ dissolved inorganic nitrogen (DIN) fluxes across the sediment-water interface were determined monthly at Chongming Island at two sites (a vegetated marsh and an unvegetated mudflat) and were compared with rates from a previously published laboratory incubation study by our research group. Results from the in situ study showed that NO flux rates comprised the major component of total DIN flux, ranging from 55 to 97%. No significant difference was observed in the N flux rates between the marsh and mudflat sites. Overall, sediment at both sites served as a sink of DIN from surface water with mean flux rates of -178 μmol m h and -165 μmol m h for the marsh and mudflat, respectively. In general, DIN flux rates were not significantly correlated with DIN concentrations and other measured parameters (temperature, dissolved oxygen, salinity, and pH) of surface water. The in situ measured fluxes of NO and NO in this study were not significantly different from those of our previous laboratory incubation ( > 0.05), whereas NH fluxes in situ were significantly lower than those from the laboratory core incubations ( < 0.05). This result suggests that caution should be used when extrapolating rates from laboratory incubation methods to the field because the rates might not be equivalent. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Trends in Water Quality in the Southeastern United States, 1973-2005
Harned, Douglas A.; Staub, Erik L.; Peak, Kelly L.; Tighe, Kirsten M.; Terziotti, Silvia
2009-01-01
As part of the U.S. Geological Survey National Water-Quality Assessment Program, water-quality data for 334 streams in eight States of the Southeastern United States were assessed for trends from 1973 to 2005. Forty-four U.S. Geological Survey sites were examined for trends in pH, specific conductance, and dissolved oxygen, and in concentrations of dissolved solids, suspended sediment, chloride, sodium, sulfate, silica, potassium, dissolved organic carbon, total nitrogen, total ammonia, total ammonia plus organic nitrogen, dissolved nitrite plus nitrate, and total phosphorus. An additional 290 sites from the U.S. Environmental Protection Agency Storage and Retrieval database were tested for trends in total nitrogen and phosphorus concentrations for the 1975-2004 and 1993-2004 periods. The seasonal Kendall test or Tobit regression was used to detect trends. Concentrations of dissolved constituents have increased in the Southeast during the last 30 years. Specific conductance increased at 62 percent and decreased at 3 percent of the sites, and pH increased at 31 percent and decreased at 11 percent of the sites. Decreasing trends in total nitrogen were detected at 49 percent of the sites, and increasing trends were detected at 10 percent of the sites. Ammonia concentrations decreased at 27 percent of the sites and increased at 6 percent of the sites. Nitrite plus nitrate concentrations increased at 29 percent of the sites and decreased at 10 percent of the sites. These results indicate that the changes in stream nitrogen concentrations generally coincided with improved municipal wastewater-treatment methods. Long-term decreasing trends in total phosphorus were detected at 56 percent of the sites, and increasing trends were detected at 8 percent of the sites. Concentrations of phosphorus have decreased over the last 35 years, which coincided with phosphate-detergent bans and improvements in wastewater treatment that were implemented beginning in 1972. Multiple regression analysis indicated a relation between changes in atmospheric inputs and agricultural practices, and changes in water quality. A long-term water-quality and landscape trends-assessment network for the Southeast is needed to assess changes in water quality over time in response to variations in population, agricultural, wastewater, and landscape variables.
NASA Astrophysics Data System (ADS)
Wassie, Tilahun Adugna; Melese, Ayalew Wondie
2017-07-01
Impact of physicochemical parameters on 2 compositions and abundances in Selameko Reservoir, Debre Tabor, South Gondar from August 2009 to May 2010 was assessed. Water quality parameters, such as temperature, water transparency, water depth, dissolved oxygen, pH, total dissolved solids, phosphate, nitrate, and silicate were measured in situ from two sites (littoral and open water zone) of the reservoir. Phytoplankton compositions and abundances were analyzed in Tana fisheries and other aquatic organisms' research center. ANOVA result of the physicochemical parameters included chlorophyll-a showed the presence of significance difference among seasons and between sites ( P < 0.05). A total of seven families, 36 genera from three groups (Diatom, Blue green algae and Green algae) of phytoplankton were identified during the study period. From all groups, diatoms were the most abundant at both sites and Blue green algae were the least abundant. ANOVA of all phytoplankton showed highly significant difference among seasons and between sites ( P < 0.05). ANOVA of all phytoplankton showed highly significant difference among seasons and between sites ( P < 0.05). Based on the stepwise regression, a total number of phytoplanktons had positive correlation with some of the physicochemical parameters (R2 = 0.99, P < 0.001, N = 16). The study concluded that some of physicochemical parameters (NO3-N and PO4-P) indicated the presence of reservoir water pollution. This is supported by the presence of pollution-resistant phytoplankton species such as Melosira and Microcystis. The reservoir water was eutrophic (productive) throughout the year. To avoid such pollution, basin and reservoir management are recommended.
Development of a water quality index (WQI) for the Loktak Lake in India
NASA Astrophysics Data System (ADS)
Das Kangabam, Rajiv; Bhoominathan, Sarojini Devi; Kanagaraj, Suganthi; Govindaraju, Munisamy
2017-10-01
The present work was carried out to assess a water quality index (WQI) of the Loktak Lake, an important wetland which has been under pressure due to the increasing anthropogenic activities. Physicochemical parameters like temperature (Tem), potential hydrogen (pH), electrical conductivity (EC), turbidity (T), dissolved oxygen (DO), total hardness (TH), calcium (Ca), chloride (Cl), fluoride (F), sulphate ({SO}4^{2-}), magnesium (Mg), phosphate ({PO}4^{3-}), sodium (Na), potassium (K), nitrite (NO2), nitrate (NO3), total dissolved solids (TDS), total carbon (TC), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) were analyzed using standard procedures. The values obtained were compared with the guidelines for drinking purpose suggested by the World Health Organization and Bureau of Indian Standard. The result shows the higher concentration of nitrite in all the location which is beyond the permissible limit. Eleven parameters were selected to derive the WQI for the estimation of water potential for five sampling sites. A relative weight was assigned to each parameter range from 1.46 to 4.09 based on its importance. The WQI values range from 64 to 77 indicating that the Loktak Lake water is not fit for drinking, including both human and animals, even though the people living inside the Lake are using it for drinking purposes. The implementation of WQI is necessary for proper management of the Loktak Lake and it will be a very helpful tool for the public and decision makers to evaluate the water quality of the Loktak Lake for sustainable management.
Jiang, Zhou; Li, Ping; Jiang, Dawei; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Wang, Yanxin
2016-01-01
Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.
Spatial and Temporal Variations of Water Quality and Trophic Status in Sembrong Reservoir, Johor
NASA Astrophysics Data System (ADS)
Intan Najla Syed Hashim, Syarifah; Hidayah Abu Talib, Siti; Salleh Abustan, Muhammad
2018-03-01
A study of spatial and temporal variations on water quality and trophic status was conducted to determine the temporal (average reading by month) and spatial variations of water quality in Sembrong reservoir and to evaluate the trophic status of the reservoir. Water samples were collected once a month from November 2016 to June 2017 in seventeen (17) sampling stations at Sembrong Reservoir. Results obtained on the concentration of dissolved oxygen (DO), water temperature, pH and secchi depth had no significant differences compared to Total Phosphorus (TP) and chlorophyll-a. The water level has significantly decreased the value of the water temperature, pH and TP. The water quality of Sembrong reservoir is classified in Class II which is suitable for recreational uses and required conventional treatment while TSI indicates that sembrong reservoir was in lower boundary of classical eutrophic (TSI > 50).
Bangley, Charles; Rulifson, Roger
2014-01-01
Five spiny dogfish were captured in early-mid May during gillnet and longline sampling targeting juvenile coastal sharks in inshore North Carolina waters. Dogfish captures were made within Back Sound and Core Sound, North Carolina. All dogfish were females measuring 849-905 mm total length, well over the size at 50% maturity. Dogfish were caught at stations 1.8-2.7 m in depth, with temperatures 22.9-24.2 °C, 32.8-33.4 ppt salinity, and 6.9-8.0 mg/L dissolved oxygen. These observations are among the latest in the spring for spiny dogfish in the southeastern U.S. and occurred at higher temperatures than previously recorded for this species. It is unclear whether late-occurring spiny dogfish in this area represent a cryptic late-migrating or resident segment of the Northwest Atlantic population.
Bangley, Charles; Rulifson, Roger
2014-01-01
Five spiny dogfish were captured in early-mid May during gillnet and longline sampling targeting juvenile coastal sharks in inshore North Carolina waters. Dogfish captures were made within Back Sound and Core Sound, North Carolina. All dogfish were females measuring 849-905 mm total length, well over the size at 50% maturity. Dogfish were caught at stations 1.8-2.7 m in depth, with temperatures 22.9-24.2 °C, 32.8-33.4 ppt salinity, and 6.9-8.0 mg/L dissolved oxygen. These observations are among the latest in the spring for spiny dogfish in the southeastern U.S. and occurred at higher temperatures than previously recorded for this species. It is unclear whether late-occurring spiny dogfish in this area represent a cryptic late-migrating or resident segment of the Northwest Atlantic population. PMID:25469229
NASA Astrophysics Data System (ADS)
Knorr, Klaus-Holger; Gao, Chuanyu; Agethen, Svenja; Sander, Michael
2017-04-01
To understand carbon storage in water logged, anaerobic peatlands, factors controlling mineralization have been studied for decades. Temperature, substrate quality, water table position and the availability of electron acceptors for oxidation of organic carbon have been identified as major factors. However, many studies reported an excess carbon dioxide (CO2) production over methane (CH4) that cannot be explained by available electron acceptors, and peat soils did not reach strictly methanogenic conditions (i.e., a stoichiometric formation ratio of 1:1 of CO2 to CH4). It has been hypothesized that peat organic matter (OM) provides a previously unrecognized electron acceptor for microbial respiration, elevating CO2 to CH4 ratios. Microbial reduction of dissolved OM has been shown in the mid 90's, but only recently mediated electrochemical techniques opened the possibility to access stocks and changes in electron accepting capacities (EAC) of OM in dissolved and solid form. While it was shown that the EAC of OM follows redox cycles of microbial reduction and O2 reoxidation, changes in the EAC of OM were so far not related quantitatively to CO2 production. We therefore tested if CO2 production in anoxic peat incubations is balanced by the consumption of electron acceptors if EAC of OM is included. We set up anoxic incubations with peat and monitored production of CO2 and CH4, and changes in EAC of OM in the dissolved and solid phase over time. Interestingly, in all incubations, the EAC of dissolved OM was poorly related to CO2 and CH4 production. Instead, dissolved OM was rapidly reduced at the onset of the incubations and thereafter remained in reduced form. In contrast, the decrease in the EAC of particulate (i.e. non-dissolved) OM was closely linked to the observed production of non-methanogenic CO2. Thereby, the total EAC of the solid OM pool by far exceeded the EAC of the dissolved OM pool. Over the course of eight week incubations, measured decreases in the EAC of total NOM could explain 22-38 % of excess CO2 production in a weakly decomposed peat, 30-67 % of excess CO2 production in a well decomposed peat, and >100 % of excess CO2 production in a peat that had been exposed to oxygen for > 1 year. In this latter peat, EAC by OM explained 45-57 % of CO2 production, while reduction of sulfate available in this material readily explained the remaining fraction. Despite having considerable uncertainty arising from methodological challenges, the collected data demonstrated that accounting for the EACs of solid and dissolved OM may fully explain excess CO2 production. As we conservatively assumed a carbon oxidation state of zero for our budget calculations, a higher oxidation state of C in NOM as suggested by elemental analysis would result in electron equivalent budgets between EAC decreases and CO2 formation even closer to 100 %. A higher oxidation state of mineralized carbon seemed especially likely for weakly decomposed peat, as this material had higher concentrations of oxygen and showed the largest percentage of formed CO2 that could not be explained based on OM reduction.
Design and Processing of Electret Structures
2009-10-31
and width as a function of time. ( d ) Estimated current density j of dissolving copper disk as a function of time. (e) Total current I of dissolving...effect leading to a higher corrosion rate in the galvanic microreactor . Because of the small scale of our galvanic system, the dissolving copper disk is...estimated by focusing with a calibrated microscope stage. Figure 5: Particle separation and electrolyte convection. Scale bars in ( A , D ) are 100 µm
Water quality of Calero Reservoir, Santa Clara County, California, 1981-83
Clifton, D.G.; Gloege, I.S.
1987-01-01
Data were collected from December 1980 to September 1983 to describe water quality conditions of Calero Reservoir and the Almaden-Calero canal, Santa Clara County, California. Results show that water in Calero Reservoir and the canal generally met water quality criteria, as identified by the California Regional Water Quality Control Board San Francisco Bay Region, for municipal and domestic supply, water contact and non-contact recreation, warm water fish habitat, wildlife habitat, and fish spawning. Water temperature profiles show that Calero Reservoir can be classified as a warm monomictic reservoir. Water transparency profiles showed rapid attenuation of light with depth in the water column. The depth of the euphotic zone ranged from .5 m to 5.0 m. In winter and spring, light-extinction values generally were high throughout the water column; in summer and fall, values generally were high near the reservoir bottom. Dissolved oxygen concentrations were < 5.0 mg/L in about 22% of the measurements. Median pH values were 7.9 in the reservoir and 8.4 in the canal. Mean specific conductance values were 299 microsiemens/cm at 25 C in the reservoir and 326 in the canal. Calcium and magnesium were the dominant cations and bicarbonate the dominant anion in Calero Reservoir. Concentrations of total recoverable mercury in the bottom sediments in Calero Reservoir ranged from 0.06 to 0.85 mg/kg, but concentrations in the water column were was generally < 1 mg/L. Mean total nitrogen concentration in the Reservoir was 1.00 mg/L, much of it in dissolved form (mean concentration was 0.85 mg/L). Mean total organic nitrogen concentration in Calero Reservoir was 0.65 mg/L, and mean total nitrate concentration was 0.21 mg/L. Mean total phosphorus and dissolved orthophosphorous concentrations were 0.05 and 0.019 mg/L, respectively. Net primary productivity in the euphotic zone ranged from -2,000 to 10,000 mg of oxygen/sq m/day; the median value was 930. Carlson 's trophic-state index, calculated using water transparency, total phosphorus, and chlorophyll-a values, indicated that the reservoir was eutrophic. Fecal coliform bacteria concentrations were < 20 colonies/100 ml in the reservoir and < 200 colonies/100 ml in the canal. Fecal streptococcal bacteria concentrations were generally < 45 colonies/100 ml in the reservoir and up to 260 colonies/100 ml in the canal. (Author 's abstract)
Water Quality Studies: Richard B. Russell and Clarks Hill Lakes.
1986-12-01
total manga - nese ranged from 2.4 mg/i to 2.3 mg/i at Stations 130 and 140, respectively, by September. Dissolved forms exhibited similar patterns at...iron at mid-hypolimnetic depths was in the particulate form. 122. Figure 54 illustrates seasonal patterns in total dissolved manga - nese for Stations...was the fact that most of the iron in the outflow was in the particulate form. Manga - nese concentrations also increased during stratification and
Berkas, Wayne R.
1980-01-01
Statistical analysis on water-quality parameters from James River upstream and downstream from the confluence of Wilsons Creek shows a significant difference for all parameters except temperature and dissolved silica at the 0.05 probability level. Regression analysis shows correlation for discharge with dissolved sodium, dissolved chloride, and dissolved potassium, and for specific conductance with dissolved chloride and dissolved sulfate at the station downstream from Wilsons Creek. This is due to the consistent quality of the effluent from the Southwest Wastewater Plant on Wilsons Creek. Water-quality monitor stations upstream and downstream from the wastewater plant indicate that the plant has a degrading effect on dissolved oxygen in Wilsons Creek and James River. The monitors also indicate that rainfall flushes momentarily poor quality water into Wilsons Creek from the urbanized Springfield area. Overall, the runoff is diluting the effluent from the wastewater plant. Rainfall and runoff stations indicate a rapid response of runoff to rainfall due to the high percentage of imperviousness and the filling or paving of sinkholes. (USGS)
NASA Astrophysics Data System (ADS)
Ribeiro Piffer, P.; Reverberi Tambosi, L.; Uriarte, M.
2017-12-01
One of the most pressing challenges faced by modern societies is ensuring a sufficient supply of water considering the ever-growing conflict between environmental conservation and expansion of agricultural and urban frontiers worldwide. Land use cover change have marked effects on natural landscapes, putting key watershed ecosystem services in jeopardy. We investigated the consequences of land use cover change and precipitation regimes on water quality in the state of São Paulo, Brazil, a landscape that underwent major changes in past century. Water quality data collected bi-monthly between 2000 and 2014 from 229 water monitoring stations was analyzed together with 2011 land use cover maps. We focused on six water quality metrics (dissolved oxygen, total nitrogen, total phosphorus, turbidity, total dissolved solids and fecal coliforms) and used generalized linear mixed models to analyze the data. Models were built at two scales, the entire watershed and a 60 meters riparian buffer along the river network. Models accounted for 46-67% of the variance in water quality metrics and, apart from dissolved oxygen, which reflected land cover composition in riparian buffers, all metrics responded to land use at the watershed scale. Highly urbanized areas had low dissolved oxygen and high fecal coliforms, dissolved solids, phosphorus and nitrogen levels in streams. Pasture was associated with increases in turbidity, while sugarcane plantations significantly increased nitrogen concentrations. Watersheds with high forest cover had greater dissolved oxygen and lower turbidity. Silviculture plantations had little impact on water quality. Precipitation decreased dissolved oxygen and was associated with higher levels of turbidity, fecal coliforms and phosphorus. Results indicate that conversion of forest cover to other land uses had negative impacts on water quality in the study area, highlighting the need for landscape restoration to improve watersheds ecosystem services.
Water-quality and amphibian population data for Maryland, Washington, D.C., and Virginia, 2001-2004
Rice, K.C.; Jung, R.E.
2004-01-01
Data on the chemical composition of water and on amphibian populations were collected at least annually from vernal pool and stream sites in Maryland, Washington, D.C., and Virginia, from 2001 through 2004. The data were collected as part of long-term monitoring projects of the Northeast Region of the Amphibian Research and Monitoring Initiative (ARMI) of the U.S. Geological Survey. Water samples were analyzed for temperature, specific conductance, pH, dissolved-oxygen concentration, acid-neutralizing capacity, and concentrations of total Kjeldahl nitrogen and total phosphorus; in 2004, samples also were analyzed for nitrite plus nitrate concentrations and total nitrogen concentrations. Field and laboratory analytical results of water samples and quality-assurance information are presented. Amphibian population data include the presence of amphibian species and the maximum number of egg masses of wood frogs and spotted salamanders at vernal pools, and counts of amphibians made during stream transect and stream quadrat surveys.
Yen, Hong-Wei; Chen, Pin-Wen; Chen, Li-Juan
2015-05-01
In this co-culture of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus, microalgae potentially acts as an oxygen generator for the growth of aerobic yeast while the yeast mutually provides CO2 to the microalgae as both carry out the production of lipids. To explore the synergistic effects of co-cultivation on the cells growth and total lipids accumulation, several co-culture process parameters including the carbon source concentration, temperature and dissolved oxygen level would be firstly investigated in the flask trials. The results of co-culture in a 5L photobioreactor revealed that about 40-50% of biomass increased and 60-70% of total lipid increased was observed as compared to the single culture batches. Besides the synergistic effects of gas utilization, the providing of trace elements to each other after the natural cells lysis was believed to be another benefit to the growth of the overall co-culture system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of COD/SO4(2-) ratio on anaerobic treatment of landfill leachate during the start-up period.
Yilmaz, Tuba; Erdirencelebi, Dilek; Berktay, Ali
2012-01-01
This study investigates the performance of an anaerobic baffled reactor (ABR) during the start-up period of raw young landfill leachate treatment at two chemical oxygen demand (COD) to SO4(2-) ratios of 20 and 4. The reactor was operated at ambient temperature and low organic loading rates (0.52, 0.76 and 1.05 kg COD/m3 per day). During the study, sulfate-reducing bacteria (SRB) activity increased at the lower ratio of COD/SO4(2-) producing higher levels of sulfide and alkalinity. The dissolved sulfide concentration reached an inhibitory level above 250 mg/L, which caused a sharp reduction in the total COD removal efficiency from 77-80% to 32%. Total volatile fatty acid (TVFA) production proceeded at a constant level despite increased organic loading. As the effluent total and organic COD concentrations increased, the inhibitory effect of the inborn sulfide was correlated to the limitation experienced in the hydrolysis/acidogenesis stages, and thus VFA production and organic matter removal.
Spatiotemporal variation of dissolved carbohydrates and amino acids in Jiaozhou Bay, China
NASA Astrophysics Data System (ADS)
Shi, Di; Yang, Guipeng; Sun, Yan; Wu, Guanwei
2017-03-01
Surface seawater samples were collected from Jiaozhou Bay, China, during six cruises (March-May 2010, September-November 2010) to study the distribution of dissolved organic matter including dissolved organic carbon (DOC), total dissolved carbohydrates, namely monosaccharides (MCHO) and polysaccharides (PCHO) and total hydrolysable amino acids. These included dissolved free amino acids (DFAA) and combined amino acids (DCAA). The goal was to investigate possible relationships between these dissolved organic compounds and environmental parameters. During spring, the concentrations of MCHO and PCHO were 9.6 (2.8-22.6) and 11.0 (2.9-42.5) μmol C/L, respectively. In autumn, MCHO and PCHO were 9.1 (2.6-27.0) and 10.8 (2.4-25.6) μmol C/L, respectively. The spring concentrations of DFAA and DCAA were 1.7 (1.1-4.1) and 7.6 (1.1-31.0) μmol C/L, respectively, while in autumn, DFAA and DCAA were 2.3 (1.1-8.0) and 3.3 (0.6-7.2) μmol C/L, respectively. Among these compounds, the concentrations of PCHO were the highest, accounting for nearly a quarter of the DOC, followed by MCHO, DCAA and DFAA. The concentrations of the organic compounds exhibited a decreasing trend from the coastal to the central regions of the bay. A negative correlation between concentrations of DOC and salinity in each cruise suggested that riverine inputs around the bay have an important impact on the distribution of DOC in the surface water. A significant positive correlation was found between DOC and total bacteria count in spring and autumn, suggesting bacteria play an important role in the marine carbon cycle.
Carvalho, P; Thomaz, S M; Bini, L M
2005-02-01
Decomposition of aquatic plants is influenced by several biotic and abiotic factors. Among them, temperature plays an important role. Despite the increasing number of studies describing the effects of temperature on the decomposition of aquatic macrophytes, little attention has been given to the decay of submerged macrophytes. In this paper, we assessed the effect of temperature on weight loss and chemical composition of detritus of the submerged aquatic macrophyte Egeria najas Planchon (Hydrocharitaceae). Fresh plant material was maintained at 17 degrees C and 27 degrees C, in the dark, in incubation chambers. The overall decay process was best described by a linear model, with rates of 0.014 day(-1) (R2= 94%) and 0.045 day(-1) (R2= 96%) obtained at 17 degrees C and 27 degrees C, respectively. The analysis of covariance (ANCOVA) indicated a significant difference between the decomposition rates at the two temperatures. The rapid breakdown of E. najas detritus, indicated by the decay coefficient, may be explained by its low content of resistant compounds such as cellulose and lignin. The variables analyzed in this study (pH, electrical conductivity, dissolved oxygen in the water and organic matter, total nitrogen and total phosphorus concentration in detritus) showed accentuated responses at 27 degrees C. It is likely that the higher temperature increased microbial activity and, therefore, oxygen consumption in the water, consequently affecting the pH and the rate of ion and nutrient liberation into the aquatic ecosystem. Due to the rapid decomposition of E. najas at high temperatures, a small exportation is expected of this species from its stands to distant regions in tropical reservoirs, where it is considered a potential nuisance species.
Exploring the reversibility of marine climate change impacts in temperature overshoot scenarios
NASA Astrophysics Data System (ADS)
Zickfeld, K.; Li, X.; Tokarska, K.; Kohfeld, K. E.
2017-12-01
Artificial carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating climate change and restoring the climate system to a `safe' state after overshoot. Previous studies have demonstrated that the changes in surface air temperature due to anthropogenic CO2 emissions can be reversed through CDR, while some oceanic properties, for example thermosteric sea level rise, show a delay in their response to CDR. This research aims to investigate the reversibility of changes in ocean conditions after implementation of CDR with a focus on ocean biogeochemical properties. To achieve this, we analyze climate model simulations based on two sets of emission scenarios. We first use RCP2.6 and its extension until year 2300 as the reference scenario and design several temperature and cumulative CO2 emissions "overshoot" scenarios based on other RCPs, which represents cases with less ambitious mitigation policies in the near term that temporarily exceed the 2 °C target adopted by the Paris Agreement. In addition, we use a set of emission scenarios with a reference scenario limiting warming to 1.5°C in the long term and two overshoot scenarios. The University of Victoria Earth System Climate Model (UVic ESCM), a climate model of intermediate complexity, is forced with these emission scenarios. We compare the response of select ocean variables (seawater temperature, pH, dissolved oxygen) in the overshoot scenarios to that in the respective reference scenario at the time the same amount of cumulative emissions is achieved. Our results suggest that the overshoot and subsequent return to a reference CO2 cumulative emissions level would leave substantial impacts on the marine environment. Although the changes in global mean sea surface variables (temperature, pH and dissolved oxygen) are largely reversible, global mean ocean temperature, dissolved oxygen and pH differ significantly from those in the reference scenario. Large ocean areas exhibit temperature increase and pH and dissolved oxygen decrease relative to the reference scenario without cumulative CO2 emissions overshoot. Furthermore, our results show that the higher the level of overshoot, the lower the reversibility of changes in the marine environment.
NASA Astrophysics Data System (ADS)
Minoda, Tomomi; Kimura, Mamoto; Wada, Eitaro
1996-09-01
Emission rates of CH4 from paddy soil with and without rice straw applications were measured with pot experiments to estimate the contribution of rice straw to the total CH4 emission during the growth period of rice plants. The CH4 derived from rice straw was calculated to be 44% of the total emission. 13CO2 uptake experiments were also carried out four times from June 30 to September 13, 1994, to estimate the contribution of photosynthesized carbon to CH4 emission. The contribution percentages of photosynthesized carbon to the total CH4 emitted to the atmosphere were 3.8% around June 30, 31% around July 25, 30% around August 19, and 14% around September 13 in the treatment with rice straw applications, and 52% around July 25, 28% around August 19, and 15% around September 13 in the treatment without rice straw applications. They were calculated to be 22% and 29% for the entire growth period in the treatments with and without rice straw applications, respectively. The contribution percentages of photosynthesized carbon to the total CH4 and inorganic carbon (Σ CO2) dissolved in soil water were 1.3%, 30%, 29%, and 34% for dissolved CH4 and 3.0%, 36%, 30% and 28% for dissolved inorganic carbon around June 30, July 25, August l9, and September 13, respectively, in the treatment with rice straw applications. They were 70%, 23%, and 32% for dissolved CH4 and 31%, 16%, and 19% for dissolved inorganic carbon around July 25, August 19, and September 13, respectively, in the treatment without rice straw applications.
Vijayaraghavan, K; Joshi, Umid Man; Ping, Han; Reuben, Sheela; Burger, David F
2014-01-01
In this study, in situ hybrid sand filters were designed to remove dissolved and suspended contaminants from eutrophic pond. Currently, there are no attempts made to eradicate dissolved as well as suspended contaminants from eutrophic water system in a single step. Monitoring studies revealed that examined pond contain high chlorophyll-a content (101.8 μg L(-1)), turbidity (39.5 NTU) and total dissolved solids concentration (0.04 g L(-1)). Samples were further exposed to extensive water quality analysis, which include examining physicochemical parameters (pH, conductivity, total dissolved solids, salinity, turbidity and chlorophyll-a), metals (Na, K, Ca, Mg, Al, Fe, Cu, Cd, Pb, Zn, Cr, and Ni) and anions (NO3, NO2, PO4, SO4, Cl, F and Br). To tackle pollutants, filtration system was designed to comprise of several components including fine sand, coarse sand/sorbent mix and gravel from top to bottom loaded in fiberglass tanks. All the filters (activated carbon, Sargassum and zeolite) completely removed algal biomass and showed potential to decrease pH during entire operational period of 20 h at 120 L h(-1). To examine the efficiency of filters in adverse conditions, the pond water was spiked with heavy metals (Cu, Cd, Pb, Zn, Cr, and Ni). Of the different filter systems, Sargassum-loaded filter performed exceedingly well with concentrations of heavy metals never exceeded the Environmental protection agency regulations for freshwater limits during total operational period. The total uptake capacities at the end of the fifth event were 24.9, 20.5, 0.58, 5.2, 0.091 and 2.8 mg/kg for Cr, Ni, Cu, Zn, Cd and Pb, respectively.
Trace Metals in Urban Stormwater Runoff and their Management
NASA Astrophysics Data System (ADS)
Li, T.; Hall, K.; Li, L. Y.; Schreier, H.
2009-04-01
In past decades, due to the rapid urbanization, land development has replaced forests, fields and meadows with impervious surfaces such as roofs, parking lots and roads, significantly affecting watershed quality and having an impact on aquatic systems. In this study, non-point source pollution from a diesel bus loop was assessed for the extent of trace metal contamination of Cu, Mn, Fe, and Zn in the storm water runoff. The study was carried out at the University of British Columbia (UBC) in the Greater Vancouver Regional District (GVRD) of British Columbia, Canada. Fifteen storm events were monitored at 3 sites from the diesel bus loop to determine spatial and temporal variations of dissolved and total metal concentrations in the storm water runoff. The dissolved metal concentrations were compared with the provincial government discharge criteria and the bus loop storm water quality was also compared with previous studies conducted across the GVRD urban area. To prevent storm water with hazardous levels of contaminants from being discharged into the urban drainage system, a storm water catch basin filter was installed and evaluated for its efficiency of contaminants removal. The perlite filter media adsorption capacities for the trace metals, oil and grease were studied for better maintenance of the catch basin filter. Dissolved copper exceeded the discharge criteria limit in 2 out of 15 cases, whereas dissolved zinc exceeded the criteria in 4 out of 15 cases, and dissolved manganese was below the criteria in all of the events sampled. Dissolved Cu and Zn accounted for 36 and 45% of the total concentration, whereas Mn and Fe only accounted for 20 and 4% of their total concentration, respectively. Since they are more mobile and have higher bioaccumulation potentials, Zn and Cu are considered to be more hazardous to the aquatic environment than Fe and Mn. With high imperviousness (100%) and intensive traffic at the UBC diesel bus loop, trace metal concentrations were 3, 0.7, 9, and 3.2 times higher than the GVRD urban area limits for Cu, Mn, Fe, and Zn, respectively. The filter showed high and stable capture efficiencies in total metals (Cu 62%, Mn 75%, Fe 83%, Zn 62%), dissolved metals (Cu 39%, Mn 37%, Fe 47%, Zn 32%), turbidity (72%), and suspended solids (74%) removal during the first month of operation. After that, there was gradual degradation. The catch basin filter performance improved significantly for the suspended solids and total metal removal after cleaning. However, the perlite filter medium showed poor performance for dissolved metal removal in the second study period. Based on the findings, a catch basin filter is effective in storm water management to control suspended solids loading from storm water runoff.
Mercury distribution in Douro estuary (Portugal).
Ramalhosa, E; Pereira, E; Vale, C; Válega, M; Monterroso, P; Duarte, A C
2005-11-01
Determinations of dissolved reactive and total dissolved mercury, particulate and sedimentary mercury, dissolved organic carbon (DOC), particulate organic carbon (POC) and suspended particulate matter (SPM) have been made in the estuary of river Douro, in northern Portugal. The estuary was stratified by salinity along most of its length, it had low concentrations of SPM, typically <20 mg dm(-3), and concentrations of DOC in the range <1.0-1.8 mg dm(-3). The surface waters had a maximum dissolved concentration of reactive mercury of about 10 ng dm(-3), whereas for the more saline bottom waters it was about 65 ng dm(-3). The surface waters had maximum concentrations of total suspended particulate mercury of approximately 7 microg g(-1) and the bottom waters were always <1 microg g(-1). Concentrations of mercury in sediments was low and in the range from 0.06 to 0.18 microg g(-1). The transport of mercury in surface waters was mainly associated with organic-rich particulate matter, while in bottom waters the dissolved phase transport of mercury is more important. Lower particulate organic matter, formation of chlorocomplexes in more saline waters and eventually the presence of colloids appear to explain the difference of mercury partitioning in Douro estuarine waters.
Usher, Courtney R; Cleveland, Curtis A; Strongin, Daniel R; Schoonen, Martin A
2004-11-01
FeS2 (pyrite) is known to react with water and dissolved molecular oxygen to form sulfate and iron oxyhydroxides. This process plays a large role in the environmentally damaging phenomenon known as acid mine drainage. An outstanding scientific issue has been whether the oxygen in the sulfate and oxyhydroxide product was derived from water and/or dissolved oxygen. By monitoring the reaction in situ with horizontal attenuated total reflectance infrared spectroscopy, it was found that when using 18O isotopically substituted water, the majority of the infrared absorbance due to sulfate product red-shifted approximately 70 cm(-1) relative to the absorbance of sulfate using H(2)16O as a reactant. Bands corresponding to the iron oxyhydroxide product did not shift. These results indicate water as the primary source of oxygen in the sulfate product, while the oxygen atoms in the iron oxyhydroxide product are obtained from dissolved molecular oxygen.
Bu, Hongmei; Wang, Weibo; Song, Xianfang; Zhang, Quanfa
2015-09-01
Dissolved trace elements and physiochemical parameters were analyzed to investigate their physicochemical characteristics and identify their sources at 12 sampling sites of the Jinshui River in the South Qinling Mts., China from October 2006 to November 2008. The two-factor ANOVA indicated significant temporal variations of the dissolved Cu, Fe, Sr, Si, and V (p < 0.001 or p < 0.05). With the exception of Sr (p < 0.001), no significant spatial variations were found. Distributions and concentrations of the dissolved trace elements displayed that dissolved Cu, Fe, Sr, Si, V, and Cr were originated from chemical weathering and leaching from the soil and bedrock. Dissolved Cu, Fe, Sr, As, and Si were also from anthropogenic inputs (farming and domestic effluents). Correlation and regression analysis showed that the chemical and physical processes of dissolved Cu was influenced by water temperature and dissolved oxygen (DO) to some degree. Dissolved Fe and Sr were affected by colloid destabilization or sedimentary inputs. Concentrations of dissolved Si were slightly controlled by biological uptake. Principal component analysis confirmed that Fe, Sr, and V resulted from domestic effluents, agricultural runoff, and confluence, whereas As, Cu, and Si were from agricultural activities, and Cr and Zn through natural processes. The research results provide a reference for ecological restoration and protection of the river environment in the Qinling Mts., China.
Online dissolved methane and total dissolved sulfide measurement in sewers.
Liu, Yiwen; Sharma, Keshab R; Fluggen, Markus; O'Halloran, Kelly; Murthy, Sudhir; Yuan, Zhiguo
2015-01-01
Recent studies using short-term manual sampling of sewage followed by off-line laboratory gas chromatography (GC) measurement have shown that a substantial amount of dissolved methane is produced in sewer systems. However, only limited data has been acquired to date due to the low frequency and short span of this method, which cannot capture the dynamic variations of in-sewer dissolved methane concentrations. In this study, a newly developed online measuring device was used to monitor dissolved methane concentrations at the end of a rising main sewer network, over two periods of three weeks each, in summer and early winter, respectively. This device uses an online gas-phase methane sensor to measure methane under equilibrium conditions after being stripped from the sewage. The data are then converted to liquid-phase methane concentrations according to Henry's Law. The detection limit and range are suitable for sewer application and can be adjusted by varying the ratio of liquid-to-gas phase volume settings. The measurement presented good linearity (R² > 0.95) during field application, when compared to off-line measurements. The overall data set showed a wide variation in dissolved methane concentration of 5-15 mg/L in summer and 3.5-12 mg/L in winter, resulting in a significant average daily production of 24.6 and 19.0 kg-CH₄/d, respectively, from the network with a daily average sewage flow of 2840 m³/day. The dissolved methane concentration demonstrated a clear diurnal pattern coinciding with flow and sulfide fluctuation, implying a relationship with the wastewater hydraulic retention time (HRT). The total dissolved sulfide (TDS) concentration in sewers can be determined simultaneously with the same principle.
Grotti, M; Soggia, F; Ardini, F; Magi, E
2011-09-01
In order to provide a new insight into the Antarctic snow chemistry, partitioning of major and trace elements between dissolved and particulate (i.e. insoluble particles, >0.45 μm) phases have been investigated in a number of coastal and inland snow samples, along with their total and acid-dissolvable (0.5% nitric acid) concentrations. Alkaline and alkaline-earth elements (Na, K, Ca, Mg, Sr) were mainly present in the dissolved phase, while Fe and Al were predominantly associated with the particulate matter, without any significant difference between inland and coastal samples. On the other hand, partitioning of trace elements depended on the sampling site position, showing a general decrease of the particulate fraction by moving from the coast to the plateau. Cd, Cu, Pb and Zn were for the most part in the dissolved phase, while Cr was mainly associated with the particulate fraction. Co, Mn and V were equally distributed between dissolved and particulate phases in the samples collected from the plateau and preferentially associated with the particulate in the coastal samples. The correlation between the elements and the inter-sample variability of their concentration significantly decreased for the plateau samples compared to the coastal ones, according to a change in the relative contribution of the metal sources and in good agreement with the estimated marine and crustal enrichment factors. In addition, samples from the plateau were characterised by higher enrichment factors of anthropogenic elements (Cd, Cr, Cu, Pb and Zn), compared to the coastal area. Finally, it was observed that the acid-dissolvable metal concentrations were generally lower than the total concentration values, showing that the acid treatment can dissolve only a given fraction of the metal associated with the particulate (<20% for iron and aluminium).