Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Al-Haidary, Ahmed A
2012-07-01
It was the aim of this study to investigate the regional variations in surface temperature and sweating rate and to visualize body thermal windows responsible for the dissipation of excess body heat in dromedary camels. This study was conducted on five dromedary camels with mean body weight of 450 ± 20.5 kg and 2 years of age. Sweating rate, skin and body surface temperature showed significant (P < 0.001) circadian variation together with the variation in ambient temperature. However, daily mean values of sweating rate, skin and body surface temperature measured on seven regions of the camel body did not significantly differ. The variation in body surface temperature compared to the variation in skin temperature was higher in the hump compared to the axillary and flank regions, indicating the significance of camel's fur in protecting the skin from daily variation in ambient temperature. Infrared thermography revealed that flank and axillary regions had lower thermal gradients at higher ambient temperature (T(a) ) and higher thermal gradients at lower T(a) , which might indicate the working of flank and axillary regions as thermal windows dissipating heat during the night. Sweating rate showed moderate correlation to skin and body surface temperatures, which might indicate their working as potential thermal drivers of sweating in camels. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.
Temperature field analysis for PZT pyroelectric cells for thermal energy harvesting.
Hsiao, Chun-Ching; Ciou, Jing-Chih; Siao, An-Shen; Lee, Chi-Yuan
2011-01-01
This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate.
Temperature Field Analysis for PZT Pyroelectric Cells for Thermal Energy Harvesting
Hsiao, Chun-Ching; Ciou, Jing-Chih; Siao, An-Shen; Lee, Chi-Yuan
2011-01-01
This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate. PMID:22346652
Dong, Shirley Xiaobi; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Supardi, M N Nur; Kassim, Abd Rahman; Tan, Sylvester; Moorcroft, Paul R
2012-10-07
The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.
Stockfors, J
2000-09-01
Few studies have examined variation in respiration rates within trees, and even fewer studies have focused on variation caused by within-stem temperature differences. In this study, stem temperatures at 40 positions in the stem of one 30-year-old Norway spruce (Picea abies (L.) Karst.) were measured during 40 days between July 1994 and June 1995. The temperature data were used to simulate variations in respiration rate within the stem. The simulations assumed that the temperature-respiration relationship was constant (Q10 = 2) for all days and all stem positions. Total respiration for the whole stem was calculated by interpolating the temperature between the thermocouples and integrating the respiration rates in three dimensions. Total respiration rate of the stem was then compared to respiration rate scaled up from horizontal planes at the thermocouple heights (40, 140, 240 and 340 cm) on a surface area and on a sapwood volume basis. Simulations were made for three distributions of living cells in the stems: one with a constant 5% fraction of living cells, disregarding depth into the stem; one with a living cell fraction decreasing linearly with depth into the stem; and one with an exponentially decreasing fraction of living cells. Mean temperature variation within the stem was 3.7 degrees C, and was more than 10 degrees C for 8% of the time. The maximum measured temperature difference was 21.5 degrees C. The corresponding mean variation in respiration was 35% and was more than 50% for 24% of the time. Scaling up respiration rates from different heights between 40 and 240 cm to the whole stem produced an error of 2 to 58% for the whole year. For a single sunny day, the error was between 2 and 72%. Thus, within-stem variations in temperature may significantly affect the accuracy of scaling respiration data obtained from small samples to whole trees. A careful choice of chamber position and basis for scaling is necessary to minimize errors from variation in temperature.
Caribbean coral growth influenced by anthropogenic aerosol emissions
NASA Astrophysics Data System (ADS)
Kwiatkowski, Lester; Cox, Peter M.; Economou, Theo; Halloran, Paul R.; Mumby, Peter J.; Booth, Ben B. B.; Carilli, Jessica; Guzman, Hector M.
2013-05-01
Coral growth rates are highly dependent on environmental variables such as sea surface temperature and solar irradiance. Multi-decadal variability in coral growth rates has been documented throughout the Caribbean over the past 150-200 years, and linked to variations in Atlantic sea surface temperatures. Multi-decadal variability in sea surface temperatures in the North Atlantic, in turn, has been linked to volcanic and anthropogenic aerosol forcing. Here, we examine the drivers of changes in coral growth rates in the western Caribbean between 1880 and 2000, using previously published coral growth chronologies from two sites in the region, and a numerical model. Changes in coral growth rates over this period coincided with variations in sea surface temperature and incoming short-wave radiation. Our model simulations show that variations in the concentration of anthropogenic aerosols caused variations in sea surface temperature and incoming radiation in the second half of the twentieth century. Before this, variations in volcanic aerosols may have played a more important role. With the exception of extreme mass bleaching events, we suggest that neither climate change from greenhouse-gas emissions nor ocean acidification is necessarily the driver of multi-decadal variations in growth rates at some Caribbean locations. Rather, the cause may be regional climate change due to volcanic and anthropogenic aerosol emissions.
Steven L. Voelker; Michael C. Stambaugh; J. Renée Brooks; Frederick C. Meinzer; Barbara Lachenbruch; Richard P. Guyette
2017-01-01
To test tree growth-sensitivity to temperature under different ambient CO2 concentrations, we determined stem radial growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatial variation in temperature across the modern species distributional...
NASA Astrophysics Data System (ADS)
Vajed Samiei, Jahangir; Saleh, Abolfazl; Shirvani, Arash; Sheijooni Fumani, Neda; Hashtroudi, Mehri; Pratchett, Morgan Stuart
2016-12-01
There is a strong interest in understanding how coral calcification varies with changing environmental conditions, especially given the projected changes in temperature and aragonite saturation due to climate change. This study explores in situ variation in calcification rates of Acropora downingi in the northeastern Persian Gulf relative to seasonal changes in temperature, irradiance and aragonite saturation state ( Ω arag). Calcification rates of A. downingi were highest in the spring and lowest in the winter, and intra-annual variation in calcification rate was significantly related to temperature ( r 2 = 0.30) and irradiance ( r 2 = 0.36), but not Ω arag ( r 2 = 0.02). Seasonal differences in temperature are obviously confounded by differences in other environmental conditions and vice versa. Therefore, we used published relationships from experimental studies to establish which environmental parameter(s) (temperature, irradiance, and/or Ω arag) placed greatest constraints on calcification rate (relative to the maximum spring rate) in each season. Variation in calcification rates was largely attributable to seasonal changes in irradiance and temperature (possibly 57.4 and 39.7% respectively). Therefore, we predict that ocean warming may lead to increased rates of calcification during winter, but decelerate calcification during spring, fall and especially summer, resulting in net deceleration of calcification for A. downingi in the Persian Gulf.
Artacho, Paulina; Jouanneau, Isabelle; Le Galliard, Jean-François
2013-01-01
Studies of the relationship of performance and behavioral traits with environmental factors have tended to neglect interindividual variation even though quantification of this variation is fundamental to understanding how phenotypic traits can evolve. In ectotherms, functional integration of locomotor performance, thermal behavior, and energy metabolism is of special interest because of the potential for coadaptation among these traits. For this reason, we analyzed interindividual variation, covariation, and repeatability of the thermal sensitivity of maximal sprint speed, preferred body temperature, thermal precision, and resting metabolic rate measured in ca. 200 common lizards (Zootoca vivipara) that varied by sex, age, and body size. We found significant interindividual variation in selected body temperatures and in the thermal performance curve of maximal sprint speed for both the intercept (expected trait value at the average temperature) and the slope (measure of thermal sensitivity). Interindividual differences in maximal sprint speed across temperatures, preferred body temperature, and thermal precision were significantly repeatable. A positive relationship existed between preferred body temperature and thermal precision, implying that individuals selecting higher temperatures were more precise. The resting metabolic rate was highly variable but was not related to thermal sensitivity of maximal sprint speed or thermal behavior. Thus, locomotor performance, thermal behavior, and energy metabolism were not directly functionally linked in the common lizard.
NASA Astrophysics Data System (ADS)
Stoll, Heather; Mendez-Vicente, Ana; Gonzalez-Lemos, Saul; Moreno, Ana; Cacho, Isabel; Cheng, Hai; Edwards, R. Lawrence
2015-11-01
Oxygen isotopes have been the most widely used climate indicator in stalagmites, applied to reconstruct past changes in rainfall δ18O and cave temperature. However, the δ18O signal in speleothems may also be influenced by variable kinetic fractionation effects, here conceived broadly as fractionation effects not arising from temperature variation. The regional reproducibility of speleothem δ18O signals has been proposed as a way to distinguish the δ18O variations arising directly from changes rainfall δ18O and cave temperature, from variations due to kinetic effects which may nonetheless be influenced by climate. Here, we compare isotopic records from 5 coeval stalagmites from two proximal caves in NW Spain covering the interval 140 to 70 ka, which experienced the same primary variations in temperature and rainfall δ18O, but exhibit a large range in growth rates and temporal trends in growth rate. Stalagmites growing at faster rates near 50 μm/yr have oxygen isotopic ratios over 1‰ more negative than coeval stalagmites with very slow (5 μm/yr) growth rates. Because growth rate variations also occur over time within any given stalagmite, the measured oxygen isotopic time series for a given stalagmite includes both climatic and kinetic components. Removal of the kinetic component of variation in each stalagmite, based on the dependence of the kinetic component on growth rate, is effective at distilling a common temporal evolution of among the oxygen isotopic records of the multiple stalagmites. However, this approach is limited by the quality of the age model. For time periods characterized by very slow growth and long durations between dates, the presence of crypto-hiatus may result in average growth rates which underestimate the instantaneous speleothem deposition rates and which therefore underestimate the magnitude of kinetic effects. The stacked growth rate-corrected speleothem δ18O is influenced by orbital scale variation in the cave temperature and the δ18O of the ocean moisture source, but also by temporally variable fractionation in the hydrological cycle. The most salient trend is increased hydrological fractionation during the GI-22 period, when warmer sea surface temperatures in the subtropical Atlantic moisture source region may have favored greater precipitation amounts.
Influence of climate on malaria transmission depends on daily temperature variation.
Paaijmans, Krijn P; Blanford, Simon; Bell, Andrew S; Blanford, Justine I; Read, Andrew F; Thomas, Matthew B
2010-08-24
Malaria transmission is strongly influenced by environmental temperature, but the biological drivers remain poorly quantified. Most studies analyzing malaria-temperature relations, including those investigating malaria risk and the possible impacts of climate change, are based solely on mean temperatures and extrapolate from functions determined under unrealistic laboratory conditions. Here, we present empirical evidence to show that, in addition to mean temperatures, daily fluctuations in temperature affect parasite infection, the rate of parasite development, and the essential elements of mosquito biology that combine to determine malaria transmission intensity. In general, we find that, compared with rates at equivalent constant mean temperatures, temperature fluctuation around low mean temperatures acts to speed up rate processes, whereas fluctuation around high mean temperatures acts to slow processes down. At the extremes (conditions representative of the fringes of malaria transmission, where range expansions or contractions will occur), fluctuation makes transmission possible at lower mean temperatures than currently predicted and can potentially block transmission at higher mean temperatures. If we are to optimize control efforts and develop appropriate adaptation or mitigation strategies for future climates, we need to incorporate into predictive models the effects of daily temperature variation and how that variation is altered by climate change.
Stefansson, Tryggvi S; McDonald, Bruce A; Willi, Yvonne
2013-01-01
To predict the response of plant pathogens to climate warming, data are needed on current thermal adaptation, the pathogen's evolutionary potential, and the link between them. We conducted a common garden experiment using isolates of the fungal pathogen Rhynchosporium commune from nine barley populations representing climatically diverse locations. Clonal replicates of 126 genetically distinct isolates were assessed for their growth rate at 12°C, 18°C, and 22°C. Populations originating from climates with higher monthly temperature variation had higher growth rate at all three temperatures compared with populations from climates with less temperature fluctuation. Population differentiation in growth rate (QST) was significantly higher at 22°C than population differentiation for neutral microsatellite loci (GST), consistent with local adaptation for growth at higher temperatures. At 18°C, we found evidence for stabilizing selection for growth rate as QST was significantly lower than GST. Heritability of growth rate under the three temperatures was substantial in all populations (0.58–0.76). Genetic variation was lower in populations with higher growth rate at the three temperatures and evolvability increased under heat stress in seven of nine populations. Our findings imply that the distribution of this pathogen is unlikely to be genetically limited under climate warming, due to its high genetic variation and plasticity for thermal tolerance. PMID:23745143
Swanson, David L; King, Marisa O; Culver, William; Zhang, Yufeng
Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (M sum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in M sum , we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.
Sources of Variation in Creep Testing
NASA Technical Reports Server (NTRS)
Loewenthal, William S.; Ellis, David L.
2011-01-01
Creep rupture is an important material characteristic for the design of rocket engines. It was observed during the characterization of GRCop-84 that the complete data set had nearly 4 orders of magnitude of scatter. This scatter likely confounded attempts to determine how creep performance was influenced by manufacturing. It was unclear if this variation was from the testing, the material, or both. Sources of variation were examined by conducting tests on identically processed specimens at the same specified stresses and temperatures. Significant differences existed between the five constant-load creep frames. The specimen temperature was higher than the desired temperature by as much as 43 C. It was also observed that the temperature gradient was up to 44 C. Improved specimen temperature control minimized temperature variations. The data from additional tests demonstrated that the results from all five frames were comparable. The variation decreased to 1/2 order of magnitude from 2 orders of magnitude for the baseline data set. Independent determination of creep rates in a reference load frame closely matched the creep rates determined after the modifications. Testing in helium tended to decrease the sample temperature gradient, but helium was not a significant improvement over vacuum.
Palstra, A. P.
2017-01-01
Abstract Migratory species travelling long distances between habitats to spawn or feed are well adapted to optimize their swimming economy. However, human activities, such as river regulation, represent potential threats to fish migration by changing environmental parameters that will have impact on their metabolism. The main objective of this study was to evaluate the changes in the swimming energetics of a salmonid species, Atlantic salmon (Salmo salar L.), caused by short-term temperature variations that usually result from the operation of hydroelectrical dams. Intermittent flow respirometry in swim tunnels allows to obtain high resolution data on oxygen consumption of swimming fish which can reflect aerobic and anaerobic metabolism. This method was used to compare the metabolic rates of oxygen consumption before, during and after sudden thermal change. Control (no temperature variation) and experimental (temperature variation of approximately 4°C in 1 h) swimming trials were conducted to achieve the following objectives: (i) quantify the variations in oxygen consumption associated with abrupt temperature decrease, and (ii) assess if the tested fish return quickly to initial oxygen consumption rates. Main results revealed that Atlantic salmon smolts show a strong response to sudden temperature variation, significantly reducing the oxygen consumption rate up to a seven-fold change. Fish quickly returned to initial swimming costs shortly after reestablishment of temperature values. Results from this study can be used to evaluate the species-specific effects of the applied operation modes by hydroelectrical dams and to increase the success of conservation and management actions directed to fish species inhabiting regulated rivers. PMID:28480037
Alexandre, C M; Palstra, A P
2017-01-01
Migratory species travelling long distances between habitats to spawn or feed are well adapted to optimize their swimming economy. However, human activities, such as river regulation, represent potential threats to fish migration by changing environmental parameters that will have impact on their metabolism. The main objective of this study was to evaluate the changes in the swimming energetics of a salmonid species, Atlantic salmon ( Salmo salar L.), caused by short-term temperature variations that usually result from the operation of hydroelectrical dams. Intermittent flow respirometry in swim tunnels allows to obtain high resolution data on oxygen consumption of swimming fish which can reflect aerobic and anaerobic metabolism. This method was used to compare the metabolic rates of oxygen consumption before, during and after sudden thermal change. Control (no temperature variation) and experimental (temperature variation of approximately 4°C in 1 h) swimming trials were conducted to achieve the following objectives: (i) quantify the variations in oxygen consumption associated with abrupt temperature decrease, and (ii) assess if the tested fish return quickly to initial oxygen consumption rates. Main results revealed that Atlantic salmon smolts show a strong response to sudden temperature variation, significantly reducing the oxygen consumption rate up to a seven-fold change. Fish quickly returned to initial swimming costs shortly after reestablishment of temperature values. Results from this study can be used to evaluate the species-specific effects of the applied operation modes by hydroelectrical dams and to increase the success of conservation and management actions directed to fish species inhabiting regulated rivers.
Geographic variation in the response of Culex pipiens life history traits to temperature.
Ruybal, Jordan E; Kramer, Laura D; Kilpatrick, A Marm
2016-02-29
Climate change is predicted to alter the transmission of many vector-borne pathogens. The quantitative impact of climate change is usually estimated by measuring the temperature-performance relationships for a single population of vectors, and then mapping this relationship across a range of temperatures or locations. However, life history traits of different populations often differ significantly. Specifically, performance across a range of temperatures is likely to vary due to local adaptation to temperature and other factors. This variation can cause spatial variation in pathogen transmission and will influence the impact of climate change on the transmission of vector-borne pathogens. We quantified variation in life history traits for four populations of Culex pipiens (Linnaeus) mosquitoes. The populations were distributed along altitudinal and latitudinal gradients in the eastern United States that spanned ~3 °C in mean summer temperature, which is similar to the magnitude of global warming expected in the next 3-5 decades. We measured larval and adult survival, development rate, and biting rate at six temperatures between 16 and 35 °C, in a common garden experiment. Temperature had strong and consistent non-linear effects on all four life history traits for all four populations. Adult female development time decreased monotonically with increasing temperature, with the largest decrease at cold temperatures. Daily juvenile and adult female survival also decreased with increasing temperature, but the largest decrease occurred at higher temperatures. There was significant among-population variation in the thermal response curves for the four life history traits across the four populations, with larval survival, adult survival, and development rate varying up to 45, 79, and 84 % among populations, respectively. However, variation was not correlated with local temperatures and thus did not support the local thermal adaptation hypothesis. These results suggest that the impact of climate change on vector-borne disease will be more variable than previous predictions, and our data provide an estimate of this uncertainty. In addition, the variation among populations that we observed will shape the response of vectors to changing climates.
NASA Astrophysics Data System (ADS)
Alster, Charlotte J.; Koyama, Akihiro; Johnson, Nels G.; Wallenstein, Matthew D.; von Fischer, Joseph C.
2016-06-01
There is compelling evidence that microbial communities vary widely in their temperature sensitivity and may adapt to warming through time. To date, this sensitivity has been largely characterized using a range of models relying on versions of the Arrhenius equation, which predicts an exponential increase in reaction rate with temperature. However, there is growing evidence from laboratory and field studies that observe nonmonotonic responses of reaction rates to variation in temperature, indicating that Arrhenius is not an appropriate model for quantitatively characterizing temperature sensitivity. Recently, Hobbs et al. (2013) developed macromolecular rate theory (MMRT), which incorporates thermodynamic temperature optima as arising from heat capacity differences between isoenzymes. We applied MMRT to measurements of respiration from soils incubated at different temperatures. These soils were collected from three grassland sites across the U.S. Great Plains and reciprocally transplanted, allowing us to isolate the effects of microbial community type from edaphic factors. We found that microbial community type explained roughly 30% of the variation in the CO2 production rate from the labile C pool but that temperature and soil type were most important in explaining variation in labile and recalcitrant C pool size. For six out of the nine soil × inoculum combinations, MMRT was superior to Arrhenius. The MMRT analysis revealed that microbial communities have distinct heat capacity values and temperature sensitivities sometimes independent of soil type. These results challenge the current paradigm for modeling temperature sensitivity of soil C pools and understanding of microbial enzyme dynamics.
Variable effects of temperature on insect herbivory
Burkepile, Deron E.; Parker, John D.
2014-01-01
Rising temperatures can influence the top-down control of plant biomass by increasing herbivore metabolic demands. Unfortunately, we know relatively little about the effects of temperature on herbivory rates for most insect herbivores in a given community. Evolutionary history, adaptation to local environments, and dietary factors may lead to variable thermal response curves across different species. Here we characterized the effect of temperature on herbivory rates for 21 herbivore-plant pairs, encompassing 14 herbivore and 12 plant species. We show that overall consumption rates increase with temperature between 20 and 30 °C but do not increase further with increasing temperature. However, there is substantial variation in thermal responses among individual herbivore-plant pairs at the highest temperatures. Over one third of the herbivore-plant pairs showed declining consumption rates at high temperatures, while an approximately equal number showed increasing consumption rates. Such variation existed even within herbivore species, as some species exhibited idiosyncratic thermal response curves on different host plants. Thus, rising temperatures, particularly with respect to climate change, may have highly variable effects on plant-herbivore interactions and, ultimately, top-down control of plant biomass. PMID:24860701
Sanabria, Eduardo A; Vaira, Marcos; Quiroga, Lorena B; Akmentins, Mauricio S; Pereyra, Laura C
2014-04-01
We study the variation in thermal parameters in two contrasting populations Yungas Redbelly Toads (Melanophryniscus rubriventris) with different discrete color phenotypes comparing field body temperatures, critical thermal maximum and heating rates. We found significant differences in field body temperatures of the different morphs. Temperatures were higher in toads with a high extent of dorsal melanization. No variation was registered in operative temperatures between the study locations at the moment of capture and processing. Critical thermal maximum of toads was positively related with the extent of dorsal melanization. Furthermore, we founded significant differences in heating rates between morphs, where individuals with a high extent of dorsal melanization showed greater heating rates than toads with lower dorsal melanization. The color pattern-thermal parameter relationship observed may influence the activity patterns and body size of individuals. Body temperature is a modulator of physiological and behavioral functions in amphibians, influencing daily and seasonal activity, locomotor performance, digestion rate and growth rate. It is possible that some growth constraints may arise due to the relationship of color pattern-metabolism allowing different morphs to attain similar sizes at different locations instead of body-size clines. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Guo, Xiaofeng; Weng, Xiaoxiang; Jiang, Yong; Gong, Jianming
2017-09-01
A series of uniaxial tensile tests were carried out at different strain rate and different temperatures to investigate the effects of temperature and strain rate on tensile deformation behavior of P92 steel. In the temperature range of 30-700 °C, the variations of flow stress, average work-hardening rate, tensile strength and ductility with temperature all show three temperature regimes. At intermediate temperature, the material exhibited the serrated flow behavior, the peak in flow stress, the maximum in average work-hardening rate, and the abnormal variations in tensile strength and ductility indicates the occurrence of DSA, whereas the sharp decrease in flow stress, average work-hardening rate as well as strength values, and the remarkable increase in ductility values with increasing temperature from 450 to 700 °C imply that dynamic recovery plays a dominant role in this regime. Additionally, for the temperature ranging from 550 to 650 °C, a significant decrease in flow stress values is observed with decreasing in strain rate. This phenomenon suggests the strain rate has a strong influence on flow stress. Based on the experimental results above, an Arrhenius-type constitutive equation is proposed to predict the flow stress.
Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera.
Harrison, Jon F; Fewell, Jennifer H
2002-10-01
Flying honey bees demonstrate highly variable metabolic rates. The lowest reported values (approximately 0.3 Wg(-1)) occur in tethered bees generating the minimum lift to support their body weight, free-flying 2-day old bees, winter bees, or bees flying at high air temperatures (45 degrees C). The highest values (approximately 0.8 Wg(-1)) occur in foragers that are heavily loaded or flying in low-density air. In different studies, flight metabolic rate has increased, decreased, or remained constant with air temperature. Current research collectively suggests that this variation occurs because flight metabolic rates decrease at thorax temperatures above or below 38 degrees C. At 30 degrees C, approximately 30% of colonial energy is spent during typical foraging, so variation in flight metabolic rate can strongly affect colony-level energy balance. Higher air temperatures tend to increase colonial net gain rates, efficiencies and honey storage rates due to lower metabolic rates during flight and in the hive. Variation in flight metabolism has a clear genetic basis. Different genetic strains of honey bees often differ in flight metabolic rate, and these differences in flight physiology can be correlated with foraging effort, suggesting a possible pathway for selection effects on flight metabolism.
Schwanz, Lisa E; Spencer, Ricky-John; Bowden, Rachel M; Janzen, Fredric J
2010-10-01
Conditions experienced early in life can influence phenotypes in ecologically important ways, as exemplified by organisms with environmental sex determination. For organisms with temperature-dependent sex determination (TSD), variation in nest temperatures induces phenotypic variation that could impact population growth rates. In environments that vary over space and time, how does this variation influence key demographic parameters (cohort sex ratio and hatchling recruitment) in early life stages of populations exhibiting TSD? We leverage a 17-year data set on a population of painted turtles, Chrysemys picta, to investigate how spatial variation in nest vegetation cover and temporal variation in climate influence early life-history demography. We found that spatial variation in nest cover strongly influenced nest temperature and sex ratio, but was not correlated with clutch size, nest predation, total nest failure, or hatching success. Temporal variation in climate influenced percentage of total nest failure and cohort sex ratio, but not depredation rate, mean clutch size, or mean hatching success. Total hatchling recruitment in a year was influenced primarily by temporal variation in climate-independent factors, number of nests constructed, and depredation rate. Recruitment of female hatchlings was determined by stochastic variation in nest depredation and annual climate and also by the total nest production. Overall population demography depends more strongly on annual variation in climate and predation than it does on the intricacies of nest-specific biology. Finally, we demonstrate that recruitment of female hatchlings translates into recruitment of breeding females into the population, thus linking climate (and other) effects on early life stages to adult demographics.
NASA Astrophysics Data System (ADS)
Niu, Y.; O'Hara, M. J.
2014-12-01
Mantle temperature variation, plate spreading rate variation and mantle compositional variation have been considered to be the three fundamental variables that govern the working of global ocean ridges [1]. An analysis demonstrates that mantle compositional variation exerts the primary control on ocean ridge processes; it determines (1) variation in both composition and mode of mantle mineralogy, (2) variation of mantle density, (3) variation of ridge axial depth, (4) source-inherited MORB compositional variation, (4) density-controlled variation in the amplitude of mantle upwelling, (5) apparent variation in the extent of melting, and (6) the correlated variation of MORB chemistry with ridge axial depth [2]. The above interpretations are reinforced by the updated MORB database [3]. The new database also confirms spreading rate control on the extent of melting as shown previously [4]. Mantle temperature variation could play a part, but its overstated role [3,5] results from a basic error (1) in treating ridge axial depth variation as evidence of mantle temperature variation by ignoring the intrinsic control of mantle composition, (2) in treating "mantle plume" influenced ridges (e.g., Iceland) as normal ridges of plate spreading origin, and (3) in treating low Vs at greater depths (> 300 km vs. < 200 km beneath ridges) beneath these "mantle plume" influenced ridges as evidence for hot ridge mantle. In order to understand the working of global ocean ridges, we must avoid plume-influenced ridges (e.g., in the vicinity of Iceland) and remove/average out data from such ridges. As a result, the correlations (e.g., between ridge axial depth, mantle low Vs anomaly, and some geochemical parameters) required for the interpretation of mantle temperature control all disappear. There is thus no evidence for large mantle temperature variation away from ridges influenced by "mantle plumes". References: [1] Niu et al., 2001, Earth Planet Sci. Lett., 186, 383-399; [2] Niu & O'Hara, 2008, J. Petrol., 49, 633-664; [3] Gale et al., 2014, J. Petrol, 55, 1051-1082; [4] Niu & Hékinian, 1997, Nature, 385, 326-329; [5] Dalton et al., 2014, Science, 334, 80-83; [6]Niu & Hékinian, 2004, In Oceanic Hotspots, Springer-Verlag, 285-307.
Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams
Constantz, James E.
1998-01-01
Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following dam releases. Direct coupling may have occurred between streamflow and stream temperature for losing stream reaches, such that reduced streamflows facilitated increased afternoon stream temperatures and increased afternoon stream temperatures induced increased streambed losses, leading to even greater increases in both stream temperature and streamflow losses.
Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika.
Kraemer, Benjamin M; Hook, Simon; Huttula, Timo; Kotilainen, Pekka; O'Reilly, Catherine M; Peltonen, Anu; Plisnier, Pierre-Denis; Sarvala, Jouko; Tamatamah, Rashid; Vadeboncoeur, Yvonne; Wehrli, Bernhard; McIntyre, Peter B
2015-01-01
Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake's seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The observed spatiotemporal variation in surface warming rates accounts for small differences between warming rate estimates from in situ instruments and satellite data. However, after accounting for spatiotemporal variation in temperature and warming rates, the TEX86 paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster warming rates (by a factor of three) than in situ measurements. Based on the ecology of Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature of the low-oxygen zone, rather than of the lake surface temperature as has been suggested previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming rates, offering strong evidence that thermal and ecological shifts observed in this massive tropical lake over the last century are robust and in step with global climate change.
Elsawwaf, Mohamed; Willems, Patrick
2012-04-01
Variations in lake evaporation have a significant impact on the energy and water budgets of lakes. Understanding these variations and the role of climate is important for water resources management as well as predicting future changes in lake hydrology as a result of climate change. This study presents a comprehensive, 10-year analysis of seasonal, intraseasonal, and interannual variations in lake evaporation for Lake Nasser in South Egypt. Meteorological and lake temperature measurements were collected from an instrumented platform (Raft floating weather station) at 2 km upstream ofthe Aswan High Dam. In addition to that, radiation measurements at three locations on the lake: Allaqi, Abusembel and Arqeen (respectively at 75, 280 and 350 km upstream of the Aswan High Dam) are used. The data were analyzed over 14-day periods from 1995 to 2004 to provide bi-weekly energy budget estimates of evaporation rate. The mean evaporation rate for lake Nasser over the study period was 5.88 mm day(-1), with a coefficient of variation of 63%. Considerable variability in evaporation rates was found on a wide range of timescales, with seasonal changes having the highest coefficient of variation (32%), followed by the intraseasonal (28%) and interannual timescales (11.6%; for summer means). Intraseasonal changes in evaporation were primarily associated with synoptic weather variations, with high evaporation events tending to occur during incursions of cold, dry air (due, in part, to the thermal lag between air and lake temperatures). Seasonal variations in evaporation were largely driven by temperature and net energy advection, but are out-of-phase with changes in wind speed. On interannual timescales, changes in summer evaporation rates were strongly associated with changes in net energy advection and showed only moderate connections to variations in temperature or humidity.
Seasonal variations in modern speleothem calcite growth in Central Texas, U.S.A
Banner, J.L.; Guilfoyle, A.; James, E.W.; Stern, L.A.; Musgrove, M.
2007-01-01
Variations in growth rates of speleothem calcite have been hypothesized to reflect changes in a range of paleoenvironmental variables, including atmospheric temperature and precipitation, drip-water composition, and the rate of soil CO2 delivery to the subsurface. To test these hypotheses, we quantified growth rates of modern speleothem calcite on artificial substrates and monitored concurrent environmental conditions in three caves across the Edwards Plateau in central Texas. Within each of two caves, different drip sites exhibit similar annual cycles in calcite growth rates, even though there are large differences between the mean growth rates at the sites. The growth-rate cycles inversely correlate to seasonal changes in regional air temperature outside the caves, with near-zero growth rates during the warmest summer months, and peak growth rates in fall through spring. Drip sites from caves 130 km apart exhibit similar temporal patterns in calcite growth rate, indicating a controlling mechanism on at least this distance. The seasonal variations in calcite growth rate can be accounted for by a primary control by regional temperature effects on ventilation of cave-air CO2 concentrations and/or drip-water CO2 contents. In contrast, site-to-site differences in the magnitude of calcite growth rates within an individual cave appear to be controlled principally by differences in drip rate. A secondary control by drip rate on the growth rate temporal variations is suggested by interannual variations. No calcite growth was observed in the third cave, which has relatively high values of and small seasonal changes in cave-air CO2. These results indicate that growth-rate variations in ancient speleothems may serve as a paleoenvironmental proxy with seasonal resolution. By applying this approach of monitoring the modern system, speleothem growth rate and geochemical proxies for paleoenviromnental change may be evaluated and calibrated. Copyright ?? 2007, SEPM (Society for Sedimentary Geology).
Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind
2012-01-01
Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor bacteria peaked in spring (median, 2,165 CFU/m3) and were lowest in summer (median, 240 CFU/m3). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates. PMID:23001651
NASA Technical Reports Server (NTRS)
Neugebauer, G. T.; Wilcox, William R.
1992-01-01
Azulene-doped naphthalene was directionally solidified during the vertical Bridgman-Stockbarger technique. Doping homogeneity and convection were determined as a function of the temperature profile in the furnace and the freezing rate. Convection velocities were two orders of magnitude lower when the temperature increased with height. Rarely was the convection pattern axisymmetric, even though the temperature varied less than 0.1 K around the circumference of the growth ampoule. Correspondingly the cross sectional variation in azulene concentration tended to be asymmetric, especially when the temperature increased with height. This cross sectional variation changed dramatically along the ingot, reflecting changes in convection presumably due to the decreasing height of the melt. Although there was large scatter and irreproducibility in the cross sectional variation in doping, this variation tended to be least when the growth rate was low and the convection was vigorous. It is expected that compositional variations would also be small at high growth rates with weak convection and flat interfaces, although this was not investigated in the present experiments. Neither rotation of the ampoule nor deliberate introduction of thermal asymmetries during solidification had a significant influence on cross sectional variations in doping. It is predicted that slow directional solidification under microgravity conditions could produce greater inhomogeneities than on Earth. Combined use of microgravity and magnetic fields would be required to achieve homogeneity when it is necessary to freeze slowly in order to avoid constitutional supercooling.
Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory
Alster, Charlotte J.; Baas, Peter; Wallenstein, Matthew D.; Johnson, Nels G.; von Fischer, Joseph C.
2016-01-01
The activity of soil microbial extracellular enzymes is strongly controlled by temperature, yet the degree to which temperature sensitivity varies by microbe and enzyme type is unclear. Such information would allow soil microbial enzymes to be incorporated in a traits-based framework to improve prediction of ecosystem response to global change. If temperature sensitivity varies for specific soil enzymes, then determining the underlying causes of variation in temperature sensitivity of these enzymes will provide fundamental insights for predicting nutrient dynamics belowground. In this study, we characterized how both microbial taxonomic variation as well as substrate type affects temperature sensitivity. We measured β-glucosidase, leucine aminopeptidase, and phosphatase activities at six temperatures: 4, 11, 25, 35, 45, and 60°C, for seven different soil microbial isolates. To calculate temperature sensitivity, we employed two models, Arrhenius, which predicts an exponential increase in reaction rate with temperature, and Macromolecular Rate Theory (MMRT), which predicts rate to peak and then decline as temperature increases. We found MMRT provided a more accurate fit and allowed for more nuanced interpretation of temperature sensitivity in all of the enzyme × isolate combinations tested. Our results revealed that both the enzyme type and soil isolate type explain variation in parameters associated with temperature sensitivity. Because we found temperature sensitivity to be an inherent and variable property of an enzyme, we argue that it can be incorporated as a microbial functional trait, but only when using the MMRT definition of temperature sensitivity. We show that the Arrhenius metrics of temperature sensitivity are overly sensitive to test conditions, with activation energy changing depending on the temperature range it was calculated within. Thus, we propose the use of the MMRT definition of temperature sensitivity for accurate interpretation of temperature sensitivity of soil microbial enzymes. PMID:27909429
NASA Astrophysics Data System (ADS)
Aranha, Renita; Edinger, Evan; Layne, Graham; Piercey, Glenn
2014-01-01
Red tree coral, Primnoa pacifica, is one of the more common habitat-forming deep-sea gorgonian corals in the northeast Pacific Ocean, growing in colonies up to 2 m high and living for decades to hundreds of years. Growth characteristics of P. pacifica were studied in Dixon Entrance, northern British Columbia, and the Olympic Coast National Marine Sanctuary, Washington State, USA, based on samples collected in July 2008. To minimize the impact of scientific sampling on coral populations, only dead coral skeletons and dislodged live corals were collected. Ages and growth rates were measured using band counts, and checked against AMS-14C ages of gorgonin rings. Ba/Ca, Mg/Ca, Na/Ca and Sr/Ca ratios in the calcite cortex were measured using radial Secondary Ion Mass Spectrometer (SIMS) transects with a spot size of <20 μm and separation distance of 25 μm. Growth banding was consistent in width between the central mixed zone consisting of calcite and gorgonin and the dominantly calcite cortex. Average annual radial growth rate of the nine corals analysed ranged from 0.23 to 0.58 mm/yr, with an average growth rate of 0.32 mm/yr in Dixon Entrance and 0.36 m/yr in OCNMS. These growth rates are slightly higher than P. pacifica growth rates from the Gulf of Alaska, and more than four times the growth rates of sister species Primnoa resedaeformis in the northwest Atlantic. Primary productivity is likely a more important driver of geographic variation in Primnoa growth rates than temperature or current strength. Both Dixon Entrance and OCNMS are areas with high primary productivity and strong tidal currents. Lack of post-Atomic Bomb radiocarbon in all but one of the gorgonin samples, and long radiocarbon reservoir ages in the Northeast Pacific, made radiocarbon-based verification of coral ages and growth rates difficult due to wide errors in calibrated age estimates. Mg/Ca and Sr/Ca ratios were inversely correlated in two of the three corals analyzed, and showed evidence of interannual variation. Mg/Ca ratios ranged from 70 to 136 mmol mol-1, and Sr/Ca ratios from 2.041 to 3.14 mmol mol-1. Previously published relationships between gorgonian calcite Mg/Ca and seawater temperature yielded average temperatures matching ambient measurements, but the intra- and inter-annual variation in apparent temperature based on the Mg/Ca ratios was more than double the observed variation in modern seawater temperature ranges in the region. Annual variation in Mg/Ca and Sr/Ca could be related to seasonal changes in precipitation efficiency, which is likely a function of short-term fluctuations in coral growth rate, in turn related to variation in primary productivity. Seasonal and interannual variations in food availability, driven by primary productivity, may affect skeletal growth rate, hence Mg/Ca and Sr/Ca ratios. Primnoid coral skeletal microgeochemistry probably records temporal changes in both temperature and primary productivity.
Martin, Thomas E; Ton, Riccardo; Niklison, Alina
2013-06-01
Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species. © 2013 John Wiley & Sons Ltd/CNRS.
Martin, Thomas E.; Ton, Riccardo; Nikilson, Alina
2013-01-01
Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.
Cooling System to Treat Exercise-Induced Hyperthermia
2016-06-01
temperatures . Additionally, individual variations in sweat rates, ventilation rates, fitness levels, and oxygen consumption were not...gastrointestinal MHR maximum heart rate NASA National Aeronautics and Space Administration Tc core temperature UCHS uncompensated heat stress VO2peak peak oxygen consumption ...the effectiveness of a cooling pump based patient thermal management system supplied by Aspen Systems on lowering core body temperature
Miyazaki, Hiroyasu; Yoshida, Mutsumi; Samura, Keiji; Matsumoto, Hiroyoshi; Ikemoto, Fumihiko; Tagawa, Masahiro
2002-01-01
Ranges in diurnal variation and the patterns of body temperature (T), blood pressure (BP), heart rate (HR) and locomotor activity (LA) in 61 laboratory beagle dogs were analyzed using a telemetry system. Body temperature, BP, HR and LA increased remarkably at feeding time. Locomotor activity increased sporadically during the other periods. Body temperature was maintained at the higher value after feeding but had decreased by 0.2 C by early the next morning. Blood pressure fell to a lower value after feeding but had increased by 2.8% by early the next morning. Heart rate decreased progressively after feeding and was 14.5% lower the next morning. This study determined that in laboratory beagles the ranges of diurnal variation and patterns of T, BP and HR are significantly different from those reported in humans and rodents, and that over 24 hr these physiological changes were associated with their sporadic wake-sleep cycles of the dogs.
Dual Rate Adaptive Control for an Industrial Heat Supply Process Using Signal Compensation Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Tianyou; Jia, Yao; Wang, Hong
The industrial heat supply process (HSP) is a highly nonlinear cascaded process which uses a steam valve opening as its control input, the steam flow-rate as its inner loop output and the supply water temperature as its outer loop output. The relationship between the heat exchange rate and the model parameters, such as steam density, entropy, and fouling correction factor and heat exchange efficiency are unknown and nonlinear. Moreover, these model parameters vary in line with steam pressure, ambient temperature and the residuals caused by the quality variations of the circulation water. When the steam pressure and the ambient temperaturemore » are of high values and are subjected to frequent external random disturbances, the supply water temperature and the steam flow-rate would interact with each other and fluctuate a lot. This is also true when the process exhibits unknown characteristic variations of the process dynamics caused by the unexpected changes of the heat exchange residuals. As a result, it is difficult to control the supply water temperature and the rates of changes of steam flow-rate well inside their targeted ranges. In this paper, a novel compensation signal based dual rate adaptive controller is developed by representing the unknown variations of dynamics as unmodeled dynamics. In the proposed controller design, such a compensation signal is constructed and added onto the control signal obtained from the linear deterministic model based feedback control design. Such a compensation signal aims at eliminating the unmodeled dynamics and the rate of changes of the currently sample unmodeled dynamics. A successful industrial application is carried out, where it has been shown that both the supply water temperature and the rate of the changes of the steam flow-rate can be controlled well inside their targeted ranges when the process is subjected to unknown variations of its dynamics.« less
Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika
Kraemer, Benjamin M.; Hook, Simon; Huttula, Timo; Kotilainen, Pekka; O’Reilly, Catherine M.; Peltonen, Anu; Plisnier, Pierre-Denis; Sarvala, Jouko; Tamatamah, Rashid; Vadeboncoeur, Yvonne; Wehrli, Bernhard; McIntyre, Peter B.
2015-01-01
Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake’s seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The observed spatiotemporal variation in surface warming rates accounts for small differences between warming rate estimates from in situ instruments and satellite data. However, after accounting for spatiotemporal variation in temperature and warming rates, the TEX86 paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster warming rates (by a factor of three) than in situ measurements. Based on the ecology of Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature of the low-oxygen zone, rather than of the lake surface temperature as has been suggested previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming rates, offering strong evidence that thermal and ecological shifts observed in this massive tropical lake over the last century are robust and in step with global climate change. PMID:26147964
High temperatures reveal cryptic genetic variation in a polymorphic female sperm storage organ.
Berger, David; Bauerfeind, Stephanie Sandra; Blanckenhorn, Wolf Ulrich; Schäfer, Martin Andreas
2011-10-01
Variation in female reproductive morphology may play a decisive role in reproductive isolation by affecting the relative fertilization success of alternative male phenotypes. Yet, knowledge of how environmental variation may influence the development of the female reproductive tract and thus alter the arena of postcopulatory sexual selection is limited. Yellow dung fly females possess either three or four sperm storage compartments, a polymorphism with documented influence on sperm precedence. We performed a quantitative genetics study including 12 populations reared at three developmental temperatures complemented by extensive field data to show that warm developmental temperatures increase the frequency of females with four compartments, revealing striking hidden genetic variation for the polymorphism. Systematic genetic differentiation in growth rate and spermathecal number along latitude, and phenotypic covariance between the traits across temperature treatments suggest that the genetic architecture underlying the polymorphism is shaped by selection on metabolic rate. Our findings illustrate how temperature can modulate the preconditions for sexual selection by differentially exposing novel variation in reproductive morphology. This implies that environmental change may substantially alter the dynamics of sexual selection. We further discuss how temperature-dependent developmental plasticity may have contributed to observed rapid evolutionary transitions in spermathecal morphology. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Co-Gradient Variation in Growth Rate and Development Time of a Broadly Distributed Butterfly
Barton, Madeleine; Sunnucks, Paul; Norgate, Melanie; Murray, Neil; Kearney, Michael
2014-01-01
Widespread species often show geographic variation in thermally-sensitive traits, providing insight into how species respond to shifts in temperature through time. Such patterns may arise from phenotypic plasticity, genetic adaptation, or their interaction. In some cases, the effects of genotype and temperature may act together to reduce, or to exacerbate, phenotypic variation in fitness-related traits across varying thermal environments. We find evidence for such interactions in life-history traits of Heteronympha merope, a butterfly distributed across a broad latitudinal gradient in south-eastern Australia. We show that body size in this butterfly is negatively related to developmental temperature in the laboratory, in accordance with the temperature-size rule, but not in the field, despite very strong temperature gradients. A common garden experiment on larval thermal responses, spanning the environmental extremes of H. merope's distribution, revealed that butterflies from low latitude (warmer climate) populations have relatively fast intrinsic growth and development rates compared to those from cooler climates. These synergistic effects of genotype and temperature across the landscape (co-gradient variation) are likely to accentuate phenotypic variation in these traits, and this interaction must be accounted for when predicting how H. merope will respond to temperature change through time. These results highlight the importance of understanding how variation in life-history traits may arise in response to environmental change. Without this knowledge, we may fail to detect whether organisms are tracking environmental change, and if they are, whether it is by plasticity, adaptation or both. PMID:24743771
Du, Wei-Guo; Warner, Daniel A; Langkilde, Tracy; Robbins, Travis; Shine, Richard
2010-10-01
The duration of embryonic development (e.g., egg incubation period) is a critical life-history variable because it affects both the amount of time that an embryo is exposed to conditions within the nest and the seasonal timing of hatching. Variation in incubation periods among oviparous reptiles might result from variation in either the amount of embryogenesis completed before laying or the subsequent developmental rates of embryos. Selection on incubation duration could change either of those traits. We examined embryonic development of fence lizards (Sceloporus undulatus) from three populations (Indiana, Mississippi, and Florida) that occur at different latitudes and therefore experience different temperatures and season lengths. These data reveal countergradient variation: at identical temperatures in the laboratory, incubation periods were shorter for lizards from cooler areas. This variation was not related to stage at oviposition; eggs of all populations were laid at similar developmental stages. Instead, embryonic development proceeded more rapidly in cooler-climate populations, compensating for the delayed development caused by lower incubation temperatures in the field. The accelerated development appears to occur via an increase in heart mass (and, thus, stroke volume) in one population and an increase in heart rate in the other. Hence, superficially similar adaptations of embryonic developmental rate to local conditions may be generated by dissimilar proximate mechanisms.
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Kong, J. A.; Hsu, C. C.; Ding, K. H.
1995-01-01
An experiment was carried out in January 1994 at the Geophysical Research Facility in the Cold Regions Research and Engineering Laboratory. To investigate effects on polarimetric scattering signatures of sea ice growth under diurnal temperature variations, an ice sheet was grown for 2.5 days for the thickness of 10 cm and a polarimetric radar operating at C-band was used to obtain backscattering data in conjunction with ice-characterization measurements. The ice sheet was grown in the late morning of January 19, 1994. The initial growth rate was slow due to high insolation and temperature. As the air temperature dropped during the night, the growth rate increased significantly. The air temperature changed drastically from about -10(deg)C to -35(deg)C between day and night. The temperature cycle was repeated during the next day and the growth rate varied in the same manner. The surface of the ice was partially covered by frost flowers and the areal coverage increased as the ice became thicker. Throughout the ice growth duration of 2.5 days, polarimetric backscatter data were collected at roughly every centimeter of ice growth. For each set of radar measurements of saline ice, a set of calibration measurements was carried out with trihedrial corner reflectors and a metallic sphere. Measured polarimetric backscattering coefficients of the ice sheet reveal a strong correlation between radar data and temperature variations. As the temperature increased (decreased), the backscatter increased (decreased) correspondingly. From the ice-characterization data, temperatures of the air, at the ice-air interface, and in the ice layer had the same variation trend. Another interesting experimental observation is that the salinity measured as a function of ice depth from a sample of 10-cm thich ice indicated that the salinity variations had a similar cycle as the temperature; i.e., the salinity profile recorded the history of the temperature variations. Characterization data of the ice sheet are used in a theoretical model for scattering from saline ice with frost cover to explain the observed polarimetric signatures.
Temperature environment for 9975 packages stored in KAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W. L.
Plutonium materials are stored in the K Area Complex (KAC) in shipping packages, typically the 9975 shipping package. In order to estimate realistic degradation rates for components within the shipping package (i.e. the fiberboard overpack and O-ring seals), it is necessary to understand actual facility temperatures, which can vary daily and seasonally. Relevant facility temperature data available from several periods throughout its operating history have been reviewed. The annual average temperature within the Crane Maintenance Area has ranged from approximately 70 to 74 °F, although there is significant seasonal variation and lesser variation among different locations within the facility. Themore » long-term average degradation rate for 9975 package components is very close to that expected if the component were to remain continually at the annual average temperature. This result remains valid for a wide range of activation energies (which describes the variation in degradation rate as the temperature changes), if the activation energy remains constant over the seasonal range of component temperatures. It is recommended that component degradation analyses and service life estimates incorporate these results. Specifically, it is proposed that future analyses assume an average facility ambient air temperature of 94 °F. This value is bounding for all packages, and includes margin for several factors such as increased temperatures within the storage arrays, the addition of more packages in the future, and future operational changes.« less
NASA Astrophysics Data System (ADS)
Visheratin, K. N.
2016-01-01
We present the results of the analysis of the phase relationships between the quasi-decadal variations (QDVs) (in the range from 8 to 13 years) in the total ozone content (TOC) at the Arosa station for 1932-2012 and a number of meteorological parameters: monthly mean values of temperature, meridional and zonal components of wind velocity, and geopotential heights for isobaric surfaces in the layer of 10-925 hPa over the Arosa station using the Fourier methods and composite and cross-wavelet analysis. It has been shown that the phase relationships of the QDVs in the TOC and meteorological parameters with an 11-year cycle of solar activity change in time and height; starting with cycle 24 of solar activity (2008-2010), the variations in the TOC and a number of meteorological parameters occur in almost counter phase with the variations in solar activity. The periods of the maximum growth rate of the temperature at isobaric surfaces 50-100 hPa nearly correspond to the TOC's maximum periods, and the periods of the maximum temperature correspond the periods of the decrease of the peak TOC rate. The highest correlation coefficients between the meridional wind velocity and temperature are observed at 50 hPa at positive and negative delays of ~27 months. The times of the maxima (minima) of the QDVs in the meridional wind velocity nearly correspond to the periods of the maximum amplification (attenuation) rate of the temperature of the QDVs. The QDVs in the geopotential heights of isobaric surfaces fall behind the variations in the TOC by an average of 1.5 years everywhere except in the lower troposphere. In general, the periods of variations in the TOC and meteorological parameters in the range of 8-13 years are smaller than the period of variations in the level of solar activity.
NASA Astrophysics Data System (ADS)
Guzman, N.; Lazareth, C. E.; Poitrasson, F.; Cuif, J.; Ortlieb, L.
2004-12-01
To validate the use of fossil mollusc shells as recorders of environmental conditions, a primary calibration study was carried out on modern shells of the Chilean gastropod Concholepas concholepas, the so-called southern hemisphere abalone which is particularly abundant in Holocene archaeological sites. Organisms were maintained in culture tanks and feed with live mytilids. The sea water temperature in the tank was recorded every half-an-hour by an automatic device. The experiment lasted several months. Periodical marking with calcein provided a precise chronological control of the shell growth. Thus, well-dated high resolution chemical profiles could be directly compared with temperatures during shell formation. Geochemical analyses of the calcite layers include Mg, Sr and 16O/18O composition. Trace elements were analysed using Laser Ablation ICP-MS and Electron Microprobe while stable isotopes were measured on a Secondary Ion Mass spectrometry (SIMS). The shell growth rate during two months of formation varied between 30 and 140 µm/day which allows us to reach a temporal resolution for chemical profiles between a few hours and three days. The growth rate variations do not seem to be related to temperature fluctuations. Only Mg content was analytically reproducible and showed significant variations across the shells. The Mg high-resolution profiles display a grossly sinusoidal shape. Shells from different sites along the coasts of Chile showed mean Mg contents of 300 ppm and 500 ppm for mean temperatures of 17 and 20° C, respectively. This suggests a gross correlation between Mg and temperature. However, high resolution Mg results do not show an exact fitting neither with temperature nor with growth rates. Other parameters, like shell ageing as suggested by an amplitude increase observed near the edge of one of the shells, or other complex biological factors, may influence Mg incorporation into the shell. \\delta 18O values of the calcite vary between -1,5 and 2,0 \\permil for a temperature range between 17 and 22° C. Growth rate variations seem to be an important factor affecting the oxygen isotopic ratio within shells. When growth rate variations are limited, \\delta 18O and temperature are well correlated. The study confirms that, like for all biogenic carbonates, elemental and isotopic composition of the calcite layer of this gastropod, should not be used in paleoenvironmental reconstructions without detailed calibration experiments, and must systematically include precise growth rate analyses. The growth rhythms, which vary under the double influence of environmental and biological factors, are of paramount importance in the relationship between environmental parameters and geochemical composition of the growth layers of the shells. Work supported by "CONCHAS" Project (PNEDC).
Influence of soil environmental parameters on thoron exhalation rate.
Hosoda, M; Tokonami, S; Sorimachi, A; Ishikawa, T; Sahoo, S K; Furukawa, M; Shiroma, Y; Yasuoka, Y; Janik, M; Kavasi, N; Uchida, S; Shimo, M
2010-10-01
Field measurements of thoron exhalation rates have been carried out using a ZnS(Ag) scintillation detector with an accumulation chamber. The influence of soil surface temperature and moisture saturation on the thoron exhalation rate was observed. When the variation of moisture saturation was small, the soil surface temperature appeared to induce a strong effect on the thoron exhalation rate. On the other hand, when the variation of moisture saturation was large, the influence of moisture saturation appeared to be larger than the soil surface temperature. The number of data ranged over 405, and the median was estimated to be 0.79 Bq m(-2) s(-1). Dependence of geology on the thoron exhalation rate from the soil surface was obviously found, and a nationwide distribution map of the thoron exhalation rate from the soil surface was drawn by using these data. It was generally high in the southwest region than in the northeast region.
Alton, Lesley A; Condon, Catriona; White, Craig R; Angilletta, Michael J
2017-01-01
The effect of temperature on the evolution of metabolism has been the subject of debate for a century; however, no consistent patterns have emerged from comparisons of metabolic rate within and among species living at different temperatures. We used experimental evolution to determine how metabolism evolves in populations of Drosophila melanogaster exposed to one of three selective treatments: a constant 16°C, a constant 25°C, or temporal fluctuations between 16 and 25°C. We tested August Krogh's controversial hypothesis that colder environments select for a faster metabolism. Given that colder environments also experience greater seasonality, we also tested the hypothesis that temporal variation in temperature may be the factor that selects for a faster metabolism. We measured the metabolic rate of flies from each selective treatment at 16, 20.5, and 25°C. Although metabolism was faster at higher temperatures, flies from the selective treatments had similar metabolic rates at each measurement temperature. Based on variation among genotypes within populations, heritable variation in metabolism was likely sufficient for adaptation to occur. We conclude that colder or seasonal environments do not necessarily select for a faster metabolism. Rather, other factors besides temperature likely contribute to patterns of metabolic rate over thermal clines in nature. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Sun, Xiaoqin; Lee, Kyoung Ok; Medina, Mario A.; Chu, Youhong; Li, Chuanchang
2018-06-01
Differential scanning calorimetry (DSC) analysis is a standard thermal analysis technique used to determine the phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy of phase change materials (PCMs). To determine the appropriate heating rate and sample mass, various DSC measurements were carried out using two kinds of PCMs, namely N-octadecane paraffin and calcium chloride hexahydrate. The variations in phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy were observed within applicable heating rates and sample masses. It was found that the phase transition temperature range increased with increasing heating rate and sample mass; while the heat of fusion varied without any established pattern. The specific heat decreased with the increase of heating rate and sample mass. For accuracy purpose, it is recommended that for PCMs with high thermal conductivity (e.g. hydrated salt) the focus will be on heating rate rather than sample mass.
Spindelböck, Joachim P; Cook, Zoë; Daws, Matthew I; Heegaard, Einar; Måren, Inger E; Vandvik, Vigdis
2013-09-01
Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species' climatic range. Incubation treatments varied from 10 to 25 °C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds' origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season.
Spindelböck, Joachim P.; Cook, Zoë; Daws, Matthew I.; Heegaard, Einar; Måren, Inger E.; Vandvik, Vigdis
2013-01-01
Background and Aims Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Methods Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species' climatic range. Incubation treatments varied from 10 to 25 °C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Key Results Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Conclusions Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds' origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season. PMID:23884396
Insect eggs protected from high temperatures by limited homeothermy of plant leaves.
Potter, Kristen; Davidowitz, Goggy; Woods, H Arthur
2009-11-01
Virtually all aspects of insect biology are affected by body temperature, and many taxa have evolved sophisticated temperature-control mechanisms. All insects, however, begin life as eggs and lack the ability to thermoregulate. Eggs laid on leaves experience a thermal environment, and thus a body temperature, that is strongly influenced by the leaves themselves. Because plants can maintain leaf temperatures that differ from ambient, e.g. by evapotranspiration, plant hosts may protect eggs from extreme ambient temperatures. We examined the degree to which leaves buffer ambient thermal variation and whether that buffering benefits leaf-associated insect eggs. In particular, we: (1) measured temperature variation at oviposition sites in the field, (2) manipulated temperatures in the laboratory to determine the effect of different thermal conditions on embryo development time and survival, and (3) tested embryonic metabolic rates over increasing temperatures. Our results show that Datura wrightii leaves buffer Manduca sexta eggs from fatally high ambient temperatures in the southwestern USA. Moreover, small differences in temperature profiles among leaves can cause large variation in egg metabolic rate and development time. Specifically, large leaves were hotter than small leaves during the day, reaching temperatures that are stressfully high for eggs. This study provides the first mechanistic demonstration of how this type of leaf-constructed thermal refuge interacts with egg physiology.
Self-Correcting Electronically-Scanned Pressure Sensor
NASA Technical Reports Server (NTRS)
Gross, C.; Basta, T.
1982-01-01
High-data-rate sensor automatically corrects for temperature variations. Multichannel, self-correcting pressure sensor can be used in wind tunnels, aircraft, process controllers and automobiles. Offers data rates approaching 100,000 measurements per second with inaccuracies due to temperature shifts held below 0.25 percent (nominal) of full scale over a temperature span of 55 degrees C.
Aim: To test the growth-sensitivity to temperature under different ambient CO2 concentrations, we determined paleo tree growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatia...
Improving Pyroelectric Energy Harvesting Using a Sandblast Etching Technique
Hsiao, Chun-Ching; Siao, An-Shen
2013-01-01
Large amounts of low-grade heat are emitted by various industries and exhausted into the environment. This heat energy can be used as a free source for pyroelectric power generation. A three-dimensional pattern helps to improve the temperature variation rates in pyroelectric elements by means of lateral temperature gradients induced on the sidewalls of the responsive elements. A novel method using sandblast etching is successfully applied in fabricating the complex pattern of a vortex-like electrode. Both experiment and simulation show that the proposed design of the vortex-like electrode improved the electrical output of the pyroelectric cells and enhanced the efficiency of pyroelectric harvesting converters. A three-dimensional finite element model is generated by commercial software for solving the transient temperature fields and exploring the temperature variation rate in the PZT pyroelectric cells with various designs. The vortex-like type has a larger temperature variation rate than the fully covered type, by about 53.9%.The measured electrical output of the vortex-like electrode exhibits an obvious increase in the generated charge and the measured current, as compared to the fully covered electrode, by of about 47.1% and 53.1%, respectively. PMID:24025557
Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge
Constantz, Jim; Thomas, Carole L.; Zellweger, Gary W.
1994-01-01
We demonstrate that for losing reaches with significant diurnal variations in stream temperature, the effect of stream temperature on streambed seepage is a major factor contributing to reduced afternoon streamflows. An explanation is based on the effect of stream temperature on the hydraulic conductivity of the streambed, which can be expected to double in the 0° to 25°C temperature range. Results are presented for field experiments in which stream discharge and temperature were continuously measured for several days over losing reaches at St. Kevin Gulch, Colorado, and Tijeras Arroyo, New Mexico. At St. Kevin Gulch in July 1991, the diurnal stream temperature in the 160-m study reach ranged from about 4° to 18°C, discharges ranged from 10 to 18 L/s, and streamflow loss in the study reach ranged from 2.7 to 3.7 L/s. On the basis of measured stream temperature variations, the predicted change in conductivity was about 38%; the measured change in stream loss was about 26%, suggesting that streambed temperature varied less than the stream temperature. At Tijeras Arroyo in May 1992, diurnal stream temperature in the 655-m study reach ranged from about 10° to 25°C and discharge ranged from 25 to 55 L/s. Streamflow loss was converted to infiltration rates by factoring in the changing stream reach surface area and streamflow losses due to evaporation rates as measured in a hemispherical evaporation chamber. Infiltration rates ranged from about 0.7 to 2.0 m/d, depending on time and location. Based on measured stream temperature variations, the predicted change in conductivity was 29%; the measured change in infiltration was also about 27%. This suggests that high infiltration rates cause rapid convection of heat to the streambed. Evapotranspiration losses were estimated for the reach and adjacent flood plain within the arroyo. On the basis of these estimates, only about 5% of flow loss was consumed via stream evaporation and stream-side evapotranspiration, indicating that 95% of the loss within the study reach represented groundwater recharge.
Dupoué, Andréaz; Rutschmann, Alexis; Le Galliard, Jean François; Miles, Donald B; Clobert, Jean; DeNardo, Dale F; Brusch, George A; Meylan, Sandrine
2017-12-01
Water conservation strategies are well documented in species living in water-limited environments, but physiological adaptations to water availability in temperate climate environments are still relatively overlooked. Yet, temperate species are facing more frequent and intense droughts as a result of climate change. Here, we examined variation in field hydration state (plasma osmolality) and standardized evaporative water loss rate (SEWL) of adult male and pregnant female common lizards (Zootoca vivipara) from 13 natural populations with contrasting air temperature, air humidity, and access to water. We found different patterns of geographic variation between sexes. Overall, males were more dehydrated (i.e. higher osmolality) than pregnant females, which likely comes from differences in field behaviour and water intake since the rate of SEWL was similar between sexes. Plasma osmolality and SEWL rate were positively correlated with environmental temperature in males, while plasma osmolality in pregnant females did not correlate with environmental conditions, reproductive stage or reproductive effort. The SEWL rate was significantly lower in populations without access to free standing water, suggesting that lizards can adapt or adjust physiology to cope with habitat dryness. Environmental humidity did not explain variation in water balance. We suggest that geographic variation in water balance physiology and behaviour should be taken account to better understand species range limits and sensitivity to climate change.
NASA Astrophysics Data System (ADS)
Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.
2016-12-01
Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.
The technical conununity has only recently addressed the role of atmospheric temperature variations on rates of air-water vapor phase toxicant exchange. The technical literature has documented that: 1) day time rates of elemental mercury vapor phase air-water exchange can exceed ...
Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank
2013-07-21
The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.
NASA Astrophysics Data System (ADS)
Zhang, Q.; Meng, W. Q.; Li, H. Y.
2016-08-01
Understanding the differences and diurnal variations of soil respiration in different vegetation communities in coastal wetland is to provide basic reliable scientific evidence for the carbon "source" function of wetland ecosystems in Tianjin.Measured soil respiration rate which changed during a day between two typical vegetation communities (Phragmites australis, Suaeda salsa) in coastal wetland in October, 2015. Soil temperature and moisture were measured at the same time. Each of the diurnal curves of soil temperature in two communities had a single peak value, and the diurnal variations of soil moisture showed a "two peak-one valley" trend. The diurnal dynamic of soil respiration under the two communities had obvious volatility which showed a single peak form with its maximum between 12:00-14:00 and minimum during 18:00. The diurnal average of soil respiration rate in Phragmites australis communities was 3.37 times of that in Suaeda salsa communities. Significant relationships were found by regression analysis among soil temperature, soil moisture and soil respiration rate in Suaeda salsa communities. There could be well described by exponential models which was y = -0.245e0.105t between soil respiration rate and soil temperature, by quadratic models which was y = -0.276×2 + 15.277× - 209.566 between soil respiration rate and soil moisture. But the results of this study showed that there were no significant correlations between soil respiration and soil temperature and soil moisture in Phragmites australis communities (P > 0.05). Therefore, under the specific wetland environment conditions in Tianjin, soil temperature and moisture were not main factors influencing the diurnal variations of soil respiration rate in Phragmites australis communities.
Effects of temperature variability on community structure in a natural microbial food web.
Zander, Axel; Bersier, Louis-Félix; Gray, Sarah M
2017-01-01
Climate change research has demonstrated that changing temperatures will have an effect on community-level dynamics by altering species survival rates, shifting species distributions, and ultimately, creating mismatches in community interactions. However, most of this work has focused on increasing temperature, and still little is known about how the variation in temperature extremes will affect community dynamics. We used the model aquatic community held within the leaves of the carnivorous plant, Sarracenia purpurea, to test how food web dynamics will be affected by high temperature variation. We tested the community response of the first (bacterial density), second (protist diversity and composition), and third trophic level (predator mortality), and measured community respiration. We collected early and late successional stage inquiline communities from S. purpurea from two North American and two European sites with similar average July temperature. We then created a common garden experiment in which replicates of these communities underwent either high or normal daily temperature variation, with the average temperature equal among treatments. We found an impact of temperature variation on the first two, but not on the third trophic level. For bacteria in the high-variation treatment, density experienced an initial boost in growth but then decreased quickly through time. For protists in the high-variation treatment, alpha-diversity decreased faster than in the normal-variation treatment, beta-diversity increased only in the European sites, and protist community composition tended to diverge more in the late successional stage. The mortality of the predatory mosquito larvae was unaffected by temperature variation. Community respiration was lower in the high-variation treatment, indicating a lower ecosystem functioning. Our results highlight clear impacts of temperature variation. A more mechanistic understanding of the effects that temperature, and especially temperature variation, will have on community dynamics is still greatly needed. © 2016 John Wiley & Sons Ltd.
Wang, Chao; Yang, Zhi-Jie; Chen, Guang-Shui; Fan, Yue-Xin; Liu, Qiang; Tian, Hao
2011-05-01
By using Li-Cor 8100 open soil carbon flux system, the dynamic changes of soil respiration rate in Phyllostachys edulis forest in Wanmulin Natural Reserve in Fujian Province of China were measured from January 2009 to December 2009, with the relationships between the dynamic changes and related affecting factors analyzed. The monthly variation of soil respiration rate in the forest presented a double peak curve, with the peaks appeared in June 2009 (6. 83 micromol x m(-2) x s(-1)) and September 2009 (5.59 micromol x m(-2) x s(-1)), and the seasonal variation of the soil respiration rate was significant, with the maximum in summer and the minimum in winter. The soil respiration rate had significant correlation with the soil temperature at depth 5 cm (P < 0.05), but no significant correlation with soil moisture (P > 0.05). The monthly variation of litter fall mass in the forest was in single peak shape, and there was a significantly positive correlation between the monthly litter fall mass and soil respiration rate (P < 0.05). Two-factor model of soil temperature and litter fall mass could explain 93.2% variation of the soil respiration rate.
Direct ab initio dynamics study of the reaction of C 2(A 3Π u) radical with C 2H 6
NASA Astrophysics Data System (ADS)
Li, Na; Huo, Rui-Ping; Zhang, Xiang; Huang, Xu-Ri; Li, Ji-Lai; Sun, Chia-Chung
2011-02-01
The reaction of C 2 (A 3Π u) with C 2H 6 has been investigated at the BMC-CCSD//BB1K/6-311+G(2d, 2p) level. The classical barrier height for H-abstraction reaction is calculated to be 3.32 kcal/mol and the electron transfer behavior is also analyzed in detail. The rate constants are calculated by TST, CVT, and CVT/SCT over a wide temperature range 50-3000 K. The results indicate: (1) variational effect is small and nonclassical reflection effect is important to the H abstraction in high temperature region; and (2) variational effect is negligible and tunneling effect cooperating with the nonclassical reflection effect makes the rate constant temperature independence in low-temperature range. The CVT/SCT rate constants are in excellent agreement with experimental values.
A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.
Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less
A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems
Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.
2018-04-23
Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less
Global and local Joule heating effects seen by DE 2
NASA Technical Reports Server (NTRS)
Heelis, R. A.; Coley, W. R.
1988-01-01
In the altitude region between 350 and 550 km, variations in the ion temperature principally reflect similar variations in the local frictional heating produced by a velocity difference between the ions and the neutrals. Here, the distribution of the ion temperature in this altitude region is shown, and its attributes in relation to previous work on local Joule heating rates are discussed. In addition to the ion temperature, instrumentation on the DE 2 satellite also provides a measure of the ion velocity vector representative of the total electric field. From this information, the local Joule heating rate is derived. From an estimate of the height-integrated Pedersen conductivity it is also possible to estimate the global (height-integrated) Joule heating rate. Here, the differences and relationships between these various parameters are described.
Surface Temperature Variation Prediction Model Using Real-Time Weather Forecasts
NASA Astrophysics Data System (ADS)
Karimi, M.; Vant-Hull, B.; Nazari, R.; Khanbilvardi, R.
2015-12-01
Combination of climate change and urbanization are heating up cities and putting the lives of millions of people in danger. More than half of the world's total population resides in cities and urban centers. Cities are experiencing urban Heat Island (UHI) effect. Hotter days are associated with serious health impacts, heart attaches and respiratory and cardiovascular diseases. Densely populated cities like Manhattan, New York can be affected by UHI impact much more than less populated cities. Even though many studies have been focused on the impact of UHI and temperature changes between urban and rural air temperature, not many look at the temperature variations within a city. These studies mostly use remote sensing data or typical measurements collected by local meteorological station networks. Local meteorological measurements only have local coverage and cannot be used to study the impact of UHI in a city and remote sensing data such as MODIS, LANDSAT and ASTER have with very low resolution which cannot be used for the purpose of this study. Therefore, predicting surface temperature in urban cities using weather data can be useful.Three months of Field campaign in Manhattan were used to measure spatial and temporal temperature variations within an urban setting by placing 10 fixed sensors deployed to measure temperature, relative humidity and sunlight. Fixed instrument shelters containing relative humidity, temperature and illumination sensors were mounted on lampposts in ten different locations in Manhattan (Vant-Hull et al, 2014). The shelters were fixed 3-4 meters above the ground for the period of three months from June 23 to September 20th of 2013 making measurements with the interval of 3 minutes. These high resolution temperature measurements and three months of weather data were used to predict temperature variability from weather forecasts. This study shows that the amplitude of spatial and temporal variation in temperature for each day can be predicted by regression of weather variables. In addition amplitude of spatial variations were most dependent on temperature, north winds, and high level lapse rate and the temporal variations were most dependent on temperature and lapse rates.
Martin, Thomas E.; Arriero, Elena; Majewska, Ania
2011-01-01
Long embryonic periods are assumed to reflect slower intrinsic development that are thought to trade off to allow enhanced physiological systems, such as immune function. Yet, the relatively rare studies of this trade-off in avian offspring have not found the expected trade-off. Theory and tests have not taken into account the strong extrinsic effects of temperature on embryonic periods of birds. Here, we show that length of the embryonic period did not explain variation in two measures of immune function when temperature was ignored, based on studies of 34 Passerine species in tropical Venezuela (23 species) and north temperate Arizona (11 species). Variation in immune function was explained when embryonic periods were corrected for average embryonic temperature, in order to better estimate intrinsic rates of development. Immune function of offspring trades off with intrinsic rates of embryonic development once the extrinsic effects of embryonic temperatures are taken into account.
NASA Astrophysics Data System (ADS)
Huntington, K. W.; Peters, N.; Roe, G.; Hoke, G. D.; Eiler, J.
2010-12-01
Soil carbonates archive a potentially rich record of past climate, but rates of pedogenic carbonate formation, erosion, and deposition impact how the isotopic composition and formation temperature of carbonate-bearing paleosols reflect the local environmental conditions under which they form. We investigate these processes using conventional stable isotope (δ18O and δ13C) and clumped isotope thermometry data for Quaternary pedogenic carbonates from the southern Central Andes at ~33°S, Argentina. The study area spans over 2 km of relief in the Río Mendoza and Río de las Cuevas valleys, accessing a range of mean annual temperature conditions and vegetative cover and exhibiting large seasonal variations in temperature, precipitation, and soil moisture. Variations in soil conditions influence carbonate precipitation and dissolution reactions and the rate and depth of pedogenic carbonate formation. Because soil temperature varies predictably as a function of depth in the soil and seasonal and secular variations in air temperature, clumped isotope thermometry of samples collected in soil pits offers a direct way to estimate the seasonality of pedogenic carbonate formation and potential biases in the long-term climate record. We explore potential complications due to the effects of radiative solar heating on the relationship between air and soil temperatures by examining clumped isotope thermometry results in the context of site-to-site variations in vegetative cover. Temperature estimates from clumped isotope thermometry of pedogenic carbonate collected 5-110 cm below geomorphically stable soil surfaces from 1200-3400 m a.s.l. are compared to temperature profiles predicted by simple rule-based models of soil carbonate formation. The models use climate reanalysis daily diagnostic data (soil temperature, soil moisture, and latent heat flux as a proxy for evaporation) and weather station data as input to assess how varying rates of pedogenic carbonate formation integrated over millennial timescales might impact the geologic record of temperature and isotopic composition.
NASA Astrophysics Data System (ADS)
Stoll, Heather; Moreno, Ana; Cacho, Isabel; Mendez Vicence, Ana; Gonzalez Lemos, Saul; Pirla Casasayas, Gemma; Cheng, Hai; Wang, Xianfeng; Edwards, R. Lawrence
2015-04-01
The oxygen isotopic signature may be the most widely used climate indicator in stalagmites, but recent experimental and theoretical studies indicate the potential for kinetic fractionation effects which may be significant, especially in situations where the primary signal from rainfall isotopic composition and cave temperature is limited to a few permil. Here we use a natural set of stalagmites to illustrate the magnitude of such effects and the potential for deconvolving kinetic signals from the primary temperature and rainfall signals. We compare isotopic records from 6 coeval stalagmites covering the interval 140 to 70 ka, from two proximal caves in NW Spain which experienced the same primary variations in temperature and rainfall d18O, but exhibit a large range in growth rates and temporal trends in growth rate. Stalagmites growing at faster rates near 50 microns/year have oxygen isotopic ratios more than 1 permil more negative than coeval stalagmites with very slow (5 micron/year) growth rates. Because growth rate variations also occur over time within any given stalagmite, the measured oxygen isotopic time series for a given stalagmite includes both climatic and kinetic components. Removal of the kinetic component of variation in each stalagmite, based on the dependence of the kinetic component on growth rate, is effective at distilling a common temporal evolution among the oxygen isotopic records of the multiple stalagmites. However, this approach is limited by the quality of the age model. For time periods characterized by very slow growth and long durations between dates, the presence of crypto-hiatus may result in average growth rates which underestimate the instantaneous speleothem deposition rates and which therefore underestimate the magnitude of kinetic effects. We compare the composite corrected oxygen isotopic record with other records of the timing of glacial inception in the North Atlantic realm.
Sevillano, C A; Mulder, H A; Rashidi, H; Mathur, P K; Knol, E F
2016-08-01
Seasonal infertility is often observed as anestrus and a lower conception rate resulting in a reduced farrowing rate (FR) during late summer and early autumn. This is often regarded as an effect of heat stress; however, we observed a reduction in the FR of sows even after correcting for ambient temperature in our data. Therefore, we added change in photoperiod in the analysis of FR considering its effect on sow fertility. Change in photoperiod was modeled using the cosine of the day of first insemination within a year. On an average, the FR decreased by 2% during early autumn with decreasing daily photoperiod compared with early summer with almost no change in daily photoperiod. It declined 0.2% per degree Celsius of ambient temperature above 19.2°C. This result is a step forward in disentangling the 2 environmental components responsible for seasonal infertility. Our next aim was to estimate the magnitude of genetic variation in FR in response to change in photoperiod and ambient temperature to explore opportunities for selecting pigs to have a constant FR throughout the year. We used reaction norm models to estimate additive genetic variation in response to change in photoperiod and ambient temperature. The results revealed a larger genetic variation at stressful environments when daily photoperiod decreased and ambient temperatures increased above 19.2°C compared with neutral environments. Genetic correlations between stressful environments and nonstressful environments ranged from 0.90 (±0.03) to 0.46 (±0.13) depending on the severity of the stress, indicating changes in expression of FR depending on the environment. The genetic correlation between responses of pigs to changes in photoperiod and to those in ambient temperature were positive, indicating that pigs tolerant to decreasing daily photoperiod are also tolerant to high ambient temperatures. Therefore, selection for tolerance to decreasing daily photoperiod should also increase tolerance to high ambient temperatures or vice versa.
A Strip Cell in Pyroelectric Devices
Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching
2016-01-01
The pyroelectric effect affords the opportunity to convert temporal temperature fluctuations into usable electrical energy in order to develop abundantly available waste heat. A strip pyroelectric cell, used to enhance temperature variation rates by lateral temperature gradients and to reduce cell capacitance to further promote the induced voltage, is described as a means of improving pyroelectric energy transformation. A precision dicing saw was successfully applied in fabricating the pyroelectric cell with a strip form. The strip pyroelectric cell with a high-narrow cross section is able to greatly absorb thermal energy via the side walls of the strips, thereby inducing lateral temperature gradients and increasing temperature variation rates in a thicker pyroelectric cell. Both simulation and experimentation show that the strip pyroelectric cell improves the electrical outputs of pyroelectric cells and enhances the efficiency of pyroelectric harvesters. The strip-type pyroelectric cell has a larger temperature variation when compared to the trenched electrode and the original type, by about 1.9 and 2.4 times, respectively. The measured electrical output of the strip type demonstrates a conspicuous increase in stored energy as compared to the trenched electrode and the original type, by of about 15.6 and 19.8 times, respectively. PMID:26999134
Alber, S A; Schaffner, D W
1992-01-01
A comparison was made between mathematical variations of the square root and Schoolfield models for predicting growth rate as a function of temperature. The statistical consequences of square root and natural logarithm transformations of growth rate use in several variations of the Schoolfield and square root models were examined. Growth rate variances of Yersinia enterocolitica in brain heart infusion broth increased as a function of temperature. The ability of the two data transformations to correct for the heterogeneity of variance was evaluated. A natural logarithm transformation of growth rate was more effective than a square root transformation at correcting for the heterogeneity of variance. The square root model was more accurate than the Schoolfield model when both models used natural logarithm transformation. PMID:1444367
Variations in atmospheric CO2 growth rates coupled with tropical temperature
Wang, Weile; Ciais, Philippe; Nemani, Ramakrishna R.; Canadell, Josep G.; Piao, Shilong; Sitch, Stephen; White, Michael A.; Hashimoto, Hirofumi; Milesi, Cristina; Myneni, Ranga B.
2013-01-01
Previous studies have highlighted the occurrence and intensity of El Niño–Southern Oscillation as important drivers of the interannual variability of the atmospheric CO2 growth rate, but the underlying biogeophysical mechanisms governing such connections remain unclear. Here we show a strong and persistent coupling (r2 ≈ 0.50) between interannual variations of the CO2 growth rate and tropical land–surface air temperature during 1959 to 2011, with a 1 °C tropical temperature anomaly leading to a 3.5 ± 0.6 Petagrams of carbon per year (PgC/y) CO2 growth-rate anomaly on average. Analysis of simulation results from Dynamic Global Vegetation Models suggests that this temperature–CO2 coupling is contributed mainly by the additive responses of heterotrophic respiration (Rh) and net primary production (NPP) to temperature variations in tropical ecosystems. However, we find a weaker and less consistent (r2 ≈ 0.25) interannual coupling between CO2 growth rate and tropical land precipitation than diagnosed from the Dynamic Global Vegetation Models, likely resulting from the subtractive responses of tropical Rh and NPP to precipitation anomalies that partly offset each other in the net ecosystem exchange (i.e., net ecosystem exchange ≈ Rh − NPP). Variations in other climate variables (e.g., large-scale cloudiness) and natural disturbances (e.g., volcanic eruptions) may induce transient reductions in the temperature–CO2 coupling, but the relationship is robust during the past 50 y and shows full recovery within a few years after any such major variability event. Therefore, it provides an important diagnostic tool for improved understanding of the contemporary and future global carbon cycle. PMID:23884654
NASA Astrophysics Data System (ADS)
Tiedje, H. F.; Brodie, D. E.
2000-05-01
A simple effusion cell evaporation source for thin film deposition and molecular-beam epitaxy is described. The source consists of a crucible with a thermocouple temperature sensor heated by a resistive crucible heater. Radiation heat transfer from the crucible to the thermocouple produces a consistent and reproducible thermocouple temperature for a given crucible temperature, without direct contact between the thermocouple and the crucible. The thermocouple temperature is somewhat less than the actual crucible temperature because of heat flow from the thermocouple junction along the thermocouple lead wires. In a typical case, the thermocouple temperature is 1007 °C while the crucible is at 1083 °C. The crucible temperature stability is estimated from the measured sensitivity of the evaporation rate of indium to temperature, and the observed variations in the evaporation rate for a fixed thermocouple temperature. The crucible temperature peak-to-peak variation over a one hour period is 1.2 °C. Machined molybdenum crucibles were used in the indium and copper sources for depositing CuInSe2 thin films for solar cells.
Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats.
O'Mara, M Teague; Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries; Pollock, Henry S; Dechmann, Dina K N
2017-12-01
Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats ( Molossus molossus ) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature . Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known.
Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats
Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries
2017-01-01
Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats (Molossus molossus) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature. Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known. PMID:29308259
NASA Astrophysics Data System (ADS)
Kattel, D. B.; Yao, T.; Ullah, K.; Islam, G. M. T.
2016-12-01
This study investigates the monthly characteristics of near-surface temperature lapse rates (TLRs) (i.e., governed by surface energy balance) based on the 176 stations 30-year (1980 to 2010) dataset covering a wide range of topography, climatic regime and relief (4801 m) in the HTP and its surroundings. Empirical analysis based on techniques in thermodynamics and hydrostatic system were used to obtain the results. Steepest TLRs in summer is due to strong dry convection and shallowest in winter is due to inversion effect is the general pattern of TLR that reported in previous studies in other mountainous region. Result of this study reports a contrast variation of TLRs from general patterns, and suggest distinct forcing mechanisms in an annual cycle. Shallower lapse rate occurs in summer throughout the regions is due to strong heat exchange process within the boundary layer, corresponding to the warm and moist atmospheric conditions. There is a systematic differences of TLRs in winter between the northern and southern slopes the Himalayas. Steeper TLRs in winter on the northern slopes is due to intense cooling at higher elevations, corresponding to the continental dry and cold air surges, and considerable snow-temperature feedback. The differences in elevation and topography, as well as the distinct variation of turbulent heating and cooling, explain the contrast TLRs (shallower) values in winter on the southern slopes. Distinct diurnal variations of TLRs and its magnitudes between alpine, dry, humid and coastal regions is due to the variations of adiabatic mixing during the daytime in the boundary layer i.e., associated with the variations in net radiations, elevation, surface roughness and sea surface temperature. The findings of this study is useful to determine the temperature range for accurately modelling in various field such as hydrology, glaciology, ecology, forestry, agriculture, as well as inevitable for climate downscaling in complex mountainous terrain.
NASA Astrophysics Data System (ADS)
Watanabe, Akira; Yamada, Hiromi; Kimura, Makoto
2001-09-01
Seasonal variations in CH4 emission rates from rice paddies have been reported to have one or more maxima during the middle and late periods of rice growth. The factor affecting an appearance of CH4 emission maxima was examined in three types of pot experiments. In the experiment 1, four rice cultivars with difference in length of the period from transplanting to heading were transplanted on the same days. For the experiment 2, a cultivar was transplanted 4 times with interval of two weeks. In these experiments, the heading differed about a month between the earliest and latest treatments, respectively. However, shifting growth stage of rice plants did not shift the CH4 emission maxima, and the CH4 emission maxima often matched the maxima of daily mean air temperature. The effect of variation in temperature on CH4 emission rate was further investigated in the experiment 3 by placing the rice-planted pots under regulated temperature. Besides the first emission peak of CH4 attributable to rice straw (RS) carbon, three emission peaks corresponding to the peaks of air temperature were detected for the RS-applied pots placed outdoors. These three peaks were not observed or much less conspicuous for the RS-applied pots in a phytotron at 30°C. Temporal decreases in CH4 emission were detected both for the pots placed in the phytotron and outdoors just after the topdressing of (NH4)2SO4, which was considered to be a major cause of irregular disagreement between the variations in CH4 emission rates and in air temperature during the middle period of rice growth.
Thermal modeling of the lithium/polymer battery
NASA Astrophysics Data System (ADS)
Pals, C. R.
1994-10-01
Research in the area of advanced batteries for electric-vehicle applications has increased steadily since the 1990 zero-emission-vehicle mandate of the California Air Resources Board. Due to their design flexibility and potentially high energy and power densities, lithium/polymer batteries are an emerging technology for electric-vehicle applications. Thermal modeling of lithium/polymer batteries is particularly important because the transport properties of the system depend exponentially on temperature. Two models have been presented for assessment of the thermal behavior of lithium/polymer batteries. The one-cell model predicts the cell potential, the concentration profiles, and the heat-generation rate during discharge. The cell-stack model predicts temperature profiles and heat transfer limitations of the battery. Due to the variation of ionic conductivity and salt diffusion coefficient with temperature, the performance of the lithium/polymer battery is greatly affected by temperature. Because of this variation, it is important to optimize the cell operating temperature and design a thermal management system for the battery. Since the thermal conductivity of the polymer electrolyte is very low, heat is not easily conducted in the direction perpendicular to cell layers. Temperature profiles in the cells are not as significant as expected because heat-generation rates in warmer areas of the cell stack are lower than heat-generation rates in cooler areas of the stack. This nonuniform heat-generation rate flattens the temperature profile. Temperature profiles as calculated by this model are not as steep as those calculated by previous models that assume a uniform heat-generation rate.
Seasonal variation of the underground cosmic muon flux observed at Daya Bay
NASA Astrophysics Data System (ADS)
An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Chan, Y. L.; Chang, J. F.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guo, L.; Guo, X. H.; Guo, Y. H.; Guo, Z.; Hackenburg, R. W.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Kang, L.; Kettell, S. H.; Khan, A.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, R. M.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Sebastiani, C.; Steiner, H.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Yang, Y. Z.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, C. C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhou, L.; Zhuang, H. L.; Zou, J. H.
2018-01-01
The Daya Bay Experiment consists of eight identically designed detectors located in three underground experimental halls named as EH1, EH2, EH3, with 250, 265 and 860 meters of water equivalent vertical overburden, respectively. Cosmic muon events have been recorded over a two-year period. The underground muon rate is observed to be positively correlated with the effective atmospheric temperature and to follow a seasonal modulation pattern. The correlation coefficient α, describing how a variation in the muon rate relates to a variation in the effective atmospheric temperature, is found to be αEH1 = 0.362±0.031, αEH2 = 0.433±0.038 and αEH3 = 0.641±0.057 for each experimental hall.
NASA Astrophysics Data System (ADS)
Tian, Qing; Prange, Matthias; Merkel, Ute
2016-05-01
The variation characteristics of precipitation and temperature in the three major Chinese river basins (Yellow River, Yangtze River and Pearl River) in the period of 1957-2013 were analyzed on an annual and seasonal basis, as well as their links to sea surface temperature (SST) variations in the tropical Pacific and Indian Ocean on both interannual and decadal time scales. Annual mean temperature of the three river basins increased significantly overall since 1957, with an average warming rate of about 0.19 °C/10a, but the warming was characterized by a staircase form with steps around 1987 and 1998. The significant increase of annual mean temperature could mostly be attributed to the remarkable warming trend in spring, autumn and winter. Warming rates in the northern basins were generally much higher than in the southern basins. However, both the annual precipitation and seasonal mean precipitation of the three river basins showed little change in the study area average, but distinct interannual variations since 1957 and clear regional differences. An overall warming-wetting tendency was found in the northwestern and southeastern river basins in 1957-2013, while the central regions tended to become warmer and drier. Results from a Maximum Covariance Analysis (MCA) showed that the interannual variations of seasonal mean precipitation and surface air temperature over the three river basins were both associated with the El Niño-Southern Oscillation (ENSO) since 1957. ENSO SST patterns affected precipitation and surface air temperature variability throughout the year, but with very different response patterns in the different seasons. For instance, temperature in most of the river basins was positively correlated with central-eastern equatorial Pacific SST in winter and spring, but negatively correlated in summer and autumn. On the decadal time scale, the seasonal mean precipitation and surface air temperature variations were strongly associated with the Pacific Quasi-Decadal Oscillation.
Valerie Sherron; Nathan E. Rank; Michael Cohen; Brian L. Anacker; Ross K. Meentemeyer
2008-01-01
Quantifying the growth rates of plant pathogens in the laboratory can be useful for predicting rates of disease spread and impact in nature. The purpose of this study was to examine phenotypic variation among isolates of Phytophthora ramorum collected from a foliar host plant species, Umbellularia californica (California bay laurel...
Barrera-Redondo, Josué; Ramírez-Barahona, Santiago; Eguiarte, Luis E
2018-05-01
Variation in rates of molecular evolution (heterotachy) is a common phenomenon among plants. Although multiple theoretical models have been proposed, fundamental questions remain regarding the combined effects of ecological and morphological traits on rate heterogeneity. Here, we used tree ferns to explore the correlation between rates of molecular evolution in chloroplast DNA sequences and several morphological and environmental factors within a Bayesian framework. We revealed direct and indirect effects of body size, biological productivity, and temperature on substitution rates, where smaller tree ferns living in warmer and less productive environments tend to have faster rates of molecular evolution. In addition, we found that variation in the ratio of nonsynonymous to synonymous substitution rates (dN/dS) in the chloroplast rbcL gene was significantly correlated with ecological and morphological variables. Heterotachy in tree ferns may be influenced by effective population size associated with variation in body size and productivity. Macroevolutionary hypotheses should go beyond explaining heterotachy in terms of mutation rates and instead, should integrate population-level factors to better understand the processes affecting the tempo of evolution at the molecular level. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Gayda, John; Telesman, Jack; Garg, Anita
2008-01-01
The effects of heat treatment and resulting microstructure variations on high temperature mechanical properties were assessed for a powder metallurgy disk superalloy LSHR. Blanks were consistently supersolvus solution heat treated and quenched at two cooling rates, than aged at varying temperatures and times. Tensile, creep, and dwell fatigue crack growth tests were then performed at 704 C. Gamma' precipitate microstructures were quantified. Relationships between heat treatment-microstructure, heat treatment-mechanical properties, and microstructure-mechanical properties were assessed.
NASA Astrophysics Data System (ADS)
Rodolfo-Metalpa, R.; Peirano, A.; Houlbrèque, F.; Abbate, M.; Ferrier-Pagès, C.
2008-03-01
Recent investigations have shown the temperate scleractinian coral Cladocora caespitosa to be a new potential climate archive for the Mediterranean Sea. Whilst earlier studies have demonstrated a seasonal variation in growth rates, they were unable to distinguish which environmental parameter (light, temperature, or food) was influencing growth. In this study, the effect of these three factors on the coral physiology and calcification rate was characterized to aid the correct interpretation of skeletal trace element variations. Two temperatures (13 and 23°C), irradiances (50 and 120 μmol m-2 s-1), and feeding regimes (unfed and fed with nauplii of Artemia salina) were tested under controlled laboratory conditions on the growth, zooxanthellae density, chlorophyll (chl) content, and asexual reproduction (budding) of C. caespitosa during a 7-week factorial experiment. Unlike irradiance, which had no effect, high temperature and food supply increased the growth rates of C. caespitosa. The effect of feeding was however higher for corals maintained at low temperature, suggesting that heterotrophy is especially important during the cold season, and that temperature is the predominant factor affecting the coral’s growth. At low temperature, fed samples had higher zooxanthellae density and chl content, possibly for maximizing photosynthetic efficiency. Sexual reproduction investment of C. caespitosa was higher during favourable conditions characterised by high temperatures and zooplankton availability.
Kohl, Kathryn P; Singh, Nadia D
2018-04-01
Phenotypic plasticity is pervasive in nature. One mechanism underlying the evolution and maintenance of such plasticity is environmental heterogeneity. Indeed, theory indicates that both spatial and temporal variation in the environment should favor the evolution of phenotypic plasticity under a variety of conditions. Cyclical environmental conditions have also been shown to yield evolved increases in recombination frequency. Here, we use a panel of replicated experimental evolution populations of D. melanogaster to test whether variable environments favor enhanced plasticity in recombination rate and/or increased recombination rate in response to temperature. In contrast to expectation, we find no evidence for either enhanced plasticity in recombination or increased rates of recombination in the variable environment lines. Our data confirm a role of temperature in mediating recombination fraction in D. melanogaster, and indicate that recombination is genetically and plastically depressed under lower temperatures. Our data further suggest that the genetic architectures underlying plastic recombination and population-level variation in recombination rate are likely to be distinct. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Plasticity of Meiotic Recombination Rates in Response to Temperature in Arabidopsis
Lloyd, Andrew; Morgan, Chris; H. Franklin, F. Chris
2018-01-01
Meiotic recombination shuffles genetic information from sexual species into gametes to create novel combinations in offspring. Thus, recombination is an important factor in inheritance, adaptation, and responses to selection. However, recombination is not a static parameter; meiotic recombination rate is sensitive to variation in the environment, especially temperature. That recombination rates change in response to both increases and decreases in temperature was reported in Drosophila a century ago, and since then in several other species. But it is still unclear what the underlying mechanism is, and whether low- and high-temperature effects are mechanistically equivalent. Here, we show that, as in Drosophila, both high and low temperatures increase meiotic crossovers in Arabidopsis thaliana. We show that, from a nadir at 18°, both lower and higher temperatures increase recombination through additional class I (interfering) crossovers. However, the increase in crossovers at high and low temperatures appears to be mechanistically at least somewhat distinct, as they differ in their association with the DNA repair protein MLH1. We also find that, in contrast to what has been reported in barley, synaptonemal complex length is negatively correlated with temperature; thus, an increase in chromosome axis length may account for increased crossovers at low temperature in A. thaliana, but cannot explain the increased crossovers observed at high temperature. The plasticity of recombination has important implications for evolution and breeding, and also for the interpretation of observations of recombination rate variation among natural populations. PMID:29496746
Vedder, Oscar; Kürten, Nathalie; Bouwhuis, Sandra
Embryonic development time is thought to impact life histories through trade-offs against life-history traits later in life, yet the inference is based on interspecific comparative analyses only. It is largely unclear whether intraspecific variation in embryonic development time that is not caused by environmental differences occurs, which would be required to detect life-history trade-offs. Here we performed a classical common-garden experiment by incubating fresh eggs of free-living common terns (Sterna hirundo) in a controlled incubation environment at two different temperatures. Hatching success was high but was slightly lower at the lower temperature. While correcting for effects of year, incubation temperature, and laying order, we found significant variation in the incubation time embryos required until hatching and in their heart rate. Embryonic heart rate was significantly positively correlated within clutches, and a similar tendency was found for incubation time, suggesting that intrinsic differences in embryonic development rate between offspring of different parents exist. Incubation time and embryonic heart rate were strongly correlated: embryos with faster heart rates required shorter incubation time. However, after correction for heart rate, embryos still required more time for development at the lower incubation temperature. This suggests that processes other than development require a greater share of resources in a suboptimal environment and that relative resource allocation to development is, therefore, environment dependent. We conclude that there is opportunity to detect intraspecific life-history trade-offs with embryonic development time and that the resolution of trade-offs may differ between embryonic environments.
Fine-scale climate change: modelling spatial variation in biologically meaningful rates of warming.
Maclean, Ilya M D; Suggitt, Andrew J; Wilson, Robert J; Duffy, James P; Bennie, Jonathan J
2017-01-01
The existence of fine-grain climate heterogeneity has prompted suggestions that species may be able to survive future climate change in pockets of suitable microclimate, termed 'microrefugia'. However, evidence for microrefugia is hindered by lack of understanding of how rates of warming vary across a landscape. Here, we present a model that is applied to provide fine-grained, multidecadal estimates of temperature change based on the underlying physical processes that influence microclimate. Weather station and remotely derived environmental data were used to construct physical variables that capture the effects of terrain, sea surface temperatures, altitude and surface albedo on local temperatures, which were then calibrated statistically to derive gridded estimates of temperature. We apply the model to the Lizard Peninsula, United Kingdom, to provide accurate (mean error = 1.21 °C; RMS error = 1.63 °C) hourly estimates of temperature at a resolution of 100 m for the period 1977-2014. We show that rates of warming vary across a landscape primarily due to long-term trends in weather conditions. Total warming varied from 0.87 to 1.16 °C, with the slowest rates of warming evident on north-east-facing slopes. This variation contributed to substantial spatial heterogeneity in trends in bioclimatic variables: for example, the change in the length of the frost-free season varied from +11 to -54 days and the increase in annual growing degree-days from 51 to 267 °C days. Spatial variation in warming was caused primarily by a decrease in daytime cloud cover with a resulting increase in received solar radiation, and secondarily by a decrease in the strength of westerly winds, which has amplified the effects on temperature of solar radiation on west-facing slopes. We emphasize the importance of multidecadal trends in weather conditions in determining spatial variation in rates of warming, suggesting that locations experiencing least warming may not remain consistent under future climate change. © 2016 John Wiley & Sons Ltd.
Relationships between weather and myocardial infarction: a biometeorological approach.
Morabito, Marco; Modesti, Pietro Amedeo; Cecchi, Lorenzo; Crisci, Alfonso; Orlandini, Simone; Maracchi, Giampiero; Gensini, Gian Franco
2005-12-07
To calculate threshold values of weather discomfort which increase the risk of hospital admissions for myocardial infarction in winter and summer. Notwithstanding heat waves were reported to acutely increase hospital admissions for cardiovascular diseases, large surveys failed to reveal any increase of event rates with increasing air temperature. However, the assessment of air temperature does not allow evaluation of the actual discomfort perception caused by the combination of different meteorological parameters. Hospital admissions for myocardial infarction for the period 1998-2002 in Florence, Italy, were considered. The percentages of variation of daily event rates according to daily mean air temperature variations were preliminary derived by using a regression analysis. An alternative biometeorological approach, considering the Apparent Temperature Index (ATI) in summer, and the New U.S./Canada Wind Chill Temperature Index (NWCTI) in winter, which combine air temperature, relative humidity and wind velocity, was then used. The traditional approach showed that daily event rates significantly increased with daily mean air temperature decrease (10 degrees C decrease were associated with 19% increase in daily event rates for people older than 65 years), but failed to show any negative effect caused by hot climatic conditions. Conversely the biometeorological approach allowed to show that at least 9 h per day of severe discomfort caused by hot conditions significantly increased the rate of admission (P<0.01). This approach might be useful for the development of an operative weather watch/warning system for population and for hospital professional care.
Cannibalism by damselflies increases with rising temperature
Kirk, Devin; Shea, Dylan
2017-01-01
Trophic interactions are likely to change under climate warming. These interactions can be altered directly by changing consumption rates, or indirectly by altering growth rates and size asymmetries among individuals that in turn affect feeding. Understanding these processes is particularly important for intraspecific interactions, as direct and indirect changes may exacerbate antagonistic interactions. We examined the effect of temperature on activity rate, growth and intraspecific size asymmetries, and how these temperature dependencies affected cannibalism in Lestes congener, a damselfly with marked intraspecific variation in size. Temperature increased activity rates and exacerbated differences in body size by increasing growth rates. Increased activity and changes in body size interacted to increase cannibalism at higher temperatures. We argue that our results are likely to be general to species with life-history stages that vary in their temperature dependencies, and that the effects of climate change on communities may depend on the temperature dependencies of intraspecific interactions. PMID:28515331
Cannibalism by damselflies increases with rising temperature.
Start, Denon; Kirk, Devin; Shea, Dylan; Gilbert, Benjamin
2017-05-01
Trophic interactions are likely to change under climate warming. These interactions can be altered directly by changing consumption rates, or indirectly by altering growth rates and size asymmetries among individuals that in turn affect feeding. Understanding these processes is particularly important for intraspecific interactions, as direct and indirect changes may exacerbate antagonistic interactions. We examined the effect of temperature on activity rate, growth and intraspecific size asymmetries, and how these temperature dependencies affected cannibalism in Lestes congener , a damselfly with marked intraspecific variation in size. Temperature increased activity rates and exacerbated differences in body size by increasing growth rates. Increased activity and changes in body size interacted to increase cannibalism at higher temperatures. We argue that our results are likely to be general to species with life-history stages that vary in their temperature dependencies, and that the effects of climate change on communities may depend on the temperature dependencies of intraspecific interactions. © 2017 The Author(s).
Solid-propellant rocket motor ballistic performance variation analyses
NASA Technical Reports Server (NTRS)
Sforzini, R. H.; Foster, W. A., Jr.
1975-01-01
Results are presented of research aimed at improving the assessment of off-nominal internal ballistic performance including tailoff and thrust imbalance of two large solid-rocket motors (SRMs) firing in parallel. Previous analyses using the Monte Carlo technique were refined to permit evaluation of the effects of radial and circumferential propellant temperature gradients. Sample evaluations of the effect of the temperature gradients are presented. A separate theoretical investigation of the effect of strain rate on the burning rate of propellant indicates that the thermoelastic coupling may cause substantial variations in burning rate during highly transient operating conditions. The Monte Carlo approach was also modified to permit the effects on performance of variation in the characteristics between lots of propellants and other materials to be evaluated. This permits the variabilities for the total SRM population to be determined. A sample case shows, however, that the effect of these between-lot variations on thrust imbalances within pairs of SRMs is minor in compariosn to the effect of the within-lot variations. The revised Monte Carlo and design analysis computer programs along with instructions including format requirements for preparation of input data and illustrative examples are presented.
Rate of egg maturation in marine turtles exhibits 'universal temperature dependence'.
Weber, Sam B; Blount, Jonathan D; Godley, Brendan J; Witt, Matthew J; Broderick, Annette C
2011-09-01
1. The metabolic theory of ecology (MTE) predicts that, after correcting for body mass variation among organisms, the rates of most biological processes will vary as a universal function of temperature. However, empirical support for 'universal temperature dependence' (UTD) is currently equivocal and based on studies of a limited number of traits. 2. In many ectothermic animals, the rate at which females produce mature eggs is temperature dependent and may be an important factor in determining the costs of reproduction. 3. We tested whether the rate of egg maturation in marine turtles varies with environmental temperature as predicted by MTE, using the time separating successive clutches of individual females to estimate the rate at which eggs are formed. We also assessed the phenotypic contribution to this rate, by using radio telemetry to make repeated measurements of interclutch intervals for individual green turtles (Chelonia mydas). 4. Rates of egg maturation increased with seasonally increasing water temperatures in radio-tracked green turtles, but were not repeatable for individual females, and did not vary according to maternal body size or reproductive investment (number and size of eggs produced). 5. Using a collated data set from several different populations and species of marine turtles, we then show that a single relationship with water temperature explains most of the variation in egg maturation rates, with a slope that is statistically indistinguishable from the UTD predicted by MTE. However, several alternative statistical models also described the relationship between temperature and egg maturation rates equally parsimoniously. 6. Our results offer novel support for the MTE's predicted UTD of biological rates, although the underlying mechanisms require further study. The strong temperature dependence of egg maturation combined with the apparently weak phenotypic contribution to this rate has interesting behavioural implications in ectothermic animals. We suggest that maternal thermoregulatory behaviour in marine turtles, and many other reptiles, is consistent with a strategy of adaptively increasing body temperatures to accelerate egg maturation. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics
NASA Astrophysics Data System (ADS)
Aadhavan, R.; Suresh Babu, K.
2017-07-01
Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50-300 °C) and deposition rate (0.1-50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7-18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10-3 kg2 m-4 s-1 while ceria coating lowered the kinetics by 3-4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.
Regulation of heart rate and rumen temperature in red deer: effects of season and food intake
Turbill, Christopher; Ruf, Thomas; Mang, Thomas; Arnold, Walter
2012-01-01
SUMMARY Red deer, Cervus elaphus, like other temperate-zone animals, show a large seasonal fluctuation in energy intake and expenditure. Many seasonal phenotypic adjustments are coordinated by endogenous signals entrained to the photoperiod. The cues determining variation in the resting metabolism of ungulates remain equivocal, however, largely because of the confounding effects of food intake and thus the heat increment of feeding. To distinguish endogenous seasonal and environmental effects on metabolism, we subjected 15 female red deer to two feeding treatments, 80% food restriction and low/high protein content, over two winter seasons in a cross-over design experiment. We used rumen-located transmitters to measure heart rate and rumen temperature, which provided indices of metabolism and core body temperature, respectively. Our mixed model (R2=0.85) indicated a residual seasonal effect on mean daily heart rate that was unexplained by the pellet food treatments, activity, body mass or air temperature. In addition to an apparently endogenous down-regulation of heart rate in winter, the deer further reduced heart rate over about 8 days in response to food restriction. We found a strong correlation between rumen temperature and seasonal or periodic variation in heart rate. An effect of lowered rumen (and hence core body) temperature was enhanced during winter, perhaps owing to peripheral cooling, which is known to accompany bouts of hypometabolism. Our experimental results therefore support the hypothesis that a reduction in body temperature is a physiological mechanism employed even by large mammals, like red deer, to reduce their energy expenditure during periods of negative energy balance. PMID:21346124
Correlation between the Arrhenius crossover and the glass forming ability in metallic glasses.
Wen, Tongqi; Yao, Wenjing; Wang, Nan
2017-10-13
The distinctive characteristic of the metallic glass-forming system is that the variation in viscosity with temperature obeys Vogel-Fulcher-Tammann (VFT) relationship in the undercooled state and Arrhenius relationship in the high temperature region. A dimensionless index has thus been proposed based on the Arrhenius-VFT crossover and the classical nucleation rate and growth rate theory to evaluate the glass-forming ability (GFA). The indicator G(a) is expressed with the combination of T g , the glass transition temperature, T x , the onset crystallization temperature, T l , the liquidus temperature, T 0 , the VFT temperature, and a a constant that could be determined according to the best correlation between G(a) and the critical cooling rate (R c ). Compared with other GFA indexes, G(a) shows the best fit with R c , with the square of the correlation coefficient (R 2 ) being 0.9238 when a = 0.15 for the 23 various alloy systems concerned about. Our results indicate the crossover in the viscosity variation has key effect on GFA and one can use the index G(a) to predict R c and GFA for different alloys effectively.
Lee D. Hansen; Bruce N. Smith; Richard S. Criddle; J. N. Church
2001-01-01
The Arrhenius activation energies, and therefore temperature coefficients, for rates of catabolic production of ATP and for anabolic use of ATP differ. Because the intracellular concentration of ATP and the phosphorylation potential must be controlled within a narrow range for cell survival, a mechanism must exist to balance these rates during temperature variation in...
Terblanche, John S; Clusella-Trullas, Susana; Chown, Steven L
2010-09-01
Investigation of gas exchange patterns and modulation of metabolism provide insight into metabolic control systems and evolution in diverse terrestrial environments. Variation in metabolic rate in response to environmental conditions has been explained largely in the context of two contrasting hypotheses, namely metabolic depression in response to stressful or resource-(e.g. water) limited conditions, or elevation of metabolism at low temperatures to sustain life in extreme conditions. To deconstruct the basis for metabolic rate changes in response to temperature variation, here we undertake a full factorial study investigating the longer- and short-term effects of temperature exposure on gas exchange patterns. We examined responses of traits of gas exchange [standard metabolic rate (SMR); discontinuous gas exchange (DGE) cycle frequency; cuticular, respiratory and total water loss rate (WLR)] to elucidate the magnitude and form of plastic responses in the dung beetle, Scarabaeus spretus. Results showed that short- and longer-term temperature variation generally have significant effects on SMR and WLR. Overall, acclimation to increased temperature led to a decline in SMR (from 0.071+/-0.004 ml CO(2) h(-1) in 15 degrees C-acclimated beetles to 0.039+/-0.004 ml CO(2) h(-1) in 25 degrees C-acclimated beetles measured at 20 degrees C) modulated by reduced DGE frequency (15 degrees C acclimation: 0.554+/-0.027 mHz, 20 degrees C acclimation: 0.257+/-0.030 mHz, 25 degrees C acclimation: 0.208+/-0.027 mHz recorded at 20 degrees C), reduced cuticular WLRs (from 1.058+/-0.537 mg h(-1) in 15 degrees C-acclimated beetles to 0.900+/-0.400 mg h(-1) in 25 degrees C-acclimated beetles measured at 20 degrees C) and reduced total WLR (from 4.2+/-0.5 mg h(-1) in 15 degrees C-acclimated beetles to 3.1+/-0.5 mg h(-1) in 25 degrees C-acclimated beetles measured at 25 degrees C). Respiratory WLR was reduced from 2.25+/-0.40 mg h(-1) in 15 degrees C-acclimated beetles to 1.60+/-0.40 mg h(-1) in 25 degrees C-acclimated beetles measured at 25 degrees C, suggesting conservation of water during DGE bursts. Overall, this suggests water conservation is a priority for S. spretus exposed to longer-term temperature variation, rather than elevation of SMR in response to low temperature acclimation, as might be expected from a beetle living in a relatively warm, low rainfall summer region. These results are significant for understanding the evolution of gas exchange patterns and trade-offs between metabolic rate and water balance in insects and other terrestrial arthropods.
Thermal biology of flight in a butterfly: genotype, flight metabolism, and environmental conditions.
Mattila, Anniina L K
2015-12-01
Knowledge of the effects of thermal conditions on animal movement and dispersal is necessary for a mechanistic understanding of the consequences of climate change and habitat fragmentation. In particular, the flight of ectothermic insects such as small butterflies is greatly influenced by ambient temperature. Here, variation in body temperature during flight is investigated in an ecological model species, the Glanville fritillary butterfly (Melitaea cinxia). Attention is paid on the effects of flight metabolism, genotypes at candidate loci, and environmental conditions. Measurements were made under a natural range of conditions using infrared thermal imaging. Heating of flight muscles by flight metabolism has been presumed to be negligible in small butterflies. However, the results demonstrate that Glanville fritillary males with high flight metabolic rate maintain elevated body temperature better during flight than males with a low rate of flight metabolism. This effect is likely to have a significant influence on the dispersal performance and fitness of butterflies and demonstrates the possible importance of intraspecific physiological variation on dispersal in other similar ectothermic insects. The results also suggest that individuals having an advantage in low ambient temperatures can be susceptible to overheating at high temperatures. Further, tolerance of high temperatures may be important for flight performance, as indicated by an association of heat-shock protein (Hsp70) genotype with flight metabolic rate and body temperature at takeoff. The dynamics of body temperature at flight and factors affecting it also differed significantly between female and male butterflies, indicating that thermal dynamics are governed by different mechanisms in the two sexes. This study contributes to knowledge about factors affecting intraspecific variation in dispersal-related thermal performance in butterflies and other insects. Such information is needed for predictive models of the evolution of dispersal in the face of habitat fragmentation and climate change.
Diurnal Temperature Variations Affect Development of a Herbivorous Arthropod Pest and its Predators
Vangansbeke, Dominiek; Audenaert, Joachim; Nguyen, Duc Tung; Verhoeven, Ruth; Gobin, Bruno; Tirry, Luc; De Clercq, Patrick
2015-01-01
The impact of daily temperature variations on arthropod life history remains woefully understudied compared to the large body of research that has been carried out on the effects of constant temperatures. However, diurnal varying temperature regimes more commonly represent the environment in which most organisms thrive. Such varying temperature regimes have been demonstrated to substantially affect development and reproduction of ectothermic organisms, generally in accordance with Jensen’s inequality. In the present study we evaluated the impact of temperature alternations at 4 amplitudes (DTR0, +5, +10 and +15°C) on the developmental rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae) and their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). We have modelled their developmental rates as a function of temperature using both linear and nonlinear models. Diurnally alternating temperatures resulted in a faster development in the lower temperature range as compared to their corresponding mean constant temperatures, whereas the opposite was observed in the higher temperature range. Our results indicate that Jensen’s inequality does not suffice to fully explain the differences in developmental rates at constant and alternating temperatures, suggesting additional physiological responses play a role. It is concluded that diurnal temperature range should not be ignored and should be incorporated in predictive models on the phenology of arthropod pests and their natural enemies and their performance in biological control programmes. PMID:25874697
NASA Astrophysics Data System (ADS)
Bougher, Stephen; Huestis, David
The responses of the Martian dayside thermosphere to solar flux variations (on both solar rotation and solar cycle timescales) have been the subject of considerable debate and study for many years. Available datasets include: Mariner 6,7,9 (UVS dayglow), Viking Lander 1-2 (UAMS densities upon descent), several aerobraking campaigns (MGS, Odyssey, MRO densities), and Mars Express (SPICAM dayglow). Radio Science derived plasma scale heights near the ionospheric peak can be used to derive neutral temperatures in this region (only); such values are not applicable to exobase heights (e.g. Forbes et al. 2008; Bougher et al. 2009). Recently, densities and temperatures derived from precise orbit determination of the MGS spacecraft (1999-2005) have been used to establish the responses of Mars' exosphere to long-term solar flux variations (Forbes et al., 2008). From this multi-year dataset, dayside exospheric temperatures weighted toward moderate southern latitudes are found to change by about 120 K over the solar cycle. However, the applicability of these drag derived exospheric temperatures to near solar minimum conditions is suspect (e.g Bruinsma and Lemoine, 2002). Finally, re-evaluation of production mechanisms for UV dayglow emissions implies revised values for exospheric temperatures (e.g. Simon et al., 2009; Huestis et al. 2010). Several processes are known to influence Mars' exospheric temperatures and their variability (Bougher et al., 1999; 2000; 2009). Solar EUV heating and its variations with solar fluxes received at Mars, CO2 15-micron cooling, molecular thermal conduction, and hydrodynamic heating/cooling associated with global dynamics all contribute to regulate dayside thermo-spheric temperatures. Poorly measured dayside atomic oxygen abundances render CO2 cooling rates uncertain at the present time. However, global thermospheric circulation models can be exercised for conditions spanning the solar cycle and Mars seasons to address the relative roles of these processes in driving observed variations in dayside exospheric temperatures. Mars Thermospheric General Circulation Model (MTGCM) simulations and resulting exo-spheric temperatures will be presented and compared with assimilated temperatures collected from all these available measurements over the solar cycle. It is important to match measure-ments at dayside local times and latitudes for specific seasons with corresponding MTGCM simulated outputs. Calculated local heat budgets and their variations illustrate the changes required to reproduce solar cycle variations in exospheric temperatures. The ability to success-fully predict solar cycle responses of the Martian upper atmosphere is important for simulations of present-day Mars volatile escape rates.
Dikmen, S; Wang, X-z; Ortega, M S; Cole, J B; Null, D J; Hansen, P J
2015-12-01
Dairy cows with increased rectal temperature experience lower milk yield and fertility. Rectal temperature during heat stress is heritable, so genetic selection for body temperature regulation could reduce effects of heat stress on production. One aim of the study was to validate the relationship between genotype and heat tolerance for single nucleotide polymorphisms (SNPs) previously associated with resistance to heat stress. A second aim was to identify new SNPs associated with heat stress resistance. Thermotolerance was assessed in lactating Holsteins during the summer by measuring rectal temperature (a direct measurement of body temperature regulation; n = 435), respiration rate (an indirect measurement of body temperature regulation, n = 450) and sweating rate (the major evaporative cooling mechanism in cattle, n = 455). The association between genotype and thermotolerance was evaluated for 19 SNPs previously associated with rectal temperature from a genomewide analysis study (GWAS), four SNPs previously associated with change in milk yield during heat stress from GWAS, 2 candidate gene SNPs previously associated with rectal temperature and respiration rate during heat stress (ATPA1A and HSP70A) and 66 SNPs in genes previously shown to be associated with reproduction, production or health traits in Holsteins. For SNPs previously associated with heat tolerance, regions of BTA4, BTA6 and BTA24 were associated with rectal temperature; regions of BTA6 and BTA24 were associated with respiration rate; and regions of BTA5, BTA26 and BTA29 were associated with sweating rate. New SNPs were identified for rectal temperature (n = 12), respiration rate (n = 8) and sweating rate (n = 3) from among those previously associated with production, reproduction or health traits. The SNP that explained the most variation were PGR and ASL for rectal temperature, ACAT2 and HSD17B7 for respiration rate, and ARL6IP1 and SERPINE2 for sweating rate. ARL6IP1 was associated with all three thermotolerance traits. In conclusion, specific genetic markers responsible for genetic variation in thermoregulation during heat stress in Holsteins were identified. These markers may prove useful in genetic selection for heat tolerance in Holstein cattle. © 2015 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G.
Here, pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice–Ramsperger–Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition statemore » theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional–potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.« less
Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G.
2016-02-03
Here, pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice–Ramsperger–Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition statemore » theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional–potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.« less
Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G
2016-03-02
Pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice-Ramsperger-Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition state theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional-potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.
Climate impact on suicide rates in Finland from 1971 to 2003
NASA Astrophysics Data System (ADS)
Ruuhela, Reija; Hiltunen, Laura; Venäläinen, Ari; Pirinen, Pentti; Partonen, Timo
2009-03-01
Seasonal patterns of death from suicide are well-documented and have been attributed to climatic factors such as solar radiation and ambient temperature. However, studies on the impact of weather and climate on suicide are not consistent, and conflicting data have been reported. In this study, we performed a correlation analysis between nationwide suicide rates and weather variables in Finland during the period 1971-2003. The weather parameters studied were global solar radiation, temperature and precipitation, and a range of time spans from 1 month to 1 year were used in order to elucidate the dose-response relationship, if any, between weather variables and suicide. Single and multiple linear regression models show weak associations using 1-month and 3-month time spans, but robust associations using a 12-month time span. Cumulative global solar radiation had the best explanatory power, while average temperature and cumulative precipitation had only a minor impact on suicide rates. Our results demonstrate that winters with low global radiation may increase the risk of suicide. The best correlation found was for the 5-month period from November to March; the inter-annual variability in the cumulative global radiation for that period explained 40 % of the variation in the male suicide rate and 14 % of the variation in the female suicide rate, both at a statistically significant level. Long-term variations in global radiation may also explain, in part, the observed increasing trend in the suicide rate until 1990 and the decreasing trend since then in Finland.
Phenophysiological variation of a bee that regulates hive humidity, but not hive temperature.
Ayton, Sasha; Tomlinson, Sean; Phillips, Ryan D; Dixon, Kingsley W; Withers, Philip C
2016-05-15
Seasonal acclimatisation of thermal tolerance, evaporative water loss and metabolic rate, along with regulation of the hive environment, are key ways whereby hive-based social insects mediate climatic challenges throughout the year, but the relative importance of these traits remains poorly understood. Here, we examined seasonal variation in metabolic rate and evaporative water loss of worker bees, and seasonal variation of hive temperature and relative humidity (RH), for the stingless bee Austroplebeia essingtoni (Apidae: Meliponini) in arid tropical Australia. Both water loss and metabolic rate were lower in the cooler, dry winter than in the hot, wet summer at most ambient temperatures between 20°C and 45°C. Contrary to expectation, thermal tolerance thresholds were higher in the winter than in the summer. Hives were cooler in the cooler, dry winter than in the hot, wet summer, linked to an apparent lack of hive thermoregulation. The RH of hives was regulated at approximately 65% in both seasons, which is higher than unoccupied control hives in the dry season, but less than unoccupied control hives in the wet season. Although adaptations to promote water balance appear more important for survival of A. essingtoni than traits related to temperature regulation, their capacity for water conservation is coincident with increased thermal tolerance. For these small, eusocial stingless bees in the arid tropics, where air temperatures are relatively high and stable compared with temperate areas, regulation of hive humidity appears to be of more importance than temperature for maintaining hive health. © 2016. Published by The Company of Biologists Ltd.
Process for hydrocracking carbonaceous material to provide fuels or chemical feed stock
Duncan, Dennis A.
1980-01-01
A process is disclosed for hydrocracking coal or other carbonaceous material to produce various aromatic hydrocarbons including benzene, toluene, xylene, ethylbenzene, phenol and cresols in variable relative concentrations while maintaining a near constant maximum temperature. Variations in relative aromatic concentrations are achieved by changing the kinetic severity of the hydrocracking reaction by altering the temperature profile up to and quenching from the final hydrocracking temperature. The relative concentration of benzene to the alkyl and hydroxyl aromatics is increased by imposing increased kinetic severity above that corresponding to constant heating rate followed by immediate quenching at about the same rate to below the temperature at which dehydroxylation and dealkylation reactions appreciably occur. Similarly phenols, cresols and xylenes are produced in enhanced concentrations by adjusting the temperature profile to provide a reduced kinetic severity relative to that employed when high benzene concentrations are desired. These variations in concentrations can be used to produce desired materials for chemical feed stocks or for fuels.
Thermal activation in Au-based bulk metallic glass characterized by high-temperature nanoindentation
NASA Astrophysics Data System (ADS)
Yang, Bing; Wadsworth, Jeffrey; Nieh, Tai-Gang
2007-02-01
High-temperature nanoindentation experiments have been conducted on a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass from 30to140°C, utilizing loading rates ranging from 0.1to100mN/s. Generally, the hardness decreased with increasing temperature. An inhomogeneous-to-homogeneous flow transition was clearly observed when the test temperature approached the glass transition temperature. Analyses of the pop-in pattern and hardness variation showed that the inhomogeneous-to-homogeneous transition temperature was loading-rate dependent. Using a free-volume model, the authors deduced the size of the basic flow units and the activation energy for the homogeneous flow. In addition, the strain rate dependency of the transition temperature was predicted.
Microstructure characterization of 316L deformed at high strain rates using EBSD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yvell, K., E-mail: kyv@du.se
2016-12-15
Specimens from split Hopkinson pressure bar experiments, at strain rates between ~ 1000–9000 s{sup −1} at room temperature and 500 °C, have been studied using electron backscatter diffraction. No significant differences in the microstructures were observed at different strain rates, but were observed for different strains and temperatures. Size distribution for subgrains with boundary misorientations > 2° can be described as a bimodal lognormal area distribution. The distributions were found to change due to deformation. Part of the distribution describing the large subgrains decreased while the distribution for the small subgrains increased. This is in accordance with deformation being heterogeneousmore » and successively spreading into the undeformed part of individual grains. The variation of the average size for the small subgrain distribution varies with strain but not with strain rate in the tested interval. The mean free distance for dislocation slip, interpreted here as the average size of the distribution of small subgrains, displays a variation with plastic strain which is in accordance with the different stages in the stress-strain curves. The rate of deformation hardening in the linear hardening range is accurately calculated using the variation of the small subgrain size with strain. - Highlights: •Only changes in strain, not strain rate, gave differences in the microstructure. •A bimodal lognormal size distribution was found to describe the size distribution. •Variation of the subgrain fraction sizes agrees with models for heterogeneous slip. •Variation of subgrain size with strain describes part of the stress strain curve.« less
Thermophysiology of Tyrannosaurus rex: Evidence from Oxygen Isotopes.
Barrick, R E; Showers, W J
1994-07-08
The oxygen isotopic composition of vertebrate bone phosphate (delta(p)) is related to ingested water and to the body temperature at which the bone forms. The delta(p) is in equilibrium with the individual's body water, which is at a physiological steady state throughout the body. Therefore, intrabone temperature variation and the mean interbone temperature differences of well-preserved fossil vertebrates can be determined from the deltap variation. Values of delta(p) from a well-preserved Tyrannosaurus rex suggest that this species maintained homeothermy with less than 4 degrees C of variability in body temperature. Maintenance of homeothermy implies a relatively high metabolic rate that is similar to that of endotherms.
Zhou, Wei-guan; Lv, Wei-ping; Qiu, Yi; Zhou, Wei-hai
2014-12-01
To investigate the oxygen consumption, oxygen consumption rate and asphyxiation point of Poecilobdella ma- nillensis. Oxygen consumption, oxygen consumption rate and asphyxiation point on juvenile (the average weight of 0. 29 g) and adult leech (the average weight of 2.89 g) of Poecilobdella manillensis were measured at water temperature conditions of 20. 2 and 30. 4 °C respectively using an airtight container with flowing water. Oxygen consumptions of Poecilobdella manillensis were increased with the increase of temperature and body weight respectively; However, their oxygen consumption rates circadian variation and the aver- age oxygen consumption rate at daytime were higher than those at night. In addition, their asphyxiation point was declined accordingly with the increase of temperature and body weight respectively. Oxygen consumption and oxygen consumption rate of Poeci- lobdella manillensis were closely associated with their activities and influenced by circadian variation, the preferable feeding time were the period of 6:00-10:00 in the morning or 17:00-19:00 in the afternoon; Meanwhile, Poecilobdella manillensis had a higher ability of the hypoxia tolerance for high density or factory farming, the long time living preservation and the long distance transport.
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Jun, Li; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Observed seasonal and interannual variations in the surface elevation over the summit of the Greenland ice sheet are modeled using a new temperature-dependent formulation of firn-densification and observed accumulation variations. The observed elevation variations are derived from ERS (European Remote Sensing)-1 and ERS-2 radar altimeter data for the period between April 1992 and April 1999. A multivariate linear/sine function is fitted to an elevation time series constructed from elevation differences measured by radar altimetry at orbital crossovers. The amplitude of the seasonal elevation cycle is 0.25 m peak-to-peak, with a maximum in winter and a minimum in summer. Inter-annually, the elevation decreases to a minimum in 1995, followed by an increase to 1999, with an overall average increase of 4.2 cm a(exp -1) for 1992 to 1999. Our densification formulation uses an initial field-density profile, the AWS (automatic weather station) surface temperature record, and a temperature-dependent constitutive relation for the densification that is based on laboratory measurements of crystal growth rates. The rate constant and the activation energy commonly used in the Arrhenius-type constitutive relation for firn densification are also temperature dependent, giving a stronger temperature and seasonal amplitudes about 10 times greater than previous densification formulations. Summer temperatures are most important, because of the strong non-linear dependence on temperature. Much of firn densification and consequent surface lowering occurs within about three months of the summer season, followed by a surface build-up from snow accumulation until spring. Modeled interannual changes of the surface elevation, using the AWS measurements of surface temperature and accumulation and results of atmospheric modeling of precipitation variations, are in good agreement with the altimeter observations. In the model, the surface elevation decreases about 20 cm over the seven years due to more compaction driven by increasing summer temperatures. The minimum elevation in 1995 is driven mainly by a temporary accumulation decrease and secondarily by warmer temperatures. However, the overall elevation increase over the seven years is dominated by the accumulation increase in the later years.
Counter-Gradient Variation in Respiratory Performance of Coral Reef Fishes at Elevated Temperatures
Gardiner, Naomi M.; Munday, Philip L.; Nilsson, Göran E.
2010-01-01
The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR), Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae). High-latitude populations (Heron Island, southern GBR) performed significantly better than low-latitude populations (Lizard Island, northern GBR) at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations. PMID:20949020
Fission-gas-release rates from irradiated uranium nitride specimens
NASA Technical Reports Server (NTRS)
Weinstein, M. B.; Kirchgessner, T. A.; Tambling, T. N.
1973-01-01
Fission-gas-release rates from two 93 percent dense UN specimens were measured using a sweep gas facility. Specimen burnup rates averaged .0045 and .0032 percent/hr, and the specimen temperatures ranged from 425 to 1323 K and from 552 to 1502 K, respectively. Burnups up to 7.8 percent were achieved. Fission-gas-release rates first decreased then increased with burnup. Extensive interconnected intergranular porosity formed in the specimen operated at over 1500 K. Release rate variation with both burnup and temperature agreed with previous irradiation test results.
Hunter, J P; Saratzis, A; Froggatt, P; Harmston, C
2012-09-01
Guaiac-based faecal occult blood tests (gFOBTs) are used in the colorectal cancer screening programme. Recent data suggested that the immunological faecal occult blood test illustrated a variation in positivity according to season and ambient temperature. Our aim was to assess the effect of season and ambient temperature on the positivity rates of the gFOBT during pilot screening for colorectal cancer. Data from the first year of round 1 of the pilot screening programme in Coventry and Warwickshire were analysed. Patients with positive and negative gFOBT samples were included. Patients with spoilt samples or incomplete data were excluded. Of the total of 59513 patients, 30311 were men and 29202 women. Mean age was 56 years. Daily temperature data were provided by the meteorological office. Median exposure of the gFOBT test card was 6 days (range 1-17). Median daily maximum temperature was 14°C. Spring and summer illustrated significantly decreased positivity rates compared with autumn and winter (Pearson's chi-squared test, P<0.001). Mean daily maximum temperature for the test card exposure showed no significant difference in positivity rates (P=0.53). Subgroup analysis revealed a significant reduction in positive samples in the >25°C subgroup (P=0.045). There is a seasonal variation in positivity rates of gFOBTs with increased positivity in spring and summer months. There is no difference in positivity rates in relation to ambient temperature except in subgroup analysis where there is a significant reduction in positivity rates above 25°C. © 2011 The Authors. Colorectal Disease © 2011 The Association of Coloproctology of Great Britain and Ireland.
"Magnetic" termite mound surfaces are oriented to suit wind and shade conditions.
Jacklyn, Peter M
1992-09-01
The termites Amitermes meridionalis and A. laurensis construct remarkable meridional or "magnetic" mounds in northern Australia. These mounds vary geographically in mean orientation in a manner that suggests such variation is an adaptive response to local environmental conditions. Theoretical modelling of solar irradiance and mound rotation experiments show that maintenance of an eastern face temperature plateau during the dry season is the most likely physical basis for the mound orientation response. Subsequent heat transfer analysis shows that habitat wind speed and shading conditions also affect face temperature gradients such as the rate of eastern face temperature change. It is then demonstrated that the geographic variation in mean mound orientation follows the geographic variation in long-term wind speed and shading conditions across northern Australia such that an eastern face temperature plateau is maintained in all locations.
NASA Astrophysics Data System (ADS)
Krikkis, Rizos N.
2018-06-01
A non-equilibrium thermodynamic and heat transfer model for LNG ageing during ship transportation has been developed based on experimental data. The measurements reveal that the liquid temperature remains nearly constant, whereas significant variations are observed for the gas temperature. The measurement of the liquid temperature along the tank height suggests that a small scale rollover phenomenon may have taken place in one cargo tank. A time dependent heat transfer mechanism has been considered by taking into account the temperature variations of the atmospheric air, the seawater and the cofferdam environment which affect the cargo tanks. An important finding is that the evaporation rate (boil-of rate) is forced to follow the fuel flow consumption profile imposed by the vessel's propulsion system in order to match the tank pressure and volume constraints. The theoretical model is favorably compared to a comprehensive set on per hour basis of on board measurements of cargo temperatures and pressures, recorded during laden voyages, providing a better understanding of the underlying processes involved. The dominant role of the fuel consumption on the evaporation rate may be utilized in order to devise an efficient cargo management strategy during the laden voyage.
Evidence that higher CO2 increases tree growth sensitivity to ...
Aim: To test the growth-sensitivity to temperature under different ambient CO2 concentrations, we determined paleo tree growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatial variation in temperature across the modern species distributional range. During the deglacial period, [CO2] averaged about 230 ppm, whereas modern [CO2] averaged about 330 ppm.Location: Paleo oaks were sampled from Northern Missouri, USA. The paleo temperature reconstruction was from a lake in Northern Illinois, USA. Data used to quantify the growth-sensitivity to temperature for modern oaks were collected across the Great Plains, Midwest and Upper Great Lakes regions.Methods: Growth data were from 53 paleo bur oak log cross-sections collected in Missouri that were preserved in river and stream sediments. These oaks were radiocarbon-dated to between 10.5 and 13.3 cal kyr BP, which spans rapid warming during the last deglaciation. Growth data from modern bur oaks were obtained from increment core collections paired with USDA Forest Service Forest Inventory and Analysis data. Paleotemperatures were obtained from a high-resolution pollen-based reconstruction and modern temperatures were obtained from gridded meteorological data. Results: Growth-sensitivity to temperature (i.e. the slope of growth rate versus temperature) was significantly greater for modern oaks growing at an average [CO2
Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy
2016-01-01
Abstract The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (UCAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower UCAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species. PMID:27382468
Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy
2016-01-01
The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (U CAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower U CAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species.
A physically based analytical spatial air temperature and humidity model
Yang Yang; Theodore A. Endreny; David J. Nowak
2013-01-01
Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...
Melissa L. Snover; Michael J. Adams; Donald T. Ashton; Jamie B. Bettaso; Hartwell H. Welsh
2015-01-01
Summary1. Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing...
Temperature and electrical memory of polymer fibers
NASA Astrophysics Data System (ADS)
Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe
2014-05-01
We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.
Intra-population level variation in thresholds for physical dormancy-breaking temperature
Liyanage, Ganesha S.; Ooi, Mark K. J.
2015-01-01
Background and Aims Intra-population variation in seed dormancy is an advantage for population persistence in unpredictable environments. The important role played by physically dormant species in these habitats makes understanding the level of variation in their dormancy a key ecological question. Heat produced in the soil is the major dormancy-breaking stimulus and, in fire prone ecosystems, soil temperatures generated by fire may vary spatially and over time. While many studies have investigated variation in initial dormancy, a measure that is of little value in fire-prone ecosystems, where initial dormancy levels are uniformly high, intra-population variation in dormancy-breaking temperature thresholds has never been quantified. This study predicted that species would display variation in dormancy-breaking temperature thresholds within populations, and investigated whether this variation occurred between individual plants from the same maternal environment. Methods The intra-population variation in dormancy-breaking thresholds of five common physically dormant shrub species (family Fabaceae) from fire-prone vegetation in south-eastern Australia was assessed using heat treatments and germination trials. Replicate batches of seeds from each of four maternal plants of Dillwynia floribunda, Viminaria juncea, Bossiaea heterophylla, Aotus ericoides and Acacia linifolia were treated at 40, 60, 80, 100 and 120 °C. Key Results Dormancy-breaking response to heat treatments varied significantly among individual plants for all species, with some individuals able to germinate after heating at low temperatures and others restricting germination to temperatures that only occur as a result of high-severity fires. Germination rate (T50) varied among individuals of three species. Conclusions Variation detected among individuals that were in close proximity to each other indicates that strong differences in dormancy-breaking temperature thresholds occur throughout the broader population. Differences found at the individual plant level could contribute to subsequent variation within the seed bank, providing a bet-hedging strategy, and represent a mechanism for increasing the probability of population persistence in the face of fire regime variability. PMID:25997432
NASA Technical Reports Server (NTRS)
Neugebauer, G. T.; Wilcox, W. R.
1990-01-01
Azulene-doped naphtalene was directionally solidified using the vertical Bridgman-Stockbarger technique. Doping homogeneity and convection are determined as a function of the temperature profile in the furnace and the freezing rate. Convective velocities are two orders of magnitude lower when the temperature increases with height. The cross sectional variation in azulene concentration tends to be asymmetric. Neither rotation of the ampoule nor deliberate introduction of thermal asymmetries during solidification had a significant influence on cross sectional variations in doping. It is predicted that slow directional solidification under microgravity conditions can produce greater inhomogeneities than on earth. Thus when low freezing rates are necessary in order to avoid constitutional supercooling, it may be necessary to combine microgravity and magnetic fields in order to achieve homogeneous crystals.
Wong, Swee Chong; Oksanen, Alma; Mattila, Anniina L K; Lehtonen, Rainer; Niitepõld, Kristjan; Hanski, Ilkka
2016-02-01
Flight is essential for foraging, mate searching and dispersal in many insects, but flight metabolism in ectotherms is strongly constrained by temperature. Thermal conditions vary greatly in natural populations and may hence restrict fitness-related activities. Working on the Glanville fritillary butterfly (Melitaea cinxia), we studied the effects of temperature experienced during the first 2 days of adult life on flight metabolism, genetic associations between flight metabolic rate and variation in candidate metabolic genes, and genotype-temperature interactions. The maximal flight performance was reduced by 17% by 2 days of low ambient temperature (15 °C) prior to the flight trial, mimicking conditions that butterflies commonly encounter in nature. A SNP in phosphoglucose isomerase (Pgi) had a significant association on flight metabolic rate in males and a SNP in triosephosphate isomerase (Tpi) was significantly associated with flight metabolic rate in females. In the Pgi SNP, AC heterozygotes had higher flight metabolic rate than AA homozygotes following low preceding temperature, but the trend was reversed following high preceding temperature, consistent with previous results on genotype-temperature interaction for this SNP. We suggest that these results on 2-day old butterflies reflect thermal effect on the maturation of flight muscles. These results highlight the consequences of variation in thermal conditions on the time scale of days, and they contribute to a better understanding of the complex dynamics of flight metabolism and flight-related activities under conditions that are relevant for natural populations living under variable thermal conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
[Photosynthetic characteristics of five arbor species in Shenyang urban area].
Li, Hai-Me; He, Xing-Yuan; Wang, Kui-Ling; Chen, Wei
2007-08-01
By using LI-6400 infrared gas analyzer, this paper studied the diurnal and seasonal variations of the photosynthetic rate of main arbor species (Populus alba x P. berolinensis, Salix matsudana, Ulmus pumila, Robinia pseudoacacia and Prunus davidiana) in Shenyang urban area. The correlations between net photosynthetic rate and environmental factors (photosynthetic active radiation, temperature, and stomatal conductance) were assessed by multivariate regression analysis, and related equations were constructed. The results showed that for test arbor species, the diurnal variation of photosynthetic rate mainly presented a single peak curve, and the seasonal variation was in the order of summer > autumn > spring. The major factors affecting the photosynthetic rate were photosynthetic active radiation, stomatal conductance, and intercellular CO2 concentration.
Huang, Zhi; Liu, Kang; Feng, Yanhui; Zhou, Jun; Zhang, Xinxin
2017-06-28
Intelligent evaporation and temperature modulation plays an important role in self-regulation of living organisms and many industrial applications. Here we demonstrate that a poly(N-isopropylacrylamide) (PNIPAM) nanogel colloid solution can spontaneously and intelligently modulate its evaporation rate with temperature variation, which has a larger evaporation rate than distilled water at a temperature higher than its lower critical solution temperature (LCST) and a smaller evaporation rate at a temperature lower than its LCST. It performs just like human skin. Theoretical analysis based on the thermodynamic derivation reveals that the evaporation rate transition around the LCST may originate from the saturated vapor pressure transition caused by the status transformation of the PNIPAM additives. An intelligent thermoregulation system based on the PNIPAM colloid solution is also demonstrated, illustrating its potential for intelligent temperature control and acting as an artificial skin.
40 CFR 264.345 - Operating requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... variations in the physical or chemical properties of the waste feed which will not affect compliance with the... (CO) level in the stack exhaust gas; (2) Waste feed rate; (3) Combustion temperature; (4) An appropriate indicator of combustion gas velocity; (5) Allowable variations in incinerator system design or...
Grossman, Gary D.; Carline, Robert F.; Wagner, Tyler
2017-01-01
We examined the relationship between density-independent and density-dependent factors on the demography of a dense, relatively unexploited population of brown trout in Spruce Creek Pennsylvania between 1985 and 2011.Individual PCAs of flow and temperature data elucidated groups of years with multiple high flow versus multiple low flow characteristics and high versus low temperature years, although subtler patterns of variation also were observed.Density and biomass displayed similar temporal patterns, ranging from 710 to 1,803 trout/ha and 76–263 kg/ha. We detected a significantly negative linear stock-recruitment relationship (R2 = .39) and there was no evidence that flow or water temperature affected recruitment.Both annual survival and the per-capita rate of increase (r) for the population varied over the study, and density-dependent mechanisms possessed the greatest explanatory power for annual survival data. Temporal trends in population r suggested it displayed a bounded equilibrium with increases observed in 12 years and decreases detected in 13 years.Model selection analysis of per-capita rate of increase data for age 1, and adults (N = eight interpretable models) indicated that both density-dependent (five of eight) and negative density-independent processes (five of eight, i.e. high flows or temperatures), affected r. Recruitment limitation also was identified in three of eight models. Variation in the per-capita rate of increase for the population was most strongly affected by positive density independence in the form of increasing spring–summer temperatures and recruitment limitation.Model selection analyses describing annual variation in both mean length and mass data yielded similar results, although maximum wi values were low ranging from 0.09 to 0.23 (length) and 0.13 to 0.22 (mass). Density-dependence was included in 15 of 15 interpretable models for length and all ten interpretable models for mass. Similarly, positive density-independent effects in the form of increasing autumn–winter flow were present in seven of 15 interpretable models for length and five of ten interpretable models for mass. Negative density independent effects also were observed in the form of high spring–summer flows or temperatures (N = 4), or high autumn–winter temperatures (N = 1).Our analyses of the factors affecting population regulation in an introduced population of brown trout demonstrate that density-dependent forces affected every important demographic characteristic (recruitment, survivorship, the rate of increase, and size) within this population. However, density-independent forces in the form of seasonal variations in flow and temperature also helped explain annual variation in the per-capita rate of increase, and mean length and mass data. Consequently, population regulation within this population is driven by a complex of biotic and environmental factors, although it seems clear that density-dependent factors play a dominant role.
NASA Astrophysics Data System (ADS)
Park, Inmyong; Jeong, Sangkwon
2017-12-01
The experimental investigation of an active magnetic regenerative refrigerator (AMRR) operating between 77 K and 20 K is discussed in this paper, with detailed energy transfer analysis. A multi-layered active magnetic regenerator (AMR) is used, which consists of four different rare earth intermetallic compounds in the form of irregular powder. Numerical simulation confirms that the AMR can attain its target operating temperature range. Magnetic field alternation throughout the AMR is generated by a high temperature superconducting (HTS) magnet. The HTS magnet is cooled by a two stage Gifford-McMahon (GM) cryocooler. Helium gas was employed as a working fluid and its oscillating flow in the AMR is controlled in accordance with the magnetic field variation. The AMR is divided into two stages and each stage has a different mass flow rate as needed to achieve the desired cooling performance. The temperature variation of the AMR during the experiment is monitored by temperature sensors installed inside the AMR. The experimental results show that the AMRR is capable of achieving no-load temperature of 25.4 K while the warm end temperature is 77 K. The performance of the AMRR is analyzed by observing internal temperature variations at cyclic steady state. Furthermore, numerical estimation of the cooling capacity and the temperature variation of the AMR are examined and compared with the experimental results.
Seasonality of suicides: environmental, sociological and biological covariations.
Souêtre, E; Salvati, E; Belugou, J L; Douillet, P; Braccini, T; Darcourt, G
1987-01-01
The monthly rates of completed suicides in France from 1978 until 1982 were analyzed. The seasonal variations of environmental (daylight and sunlight durations, mean temperature, geomagnetism), sociological (unemployment, deaths of all causes, birth and conception rates), and biological (melatonin, cortisol and serotonin circannual rhythms) factors were compared to the seasonal patterns of suicides. A clear seasonal variation (with peaks in May and September) in suicidal behavior was detected. These patterns tended to differ as a function of age (bimodal in young, unimodal in old people). The component analysis clearly pointed out that seasonal patterns of suicides may be considered as the sum of two components, unimodal and bimodal. Almost similar covariations were found between the main seasonal (unimodal) component of suicides and environmental (daylight duration and mean monthly temperature) or sociological factors whereas the secondary component was more correlated to variations in environmental factors and, to some extent, to biological parameters.
Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea
van Oevelen, Dick
2018-01-01
Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200–4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes. PMID:29892403
Analysis of Infrared Signature Variation and Robust Filter-Based Supersonic Target Detection
Sun, Sun-Gu; Kim, Kyung-Tae
2014-01-01
The difficulty of small infrared target detection originates from the variations of infrared signatures. This paper presents the fundamental physics of infrared target variations and reports the results of variation analysis of infrared images acquired using a long wave infrared camera over a 24-hour period for different types of backgrounds. The detection parameters, such as signal-to-clutter ratio were compared according to the recording time, temperature and humidity. Through variation analysis, robust target detection methodologies are derived by controlling thresholds and designing a temporal contrast filter to achieve high detection rate and low false alarm rate. Experimental results validate the robustness of the proposed scheme by applying it to the synthetic and real infrared sequences. PMID:24672290
Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, Ji; Zhou, C.-Y.
2006-01-01
The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (±SD) soil respiration rate in the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.
2014-01-01
Background Development rates of Aedes aegypti are known to vary with respect to many abiotic and biotic factors including temperature, resource availability, and intraspecific competition. The relative importance of these factors and their interactions are not well established across populations. We performed meta-analysis on a dataset of development rate estimates from 49 studies. Results Meta-analytic results indicated that the environmental factor of temperature is sufficient to explain development rate variability in Ae. aegypti. While diet and density may greatly impact other developmental phenotypes, these results suggest that for development rate these factors should never be considered to the exclusion of temperature. The effect of temperature on development rate is not homogenous or constant. The sources of heterogeneity of the effect of temperature are difficult to analyze due to lack of consistent reporting of larval rearing methods. Conclusions Temperature is the most important ecological determinant of development rate in Ae. aegypti, but its effect is heterogeneous. Ignoring this heterogeneity is problematic for models of vector population and vector-borne disease transmission. PMID:24495345
NASA Astrophysics Data System (ADS)
Baums, I. B.; Devlin-Durante, M. K.; Polato, N. R.; Xu, D.; Giri, S.; Altman, N. S.; Ruiz, D.; Parkinson, J. E.; Boulay, J. N.
2013-09-01
The branching coral Acropora palmata is a foundation species of Caribbean reefs that has been decimated in recent decades by anthropogenic and natural stressors. Declines in population density and genotypic diversity likely reduce successful sexual reproduction in this self-incompatible hermaphrodite and might impede recovery. We investigated variation among genotypes in larval development under thermally stressful conditions. Six two-parent crosses and three four-parent batches were reared under three temperatures and sampled over time. Fertilization rates differed widely with two-parent crosses having lower fertilization rates (5-56 %, mean 22 % ± 22 SD) than batches (from 31 to 87 %, mean 59 % ± 28 SD). Parentage analysis of larvae in batch cultures showed differences in gamete compatibility among parents, coinciding with significant variation in both sperm morphology and egg size. While all larval batches developed more rapidly at increased water temperatures, rate of progression through developmental stages varied among batches, as did swimming speed. Together, these results indicate that loss of genotypic diversity exacerbates already severe limitations in sexual reproductive success of A. palmata. Nevertheless, surviving parental genotypes produce larvae that do vary in their phenotypic response to thermal stress, with implications for adaptation, larval dispersal and population connectivity in the face of warming sea surface temperatures.
Modeled Seasonal Variations of Firn Density Induced by Steady State Surface Air Temperature Cycle
NASA Technical Reports Server (NTRS)
Jun, Li; Zwally, H. Jay; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.
Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu
2007-08-21
This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1), the safety factor was 11.
Continuous selection pressure to improve temperature acclimation of Tisochrysis lutea
Grimaud, Ghjuvan; Rumin, Judith; Bougaran, Gaël; Talec, Amélie; Gachelin, Manon; Boutoute, Marc; Pruvost, Eric; Bernard, Olivier; Sciandra, Antoine
2017-01-01
Temperature plays a key role in outdoor industrial cultivation of microalgae. Improving the thermal tolerance of microalgae to both daily and seasonal temperature fluctuations can thus contribute to increase their annual productivity. A long term selection experiment was carried out to increase the thermal niche (temperature range for which the growth is possible) of a neutral lipid overproducing strain of Tisochrysis lutea. The experimental protocol consisted to submit cells to daily variations of temperature for 7 months. The stress intensity, defined as the amplitude of daily temperature variations, was progressively increased along successive selection cycles. Only the amplitude of the temperature variations were increased, the daily average temperature was kept constant along the experiment. This protocol resulted in a thermal niche increase by 3°C (+16.5%), with an enhancement by 9% of the maximal growth rate. The selection process also affected T. lutea physiology, with a feature generally observed for ‘cold-temperature’ type of adaptation. The amount of total and neutral lipids was significantly increased, and eventually productivity was increased by 34%. This seven month selection experiment, carried out in a highly dynamic environment, challenges some of the hypotheses classically advanced to explain the temperature response of microalgae. PMID:28902878
Crispin, Taryn S; White, Craig R
2013-01-01
Changes to an animal's abiotic environment-and consequent changes in the allometry of metabolic rate in the whole animal and its constituent parts-has considerable potential to reveal important patterns in both intraspecific and interindividual variation of metabolic rates. This study demonstrates that, after 6 wk of thermal acclimation at replicate treatments of 16°, 21°, and 25°C, standard metabolic rate (SMR) scales allometrically in Leichhardtian river prawns Macrobrachium tolmerum ([Formula: see text]) and that the scaling exponent and normalization constant of the relationship between SMR and body mass is not significantly different among acclimation treatments when measured at 21°C. There is, however, significant variation among individuals in whole-animal metabolic rate. We hypothesized that these observations may arise because of changes in the metabolic rate and allometry of metabolic rate or mass of organ tissues within the animal. To investigate this hypothesis, rates of oxygen consumption in a range of tissues (gills, gonads, hepatopancreas, chelae muscle, tail muscle) were measured at 21°C and related to the body mass (M) and whole-animal SMR of individual prawns. We demonstrate that thermal acclimation had no effect on organ and tissue mass, that most organ and tissue (gills, gonads, hepatopancreas) respiration rates do not change with acclimation temperature, and that residual variation in the allometry of M. tolmerum SMR is not explained by differences in organ and tissue mass and respiration rates. These results suggest that body size and ambient temperature may independently affect metabolic rate in this species. Both chelae and tail muscle, however, exhibited a reduction in respiration rate in animals acclimated to 25° relative to those acclimated to 16° and 21°C. This reduction in respiration rates of muscle at higher temperatures is evidence of a tissue-specific acclimation response that was not detectable at the whole-animal level.
Salerian, Alen J; Saleri, Nansen G
2006-01-01
Scientific evidence suggests the critical role of temperature in regulating three mechanisms contributing to cellular damage: Oxidative stress, oxygen demand overload and inflammation. In this article, we propose that the Arrhenius rate law has a profound impact on aging and a variety of neurodegenerative disorders including Alzheimer's disease, and we review the supporting evidence. Published studies suggest empirical correlations between temperature and lifespan of various organisms, bolstering the hypothesis that variations in lifespan may stem from differences in the mitochondrial production rates of radicals - a process also influenced by temperature. Given the exponential temperature dependency of all biochemical factors, cooler body temperatures may promote longevity and combat neurodegenerative disorders. This promises to offer extraordinary yet unexplored weapons against two formidable enemies of the human body: aging and neurodegenerative disorders. Stated in the form of a thesis referred to as Salerian and Saleri Temperature Thesis (SSTT): "Cooler biologically compatible core body temperatures prolong lifespan and are of value to combat illness". Double blind studies of SSTT in therapeutic strategies against amyotrophic lateral sclerosis (ALS) or early-stage Alzheimer's disease may offer a reasonable first stage to validate SSTT. In view of the known rapid progressive neurodegeneration associated with ALS, minute variations in core body temperature may, in fact, demonstrate statistically significant differences in disease progression.
NASA Astrophysics Data System (ADS)
Schweitzer, Ben; Wilke, Stephen; Khateeb, Siddique; Al-Hallaj, Said
2015-08-01
A lumped (0-D) numerical model has been developed for simulating the thermal response of a lithium-ion battery pack with a phase-change composite (PCC™) thermal management system. A small 10s4p battery pack utilizing PCC material was constructed and subjected to discharge at various C-rates in order to validate the lumped model. The 18650 size Li-ion cells used in the pack were electrically characterized to determine their heat generation, and various PCC materials were thermally characterized to determine their apparent specific heat as a function of temperature. Additionally, a 2-D FEA thermal model was constructed to help understand the magnitude of spatial temperature variation in the pack, and to understand the limitations of the lumped model. Overall, good agreement is seen between experimentally measured pack temperatures and the 0-D model, and the 2-D FEA model predicts minimal spatial temperature variation for PCC-based packs at C-rates of 1C and below.
Atcheson, Margaret E.; Myers, Katherine W.; Beauchamp, David A.; Mantua, Nathan J.
2012-01-01
Energetic responses of steelhead Oncorhynchus mykiss to climate-driven changes in marine conditions are expected to affect the species’ ocean distribution, feeding, growth, and survival. With a unique 18-year data series (1991–2008) for steelhead sampled in the open ocean, we simulated interannual variation in prey consumption and growth efficiency of steelhead using a bioenergetics model to evaluate the temperature-dependent growth response of steelhead to past climate events and to estimate growth potential of steelhead under future climate scenarios. Our results showed that annual ocean growth of steelhead is highly variable depending on prey quality, consumption rates, total consumption, and thermal experience. At optimal growing temperatures, steelhead can compensate for a low-energy diet by increasing consumption rates and consuming more prey, if available. Our findings suggest that steelhead have a narrow temperature window in which to achieve optimal growth, which is strongly influenced by climate-driven changes in ocean temperature.
Estimating Travel Time in Bank Filtration Systems from a Numerical Model Based on DTS Measurements.
des Tombe, Bas F; Bakker, Mark; Schaars, Frans; van der Made, Kees-Jan
2018-03-01
An approach is presented to determine the seasonal variations in travel time in a bank filtration system using a passive heat tracer test. The temperature in the aquifer varies seasonally because of temperature variations of the infiltrating surface water and at the soil surface. Temperature was measured with distributed temperature sensing along fiber optic cables that were inserted vertically into the aquifer with direct push equipment. The approach was applied to a bank filtration system consisting of a sequence of alternating, elongated recharge basins and rows of recovery wells. A SEAWAT model was developed to simulate coupled flow and heat transport. The model of a two-dimensional vertical cross section is able to simulate the temperature of the water at the well and the measured vertical temperature profiles reasonably well. MODPATH was used to compute flowpaths and the travel time distribution. At the study site, temporal variation of the pumping discharge was the dominant factor influencing the travel time distribution. For an equivalent system with a constant pumping rate, variations in the travel time distribution are caused by variations in the temperature-dependent viscosity. As a result, travel times increase in the winter, when a larger fraction of the water travels through the warmer, lower part of the aquifer, and decrease in the summer, when the upper part of the aquifer is warmer. © 2017 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.
Titon, Braz; Gomes, Fernando Ribeiro
2017-06-01
Interspecific variation in patterns of geographical distribution of phylogenetically related species of amphibians might be related to physiological adaptation to different climatic conditions. In this way, a comparative study of resistance to evaporative water loss, rehydration rates and sensitivity of locomotor performance to variations on hydration level and temperature was performed for five species of Bufonidae toads (Rhinella granulosa, R. jimi, R. ornata, R. schneideri and R. icterica) inhabiting different Brazilian biomes. The hypotheses tested were that, when compared to species inhabiting mesic environments, species living at hot and dry areas would show: (1) greater resistance to evaporative water loss, (2) higher rates of water uptake, (3) lower sensitivity of locomotor performance to dehydration and (4) lower sensitivity of locomotor performance at higher temperatures and higher sensitivity of locomotor performance at lower temperatures. This comparative analysis showed relations between body mass and interspecific variation in rehydration rates and resistance to evaporative water loss in opposite directions. These results might represent a functional compensation associated with relatively lower absorption areas in larger toads and higher evaporative areas in smaller ones. Moreover, species from the semi-arid Caatinga showed locomotor performance less sensitive to dehydration but highly affected by lower temperatures, as well greater resistance to evaporative water loss, when compared to the other species from the mesic Atlantic Forest and the savannah-like area called Cerrado. These results suggest adaptation patterns to environmental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
Yao, Y; Lian, Z; Liu, W; Jiang, C; Liu, Y; Lu, H
2009-04-01
Human thermal comfort researches mainly focus on the relation between the environmental factors (e.g. ambient temperature, air humidity, and air velocity, etc.) and the thermal comfort sensation based on a large amount of subjective field investigations. Although some physiological factors, such as skin temperature and metabolism were used in many thermal comfort models,they are not enough to establish a perfect thermal comfort model. In this paper,another two physiological factors, i.e. heart rate variation (HRV) and electroencephalograph (EEG), are explored for the thermal comfort study. Experiments were performed to investigate how these physiological factors respond to the environmental temperatures, and what is the relationship between HRV and EEG and thermal comfort. The experimental results indicate that HRV and EEG may be related to thermal comfort, and they may be useful to understand the mechanism of thermal comfort.
Effects of climate on chemical weathering in watersheds
White, A.F.; Blum, A.E.
1995-01-01
Climatic effects on chemical weathering are evaluated by correlating variations in solute concentrations and fluxes with temperature, precipitation, runoff, and evapotranspiration (ET) for a worldwide distribution of sixty-eight watersheds underlain by granitoid rock types. Stream solute concentrations are strongly correlated with proportional ET loss, and evaporative concentration makes stream solute concentrations an inapprorpiate surrogate for chemical weathering. Chemical fluxes are unaffected by ET, and SiO2 and Na weathering fluxes exhibit systematic increases with precipitation, runoff, and temperature. However, warm and wet watersheds produce anomalously rapid weathering rates. A proposed model that provides an improved prediction of weathering rates over climatic extremes is the product of linear precipitation and Arrhenius temperature functions. The resulting apparent activation energies based on SiO2 and Na fluxes are 59.4 and 62.5 kJ.mol-1, respectively. The coupling between temperature and precipitation emphasizes the importance of tropical regions in global silicate weathering fluxes, and suggests it is not representative to use continental averages for temperature and precipitation in the weathering rate functions of global carbon cycling and climatic change models. Fluxes of K, Ca, and Mg exhibit no climatic correlation, implying that other processes, such as ion exchange, nutrient cycling, and variations in lithology, obscure any climatic signal. -from Authors
Temperature variations in Greenland from 10 to 110 kyr b2k derived from the NGRIP ice core
NASA Astrophysics Data System (ADS)
Kindler, Philippe; Leuenberger, Markus; Landais, Amaelle; Guillevic, Myriam
2013-04-01
During the last ice age dramatic temperature variations of up to 16 °C took place in Greenland which are now known as Dansgaard-Oeschger-events (DO-events). They most probably originate from the North Atlantic oceanic and atmospheric circulation system and are characterised by an abrupt warming within decades followed by a gradual cooling over hundreds to thousands of years. We have determined local temperature variations for DO-event 1 to 25 in Greenland based on δ15N measurements from the NorthGRIP ice core, corresponding to the period from 10 to 110 kyr b2k. The record is a composite of measurements from two laboratories, Laboratoire des Sciences du Climat et de l'Environnement, Paris (DO 18 to 25) and the Climate and Environmental Physics Division of the Physics Institute of the University of Bern (DO 1 to 17) with new measurements from the beginning of the Holocene to DO 8. Temperature variations were reconstructed by reproducing the measured 15N/14N ratio of air enclosed in ice bubbles by the firn densification and heat diffusion model from Schwander. The reconstruction show temperature amplitudes for the DO-events ranging from 5 to 16 °C, thereby the corresponding rates of change can exceed 0.5 °C/decade. In order get an agreement between measured δ15N, Δdepth and Δage values with their modelled analogues, a lower accumulation rate than the one associated with the used ss09sea06bm1 time scale had to be assumed. We had to reduce the accumulation rate time dependently by 0 to nearly 40% with a mean reduction over the whole time period of 16%. With these adjustments both the Δdepth and the Δage values agree between model and measurements.
Ion Temperature Control of the Io Plasma Torus
NASA Technical Reports Server (NTRS)
Delamere, P. A.; Schneider, N. M.; Steffl, A. J.; Robbins, S. J.
2005-01-01
We report on observational and theoretical studies of ion temperature in the Io plasma torus. Ion temperature is a critical factor for two reasons. First, ions are a major supplier of energy to the torus electrons which power the intense EUV emissions. Second, ion temperature determines the vertical extent of plasma along field lines. Higher temperatures spread plasma out, lowers the density and slows reaction rates. The combined effects can play a controlling role in torus energetics and chemistry. An unexpected tool for the study of ion temperature is the longitudinal structure in the plasma torus which often manifests itself as periodic brightness variations. Opposite sides of the torus (especially magnetic longitudes 20 and 200 degrees) have been observed on numerous occasions to have dramatically different brightness, density, composition, ionization state, electron temperature and ion temperature. These asymmetries must ultimately be driven by different energy flows on the opposite sides, presenting an opportunity to observe key torus processes operating under different conditions. The most comprehensive dataset for the study of longitudinal variations was obtained by the Cassini UVIS instrument during its Jupiter flyby. Steffl (Ph.D. thesis, 2005) identified longitudinal variations in all the quantities listed above wit the exception of ion temperature. We extend his work by undertaking the first search for such variation in the UVIS dataset. We also report on a 'square centimeter' model of the torus which extend the traditional 'cubic centimeter' models by including the controlling effects of ion temperature more completely.
Tensile properties and flow behavior analysis of modified 9Cr-1Mo steel clad tube material
NASA Astrophysics Data System (ADS)
Singh, Kanwarjeet; Latha, S.; Nandagopal, M.; Mathew, M. D.; Laha, K.; Jayakumar, T.
2014-11-01
The tensile properties and flow behavior of modified 9Cr-1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300-923 K) and strain rates (3 × 10-3 s-1, 3 × 10-4 s-1 and 3 × 10-5 s-1). The tensile flow behavior of modified 9Cr-1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation.
Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H
NASA Technical Reports Server (NTRS)
Rao, K. Bhanu Sankara; Schiffers, H.; Schuster, H.; Halford, G. R.
1996-01-01
The effects of strain rate (4 x 10(exp -6) to 4 x 10(exp -3)/s) and temperature on the Low-Cycle Fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 C to 950 C. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of +/- 0.30 pct. LCF life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature- dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M(23)C6 on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes.
Improved analysis of transient temperature data from permanent down-hole gauges (PDGs)
NASA Astrophysics Data System (ADS)
Zhang, Yiqun; Zheng, Shiyi; Wang, Qi
2017-08-01
With the installation of permanent down-hole gauges (PDGs) during oil field development, large volumes of high resolution and continuous down-hole information are obtainable. The interpretation of these real-time temperature and pressure data can optimize well performance, provide information about the reservoir and continuously calibrate the reservoir model. Although the dynamic temperature data have been interpreted in practice to predict flow profiling and provide characteristic information of the reservoir, almost all of the approaches rely on established non-isothermal models which depend on thermodynamic parameters. Another problem comes from the temperature transient analysis (TTA), which is underutilized compared with pressure transient analysis (PTA). In this study, several model-independent methods of TTA were performed. The entire set of PDG data consists of many flow events. By utilizing the wavelet transform, the exact points of flow-rate changes can be located. The flow regime changes, for example, from early time linear flow to later time pseudo-radial flow, among every transient period with constant flow-rate. For the early time region (ETR) that is caused by flow-rate change operations, the TTA, along with the PTA can greatly reduce the uncertainties in flow regime diagnosis. Then, the temperature variations during ETR were examined to infer the true reservoir temperature history, and the relationships between the wavelet detailed coefficients and the flow-rate changes were analysed. For the scenarios with constant reservoir-well parameters, the detailed flow-rate history can be generated by calculating the coefficient of relationship in advance. For later times, the flow regime changes to pseudo-radial flow. An analytical solution was introduced to describe the sand-face temperature. The formation parameters, such as permeability and skin factor, were estimated with the previously calculated flow-rate. It is necessary to analyse temperature variation to overcome data limitation problems when information from other down-hole tools (e.g. expensive but unstable flow meters) is insufficient. This study shows the success in wellbore storage regime diagnosis, flow-rate history reconstruction, and formation parameters estimation using transient temperature data.
NASA Technical Reports Server (NTRS)
Chou, S.-H.; Curran, R. J.; Ohring, G.
1981-01-01
The effects of two different evaporation parameterizations on the sensitivity of simulated climate to solar constant variations are investigated by using a zonally averaged climate model. One parameterization is a nonlinear formulation in which the evaporation is nonlinearly proportional to the sensible heat flux, with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface (model A). The other is the formulation of Saltzman (1968) with the evaporation linearly proportional to the sensible heat flux (model B). The computed climates of models A and B are in good agreement except for the energy partition between sensible and latent heat at the earth's surface. The difference in evaporation parameterizations causes a difference in the response of temperature lapse rate to solar constant variations and a difference in the sensitivity of longwave radiation to surface temperature which leads to a smaller sensitivity of surface temperature to solar constant variations in model A than in model B. The results of model A are qualitatively in agreement with those of the general circulation model calculations of Wetherald and Manabe (1975).
Stegen, James C; Ferriere, Regis; Enquist, Brian J
2012-03-22
In ectothermic organisms, it is hypothesized that metabolic rates mediate influences of temperature on the ecological and evolutionary processes governing biodiversity. However, it is unclear how and to what extent the influence of temperature on metabolism scales up to shape large-scale diversity patterns. In order to clarify the roles of temperature and metabolism, new theory is needed. Here, we establish such theory and model eco-evolutionary dynamics of trophic networks along a broad temperature gradient. In the model temperature can influence, via metabolism, resource supply, consumers' vital rates and mutation rate. Mutation causes heritable variation in consumer body size, which diversifies and governs consumer function in the ecological network. The model predicts diversity to increase with temperature if resource supply is temperature-dependent, whereas temperature-dependent consumer vital rates cause diversity to decrease with increasing temperature. When combining both thermal dependencies, a unimodal temperature-diversity pattern evolves, which is reinforced by temperature-dependent mutation rate. Studying coexistence criteria for two consumers showed that these outcomes are owing to temperature effects on mutual invasibility and facilitation. Our theory shows how and why metabolism can influence diversity, generates predictions useful for understanding biodiversity gradients and represents an extendable framework that could include factors such as colonization history and niche conservatism.
Pang, Xu; Fu, Shi-Jian; Zhang, Yao-Guang
2016-09-01
Individual variation in growth, metabolism and swimming performance, their possible interrelationships, and the effects of temperature were investigated in 30 juvenile common carp (Cyprinus carpio) at two acclimation temperatures (15 and 25°C). We measured body mass, critical swimming speed (Ucrit), resting metabolic rate (RMR), active metabolic rate (AMR) and metabolic scope (MS) twice (28days apart) in both temperature groups. Fish acclimated to 25°C showed a 204% higher specific growth rate (SGR) than those acclimated to 15°C due to a 97% higher feeding rate (FR) and a 46% higher feed efficiency (FE). Among individuals, SGR was positively correlated with the FR and FE at both low and high temperatures. All measured variables (Ucrit, RMR and AMR) related to swimming except MS showed a high repeatability after adjusting for body mass (mass-independent). Fish acclimated to 25°C had a 40% higher Ucrit compared with 15°C acclimated fish, which was at least partially due to an improved metabolic capacity. AMR showed a 97% increase, and MS showed a 104% parallel increase with the higher acclimation temperature. Residual (mass-independent) Ucrit was positively correlated with residual RMR, AMR and MS, except for the residual RMR at high temperature. When acclimated to the lower temperature, both the residual and absolute Ucrit were negatively correlated with FR and FE and, hence, with SGR, suggesting a functional trade-off between growth and locomotion in fish acclimated to low temperatures. However, when acclimated to the higher temperature, this trade-off no longer existed; absolute Ucrit was positively correlated with SGR because individuals with rapid growth exhibited greatly increased body mass. The higher metabolic capacity at 25°C showed a positive effect on both swimming performance and growth rate (because of improved digestive efficiency) under the high-temperature condition, which we did not anticipate. Overall, these results indicate that temperature alters the relationship between growth and swimming performance of juvenile common carp. This change may be an adaptive strategy to seasonal temperature variation during their life history. Copyright © 2016 Elsevier Inc. All rights reserved.
Dynamic crystallization of silicate melts
NASA Technical Reports Server (NTRS)
Russell, W. J.
1984-01-01
Two types of furnaces with differing temperature range capabilities were used to provide variations in melt temperatures and cooling rates in a study of the effects of heterogeneous nucleation on crystallization. Materials of chondrule composition were used to further understanding of how the disequilibrium features displayed by minerals in rocks are formed. Results show that the textures of natural chondrules were duplicated. It is concluded that the melt history is dominant over cooling rate and composition in controlling texture. The importance of nuclei, which are most readily derived from preexisting crystalline material, support an origin for natural chondrules based on remelting of crystalline material. This would be compatible with a simple, uniform chondrule forming process having only slight variations in thermal histories resulting in the wide range of textures.
40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...
40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...
NASA Technical Reports Server (NTRS)
Wallace, D. A.
1980-01-01
A thermoelectrically temperature controlled quartz crystal microbalance (QCM) system was developed for the measurement of ion thrustor generated mercury contamination on spacecraft. Meaningful flux rate measurements dictated an accurately held sensing crystal temperature despite spacecraft surface temperature variations from -35 C to +60 C over the flight temperature range. An electronic control unit was developed with magentic amplifier transformer secondary power supply, thermal control electronics, crystal temperature analog conditioning and a multiplexed 16 bit frequency encoder.
Oxygen-Mass-Flow Calibration Cell
NASA Technical Reports Server (NTRS)
Martin, Robert E.
1996-01-01
Proposed calibration standard for mass flow rate of oxygen based on conduction of oxygen ions through solid electrolyte membrane made of zirconia and heated to temperature of 1,000 degrees C. Flow of oxygen ions proportional to applied electric current. Unaffected by variations in temperature and pressure, and requires no measurement of volume. Calibration cell based on concept used to calibrate variety of medical and scientific instruments required to operate with precise rates of flow of oxygen.
Exploiting temporal variability to understand tree recruitment response to climate change
Ines Ibanez; James S. Clark; Shannon LaDeau; Janneke Hill Ris Lambers
2007-01-01
Predicting vegetation shifts under climate change is a challenging endeavor, given the complex interactions between biotic and abiotic variables that influence demographic rates. To determine how current trends and variation in climate change affect seedling establishment, we analyzed demographic responses to spatiotemporal variation to temperature and soil moisture in...
Costache, T A; Acién Fernández, F Gabriel; Morales, M M; Fernández-Sevilla, J M; Stamatin, I; Molina, E
2013-09-01
In this paper, the influence of culture conditions (irradiance, temperature, pH, and dissolved oxygen) on the photosynthesis rate of Scenedesmus almeriensis cultures is analyzed. Short-run experiments were performed to study cell response to variations in culture conditions, which take place in changing environments such as outdoor photobioreactors. Experiments were performed by subjecting diluted samples of cells to different levels of irradiance, temperature, pH, and dissolved oxygen concentration. Results demonstrate the existence of photoinhibition phenomena at irradiances higher than 1,000 μE/m(2) s; in addition to reduced photosynthesis rates at inadequate temperatures or pH-the optimal values being 35 °C and 8, respectively. Moreover, photosynthesis rate reduction at dissolved oxygen concentrations above 20 mg/l is demonstrated. Data have been used to develop an integrated model based on considering the simultaneous influence of irradiance, temperature, pH, and dissolved oxygen. The model fits the experimental results in the range of culture conditions tested, and it was validated using data obtained by the simultaneous variation of two of the modified variables. Furthermore, the model fits experimental results obtained from an outdoor culture of S. almeriensis performed in an open raceway reactor. Results demonstrate that photosynthetic efficiency is modified as a function of culture conditions, and can be used to determine the proximity of culture conditions to optimal values. Optimal conditions found (T = 35 °C, pH = 8, dissolved oxygen concentration <20 mg/l) allows to maximize the use of light by the cells. The developed model is a powerful tool for the optimal design and management of microalgae-based processes, especially outdoors, where the cultures are subject to daily culture condition variations.
40 CFR 53.56 - Test for effect of variations in ambient pressure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measurement accuracy. (iv) Coefficient of variability measurement accuracy. (v) Ambient pressure measurement... through the sample filter, measured in actual volume units at the temperature and pressure of the air as... volumetric flow rate corrections are made based on measurements of actual ambient temperature and pressure...
Rate constant for the fraction of atomic chlorine with formaldehyde from 200 to 500K
NASA Technical Reports Server (NTRS)
Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.
1978-01-01
A flash photolysis - resonance fluorescence technique was used to measure rate constant. The results were independent of substantial variations in H2CO, total pressure (Ar), and flash intensity (i.e., initial Cl). The rate constant was shown to be invariant with temperature, the best representation for this temperature range being K = (7.48 + or - 0.50) x 10 to the minus 11 power cu cm molecule-1 s-1 where the error is one standard deviation. The rate constant is theoretically discussed and the potential importance of the reaction in stratospheric chemistry is considered.
Cecchetto, Nicolas Rodolfo; Naretto, Sergio
2015-10-01
Body temperature is a key factor in physiological processes, influencing lizard performances; and life history traits are expected to generate variability of thermal preferences in different individuals. Gender, body size and reproductive condition may impose specific requirements on preferred body temperatures. If these three factors have different physiological functions and thermal requirements, then the preferred temperature may represent a compromise that optimizes these physiological functions. Therefore, the body temperatures that lizards select in a controlled environment may reflect a temperature that maximizes their physiological needs. The tegu lizard Tupinambis merianae is one of the largest lizards in South America and has wide ontogenetic variation in body size and sexual dimorphism. In the present study we evaluate intraspecific variability of thermal preferences of T. merianae. We determined the selected body temperature and the rate at which males and females attain their selected temperature, in relation to body size and reproductive condition. We also compared the behavior in the thermal gradient between males and females and between reproductive condition of individuals. Our study show that T. merianae selected body temperature within a narrow range of temperatures variation in the laboratory thermal gradient, with 36.24±1.49°C being the preferred temperature. We observed no significant differences between sex, body size and reproductive condition in thermal preferences. Accordingly, we suggest that the evaluated categories of T. merianae have similar thermal requirements. Males showed higher rates to obtain heat than females and reproductive females, higher rates than non-reproductive ones females. Moreover, males and reproductive females showed a more dynamic behavior in the thermal gradient. Therefore, even though they achieve the same selected temperature, they do it differentially. Copyright © 2015 Elsevier Ltd. All rights reserved.
Qin, Geng; Johnson, Cara; Zhang, Yuan; Zhang, Huixian; Yin, Jianping; Miller, Glen; Turingan, Ralph G; Guisbert, Eric; Lin, Qiang
2018-05-15
Inshore-offshore migration occurs frequently in seahorse species either because of prey opportunities or because it is driven by reproduction, and variations in water temperature may dramatically change migratory seahorse behavior and physiology. The present study investigated the behavioral and physiological responses of the lined seahorse Hippocampus erectus under thermal stress and evaluated the potential effects of different temperatures on its reproduction. The results showed that the thermal tolerance of the seahorses was time dependent. Acute thermal stress (30°C, 2-10 hours) increased the basal metabolic rate (breathing rate) and the expression of stress response genes ( Hsp genes) significantly and further stimulated seahorse appetite. Chronic thermal treatment (30°C, 4 weeks) led to a persistently higher basal metabolic rate, higher stress response gene expression, and higher mortality, indicating that the seahorses could not acclimate to chronic thermal stress and might experience massive mortality due to excessive basal metabolic rates and stress damage. Additionally, no significant negative effects on gonad development or reproductive endocrine regulation genes were observed in response to chronic thermal stress, suggesting that seahorse reproductive behavior could adapt to higher-temperature conditions during migration and within seahorse breeding grounds. In conclusion, this simulation experiment indicated that temperature variations during inshore-offshore migration have no effect on reproduction but promote basal metabolic rates and stress responses significantly. Therefore, we suggest that the high observed tolerance of seahorse reproduction was in line with the inshore-offshore reproductive migration pattern of lined seahorse. © 2018. Published by The Company of Biologists Ltd.
Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition
NASA Astrophysics Data System (ADS)
Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae
2017-12-01
Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.
NASA Technical Reports Server (NTRS)
Choi, Sung H.; Salem, J. A.; Nemeth, N. N.
1998-01-01
High-temperature slow-crack-growth behaviour of hot-pressed silicon carbide was determined using both constant-stress-rate ("dynamic fatigue") and constant-stress ("static fatigue") testing in flexure at 1300 C in air. Slow crack growth was found to be a governing mechanism associated with failure of the material. Four estimation methods such as the individual data, the Weibull median, the arithmetic mean and the median deviation methods were used to determine the slow crack growth parameters. The four estimation methods were in good agreement for the constant-stress-rate testing with a small variation in the slow-crack-growth parameter, n, ranging from 28 to 36. By contrast, the variation in n between the four estimation methods was significant in the constant-stress testing with a somewhat wide range of n= 16 to 32.
Radial Variations in the Io Plasma Torus during the Cassini Era
NASA Technical Reports Server (NTRS)
Delamere, P. A.; Bagenal, F.; Steffl, A.
2005-01-01
A radial scan through the midnight sector of the Io plasma torus was made by the Cassini Ultraviolet Imaging Spectrograph on 14 January 2001, shortly after closest approach to Jupiter. From these data, Steffl et al. (2004a) derived electron temperature, plasma composition (ion mixing ratios), and electron column density as a function of radius from L = 6 to 0 as well as the total luminosity. We have advanced our homogeneous model of torus physical chemistry (Delamere and Bagenal, 2003) to include latitudinal and radial variations in a manner similar to the two-dimensional model by Schreier et al. (1998). The model variables include: (1) neutral source rate, (2) radial transport coefficient, (3) the hot electron fraction, (4) hot electron temperature, and (5) the neutral O/S ratio. The radial variation of parameters 1-4 are described by simple power laws, making a total of nine parameters. We have explored the sensitivity of the model results to variations in these parameters and compared the best fit with previous Voyager era models (schreier et al., 1998), galileo data (Crary et al., 1998), and Cassini observations (steffl et al., 2004a). We find that radial variations during the Cassini era are consistent with a neutral source rate of 700-1200 kg/s, an integrated transport time from L = 6 to 9 of 100-200 days, and that the core electron temperature is largely determined by a spatially and temporally varying superthermal electron population.
Seasonal variation of cold-induced vasooscillation on rabbit ear central artery.
Takeoka, M
1990-12-01
We studied the seasonal variation of vasooscillation of a rabbit ear central artery induced by exposure of the earlobes to - 7 degrees C liquid. The data were collected over a period of 10 years and analyzed by month. a) The index of arterial temperature fluctuation (IATF), i.e., activation index of cold-induced vasooscillation (CIVO), ranged from 114.5 +/- 26.7 (mean +/- SE) in January to 386.7 +/- 36.1 in June. A significant variation over all 12 months was revealed by analysis of variance (P less than 0.01). The values measured in May (317.1 +/- 47.3), June (386.7 +/- 36.1), and July (315.1 +/- 36.0) were significantly larger than those of other months. b) The monthly IATFs were correlated with the open air temperatures (r = 0.7017, P less than 0.05); however, the peak IATF occurred in June, while the peak open air temperature was in August. c) There was no seasonal variation of the arterial temperature either before or at 18-20 min after -7 degrees C immersion. Arterial temperature was not related to IATF during -7 degrees C exposure. d) When measuring-site temperature was steady, the thermistor temperature changed in parallel with the output from a laser blood volume meter. e) The CIVO was independent of systemic blood pressure and heart rate, which suggested that the occurrence of CIVO was regulated by changes in local vascular resistance.
NASA Astrophysics Data System (ADS)
Raghavan, V.; Whitney, Scott E.; Ebmeier, Ryan J.; Padhye, Nisha V.; Nelson, Michael; Viljoen, Hendrik J.; Gogos, George
2006-09-01
In this article, experimental and numerical analyses to investigate the thermal control of an innovative vortex tube based polymerase chain reaction (VT-PCR) thermocycler are described. VT-PCR is capable of rapid DNA amplification and real-time optical detection. The device rapidly cycles six 20μl 96bp λ-DNA samples between the PCR stages (denaturation, annealing, and elongation) for 30cycles in approximately 6min. Two-dimensional numerical simulations have been carried out using computational fluid dynamics (CFD) software FLUENT v.6.2.16. Experiments and CFD simulations have been carried out to measure/predict the temperature variation between the samples and within each sample. Heat transfer rate (primarily dictated by the temperature differences between the samples and the external air heating or cooling them) governs the temperature distribution between and within the samples. Temperature variation between and within the samples during the denaturation stage has been quite uniform (maximum variation around ±0.5 and 1.6°C, respectively). During cooling, by adjusting the cold release valves in the VT-PCR during some stage of cooling, the heat transfer rate has been controlled. Improved thermal control, which increases the efficiency of the PCR process, has been obtained both experimentally and numerically by slightly decreasing the rate of cooling. Thus, almost uniform temperature distribution between and within the samples (within 1°C) has been attained for the annealing stage as well. It is shown that the VT-PCR is a fully functional PCR machine capable of amplifying specific DNA target sequences in less time than conventional PCR devices.
Control of plasma properties in a short direct-current glow discharge with active boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, S. F.; Demidov, V. I., E-mail: vladimir.demidov@mail.wvu.edu; West Virginia University, Morgantown, West Virginia 26506
2016-02-15
To demonstrate controlling electron/metastable density ratio and electron temperature by applying negative voltages to the active (conducting) discharge wall in a low-pressure plasma with nonlocal electron energy distribution function, modeling has been performed in a short (lacking the positive-column region) direct-current glow discharge with a cold cathode. The applied negative voltage can modify the trapping of the low-energy part of the energetic electrons that are emitted from the cathode sheath and that arise from the atomic and molecular processes in the plasma within the device volume. These electrons are responsible for heating the slow, thermal electrons, while production of slowmore » electrons (ions) and metastable atoms is mostly due to the energetic electrons with higher energies. Increasing electron temperature results in increasing decay rate of slow, thermal electrons (ions), while decay rate of metastable atoms and production rates of slow electrons (ions) and metastable atoms practically are unchanged. The result is in the variation of electron/metastable density ratio and electron temperature with the variation of the wall negative voltage.« less
Fall field crickets did not acclimate to simulated seasonal changes in temperature.
Niehaus, Amanda C; Wilson, Robbie S; Storm, Jonathan J; Angilletta, Michael J
2012-02-01
In nature, many organisms alter their developmental trajectory in response to environmental variation. However, studies of thermal acclimation have historically involved stable, unrealistic thermal treatments. In our study, we incorporated ecologically relevant treatments to examine the effects of environmental stochasticity on the thermal acclimation of the fall field cricket (Gryllus pennsylvanicus). We raised crickets for 5 weeks at either a constant temperature (25°C) or at one of three thermal regimes mimicking a seasonal decline in temperature (from 25 to 12°C). The latter three treatments differed in their level of thermal stochasticity: crickets experienced either no diel cycle, a predictable diel cycle, or an unpredictable diel cycle. Following these treatments, we measured several traits considered relevant to survival or reproduction, including growth rate, jumping velocity, feeding rate, metabolic rate, and cold tolerance. Contrary to our predictions, the acclimatory responses of crickets were unrelated to the magnitude or type of thermal variation. Furthermore, acclimation of performance was not ubiquitous among traits. We recommend additional studies of acclimation in fluctuating environments to assess the generality of these findings.
Validating a new device for measuring tear evaporation rates.
Rohit, Athira; Ehrmann, Klaus; Naduvilath, Thomas; Willcox, Mark; Stapleton, Fiona
2014-01-01
To calibrate and validate a commercially available dermatology instrument to measure tear evaporation rate of contact lens wearers. A dermatology instrument was modified by attaching a swim goggle cup such that the cup sealed around the eye socket. Results for the unmodified instrument are dependent on probe area and enclosed volume. Calibration curves were established using a model eye, to account for individual variations in chamber volume and exposed area. Fifteen participants were recruited and the study included a contact lens wear and a no contact lens wear stage. Day and diurnal variation of the measurements were assessed by taking the measurement three times a day over 2 days. The coefficient of repeatability of the measurement was calculated and a linear mixed model assessed the influence of humidity, temperature, contact lens wear, day and diurnal variations on tear evaporation rate. The associations between variables were assessed using Pearson correlation coefficient. Absolute evaporation rates with and without contact lens wear were calculated based on the new calibration. The measurements were most repeatable during the evening with no lens wear (COR = 49 g m⁻² h) and least repeatable during the evening with contact lens wear (COR = 93 g m⁻² h). Humidity (p = 0.007), and contact lens wear (p < 0.01), significantly affected the tear evaporation rate. However, temperature (p = 0.54) diurnal variation (p = 0.85) and different days (p = 0.65) had no significant effect after controlling for humidity. Tear evaporation rates can be measured using a modified dermatology instrument. Measurements were higher and more variable with lens wear consistent with previous literature. Control of environmental conditions is important as a higher humidity results in a reduced evaporation rate. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
Udaka, Hiroko; Ueda, Chiaki; Goto, Shin G
2010-12-01
In this study, we investigated the physiological mechanisms underlying temperature tolerance using Drosophila melanogaster lines with rapid, intermediate, or slow recovery from heat or chill coma that were established by artificial selection or by free recombination without selection. Specifically, we focused on the relationships among their recovery from heat or chill coma, survival after severe heat or cold, and survival enhanced by rapid cold hardening (RCH) or heat hardening. The recovery time from heat coma was not related to the survival rate after severe heat. The line with rapid recovery from chill coma showed a higher survival rate after severe cold exposure, and therefore the same mechanisms are likely to underlie these phenotypes. The recovery time from chill coma and survival rate after severe cold were unrelated to RCH-enhanced survival. We also examined the expression of two genes, Heat-shock protein 70 (Hsp70) and Frost, in these lines to understand the contribution of these stress-inducible genes to intraspecific variation in recovery from temperature coma. The line showing rapid recovery from heat coma did not exhibit higher expression of Hsp70 and Frost. In addition, Hsp70 and Frost transcription levels were not correlated with the recovery time from chill coma. Thus, Hsp70 and Frost transcriptional regulation was not involved in the intraspecific variation in recovery from temperature coma. Copyright © 2010 Elsevier Ltd. All rights reserved.
Acid Hydrolysis of Trioxalatocobaltate (III) Ion
ERIC Educational Resources Information Center
Wiggans, P. W.
1975-01-01
Describes an investigation involving acid hydrolysis and using both volumetric and kinetic techniques. Presents examples of the determination of the rate constant and its variation with temperature. (GS)
Effects of simulated warming on soil respiration to XiaoPo lake
NASA Astrophysics Data System (ADS)
Zhao, Shuangkai; Chen, Kelong; Wu, Chengyong; Mao, Yahui
2018-02-01
The main flux of carbon cycling in terrestrial and atmospheric ecosystems is soil respiration, and soil respiration is one of the main ways of soil carbon output. This is of great significance to explore the dynamic changes of soil respiration rate and its effect on temperature rise, and the correlation between environmental factors and soil respiration. In this study, we used the open soil carbon flux measurement system (LI-8100, LI-COR, NE) in the experimental area of the XiaoPo Lake wetland in the Qinghai Lake Basin, and the Kobresia (Rs) were measured, and the soil respiration was simulated by simulated temperature (OTC) and natural state. The results showed that the temperature of 5 cm soil was 1.37 °C higher than that of the control during the experiment, and the effect of warming was obvious. The respiration rate of soil under warming and natural conditions showed obvious diurnal variation and monthly variation. The effect of warming on soil respiration rate was promoted and the effect of precipitation on soil respiration rate was inhibited. Further studies have shown that the relationship between soil respiration and 5 cm soil temperature under the control and warming treatments can be described by the exponential equation, and the correlation analysis between the two plots shows a very significant exponential relationship (p < 0.001). The warming treatment not only increased the Q10 value of soil respiration rate, but also increased the sensitivity of soil respiration rate. The relationship between soil respiration and soil moisture can be explained by the quadratic linear equation (p < 0.05). It can be concluded that under the condition of sufficient rainfall, the soil temperature is the main influencing factor of soil respiration in this region.
The model of the composition of the Martian atmosphere
NASA Technical Reports Server (NTRS)
Izakov, M. N.; Krasitskiy, O. P.
1977-01-01
Global mean distributions of Martian atmospheric components concentrations from the planet's surface up to an altitude of 250 km are calculated. Improved data on the turbulent mixing coefficient, as a function of altitude, on temperature distribution and on chemical and photochemical reaction rates are used. The model data agree well with available measurements of some components concentrations. Variations of composition due to long-period variations of temperature, moisture and turbulent mixing are investigated. The relative significance of different catalytic cycles and the important role of excited atoms 0 (d-1) are revealed.
Oil slick studies using photographic and multispectral scanner data.
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.; Macintyre, W. G.; Penney, M. E.; Oberholtzer, J. D.
1971-01-01
Field studies of spills of Nos. 6 (Bunker C), 4, and 2 fuel oils and menhaden fish oil in the southern Chesapeake Bay have been supplemented with aerial photographic and multispectral scanner data. Thin films showed best in ultraviolet and blue bands and thick films in the green. Color film was effective for all thicknesses. Thermal infrared imagery provided clear detection, but required field temperature and thickness data to distinguish thickness/emissivity variations from temperature variations. Slick spreading rates agree with the theory of Fay (1969); further study of spreading is in progress.
Transpiration rates of urban trees, Aesculus chinensis.
Wang, Hua; Wang, Xiaoke; Zhao, Ping; Zheng, Hua; Ren, Yufen; Gao, Fuyuan; Ouyang, Zhiyun
2012-01-01
Transpiration patterns of Aesculus chinensis in relation to explanatory variables in the microclimatic, air quality, and biological phenomena categories were measured in Beijing, China using the thermal dissipation method. The highest transpiration rate measured as the sap flux density of the trees took place from 10:00 am to 13:00 pm in the summer and the lowest was found during nighttime in the winter. To sort out co-linearity, principal component analysis and variation and hierarchical partitioning methods were employed in data analyses. The evaporative demand index (EDI) consisting of air temperature, soil temperature, total radiation, vapor pressure deficit, and atmospheric ozone (O3), explained 68% and 80% of the hourly and daily variations of the tree transpiration, respectively. The independent and joint effects of EDI variables together with a three-variable joint effect exerted the greatest influences on the variance of transpiration rates. The independent effects of leaf area index and atmospheric O3 and their combined effect exhibited minor yet significant influences on tree transpiration rates.
Chemical Diversity as a Function of Temperature in Six Northern Diatom Species
Huseby, Siv; Degerlund, Maria; Eriksen, Gunilla K.; Ingebrigtsen, Richard A.; Eilertsen, Hans Chr.; Hansen, Espen
2013-01-01
In this study, we investigate how metabolic fingerprints are related to temperature. Six common northern temperate diatoms (Attheya longicornis, Chaetoceros socialis, Chaetoceros furcellatus, Porosira glacialis, Skeletonema marinoi, and Thalassiosira gravida) were cultivated at two different temperatures, 0.5 and 8.5 °C. To exclude metabolic variations due to differences in growth rates, the growth rates were kept similar by performing the experiments under light limited conditions but in exponential growth phase. Growth rates and maximum quantum yield of photosynthesis were measured and interpreted as physiological variables, and metabolic fingerprints were acquired by high-resolution mass spectrometry. The chemical diversity varied substantially between the two temperatures for the tested species, ranging from 31% similarity for C. furcellatus and P. glacialis to 81% similarity for A. longicornis. The chemical diversity was generally highest at the lowest temperature. PMID:24177671
Real versus Artificial Variation in the Thermal Sensitivity of Biological Traits.
Pawar, Samraat; Dell, Anthony I; Savage, Van M; Knies, Jennifer L
2016-02-01
Whether the thermal sensitivity of an organism's traits follows the simple Boltzmann-Arrhenius model remains a contentious issue that centers around consideration of its operational temperature range and whether the sensitivity corresponds to one or a few underlying rate-limiting enzymes. Resolving this issue is crucial, because mechanistic models for temperature dependence of traits are required to predict the biological effects of climate change. Here, by combining theory with data on 1,085 thermal responses from a wide range of traits and organisms, we show that substantial variation in thermal sensitivity (activation energy) estimates can arise simply because of variation in the range of measured temperatures. Furthermore, when thermal responses deviate systematically from the Boltzmann-Arrhenius model, variation in measured temperature ranges across studies can bias estimated activation energy distributions toward higher mean, median, variance, and skewness. Remarkably, this bias alone can yield activation energies that encompass the range expected from biochemical reactions (from ~0.2 to 1.2 eV), making it difficult to establish whether a single activation energy appropriately captures thermal sensitivity. We provide guidelines and a simple equation for partially correcting for such artifacts. Our results have important implications for understanding the mechanistic basis of thermal responses of biological traits and for accurately modeling effects of variation in thermal sensitivity on responses of individuals, populations, and ecological communities to changing climatic temperatures.
NASA Astrophysics Data System (ADS)
Keppel-Aleks, G.; Butterfield, Z.; Doney, S. C.; Dlugokencky, E. J.; Miller, J.; Morton, D. C.
2017-12-01
Quantifying the climatic drivers of variations in atmospheric CO2 observations over a range of timescales is necessary to develop a mechanistic understanding of the global carbon cycle that will enable prediction of future changes. Here, we combine NOAA cooperative global air sampling network CO2 observations, remote sensing data, and a flux perturbation model to quantify the feedbacks between interannual variability in physical climate and the atmospheric CO2 growth rate. In particular, we focus on the differences between the 1997/1998 El Niño and the 2015/2016 El Niño during which atmospheric CO2 increased at an unprecedented rate. The flux perturbation model was trained on data from 1997 to 2012, and then used to predict regional atmospheric CO2 growth rate anomalies for the period from 2013 through 2016. Given gridded temperature anomalies from the Hadley Center's Climate Research Unit (CRU), precipitation anomalies from the Global Precipitation Climatology Project (GPCP), and fire emissions from the Global Fire Emissions Database (GFEDv4s), the model was able to the reproduce regional growth rate variations observed at marine boundary layer stations in the NOAA network, including the rapid CO2 growth rate in 2015/2016. The flux perturbation model output suggests that the carbon cycle responses differed for1997 and 2015 El Niño periods, with tropical precipitation anomalies causing a much larger net flux of CO2 to the atmosphere during the latter period, while direct fire emissions dominated the former. The flux perturbation model also suggests that high temperature stress in the Northern Hemisphere extratropics contributed almost one-third of the CO2 growth rate enhancement during the 2015 El Niño. We use satellite-based metrics for atmospheric column CO2, vegetation, and moisture to corroborate the regional El Niño impacts from the flux perturbation model. Finally, we discuss how these observational results and independent data on ocean air-sea flux anomalies, couched in an empirical model, may be useful for evaluating the fidelity of mechanistic land models.
NASA Astrophysics Data System (ADS)
Canbay, Canan Aksu; Polat, Tercan
2017-09-01
In this work the effects of the applied pressure on the characteristic transformation temperatures, the high temperature order-disorder phase transitions, the variation in diffraction peaks and the surface morphology of the CuAlMnNi shape memory alloy was investigated. The evolution of the transformation temperatures was studied by differential scanning calorimetry (DSC) with different heating and cooling rates. The differential thermal analysis measurements were performed to obtain the ordered-disordered phase transformations from room temperature to 900 °C. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the applied pressure and also the applied pressure affected the thermodynamic parameters. The activation energy of the sample according to applied pressure values calculated by Kissinger method. The structural changes of the samples were studied by X-ray diffraction (XRD) measurements and by optical microscope observations at room temperature.
40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperatures used in the tests and shall be checked at zero and at least one flow rate within ±3 percent of 16... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...
40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.
Code of Federal Regulations, 2011 CFR
2011-07-01
... temperatures used in the tests and shall be checked at zero and at least one flow rate within ±3 percent of 16... absolute difference calculated in Equation 15 of this paragraph (g)(4) must not exceed 0.3 (CV%) for each test run. (5) Ambient temperature measurement accuracy. (i) Calculate the absolute value of the...
NASA Astrophysics Data System (ADS)
Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.
2015-07-01
The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ~ 20-50 % depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37 % compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.
NASA Astrophysics Data System (ADS)
Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.
2015-03-01
The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5 and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ∼20-50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37% compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.
Cryptic impacts of temperature variability on amphibian immune function.
Terrell, Kimberly A; Quintero, Richard P; Murray, Suzan; Kleopfer, John D; Murphy, James B; Evans, Matthew J; Nissen, Bradley D; Gratwicke, Brian
2013-11-15
Ectothermic species living in temperate regions can experience rapid and potentially stressful changes in body temperature driven by abrupt weather changes. Yet, among amphibians, the physiological impacts of short-term temperature variation are largely unknown. Using an ex situ population of Cryptobranchus alleganiensis, an aquatic North American salamander, we tested the hypothesis that naturally occurring periods of temperature variation negatively impact amphibian health, either through direct effects on immune function or by increasing physiological stress. We exposed captive salamanders to repeated cycles of temperature fluctuations recorded in the population's natal stream and evaluated behavioral and physiological responses, including plasma complement activity (i.e. bacteria killing) against Pseudomonas aeruginosa, Escherichia coli and Aeromonas hydrophila. The best-fit model (ΔAICc=0, wi=0.9992) revealed 70% greater P. aeruginosa killing after exposure to variable temperatures and no evidence of thermal acclimation. The same model predicted 50% increased E. coli killing, but had weaker support (ΔAICc=1.8, wi=0.2882). In contrast, plasma defenses were ineffective against A. hydrophila, and other health indicators (leukocyte ratios, growth rates and behavioral patterns) were maintained at baseline values. Our data suggest that amphibians can tolerate, and even benefit from, natural patterns of rapid warming/cooling. Specifically, temperature variation can elicit increased activity of the innate immune system. This immune response may be adaptive in an unpredictable environment, and is undetectable by conventional health indicators (and hence considered cryptic). Our findings highlight the need to consider naturalistic patterns of temperature variation when predicting species' susceptibility to climate change.
Koehler, Kari; Center, Alyson; Cavender-Bares, Jeannine
2012-02-01
• It has long been hypothesized that species are limited to the north by minimum temperature and to the south by competition, resulting in a trade-off between freezing tolerance and growth rate. We investigated the extent to which the climatic origins of populations from four live oak species (Quercus series Virentes) were associated with freezing tolerance and growth rate, and whether species fitted a model of locally adapted populations, each with narrow climatic tolerances, or of broadly adapted populations with wide climatic tolerances. • Acorns from populations of four species across a tropical-temperate gradient were grown under common tropical and temperate conditions. Growth rate, seed mass, and leaf and stem freezing traits were compared with source minimum temperatures. • Maximum growth rates under tropical conditions were negatively correlated with freezing tolerance under temperate conditions. The minimum source temperature predicted the freezing tolerance of populations under temperate conditions. The tropical species Q. oleoides was differentiated from the three temperate species, and variation among species was greater than among populations. • The trade-off between freezing tolerance and growth rate supports the range limit hypothesis. Limited variation within species indicates that the distributions of species may be driven more strongly by broad climatic factors than by highly local conditions. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Near-surface temperature lapse rates in a mountainous catchment in the Chilean Andes
NASA Astrophysics Data System (ADS)
Ayala; Schauwecker, S.; Pellicciotti, F.; McPhee, J. P.
2011-12-01
In mountainous areas, and in the Chilean Andes in particular, the irregular and sparse distribution of recording stations resolves insufficiently the variability of climatic factors such as precipitation, temperature and relative humidity. Assumptions about air temperature variability in space and time have a strong effect on the performance of hydrologic models that represent snow processes such as accumulation and ablation. These processes have large diurnal variations, and assumptions that average over longer time periods (days, weeks or months) may reduce the predictive capacity of these models under different climatic conditions from those for which they were calibrated. They also introduce large uncertainties when such models are used to predict processes with strong subdiurnal variability such as snowmelt dynamics. In many applications and modeling exercises, temperature is assumed to decrease linearly with elevation, using the free-air moist adiabatic lapse rate (MALR: 0.0065°C/m). Little evidence is provided for this assumption, however, and recent studies have shown that use of lapse rates that are uniform in space and constant in time is not appropriate. To explore the validity of this approach, near-surface (2 m) lapse rates were calculated and analyzed at different temporal resolution, based on a new data set of spatially distributed temperature sensors setup in a high elevation catchment of the dry Andes of Central Chile (approx. 33°S). Five minutes temperature data were collected between January 2011 and April 2011 in the Ojos de Agua catchment, using two Automatic Weather Stations (AWSs) and 13 T-loggers (Hobo H8 Pro Temp with external data logger), ranging in altitude from 2230 to 3590 m.s.l.. The entire catchment was snow free during our experiment. We use this unique data set to understand the main controls over temperature variability in time and space, and test whether lapse rates can be used to describe the spatial variations of air temperature in a high elevation catchment. Our main result is that the assumption of a MALR is appropriate to describe the average variability of temperature over the entire measurement period (and possibly for daily scales), but that hourly near-surface lapse rates vary considerably and can deviate strongly from the MALR. This diurnal variability in lapse rates is associated with changes in wind direction and variations in wind velocity. Shallow lapse rates, in particular, occur during the morning, in correspondence to low wind speeds and change in wind direction from katabatic wind to valley wind and are associated with a weaker correlation between air temperature and elevation, while steeper lapse rates (meaning by this that temperature decreases more with elevation) closer to the MALR are typical of the afternoon hours from 13.00 on (and correspond to high wind speed), and are representative of a more linear dependency between air temperature and elevation. The steepest LRs, however, occur in the evening at 20.00-21.00, when wind velocity drops again and wind direction changes from valley wind to katabatic wind. It is clear that the wind regime is the main controls on LRs variability, and it is important to validate these findings with data sets from a second season.
Oliphant, Andrew; Hauton, Chris; Thatje, Sven
2013-01-01
Variations in larval instar number are common among arthropods. Here, we assess the implications of temperature-mediated variations in larval instar number for larval development time, larval growth rates, and juvenile dry weight within the palaemonid shrimp, Palaemonetes varians. In contrast with previous literature, which focuses on terrestrial arthropods, particularly model and pest species often of laboratory lines, we use wild shrimp, which differ in their life history from previous models. Newly-hatched P. varians larvae were first reared at 5, 10, 17, 25, and 30°C to assess their thermal scope for development. Larvae developed at 17, 25, and 30°C. At higher temperatures, larvae developed through fewer larval instars. Two dominant developmental pathways were observed; a short pathway of four instars and a long pathway of five instars. Longer developmental pathways of six to seven instars were rarely observed (mostly at lower temperatures) and consisted of additional instars as ‘repeat’ instars; i.e. little developmental advance over the preceding instar. To assess the implications of temperature-mediated variation in larval instar number, newly-hatched larvae were then reared at 15, 20, and 25°C. Again, the proportion of larvae developing through four instars increased with temperature. At all temperatures, larval development time and juvenile dry weight were greater for larvae developing through five instars. Importantly, because of the increasing proportion of larvae developing through four instars with increasing temperature, larval traits associated with this pathway (reduced development time and juvenile dry weight) became more dominant. As a consequence of increasing growth rate with temperature, and the shift in the proportion of larvae developing through four instars, juvenile dry weight was greatest at intermediate temperatures (20°C). We conclude that at settlement P. varians juveniles do not follow the temperature-size rule; this is of importance for life-history ecology in response to environmental change, as well as for aquaculture applications. PMID:24069450
Oliphant, Andrew; Hauton, Chris; Thatje, Sven
2013-01-01
Variations in larval instar number are common among arthropods. Here, we assess the implications of temperature-mediated variations in larval instar number for larval development time, larval growth rates, and juvenile dry weight within the palaemonid shrimp, Palaemonetes varians. In contrast with previous literature, which focuses on terrestrial arthropods, particularly model and pest species often of laboratory lines, we use wild shrimp, which differ in their life history from previous models. Newly-hatched P. varians larvae were first reared at 5, 10, 17, 25, and 30 °C to assess their thermal scope for development. Larvae developed at 17, 25, and 30 °C. At higher temperatures, larvae developed through fewer larval instars. Two dominant developmental pathways were observed; a short pathway of four instars and a long pathway of five instars. Longer developmental pathways of six to seven instars were rarely observed (mostly at lower temperatures) and consisted of additional instars as 'repeat' instars; i.e. little developmental advance over the preceding instar. To assess the implications of temperature-mediated variation in larval instar number, newly-hatched larvae were then reared at 15, 20, and 25 °C. Again, the proportion of larvae developing through four instars increased with temperature. At all temperatures, larval development time and juvenile dry weight were greater for larvae developing through five instars. Importantly, because of the increasing proportion of larvae developing through four instars with increasing temperature, larval traits associated with this pathway (reduced development time and juvenile dry weight) became more dominant. As a consequence of increasing growth rate with temperature, and the shift in the proportion of larvae developing through four instars, juvenile dry weight was greatest at intermediate temperatures (20 °C). We conclude that at settlement P. varians juveniles do not follow the temperature-size rule; this is of importance for life-history ecology in response to environmental change, as well as for aquaculture applications.
NASA Astrophysics Data System (ADS)
Muench, Philip James
Rates in frozen glycerin/water solutions at temperatures between 1.4 K and 20 K are reported for a copper-containing protein, azurin, and a cobalt-containing biomolecular complex, vitamin B_{rm 12r}, the paramagnetic product of the photolysis of coenzyme B_{12}. Results are interpreted in terms of a spectral dimensionality. Rates are also reported for nitrosyl ferrous myoglobin in frozen water solution, which exhibits a dominant one-phonon relaxation process up to 20 K and thus does not reveal spectral dimensionality. The anomalous variation of rate with temperature observed in several iron-containing proteins is not conspicuous here. In a model two-phonon mechanism of relaxation, temperature dependence is fixed by a spectral dimensionality, m, which specifies the variation of vibrational density of states with frequency rho(nu ) ~ nu ^{rm m-1} and is named in analogy with the Debye density of states in 1-, 2-, and 3-dimensional crystals. At sufficiently high temperatures, a non-resonant two-phonon process (Raman) should dominate the relaxation of a paramagnetic ion unless low-lying (under ^{~}70 cm^ {-1}) electronic states are present, as in many rare earths and in high spin ferric complexes, including many ferric proteins. The temperature dependence of the Raman rate for a Kramers ion (odd number of electrons) is T^{rm 3+2m} if temperature is sufficiently lower than Theta = hnu_{rm max} /k, the Debye temperature. The values of m from relaxation data on frozen solutions of a protein have sometimes been dependent upon solvent conditions. The maximum values of m for heme proteins, iron-sulfur proteins, and one copper -and-iron-containing protein, have ranged from about 1.3 to 1.8. Pulse saturation/recovery was used. The recoveries were not exponential, but rates were estimated from semilogarithmic displays of signals or from numerical fitting. The temperature dependence of the rates for azurin between 1.5 K and 22 K can be fit with a spectral dimensionality of 3 and a rather low Debye temperature near 69 K, in contrast to iron proteins. Relaxation of vitamin B_{ rm 12r} differed between samples, indicating varied photolysis or freezing. The Raman relaxation was well fit by a simple power law in temperature, but the values of m varied from 1.14 to 1.48 between samples.
Membrane reactor for water detritiation: a parametric study on operating parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascarade, J.; Liger, K.; Troulay, M.
2015-03-15
This paper presents the results of a parametric study done on a single stage finger-type packed-bed membrane reactor (PBMR) used for heavy water vapor de-deuteration. Parametric studies have been done on 3 operating parameters which are: the membrane temperature, the total feed flow rate and the feed composition through D{sub 2}O content variations. Thanks to mass spectrometer analysis of streams leaving the PBMR, speciation of deuterated species was achieved. Measurement of the amounts of each molecular component allowed the calculation of reaction quotient at the packed-bed outlet. While temperature variation mainly influences permeation efficiency, feed flow rate perturbation reveals dependencemore » of conversion and permeation properties to contact time between catalyst and reacting mixture. The study shows that isotopic exchange reactions occurring on the catalyst particles surface are not thermodynamically balanced. Moreover, the variation of the heavy water content in the feed exhibits competition between permeation and conversion kinetics.« less
[Transpiration of Choerospondias axillaris in agro-forestrial system and its affecting factors].
Zhao, Ying; Zhang, Bin; Zhao, Huachun; Wang, Mingzhu
2005-11-01
Measurement of transpiration is essential to assess plant water use efficiency. Applying Grainer method, this paper measured the sap flow of Choerospondias axillaries in an agro-forestrial system, aimed to evaluate the effects of intercropping and pruning on the diurnal variation of transpiration, and to relate the transpiration rate with climatic factors. The results showed that the diurnal variation of Choerospondias arillaries transpiration rate appeared in parabola, low in the morning and evening, and high at noon. The transpiration rate was closely related to leaf stomatal conductivity and soil water potential, especially the water potential in 100 cm soil depth (R = 0.737). The transpiration rate of Choerospondias axillaries was increased by about 40% approximately 160% in agro-forestrial system through the changes in regional environment and in the deep soil water use by tree. Correlation analysis and multi-factor successive regression analysis indicated that the transpiration was controlled by ray radiation intensity, air temperature and ground temperature, followed by the difference between saturated and actual vapor pressure and the wind speed. A statistical model for calculating the sap flow rate by micrometeorological factors was also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wunschel, David S.; Hill, Eric A.; Mclean, Jeffrey S.
Rapid identification of microorganisms using matrix assisted laser desorption/ionization (MALDI) is a rapidly growing area of research due to the minimal sample preparation, speed of analysis and broad applicability of the technique. This approach relies on protein markers to identify microorganisms. Therefore, variations in culture conditions that affect protein expression may limit the ability of MALDI-MS to correctly identify an organism. We have expanded our efforts to investigate the effects of culture conditions on MALDI-MS protein signatures to examine the effects of pH, growth rate and temperature. Continuous cultures maintained in bioreactors were used to maintain specific growth rates andmore » pH for E. coli HB 101. Despite measurable morphological differences between growth conditions, the MALDI-MS data associated each culture with the appropriate library entry (E. coli HB 101 generated using batch culture on a LB media), independent of pH or growth rate. The lone exception was for a biofilm sample collected from one of the reactors which had no appreciable degree of association with the correct library entry. Within the data set for planktonic organisms, variations in growth rate created the largest variation between fingerprints. The effect of varying growth temperature on Y. enterocolitica was also examined. While the anticipated effects on phenotype were observed, the MALDI-MS technique provided the proper identification.« less
Physiological and Psychological Evaluation of Strength of Auditory Stimulus
NASA Astrophysics Data System (ADS)
Umehara, Susumu; Asano, Hirotoshi; Ide, Hideto
In this study, we evaluated the pleasantness or unpleasantness experienced by human beings depending on the intensity of sound; using the nasal skin temperature that was determined using thermograms obtained from an infrared thermograph. Many studies have been carried out on the influence of sound intensity on human beings. However, the effect of sound has not been evaluated on the basis of facial skin temperature. We evaluated the experienced with variations in changes in the pleasure or displeasure noise; this was evaluated on the basis of facial skin temperature, electroencephalogram, and heart rate variability. The experimental results showed that the effect of variations in the sound intensity on the changes in the pleasure or displeasure experienced by human beings can be quantitatively evaluated on the basis of facial skin temperature.
Do, Hyojin; Lim, Juntaek; Shin, Seung Gu; Wu, Yi-Ju; Ahn, Johng-Hwa; Hwang, Seokhwan
2008-11-01
For biological nitrification, a set of experiments were carried out to approximate the response of lag period along with ammonia oxidation rate with respect to different concentrations of cyanide (CN-) and ammonia-oxidizing bacteria (AOB), and temperature variation in laboratory-scale batch reactors. The effects of simultaneous changes in these three factors on ammonia oxidation were quantitatively estimated and modeled using response surface analysis. The lag period and the ammonia oxidation rate responded differently to changes in the three factors. The lag period and the ammonia oxidation rate were significantly affected by the CN- and AOB concentrations, while temperature changes only affected the ammonia oxidation rate. The increase of AOB concentration and temperature alleviated the inhibition effect of cyanide on ammonia oxidation. The statistical method used in this study can be extended to estimate the quantitative effects of other environmental factors that can change simultaneously.
Amburgey, Staci M.; Miller, David A. W.; Grant, Evan H. Campbell; Rittenhouse, Tracy A. G.; Benard, Michael F.; Richardson, Jonathan L.; Urban, Mark C.; Hughson, Ward; Brand, Adrianne B,; Davis, Christopher J.; Hardin, Carmen R.; Paton, Peter W. C.; Raithel, Christopher J.; Relyea, Rick A.; Scott, A. Floyd; Skelly, David K.; Skidds, Dennis E.; Smith, Charles K.; Werner, Earl E.
2018-01-01
Species’ distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species’ climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long-term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long-term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species’ climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species-interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the need to measure demographic responses to changing climate.
Modeling of the static recrystallization for 7055 aluminum alloy by cellular automaton
NASA Astrophysics Data System (ADS)
Zhang, Tao; Lu, Shi-hong; Zhang, Jia-bin; Li, Zheng-fang; Chen, Peng; Gong, Hai; Wu, Yun-xin
2017-09-01
In order to simulate the flow behavior and microstructure evolution during the pass interval period of the multi-pass deformation process, models of static recovery (SR) and static recrystallization (SRX) by the cellular automaton (CA) method for the 7055 aluminum alloy were established. Double-pass hot compression tests were conducted to acquire flow stress and microstructure variation during the pass interval period. With the basis of the material constants obtained from the compression tests, models of the SR, incubation period, nucleation rate and grain growth were fitted by least square method. A model of the grain topology and a statistical computation of the CA results were also introduced. The effects of the pass interval time, temperature, strain, strain rate and initial grain size on the microstructure variation for the SRX of the 7055 aluminum alloy were studied. The results show that a long pass interval time, large strain, high temperature and large strain rate are beneficial for finer grains during the pass interval period. The stable size of the static recrystallized grain is not concerned with the initial grain size, but mainly depends on the strain rate and temperature. The SRX plays a vital role in grain refinement, while the SR has no effect on the variation of microstructure morphology. Using flow stress and microstructure comparisons of the simulated and experimental CA results, the established CA models can accurately predict the flow stress and microstructure evolution during the pass interval period, and provide guidance for the selection of optimized parameters for the multi-pass deformation process.
NASA Astrophysics Data System (ADS)
Yulianto, Muhamad; Agustina, Sri Endah; Hartulistiyoso, Edy; Nelwan, Leopold Oscar; Nurlela
2017-03-01
Indonesia is one of tropical country in the world, therefore biomass product can find a lot in Indonesia. In the other side, waste of agricultural product is one of biomass resources which is can be converting to energy using Combine Heat Power for the example. In this paper, will be discussed about the temperature characterization due to influence of feeding rate and air flow rate. The contribution of this paper will show the temperature achievement of flue gas as the result of direct combustion in a stove. The research conducted using coconut shell as raw fuel material with varying feed rate and air flow rate. In this research also use the excess air to know the effect. The result show that the temperature of flue gas in direct combustion of coconut shell can reach of 520°C and temperature at combustion chamber reach 840°C. This achievement is occurring in the certain variation of experiment.
Strain Recovery by TiNi Element Under Fast Heating
NASA Astrophysics Data System (ADS)
Volkov, Aleksandr E.; Miszuris, Wiktoria; Volkova, Natalia A.
2018-03-01
A theoretical and experimental study of strain recovery under fast heating of a shape memory alloy (SMA) rod preliminarily stretched in the martensitic state is carried out. Two theoretical models are considered: instantaneous heating and heating with temperature variation during a finite time. In the first case, it is supposed that the straight SMA rod experiences an instantaneous reverse martensitic transformation, and in the second the transformation is supposed to progress at a rate corresponding to the temperature rate. Analytical expression for the time dependence of the rod free-end displacement is obtained. In the experiment, a wire specimen made of titanium-nickel SMA was heated by a short impulse of electric current. The variation of the specimen length in time was registered. Thus, it has been shown that the minimum operation time of an SMA actuator (time needed for the strain recovery) can be reduced to 20 µs. Comparison of the theoretical results with the experimental ones leads to the conclusion that the displacement variation in time is controlled by the rate of heating and the inertia of the specimen. The incubation time of the martensitic transformation on the microscale apparently is estimated as less than 1 µs.
Strain Recovery by TiNi Element Under Fast Heating
NASA Astrophysics Data System (ADS)
Volkov, Aleksandr E.; Miszuris, Wiktoria; Volkova, Natalia A.
2018-01-01
A theoretical and experimental study of strain recovery under fast heating of a shape memory alloy (SMA) rod preliminarily stretched in the martensitic state is carried out. Two theoretical models are considered: instantaneous heating and heating with temperature variation during a finite time. In the first case, it is supposed that the straight SMA rod experiences an instantaneous reverse martensitic transformation, and in the second the transformation is supposed to progress at a rate corresponding to the temperature rate. Analytical expression for the time dependence of the rod free-end displacement is obtained. In the experiment, a wire specimen made of titanium-nickel SMA was heated by a short impulse of electric current. The variation of the specimen length in time was registered. Thus, it has been shown that the minimum operation time of an SMA actuator (time needed for the strain recovery) can be reduced to 20 µs. Comparison of the theoretical results with the experimental ones leads to the conclusion that the displacement variation in time is controlled by the rate of heating and the inertia of the specimen. The incubation time of the martensitic transformation on the microscale apparently is estimated as less than 1 µs.
Chen, Qi; Li, Ni; Wang, Xing; Ma, Li; Huang, Jian-Bin; Huang, Guo-Hua
2017-01-01
Parapoynx crisonalis is an important pest of many aquatic vegetables including water chestnuts. Understanding the relationship between temperature variations and the population growth rates of P. crisonalis is essential to predicting its population dynamics in water chestnuts ponds. These relationships were examined in this study based on the age-stage, two-sex life table of P. crisonalis developed in the laboratory at 21, 24, 27, 30, 33 and 36°C. The results showed that the values of Sxj (age-stage–specific survival rate), fxj (age-stage-specific fecundity), lx (age specific survival rate) and mx (age-specific fecundity) increased as the temperature rose from 21 to 27°C, then decreased from 30 to 36°C. Temperature also had a significant effect on the net reproductive rate (R0), gross reproductive rate (GRR), intrinsic rate of increase (r) and finite rate of increase (λ). The value of these parameters were at low levels at 21, 33, and 36°C. Further, the r value decreased as the temperature rose from 24 to 30°C, while the GRR reached its highest level at 27°C. The results indicated that optimal growth and development of P. crisonalis occurred at temperatures between 24°C to 30°C when compared to the lowest temperature (21°C) and higher temperatures of 33°C and 36°C. PMID:28264022
Radiative energy balance of the Venus mesosphere
NASA Astrophysics Data System (ADS)
Haus, R.; Goering, H.
1990-03-01
An accurate radiative transfer model for line-by-line gaseous absorption, as well as for cloud absorption and multiple scattering, is used in the present calculation of solar heating and thermal cooling rates for standard temperature profiles and temperatures yielded by the Venera 15 Fourier Spectrometer Experiment. A strong dependency is noted for heating and cooling rates on cloud-structure variations. The Venus mesosphere is characterized by main cloud-cover heating and overlying-haze cooling. These results are applicable to Venus atmosphere dynamical models.
NASA Astrophysics Data System (ADS)
Zhang, Renping
2017-12-01
A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.
Kräuchi, Kurt; Konieczka, Katarzyna; Roescheisen-Weich, Corina; Gompper, Britta; Hauenstein, Daniela; Schoetzau, Andreas; Fraenkl, Stephan; Flammer, Josef
2014-02-01
Diurnal cycle variations in body-heat loss and heat production, and their resulting core body temperature (CBT), are relatively well investigated; however, little is known about their variations across the menstrual cycle under ambulatory conditions. The main purpose of this study was to determine whether menstrual cycle variations in distal and proximal skin temperatures exhibit similar patterns to those of diurnal variations, with lower internal heat conductance when CBT is high, i.e. during the luteal phase. Furthermore, we tested these relationships in two groups of women, with and without thermal discomfort of cold extremities (TDCE). In total, 19 healthy eumenorrheic women with regular menstrual cycles (28-32 days), 9 with habitual TDCE (ages 29 ± 1.5 year; BMI 20.1 ± 0.4) and 10 controls without these symptoms (CON: aged 27 ± 0.8 year; BMI 22.7 ± 0.6; p < 0.004 different to TDCE) took part in the study. Twenty-eight days continuous ambulatory skin temperature measurements of distal (mean of hands and feet) and proximal (mean of sternum and infraclavicular regions) skin regions, thighs, and calves were carried out under real-life, ambulatory conditions (i-Buttons® skin probes, sampling rate: 2.5 min). The distal minus proximal skin temperature gradient (DPG) provided a valuable measure for heat redistribution from the core to the shell, and, hence, for internal heat conduction. Additionally, basal body temperature was measured sublingually directly after waking up in bed. Mean diurnal amplitudes in skin temperatures increased from proximal to distal skin regions and the 24-h mean values were inversely related. TDCE compared to CON showed significantly lower hand skin temperatures and DPG during daytime. However, menstrual cycle phase did not modify these diurnal patterns, indicating that menstrual and diurnal cycle variations in skin temperatures reveal additive effects. Most striking was the finding that all measured skin temperatures, together with basal body temperature, revealed a similar menstrual cycle variation (independent of BMI), with highest and lowest values during the luteal and follicular phases, respectively. These findings lead to the conclusion that in contrast to diurnal cycle, variations in CBT variation across the menstrual cycle cannot be explained by changes in internal heat conduction under ambulatory conditions. Although no measurements of metabolic heat production were carried out increased metabolic heat generation during the luteal phase seems to be the most plausible explanation for similar body temperature increases.
Seasonal variation of cold-induced vasooscillation on rabbit ear central artery
NASA Astrophysics Data System (ADS)
Takeoka, Michiko
1990-09-01
We studied the seasonal variation of vasooscillation of a rabbit ear central artery induced by exposure of the earlobes to-7°C liquid. The data were collected over a period of 10 years and analyzed by month. a) The index of arterial temperature fluctuation (IATF) i.e., activation index of cold-induced vasooscillatior (CIVO), ranged from 114.5±26.7 (mean±SE) in January to 386.7±36.1 in June. A significant variation over all 12 months was revealed by analysis of variance ( P<0.01). The values measured in May (317.1±47.3), June (386.7±36.1), and July (315.1±36.0) were significantly larger than those of other months. b) The monthly IATFs were correlated with the open air temperatures ( r=0.7017, P<0.05); however, the peak IATF occurred in June, while the peak open air temperature was in August. c) There was no seasonal variation of the arterial temperature either before or at 18 20 min after-7°C immersion. Arterial temperature was not related to IATF during-7°C exposure. d) When measuring-site temperature was steady, the thermistor temperature changed in parallel with the output from a laser blood volume meter. e) The CIVO was independent of systemic blood pressure and heart rate, which suggested that the occurrence of CIVO was regulated by changes in local vascular resistance.
Solar gravitational energy and luminosity variations
NASA Astrophysics Data System (ADS)
Fazel, Z.; Rozelot, J. P.; Lefebvre, S.; Ajabshirizadeh, A.; Pireaux, S.
2008-02-01
Due to non-homogeneous mass distribution and non-uniform velocity rate inside the Sun, the solar outer shape is distorted in latitude. In this paper, we analyze the consequences of a temporal change in this figure on the luminosity. To do so, we use the Total Solar Irradiance (TSI) as an indicator of luminosity. Considering that most of the authors have explained the largest part of the TSI modulation with magnetic network (spots and faculae) but not the whole, we could set constraints on radius and effective temperature variations. Our best fit of modelled to observed irradiance gives d T = 1.2 K at d R = 10 mas. However computations show that the amplitude of solar irradiance modulation is very sensitive to photospheric temperature variations. In order to understand discrepancies between our best fit and recent observations of [Livingston, W.C., Gray, D., Wallace, L., White, O.R., 2005. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (Eds.), Large-scale Structures and their Role in Solar Activity, ASP Conference Series, vol. 346. Astronomical Society of the Pacific, p. 353], showing no effective surface temperature variation during the solar cycle, we investigated small effective temperature variation in irradiance modeling. We emphasized a phase-shift (correlated or anticorrelated radius and irradiance variations) in the (d R, d T)-parameter plane. We further obtained an upper limit on the amplitude of cyclic solar radius variations between 3.87 and 5.83 km, deduced from the gravitational energy variations. Our estimate is consistent with both observations of the helioseismic radius through the analysis of f-mode frequencies and observations of the basal photospheric temperature at Kitt Peak. Finally, we suggest a mechanism to explain weak changes in the solar shape due to variation of magnetic pressure which modifies the granules size. This mechanism is supported by an estimate of the asphericity-luminosity parameter, w = -7.61 × 10 -3, which implies an effectiveness of convective heat transfer only in very outer layers of the Sun.
NASA Astrophysics Data System (ADS)
Sanad, M. R.
2015-11-01
We present the first phase resolved ultraviolet spectroscopic study of V Sge in high, intermediate and low states observed with the Hubble Space Telescope High Resolution Spectrograph (HST HRS) and International Ultraviolet Explorer (IUE) during the period 1978-1996 to diagnose the ultraviolet fluxes of C IV 1550 Å and He II 1640 Å emission lines originating in the accretion disk during different orbital phases. Different spectra showing the variations in line fluxes at different orbital phases are presented. The reddening of V Sge is determined from the 2200 Å feature. We concentrated on calculating the line fluxes of C IV & He II emission lines. From HST and IUE data, we derived an accretion luminosity and an accretion rate for V Sge. The average temperature of the outer rim of the accretion disk {˜}10000 K. Our results show that there are variations in line fluxes, accretion luminosities and accretion rates with time for V Sge. These variations are attributed to the variations of both density and temperature as a result of a changing rate of mass transfer from the secondary star to the white dwarf. These results from the HST and IUE observations are consistent with the binary model consisting of a white dwarf, a disk around the white dwarf, and a lobe-filling main-sequence companion (Hachisu & Kato, Astrophys. J. 598:527H, 2003).
NASA Technical Reports Server (NTRS)
Shanabarger, M. R.
1979-01-01
Measurements of the isothermal desorption rate of H2 chemisorbed onto polycrystalline nickel films made for temperatures spanning the Curie temperature of the nickel film are presented. Desorption kinetics were followed by measuring the decay of the change in resistance of the nickel film brought about by hydrogen chemisorption after gas-phase H2 had been rapidly evacuated. The desorption rate is found to undergo an anomalous decrease in the vicinity of the Curie temperature, accompanied by an increase in the desorption activation energy and the equilibrium constant for the chemisorbed hydrogen. The results are interpreted in terms of anomalous variations in rate constants for the formation of the precursor molecular adsorbed state and the chemisorbed atomic state due to the phase transition in the nickel. The changes in rate constants are also considered to be in qualitative agreement with theoretical predictions based on a spin coupling between the adatom and the magnetic substrate.
Helle, Samuli; Helama, Samuli; Lertola, Kalle
2009-11-01
1. Human sex ratio at birth at the population level has been suggested to vary according to exogenous stressors such as wars, ambient temperature, ecological disasters and economic crises, but their relative effects on birth sex ratio have not been investigated. It also remains unclear whether such associations represent environmental forcing or adaptive parental response, as parents may produce the sex that has better survival prospects and fitness in a given environmental challenge. 2. We examined the simultaneous role of wars, famine, ambient temperature, economic development and total mortality rate on the annual variation of offspring birth sex ratio and whether this variation, in turn, was related to sex-specific infant mortality rate in Finland during 1865-2003. 3. Our findings show an increased excess of male births during the World War II and during warm years. Instead, economic development, famine, short-lasting Finnish civil war and total mortality rate were not related to birth sex ratio. Moreover, we found no association between annual birth sex ratio and sex-biased infant mortality rate among the concurrent cohort. 4. Our results propose that some exogenous challenges like ambient temperature and war can skew human birth sex ratio and that these deviations likely represent environmental forcing rather than adaptive parental response to such challenges.
Identification method of laser gyro error model under changing physical field
NASA Astrophysics Data System (ADS)
Wang, Qingqing; Niu, Zhenzhong
2018-04-01
In this paper, the influence mechanism of temperature, temperature changing rate and temperature gradient on the inertial devices is studied. The two-order model of zero bias and the three-order model of the calibration factor of lster gyro under temperature variation are deduced. The calibration scheme of temperature error is designed, and the experiment is carried out. Two methods of stepwise regression analysis and BP neural network are used to identify the parameters of the temperature error model, and the effectiveness of the two methods is proved by the temperature error compensation.
Fujita, S; Obara, T; Tanaka, I; Yamauchi, C
1981-01-01
The relation of the rate of circulating air change to room temperature and relative humidity in animal quarters with a central air-conditioning system during heating and cooling seasons was investigated, with the results as follows: During the period of heating, the ambient temperature generally rose with a fall of relative humidity as the number of conditioned air changes per hour was increased. Vertical differences in temperature and humidity between levels of 0.5 and 1.5 m above the floor also diminished with increasing air change rate. This tendency was more conspicuous in small animals rooms with outer walls facing north and west. With increasing rate of air changes, the room temperature was prone to decline and the relative humidity to rise during the period of cooling. There were less vertical differences in temperature and humidity during this period. The velocity of air circulation within the animal quarters and its variations tended to increase progressively with increasing rate of ventilation, though the changes were modest.
Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery
NASA Astrophysics Data System (ADS)
Bandhauer, Todd M.; Garimella, Srinivas; Fuller, Thomas F.
2014-02-01
Lithium-ion batteries suffer from inherent thermal limitations (i.e., capacity fade and thermal runaway); thus, it is critical to understand heat generation experienced in the batteries under normal operation. In the current study, reversible and irreversible electrochemical heat generation rates were measured experimentally on a small commercially available C/LiFePO4 lithium-ion battery designed for high-rate applications. The battery was tested over a wide range of temperatures (10-60 °C) and discharge and charge rates (∼C/4-5C) to elucidate their effects. Two samples were tested in a specially designed wind tunnel to maintain constant battery surface temperature within a maximum variation of ±0.88 °C. A data normalization technique was employed to account for the observed capacity fade, which was largest at the highest rates. The heat rate was shown to increase with both increasing rate and decreasing temperature, and the reversible heat rate was shown to be significant even at the highest rate and temperature (7.4% at 5C and 55 °C). Results from cycling the battery using a dynamic power profile also showed that constant-current data predict the dynamic performance data well. In addition, the reversible heat rate in the dynamic simulation was shown to be significant, especially for charge-depleting HEV applications.
Aboulkas, A; Hammani, H; El Achaby, M; Bilal, E; Barakat, A; El Harfi, K
2017-11-01
The aim of the present work is to develop processes for the production of bio-oil and bio-char from algae waste using the pyrolysis at controlled conditions. The pyrolysis was carried out at different temperatures 400-600°C and different heating rates 5-50°C/min. The algal waste, bio-oil and bio-char were successfully characterized using Elemental analysis, Chemical composition, TGA, FTIR, 1 H NMR, GC-MS and SEM. At a temperature of 500°C and a heating rate of 10°C/min, the maximum yield of bio-oil and bio-char was found to be 24.10 and 44.01wt%, respectively, which was found to be strongly influenced by the temperature variation, and weakly affected by the heating rate variation. Results show that the bio-oil cannot be used as bio-fuel, but can be used as a source of value-added chemicals. On the other hand, the bio-char is a promising candidate for solid fuel applications and for the production of carbon materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ito, Shin-ichi; Rose, Kenneth A.; Megrey, Bernard A.; Schweigert, Jake; Hay, Douglas; Werner, Francisco E.; Aita, Maki Noguchi
2015-11-01
Pacific herring populations at eight North Pacific Rim locations were simulated to compare basin-wide geographic variations in age-specific growth due to environmental influences on marine productivity and population-specific responses to regime shifts. Temperature and zooplankton abundance from a three-dimensional lower-trophic ecosystem model (NEMURO: North Pacific Ecosystem Model for Understanding Regional Oceanography) simulation from 1948 to 2002 were used as inputs to a herring bioenergetics growth model. Herring populations from California, the west coast of Vancouver Island (WCVI), Prince William Sound (PWS), Togiak Alaska, the western Bering Sea (WBS), the Sea of Okhotsk (SO), Sakhalin, and Peter the Great Bay (PGB) were examined. The half-saturation coefficients of herring feeding were calibrated to climatological conditions at each of the eight locations to reproduce averaged size-at-age data. The depth of averaging used for water temperature and zooplankton, and the maximum consumption rate parameter, were made specific to each location. Using the calibrated half-saturation coefficients, the 1948-2002 period was then simulated using daily values of water temperature and zooplankton densities interpolated from monthly model output. To detect regime shifts in simulated temperatures, zooplankton and herring growth rates, we applied sequential t-test analyses on the 54 years of hindcast simulation values. The detected shifts of herring age-5 growth showed closest match (69%) to the regime shift years (1957/58, 1970/71, 1976/77, 1988/89, 1998/99). We explored relationships among locations using cluster and principal component analyses. The first principal component of water temperature showed good correspondence to the Pacific Decadal Oscillation and all zooplankton groups showed a pan-Pacific decrease after the 1976/77 regime shift. However, the first principal component of herring growth rate showed decreased growth at the SO, PWS, WCVI and California locations and increased growth at the Sakhalin, WBS and Togiak locations after 1977. The SO location belonged to the same cluster as the location in with the eastern North Pacific. The calibrated half-saturation coefficients affected the degree to which growth was sensitive to interannual variation in water temperature versus zooplankton. For example, the half-saturation values for the SO location resulted in very efficient feeding that shifted the sensitivity of herring growth from food to temperature. The model results demonstrate how geographic specificity of bioenergetics parameters, coupled with location-specific variation in temperature and food, can combine to determine local and regional responses of fish growth to climate forcing.
Rainfall effects on rare annual plants
Levine, J.M.; McEachern, A.K.; Cowan, C.
2008-01-01
Variation in climate is predicted to increase over much of the planet this century. Forecasting species persistence with climate change thus requires understanding of how populations respond to climate variability, and the mechanisms underlying this response. Variable rainfall is well known to drive fluctuations in annual plant populations, yet the degree to which population response is driven by between-year variation in germination cueing, water limitation or competitive suppression is poorly understood.We used demographic monitoring and population models to examine how three seed banking, rare annual plants of the California Channel Islands respond to natural variation in precipitation and their competitive environments. Island plants are particularly threatened by climate change because their current ranges are unlikely to overlap regions that are climatically favourable in the future.Species showed 9 to 100-fold between-year variation in plant density over the 5–12 years of censusing, including a severe drought and a wet El Niño year. During the drought, population sizes were low for all species. However, even in non-drought years, population sizes and per capita growth rates showed considerable temporal variation, variation that was uncorrelated with total rainfall. These population fluctuations were instead correlated with the temperature after the first major storm event of the season, a germination cue for annual plants.Temporal variation in the density of the focal species was uncorrelated with the total vegetative cover in the surrounding community, suggesting that variation in competitive environments does not strongly determine population fluctuations. At the same time, the uncorrelated responses of the focal species and their competitors to environmental variation may favour persistence via the storage effect.Population growth rate analyses suggested differential endangerment of the focal annuals. Elasticity analyses and life table response experiments indicated that variation in germination has the same potential as the seeds produced per germinant to drive variation in population growth rates, but only the former was clearly related to rainfall.Synthesis. Our work suggests that future changes in the timing and temperatures associated with the first major rains, acting through germination, may more strongly affect population persistence than changes in season-long rainfall.
Decay assessment through thermographic analysis in architectural and archaeological heritage
NASA Astrophysics Data System (ADS)
Gomez-Heras, Miguel; Martinez-Perez, Laura; Fort, Rafael; Alvarez de Buergo, Monica
2010-05-01
Any exposed stone-built structure is subject to thermal variations due to daily, seasonal and secular environmental temperature changes. Surface temperature is a function of air temperature (due to convective heat transfer) and of infrared radiation received through insolation. While convective heat transfer homogenizes surface temperature, stone response to insolation is much more complex and the temporal and spatial temperature differences across structures are enhanced. Surface temperature in stone-built structures will be affected by orientation, sunlight inclination and the complex patterns of light and shadows generated by the often intricate morphology of historical artefacts and structures. Surface temperature will also be affected by different material properties, such as albedo, thermal conductivity, transparency and absorbance to infrared radiation of minerals and rocks. Moisture and the occurrence of salts will also be a factor affecting surface temperatures. Surface temperatures may as well be affected by physical disruptions of rocks due to differences in thermal inertia generated by cracks and other discontinuities. Thermography is a non-invasive, non-destructive technique that measures temperature variations on the surface of a material. With this technique, surface temperature rates of change and their spatial variations can be analysed. This analysis may be used not only to evaluate the incidence of thermal decay as a factor that generates or enhances stone decay, but also to detect and evaluate other factors that affect the state of conservation of architectural and archaeological heritage, as for example moisture, salts or mechanical disruptions.
A time-dependent radiative model of HD 209458b
NASA Astrophysics Data System (ADS)
Iro, N.; Bézard, B.; Guillot, T.
2005-06-01
We present a time-dependent radiative model of the atmosphere of HD 209458b and investigate its thermal structure and chemical composition. In a first step, the stellar heating profile and radiative timescales were calculated under planet-averaged insolation conditions. We find that 99.99% of the incoming stellar flux has been absorbed before reaching the 7 bar level. Stellar photons cannot therefore penetrate deeply enough to explain the large radius of the planet. We derive a radiative time constant which increases with depth and reaches about 8 h at 0.1 bar and 2.3 days at 1 bar. Time-dependent temperature profiles were also calculated, in the limit of a zonal wind that is independent of height (i.e. solid-body rotation) and constant absorption coefficients. We predict day-night variations of the effective temperature of ~600 K, for an equatorial rotation rate of 1 km s-1, in good agreement with the predictions by Showmann & Guillot (2002). This rotation rate yields day-to-night temperature variations in excess of 600 K above the 0.1-bar level. These variations rapidly decrease with depth below the 1-bar level and become negligible below the ~5-bar level for rotation rates of at least 0.5 km s-1. At high altitudes (mbar pressures or less), the night temperatures are low enough to allow sodium to condense into Na2S. Synthetic transit spectra of the visible Na doublet show a much weaker sodium absorption on the morning limb than on the evening limb. The calculated dimming of the sodium feature during planetary transites agrees with the value reported by Charbonneau et al. (2002).
James M. Vose; Michael G. Ryan
2002-01-01
Autotrophic respiration may regulate how ecosystem productivity responds to changes in temperature, atmospheric [CO2], and N deposition. Estimates of autotrophic respiration are difficult for forest ecosystems, because of the large amount of biomass, different metabolic rates among tissues, and seasonal variation in respiration rates....
Thermodynamics constrains allometric scaling of optimal development time in insects.
Dillon, Michael E; Frazier, Melanie R
2013-01-01
Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the "hotter is better" hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes. The remaining unexplained variation in development time likely reflects additional ecological and evolutionary differences among insect species.
NASA Astrophysics Data System (ADS)
Dühnforth, M.; Anderson, R. S.; Colgan, W.
2012-04-01
The long-term pattern of glacial erosion in alpine valleys leads to characteristic longitudinal valley profiles. While landscape evolution models commonly take glacier sliding velocity to be the dominant control on erosion, the influence of spatial and temporal variations in glacier ice temperature on the efficiency of erosion over long timescales (>1 Ma) remains largely unexplored. Yet, the thermal field of a glacier can strongly influence the pattern of sliding. Temperate glaciers, with basal temperatures at the pressure melting point (PMP), slide whenever and wherever the glacial hydrology produces high water pressures. In contrast, in polythermal glaciers, erosion efficiency is strongly linked to basal ice temperature; when and where basal ice temperatures are below the PMP sliding, and hence erosion, are limited. We present results from numerical models in which we explore the influence of variations in glacier ice temperature on long-term glacial erosion processes in alpine valleys. These simulations are motivated by the persistent appeal of geomorphologists to polar glacial conditions to explain sites of unusually low glacial erosion rates. We employ a transient 1D (flowline) ice flow model that numerically solves the continuity equation for ice, and includes a depth-averaged approximation for longitudinal coupling stress. We prescribe separate winter and summer surface mass balance profiles: a capped elevation-dependent snowfall pattern in winter, and we capture both daily and seasonal oscillations in ablation using a positive degree day algorithm in summer. The steady-state ice temperature within the glacier is calculated using the conventional 2D (cross-sectional) heat equation (i.e. diffusion, advection and production terms) at a prescribed interval. The ice temperature model uses the surface temperature at the end of each melt season as the surface boundary condition, and a prescribed geothermal gradient as the basal boundary condition. Basal sliding is limited to sites where the basal ice is at the PMP. Glacial erosion rate is parameterized as a function of sliding velocity, which in turn depends upon a flotation fraction that is parameterized to account for annual variations in the glacial hydrologic system. We explore the long-term glacial erosion pattern when the landscape is subjected to different rock uplift rates, and to climates ranging from continental to maritime. Of specific interest to us are conditions that favor polythermal glaciers in which the basal ice at high elevations becomes cold. In such cases, rock uplift can outpace limited glacial erosion, allowing high peaks to escape from the "glacial buzzsaw" while basal ice at lower elevations remains at the PMP, allowing sliding and erosion. These simulations also allow a more formal assessment of the conditions under which cold basal ice can be invoked to explain low glacial erosion rates, and the conditions under which variations in rock erodibility may instead be invoked as the major control on erosion.
NASA Astrophysics Data System (ADS)
Boissard, C.; Chervier, F.; Dutot, A. L.
2007-08-01
Using a statistical approach based on artificial neural networks, an emission algorithm (ISO_LF) accounting for high (instantaneous) to low (seasonal) frequency variations was developed for isoprene. ISO_LF was optimised using an isoprene emission data base (ISO-DB) specifically designed for this work. ISO-DB consists of 1321 emission rates collected in the literature, together with 34 environmental variables, measured or assessed using NCDC (National Climatic Data Center) or NCEP (National Centers for Environmental Predictions) meteorological databases. ISO-DB covers a large variety of emitters (25 species) and environmental conditions (10° S to 60° N). When only instantaneous environmental regressors (air temperature and photosynthetic active radiation, PAR) were used, a maximum of 60% of the overall isoprene variability was assessed and the highest emissions were underestimated. Considering a total of 9 high (instantaneous) to low (up to 3 weeks) frequency regressors, ISO_LF accounts for up to 91% of the isoprene emission variability, whatever the emission range, species or climate. Diurnal and seasonal variations are correctly reproduced for textit{Ulex europaeus} with a maximum factor of discrepancy of 4. ISO-LF was found to be mainly sensitive to air temperature cumulated over 3 weeks T21 and to instantaneous light L0 and air temperature T0 variations. T21, T0 and L0 only accounts for 76% of the overall variability. The use of ISO-LF for non stored monoterpene emissions was shown to give poor results.
NASA Astrophysics Data System (ADS)
Rosa, R.; Lima, I.; Ramos, F.; Bambace, L.; Assireu, A.; Stech, J.; Novo, E.; Lorenzeti, L.
Atmospheric greenhouse gases concentration has increased during the past centuries basically due to biogenic and pyrogenic anthopogenic emissions Recent investigations have shown that gas emission methane as an important example from tropical hydroelectric reservoirs may comprise a considerable fraction of the total anthropogenic bulk In order to evaluate the concentration of gases of potential importance in environmental chemistry the solubility of such gases have been collected and converted into a uniform format using the Henry s law which states that the solubility of a gas in a liquid is directly proportional to its partial pressure However the Henry s law can be derived as a function of temperature density molar mixing ratio in the aqueous phase and molar mass of water In this paper we show that due to the complex temperature variation and water composition measured in brazilian tropical reservoirs as Serra da Mesa and Manso expressive secular variation on the traditional solubility constants concentration of a species in the aqueous phase by the partial pressure of that species in the gas phase can change in a rate of approximately 30 in 6 decades This estimation comes from a computational analysis of temperature variation measured during 6 months in Serra da Mesa and Manso reservoirs taking into account a simulated density and molar mass variation of the aqueous composition in these environments As an important global change issue from this preliminary analysis we discuss its role in the current estimations on the concentration emission rates
NASA Astrophysics Data System (ADS)
Holland, Elisabeth A.; Neff, Jason C.; Townsend, Alan R.; McKeown, Becky
2000-12-01
Tropical ecosystems play a central role in the global carbon cycle. Large changes in tropical temperature over geologic time and the significant responses of tropical ecosystems to shorter-term variations such as El Niño/La Niña argue for a robust understanding of the temperature sensitivity of tropical decomposition. To examine the responsiveness of heterotrophic respiration to temperature, we measured rates of heterotrophic respiration from a wide range of tropical soils in a series of laboratory incubations. Under conditions of optimal soil water and nonlimiting substrate availability, heterotrophic respiration rose exponentially with rising temperature. The meanQ10measured across all temperature ranges in these short-term incubations was 2.37, but there was significant variation inQ10s across sites. The source of this variation could not be explained by soil carbon or nitrogen content, soil texture, site climate, or lignin to nitrogen ratio. At the beginning of the incubation, heterotrophic respiration increased exponentially with temperature for all sites, despite the fact that the fluxes differed by an order of magnitude. When substrate availability became limiting later in the incubation, the temperature response changed, and heterotrophic response declined above 35°C. The documented changes in temperature sensitivity with substrate availability argue for using temperature relationships developed under optimal conditions of substrate availability for models which include temperature regulation of heterotrophic respiration. To evaluate the significance of this natural variation in temperature control over decomposition, we used the Century ecosystem model gridded for the areas between the tropics of Cancer and Capricorn. These simulations used the mean and upper and lower confidence limits of the normalized exponential temperature response of our experimental studies. We found that systems with the lowest temperature sensitivity accumulated a total of 70 Pg more carbon in soil organic carbon and respired 5.5 Pg yr-1 less carbon compared to the systems with the highest sensitivity.
Perrier, Frédéric; Richon, Patrick; Gautam, Umesh; Tiwari, Dilli Ram; Shrestha, Prithvi; Sapkota, Soma Nath
2007-01-01
The concentration activity of radon-222 has been monitored, with some interruptions, from 1997 to 2005 in the end section of a slightly rising, dead-end, 38-m long tunnel located in the Phulchoki hill, near Kathmandu, Nepal. While a high concentration varying from 6 x 10(3) Bq m(-3) to 10 x 10(3) Bq m(-3) is observed from May to September (rainy summer season), the concentration remains at a low level of about 200 Bq m(-3) from October to March (dry winter season). This reduction of radon concentration is associated with natural ventilation of the tunnel, which, contrary to expectations for a rising tunnel, takes place mainly from October to March when the outside air temperature drops below the average tunnel temperature. This interpretation is supported by temperature measurements in the atmosphere of the tunnel, a few meters away from the entrance. The temporal variations of the diurnal amplitude of this temperature indeed follow the ventilation rate deduced from the radon measurements. In the absence of significant ventilation (summer season), the radon exhalation flux at the rock surface into the tunnel atmosphere can be inferred; it exhibits a yearly variation with additional transient reductions associated with heavy rainfall, likely to be due to water infiltration. No effect of atmospheric pressure variations on the radon concentration is observed in this tunnel. This experiment illustrates how small differences in the location and geometry of a tunnel can lead to vastly different behaviours of the radon concentration versus time. This observation has consequences for the estimation of the dose rate and the practicability of radon monitoring for tectonic purposes in underground environments.
Variation in mortality of ischemic and hemorrhagic strokes in relation to high temperature.
Lim, Youn-Hee; Kim, Ho; Hong, Yun-Chul
2013-01-01
Outdoor temperature has been reported to have a significant influence on the seasonal variations of stroke mortality, but few studies have investigated the effect of high temperature on the mortality of ischemic and hemorrhagic strokes. The main study goal was to examine the effect of temperature, particularly high temperature, on ischemic and hemorrhagic strokes. We investigated the association between outdoor temperature and stroke mortality in four metropolitan cities in Korea during 1992-2007. We used time series analysis of the age-adjusted mortality rate for ischemic and hemorrhagic stroke deaths by using generalized additive and generalized linear models, and estimated the percentage change of mortality rate associated with a 1°C increase of mean temperature. The temperature-responses for the hemorrhagic and ischemic stroke mortality differed, particularly in the range of high temperature. The estimated percentage change of ischemic stroke mortality above a threshold temperature was 5.4 % (95 % CI, 3.9-6.9 %) in Seoul, 4.1 % (95 % CI, 1.6-6.6 %) in Incheon, 2.3 % (-0.2 to 5.0 %) in Daegu and 3.6 % (0.7-6.6 %) in Busan, after controlling for daily mean humidity, mean air pressure, day of the week, season, and year. Additional adjustment of air pollution concentrations in the model did not change the effects. Hemorrhagic stroke mortality risk significantly decreased with increasing temperature without a threshold in the four cities after adjusting for confounders. These findings suggest that the mortality of hemorrhagic and ischemic strokes show different patterns in relation to outdoor temperature. High temperature was harmful for ischemic stroke but not for hemorrhagic stroke. The risk of high temperature to ischemic stroke did not differ by age or gender.
Variation in mortality of ischemic and hemorrhagic strokes in relation to high temperature
NASA Astrophysics Data System (ADS)
Lim, Youn-Hee; Kim, Ho; Hong, Yun-Chul
2013-01-01
Outdoor temperature has been reported to have a significant influence on the seasonal variations of stroke mortality, but few studies have investigated the effect of high temperature on the mortality of ischemic and hemorrhagic strokes. The main study goal was to examine the effect of temperature, particularly high temperature, on ischemic and hemorrhagic strokes. We investigated the association between outdoor temperature and stroke mortality in four metropolitan cities in Korea during 1992-2007. We used time series analysis of the age-adjusted mortality rate for ischemic and hemorrhagic stroke deaths by using generalized additive and generalized linear models, and estimated the percentage change of mortality rate associated with a 1°C increase of mean temperature. The temperature-responses for the hemorrhagic and ischemic stroke mortality differed, particularly in the range of high temperature. The estimated percentage change of ischemic stroke mortality above a threshold temperature was 5.4 % (95 % CI, 3.9-6.9 %) in Seoul, 4.1 % (95 % CI, 1.6-6.6 %) in Incheon, 2.3 % (-0.2 to 5.0 %) in Daegu and 3.6 % (0.7-6.6 %) in Busan, after controlling for daily mean humidity, mean air pressure, day of the week, season, and year. Additional adjustment of air pollution concentrations in the model did not change the effects. Hemorrhagic stroke mortality risk significantly decreased with increasing temperature without a threshold in the four cities after adjusting for confounders. These findings suggest that the mortality of hemorrhagic and ischemic strokes show different patterns in relation to outdoor temperature. High temperature was harmful for ischemic stroke but not for hemorrhagic stroke. The risk of high temperature to ischemic stroke did not differ by age or gender.
Temperature dependency of the thermal conductivity of porous heat storage media
NASA Astrophysics Data System (ADS)
Hailemariam, Henok; Wuttke, Frank
2018-04-01
Analyzing the variation of thermal conductivity with temperature is vital in the design and assessment of the efficiency of sensible heat storage systems. In this study, the temperature variation of the thermal conductivity of a commercial cement-based porous heat storage material named - Füllbinder L is analyzed in saturated condition in the temperature range between 20 to 70°C (water based storage) with a steady state thermal conductivity and diffusivity meter. A considerable decrease in the thermal conductivity of the saturated sensible heat storage material upon increase in temperature is obtained, resulting in a significant loss of system efficiency and slower loading/un-loading rates, which when unaccounted for can lead to the under-designing of such systems. Furthermore, a new empirical prediction model for the estimation of thermal conductivity of cement-based porous sensible heat storage materials and naturally occurring crystalline rock formations as a function of temperature is proposed. The results of the model prediction are compared with the experimental results with satisfactory results.
Interannual variations in surface urban heat island intensity and associated drivers in China.
Yao, Rui; Wang, Lunche; Huang, Xin; Zhang, Wenwen; Li, Junli; Niu, Zigeng
2018-09-15
The spatial, diurnal and seasonal variations of surface urban heat islands (SUHIs) have been investigated in many places, but we still have limited understanding of the interannual variations of SUHIs and associated drivers. In this study, the interannual variations in SUHI intensity (SUHII, derived from MODIS land surface temperature (LST) data (8-day composites of twice-daily observations), urban LST minus rural) and their relationships with climate variability and urbanization were analyzed in 31 cities in China for the period 2001-2015. Significant increasing trends of SUHII were observed in 71.0%, 58.1%, 25.8% and 54.8% the cities in summer days (SDs), summer nights (SNs), winter days (WDs) and winter nights (WNs), respectively. Pearson's correlation analyses were first performed from a temporal perspective, which were different from a spatial perspective as previous studies. The results showed that the SUHII in SDs and WDs was negatively correlated with the background LST and mean air temperature in most of the cities. The nighttime SUHII in most cities was negatively and positively correlated with total precipitation and total sunshine duration, respectively. Average wind speed has little effect on SUHII. Decreasing vegetation and increased population were the main factors that contributed to the increased SUHII in SDs and SNs, while albedo only influenced the SUHII in WDs. In addition, Pearson's correlation analyses across cities showed that cities with higher decreasing rates of vegetation exhibited higher increasing rates of the SUHII in SDs and WDs. Cities with larger population growth rates do not necessarily have higher increasing rates of SUHII. Copyright © 2018 Elsevier Ltd. All rights reserved.
Estimated effects of temperature on secondary organic aerosol concentrations.
Sheehan, P E; Bowman, F M
2001-06-01
The temperature-dependence of secondary organic aerosol (SOA) concentrations is explored using an absorptive-partitioning model under a variety of simplified atmospheric conditions. Experimentally determined partitioning parameters for high yield aromatics are used. Variation of vapor pressures with temperature is assumed to be the main source of temperature effects. Known semivolatile products are used to define a modeling range of vaporization enthalpy of 10-25 kcal/mol-1. The effect of diurnal temperature variations on model predictions for various assumed vaporization enthalpies, precursor emission rates, and primary organic concentrations is explored. Results show that temperature is likely to have a significant influence on SOA partitioning and resulting SOA concentrations. A 10 degrees C decrease in temperature is estimated to increase SOA yields by 20-150%, depending on the assumed vaporization enthalpy. In model simulations, high daytime temperatures tend to reduce SOA concentrations by 16-24%, while cooler nighttime temperatures lead to a 22-34% increase, compared to constant temperature conditions. Results suggest that currently available constant temperature partitioning coefficients do not adequately represent atmospheric SOA partitioning behavior. Air quality models neglecting the temperature dependence of partitioning are expected to underpredict peak SOA concentrations as well as mistime their occurrence.
Dudek Ronan, Anne; Prudic, David E.; Thodal, Carl E.; Constantz, Jim
1998-01-01
Two experiments were performed to investigate flow beneath an ephemeral stream and to estimate streambed infiltration rates. Discharge and stream-area measurements were used to determine infiltration rates. Stream and subsurface temperatures were used to interpret subsurface flow through variably saturated sediments beneath the stream. Spatial variations in subsurface temperatures suggest that flow beneath the streambed is dependent on the orientation of the stream in the canyon and the layering of the sediments. Streamflow and infiltration rates vary diurnally: Streamflow is lowest in late afternoon when stream temperature is greatest and highest in early morning when stream temperature is least. The lower afternoon Streamflow is attributed to increased infiltration rates; evapotranspiration is insufficient to account for the decreased Streamflow. The increased infiltration rates are attributed to viscosity effects on hydraulic conductivity from increased stream temperatures. The first set of field data was used to calibrate a two-dimensional variably saturated flow model that includes heat transport. The model was calibrated to (1) temperature fluctuations in the subsurface and (2) infiltration rates determined from measured Streamflow losses. The second set of field data was to evaluate the ability to predict infiltration rates on the basis of temperature measurements alone. Results indicate that the variably saturated subsurface flow depends on downcanyon layering of the sediments. They also support the field observations in indicating that diurnal changes in infiltration can be explained by temperature dependence of hydraulic conductivity. Over the range of temperatures and flows monitored, diurnal stream temperature changes can be used to estimate streambed infiltration rates. It is often impractical to maintain equipment for determining infiltration rates by traditional means; however, once a model is calibrated using both infiltration and temperature data, only relatively inexpensive temperature monitoring can later yield infiltration rates that are within the correct order of magnitude.
Mantle thermal history during supercontinent assembly and breakup
NASA Astrophysics Data System (ADS)
Rudolph, M. L.; Zhong, S.
2013-12-01
We use mantle convection simulations driven by plate motion boundary conditions to investigate changes in mantle temperature through time. It has been suggested that circum-Pangean subduction prevented convective thermal mixing between sub-continental and sub-oceanic regions. We performed thermo-chemical simulations of mantle convection with velocity boundary conditions based on plate motions for the past 450 Myr using Earth-like Rayleigh number and ~60% internal heating using three different plate motion models for the last 200 Myr [Lithgow-Bertelloni and Richards 1998; Gurnis et al. 2012; Seton et al. 2012; Zhang et al. 2010]. We quantified changes in upper-mantle temperature between 200-1000 km depth beneath continents (defined as the oldest 30% of Earth's surface) and beneath oceans. Sub-continental upper mantle temperature was relatively stable and high between 330 and 220 Ma, coincident with the existence of the supercontinent Pangea. The average sub-continental temperature during this period was, however, only ~10 K greater than during the preceding 100 Myr. In the ~200 Myr since the breakup of Pangea, sub-continental temperatures have decreased only ~15 K in excess of the 0.02 K/Myr secular cooling present in our models. Sub-oceanic upper mantle temperatures did not vary more than 5 K between 400 and 200 Ma and the cooling trend following Pangea breakup is less pronounced. Recent geochemical observations imply rapid upper mantle cooling of O(10^2) K during continental breakup; our models do not produce warming of this magnitude beneath Pangea or cooling of similar magnitude associated with the breakup of Pangea. Our models differ from those that produce strong sub-continental heating in that the circum-Pangean subduction curtain does not completely inhibit mixing between the sub-continental and sub-oceanic regions and we include significant internal heating, which limits the rate of temperature increase. Heat transport in our simulations is controlled to first order by plate motions. Most of the temporal variability in surface heat flow is driven by variations in seafloor spreading rate and the accompanying changes in slab velocities dominate variations in buoyancy flux at all mantle depths. Variations in plume buoyancy flux are small but are correlated with the slab buoyancy flux variations.
NASA Astrophysics Data System (ADS)
Markov, Detelin
2012-11-01
This paper presents an easy-to-understand procedure for prediction of indoor air composition time variation in air-tight occupied spaces during the night periods. The mathematical model is based on the assumptions for homogeneity and perfect mixing of the indoor air, the ideal gas model for non-reacting gas mixtures, mass conservation equations for the entire system and for each species, a model for prediction of basal metabolic rate of humans as well as a model for prediction of O2 consumption rate and both CO2 and H2O generation rates by breathing. Time variation of indoor air composition is predicted at constant indoor air temperature for three scenarios based on the analytical solution of the mathematical model. The results achieved reveal both the most probable scenario for indoor air time variation in air-tight occupied spaces as well as the cause for morning tiredness after having a sleep in a modern energy efficient space.
Traits drive global wood decomposition rates more than climate.
Hu, Zhenhong; Michaletz, Sean T; Johnson, Daniel J; McDowell, Nate G; Huang, Zhiqun; Zhou, Xuhui; Xu, Chonggang
2018-06-14
Wood decomposition is a major component of the global carbon cycle. Decomposition rates vary across climate gradients, which is thought to reflect the effects of temperature and moisture on the metabolic kinetics of decomposers. However, decomposition rates also vary with wood traits, which may reflect the influence of stoichiometry on decomposer metabolism as well as geometry relating the surface areas that decomposers colonize with the volumes they consume. In this paper, we combined metabolic and geometric scaling theories to formalize hypotheses regarding the drivers of wood decomposition rates, and assessed these hypotheses using a global compilation of data on climate, wood traits, and wood decomposition rates. Our results are consistent with predictions from both metabolic and geometric scaling theories. Approximately half of the global variation in decomposition rates was explained by wood traits (nitrogen content and diameter), while only a fifth was explained by climate variables (air temperature, precipitation, and relative humidity). These results indicate that global variation in wood decomposition rates is best explained by stoichiometric and geometric wood traits. Our findings suggest that inclusion of wood traits in global carbon cycle models can improve predictions of carbon fluxes from wood decomposition. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Chung, J.-K.; Kim, Y. H.; Won, Y.-I.; Moon, B. K.; Oh, T. H.
2006-01-01
A Spectral Airglow Temperature Imager (SATI) was operated at King Sejong Station (62°13'S, 58°47'W), Korea Antarctic Research Station during the period of March, 2002-September, 2003. We analyze rotational temperatures and emission rates of the O 2 (0-1) and OH (6-2) nightglows obtained at 67 nights with clear sky lasting more than 4 h. A spectral analysis of the dataset shows two dominant oscillations with periods of 4 and 6 h. The 6-h oscillations have a nearly constant phase, whereas the 4-h oscillations have nearly random phases. Although the harmonic periods of both oscillations are suggestive of tidal origin, the 4-h oscillation may have interference by other sources such as gravity waves. The 6-h oscillations could be interpreted as zonally symmetric non-migrating tides because migrating tides except high order modes have very weak amplitudes at high latitudes according to the classical tidal theory. For most cases of the observed oscillations the temperature peak leads the intensity peak, which is consistent with theoretical models for zonally symmetric tides, but contrary to other theoretical models for waves. It is needed to resolve among theoretical models whether or not zonally symmetric tide cause temperature variation prior to intensity variation in mesospheric airglows.
Global variability in leaf respiration in relation to climate and leaf traits
NASA Astrophysics Data System (ADS)
Atkin, Owen K.
2015-04-01
Leaf respiration plays a vital role in regulating ecosystem functioning and the Earth's climate. Because of this, it is imperative that that Earth-system, climate and ecosystem-level models be able to accurately predict variations in rates of leaf respiration. In the field of photosynthesis research, the F/vC/B model has enabled modellers to accurately predict variations in photosynthesis through time and space. By contrast, we lack an equivalent biochemical model to predict variations in leaf respiration. Consequently, we need to rely on phenomenological approaches to model variations in respiration across the Earth's surface. Such approaches require that we develop a thorough understanding of how rates of respiration vary among species and whether global environmental gradients play a role in determining variations in leaf respiration. Dealing with these issues requires that data sets be assembled on rates of leaf respiration in biomes across the Earth's surface. In this talk, I will use a newly-assembled global database on leaf respiration and associated traits (including photosynthesis) to highlight variation in leaf respiration (and the balance between respiration and photosynthesis) across global gradients in growth temperature and aridity.
New foliage growth is a significant, unaccounted source for volatiles in boreal evergreen forests
NASA Astrophysics Data System (ADS)
Aalto, J.; Kolari, P.; Hari, P.; Kerminen, V.-M.; Schiestl-Aalto, P.; Aaltonen, H.; Levula, J.; Siivola, E.; Kulmala, M.; Bäck, J.
2013-11-01
Estimates of volatile organic compound (VOC) emissions from forests are based on the assumption that foliage has a steady emission potential over its lifetime, and that emissions are mainly modified by short term variations in light and temperature. However, in many field studies this has been challenged, and high emissions and atmospheric concentrations have been measured during periods of low biological activity such as in springtime. We conducted measurements during three years, using an online gas-exchange monitoring system to observe volatile organic emissions from a mature (1 yr old) and a growing Scots pine shoot. The emission rates of organic vapours (monoterpenes, methyl butenol (MBO), acetone and methanol) from vegetative buds of Scots pine during the dehardening and rapid shoot growth stages were one to two orders of magnitude higher than those from mature foliage. The normally assumed temperature dependency was not sufficient to explain the variations in emission rates during spring. The diurnal emission pattern of growing shoots differed from the diurnal cycle in temperature as well as from the diurnal emission pattern of mature shoots, which may be related to processes involved in shoot or needle elongation. Our findings imply that global estimations of monoterpene emission rates from forests are in need of revision, and that the physiological state of the plants should be taken into account when emissions of the reactive gases such as monoterpenes are estimated. The significant interannual variation in emission rates, related to changes in plant metabolic activity, has important implications to the aerosol precursor concentrations and chemical reactions in atmosphere, and potentially offers an explanation for the frequent aerosol formation events in spring.
NASA Astrophysics Data System (ADS)
Zhang, Yin; Wei, Zhiyuan; Zhang, Yinping; Wang, Xin
2017-12-01
Urban heating in northern China accounts for 40% of total building energy usage. In central heating systems, heat is often transferred from heat source to users by the heat network where several heat exchangers are installed at heat source, substations and terminals respectively. For given overall heating capacity and heat source temperature, increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving. In this paper, the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established. Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity, the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method. The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger. It also indicates that in order to improve the thermal performance of the whole system, more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small. This work is important for guiding the optimization design of practical cascade heating systems.
Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion
NASA Astrophysics Data System (ADS)
Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.
2011-03-01
A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.
Sensitivity of cell-based biosensors to environmental variables.
Gilchrist, Kristin H; Giovangrandi, Laurent; Whittington, R Hollis; Kovacs, Gregory T A
2005-01-15
Electrically active living cells cultured on extracellular electrode arrays are utilized to detect biologically active agents. Because cells are highly sensitive to environmental conditions, environmental fluctuations can elicit cellular responses that contribute to the noise in a cell-based biosensor system. Therefore, the characterization and control of environmental factors such as temperature, pH, and osmolarity is critical in such a system. The cell-based biosensor platform described here utilizes the measurement of action potentials from cardiac cells cultured on electrode arrays. A recirculating fluid flow system is presented for use in dose-response experiments that regulates temperature within +/-0.2 degrees C, pH to within +/-0.05 units, and allows no significant change in osmolarity. Using this system, the relationship between the sensor output parameters and environmental variation was quantified. Under typical experimental conditions, beat rate varied approximately 10% per degree change in temperature or per 0.1 unit change in pH. Similar relationships were measured for action potential amplitude, duration, and conduction velocity. For the specific flow system used in this work, the measured environmental sensitivity resulted in an overall beat rate variation of +/-4.7% and an overall amplitude variation of +/-3.3%. The magnitude of the noise due to environmental sensitivity has a large impact on the detection capability of the cell-based system. The significant responses to temperature, pH, and osmolarity have important implications for the use of living cells in detection systems and should be considered in the design and evaluation of such systems.
Variation and seasonal patterns of suicide mortality in Finland and Sweden since the 1750s.
Holopainen, Jari; Helama, Samuli; Björkenstam, Charlotte; Partonen, Timo
2013-11-01
Suicide mortality varies in both the short and long term. Our study examines suicide mortality in Finland and Sweden from the 1750s until today. The aim of our study is to detect any seasonal peaks in suicide rates and examine their temporal evolution to suggest a mechanism that may explain such peaks. We acquired the study material from the Finnish and Swedish cause of death statistics (257,341 deaths by suicide) and the relevant population gender structure data. We then separately calculated the annual male and female suicide rates per 100,000 inhabitants. We analysed the suicide peaks, calculating factors of proportionality for the available data by dividing the suicide rates in the peak months (May and October) by the annual suicide rates. Suicide rates in Finland and Sweden peak twice a year. Both men and women in both countries most often commit suicide in May. There is another peak in October, with the exception of Finnish men. These suicide peaks coincide with a temperature increase in May and the biggest annual drop in temperature in October. We also observed a monotonic long-term change in the Swedish statistics, but not in the Finnish data. Our hypothesis is that seasonal variation in suicide rates may be caused by abrupt temperature changes twice a year that trigger the activity in brown adipose tissue and deepen depression. While the overall suicide mortality rates varied considerably, the monthly proportions in May did not. This finding suggests a routine factor underlying the spring peak in suicide mortality.
Dalby, Andrew; Shamsir, Mohd Shahir
2015-01-01
Molecular dynamics simulations have been used extensively to model the folding and unfolding of proteins. The rates of folding and unfolding should follow the Arrhenius equation over a limited range of temperatures. This study shows that molecular dynamic simulations of the unfolding of crambin between 500K and 560K do follow the Arrhenius equation. They also show that while there is a large amount of variation between the simulations the average values for the rate show a very high degree of correlation.
Dalby, Andrew; Shamsir, Mohd Shahir
2015-01-01
Molecular dynamics simulations have been used extensively to model the folding and unfolding of proteins. The rates of folding and unfolding should follow the Arrhenius equation over a limited range of temperatures. This study shows that molecular dynamic simulations of the unfolding of crambin between 500K and 560K do follow the Arrhenius equation. They also show that while there is a large amount of variation between the simulations the average values for the rate show a very high degree of correlation. PMID:26539292
Pärn, Henrik; Ringsby, Thor Harald; Jensen, Henrik; Sæther, Bernt-Erik
2012-01-01
Dispersal plays a key role in the response of populations to climate change and habitat fragmentation. Here, we use data from a long-term metapopulation study of a non-migratory bird, the house sparrow (Passer domesticus), to examine the influence of increasing spring temperature and density-dependence on natal dispersal rates and how these relationships depend on spatial variation in habitat quality. The effects of spring temperature and population size on dispersal rate depended on the habitat quality. Dispersal rate increased with temperature and population size on poor-quality islands without farms, where house sparrows were more exposed to temporal fluctuations in weather conditions and food availability. By contrast, dispersal rate was independent of spring temperature and population size on high-quality islands with farms, where house sparrows had access to food and shelter all the year around. This illustrates large spatial heterogeneity within the metapopulation in how population density and environmental fluctuations affect the dispersal process. PMID:21613299
Cui, Hai; Zhang, Ya-hong
2016-04-15
The fenced measures could improve the ecological environment of degraded grassland, it's a main measure for restoration of degraded grassland vegetation in China. Soil respiration (Rs) is an important component of an ecosystem's carbon cycle and the main pathway for carbon moving from the ecosystem to the atmosphere. In order to explore soil respiration characteristics and influencing factors of the different fenced years in arid desert grassland, we continuously observed Rs rate and environmental factors in the growing season of fenced enclosure 11a, 7a and no fenced (CK) desert steppe in Ningxia. The results showed that: (1) Both the diurnal andseasonal variations of Rs rate showed a single asymmetric peak changing in fenced enclosure of 11 years, 7 years, CK desert steppe. On the daily scale, the maximum and minimum values of Rs rate were found in the periods of 12:00-16:00 and 00:00-06:00,respectively. On the seasonal variation scale, the maximum value of Rs rate occurred in August with suitable precipitation and temperature conditions. And the Rs rate of the growing season of different fenced enclosure years was in the order of 11a [0.143 g · (m² · h)⁻¹] > 7a [0.138 g · (m² · h)⁻¹] > CK [0.106 g · (m2 - h)⁻¹]. (2) According to statistical analysis, it indicated that R² rate had a significant exponential positive relationship with air and soil temperature in fenced enclosure of 11 years, 7 years, CK desert steppe (P < 0.01). The order of the correlation of Rs rate and temperature was shown as soil surface temperature (R²: 0.408-0.413) > air temperature (R2: 0.355-0.376) > 5-20 cm soil temperature (R2: 0.263-0.394). The temperature sensitivity coefficient Q, increased gradually with the soil depth, and Q1, of different fenced enclosure years was showed as 11 a (2.728) > 7a (2.436) > CK (2.086). (3) A significant quadratic function model (P < 0.05) was observed for the relationship between Rs rate and relative air humidity, soil moisture content of fenced enclosure 11a, 7a and CK desert steppe in the whole growing season. Rs rate had a significant linear negative correlation with air carbon dioxide concentration (P < 0.01), a linear positive correlation with the windspeed (P < 0.05), and a significant weak linear positive correlation with light intensity (P < 0.01). (4) It showed that Rs increasedwith increasing fenced closure years in arid desert steppe, and temperature sensitivity coefficient Q₁₀ also increased with increasing fenced enclosure years. To sum up, 0-20 cm soil temperature and moisture were the main influencing factors of soil respiration of desert steppe. This study has important implications to understand the role that different fenced enclosure years play in carbon emission. Such information will lay a foundation for assessing carbon source or carbon sequestration of different fenced enclosure years in desert steppe. Therefore, our research results have important function for better managing grassland in desert steppe in Ningxia and other arid and semiarid areas of North China.
NASA Astrophysics Data System (ADS)
Dong, Zhihua; Li, Wei; Long, Mujun; Gui, Lintao; Chen, Dengfu; Huang, Yunwei; Vitos, Levente
2015-08-01
The influence of temperature reversion in secondary cooling and its reversion rate on hot ductility and flow stress-strain curve of C-Mn steel has been investigated. Tensile specimens were cooled at various regimes. One cooling regime involved cooling at a constant rate of 100 °C min-1 to the test temperature, while the others involved temperature reversion processes at three different reversion rates before deformation. After hot tensile test, the evolution of mechanical properties of steel was analyzed at various scales by means of microstructure observation, ab initio prediction, and thermodynamic calculation. Results indicated that the temperature reversion in secondary cooling led to hot ductility trough occurring at higher temperature with greater depth. With increasing temperature reversion rate, the low temperature end of ductility trough extended toward lower temperature, leading to wider hot ductility trough with slightly reducing depth. Microstructure examinations indicated that the intergranular fracture related to the thin film-like ferrite and (Fe,Mn)S particles did not changed with varying cooling regimes; however, the Widmanstatten ferrite surrounding austenite grains resulted from the temperature reversion process seriously deteriorated the ductility. In addition, after the temperature reversion in secondary cooling, the peak stress on the flow curve slightly declined and the peak of strain to peak stress occurred at higher temperature. With increasing temperature reversion rate, the strain to peak stress slightly increased, while the peak stress showed little variation. The evolution of plastic modulus and strain to peak stress of austenite with varying temperature was in line with the theoretical prediction on Fe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hailong; She, Guangwei, E-mail: shegw@mail.ipc.ac.cn; Mu, Lixuan
Graphical abstract: Display Omitted Highlight: ► Nickel silicides nanowire arrays prepared by a simple in situ silicidation method. ► Phases of nickel silicides could be varied by tuning the reaction temperature. ► A growth model was proposed for the nickel silicides nanowires. ► Diffusion rates of Ni and Si play a critical role for the phase variation. -- Abstract: In this paper, we report an in situ silicidizing method to prepare nickel silicide nanowire arrays with varied structures and phases. The in situ reaction (silicidation) between Si and NiCl{sub 2} led to conversion of Si nanowires to nickel silicide nanowires.more » Structures and phases of the obtained nickel silicides could be varied by changing the reaction temperature. At a relatively lower temperature of 700 °C, the products are Si/NiSi core/shell nanowires or NiSi nanowires, depending on the concentration of NiCl{sub 2} solution. At a higher temperature (800 °C and 900 °C), other phases of the nickel silicides, including Ni{sub 2}Si, Ni{sub 31}Si{sub 12}, and NiSi{sub 2}, were obtained. It is proposed that the different diffusion rates of Ni and Si atoms at different temperatures played a critical role in the formation of nickel silicide nanowires with different phases.« less
Robitzch, Vanessa S N; Lozano-Cortés, Diego; Kandler, Nora M; Salas, Eva; Berumen, Michael L
2016-04-30
We examined the variation of pelagic larval durations (PLDs) among three damselfishes, Dascyllus aruanus, D. marginatus, and D. trimaculatus, which live under the influence of an environmental gradient in the Red Sea. PLDs were significantly correlated with latitude, sea surface temperature (SST), and primary production (CHLA; chlorophyll a concentrations). We find a consistent decrease in PLDs with increasing SST and primary production (CHLA) towards the southern Red Sea among all species. This trend is likely related to higher food availability and increased metabolic rates in that region. We suggest that food availability is a potentially stronger driver of variation in PLD than temperature, especially in highly oligotrophic regions. Additionally, variations in PLDs were particularly high among specimens of D. marginatus, suggesting a stronger response to local environmental differences for endemic species. We also report the first average PLD for this species over a broad geographic range (19.82 ± 2.92 days). Copyright © 2015 Elsevier Ltd. All rights reserved.
Relations among low ionosphere parameters and high frequency radio wave absorption
NASA Technical Reports Server (NTRS)
Cipriano, J. P.
1973-01-01
Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.
NASA Technical Reports Server (NTRS)
Spar, J.; Cohen, C.
1981-01-01
The effects of terrain elevation, soil moisture, and zonal variations in sea/surface temperature on the mean daily precipitation rates over Australia, Africa, and South America in January were evaluated. It is suggested that evaporation of soil moisture may either increase or decrease the model generated precipitation, depending on the surface albedo. It was found that a flat, dry continent model best simulates the January rainfall over Australia and South America, while over Africa the simulation is improved by the inclusion of surface physics, specifically soil moisture and albedo variations.
Dependence of the muon intensity on the atmospheric temperature measured by the GRAPES-3 experiment
NASA Astrophysics Data System (ADS)
Arunbabu, K. P.; Ahmad, S.; Chandra, A.; Dugad, S. R.; Gupta, S. K.; Hariharan, B.; Hayashi, Y.; Jagadeesan, P.; Jain, A.; Jhansi, V. B.; Kawakami, S.; Kojima, H.; Mohanty, P. K.; Morris, S. D.; Nayak, P. K.; Oshima, A.; Rao, B. S.; Reddy, L. V.; Shibata, S.; Tanaka, K.; Zuberi, M.
2017-09-01
The large area (560 m2) GRAPES-3 tracking muon telescope has been operating uninterruptedly at Ooty, India since 2001. Every day, it records 4 × 109 muons of ≥1 GeV with an angular resolution of ∼4°. The variation of atmospheric temperature affects the rate of decay of muons produced by the galactic cosmic rays (GCRs), which in turn modulates the muon intensity. By analyzing the GRAPES-3 data of six years (2005-2010), a small (amplitude ∼0.2%) seasonal variation (1 year (Yr) period) in the intensity of muons could be measured. The effective temperature 'Teff' of the upper atmosphere also displays a periodic variation with an amplitude of ∼1 K which was responsible for the observed seasonal variation in the muon intensity. At GeV energies, the muons detected by the GRAPES-3 are expected to be anti-correlated with Teff. The anti-correlation between the seasonal variation of Teff, and the muon intensity was used to measure the temperature coefficient αT by fast Fourier transform (FFT) technique. The magnitude of αT was found to scale with the assumed attenuation length 'λ' of the hadrons in the range λ = 80-180 g cm-2. However, the magnitude of the correction in the muon intensity was found to be almost independent of the value of λ used. For λ = 120 g cm-2 the value of temperature coefficient αT was found to be (- 0.17 ± 0.02)% K-1.
NASA Astrophysics Data System (ADS)
Liu, Yuan; He, Nianpeng
2017-04-01
How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive to climate change under the scenario of global warming.
NASA Astrophysics Data System (ADS)
Liu, Y.; He, N.; Zhu, J.; Yu, G.; Xu, L.; Niu, S.; Sun, X.; Wen, X.
2017-12-01
How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive to climate change under the scenario of global warming.
Climate and foraging mode explain interspecific variation in snake metabolic rates.
Dupoué, Andréaz; Brischoux, François; Lourdais, Olivier
2017-11-29
The energy cost of self-maintenance is a critical facet of life-history strategies. Clarifying the determinant of interspecific variation in metabolic rate (MR) at rest is important to understand and predict ecological patterns such as species distributions or responses to climatic changes. We examined variation of MR in snakes, a group characterized by a remarkable diversity of activity rates and a wide distribution. We collated previously published MR data ( n = 491 observations) measured in 90 snake species at different trial temperatures. We tested for the effects of metabolic state (standard MR (SMR) versus resting MR (RMR)), foraging mode (active versus ambush foragers) and climate (temperature and precipitation) while accounting for non-independence owing to phylogeny, body mass and thermal dependence. We found that RMR was 40% higher than SMR, and that active foragers have higher MR than species that ambush their prey. We found that MR was higher in cold environments, supporting the metabolic cold adaptation hypothesis. We also found an additive and positive effect of precipitation on MR suggesting that lower MR in arid environments may decrease dehydration and energetic costs. Altogether, our findings underline the complex influences of climate and foraging mode on MR and emphasize the relevance of these facets to understand the physiological impact of climate change. © 2017 The Author(s).
Shao, Li; Pang, Nannan; Yan, Ping; Jia, Fengju; Sun, Qi; Ma, Wenjuan; Yang, Yi
2018-04-09
The influence of mild perioperative hypothermia on the immune function and incidence of postoperative wound infections has been suggested, but the specific mechanism is unclear. This study aimed to analyze the body temperature, immune function, and wound infection rates in patients receiving open surgery for gastric cancer. Body temperature was controlled in each patient using one of four different methods: wrapping limbs, head and neck; insulated blankets; warming infusion fluids and insulated blankets; and warming fluids without insulated blankets. One hundred patients were randomly divided into four groups of 25 patients each, and every group received a different intraoperative treatment for maintaining normal body temperature. Nasopharyngeal and rectal temperatures, transforming growth factor beta (TGF-β), interleukin 10 (IL-10) levels, and cluster of differentiation (CD)3+ and CD4+/CD25+ regulatory T cell (Treg) counts were measured before surgery and at 2 and 4 hours postoperatively. Patients were evaluated at one week after surgery for signs of infection. Intraoperative body temperature and measures of immune function varied significantly between the four groups, with the largest temperature changes observed in the group in which only the limbs were wrapped in cotton pads to control the body temperature. The group in which infusion fluids and transfused blood (if needed) were heated to 37℃, peritoneal irrigation fluid was heated to 37℃, and an insulation blanket was heated to 39℃ and placed under the patient, showed the lowest temperature change (i.e., close to normal temperature) and cytokine response after surgery. No intergroup differences were found in the infection rates at one week after surgery. In conclusion, body temperature variation during surgery affects the immune function of patients, and maintaining body temperature close to normal results in the least variation of immune function.
Feedback enhanced plasma spray tool
Gevelber, Michael Alan; Wroblewski, Donald Edward; Fincke, James Russell; Swank, William David; Haggard, Delon C.; Bewley, Randy Lee
2005-11-22
An improved automatic feedback control scheme enhances plasma spraying of powdered material through reduction of process variability and providing better ability to engineer coating structure. The present inventors discovered that controlling centroid position of the spatial distribution along with other output parameters, such as particle temperature, particle velocity, and molten mass flux rate, vastly increases control over the sprayed coating structure, including vertical and horizontal cracks, voids, and porosity. It also allows improved control over graded layers or compositionally varying layers of material, reduces variations, including variation in coating thickness, and allows increasing deposition rate. Various measurement and system control schemes are provided.
Climatic variation and age-specific survival in Asian elephants from Myanmar.
Mumby, Hannah S; Courtiol, Alexandre; Mar, Khyne U; Lummaa, Virpi
2013-05-01
Concern about climate change has intensified interest in understanding how climatic variability affects animal life histories. Despite such effects being potentially most dramatic in large, long-lived, and slowly reproducing terrestrial mammals, little is known of the effects of climatic variation on survival in those species. Asian elephants (Elephas maximus) are endangered across their distribution, and inhabit regions characterized by high seasonality of temperature and rainfall. We investigated the effects of monthly climatic variation on survival and causes of death in Asian elephants using a unique demographic data set of 1024 semi-captive, longitudinally monitored elephants from four sites in Myanmar between 1965 and 2000. Temperature had a significant effect on survival in both sexes and across all ages. For elephants between 1 month and 17 years of age, maximal survival was reached at -24 degrees C, and any departures from this temperature increased mortality, whereas neonates and mature elephants had maximal survival at even lower temperatures. Although males experienced higher mortality overall, sex differences in these optimal temperatures were small. Because the elephants spent more time during a year in temperatures above 24 degrees C than in temperatures below it, most deaths occurred at hot (temperatures>24 degrees C) rather than cold periods. Decreased survival at higher temperatures resulted partially from increased deaths from infectious disease and heat stroke, whereas the lower survival in the coldest months was associated with an increase in noninfectious diseases and poor health in general. Survival was also related to rainfall, with the highest survival rates during the wettest months for all ages and sexes. Our results show that even the normal-range monsoon variation in climate can exert a large impact on elephant survival in Myanmar, leading to extensive absolute differences in mortality; switching from favorable to unfavorable climatic conditions within average years doubled the odds for mortality. The persistence of a long-term trend toward higher global temperatures, combined with the possibility of higher variation in temperature between seasons, may pose a challenge to the survival of species such as Asian elephants.
NASA Technical Reports Server (NTRS)
Shepherd, G. G.; Thuillier, G.; Solheim, B. H.; Chandra, S.; Cogger, L. L.; Duboin, M. L.; Evans, W. F. J.; Gattinger, R. L.; Gault, W. A.; Herse, M.
1993-01-01
WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite, began atmospheric observations on September 28, 1991 and since then has been collecting data on winds, temperatures and emissions rates from atomic, molecular and ionized oxygen species, as well as hydroxyl. The validation of winds and temperatures is not yet complete, and scientific interpretation has barely begun, but the dominant characteristic of these data so far is the remarkable structure in the emission rate from the excited species produced by the recombination of atomic oxygen. The latitudinal and temporal variability has been noted before by many others. In this preliminary report on WINDII results we draw attention to the dramatic longitudinal variations of planetary wave character in atomic oxygen concentration, as reflected in the OI 557.7 nm emission, and to similar variations seen in the Meine1 hydroxyl band emission.
Diagnosis of Middle Atmosphere Climate Sensitivity by the Climate Feedback Response Analysis Method
NASA Technical Reports Server (NTRS)
Zhu, Xun; Yee, Jeng-Hwa; Cai, Ming; Swartz, William H.; Coy, Lawrence; Aquila, Valentina; Talaat, Elsayed R.
2014-01-01
We present a new method to diagnose the middle atmosphere climate sensitivity by extending the Climate Feedback-Response Analysis Method (CFRAM) for the coupled atmosphere-surface system to the middle atmosphere. The Middle atmosphere CFRAM (MCFRAM) is built on the atmospheric energy equation per unit mass with radiative heating and cooling rates as its major thermal energy sources. MCFRAM preserves the CFRAM unique feature of an additive property for which the sum of all partial temperature changes due to variations in external forcing and feedback processes equals the observed temperature change. In addition, MCFRAM establishes a physical relationship of radiative damping between the energy perturbations associated with various feedback processes and temperature perturbations associated with thermal responses. MCFRAM is applied to both measurements and model output fields to diagnose the middle atmosphere climate sensitivity. It is found that the largest component of the middle atmosphere temperature response to the 11-year solar cycle (solar maximum vs. solar minimum) is directly from the partial temperature change due to the variation of the input solar flux. Increasing CO2 always cools the middle atmosphere with time whereas partial temperature change due to O3 variation could be either positive or negative. The partial temperature changes due to different feedbacks show distinctly different spatial patterns. The thermally driven globally averaged partial temperature change due to all radiative processes is approximately equal to the observed temperature change, ranging from 0.5 K near 70 km from the near solar maximum to the solar minimum.
Biro, Peter A; Beckmann, Christa; Stamps, Judy A
2010-01-07
Consistent individual differences in behaviour, termed personality, are common in animal populations and can constrain their responses to ecological and environmental variation, such as temperature. Here, we show for the first time that normal within-daytime fluctuations in temperature of less than 3 degrees C have large effects on personality for two species of juvenile coral reef fish in both observational and manipulative experiments. On average, individual scores on three personality traits (PTs), activity, boldness and aggressiveness, increased from 2.5- to sixfold as a function of temperature. However, whereas most individuals became more active, aggressive and bold across temperature contexts (were plastic), others did not; this changed the individual rank order across temperatures and thus altered personality. In addition, correlations between PTs were consistent across temperature contexts, e.g. fish that were active at a given temperature also tended to be both bold and aggressive. These results (i) highlight the importance of very carefully controlling for temperature when studying behavioural variation among and within individuals and (ii) suggest that individual differences in energy metabolism may contribute to animal personality, given that temperature has large direct effects on metabolic rates in ectotherms.
A discussion of plausible solar irradiance variations, 1700-1992
NASA Technical Reports Server (NTRS)
Hoyt, Douglas V.; Schatten, Kenneth H.
1993-01-01
From satellite observations the solar total irradiance is known to vary. Sunspot blocking, facular emission, and network emission are three identified causes for the variations. In this paper we examine several different solar indices measured over the past century that are potential proxy measures for the Sun's irradiance. These indices are (1) the equatorial solar rotation rate, (2) the sunspot structure, the decay rate of individual sunspots, and the number of sunspots without umbrae, and (3) the length and decay rate of the sunspot cycle. Each index can be used to develop a model for the Sun's total irradiance as seen at the Earth. Three solar indices allow the irradiance to be modeled back to the mid-1700s. The indices are (1) the length of the solar cycle, (2) the normalized decay rate of the solar cycle, and (3) the mean level of solar activity. All the indices are well correlated, and one possible explanation for their nearly simultaneous variations is changes in the Sun's convective energy transport. Although changes in the Sun's convective energy transport are outside the realm of normal stellar structure theory (e.g., mixing length theory), one can imagine variations arising from even the simplest view of sunspots as vertical tubes of magnetic flux, which would serve as rigid pillas affecting the energy flow patterns by ensuring larger-scale eddies. A composite solar irradiance model, based upon these proxies, is compared to the northern hemisphere temperature depatures for 1700-1992. Approximately 71% of the decadal variance in the last century can be modeled with these solar indices, although this analysis does not include anthropogenic or other variations which would affect the results. Over the entire three centuries, approx. 50% of the variance is modeled. Both this analysis and previous similar analyses have correlations of model solar irradiances and measured Earth surface temperatures that are significant at better than the 95% confidence level. To understand our present climate variations, we must place the anthropogenic variations in the context of natural variability from solar, volcanic, oceanic, and other sources.
NASA Astrophysics Data System (ADS)
Aydın, Özgür; Nakajima, Hironori; Kitahara, Tatsumi
2015-10-01
Addressing the fuel distribution and endothermic cooling by the internal reforming, we have measured longitudinal current/temperature variations by ;Electrode-segmentation; in a microtubular solid oxide fuel cell operated with syngas (50% pre-reformed methane) and equivalent H2/N2 (100% conversion of syngas to H2) at three different flow rates. Regardless of the syngas flow rates, currents and temperatures show irregular fluctuations with varying amplitudes from upstream to downstream segment. Analysis of the fluctuations suggests that the methane steam reforming reaction is highly affected by the H2 partial pressure. Current-voltage curves plotted for the syngas and equivalent H2/N2 flow rates reveal that the fuel depletion is enhanced toward the downstream during the syngas operation, resulting in a larger performance degradation. All the segments exhibit temperature drops with the syngas flow compared with the equivalent H2/N2 flow due to the endothermic cooling by the methane steam reforming reaction. Despite the drops, the segment temperatures remain above the furnace temperature; besides, the maximum temperature difference along the cell diminishes. The MSR reaction rate does not consistently increase with the decreasing gas inlet velocity (increasing residence time on the catalyst); which we ascribe to the dominating impact of the local temperatures.
The effects of daily weather variables on psychosis admissions to psychiatric hospitals
NASA Astrophysics Data System (ADS)
McWilliams, Stephen; Kinsella, Anthony; O'Callaghan, Eadbhard
2013-07-01
Several studies have noted seasonal variations in admission rates of patients with psychotic illnesses. However, the changeable daily meteorological patterns within seasons have never been examined in any great depth in the context of admission rates. A handful of small studies have posed interesting questions regarding a potential link between psychiatric admission rates and meteorological variables such as environmental temperature (especially heat waves) and sunshine. In this study, we used simple non-parametric testing and more complex ARIMA and time-series regression analysis to examine whether daily meteorological patterns (wind speed and direction, barometric pressure, rainfall, sunshine, sunlight and temperature) exert an influence on admission rates for psychotic disorders across 12 regions in Ireland. Although there were some weak but interesting trends for temperature, barometric pressure and sunshine, the meteorological patterns ultimately did not exert a clinically significant influence over admissions for psychosis. Further analysis is needed.
The scaling and temperature dependence of vertebrate metabolism
White, Craig R; Phillips, Nicole F; Seymour, Roger S
2005-01-01
Body size and temperature are primary determinants of metabolic rate, and the standard metabolic rate (SMR) of animals ranging in size from unicells to mammals has been thought to be proportional to body mass (M) raised to the power of three-quarters for over 40 years. However, recent evidence from rigorously selected datasets suggests that this is not the case for birds and mammals. To determine whether the influence of body mass on the metabolic rate of vertebrates is indeed universal, we compiled SMR measurements for 938 species spanning six orders of magnitude variation in mass. When normalized to a common temperature of 38 °C, the SMR scaling exponents of fish, amphibians, reptiles, birds and mammals are significantly heterogeneous. This suggests both that there is no universal metabolic allometry and that models that attempt to explain only quarter-power scaling of metabolic rate are unlikely to succeed. PMID:17148344
Temperature Dependence of Positron Annihilation in beta-Cyclodextrin and beta-Cyclodextrin Complexes
NASA Astrophysics Data System (ADS)
Hu, Y.; Hsu Hadley, F. H., Jr.; Trinh, T.
1996-11-01
The effects of temperature on positron annihilation in beta-cyclodextrin and beta-cyclodextrin complexed with benzyl salicylate, benzyl acetate, ethyl salicylate, geraniol, linalool and nerol were studied. Samples were prepared by slurry, air-dried and freeze-dried methods. Lifetime spectra were measured as a function of temperature for each sample. Comparison of the annihilation rate and intensity of the longer-lived component showed that positronium formation was affected by guest molecules, preparation methods and temperature variations. Results can be used to explain beta-cyclodextrin complex formation with different guest molecules.
Iijima, Shigeo; Sekii, Katsuyuki; Baba, Toru; Ueno, Daizo; Ohishi, Akira
2016-07-19
The morbidity and mortality rates due to cardiovascular events such as myocardial infarction are known to exhibit seasonal variations. Moreover, changes in the ambient temperature are reportedly associated with an increase in these events, which may potentially involve blood coagulation markers. Bleeding due to vitamin K deficiency in neonates, which is associated with high mortality and a high frequency of neurological sequelae, is more commonly observed during the summer season and in warm regions in Japan. To determine the presence of seasonal variation and the influence of ambient temperature on blood coagulation markers in healthy term neonates, we assessed the international normalized ratio (INR) values measured using CoaguChek XS. We studied 488 consecutive healthy term neonates who were born at a perinatal center between July 2012 and June 2013. The INR values were measured using CoaguChek XS in 4-day-old neonates who received nursing care in the newborn nursery throughout the duration of hospitalization. The seasonal variations in the INR values and environmental effects on the INR were assessed. The mean monthly INR values peaked in July (1.13 ± 0.08), whereas the lowest values were observed in January (1.05 ± 0.08). Higher levels of INR were observed during the summer season (June to August) than during the winter season (December to February). Simple linear regression analysis indicated the presence of weakly positive but significant correlations between INR and outdoor temperature (r = 0.25, p < 0.001), outdoor relative humidity (r = 0.19, p < 0.001), and room relative humidity (r = 0.24, p < 0.001), and the presence of a significant negative correlation between INR and room temperature (r = -0.13, p = 0.02). Furthermore, multiple linear regression analysis showed that only outdoor temperature significantly influenced the INR. A seasonal variation in the INR values was observed among neonates, possibly due to the variation in ambient temperature. Even though the neonates received nursing care in the newborn nursery that was constantly air-conditioned, the outdoor temperature was the most influential factor on INR.
Effect of solidification rate on microstructure evolution in dual phase microalloyed steel
Kostryzhev, A. G.; Slater, C. D.; Marenych, O. O.; Davis, C. L.
2016-01-01
In steels the dependence of ambient temperature microstructure and mechanical properties on solidification rate is not well reported. In this work we investigate the microstructure and hardness evolution for a low C low Mn NbTi-microalloyed steel solidified in the cooling rate range of 1–50 Cs−1. The maximum strength was obtained at the intermediate solidification rate of 30 Cs−1. This result has been correlated to the microstructure variation with solidification rate. PMID:27759109
A study on parameter variation effects on battery packs for electric vehicles
NASA Astrophysics Data System (ADS)
Zhou, Long; Zheng, Yuejiu; Ouyang, Minggao; Lu, Languang
2017-10-01
As one single cell cannot meet power and driving range requirement in an electric vehicle, the battery packs with hundreds of single cells connected in parallel and series should be constructed. The most significant difference between a single cell and a battery pack is cell variation. Not only does cell variation affect pack energy density and power density, but also it causes early degradation of battery and potential safety issues. The cell variation effects on battery packs are studied, which are of great significant to battery pack screening and management scheme. In this study, the description for the consistency characteristics of battery packs was first proposed and a pack model with 96 cells connected in series was established. A set of parameters are introduced to study the cell variation and their impacts on battery packs are analyzed through the battery pack capacity loss simulation and experiments. Meanwhile, the capacity loss composition of the battery pack is obtained and verified by the temperature variation experiment. The results from this research can demonstrate that the temperature, self-discharge rate and coulombic efficiency are the major affecting parameters of cell variation and indicate the dissipative cell equalization is sufficient for the battery pack.
Muñoz, David J.; Miller Hesed, Kyle; Grant, Evan H. Campbell; Miller, David A.W.
2016-01-01
Multiple pathways exist for species to respond to changing climates. However, responses of dispersal-limited species will be more strongly tied to ability to adapt within existing populations as rates of environmental change will likely exceed movement rates. Here, we assess adaptive capacity in Plethodon cinereus, a dispersal-limited woodland salamander. We quantify plasticity in behavior and variation in demography to observed variation in environmental variables over a 5-year period. We found strong evidence that temperature and rainfall influence P. cinereus surface presence, indicating changes in climate are likely to affect seasonal activity patterns. We also found that warmer summer temperatures reduced individual growth rates into the autumn, which is likely to have negative demographic consequences. Reduced growth rates may delay reproductive maturity and lead to reductions in size-specific fecundity, potentially reducing population-level persistence. To better understand within-population variability in responses, we examined differences between two common color morphs. Previous evidence suggests that the color polymorphism may be linked to physiological differences in heat and moisture tolerance. We found only moderate support for morph-specific differences for the relationship between individual growth and temperature. Measuring environmental sensitivity to climatic variability is the first step in predicting species' responses to climate change. Our results suggest phenological shifts and changes in growth rates are likely responses under scenarios where further warming occurs, and we discuss possible adaptive strategies for resulting selective pressures.
Study of Some Dielectric Properties of Suspensions of Magnesium Particles in Mineral Oil
NASA Technical Reports Server (NTRS)
Altshuller, Aubrey P
1954-01-01
The variation of dielectric constant has been measured as a function of the concentration of magnesium particles; the shape, size, and degree of oxidation of the particles; the temperature; and the frequency of oscillation. The variation of dielectric constant and settling rate was investigated as a function of time. Also investigated were the effects of particle concentration, shape and time on dielectric losses.
Rollinson, Njal; Holt, Sarah M; Massey, Melanie D; Holt, Richard C; Nancekivell, E Graham; Brooks, Ronald J
2018-05-01
Temperature has a strong effect on ectotherm development rate. It is therefore possible to construct predictive models of development that rely solely on temperature, which have applications in a range of biological fields. Here, we leverage a reference series of development stages for embryos of the turtle Chelydra serpentina, which was described at a constant temperature of 20 °C. The reference series acts to map each distinct developmental stage onto embryonic age (in days) at 20 °C. By extension, an embryo taken from any given incubation environment, once staged, can be assigned an equivalent age at 20 °C. We call this concept "Equivalent Development", as it maps the development stage of an embryo incubated at a given temperature to its equivalent age at a reference temperature. In the laboratory, we used the concept of Equivalent Development to estimate development rate of embryos of C. serpentina across a series of constant temperatures. Using these estimates of development rate, we created a thermal performance curve measured in units of Equivalent Development (TPC ED ). We then used the TPC ED to predict developmental stage of embryos in several natural turtle nests across six years. We found that 85% of the variation of development stage in natural nests could be explained. Further, we compared the predictive accuracy of the model based on the TPC ED to the predictive accuracy of a degree-day model, where development is assumed to be linearly related to temperature and the amount of accumulated heat is summed over time. Information theory suggested that the model based on the TPC ED better describes variation in developmental stage in wild nests than the degree-day model. We suggest the concept of Equivalent Development has several strengths and can be broadly applied. In particular, studies on temperature-dependent sex determination may be facilitated by the concept of Equivalent Development, as development age maps directly onto the developmental series of the organism, allowing critical periods of sex determination to be delineated without invasive sampling, even under fluctuating temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fowler, Melinda A; Williams, Tony D
2015-01-01
We analyzed individual variation in work load (nest visit rate) during chick-rearing, and the consequences of this variation in terms of breeding productivity, in a highly synchronous breeder, the European starling (Sturnus vulgaris) focusing on female birds. There was marked (10- to 16-fold) variation in total, female and male nest visit rates, among individuals, but individual variation in female nest visit rate was independent of environment (rainfall, temperature) and metrics of individual quality (laying date, clutch size, amount of male provisioning help), and was only weakly associated with chick demand (i.e., day 6 brood size). Female nest visit rate was independent of date and experimentally delayed birds provisioned at the same rate as peak-nesting birds; supporting a lack of effect of date per se. Brood size at fledging was positively but weakly related to total nest visit rate (male + female), with >fivefold variation in nest visit rate for any given brood size, and in females brood size at fledging and chick mass at fledging were independent of female nest visit rate, that is, individual variation in workload was not associated with higher productivity. Nevertheless, nest visit rate in females was repeatable among consecutive days (6–8 posthatching), and between peak (first) and second broods, but not among years. Our data suggest that individual females behave as if committed to a certain level of parental care at the outset of their annual breeding attempt, but this varies among years, that is, behavior is not fixed throughout an individual's life but represents an annually variable decision. We suggest females are making predictable decisions about their workload during provisioning that maximizes their overall fitness based on an integration of information on their current environment (although these cues currently remain unidentified). PMID:26380688
Jeans instability of a dusty plasma with dust charge variations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakimi Pajouh, H., E-mail: hakimi@alzahra.ac.ir; Afshari, N.
2015-09-15
The effect of the dust charge variations on the stability of a self-gravitating dusty plasma has been theoretically investigated. The dispersion relation for the dust-acoustic waves in a self-gravitating dusty plasma is obtained. It is shown that the dust charge variations have significant effects. It increases the growth rate of instability and the instability cutoff wavenumbers. It is found that by increasing the value of the ions temperature and the absolute value of the equilibrium dust charge, the cutoff wavenumber decreases and the stability region is extended.
Wickland, K.P.; Neff, J.C.
2008-01-01
Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how changes in environmental conditions influence decomposition in these systems, and if substrate controls of decomposition vary with hydrologic and thermal regime. We addressed these issues by investigating the effects of temperature, moisture, and organic matter chemical characteristics on decomposition of fibric soil horizons from three black spruce forest sites. The sites varied in drainage and permafrost, and included a "Well Drained" site where permafrost was absent, and "Moderately well Drained" and "Poorly Drained" sites where permafrost was present at about 0.5 m depth. Samples collected from each site were incubated at five different moisture contents (2, 25, 50, 75, and 100% saturation) and two different temperatures (10??C and 20??C) in a full factorial design for two months. Organic matter chemistry was analyzed using pyrolysis gas chromatography-mass spectrometry prior to incubation, and after incubation on soils held at 20??C, 50% saturation. Mean cumulative mineralization, normalized to initial carbon content, ranged from 0.2% to 4.7%, and was dependent on temperature, moisture, and site. The effect of temperature on mineralization was significantly influenced by moisture content, as mineralization was greatest at 20??C and 50-75% saturation. While the relative effects of temperature and moisture were similar for all soils, mineralization rates were significantly greater for samples from the "Well Drained" site compared to the other sites. Variations in the relative abundances of polysaccharide-derivatives and compounds of undetermined source (such as toluene, phenol, 4-methyl phenol, and several unidentifiable compounds) could account for approximately 44% of the variation in mineralization across all sites under ideal temperature and moisture conditions. Based on our results, changes in temperature and moisture likely have similar, additive effects on in situ soil organic matter (SOM) decomposition across a wide range of black spruce forest systems, while variations in SOM chemistry can lead to significant differences in decomposition rates within and among forest sites. ?? 2007 Springer Science+Business Media B.V.
Strengthening Mechanisms in Thermomechanically Processed NbTi-Microalloyed Steel
NASA Astrophysics Data System (ADS)
Kostryzhev, Andrii G.; Marenych, Olexandra O.; Killmore, Chris R.; Pereloma, Elena V.
2015-08-01
The effect of deformation temperature on microstructure and mechanical properties was investigated for thermomechanically processed NbTi-microalloyed steel with ferrite-pearlite microstructure. With a decrease in the finish deformation temperature at 1348 K to 1098 K (1075 °C to 825 °C) temperature range, the ambient temperature yield stress did not vary significantly, work hardening rate decreased, ultimate tensile strength decreased, and elongation to failure increased. These variations in mechanical properties were correlated to the variations in microstructural parameters (such as ferrite grain size, solid solution concentrations, precipitate number density and dislocation density). Calculations based on the measured microstructural parameters suggested the grain refinement, solid solution strengthening, precipitation strengthening, and work hardening contributed up to 32 pct, up to 48 pct, up to 25 pct, and less than 3 pct to the yield stress, respectively. With a decrease in the finish deformation temperature, both the grain size strengthening and solid solution strengthening increased, the precipitation strengthening decreased, and the work hardening contribution did not vary significantly.
NASA Technical Reports Server (NTRS)
Dunavant, J. C.
1974-01-01
An experimental study has been conducted of the influence of wall to total temperature ratio on the heat transfer to the leeside of a 040A space shuttle configuration. The heat transfer tests were made at a Mach number of 10 and a Reynolds number of one million per foot for angles of attack from 0 deg to 30 deg. Range of wall to total temperature ratio was from 0.16 to 0.43. Where the heat transfer was relatively high and the laminar boundary layer attached, the local heat transfer decreased by about 20 percent as the wall to total temperature ratio was increased from the minimum to the maximum test value. On regions of separated flow and vortex reattachment, very low heating rates were measured at some conditions and indicate significant changes are occurring in the leeside flow field. No single trend of heat transfer variation with wall to total temperature ratio could be observed.
MacGregor, J.A.; Winebrenner, D.P.; Conway, H.; Matsuoka, K.; Mayewski, P.A.; Clow, G.D.
2007-01-01
The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 ?? 5.7 dB km-1) is somewhat lower than the value derived from radar profiles (25.3 ?? 1.1 dB km-1). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 ?? 2.2 dB km-1. This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet. Copyright 2007 by the American Geophysical Union.
Temperature and hydrology affect methane emissions from Prairie Pothole Wetlands
Bansal, Sheel; Tangen, Brian; Finocchiaro, Raymond
2016-01-01
The Prairie Pothole Region (PPR) in central North America consists of millions of depressional wetlands that each have considerable potential to emit methane (CH4). Changes in temperature and hydrology in the PPR from climate change may affect methane fluxes from these wetlands. To assess the potential effects of changes in climate on methane emissions, we examined the relationships between flux rates and temperature or water depth using six years of bi-weekly flux measurements during the snow-free period from six temporarily ponded and six permanently ponded wetlands in North Dakota, USA. Methane flux rates were among the highest reported for freshwater wetlands, and had considerable spatial and temporal variation. Methane flux rates increased with increasing temperature and water depth, and were especially high when conditions were warmer and wetter than average (163 ± 28 mg CH4 m−2 h−1) compared to warmer and drier (37 ± 7 mg CH4 m−2 h−1). Methane emission rates from permanent wetlands were less sensitive to changes in temperature and water depth compared to temporary wetlands, likely due to higher sulfate concentrations in permanent wetlands. While the predicted increase in temperature with climate change will likely increase methane emission rates from PPR wetlands, drier conditions could moderate these increases.
Xiao, Hong; Huang, Ru; Gao, Li-Dong; Huang, Cun-Rui; Lin, Xiao-Ling; Li, Na; Liu, Hai-Ning; Tong, Shi-Lu; Tian, Huai-Yu
2016-01-01
Infection rates of rodents have a significant influence on the transmission of hemorrhagic fever with renal syndrome (HFRS). In this study, four cities and two counties with high HFRS incidence in eastern Hunan Province in China were studied, and surveillance data of rodents, as well as HFRS cases and related environmental variables from 2007 to 2010, were collected. Results indicate that the distribution and infection rates of rodents are closely associated with environmental conditions. Hantavirus infections in rodents were positively correlated with temperature vegetation dryness index and negatively correlated with elevation. The predictive risk maps based on multivariate regression model revealed that the annual variation of infection risks is small, whereas monthly variation is large and corresponded well to the seasonal variation of human HFRS incidence. The identification of risk factors and risk prediction provides decision support for rodent surveillance and the prevention and control of HFRS. PMID:26711521
Kelly, Nicholas I.; Burness, Gary; McDermid, Jenni L.; Wilson, Chris C.
2014-01-01
In the face of climate change, the persistence of cold-adapted species will depend on their adaptive capacity for physiological traits within and among populations. The lake trout (Salvelinus namaycush) is a cold-adapted salmonid and a relict from the last ice age that is well suited as a model species for studying the predicted effects of climate change on coldwater fishes. We investigated the thermal acclimation capacity of upper temperature resistance and metabolism of lake trout from four populations across four acclimation temperatures. Individuals were reared from egg fertilization onward in a common environment and, at 2 years of age, were acclimated to 8, 11, 15 or 19°C. Although one population had a slightly higher maximal metabolic rate (MMR), higher metabolic scope for activity and faster metabolic recovery across all temperatures, there was no interpopulation variation for critical thermal maximum (CTM) or routine metabolic rate (RMR) or for the thermal acclimation capacity of CTM, RMR, MMR or metabolic scope. Across the four acclimation temperatures, there was a 3°C maximal increase in CTM and 3-fold increase in RMR for all populations. Above 15°C, a decline in MMR and increase in RMR resulted in sharply reduced metabolic scope for all populations acclimated at 19°C. Together, these data suggest there is limited variation among lake trout populations in thermal physiology or capacity for thermal acclimatization, and that climate change may impact lake trout populations in a similar manner across a wide geographical range. Understanding the effect of elevated temperatures on the thermal physiology of this economically and ecologically important cold-adapted species will help inform management and conservation strategies for the long-term sustainability of lake trout populations. PMID:27293646
NASA Technical Reports Server (NTRS)
Stevens-Rayburn, D. R.; Mengel, J. G.; Harris, I.; Mayr, H. G.
1989-01-01
A three-dimensional spectral model for the Venusion thermosphere is presented which uses spherical harmonics to represent the horizontal variations in longitude and latitude and which uses Fourier harmonics to represent the LT variations due to atmospheric rotation. A differencing scheme with tridiagonal block elimination is used to perform the height integration. Quadratic nonlinearities are taken into account. In the second part, numerical results obtained with the model are shown to reproduce the observed broad daytime maxima in CO2 and CO and the significantly larger values at dawn than at dusk. It is found that the diurnal variations in He are most sensitive to thermospheric superrotation, and that, given a globally uniform atmosphere as input, larger heating rates yield a larger temperature contrast between day and night.
High-rate deformation and fracture of steel 09G2S
NASA Astrophysics Data System (ADS)
Balandin, Vl. Vas.; Balandin, Vl. Vl.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Lomunov, A. K.
2014-11-01
The results of experimental and theoretical studies of steel 09G2S deformation and fracture laws in a wide range of strain rates and temperature variations are given. The dynamic deformation curves and the ultimate characteristics of plasticity in high-rate strain were determined by the Kolsky method in compression, extension, and shear tests. The elastoplastic properties and spall strength were studied by using the gaseous gun of calibre 57 mm and the interferometer VISAR according to the plane-wave experiment technique. The data obtained by the Kolsky method were used to determine the parameters of the Johnson-Cook model which, in the framework of the theory of flow, describes how the yield surface radius depends on the strain, strain rate, and temperature.
Zheng, Jingjing; Truhlar, Donald G
2012-01-01
Complex molecules often have many structures (conformations) of the reactants and the transition states, and these structures may be connected by coupled-mode torsions and pseudorotations; some but not all structures may have hydrogen bonds in the transition state or reagents. A quantitative theory of the reaction rates of complex molecules must take account of these structures, their coupled-mode nature, their qualitatively different character, and the possibility of merging reaction paths at high temperature. We have recently developed a coupled-mode theory called multi-structural variational transition state theory (MS-VTST) and an extension, called multi-path variational transition state theory (MP-VTST), that includes a treatment of the differences in the multi-dimensional tunneling paths and their contributions to the reaction rate. The MP-VTST method was presented for unimolecular reactions in the original paper and has now been extended to bimolecular reactions. The MS-VTST and MP-VTST formulations of variational transition state theory include multi-faceted configuration-space dividing surfaces to define the variational transition state. They occupy an intermediate position between single-conformation variational transition state theory (VTST), which has been used successfully for small molecules, and ensemble-averaged variational transition state theory (EA-VTST), which has been used successfully for enzyme kinetics. The theories are illustrated and compared here by application to three thermal rate constants for reactions of ethanol with hydroxyl radical--reactions with 4, 6, and 14 saddle points.
Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth.
Li, Shuangcheng; Li, Wenbo; Huang, Bin; Cao, Xuemei; Zhou, Xingyu; Ye, Shumei; Li, Chengbo; Gao, Fengyan; Zou, Ting; Xie, Kailong; Ren, Yun; Ai, Peng; Tang, Yangfan; Li, Xuemei; Deng, Qiming; Wang, Shiquan; Zheng, Aiping; Zhu, Jun; Liu, Huainian; Wang, Lingxia; Li, Ping
2013-01-01
Grain number, panicle seed setting rate, panicle number and grain weight are the most important components of rice grain yield. To date, several genes related to grain weight, grain number and panicle number have been described in rice. However, no genes regulating the panicle seed setting rate have been functionally characterized. Here we show that the domestication-related POLLEN TUBE BLOCKED 1 (PTB1), a RING-type E3 ubiquitin ligase, positively regulates the rice panicle seed setting rate by promoting pollen tube growth. The natural variation in expression of PTB1 which is affected by the promoter haplotype and the environmental temperature, correlates with the rice panicle seed setting rate. Our results support the hypothesis that PTB1 is an important maternal sporophytic factor of pollen tube growth and a key modulator of the rice panicle seed setting rate. This finding has implications for the improvement of rice yield.
Studies of the polar MLT region using SATI airglow measurements
NASA Astrophysics Data System (ADS)
Cho, Youngmin
To investigate atmospheric dynamics of the MLT (Mesosphere and Lower Thermosphere) region, a ground-based instrument called SATI (Spectral Airglow Temperature Imager) was developed at York University. The rotational temperatures and emission rates of the OH (6-2) Meinel band and the O2 (0-1) Atmospheric band have been measured in the MLT region by the SATI instrument at Resolute Bay (74.68°N, 94.90°W) since November, 2001, and at the King Sejong station (62.22°S, 58.75°W) since February, 2002. The MLT measurements are examined for periodic oscillations in the ambient temperature and airglow emission rate. A dominant and coherent 4-hr oscillation is seen in both the OH and O2 temperature and emission rate at Resolute Bay in November, 2001. Tidal variation with a 12 hour period is shown in hourly averaged temperatures of the season 2001--2002 and the season 2003--2004. In addition, planetary waves with periods of 3 and 4.5 days are also seen in a longer interval. The observations at high latitudes have revealed that temperatures and emission rates are higher around the winter solstice. MLT cooling events were found at Resolute Bay in December, 2001 and February, 2002. They are compared with the UKMO (UK Meteorological Office) stratospheric assimilated data, and the MLT coolings coincide in time with the stratospheric warmings. A consistent inverse relationship of the OH temperatures and temperatures at 0.316 hPa is presented in the comparison. In previous studies of wave perturbations, the background (mean) values were normally subtracted from the instantaneous signal, but in the present investigation this was not done, allowing the long-term relationship to be examined. A positive relationship of the temperature and emission rate is seen from the SATI measurements for both short and long-term variations, suggesting that similar dynamical processes are responsible for both. This relationship is supported by satellite data from the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument. The correlation is compared with the result of a simple atmospheric model based on the dynamical and chemical processes involved in the diurnal tide, and the model results are in good agreement with the observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonardos, E.D.; Tsujita, M.J.; Grodzinski, B.
1994-11-01
The influence of irradiance, CO[sub 2] concentration, and air temperature on leaf and whole-plant net C exchange rate (NCER) of Alstroemeria Jacqueline' was studied. At ambient CO[sub 2], leaf net photosynthesis was maximum at irradiances above 600 [mu]mol[center dot]m[sup [minus]2][center dot]s[sup [minus]1] photosynthetically active radiation (PAR), while whole-plant NCER required 1,200 [mu]mol[center dot]m[sup [minus]2][center dot]s[sup [minus]1] PAR to be saturated. Leaf and whole-plant NCERs were doubled under CO[sub 2] enrichment of 1,500 to 2,000 [mu]l CO[sub 2]/liter. Leaf and whole-plant NCERs declined as temperature increased from 20 to 35 C. Whereas the optimum temperature range for leaf net photosynthesis wasmore » 17 to 23 C, whole-plant NCER, even at high light and high CO[sub 2], declined above 12 C. Dark respiration of leaves and whole plants increased with a Q[sub 10] of [approx] 2 at 15 to 35 C. In an analysis of day effects, irradiance, CO[sub 2] concentration, and temperature contributed 58%, 23%, and 14%, respectively, to the total variation in NCER explained by a second-order polynomial model (R[sup 2] = 0.85). Interactions among the factors accounted for 4% of the variation in day C assimilation. The potential whole-plant growth rates during varying greenhouse day and night temperature regimes were predicted for short- and long-day scenarios. The data are discussed with the view of designing experiments to test the importance of C gain in supporting flowering and high yield during routine harvest of Alstroemeria plants under commercial greenhouse conditions.« less
Xie, Ting-ting; Zhang, Xi-ming; Liang, Shao-min; Shan, Li-shan; Yang, Xiao-lin; Hua, Yong-hui
2008-04-01
By using heat-balance stem flow gauge and press chamber, the water physiological characteristics of Haloxylon ammodendron under different irrigations in Taklimakan Desert hinterland were measured and analyzed. The results indicated that the diurnal variation curve of H. ammodendron stem sap flow varied with irrigations. When irrigated 35 and 24.5 kg x plant(-1) once time, the diurnal variation of stem sap flow changed in single peak curve and the variation extent was higher; while irrigated 14 kg x plant(-1) once time, the diurnal variation changed in two-peak curve and the variation extent was small. With the decrease of irrigations, the average daily sap flow rate and the daily water consumption of H. ammodendron decreased gradually, the dawn and postmeridian water potential also had a gradual decrease, and the correlations of stem sap flow with total radiation, air temperature, relative humidity, and wind speed enhanced. Under different irrigations, the correlation between stem sap flow rate and total radiation was always the best.
Does body type really matter? Relating climate change, coral morphology and resiliency
NASA Astrophysics Data System (ADS)
Camp, M.; Shein, K. A.; Foster, K.; Hendee, J. C.
2016-02-01
Average sea temperatures in many tropical regions are rising approximately 1-2˚C per century, and are thought to be a major driver of increased frequency of coral bleaching. However, certain coral morphologies appear to be more resilient to changes in the environment, particularly to sea temperature variations resulting from global climate change. Although branching corals (e.g., Acropora cervicornis, A. palmata) are highly susceptible to coral bleaching, this morphology is commonly used in coral restoration efforts because of its fast growth rate. Massive corals show higher resistance and resilience to elevated temperature events than branching species, but are less common in coral nurseries. The objective of this study was to compare coral resilience among morphology types in Little Cayman, a remote tropical island with <200 inhabitants where it is possible to decouple environmental and anthropogenic stressors. Three morphological groups (branching, intermediary and massive) were surveyed at 17 sites to estimate the percent cover of each group. Temperature profiles were observed at six moorings around the island, allowing for direct comparison between sea surface temperature, sea temperature at the reef depths, and coral cover, per morphology. The relationship between coral morphological coverage and temperature variation at depth was assessed in the context of geographic variation around the island. Understanding the relationship between coral morphology and resilience to temperature variability will enhance current coral restoration practices by identifying which morphologies have the highest chance of long-term survivorship following outplanting, concurrently optimizing cumulative reef survivorship.
NASA Astrophysics Data System (ADS)
Anderson, Kristen D.; Heron, Scott F.; Pratchett, Morgan S.
2015-06-01
Reef-building corals are extremely sensitive to changing temperature regimes, such that sustained increases in ocean temperatures are generally expected to have negative effects on coral growth and survivorship. At high-latitude reefs, however, projected increases in ocean temperature may actually increase coral growth (relaxing constraints imposed by cool winter temperatures), though this will depend upon on the rate and extent of declines in aragonite saturation, which is already much lower at high latitudes. This study quantified linear extension rates of six scleractinian corals, Acropora yongei, Isopora cuneata, Pocillopora damicornis, Porites heronensis, Seriatopora hystrix, and Stylophora pistillata, at Lord Howe Island in 2010/11. Contemporary growth rates were compared to equivalent data collected in 1994/95. There was marked interspecific variation in growth rates, with A. yongei growing almost twice the rate of all other species. Temporal changes in annual growth also varied among species. Growth rates of both A. yongei and Pocillopora damicornis were 30 % of that recorded in 1994/95. However, growth rates of Porites heronensis had not changed. Declines in the growth rates of these branching species may be attributable to declines in aragonite saturation or increases in summertime temperatures above limits for optimal growth, but either way it appears that climate change is having negative effects on corals, even at subtropical locations.
IMS study of climate, altitude, temperature and vasomotor symptoms in the United Arab Emirates.
Stefanopoulou, E; Gupta, P; Mostafa, R Mohamed; Nosair, N; Mirghani, Z; Moustafa, K; Al Kusayer, G; Sturdee, D W; Hunter, M S
2014-08-01
To examine the relationships between temperature, season (summer versus winter), lifestyle, health, mood, beliefs, and experience of hot flushes and night sweats (HFNS), amongst mid-aged women living in the United Arab Emirates (UAE). The UAE climate is hyper-arid, being a hot desert climate, with warm winters and hot summers. A total of 372 peri- and postmenopausal women, aged from 45 to 55 years, from urban UAE regions were included. Data were collected during both summer and winter months. Participants completed questionnaires eliciting information about sociodemographics, HFNS (prevalence, frequency and problem-rating), health and lifestyle (body mass index (BMI), diet, exercise), mood (Women's Health Questionnaire) and menopause attributions and beliefs (Menopause Representations Questionnaire). HFNS were currently being experienced by 46.5% of women, with an average weekly frequency of five and problem-rating of 5.7/10. Seasonal variation in temperature was not associated with prevalence, frequency or problem-rating. Hot flush prevalence was associated with poor health, life satisfaction, mood, employment, lower BMI and diet. Higher frequency was associated with higher BMI and more years since the last period. HFNS were more problematic mainly for women who reported lower life satisfaction and held more negative beliefs about the menopause. In this UAE study, temperature and seasonal temperature variation did not appear to influence HFNS-reporting, but health, life satisfaction, BMI, beliefs and lifestyle factors partially explained women's experiences of menopausal symptoms. A qualitative study might provide further information about the meanings of HFNS and menopause amongst UAE women.
Allocation trade-off under climate warming in experimental amphibian populations
Gao, Xu; Jin, Changnan; Camargo, Arley
2015-01-01
Climate change could either directly or indirectly cause population declines via altered temperature, rainfall regimes, food availability or phenological responses. However few studies have focused on allocation trade-offs between growth and reproduction under marginal resources, such as food scarce that may be caused by climate warming. Such critical changes may have an unpredicted impact on amphibian life-history parameters and even population dynamics. Here, we report an allocation strategy of adult anuran individuals involving a reproductive stage under experimental warming. Using outdoor mesocosm experiments we simulated a warming scenario likely to occur at the end of this century. We examined the effects of temperature (ambient vs. pre-/post-hibernation warming) and food availability (normal vs. low) on reproduction and growth parameters of pond frogs (Pelophylax nigromaculatus). We found that temperature was the major factor influencing reproductive time of female pond frogs, which showed a significant advancing under post-hibernation warming treatment. While feeding rate was the major factor influencing reproductive status of females, clutch size, and variation of body size for females, showed significant positive correlations between feeding rate and reproductive status, clutch size, or variation of body size. Our results suggested that reproduction and body size of amphibians might be modulated by climate warming or food availability variation. We believe this study provides some new evidence on allocation strategies suggesting that amphibians could adjust their reproductive output to cope with climate warming. PMID:26500832
Nonlinear permanent migration response to climatic variations but minimal response to disasters
Bohra-Mishra, Pratikshya; Oppenheimer, Michael; Hsiang, Solomon M.
2014-01-01
We present a microlevel study to simultaneously investigate the effects of variations in temperature and precipitation along with sudden natural disasters to infer their relative influence on migration that is likely permanent. The study is made possible by the availability of household panel data from Indonesia with an exceptional tracking rate combined with frequent occurrence of natural disasters and significant climatic variations, thus providing a quasi-experiment to examine the influence of environment on migration. Using data on 7,185 households followed over 15 y, we analyze whole-household, province-to-province migration, which allows us to understand the effects of environmental factors on permanent moves that may differ from temporary migration. The results suggest that permanent migration is influenced by climatic variations, whereas episodic disasters tend to have much smaller or no impact on such migration. In particular, temperature has a nonlinear effect on migration such that above 25 °C, a rise in temperature is related to an increase in outmigration, potentially through its impact on economic conditions. We use these results to estimate the impact of projected temperature increases on future permanent migration. Though precipitation also has a similar nonlinear effect on migration, the effect is smaller than that of temperature, underscoring the importance of using an expanded set of climatic factors as predictors of migration. These findings on the minimal influence of natural disasters and precipitation on permanent moves supplement previous findings on the significant role of these variables in promoting temporary migration. PMID:24958887
Nonlinear permanent migration response to climatic variations but minimal response to disasters.
Bohra-Mishra, Pratikshya; Oppenheimer, Michael; Hsiang, Solomon M
2014-07-08
We present a microlevel study to simultaneously investigate the effects of variations in temperature and precipitation along with sudden natural disasters to infer their relative influence on migration that is likely permanent. The study is made possible by the availability of household panel data from Indonesia with an exceptional tracking rate combined with frequent occurrence of natural disasters and significant climatic variations, thus providing a quasi-experiment to examine the influence of environment on migration. Using data on 7,185 households followed over 15 y, we analyze whole-household, province-to-province migration, which allows us to understand the effects of environmental factors on permanent moves that may differ from temporary migration. The results suggest that permanent migration is influenced by climatic variations, whereas episodic disasters tend to have much smaller or no impact on such migration. In particular, temperature has a nonlinear effect on migration such that above 25 °C, a rise in temperature is related to an increase in outmigration, potentially through its impact on economic conditions. We use these results to estimate the impact of projected temperature increases on future permanent migration. Though precipitation also has a similar nonlinear effect on migration, the effect is smaller than that of temperature, underscoring the importance of using an expanded set of climatic factors as predictors of migration. These findings on the minimal influence of natural disasters and precipitation on permanent moves supplement previous findings on the significant role of these variables in promoting temporary migration.
Exploring the universal ecological responses to climate change in a univoltine butterfly.
Fenberg, Phillip B; Self, Angela; Stewart, John R; Wilson, Rebecca J; Brooks, Stephen J
2016-05-01
Animals with distinct life stages are often exposed to different temperatures during each stage. Thus, how temperature affects these life stages should be considered for broadly understanding the ecological consequences of climate warming on such species. For example, temperature variation during particular life stages may affect respective change in body size, phenology and geographic range, which have been identified as the "universal" ecological responses to climate change. While each of these responses has been separately documented across a number of species, it is not known whether each response occurs together within a species. The influence of temperature during particular life stages may help explain each of these ecological responses to climate change. Our goal was to determine if monthly temperature variation during particular life stages of a butterfly species can predict respective changes in body size and phenology. We also refer to the literature to assess if temperature variability during the adult stage influences range change over time. Using historical museum collections paired with monthly temperature records, we show that changes in body size and phenology of the univoltine butterfly, Hesperia comma, are partly dependent upon temporal variation in summer temperatures during key stages of their life cycle. June temperatures, which are likely to affect growth rate of the final larval instar, are important for predicting adult body size (for males only; showing a positive relationship with temperature). July temperatures, which are likely to influence the pupal stage, are important for predicting the timing of adult emergence (showing a negative relationship with temperature). Previous studies show that August temperatures, which act on the adult stage, are linked to range change. Our study highlights the importance of considering temperature variation during each life stage over historic time-scales for understanding intraspecific response to climate change. Range edge studies of ectothermic species that have annual life cycles, long time-series occurrence data, and associated temperature records (ideally at monthly resolutions) could be useful model systems for intraspecific tests of the universal ecological responses to climate change and for exploring interactive effects. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Heiland, Ines; Bodenstein, Christian; Hinze, Thomas; Weisheit, Olga; Ebenhoeh, Oliver; Mittag, Maria; Schuster, Stefan
2012-06-01
Endogenous circadian rhythms allow living organisms to anticipate daily variations in their natural environment. Temperature regulation and entrainment mechanisms of circadian clocks are still poorly understood. To better understand the molecular basis of these processes, we built a mathematical model based on experimental data examining temperature regulation of the circadian RNA-binding protein CHLAMY1 from the unicellular green alga Chlamydomonas reinhardtii, simulating the effect of temperature on the rates by applying the Arrhenius equation. Using numerical simulations, we demonstrate that our model is temperature-compensated and can be entrained to temperature cycles of various length and amplitude. The range of periods that allow entrainment of the model depends on the shape of the temperature cycles and is larger for sinusoidal compared to rectangular temperature curves. We show that the response to temperature of protein (de)phosphorylation rates play a key role in facilitating temperature entrainment of the oscillator in Chlamydomonas reinhardtii. We systematically investigated the response of our model to single temperature pulses to explain experimentally observed phase response curves.
Regional blood flow in sea turtles: implications for heat exchange in an aquatic ectotherm.
Hochscheid, Sandra; Bentivegna, Flegra; Speakman, John R
2002-01-01
Despite substantial knowledge on thermoregulation in reptiles, the mechanisms involved in heat exchange of sea turtles have not been investigated in detail. We studied blood flow in the front flippers of two green turtles, Chelonia mydas, and four loggerhead turtles, Caretta caretta, using Doppler ultrasound to assess the importance of regional blood flow in temperature regulation. Mean blood flow velocity and heart rate were determined for the water temperature at which the turtles were acclimated (19.3 degrees-22.5 degrees C) and for several experimental water temperatures (17 degrees-32 degrees C) to which the turtles were exposed for a short time. Flipper circulation increased with increasing water temperature, whereas during cooling, flipper circulation was greatly reduced. Heart rate was also positively correlated with water temperature; however, there were large variations between individual heart rate responses. Body temperatures, which were additionally determined for the two green turtles and six loggerhead turtles, increased faster during heating than during cooling. Heating rates were positively correlated with the difference between acclimation and experimental temperature and negatively correlated with body mass. Our data suggest that by varying circulation of the front flippers, turtles are capable of either transporting heat quickly into the body or retaining heat inside the body, depending on the prevailing thermal demands.
Agostini, Sylvain; Fujimura, Hiroyuki; Higuchi, Tomihiko; Yuyama, Ikuko; Casareto, Beatriz E; Suzuki, Yoshimi; Nakano, Yoshikatsu
2013-08-01
The effects of elevated temperature and high pCO2 on the metabolism of Galaxea fascicularis were studied with oxygen and pH microsensors. Photosynthesis and respiration rates were evaluated from the oxygen fluxes from and to the coral polyps. High-temperature alone lowered both photosynthetic and respiration rates. High pCO2 alone did not significantly affect either photosynthesis or respiration rates. Under a combination of high-temperature and high-CO2, the photosynthetic rate increased to values close to those of the controls. The same pH in the diffusion boundary layer was observed under light in both (400 and 750 ppm) CO2 treatments, but decreased significantly in the dark as a result of increased CO2. The ATP contents decreased with increasing temperature. The effects of temperature on the metabolism of corals were stronger than the effects of increased CO2. The effects of acidification were minimal without combined temperature stress. However, acidification combined with higher temperature may affect coral metabolism due to the amplification of diel variations in the microenvironment surrounding the coral and the decrease in ATP contents. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Temperature dependence of carrier capture by defects in gallium arsenide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R.; Modine, Normand A.
2015-08-01
This report examines the temperature dependence of the capture rate of carriers by defects in gallium arsenide and compares two previously published theoretical treatments of this based on multi phonon emission (MPE). The objective is to reduce uncertainty in atomistic simulations of gain degradation in III-V HBTs from neutron irradiation. A major source of uncertainty in those simulations is poor knowledge of carrier capture rates, whose values can differ by several orders of magnitude between various defect types. Most of this variation is due to different dependence on temperature, which is closely related to the relaxation of the defect structuremore » that occurs as a result of the change in charge state of the defect. The uncertainty in capture rate can therefore be greatly reduced by better knowledge of the defect relaxation.« less
Charles E. Peterson; Linda S. Heath
1991-01-01
In this paper we examine the influence of precipitation and temperature deviations on regional volume growth rates in even aged, onnen.,ed second growth Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) stands. Between 1969 and 1986, average volume growth rates in natural stands of coast Douglas fix in western Washington and Oregon were negatively...
Gastrointestinal temperature trends in football linemen during physical exertion under heat stress.
Coris, Eric E; Mehra, Shabnam; Walz, Stephen M; Duncanson, Robert; Jennings, Jason; Nugent, Dylan; Zwygart, Kira; Pescasio, Michele
2009-06-01
Exertional heat stroke is the third leading cause of death in US athletes. Elevations in core temperature in the digestive tract (TGI) have correlated with core temperature and are possible indicators of those at increased risk of heat stroke. The primary objective was to compare a.m. vs. p.m. TGI variation in collegiate football linemen during intense "two-a-day" preseason practice. A secondary objective was to compare longitudinal TGI in offensive and defensive linemen. Cross-sectional observational study. Division I Intercollegiate Athletics Football Program. TGI was monitored during consecutive preseason sessions. TGI, heat illness, weight changes, environmental stress, and subjective symptoms. Mean TGI were 37.8°C and 38.3°C during a.m. and p.m. practices, respectively. The a.m. practices revealed higher TGI gain (1.8°C) compared to p.m. (1.4°C). The p.m. practices had higher maximum TGI than a.m. practices (39.1°C versus 38.8, P=0.0001). Mean time to maximum temperature (Tmax) was 1 hr and 30 min for a.m. and 1 hr and 22 min for p.m. practices. Offensive linemen trended toward higher mean TGI than defensive players (38.0°C vs. 36.7°C, P = 0.069). The rate of rise in TGI was significantly greater in a.m. practices. A decrease in rate of TGI rise was seen from the first to last a.m. practices of the week (P = 0.004). Significant TGI elevations in asymptomatic athletes are common in extreme heat during football practice. Intense a.m. practices in full gear result in higher net temperature gain and rate of temperature gain than p.m. practices. Offensive linemen trended toward higher TGI than defensive linemen. As players acclimatized, a decrease in the rate of TGI increase was appreciable, particularly in a.m. practices. Appreciating cumulative heat stress and variations in heat stress related to scheduling of practice is critical.
NASA Astrophysics Data System (ADS)
Christen, Hans M.; Ohkubo, Isao; Rouleau, Christopher M.; Jellison, Gerald E., Jr.; Puretzky, Alex A.; Geohegan, David B.; Lowndes, Douglas H.
2005-01-01
Parallel (multi-sample) approaches, such as discrete combinatorial synthesis or continuous compositional-spread (CCS), can significantly increase the rate of materials discovery and process optimization. Here we review our generalized CCS method, based on pulsed-laser deposition, in which the synchronization between laser firing and substrate translation (behind a fixed slit aperture) yields the desired variations of composition and thickness. In situ alloying makes this approach applicable to the non-equilibrium synthesis of metastable phases. Deposition on a heater plate with a controlled spatial temperature variation can additionally be used for growth-temperature-dependence studies. Composition and temperature variations are controlled on length scales large enough to yield sample sizes sufficient for conventional characterization techniques (such as temperature-dependent measurements of resistivity or magnetic properties). This technique has been applied to various experimental studies, and we present here the results for the growth of electro-optic materials (SrxBa1-xNb2O6) and magnetic perovskites (Sr1-xCaxRuO3), and discuss the application to the understanding and optimization of catalysts used in the synthesis of dense forests of carbon nanotubes.
NASA Astrophysics Data System (ADS)
Cardoso, Ricardo S.; Defeo, Omar
2004-11-01
Biogeographic patterns in life history traits of the Pan-American sandy beach isopod Excirolana braziliensis were analyzed to determine latitudinal variations along its distribution, from tropical (9°N) to temperate (39°S) sandy beaches in Atlantic and Pacific oceans. Population features exhibited systematic geographical patterns of variation: (1) an increase in individual sizes and growth rates towards temperate beaches, following an inverse relationship with mean water temperature of the surf zone; (2) a shift from almost continuous to seasonal growth from subtropical to temperate Atlantic beaches and a positive relationship between amplitude of intra-annual growth oscillations and temperature range; (3) a linear decrease in life span and an increase in natural mortality from temperate to subtropical beaches; and (4) an increase in the individual mass-at-size (length-mass relationship) from subtropical to temperate beaches. Analyses discriminated by sex were consistent with the patterns illustrated above. Local effects of temperature and beach morphodynamics are discussed. Our results demonstrate that the population dynamics of E. braziliensis is highly plastic over latitudinal gradients, with large-scale variations in temperature and concurrent environmental variables leading to an adjustment of the phenotype-environment relationship.
The intrinsic growth rate as a predictor of population viability under climate warming.
Amarasekare, Priyanga; Coutinho, Renato M
2013-11-01
1. Lately, there has been interest in using the intrinsic growth rate (rm) to predict the effects of climate warming on ectotherm population viability. However, because rm is calculated using the Euler-Lotka equation, its reliability in predicting population persistence depends on whether ectotherm populations can achieve a stable age/stage distribution in thermally variable environments. Here, we investigate this issue using a mathematical framework that incorporates mechanistic descriptions of temperature effects on vital rates into a stage-structured population model that realistically captures the temperature-induced variability in developmental delays that characterize ectotherm life cycles. 2. We find that populations experiencing seasonal temperature variation converge to a stage distribution whose intra-annual pattern remains invariant across years. As a result, the mean annual per capita growth rate also remains constant between years. The key insight is the mechanism that allows populations converge to a stationary stage distribution. Temperature effects on the biochemical processes (e.g. enzyme kinetics, hormonal regulation) that underlie life-history traits (reproduction, development and mortality) exhibit well-defined thermodynamical properties (e.g. changes in entropy and enthalpy) that lead to predictable outcomes (e.g. reduction in reaction rates or hormonal action at temperature extremes). As a result, life-history traits exhibit a systematic and predictable response to seasonal temperature variation. This in turn leads to temporally predictable temperature responses of the stage distribution and the per capita growth rate. 3. When climate warming causes an increase in the mean annual temperature and/or the amplitude of seasonal fluctuations, the population model predicts the mean annual per capita growth rate to decline to zero within 100 years when warming is slow relative to the developmental period of the organism (0.03-0.05°C per year) and to become negative, causing population extinction, well before 100 years when warming is fast (e.g. 0.1°C per year). The Euler-Lotka equation predicts a slower decrease in rm when warming is slow and a longer persistence time when warming is fast, with the deviation between the two metrics increasing with increasing developmental period. These results suggest that predictions of ectotherm population viability based on rm may be valid only for species with short developmental delays, and even then, only over short time-scales and under slow warming regimes. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
NASA Technical Reports Server (NTRS)
Fuller, C. A.; Alpatov, A. M.; Hoban-Higgins, T. M.; Klimovitsky, V. Y.
1994-01-01
Mammals have developed the ability to adapt to most variations encountered in their everyday environment. For example, homeotherms have developed the ability to maintain the internal cellular environment at a relatively constant temperature. Also, in order to compensate for temporal variations in the terrestrial environment, the circadian timing system has evolved. However, throughout the evolution of life on earth, living organisms have been exposed to the influence of an unvarying level of earth's gravity. As a result changes in gravity produce adaptive responses which are not completely understood. In particular, spaceflight has pronounced effects on various physiological and behavioral systems. Such systems include body temperature regulation and circadian rhythms. This program has examined the influence of microgravity on temperature regulation and circadian timekeeping systems in Rhesus monkeys. Animals flown on the Soviet Biosatellite, COSMOS 2044, were exposed to 14 days of microgravity while constantly monitoring the circadian patterns temperature regulation, heart rate and activity. This experiment has extended our previous observations from COSMOS 1514, as well as providing insights into the physiological mechanisms that produce these changes.
Isoform switching facilitates period control in the Neurospora crassa circadian clock.
Akman, Ozgur E; Locke, James C W; Tang, Sanyi; Carré, Isabelle; Millar, Andrew J; Rand, David A
2008-01-01
A striking and defining feature of circadian clocks is the small variation in period over a physiological range of temperatures. This is referred to as temperature compensation, although recent work has suggested that the variation observed is a specific, adaptive control of period. Moreover, given that many biological rate constants have a Q(10) of around 2, it is remarkable that such clocks remain rhythmic under significant temperature changes. We introduce a new mathematical model for the Neurospora crassa circadian network incorporating experimental work showing that temperature alters the balance of translation between a short and long form of the FREQUENCY (FRQ) protein. This is used to discuss period control and functionality for the Neurospora system. The model reproduces a broad range of key experimental data on temperature dependence and rhythmicity, both in wild-type and mutant strains. We present a simple mechanism utilising the presence of the FRQ isoforms (isoform switching) by which period control could have evolved, and argue that this regulatory structure may also increase the temperature range where the clock is robustly rhythmic.
Dynamic strain aging in the high-temperature low-cycle fatigue of SA508 Cl. 3 forging steel
NASA Astrophysics Data System (ADS)
Lee, Byung Ho; Kim, In Sup
1995-10-01
The effect of dynamic strain aging on cyclic stress response and fatigue resistance of ASME SA508 Cl.3 forging steel for nuclear reactor pressure vessels has been evaluated in the temperature range of room temperature to 500°C. Total strain ranges and strain rates were varied from 0.7 to 2.0% and from 4 × 10 -4 to 1 × 10 -2 s -1, respectively. The cyclic stress response depended on the testing temperature, strain rate, and range. Generally, the initial cyclic hardening was immediately followed by cyclic softening at all strain rates. However, at 300°C, the operating temperature of nuclear reactor pressure vessels, the variation of cyclic stress amplitude showed the primary and secondary hardening stages dependent on the strain rate and strain range. Dynamic strain aging was manifested by enhanced cyclic hardening, distinguished secondary hardening, and negative strain rate sensitivity. A modified cell shutting model was described for the onset of the secondary hardening due to the dynamic strain aging and it was in good agreement with the experimental results. Fatigue life increased in strain rate at all testing temperatures. Specifically the fatigue life was longer at the dynamic strain aging temperature. Further, the dynamic strain aging was easy to initiate the crack, while crack propagation was retarded by crack branching and suppression of plastic zone, hence the dynamic strain aging caused the improvement of fatigue resistance.
Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.
Kumar, Dinesh; Kumar, P; Rai, K N
2017-11-01
This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Yuan; He, Nianpeng; Zhu, Jianxing; Xu, Li; Yu, Guirui; Niu, Shuli; Sun, Xiaomin; Wen, Xuefa
2017-08-01
How to assess the temperature sensitivity (Q 10 ) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q 10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q 10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q 10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q 10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q 10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q 10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q 10 . The general negative relationships between Q 10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q 10 , were predicted to be more sensitive to climate change under the scenario of global warming. © 2017 John Wiley & Sons Ltd.
Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Myers, Dwight L.
2003-01-01
The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.
Temperature mediates continental-scale diversity of microbes in forest soils
Zhou, Jizhong; Deng, Ye; Shen, Lina; Wen, Chongqing; Yan, Qingyun; Ning, Daliang; Qin, Yujia; Xue, Kai; Wu, Liyou; He, Zhili; Voordeckers, James W.; Nostrand, Joy D. Van; Buzzard, Vanessa; Michaletz, Sean T.; Enquist, Brian J.; Weiser, Michael D.; Kaspari, Michael; Waide, Robert; Yang, Yunfeng; Brown, James H.
2016-01-01
Climate warming is increasingly leading to marked changes in plant and animal biodiversity, but it remains unclear how temperatures affect microbial biodiversity, particularly in terrestrial soils. Here we show that, in accordance with metabolic theory of ecology, taxonomic and phylogenetic diversity of soil bacteria, fungi and nitrogen fixers are all better predicted by variation in environmental temperature than pH. However, the rates of diversity turnover across the global temperature gradients are substantially lower than those recorded for trees and animals, suggesting that the diversity of plant, animal and soil microbial communities show differential responses to climate change. To the best of our knowledge, this is the first study demonstrating that the diversity of different microbial groups has significantly lower rates of turnover across temperature gradients than other major taxa, which has important implications for assessing the effects of human-caused changes in climate, land use and other factors. PMID:27377774
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penner, J.E.; Chang, J.S.
Changes in ozone, temperature, and other minor constituents resulting from eleven year variations in the solar flux between 180 and 340 nm are presented. Results were computed using a one-dimensional time dependent model that allows for all major feedbacks and time delays which may result from changing photolysis rates in the O/sub x/--NO/sub x/--HO/sub x/--ClO/sub x/ system. Since the 1950's the chlorine content of the stratosphere has been increasing. The effect of this increase on ozone variability during the last two solar cycles is analyzed. Expected variations in O/sub 3/ and temperature resulting from changes in the uv flux aremore » compared to available measurements.« less
Searles, J A; Carpenter, J F; Randolph, T W
2001-07-01
The objective of this study was to determine the influence of ice nucleation temperature on the primary drying rate during lyophilization for samples in vials that were frozen on a lyophilizer shelf. Aqueous solutions of 10% (w/v) hydroxyethyl starch were frozen in vials with externally mounted thermocouples and then partially lyophilized to determine the primary drying rate. Low- and high-particulate-containing samples, ice-nucleating additives silver iodide and Pseudomonas syringae, and other methods were used to obtain a wide range of nucleation temperatures. In cases where the supercooling exceeded 5 degrees C, freezing took place in the following three steps: (1) primary nucleation, (2) secondary nucleation encompassing the entire liquid volume, and (3) final solidification. The primary drying rate was dependent on the ice nucleation temperature, which is stochastic in nature but is affected by particulate content and the presence of ice nucleators. Sample cooling rates of 0.05 to 1 degrees C/min had no effect on nucleation temperatures and drying rate. We found that the ice nucleation temperature is the primary determinant of the primary drying rate. However, the nucleation temperature is not under direct control, and its stochastic nature and sensitivity to difficult-to-control parameters result in drying rate heterogeneity. Nucleation temperature heterogeneity may also result in variation in other morphology-related parameters such as surface area and secondary drying rate. Overall, these results document that factors such as particulate content and vial condition, which influence ice nucleation temperature, must be carefully controlled to avoid, for example, lot-to-lot variability during cGMP production. In addition, if these factors are not controlled and/or are inadvertently changed during process development and scaleup, a lyophilization cycle that was successful on the research scale may fail during large-scale production.
Lu, Hua-Zheng; Sha, Li-Qing; Wang, Jun; Hu, Wen-Yan; Wu, Bing-Xia
2009-10-01
By using trenching method and infrared gas analyzer, this paper studied the seasonal variation of soil respiration (SR), including root respiration (RR) and heterotrophic respiration (HR), in tropical seasonal rain forest (RF) and rubber (Hevea brasiliensis) plantation (RP) in Xishuangbanna of Yunnan, China. The results showed that the SR and HR rates were significantly higher in RF than in RP (P < 0.01), while the RR rate had less difference between the two forests. Soil temperature and moisture were the key factors affecting the SR, RR and HR. The SR and HR rates in the two forests were rainy season > dry-hot season > foggy season, but the RR rate was rainy season > foggy season > dry-hot season in RF, and foggy season > rainy season > dry-hot season in RP. The contribution of RR to SR in RF (29%) was much lower than that in RP (42%, P < 0.01), while the contribution of HR to SR was 71% in RF and 58% in RP. When the soil temperature at 5 cm depth varied from 12 degrees C to 32 degrees C, the Q10 values for SR, HR, and RR rates were higher in RF than in RP. HR had the highest Q10 value, while RR had the lowest one.
Cherkasov, Anton S; Ringwood, Amy H; Sokolova, Inna M
2006-09-01
Cadmium and temperature have strong impacts on the metabolic physiology of aquatic organisms. To analyze the combined impact of these two stressors on aerobic capacity, effects of Cd exposure (50 microg/L) on mitochondrial function were studied in oysters (Crassostrea virginica) acclimated to 12 and 20 degrees C in winter and to 20 and 28 degrees C in fall. Cadmium exposure had different effects on mitochondrial bioenergetics of oysters depending on the acclimation temperature. In oysters acclimated to 12 degrees C, Cd exposure resulted in elevated intrinsic rates of mitochondrial oxidation, whereas at 28 degrees C, a rapid and pronounced decrease of mitochondrial oxidative capacity was found in Cd-exposed oysters. At the intermediate acclimation temperature (20 degrees C), effects of Cd exposure on intrinsic rates of mitochondrial oxidation were negligible. Degree of coupling significantly decreased in mitochondria from 28 degrees C-acclimated oysters but not in that from 12 degrees C- or 20 degrees C-acclimated oysters. Acclimation at elevated temperatures also increased sensitivity of oyster mitochondria to extramitochondrial Cd. Variation in mitochondrial membrane potential explained 41% of the observed variation in mitochondrial adenosine triphosphate synthesis and proton leak between different acclimation groups of oysters. Temperature-dependent sensitivity of metabolic physiology to Cd has significant implications for toxicity testing and for extrapolation of laboratory studies to field populations of aquatic poikilotherms, indicating the importance of taking into account the thermal regime of the environment.
Djanaguiraman, M; Boyle, D L; Welti, R; Jagadish, S V K; Prasad, P V V
2018-04-05
High temperature is a major abiotic stress that limits wheat (Triticum aestivum L.) productivity. Variation in levels of a wide range of lipids, including stress-related molecular species, oxidative damage, cellular organization and ultrastructural changes were analyzed to provide an integrated view of the factors that underlie decreased photosynthetic rate under high temperature stress. Wheat plants of cultivar Chinese Spring were grown at optimum temperatures (25/15 °C, maximum/minimum) until the onset of the booting stage. Thereafter, plants were exposed to high temperature (35/25 °C) for 16 d. Compared with optimum temperature, a lower photosynthetic rate was observed at high temperature which is an interplay between thylakoid membrane damage, thylakoid membrane lipid composition, oxidative damage of cell organelle, and stomatal and non-stomatal limitations. Triacylglycerol levels were higher under high temperature stress. Polar lipid fatty acyl unsaturation was lower at high temperature, while triacylglycerol unsaturation was the same at high temperature and optimum temperature. The changes in lipid species indicates increases in activities of desaturating, oxidizing, glycosylating and acylating enzymes under high temperature stress. Cumulative effect of high temperature stress led to generation of reactive oxygen species, cell organelle and membrane damage, and reduced antioxidant enzyme activity, and imbalance between reactive oxygen species and antioxidant defense system. Taken together with recent findings demonstrating that reactive oxygen species are formed from and are removed by thylakoid lipids, the data suggest that reactive oxygen species production, reactive oxygen species removal, and changes in lipid metabolism contribute to decreased photosynthetic rate under high temperature stress.
Welch, Brandi C.; Boal, Clint W.; Skipper, Ben R.
2017-01-01
Identifying sources of annual variation in the reproductive success of a species may provide valuable insights into how the species may be affected by future environmental or climatic conditions. We examined annual variation in the nesting phenology, productivity, and apparent nest success of Mississippi Kites (Ictinia mississippiensis), a species common in urban areas in the southern Great Plains, from May through August. We monitored 498 Mississippi Kite nesting attempts in Lubbock, Texas, USA, between 2004 and 2015, from which we modeled daily survival rate as a function of local weather conditions, drought severity, and the state of the El Niño Southern Oscillation. We observed significant annual variation in median incubation initiation date (range = May 20 to June 5), the probability of nest success (range = 0.31–0.90), and productivity (range = 0.25–1.00 fledglings per nest). Our models of daily survival rate suggested that higher daily temperatures, severe storm events, extreme drought conditions, and La Niña events negatively influenced nest survival. These results suggest that increasing storm frequency and higher temperatures associated with climate change are likely to decrease the nesting success of Mississippi Kites in the southern Great Plains.
Sköld-Chiriac, Sandra; Nord, Andreas; Tobler, Michael; Nilsson, Jan-Åke; Hasselquist, Dennis
2015-09-01
Although fever (a closely regulated increase in body temperature in response to infection) typically is beneficial, it is energetically costly and may induce detrimentally high body temperatures. This can increase the susceptibility to energetic bottlenecks and risks of overheating in some organisms. Accordingly, it could be particularly interesting to study fever in small birds, which have comparatively high metabolic rates and high, variable body temperatures. We therefore investigated two aspects of fever and other sickness behaviours (circadian variation, dose dependence) in a small songbird, the zebra finch. We injected lipopolysaccharide (LPS) at the beginning of either the day or the night, and subsequently monitored body temperature, body mass change and food intake for the duration of the response. We found pronounced circadian variation in the body temperature response to LPS injection, manifested by (dose-dependent) hypothermia during the day but fever at night. This resulted in body temperature during the peak response being relatively similar during the day and night. Day-to-night differences might be explained in the context of circadian variation in body temperature: songbirds have a high daytime body temperature that is augmented by substantial heat production peaks during activity. This might require a trade-off between the benefit of fever and the risk of overheating. In contrast, at night, when body temperature is typically lower and less variable, fever can be used to mitigate infection. We suggest that the change in body temperature during infection in small songbirds is context dependent and regulated to promote survival according to individual demands at the time of infection. © 2015. Published by The Company of Biologists Ltd.
Zari, Talal A
2016-08-01
Many ectotherms adjust their metabolic rate seasonally in association with variations in environmental temperatures. The range and direction of these seasonal changes in reptilian metabolic rates are thought to be linked to the seasonality of activity and energy requirements. The present study was conducted to measure the standard metabolic rate (SMR) of seasonally-acclimatized Uromastyx philbyi with different body masses at 20, 25, 30, 35 and 40°C using open-flow respirometry during the four seasons. SMR was mass-dependent. The mean exponent of mass, "b", in the metabolism-body mass relation was 0.76 (variance=0.0007). Likewise, SMR increased as temperature increased with low Q10 values at high temperatures and high Q10 values at low temperatures. The lowest and highest Q10 values were achieved for temperature ranges of 30-35°C for summer-acclimatized dhabbs (Q10=1.6) and 20-25°C for winter-acclimatized dhabbs (Q10=3.9). Seasonal acclimatization effects were obvious at all temperatures (20-40°C). Winter-acclimatized dhabbs had the lowest metabolic rates at all temperatures. The seasonal acclimatization patterns displayed by U. philbyi may represent a valuable adaptation for herbivorous desert lizards that inhabit subtropical deserts to facilitate activity during their active seasons and to conserve energy during inactivity at low temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Seasonal variation of metabolism in lizard Phrynocephalus vlangalii at high altitude.
Liang, Shiwei; Li, Weixin; Zhang, Yang; Tang, Xiaolong; He, Jianzheng; Bai, Yucheng; Li, Dongqin; Wang, Yan; Chen, Qiang
2017-01-01
Seasonal acclimatization is important for animals to live optimally in the varying environment. Phrynocephalus vlangalii, a species of lizard endemic in China, distributes on Qinghai-Tibet Plateau ranging from 2000 to 4600m above sea level. To dissect how this lizard mediate metabolism to adapt various season, the preferred body temperature (Tb), standard metabolic rate (SMR), mitochondrial respiration rates and activities of four metabolic enzymes in this species were tested in different seasons (spring, summer, and autumn). The results showed that the preferred Tb was the lowest in spring and the highest in summer. SMR, maximal mitochondrial respiration rates in liver and skeletal muscle were the highest in spring. Similarly, higher activities of lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities of liver and skeletal muscle were observed in spring. However, β-hydroxyacyl coenzyme A dehydrogenase (HOAD) activities of liver and skeletal muscle were higher in autumn. On the whole, seasonal variation of metabolism is the highest in spring and the lowest in summer. Seasonal variation of metabolism is the opposite of preferred body temperature, this may be one of the mechanisms to adapt to the environment in P. vlangalii. Our results suggested that P. vlangalii at high altitude has certain adaptive characteristics on metabolism in different seasons. Copyright © 2016 Elsevier Inc. All rights reserved.
Killeen, Joshua; Gougat-Barbera, Claire; Krenek, Sascha; Kaltz, Oliver
2017-04-01
Evolutionary rescue (ER) occurs when populations, which have declined due to rapid environmental change, recover through genetic adaptation. The success of this process and the evolutionary trajectory of the population strongly depend on the rate of environmental change. Here we investigated how different rates of temperature increase (from 23 to 32 °C) affect population persistence and evolutionary change in experimental microcosms of the protozoan Paramecium caudatum. Consistent with theory on ER, we found that those populations experiencing the slowest rate of temperature increase were the least likely to become extinct and tended to be the best adapted to the new temperature environment. All high-temperature populations were more tolerant to severe heat stress (35, 37 °C), indicating a common mechanism of heat protection. High-temperature populations also had superior growth rates at optimum temperatures, leading to the absence of a pattern of local adaptation to control (23 °C) and high-temperature (32 °C) environments. However, high-temperature populations had reduced growth at low temperatures (5-9 °C), causing a shift in the temperature niche. In part, the observed evolutionary change can be explained by selection from standing variation. Using mitochondrial markers, we found complete divergence between control and high-temperature populations in the frequencies of six initial founder genotypes. Our results confirm basic predictions of ER and illustrate how adaptation to an extreme local environment can produce positive as well as negative correlated responses to selection over the entire range of the ecological niche. © 2017 John Wiley & Sons Ltd.
Marcus Bell-Shaped Electron Transfer Kinetics Observed in an Arrhenius Plot.
Waskasi, Morteza M; Kodis, Gerdenis; Moore, Ana L; Moore, Thomas A; Gust, Devens; Matyushov, Dmitry V
2016-07-27
The Marcus theory of electron transfer predicts a bell-shaped dependence of the reaction rate on the reaction free energy. The top of the "inverted parabola" corresponds to zero activation barrier when the electron-transfer reorganization energy and the reaction free energy add up to zero. Although this point has traditionally been reached by altering the chemical structures of donors and acceptors, the theory suggests that it can also be reached by varying other parameters of the system including temperature. We find here dramatic evidence of this phenomenon from experiments on a fullerene-porphyrin dyad. Following photoinduced electron transfer, the rate of charge recombination shows a bell-shaped dependence on the inverse temperature, first increasing with cooling and then decreasing at still lower temperatures. This non-Arrhenius rate law is a result of a strong, approximately hyperbolic temperature variation of the reorganization energy and the reaction free energy. Our results provide potentially the cleanest confirmation of the Marcus energy gap law so far since no modification of the chemical structure is involved.
Putilov, Arcady A
2017-01-01
Compared to literature on seasonal variation in mood and well-being, reports on seasonality of trouble sleeping are scarce and contradictive. To extend geography of such reports on example of people naturally exposed to high-amplitude annual variation in daylength and/or temperature. Participants were the residents of Turkmenia, West Siberia, South and North Yakutia, Chukotka, and Alaska. Health and sleep-wake adaptabilities, month-to-month variation in sleeping problems, well-being and behaviors were self-assessed. More than a half of 2398 respondents acknowledged seasonality of sleeping problems. Four of the assessed sleeping problems demonstrated three different patterns of seasonal variation. Rate of the problems significantly increased in winter months with long nights and cold days (daytime sleepiness and difficulties falling and staying asleep) as well as in summer months with either long days (premature awakening and difficulties falling and staying asleep) or hot nights and days (all 4 sleeping problems). Individual differences between respondents in pattern and level of seasonality of sleeping problems were significantly associated with differences in several other domains of individual variation, such as gender, age, ethnicity, physical health, morning-evening preference, sleep quality, and adaptability of the sleep-wake cycle. These results have practical relevance to understanding of the roles playing by natural environmental factors in seasonality of sleeping problems as well as to research on prevalence of sleep disorders and methods of their prevention and treatment in regions with large seasonal differences in temperature and daylength.
Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply
NASA Astrophysics Data System (ADS)
Nozawa, Koh; Delville, Marie-Hélène; Ushiki, Hideharu; Panizza, Pascal; Delville, Jean-Pierre
2005-07-01
In closed systems, control over the size of monodisperse metal-oxide colloids is generally limited to submicrometric dimensions. To overcome this difficulty, we explore the formation and growth of silica particles under constant monomer supply. The monomer source is externally driven by the progressive addition into the system of one of the precursors. Monodisperse spherical particles are produced up to a mesoscopic size. We analyze their growth versus the monomer addition rate at different temperatures. Our results show that in the presence of a continuous monomer addition, growth is limited by diffusion over the investigated temporal window. Using the temperature variation of the growth rate, we prove that rescaling leads to a data reduction onto a single master curve. Contrary to the growth process, the final particle’s size reached after the end of the reagent supply strongly depends on the addition rate. The variation of the final particle size versus addition rate can be deduced from an analogy with crystal formation in jet precipitation. Within this framework, and using the temperature dependences of both the particle growth law and the final size, we determine the value of the molecular heat of dissolution associated to the silica solubility. These observations support the fact that classical theories of phase-ordering dynamics can be extended to the synthesis of inorganic particles. The emergence of a master behavior in the presence of continuous monomer addition also suggests the extension of these theories to open systems.
Weather explains high annual variation in butterfly dispersal
Rytteri, Susu; Heikkinen, Risto K.; Heliölä, Janne; von Bagh, Peter
2016-01-01
Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark–release–recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79–91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. PMID:27440662
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1990-01-01
The microstructural variations in nickel based superalloys that result from modifications in processing were examined. These superalloys include MAR-M246(HF) and PWA1480. Alternate heat treatments for equiaxed as-cast specimens were studied and a sample matrix of 42 variations in the heat treatments were processed, as well as different directional solidification parameters. Variation in temperature and times for both solution and aging were performed. Photomicrographs were made of the microstructure and volume fraction analysis of primary gamma-prime and aged gamma-prime precipitates were performed. The results of the heat treatment, cooling rate, and directional solidification experiments are discussed.
NASA Astrophysics Data System (ADS)
Lavergne, Aliénor; Daux, Valérie; Villalba, Ricardo; Pierre, Monique; Stievenard, Michel; Srur, Ana Marina
2017-02-01
Very few studies of stable isotopes exist across the Andes in South America. This study is the first presenting annually resolved chronologies of both δ18 O and δ13 C in Nothofagus pumilio and Fitzroya cupressoides trees from Northern Patagonia. Interannual variability in δ18 O and δ13 C was assessed over the period 1952-2011. Based on these chronologies, we determined the primary climatic controls on stable isotopes and tree physiological responses to changes in atmospheric CO2 concentrations (ca), temperature and humidity. Changes in specific intrinsic water use efficiency (iWUE) were inferred from variations in δ13 C whereas the effects of CO2 increase on stomatal conductance were explored using δ18 O. Over the 60-year period, iWUE increased significantly (by ca. 25%) in coincidence with the rise of ca. The two species appear to have different strategies of gas-exchange. Whereas iWUE variations were likely driven by both stomatal conductance and photosynthetic assimilation rates in F. cupressoides, they were largely related to stomatal conductance in N. pumilio. After removing the low-frequency trends related to increasing ca, significant relationships between δ13 C and summer temperatures were recorded for both species. However, δ13 C variations in F. cupressoides were more strongly influenced by summer temperatures than in N. pumilio. Our results advocate for an indirect effect of summer temperatures on stable isotope ratios, which is mostly influenced by sunlight radiation in F. cupressoides and relative humidity/soil moisture in N. pumilio. δ13 C variations in F. cupressoides were spatially correlated to a large area south of 35°S in southern South America. These promising results encourage the use of δ13 C variations in F. cupressoides for reconstructing past variations in temperature and large-scale circulation indexes such as the Southern Annular Mode (SAM) in the Southern Hemisphere.
Lateral thinking: 2-D interpretation of thermochronology in convergent orogenic settings
NASA Astrophysics Data System (ADS)
Batt, Geoffrey E.; Brandon, Mark T.
2002-05-01
Lateral motion of material relative to the regional thermal and kinematic frameworks is important in the interpretation of thermochronology in convergent orogens. Although cooling ages in denuded settings are commonly linked to exhumation, such data are not related to instantaneous behavior but rather to an integration of the exhumation rates experienced between the thermochronological 'closure' at depth and subsequent exposure at the surface. The short spatial wavelength variation of thermal structure and denudation rate typical of orogenic regions thus renders thermochronometers sensitive to lateral motion during exhumation. The significance of this lateral motion varies in proportion with closure temperature, which controls the depth at which isotopic closure occurs, and hence, the range of time and length scales over which such data integrate sample histories. Different chronometers thus vary in the fundamental aspects of the orogenic character to which they are sensitive. Isotopic systems with high closure temperature are more sensitive to exhumation paths and the variation in denudation and thermal structure across a region, while those of lower closure temperature constrain shorter-term behaviour and more local conditions. Discounting lateral motion through an orogenic region and interpreting cooling ages purely in terms of vertical exhumation can produce ambiguous results because variation in the cooling rate can result from either change in kinematics over time or the translation of samples through spatially varying conditions. Resolving this ambiguity requires explicit consideration of the physical and thermal framework experienced by samples during their exhumation. This can be best achieved through numerical simulations coupling kinematic deformation to thermal evolution. Such an approach allows the thermochronological implications of different kinematic scenarios to be tested, and thus provides an important means of assessing the contribution of lateral motion to orogenic evolution.
NASA Astrophysics Data System (ADS)
Kueppers, L. M.
2010-12-01
Niche models and paleoecological studies indicate that future climate change will alter the geographic distributions of plant species. Changes in temperature, snowmelt timing, or moisture conditions at one edge of a species’ range may have different consequences for recruitment, carbon exchange, phenology, and survival than changes at another edge. Similarly, local genetic adaptation may constrain species and community responses to climate change. We have established a new experiment to investigate potential shifts in the distribution of subalpine tree species, and the alpine species they might replace. We are asking how tree species recruitment and alpine species growth and reproduction vary within their current ranges, and in response to temperature and soil moisture manipulations. We are also examining whether genetic provenance and ecosystem processes constrain tree seedling and alpine herb responses. Our Alpine Treeline Warming Experiment is located across three sites at Niwot Ridge, CO, ranging from near the lower limit of subalpine forest to alpine tundra. We use infrared heaters to raise growing season surface soil temperatures by 4-5°C, and to lengthen the growing season. The warming treatment is crossed with a soil moisture manipulation to distinguish effects due to higher temperatures from those due to drier soil. Each plot is a common garden sown with high and low elevation provenances of limber pine (Pinus flexilis) and Engelmann spruce (Picea engelmannii). We established an additional set of experimental plots to examine treatment effects on alpine species phenology, growth and reproduction. Under ambient conditions in 2009, tree seedling germination rate, lifespan, and first season survival was higher within the species’ current range than in the alpine, and for Engelmann spruce, was higher at the low elevation limit than the high elevation limit. Source population (low vs. high elevation) was a significant factor explaining natural variation in germination rates and timing, seedling physiology, and seedling survival. In 2010, the first season with experimental effects data, the timing of germination was substantially advanced with warming for both species, and warming appeared to increase germination rates for limber pine, but to depress rates for Engelmann spruce at treeline. Seedling carbon balance was negative at the warmest leaf temperatures and there is some indication that the low elevation provenance has a higher total assimilation rate and net carbon gain than the high elevation provenance. Water availability was an important driver of variation in carbon assimilation through the growing season. Our early results suggest that with higher germination rates and lower mortality rates, limber pine is better able to recruit into the alpine than Engelmann spruce, and that lower elevation provenances of limber pine are better at assimilating carbon for growth regardless of site. Ultimate success in seedling establishment may be more contingent on water availability than temperature, even at these high elevations.
A study of quasi-biennial oscillation in the tropical stratosphere
NASA Astrophysics Data System (ADS)
Sasi, M. N.; Krishna Murthy, B. V.
1991-12-01
The characteristics of the quasi-biennial oscillation in zonal wind and temperature at Trivandrum (8.5°N, 77°E) have been studied using data covering 16 years. Similar study has been carried out for zonal wind at Balasore (21.5°N, 87°E) using data covering 9 years. The cycle to cycle variation of amplitudes, their altitude variation, periods and descent rates of the westerly and easterly regimes have been studied.
NASA Astrophysics Data System (ADS)
Melián, Gladys V.; Ocampo, Stephany; Nisbet, Andrew; McKnight, Samara; Monzón, Tania; Asensio-Ramos, María; Alonso, Mar; Rodríguez, Fátima; García-Merino, Marta; Amonte, Cecilia; Pérez, Nemesio M.
2017-04-01
Teide volcano in Tenerife, Canary Islands, is characterized by the presence of a weak fumarolic system, steamy ground, and high rates of diffuse CO2 degassing all around this area. The temperature of the fumaroles (83˚ C) corresponds to the boiling point of water at discharge conditions. Previous diffuse CO2 surveys have shown to be an important tool to detect early warnings of possible impending volcanic unrests at Tenerife Island (Melián et al., 2012; Pérez et al., 2013). During June, July and August 2016, twelve soil gas surveys were performed at the summit crater of Teide volcano in order to evaluate short-term variations of diffuse CO2 degassing pattern. Soil CO2 efflux and soil temperature were always measured at the same 38 observation sites homogeneously distributed within an area of about 6,972 m2 inside the summit crater. Soil CO2 diffuse effluxes were estimated according to the accumulation chamber method and using a non-dispersive infrared (NDIR) LICOR-820 CO2analyzer. Soil CO2 efflux values presented a range from non-detectable (˜0.5 gṡm-2ṡd-1) to 10.8 kgṡm-2ṡd-1, with an average value of 2.7 kgṡm-2ṡd-1, while soil temperature ranged from 13.1 to 83.6˚ C with a mean value of 55.6˚ C. Sequential Gaussian simulations (sGs) were used for mapping and estimate the volcanic diffuse CO2 emission at each survey. The highest values of diffuse CO2 efflux were measured along the east (>8 kgṡm-2ṡd-1) and west (>5 kgṡm-2ṡd-1) sectors of the crater. Areas with highest diffuse CO2 effluxes were also characterized by a relatively high soil temperature (>60˚ C) and by an intense hydrothermal alteration. Weekly diffuse CO2 emission variations from the summit crater during the study period showed a range between 13.5 and 24.7 tṡd-1 with an average value of 18.9 tṡd-1. During these 3 months, the seismic activity rate was about 10 seismic events per month registered by the Instituto Geográfico Nacional (IGN; http://www.ign.es). We compared these observed weekly variations with monthly variations of a longer period with similar seismic rate such as 2014 (about 8 seismic events per month, and values ranged from 15.6 to 22.4 tṡd-1, and an average value of 19.0 tṡd-1. These values are in the same order than the observed during our study. However, for a longer period of observation, from 1999 to 2010, diffuse CO2 emission rates varied from 2.2 to 36.3 tṡd-1, with a mean value of 15.7 tṡd-1 (Melián et al., 2012). The long-term variations observed in the diffuse CO2 emission rates during this period of 10 years were significantly higher than short-term variations observed in the period of study. It is also important to note that the volcanic-seismic crisis of 2004 occurred with an increase on the CO2 emission from Teide summit crater (Melián et al., 2012). This study shows that during periods of seismic tranquility, diffuse CO2 emission rates will not suffer significant variations, whether performed on a weekly or monthly basis. References: Melián et al., 2012. Bull. Volcanol. DOI 10.1007/s00445-012-0613-1 Pérez et al., 2013. J. Geol. Soc. DOI 10.1144/jgs2012-125 .
Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory.
Duan, Fei; He, Bin; Wei, Tao
2015-04-01
The statistical rate theory (SRT) is applied to predict the average evaporation flux of liquid droplet after the approach is validated in the sessile droplet experiments of the water and heavy water. The steady-state experiments show a temperature discontinuity at the evaporating interface. The average evaporation flux is evaluated by individually changing the measurement at a liquid-vapor interface, including the interfacial liquid temperature, the interfacial vapor temperature, the vapor-phase pressure, and the droplet size. The parameter study shows that a higher temperature jump would reduce the average evaporation flux. The average evaporation flux can significantly be influenced by the interfacial liquid temperature and the vapor-phase pressure. The variation can switch the evaporation into condensation. The evaporation flux is found to remain relative constant if the droplet is larger than a micro scale, while the smaller diameters in nano scale can produce a much higher evaporation flux. In addition, a smaller diameter of droplets with the same liquid volume has a larger surface area. It is suggested that the evaporation rate increases dramatically as the droplet shrinks into nano size.
Meeuwig, M.H.; Dunham, J.B.; Hayes, J.P.; Vinyard, G.L.
2004-01-01
The effects of constant (12, 18, and 24 A?C) and cyclical (daily variation of 15a??21 and 12a??24 A?C) thermal regimes on the growth and feeding of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) of variable sizes were examined. Higher constant temperatures (i.e., 24 A?C) and more variable daily temperatures (i.e., 12a??24 A?C daily cycle) negatively affected growth rates. As fish mass increased (from 0.24 to 15.52 g) the effects of different thermal regimes on mass growth became more pronounced. Following 14 days exposure to the thermal regimes, feeding rates of individual fish were assessed during acute exposure (40 min) to test temperatures of 12, 18, and 24 A?C. Feeding rate was depressed during acute exposure to 24 A?C, but was not significantly affected by the preceding thermal regime. Our results indicate that even brief daily exposure to higher temperatures (e.g., 24 A?C) can have considerable sublethal effects on cutthroat trout, and that fish size should be considered when examining the effects of temperature.
Effect of surface condition to temperature distribution in living tissue during cryopreservation
NASA Astrophysics Data System (ADS)
Nozawa, M.; Hatakeyama, S.; Sugimoto, Y.; Sasaki, H.
2017-12-01
The temperature distribution of the simulated living tissue is measured for the improvement of the cooling rate during cryopreservation when the surface condition of the test sample is changed by covering the stainless steel mesh. Agar is used as a simulated living tissue and is filled inside the test sample. The variation of the transient temperature with mesh by the directly immersion in the liquid nitrogen is measured. The temperatures on the sample surface and the inside of the sample are measured by use of type T thermocouples. It is confirmed that on the sample surface there is the slightly temperature increase than that in the saturated liquid nitrogen at the atmospheric pressure. It is found by the comparison of the degree of superheat with or without the mesh that the surface temperature of the test sample with the mesh is lower than that without the mesh. On the other hand, the time series variations of the temperature located in the center of the sample does not change with or without the mesh. It is considered that the center of the sample used is too deep from the surface to respond to the boiling state on the sample surface.
NASA Astrophysics Data System (ADS)
Ye, Liming; Yang, Guixia; Van Ranst, Eric; Tang, Huajun
2013-03-01
A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (˜10-year) environmental planning and decision making.
Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina-Ruiz, Manel; Lopeandía, Aitor F.; Gonzalez-Silveira, Marta
Kinetic processes involving intermediate phase formation are often assumed to follow an Arrhenius temperature dependence. This behavior is usually inferred from limited data over narrow temperature intervals, where the exponential dependence is generally fully satisfied. However, direct evidence over wide temperature intervals is experimentally challenging and data are scarce. Here, we report a study of silicide formation between a 12 nm film of palladium and 15 nm of amorphous silicon in a wide range of heating rates, spanning six orders of magnitude, from 0.1 to 10{sup 5 }K/s, or equivalently more than 300 K of variation in reaction temperature. The calorimetric traces exhibit severalmore » distinct exothermic events related to interdiffusion, nucleation of Pd{sub 2}Si, crystallization of amorphous silicon, and vertical growth of Pd{sub 2}Si. Interestingly, the thickness of the initial nucleation layer depends on the heating rate revealing enhanced mass diffusion at the fastest heating rates during the initial stages of the reaction. In spite of this, the formation of the silicide strictly follows an Arrhenius temperature dependence over the whole temperature interval explored. A kinetic model is used to fit the calorimetric data over the complete heating rate range. Calorimetry is complemented by structural analysis through transmission electron microscopy and both standard and in-situ synchrotron X-ray diffraction.« less
Georges, Arthur
1989-11-01
Mean daily temperature in natural nests of freshwater turtles with temperature-dependent sex determination is known to be a poor predictor of hatchling sex ratios when nest temperatures fluctuate. To account for this, a model was developed on the assumption that females will emerge from eggs when more than half of embryonic development occurs above the threshold temperature for sex determination rather than from eggs that spend more than half their time above the threshold. The model is consistent with previously published data and in particular explains the phenomenon whereby the mean temperature that best distinguishes between male and female nests decreases with increasing variability in nest temperature. The model, if verified by controlled experiments, has important implications for our understanding of temperature-dependent sex determination in natural nests. Both mean nest temperature and "hours spent above the threshold" will be poor predictors of hatchling sex ratios. Studies designed to investigate latitudinal trends and inter-specific differences in the threshold temperature will need to consider latitudinal and inter-specific variation in the magnitude of diel fluctuations in nest temperature, and variation in factors influencing the magnitude of those fluctuations, such as nest depth. Furthermore, any factor that modifies the relationship between developmental rate and temperature can be expected to influence hatchling sex ratios in natural nests, especially when nest temperatures are close to the threshold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oktamuliani, Sri, E-mail: srioktamuliani@ymail.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id
A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation atmore » inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.« less
Evaluation of indoor radon equilibrium factor using CFD modeling and resulting annual effective dose
NASA Astrophysics Data System (ADS)
Rabi, R.; Oufni, L.
2018-04-01
The equilibrium factor is an important parameter for reasonably estimating the population dose from radon. However, the equilibrium factor value depended mainly on the ventilation rate and the meteorological factors. Therefore, this study focuses on investigating numerically the influence of the ventilation rate, temperature and humidity on equilibrium factor between radon and its progeny. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on indoor equilibrium factor. The variations of equilibrium factor with the ventilation, temperature and relative humidity are discussed. Moreover, the committed equivalent doses due to 218Po and 214Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of indoor air. The annual effective dose due to radon short lived progeny from the inhalation of indoor air by the members of the public was investigated.
Energy gradients and the geographic distribution of local ant diversity.
Kaspari, Michael; Ward, Philip S; Yuan, May
2004-08-01
Geographical diversity gradients, even among local communities, can ultimately arise from geographical differences in speciation and extinction rates. We evaluated three models--energy-speciation, energy-abundance, and area--that predict how geographic trends in net diversification rates generate trends in diversity. We sampled 96 litter ant communities from four provinces: Australia, Madagascar, North America, and South America. The energy-speciation hypothesis best predicted ant species richness by accurately predicting the slope of the temperature diversity curve, and accounting for most of the variation in diversity. The communities showed a strong latitudinal gradient in species richness as well as inter-province differences in diversity. The former vanished in the temperature-diversity residuals, suggesting that the latitudinal gradient arises primarily from higher diversification rates in the tropics. However, inter-province differences in diversity persisted in those residuals--South American communities remained more diverse than those in North America and Australia even after the effects of temperature were removed.
Wu, Qiong; Xia, Xinghui; Mou, Xinli; Zhu, Baotong; Zhao, Pujun; Dong, Haiyang
2014-12-01
Climate change is supposed to have influences on water quality and ecosystem. However, only few studies have assessed the effect of climate change on environmental toxic contaminants in urban lakes. In this research, response of several toxic contaminants in twelve urban lakes in Beijing, China, to the seasonal variations in climatic factors was studied. Fluorides, volatile phenols, arsenic, selenium, and other water quality parameters were analyzed monthly from 2009 to 2012. Multivariate statistical methods including principle component analysis, cluster analysis, and multiple regression analysis were performed to study the relationship between contaminants and climatic factors including temperature, precipitation, wind speed, and sunshine duration. Fluoride and arsenic concentrations in most urban lakes exhibited a significant positive correlation with temperature/precipitation, which is mainly caused by rainfall induced diffuse pollution. A negative correlation was observed between volatile phenols and temperature/precipitation, and this could be explained by their enhanced volatilization and biodegradation rates caused by higher temperature. Selenium did not show a significant response to climatic factor variations, which was attributed to low selenium contents in the lakes and soils. Moreover, the response degrees of contaminants to climatic variations differ among lakes with different contamination levels. On average, temperature/precipitation contributed to 8%, 15%, and 12% of the variations in volatile phenols, arsenic, and fluorides, respectively. Beijing is undergoing increased temperature and heavy rainfall frequency during the past five decades. This study suggests that water quality related to fluoride and arsenic concentrations of most urban lakes in Beijing is becoming worse under this climate change trend. Copyright © 2014. Published by Elsevier B.V.
Niu, Yu Jie; Zhou, Jian Wei; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Hua, Li Min
2017-05-18
For understanding the effect of aspect and altitude of hill on soil moisture and temperature as well as the vegetation community, we selected an alpine meadow located on a hill in north-eastern Tibet Plateau as our study area. Data on soil moisture and temperature, as well as plant distribution pattern in this mountain ecosystem were collected. We used regression analysis, CCA ordination and variance decomposition, to determine the impacts of the key factors (aspect, altitude, soil temperature and moisture) on plant diversity distribution in 189 sample sites of the hill. The results showed that the plant diversity of shady aspect and bottomland was highest and lowest, respectively. The plant diversity of the shady aspect and on the ridge of the hill increased initially and then decreased with the increasing altitude, but the plant diversity of the sunny aspect increased with the increasing altitude. At 0-30 cm soil layer, the soil temperature of the sunny aspect was higher than that of other aspects, but the soil temperature at 0-20 cm soil layer did not change with the increa-sing altitude. The soil moisture of shady aspect was higher than that of other aspects, and increased with the increasing altitude. The aspect and altitude explained 100% of soil temperature changes and 51.8% of soil moisture variation. Aspect alone explained 72.2% of soil temperature variation and altitude alone explained 51.8% of soil moisture variation, which had the highest contribution rate individually. Most plants were distributed on the shady aspect and on the ridge, and at medium altitude. Sedges mainly grew on the shady aspect, while Gramineae grew on the sunny aspect, the ridge was an ecotone. Cyperaceae, Gramineae and Leguminosae were mainly distributed in low altitude zone. Hill aspect and altitude totally explained 28.6% of plant abundance variation, hill aspect alone explained 19.9% of plant abundance variation. The management of grassland production and ecological restoration in alpine meadow ecosystem should consider the effect of landform on soil and vegetation, and the hill aspect should be priority factor instead of altitude when planning management interventions.
Spectroscopic and thermal properties of Sm3+ doped iron lead bismuthate glasses
NASA Astrophysics Data System (ADS)
Narwal, P.; Yadav, A.; Dahiya, M. S.; Vishal, Rohit, Agarwal, A.; Khasa, S.
2018-05-01
The results of the structural, physical, thermal and electrical properties of the glass compositions xFe2O3•(100-x)(3Bi2O3•PbO)• Sm2O3(1 mol%) where x=0, 1, 5, 10, 12, 15 mol% prepared via melt quench technique were studied. The synthesized compositions were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis (DTA). The IR study reveals that present system is build up with lead in tetrahedral coordination and bismuth in trigonal as well as octahedral coordination. Density and molar volume have been calculated using Archimedes principle, and the variation in their values has been correlated with structural changes in the glass matrix based on the IR study. The variation in the characteristic temperatures (glass transition temperature Tg, crystallization temperature Tp and melting temperature Tm) with different heating rate and change in the composition of iron oxide were analyzed and reported in the present study.
Aging dynamics in the polymer glass of poly(2-chlorostyrene): Dielectric susceptibility and volume
NASA Astrophysics Data System (ADS)
Fukao, Koji; Tahara, Daisuke
2009-11-01
Aging dynamics was investigated in the glassy states of poly(2-chlorostyrene) by measuring the complex electrical capacitance during aging below the glass transition temperature. The variations with time and temperature of the ac dielectric susceptibility and volume could be determined by simply measuring the variation in the complex electrical capacitance. Isothermal aging at a given temperature for several hours after an intermittent stop in constant-rate cooling is stored in the deviations of both the real and imaginary parts of the complex ac dielectric susceptibility and volume. During cooling after isothermal aging, the deviation of the ac dielectric susceptibility from the reference value decreases and almost vanishes at room temperature. By contrast, the deviation in volume induced during isothermal aging remains almost constant during cooling. The simultaneous measurement of ac dielectric susceptibility and volume clearly revealed that the ac dielectric susceptibility exhibits a full rejuvenation effect, whereas the volume does not show any rejuvenation effects. We discuss a plausible model that can reproduce the present experimental results.
Paint stripping with a XeCl laser: basic research and processing techniques
NASA Astrophysics Data System (ADS)
Raiber, Armin; Plege, Burkhard; Holbein, Reinhold; Callies, Gert; Dausinger, Friedrich; Huegel, Helmut
1995-03-01
This work investigates the possibility of ablating paint from aerospace material with a XeCl- laser. The main advantage of this type of laser is the low heat generation during the ablation process. This is important when stripping thermally sensitive materials such as polymer composites. The dependence of the ablation process on energy density, pulse frequency as well as other laser parameters are presented. The results show the influence of chemical and UV artificial aging processes on ablation depth. Further, the behavior of the time-averaged transmission of the laser beam through the plasma is described as a function of the energy density. The time-varying temperature in the substrate at the point of ablation was measured during the process. An abrupt change in the temperature variation indicates the end of point ablation. This measured temperature variation is compared with the calculated temperatures, which are derived from the 1D heat equations. Finally, first results of repaintability and ablation rates will be presented.
NASA Astrophysics Data System (ADS)
Masaki, Y.; Nozaki, T.; Saruhashi, T.; Kyo, M.; Sakurai, N.; Yokoyama, T.; Akiyama, K.; Watanabe, M.; Kumagai, H.; Maeda, L.; Kinoshita, M.
2017-12-01
The middle Okinawa Trough, located along the Ryukyu- arc on the margin of the East China Sea, has several active hydrothermal fields. From February to March 2016, Cruise CK16-01 by D/V Chikyu targeted the Iheya-North Knoll and southern flank of the Iheya Minor Ridge to comprehend sub-seafloor geological structure and polymetallic sulfide mineralization. In this cruise, we installed two Kuroko cultivation apparatuses equipped with P/T sensors, flowmeter and load cell to monitor pressure, temperature and flow rate of hydrothermal fluid discharged from the artificial hydrothermal vent together with weight of hydrothermal precipitate. During Cruise KR16-17 in January 2017, two cultivation cells with sensor loggers were successfully recovered by ROV Kaiko MK-IV and R/V Kairei. We report these physical sensor data obtained by more than 10 months monitoring at two deep-sea artificial hydrothermal vents through many first and challenging operations.Hole C9017B at southern flank of the Iheya Minor Ridge (water depth of 1,500 mbsl), fluid temperature was constant ca. 75 ºC for 5 months from the beginning of monitoring. Then temperature gradually decrease to be 40 ºC. In November 2016, temperature and pressure suddenly dropped and quickly recovered due to the disturbance of subseafloor hydrology, induced by another drilling operation at Hole C9017A which is 10.8 meters northeastward from Hole C9017B during Cruise CK16-05. Temperature data exhibit conspicuous periodic 12.4hour cycles and this is attributable to oceanic tidal response. The amplitude of temperature variations increased along with decline of the temperature variations increased along with decline of the temperature. The average flow rate was 67 L/min for 9 hours from the onset of monitoring.Hole C9024A at the Iheya-North Knoll (water depth of 1,050 msl), the maximum temperature reached 308 ºC, which is similar to the maximum value of 311 ºC obtained from the ROV thermometer. The average flow rate was 289 L/min for 8 days from onset of monitoring.
Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil
2011-04-01
5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did. Published by Elsevier Ltd.
Seasonal radiative modeling of Titan's stratospheric temperatures at low latitudes
NASA Astrophysics Data System (ADS)
Bézard, Bruno; Vinatier, Sandrine; Achterberg, Richard K.
2018-03-01
We have developed a seasonal radiative-dynamical model of Titan's stratosphere to investigate the temporal variation of temperatures in the 0.2-4 mbar range observed by the Cassini/CIRS spectrometer. The model incorporates gas and aerosol vertical profiles derived from Cassini/CIRS and Huygens/DISR data to calculate the radiative heating and cooling rate profiles as a function of time and latitude. At 20°S in 2007, the heating rate is larger than the cooling rate at all altitudes, and more specifically by 20-35% in the 0.1-5 mbar range. A new calculation of the radiative relaxation time as a function of pressure level is presented, leading to time constants significantly lower than previous estimates. At 6°N around spring equinox, the radiative equilibrium profile is warmer than the observed one at all levels. Adding adiabatic cooling in the energy equation, with a vertical upward velocity profile approximately constant in pressure coordinates below the 0.02-mbar level (corresponding to 0.03-0.05 cm s-1 at 1 mbar), allows us to reproduce the observed profile quite well. The velocity profile above the ∼0.5-mbar level is however affected by uncertainties in the haze density profile. The model shows that the change in insolation due to Saturn's orbital eccentricity is large enough to explain the observed 4-K decrease in equatorial temperatures around 1 mbar between 2009 and 2016. At 30°N and S, the radiative model predicts seasonal variations of temperature much larger than observed. A seasonal modulation of adiabatic cooling/heating is needed to reproduce the temperature variations observed from 2005 to 2016 between 0.2 and 4 mbar. At 1 mbar, the derived vertical velocities vary in the range -0.05 (winter solstice) to 0.16 (summer solstice) cm s-1 at 30°S, -0.01 (winter solstice) to 0.14 (summer solstice) cm s-1 at 30°N, and 0.03-0.07 cm s-1 at the equator.
Tropical Convective Outflow and Near Surface Equivalent Potential Temperatures
NASA Technical Reports Server (NTRS)
Folkins, Ian; Oltmans, Samuel J.; Thompson, Anne M.; Einaudi, Franco (Technical Monitor)
2000-01-01
We use clear sky heating rates to show that convective outflow in the tropics decreases rapidly with height between the 350 K and 360 K potential temperature surfaces (or between roughly 13 and 15 km). There is also a rapid fall-off in the pseudoequivalent potential temperature probability distribution of near surface air parcels between 350 K and 360 K. This suggests that the vertical variation of convective outflow in the upper tropical troposphere is to a large degree determined by the distribution of sub cloud layer entropy.
Comprehensive study of thermal properties of lunar core samples
NASA Technical Reports Server (NTRS)
Langseth, M. G.; Horath, K.
1975-01-01
The feasibility of a technique for measuring the thermal conductivity of lunar core samples was investigated. The thermal conduction equation for a composite cylinder was solved to obtain a mathematical expression for the surface temperature of the core tube filled with lunar material. The sample is heated by radiation from the outside at a known rate, the variation of the temperature at the surface of the core tube is measured, and the thermal conductivity determined by comparing the observed temperature with the theoretically expected one. The apparatus used in the experiment is described.
NASA Astrophysics Data System (ADS)
Pei, S.; Laws, E. A.; Ye, S.
2017-12-01
Fluvial inputs of nutrients and efficient nutrient recycling mechanisms make estuarine and coastal zones highly productive bodies of water. For the same reasons, they are susceptible to eutrophication problems. In China, eutrophication problems along coasts are becoming serious because of discharges of domestic sewage and industrial wastewater and runoff of agricultural fertilizer. Addressing these problems requires an informed assessment of the factors that controlling algal production. Our study aims at determining the factors that controlling patchiness of phytoplankton and primary production in Liaodong Bay, China that receives large inputs of nutrients from human activities in its watershed, and examining the variation patterns of phytoplankton photosynthesis under both stressors of climate change and human activities. Results of our field study suggest that nutrient concentrations were above growth-rate-saturating concentrations throughout Liaodong bay, with the possible exception of phosphate at some stations. This assessment was consistent with the results of nutrient enrichment experiments and the values of light-saturated photosynthetic rates and areal photosynthetic rates. Two large patches of high biomass and production with dimensions on the order of 10 km reflect the effects of water temperature and variation of light penetration restricted by water turbidity. To examine the effects of irradiance and temperature on light-saturated photosynthetic rates normalized to chlorophyll a concentrations (Popt), light-conditioned Popt values were modeled as a function of the temperature with a satisfactory fit to our field data (R2 = 0.60, p = 0.003). In this model, light-conditioned Popt values increased with temperatures from 22°C to roughly 25°C but declined precipitously at higher temperatures. The relatively high Popt values and low ratios of light absorbed to photosynthesis at coastal stations suggest the highly efficient usage of absorbed light by phytoplankton under replete nutrient levels and favorable temperatures. Comparatively, the low Popt values and high ratios of light absorbed to photosynthesis at estuarine stations suggest rather extreme light limitation and lowly efficient usage of absorbed light in photosynthesis in the Liaohe River estuary.
Hatch, Christine E; Fisher, Andrew T.; Revenaugh, Justin S.; Constantz, Jim; Ruehl, Chris
2006-01-01
We present a method for determining streambed seepage rates using time series thermal data. The new method is based on quantifying changes in phase and amplitude of temperature variations between pairs of subsurface sensors. For a reasonable range of streambed thermal properties and sensor spacings the time series method should allow reliable estimation of seepage rates for a range of at least ±10 m d−1 (±1.2 × 10−2 m s−1), with amplitude variations being most sensitive at low flow rates and phase variations retaining sensitivity out to much higher rates. Compared to forward modeling, the new method requires less observational data and less setup and data handling and is faster, particularly when interpreting many long data sets. The time series method is insensitive to streambed scour and sedimentation, which allows for application under a wide range of flow conditions and allows time series estimation of variable streambed hydraulic conductivity. This new approach should facilitate wider use of thermal methods and improve understanding of the complex spatial and temporal dynamics of surface water–groundwater interactions.
NASA Astrophysics Data System (ADS)
Santos, Severino Guilherme Caetano Gonçalves dos; Saraiva, Edilson Paes; Pimenta Filho, Edgard Cavalcanti; Gonzaga Neto, Severino; Fonsêca, Vinicus França Carvalho; Pinheiro, Antônio da Costa; Almeida, Maria Elivania Vieira; de Amorim, Mikael Leal Cabral Menezes
2017-02-01
The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation ( P < 0.01) for respiratory rate depending on the times of the day. The highest values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m2. There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m2 for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.
NASA Astrophysics Data System (ADS)
Luo, Mingming; Chen, Zhihua; Zhou, Hong; Zhang, Liang; Han, Zhaofeng
2018-03-01
To be better understand the hydrological and thermal behavior of karst systems in South China, seasonal variations in flow, hydrochemistry and stable isotope ratios of five karst springs were used to delineate flow paths and recharge processes, and to interpret their thermal response. Isotopic data suggest that mean recharge elevations are 200-820 m above spring outlets. Springs that originate from high elevations have lower NO3 - concentrations than those originating from lower areas that have more agricultural activity. Measured Sr2+ concentrations reflect the strontium contents of the host carbonate aquifer and help delineate the spring catchment's saturated zone. Seasonal variations of NO3 - and Sr2+ concentrations are inversely correlated, because the former correlates with event water and the latter with baseflow. The mean annual water temperatures of springs were only slightly lower than the local mean annual surface temperature at the outlet elevations. These mean spring temperatures suggest a vertical gradient of 6 °C/vertical km, which resembles the adiabatic lapse rate of the Earth's stable atmosphere. Seasonal temperature variations in the springs are in phase with surface air temperatures, except for Heilongquan (HLQ) spring. Event-scale variations of thermal response are dramatically controlled by the circulation depth of karst systems, which determines the effectiveness of heat exchange. HLQ spring undergoes the deepest circulation depth of 820 m, and its thermal responses are determined by the thermally effective regulation processes at higher elevations and the mixing processes associated with thermally ineffective responses at lower elevations.
NASA Astrophysics Data System (ADS)
Maes, Michael; de Meyer, Frans; Peeters, Dirk; Meltzer, Herbert; Cosyns, Paul; Schotte, Chris
1992-12-01
Recently, true seasonal variation with significant periodicities (circannual, semiannual, circatrimensual, circabimensual) and a significant meteotropism have been observed in a number of self-rated characteristics of normal man (arousal, mood, physiology and social behaviour). In order to replicate these findings, two normal controls (a married couple) were asked daily to complete a self-rating scale concerned with the characteristics mentioned above during one calendar year. By means of time series analysis, significant rhythmicities with recurrent cycles in the autorhythmometric data of all of the above characteristics were found. An important part of the variance in these characteristics was found, using multiple regression, to be related to various weather variables, such as mean atmospheric pressure, temperature, relative humidity, wind speed, minutes of sunlight/day and precipitation/day. These results support the hypothesis that temporal variations in human psychological and physiological characteristics may be dictated by the composite effects of past and present atmospheric activity.
Electron-impact vibrational relaxation in high-temperature nitrogen
NASA Technical Reports Server (NTRS)
Lee, Jong-Hun
1992-01-01
Vibrational relaxation process of N2 molecules by electron-impact is examined for the future planetary entry environments. Multiple-quantum transitions from excited states to higher/lower states are considered for the electronic ground state of the nitrogen molecule N2 (X 1Sigma-g(+)). Vibrational excitation and deexcitation rate coefficients obtained by computational quantum chemistry are incorporated into the 'diffusion model' to evaluate the time variations of vibrational number densities of each energy state and total vibrational energy. Results show a non-Boltzmann distribution of number densities at the earlier stage of relaxation, which in turn suppresses the equilibrium process but affects little the time variation of total vibrational energy. An approximate rate equation and a corresponding relaxation time from the excited states, compatible with the system of flow conservation equations, are derived. The relaxation time from the excited states indicates the weak dependency of the initial vibrational temperature. The empirical curve-fit formula for the improved e-V relaxation time is obtained.
NASA Technical Reports Server (NTRS)
Basu, S.; Cetegen, B. M.
2005-01-01
An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.
Browne, Nicola K; Tay, Jason K L; Low, Jeffrey; Larson, Ole; Todd, Peter A
2015-04-01
Environmental drivers of coral condition (maximum quantum yield, symbiont density, chlorophyll a content and coral skeletal growth rates) were assessed in the equatorial inshore coastal waters of Singapore, where the amplitude of seasonal variation is low, but anthropogenic influence is relatively high. Water quality variables (sediments, nutrients, trace metals, temperature, light) explained between 52 and 83% of the variation in coral condition, with sediments and light availability as key drivers of foliose corals (Merulina ampliata, Pachyseris speciosa), and temperature exerting a greater influence on a branching coral (Pocillopora damicornis). Seasonal reductions in water quality led to high chlorophyll a concentrations and maximum quantum yields in corals, but low growth rates. These marginal coral communities are potentially vulnerable to climate change, hence, we propose water quality thresholds for coral growth with the aim of mitigating both local and global environmental impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.
A simple estimate of ecosystem respiration across biomes based on MODIS products
NASA Astrophysics Data System (ADS)
Jaegermeyr, J.; Hostert, P.; Lucht, W.
2010-12-01
Beside carbon sequestration by terrestrial photosynthesis, in particular the subsequent carbon release by ecosystem respiration (Reco) is a crucial flux for estimating carbon budgets. Heterotrophic soil decomposition rates (Rh) and autotrophic respiration rates (Ra), which add up to Reco, are highly sensitive to environmental conditions and in some cases they determine net ecosystem productivity. Prior respiration modeling approaches revealed that a precise process-based and bottom-up modeling is important for realistic estimates. On a short timescale, as in the case of satellite environmental monitoring, simplified empirical models are not necessarily less accurate, though. For most major biomes, ecosystem carbon efflux is predominantly driven by air temperature. It can further be limited by water stress, plant activity and substrate quality. Developing simple, empirical and wall-to-wall respiration models from continuous Moderate Resolution Imaging Spectroradiometer (MODIS) land products on a continental scale can enhance our understanding of spatially explicit respiration patterns. We therefore accept model uncertainties by simplifying decay and respiratory processes in that we account for a single static carbon pool and do not include any feedback mechanisms. Preliminary results suggest that the 8-day MODIS 1km land surface temperature product (LST) and the vegetation-water index (NDWI) derived from the 8-day MODIS 500m surface reflectance product are sufficient to largely explain the variability of Reco. Spatial flux variations can be attributed to plant activity variation. We therefore introduce a site-specific, maximum leaf area index (LAI) from the MODIS 1km LAI product as a proxy. A biome-specific model parameterization and validation is performed, based on 8-day composite FLUXNET tower data representing major global biomes. We found that the frequently used temperature model by Loyd and Taylor (1994) does not show superior performance on 8-day ecosystem respiration data. The model by Del Grosso et al. (2005) is more flexible to account for lower Q10 values at high temperatures and thus it is used to describe the temperature dependency here. Although we cannot explain flux variations arising from overall carbon pool variations, results suggest that our approach may contribute to simplified Reco estimates.
A model for predicting Xanthomonas arboricola pv. pruni growth as a function of temperature
Llorente, Isidre; Montesinos, Emilio; Moragrega, Concepció
2017-01-01
A two-step modeling approach was used for predicting the effect of temperature on the growth of Xanthomonas arboricola pv. pruni, causal agent of bacterial spot disease of stone fruit. The in vitro growth of seven strains was monitored at temperatures from 5 to 35°C with a Bioscreen C system, and a calibrating equation was generated for converting optical densities to viable counts. In primary modeling, Baranyi, Buchanan, and modified Gompertz equations were fitted to viable count growth curves over the entire temperature range. The modified Gompertz model showed the best fit to the data, and it was selected to estimate the bacterial growth parameters at each temperature. Secondary modeling of maximum specific growth rate as a function of temperature was performed by using the Ratkowsky model and its variations. The modified Ratkowsky model showed the best goodness of fit to maximum specific growth rate estimates, and it was validated successfully for the seven strains at four additional temperatures. The model generated in this work will be used for predicting temperature-based Xanthomonas arboricola pv. pruni growth rate and derived potential daily doublings, and included as the inoculum potential component of a bacterial spot of stone fruit disease forecaster. PMID:28493954
NASA Technical Reports Server (NTRS)
Huang, Frank T.; Mayr, Hans G.; Russell, James M., III; Mlynczak, Martin G.
2012-01-01
The analysis of mutual ozone-temperature variations can provide useful information on their interdependencies relative to the photochemistry and dynamics governing their behavior. Previous studies have mostly been based on satellite measurements taken at a fixed local time in the stratosphere and lower mesosphere. For these data, it is shown that the zonal mean ozone amounts and temperatures in the lower stratosphere are mostly positively correlated, while they are mostly negatively correlated in the upper stratosphere and in the lower mesosphere. The negative correlation, due to the dependence of photochemical reaction rates on temperature, indicates that ozone photochemistry is more important than dynamics in determining the ozone amounts. In this study, we provide new results by extending the analysis to include diurnal variations over 24 hrs of local time, and to larger spatial regimes, to include the upper mesosphere and lower thermosphere (MLT). The results are based on measurements by the SABER instrument on the TIMED satellite. For mean variations (i.e., averages over local time and longitude) in the MLT, our results show that there is a sharp reversal in the correlation near 80 km altitude, above which the ozone mixing ratio and temperature are mostly positively correlated, while they are mostly negatively correlated below 80 km. This is consistent with the view that above -80 km, effects due to dynamics are more important compared to photochemistry. For diurnal variations, both the ozone and temperature show phase progressions in local time, as a function of altitude and latitude. For temperature, the phase progression is as expected, as they represent migrating tides. For day time ozone, we also find regular phase progression in local time over the whole altitude range of our analysis, 25 to 105 km, at least for low latitudes. This was not previously known, although phase progressions had been noted by us and by others at lower altitudes. For diurnal variations, we find that between about 40 and 65 km, the ozone amounts and temperatures are mostly negatively correlated or neutral, while below approx. 40 km they are mostly positively correlated or neutral. The correlations are less systematic and less robust than for correlations of the mean. At altitudes above approx.65 km, the correlations are more complex, and depend on the tidal temperature variations. For the diurnal case, consideration needs to be given to transport by thermal tides and to the efficacy of response times of ozone concentrations and temperature to each other.
Biased four-point probe resistance
NASA Astrophysics Data System (ADS)
Garcia-Vazquez, Valentin
2017-11-01
The implications of switching the current polarity in a four-point probe resistance measurement are presented. We demonstrate that, during the inversion of the applied current, any change in the voltage V produced by a continuous drop of the sample temperature T will induce a bias in the temperature-dependent DC resistance. The analytical expression for the bias is deduced and written in terms of the variations of the measured voltages with respect to T and by the variations of T with respect to time t. Experimental data measured on a superconducting Nb thin film confirm that the bias of the normal-state resistance monotonically increases with the cooling rate dT/dt while keeping fixed dV/dT; on the other hand, the bias increases with dV/dT, reaching values up to 13% with respect to the unbiased resistance obtained at room temperature.
NASA Technical Reports Server (NTRS)
Aune, Robert M.; Uccellini, Louis W.; Peterson, Ralph A.; Tuccillo, James J.
1987-01-01
Numerical experiments to assess the impact of incorporating temperature data from the VISSR Atmospheric Sounder (VAS) using the assimilation technique developed by Gal-Chen (1986) modified for use in the Mesoscale Atmospheric Simulation System (MASS) model were conducted. The scheme is designed to utilize the high temporal and horizontal resolution of satellite retrievals while maintaining the fine vertical structure generated by the model. This is accomplished by adjusting the model lapse rates to reflect thicknesses retrieved from VAS and applying a three-dimensional variational that preserves the distribution of the geopotential fields in the model. A nudging technique whereby the model temperature fields are gradually adjusted toward the updated temperature fields during model integration is also tested. An adiabatic version of MASS is used in all experiments to better isolate mass-momentum imbalances. The method has a sustained impact over an 18 hr model simulation.
Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Kikuchi, Satoru; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi
2010-04-01
This study computationally assessed the temperature elevations due to electromagnetic wave energy deposition during magnetic resonance imaging in non-pregnant and pregnant woman models. We used a thermal model with thermoregulatory response of the human body for our calculations. We also considered the effect of blood temperature variation on body core temperature. In a thermal equilibrium state, the temperature elevations in the intrinsic tissues of the woman and fetal tissues were 0.85 and 0.61 °C, respectively, at a whole-body averaged specific absorption rate of 2.0 W kg-1, which is the restriction value of the International Electrotechnical Commission for the normal operating mode. As predicted, these values are below the temperature elevation of 1.5 °C that is expected to be teratogenic. However, these values exceeded the recommended temperature elevation limit of 0.5 °C by the International Commission on Non-Ionizing Radiation Protection. We also assessed the irradiation time required for a temperature elevation of 0.5 °C at the aforementioned specific absorption rate. As a result, the calculated irradiation time was 40 min.
Klok, C Jaco; Harrison, Jon F
2013-10-01
Temperature is a key factor that affects the rates of growth and development in animals, which ultimately determine body size. Although not universal, a widely documented and poorly understood pattern is the inverse relationship between the temperature at which an ectothermic animal is reared and its body size (temperature size rule [TSR]). The proximate and ultimate mechanisms for the TSR remain unclear. To explore possible explanations for the TSR, we tested for correlations between the magnitude/direction of the TSR and latitude, temperature, elevation, habitat, availability of oxygen, capacity for flight, and taxonomic grouping in 98 species/populations of arthropods. The magnitude and direction of the TSR was not correlated with any of the macro-environmental variables we examined, supporting the generality of the TSR. However, body size affected the magnitude and direction of the TSR, with smaller arthropods more likely to demonstrate a classic TSR. Considerable variation among species exists in the TSR, suggesting either strong interactions with nutrition, or selection based on microclimatic or seasonal variation not captured in classic macro-environmental variables.
Al Roumy, Jalal; Perchoux, Julien; Lim, Yah Leng; Taimre, Thomas; Rakić, Aleksandar D; Bosch, Thierry
2015-01-10
We present a simple analytical model that describes the injection current and temperature dependence of optical feedback interferometry signal strength for a single-mode laser diode. The model is derived from the Lang and Kobayashi rate equations, and is developed both for signals acquired from the monitoring photodiode (proportional to the variations in optical power) and for those obtained by amplification of the corresponding variations in laser voltage. The model shows that both the photodiode and the voltage signal strengths are dependent on the laser slope efficiency, which itself is a function of the injection current and the temperature. Moreover, the model predicts that the photodiode and voltage signal strengths depend differently on injection current and temperature. This important model prediction was proven experimentally for a near-infrared distributed feedback laser by measuring both types of signals over a wide range of injection currents and temperatures. Therefore, this simple model provides important insight into the radically different biasing strategies required to achieve optimal sensor sensitivity for both interferometric signal acquisition schemes.
Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.
Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf
2013-07-02
The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.
The incompressibility assumption in computational simulations of nasal airflow.
Cal, Ismael R; Cercos-Pita, Jose Luis; Duque, Daniel
2017-06-01
Most of the computational works on nasal airflow up to date have assumed incompressibility, given the low Mach number of these flows. However, for high temperature gradients, the incompressibility assumption could lead to a loss of accuracy, due to the temperature dependence of air density and viscosity. In this article we aim to shed some light on the influence of this assumption in a model of calm breathing in an Asian nasal cavity, by solving the fluid flow equations in compressible and incompressible formulation for different ambient air temperatures using the OpenFOAM package. At low flow rates and warm climatological conditions, similar results were obtained from both approaches, showing that density variations need not be taken into account to obtain a good prediction of all flow features, at least for usual breathing conditions. This agrees with most of the simulations previously reported, at least as far as the incompressibility assumption is concerned. However, parameters like nasal resistance and wall shear stress distribution differ for air temperatures below [Formula: see text]C approximately. Therefore, density variations should be considered for simulations at such low temperatures.
A new fundamental bioheat equation for muscle tissue--part II: Temperature of SAV vessels.
Zhu, Liang; Xu, Lisa X; He, Qinghong; Weinbaum, Sheldon
2002-02-01
In this study, a new theoretical framework was developed to investigate temperature variations along countercurrent SAV blood vessels from 300 to 1000 microm diameter in skeletal muscle. Vessels of this size lie outside the range of validity of the Weinbaum-Jiji bioheat equation and, heretofore, have been treated using discrete numerical methods. A new tissue cylinder surrounding these vessel pairs is defined based on vascular anatomy, Murray's law, and the assumption of uniform perfusion. The thermal interaction between the blood vessel pair and surrounding tissue is investigated for two vascular branching patterns, pure branching and pure perfusion. It is shown that temperature variations along these large vessel pairs strongly depend on the branching pattern and the local blood perfusion rate. The arterial supply temperature in different vessel generations was evaluated to estimate the arterial inlet temperature in the modified perfusion source term for the s vessels in Part I of this study. In addition, results from the current research enable one to explore the relative contribution of the SAV vessels and the s vessels to the overall thermal equilibration between blood and tissue.
Pettis, Jeffery S; Rice, Nathan; Joselow, Katie; vanEngelsdorp, Dennis; Chaimanee, Veeranan
2016-01-01
Queen health is closely linked to colony performance in honey bees as a single queen is normally responsible for all egg laying and brood production within the colony. In the U. S. in recent years, queens have been failing at a high rate; with 50% or greater of queens replaced in colonies within 6 months when historically a queen might live one to two years. This high rate of queen failure coincides with the high mortality rates of colonies in the US, some years with >50% of colonies dying. In the current study, surveys of sperm viability in US queens were made to determine if sperm viability plays a role in queen or colony failure. Wide variation was observed in sperm viability from four sets of queens removed from colonies that beekeepers rated as in good health (n = 12; average viability = 92%), were replacing as part of normal management (n = 28; 57%), or where rated as failing (n = 18 and 19; 54% and 55%). Two additional paired set of queens showed a statistically significant difference in viability between colonies rated by the beekeeper as failing or in good health from the same apiaries. Queens removed from colonies rated in good health averaged high viability (ca. 85%) while those rated as failing or in poor health had significantly lower viability (ca. 50%). Thus low sperm viability was indicative of, or linked to, colony performance. To explore the source of low sperm viability, six commercial queen breeders were surveyed and wide variation in viability (range 60-90%) was documented between breeders. This variability could originate from the drones the queens mate with or temperature extremes that queens are exposed to during shipment. The role of shipping temperature as a possible explanation for low sperm viability was explored. We documented that during shipment queens are exposed to temperature spikes (<8 and > 40°C) and these spikes can kill 50% or more of the sperm stored in queen spermathecae in live queens. Clearly low sperm viability is linked to colony performance and laboratory and field data provide evidence that temperature extremes are a potential causative factor.
Kleinhesselink, Andrew R; Adler, Peter B
2018-05-01
Understanding how annual climate variation affects population growth rates across a species' range may help us anticipate the effects of climate change on species distribution and abundance. We predict that populations in warmer or wetter parts of a species' range should respond negatively to periods of above average temperature or precipitation, respectively, whereas populations in colder or drier areas should respond positively to periods of above average temperature or precipitation. To test this, we estimated the population sensitivity of a common shrub species, big sagebrush (Artemisia tridentata), to annual climate variation across its range. Our analysis includes 8,175 observations of year-to-year change in sagebrush cover or production from 131 monitoring sites in western North America. We coupled these observations with seasonal weather data for each site and analyzed the effects of spring through fall temperatures and fall through spring accumulated precipitation on annual changes in sagebrush abundance. Sensitivity to annual temperature variation supported our hypothesis: years with above average temperatures were beneficial to sagebrush in colder locations and detrimental to sagebrush in hotter locations. In contrast, sensitivity to precipitation did not change significantly across the distribution of sagebrush. This pattern of responses suggests that regional abundance of this species may be more limited by temperature than by precipitation. We also found important differences in how the ecologically distinct subspecies of sagebrush responded to the effects of precipitation and temperature. Our model predicts that a short-term temperature increase could produce an increase in sagebrush cover at the cold edge of its range and a decrease in cover at the warm edge of its range. This prediction is qualitatively consistent with predictions from species distribution models for sagebrush based on spatial occurrence data, but it provides new mechanistic insight and helps estimate how much and how fast sagebrush cover may change within its range. © 2018 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felicione, F. S.
2006-01-23
The potential for generation of gases in transuranic (TRU) waste by microbial activity, chemical interactions, corrosion, and radiolysis was addressed in the Argonne National Laboratory-West (ANL-West) Gas-Generation Experiments (GGE). Data was collected over several years by simulating the conditions in the Waste Isolation Pilot Plant (WIPP) after the eventual intrusion of brine into the repository. Fourteen test containers with various actual TRU waste immersed in representative brine were inoculated with WIPP-relevant microbes, pressurized with inert gases, and kept in an inert-atmosphere environment for several years to provide estimates of the gas-generation rates that will be used in computer models formore » future WIPP Performance Assessments. Modest temperature variations occurred during the long-term ANL-West experiments. Although the experiment temperatures always remained well within the experiment specifications, the small temperature variation was observed to affect the test container pressure far more than had been anticipated. In fact, the pressure variations were so large, and seemingly erratic, that it was impossible to discern whether the data was even valid and whether the long-term pressure trend was increasing, decreasing, or constant. The result was that no useful estimates of gas-generation rates could be deduced from the pressure data. Several initial attempts were made to quantify the pressure fluctuations by relating these to the measured temperature variation, but none was successful. The work reported here carefully analyzed the pressure measurements to determine if these were valid or erroneous data. It was found that a thorough consideration of the physical phenomena that were occurring can, in conjunction with suitable gas laws, account quite accurately for the pressure changes that were observed. Failure of the earlier attempts to validate the data was traced to the omission of several phenomena, the most important being the variation in the headspace volume caused by thermal expansion and contraction within the brine and waste. A further effort was directed at recovering useful results from the voluminous archived pressure data. An analytic methodology to do this was developed. This methodology was applied to each archived pressure measurement to nullify temperature and other effects to yield an adjusted pressure, from which gas-generation rates could be calculated. A review of the adjusted-pressure data indicated that generated-gas concentrations among these containers after approximately 3.25 years of test operation ranged from zero to over 17,000 ppm by volume. Four test containers experienced significant gas generation. All test containers that showed evidence of significant gas generation contained carbon-steel in the waste, indicating that corrosion was the predominant source of gas generation.« less
Variations in Vital Signs in the Last Days of Life in Patients With Advanced Cancer
Bruera, Sebastian; Chisholm, Gary; Dos Santos, Renata; Crovador, Camila; Bruera, Eduardo; Hui, David
2014-01-01
Context Few studies have examined variation in vital signs in the last days of life. Objectives We determined the variation of vital signs in the final two weeks of life in patients with advanced cancer and examined their association with impending death in three days. Methods In this prospective, longitudinal, observational study, we enrolled consecutive patients admitted to two acute palliative care units and documented their vital signs (heart rate, blood pressure, respiratory rate, oxygen saturation, and temperature) twice a day serially from admission to death or discharge. Results Of 357 patients, 203 (55%) died in hospital. Systolic blood pressure (P < 0.001), diastolic blood pressure (P < 0.001), and oxygen saturation (P < 0.001) decreased significantly in the final three days of life, and temperature increased slightly (P < 0.04). Heart rate (P = 0.22) and respiratory rate (P = 0.24) remained similar in the last three days. Impending death in three days was significantly associated with increased heart rate (odds ratio [OR] = 2; P = 0.01), decreased systolic blood pressure (OR = 2.5; P = 0.004), decreased diastolic blood pressure (OR = 2.3; P = 0.002), and decreased oxygen saturation (OR = 3.7; P = 0.003) from baseline readings on admission. These changes had high specificity (≥80%), low sensitivity (≤35%), and modest positive likelihood ratios (≤5) for impending death within three days. A large proportion of patients had normal vital signs in the last days of life. Conclusion Blood pressure and oxygen saturation decreased in the last days of life. Clinicians and families cannot rely on vital sign changes alone to rule in or rule out impending death. Our findings do not support routine vital signs monitoring of patients who are imminently dying. PMID:24731412
Lachenicht, M W; Clusella-Trullas, S; Boardman, L; Le Roux, C; Terblanche, J S
2010-07-01
The effects of acclimation temperature on insect thermal performance curves are generally poorly understood but significant for understanding responses to future climate variation and the evolution of these reaction norms. Here, in Acheta domesticus, we examine the physiological effects of 7-9 days acclimation to temperatures 4 degrees C above and below optimum growth temperature of 29 degrees C (i.e. 25, 29, 33 degrees C) for traits of resistance to thermal extremes, temperature-dependence of locomotion performance (jumping distance and running speed) and temperature-dependence of respiratory metabolism. We also examine the effects of acclimation on mitochondrial cytochrome c oxidase (CCO) enzyme activity. Chill coma recovery time (CRRT) was significantly reduced from 38 to 13min with acclimation at 33-25 degrees C, respectively. Heat knockdown resistance was less responsive than CCRT to acclimation, with no significant effects of acclimation detected for heat knockdown times (25 degrees C: 18.25, 29 degrees C: 18.07, 33 degrees C: 25.5min). Thermal optima for running speed were higher (39.4-40.6 degrees C) than those for jumping performance (25.6-30.9 degrees C). Acclimation temperature affected jumping distance but not running speed (general linear model, p=0.0075) although maximum performance (U(MAX)) and optimum temperature (T(OPT)) of the performance curves showed small or insignificant effects of acclimation temperature. However, these effects were sensitive to the method of analysis since analyses of T(OPT), U(MAX) and the temperature breadth (T(BR)) derived from non-linear curve-fitting approaches produced high inter-individual variation within acclimation groups and reduced variation between acclimation groups. Standard metabolic rate (SMR) was positively related to body mass and test temperature. Acclimation temperature significantly influenced the slope of the SMR-temperature reaction norms, whereas no variation in the intercept was found. The CCO enzyme activity remained unaffected by thermal acclimation. Finally, high temperature acclimation resulted in significant increases in mortality (60-70% at 33 degrees C vs. 20-30% at 25 and 29 degrees C). These results suggest that although A. domesticus may be able to cope with low temperature extremes to some degree through phenotypic plasticity, population declines with warmer mean temperatures of only a few degrees are likely owing to the limited plasticity of their performance curves. Copyright 2010 Elsevier Ltd. All rights reserved.
Ream, Rachael A; Theriot, Julie A; Somero, George N
2003-12-01
The ability to heal superficial wounds is an important element in an organism's repertoire of adaptive responses to environmental stress. In fish, motile cells termed keratocytes are thought to play important roles in the wound-healing process. Keratocyte motility, like other physiological rate processes, is likely to be dependent on temperature and to show adaptive variation among differently thermally adapted species. We have quantified the effects of acute temperature change and thermal acclimation on actin-based keratocyte movement in primary cultures of keratocytes from four species of teleost fish adapted to widely different thermal conditions: two eurythermal species, the longjaw mudsucker Gillichthys mirabilis (environmental temperature range of approximately 10-37 degrees C) and a desert pupfish, Cyprinodon salinus (10-40 degrees C), and two species from stable thermal environments, an Antarctic notothenioid, Trematomus bernacchii (-1.86 degrees C), and a tropical clownfish, Amphiprion percula (26-30 degrees C). For all species, keratocyte speed increased with increasing temperature. G. mirabilis and C. salinus keratocytes reached maximal speeds at 25 degrees C and 35 degrees C, respectively, temperatures within the species' normal thermal ranges. Keratocytes of the stenothermal species continued to increase in speed as temperature increased above the species' normal temperature ranges. The thermal limits of keratocyte motility appear to exceed those of whole-organism thermal tolerance, notably in the case of T. bernacchii. Keratocytes of T. bernacchii survived supercooling to -6 degrees C and retained motility at temperatures as high as 20 degrees C. Mean keratocyte speed was conserved at physiological temperatures for the three temperate and tropical species, which suggests that a certain rate of motility is advantageous for wound healing. However, there was no temperature compensation in speed of movement for keratocytes of the Antarctic fish, which have extremely slow rates of movement at physiological temperatures. Keratocytes from all species moved in a persistent, unidirectional manner at low temperatures but at higher temperatures began to take more circular or less-persistent paths. Thermal acclimation affected the persistence and turning magnitude of keratocytes, with warmer acclimations generally yielding more persistent cells that followed straighter paths. However, acclimation did not alter the effect of experimental temperature on cellular speed. These findings suggest that more than one temperature-sensitive mechanism may govern cell motility: the rate-limiting process(es) responsible for speed is distinct from the mechanism(s) underlying directionality and persistence. Keratocytes represent a useful study system for evaluating the effects of temperature at the cellular level and for studying adaptive variation in actin-based cellular movement and capacity for wound healing.
Seebacher, Frank; Little, Alexander G
2017-01-01
Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.
Seebacher, Frank; Little, Alexander G.
2017-01-01
Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits. PMID:28824463
Methyl bromide: ocean sources, ocean sinks, and climate sensitivity
NASA Technical Reports Server (NTRS)
Anbar, A. D.; Yung, Y. L.; Chavez, F. P.
1996-01-01
The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small perturbations to temperature or productivity can modify atmospheric CH3Br. Therefore atmospheric CH3Br should be sensitive to climate conditions. Our modeling indicates that climate-induced CH3Br variations can be larger than those resulting from small (+/- 25%) changes in the anthropogenic source, assuming that this source comprises less than half of all inputs. Future measurements of marine CH3Br, temperature, and primary production should be combined with such models to determine the relationship between marine biological activity and CH3Br production. Better understanding of the biological term is especially important to assess the importance of non-anthropogenic sources to stratospheric ozone loss and the sensitivity of these sources to global climate change.
Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.
Anbar, A D; Yung, Y L; Chavez, F P
1996-03-01
The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small perturbations to temperature or productivity can modify atmospheric CH3Br. Therefore atmospheric CH3Br should be sensitive to climate conditions. Our modeling indicates that climate-induced CH3Br variations can be larger than those resulting from small (+/- 25%) changes in the anthropogenic source, assuming that this source comprises less than half of all inputs. Future measurements of marine CH3Br, temperature, and primary production should be combined with such models to determine the relationship between marine biological activity and CH3Br production. Better understanding of the biological term is especially important to assess the importance of non-anthropogenic sources to stratospheric ozone loss and the sensitivity of these sources to global climate change.
Kim, Jeong-Weon; Samant, Shilpa S; Seo, Yoojin; Seo, Han-Seok
2015-01-01
Little is known about the effect of serving temperature on saltiness perception in food products such as soups that are typically consumed at high temperature. This study focused on determining whether serving temperature modulates saltiness perception in soup-base products. Eight trained panelists and 62 untrained consumers were asked to rate saltiness intensities in salt water, chicken broth, and miso soup, with serving temperatures of 40, 50, 60, 70, and 80 °C. Neither trained nor untrained panelists were able to find significant difference in the saltiness intensity among salt water samples served at these five different temperatures. However, untrained consumers (but not trained panelists) rated chicken broth and miso soup to be significantly less salty when served at 70 and/or 80 °C compared to when served at 40 to 60 °C. There was an interaction between temperature-related perceived saltiness and preference; for example, consumers who preferred soups served at lower temperatures found soups served at higher temperatures to be less salty. Consumers who frequently consumed hot dishes rated soup samples served at 60 °C as saltier than consumers who consumed hot dishes less frequently. This study demonstrates that soup serving temperature and consumer dietary habits are influential factors affecting saltiness perception of soup. Published by Elsevier Ltd.
The relative abundance of ethane to acetylene in the Jovian stratosphere
NASA Technical Reports Server (NTRS)
Allen, Mark; Yung, Yuk L.; Gladstone, G. R.
1992-01-01
The inclusion of the results of laboratory kinetics studies on the reaction of C2H3 and H2 to yield C2H4, which is suggestive of an efficient chemical mechanism for the hydrogenation of C2H2 to C2H6, can be included in a comprehensive model of the Jupiter atmosphere hydrocarbon photochemistry to explain the observed altitude variation of the C2H6/C2H2 ratio. The sensitivity of these results to uncertainties in key low-temperature rate constants is demonstrated. These key reaction-rate constants decrease with falling temperature.
Tribological behavior of 440C martensitic stainless steel from -184 C to 750 C
NASA Technical Reports Server (NTRS)
Slifka, A. J.; Compos, R.; Morgan, T. J.; Siegwarth, J. D.; Chaudhuri, Dilip K.
1992-01-01
Characterization of the coefficient of friction and wear rate of 440C stainless steel is needed to understand the effects of frictional heating in the bearings of the High Pressure Oxygen Turbopump of the Space Shuttle Main Engine. The coefficient of friction and wear rate have been measured over a range of temperature varying from liquid oxygen temperature (-184 C) to 750 C. The normal load has also been varied resulting in a variation of Hertzian stress from 0.915 to 3.660 GPa while the surface velocity has been varied from 0.5 to 2.0 m/s.
Zha, T S; Kellomaki, S; Wang, K Y
2003-07-01
Sixteen 20-year-old Scots pine (Pinus sylvestris L.) trees growing in the field were enclosed for 4 years in environment-controlled chambers that maintained: (1) ambient conditions (CON); (2) elevated atmospheric CO2 concentration (ambient + 350 micro mol mol-1; EC); (3) elevated temperature (ambient +2-6 degrees C; ET); or (4) elevated CO2 and elevated temperature (ECT). The dark respiration rates of 1-year-old shoots, from which needles had been partly removed, were measured over the growing season in the fourth year. In all treatments, the temperature coefficient of respiration, Q10, changed with season, being smaller during the growing season than at other times. Respiration rate varied diurnally and seasonally with temperature, being highest around mid-summer and declining gradually thereafter. When measurements were made at the temperature of the chamber, respiration rates were reduced by the EC treatment relative to CON, but were increased by ET and ECT treatments. However, respiration rates at a reference temperature of 15 degrees C were reduced by ET and ECT treatments, reflecting a decreased capacity for respiration at warmer temperatures (negative acclimation). The interaction between season and treatment was not significant. Growth respiration did not differ between treatments, but maintenance respiration did, and the differences in mean daily respiration rate between the treatments were attributable to the maintenance component. We conclude that maintenance respiration should be considered when modelling respiratory responses to elevated CO2 and elevated temperature, and that increased atmospheric temperature is more important than increasing CO2 when assessing the carbon budget of pine forests under conditions of climate change.
2016-07-01
bias and scale factor tests. By testing state-of-the-art gyroscopes, the effect of input rate stability and accuracy may be examined. Based on the...tumble test or bias analysis at a tilted position to remove the effect of Earth’s rotation in the scale factor test • A rate table with better rate...format guide and test procedure for coriolis vibratory gyros. Piscataway (NJ): IEEE; 2004 Dec. 3. Maio A, Smith G, Knight R, Nothwang W, Conroy J
Temporal variation of indoor air quality in an enclosed swine confinement building.
O'Shaughnessy, P T; Achutan, C; Karsten, A W
2002-11-01
Human health hazards can exist in swine confinement buildings due to poor indoor air quality (IAQ). During this study, airborne dust and ammonia concentrations were monitored within a working farrowing facility as indicators of IAQ. The purposes of this study were to assess the temporal variability of the airborne dust and ammonia levels over both a daily and seasonal basis, and to determine the accuracy of real-time sensors relative to actively sampled data. An ammonia sensor, aerosol photometer, indoor relative humidity sensor, and datalogger containing an indoor temperature sensor were mounted on a board 180 cm above the floor in the center of a room in the facility. Sensor readings were taken once every 4 minutes during animal occupancy (3-week intervals). Measurements of total and respirable dust concentrations by standard method, aerosol size distribution, and ammonia concentrations were taken once per week, in addition to temperature and relative humidity measurements using a thermometer and sling psychrometer, respectively. Samples were taken between September 1999 and August 2000. Diurnal variations in airborne dust revealed an inverse relationship with changes in indoor temperature and, by association, changes in airflow rate. Ammonia levels changed despite relatively stable internal temperatures. This change may be related to both changes in flow rates and in volatility rates. As expected, contaminant concentrations increased during the cold weather months, but these differences were not significantly different from other seasons. However, total dust concentrations were very low (geometric mean = 0.8 mg/m3) throughout the year. Likewise, ammonia concentrations averaged only 3.6 ppm in the well-maintained study site.
Žagar, Anamarija; Simčič, Tatjana; Carretero, Miguel A; Vrezec, Al
2015-01-01
Sympatric species from the same ecological guild, that exhibit partial altitudinal segregation, can potentially interact in areas of syntopic occurrence. Besides general species' ecology, physiology can provide important answers about species interactions reflected in altitudinal patterns. Lizards Podarcis muralis and Iberolacerta horvathi exhibit partial altitudinal segregation, while they strongly resemble in overall morphology and ecology (diet, daily and seasonal activity pattern), but show certain degree of physiological dissimilarity. They have similar mean preferred body temperatures and patterns of seasonal and daily variations but differ in the magnitude of seasonal variation. Since an ectotherm metabolism is highly dependent on body temperature, thermoregulation is expected to directly affect their metabolism. We compared metabolic rates of adult males from an area of sympatry, measured under two temperature regimes (20°C and 28°C). Both species increased metabolic rates with temperature in a similar pattern. We also compared electron transport activity from tail tissues which provide values of species' potential metabolic activity (enzymatic capacity). Species clearly differed in potential metabolic activity; I. horvathi attained higher values than P. muralis. No difference was detected in how species exploited this potential (calculated from the ratio of electron transport activity and metabolic rates). However, we observed higher potential metabolic activity I. horvathi which together with the ability to thermoregulate more precisely could represent a higher competitive advantage over P. muralis in thermally more restrictive environments such as higher altitudes. Understanding of metabolism seems to provide valuable information for understanding recent distributional patterns as well as species interactions. Copyright © 2014 Elsevier Inc. All rights reserved.
Residual thermal stresses in a solid sphere cast from a thermosetting material
NASA Technical Reports Server (NTRS)
Levitsky, M.; Shaffer, B. W.
1975-01-01
Expressions are developed for the residual thermal stresses in a solid sphere cast from a chemically hardening thermosetting material in a rigid spherical mold. The description of the heat generation rate and temperature variation is derived from a first-order chemical reaction. Solidification is described by the continuous transformation of the material from an inviscid liquidlike state into an elastic solid, with intermediate properties determined by the degree of chemical reaction. Residual stress components are obtained as functions of the parameters of the hardening process and the properties of the hardening material. Variation of the residual stresses with a nondimensionalized reaction rate parameter and the relative compressibility of the hardened material is discussed in detail.
Seed coat darkening in Cowpea bean
USDA-ARS?s Scientific Manuscript database
Seed coat of cowpea bean (Vigna unguiculata L. Walp) slowly browns to a darker color during storage. High temperature and humidity during storage might contribute to this color change. Variation in browning rate among seeds in a lot leads to a mixture of seed colors creating an unacceptable product...
40 CFR 57.203 - Contents of the application.
Code of Federal Regulations, 2014 CFR
2014-07-01
... application shall also contain the following information: (1) A process flow diagram of the smelter, including current process and instrumentation diagrams for all processes or equipment which may emit or affect the... equipment (flow rates, temperature, volumes, compositions, and variations over time); and a list of all...
40 CFR 57.203 - Contents of the application.
Code of Federal Regulations, 2012 CFR
2012-07-01
... application shall also contain the following information: (1) A process flow diagram of the smelter, including current process and instrumentation diagrams for all processes or equipment which may emit or affect the... equipment (flow rates, temperature, volumes, compositions, and variations over time); and a list of all...
40 CFR 57.203 - Contents of the application.
Code of Federal Regulations, 2011 CFR
2011-07-01
... application shall also contain the following information: (1) A process flow diagram of the smelter, including current process and instrumentation diagrams for all processes or equipment which may emit or affect the... equipment (flow rates, temperature, volumes, compositions, and variations over time); and a list of all...
40 CFR 57.203 - Contents of the application.
Code of Federal Regulations, 2013 CFR
2013-07-01
... application shall also contain the following information: (1) A process flow diagram of the smelter, including current process and instrumentation diagrams for all processes or equipment which may emit or affect the... equipment (flow rates, temperature, volumes, compositions, and variations over time); and a list of all...
Constitutive Modeling of the High-Temperature Flow Behavior of α-Ti Alloy Tube
NASA Astrophysics Data System (ADS)
Lin, Yanli; Zhang, Kun; He, Zhubin; Fan, Xiaobo; Yan, Yongda; Yuan, Shijian
2018-04-01
In the hot metal gas forming process, the deformation conditions, such as temperature, strain rate and deformation degree, are often prominently changed. The understanding of the flow behavior of α-Ti seamless tubes over a relatively wide range of temperatures and strain rates is important. In this study, the stress-strain curves in the temperature range of 973-1123 K and the initial strain rate range of 0.0004-0.4 s-1 were measured by isothermal tensile tests to conduct a constitutive analysis and a deformation behavior analysis. The results show that the flow stress decreases with the decrease in the strain rate and the increase of the deformation temperature. The Fields-Backofen model and Fields-Backofen-Zhang model were used to describe the stress-strain curves. The Fields-Backofen-Zhang model shows better predictability on the flow stress than the Fields-Backofen model, but there exists a large deviation in the deformation condition of 0.4 s-1. A modified Fields-Backofen-Zhang model is proposed, in which a strain rate term is introduced. This modified Fields-Backofen-Zhang model gives a more accurate description of the flow stress variation under hot forming conditions with a higher strain rate up to 0.4 s-1. Accordingly, it is reasonable to adopt the modified Fields-Backofen-Zhang model for the hot forming process which is likely to reach a higher strain rate, such as 0.4 s-1.
Constitutive Modeling of the High-Temperature Flow Behavior of α-Ti Alloy Tube
NASA Astrophysics Data System (ADS)
Lin, Yanli; Zhang, Kun; He, Zhubin; Fan, Xiaobo; Yan, Yongda; Yuan, Shijian
2018-05-01
In the hot metal gas forming process, the deformation conditions, such as temperature, strain rate and deformation degree, are often prominently changed. The understanding of the flow behavior of α-Ti seamless tubes over a relatively wide range of temperatures and strain rates is important. In this study, the stress-strain curves in the temperature range of 973-1123 K and the initial strain rate range of 0.0004-0.4 s-1 were measured by isothermal tensile tests to conduct a constitutive analysis and a deformation behavior analysis. The results show that the flow stress decreases with the decrease in the strain rate and the increase of the deformation temperature. The Fields-Backofen model and Fields-Backofen-Zhang model were used to describe the stress-strain curves. The Fields-Backofen-Zhang model shows better predictability on the flow stress than the Fields-Backofen model, but there exists a large deviation in the deformation condition of 0.4 s-1. A modified Fields-Backofen-Zhang model is proposed, in which a strain rate term is introduced. This modified Fields-Backofen-Zhang model gives a more accurate description of the flow stress variation under hot forming conditions with a higher strain rate up to 0.4 s-1. Accordingly, it is reasonable to adopt the modified Fields-Backofen-Zhang model for the hot forming process which is likely to reach a higher strain rate, such as 0.4 s-1.
Fnk Model of Cracking Rate Calculus for a Variable Asymmetry Coefficient
NASA Astrophysics Data System (ADS)
Roşca, Vâlcu; Miriţoiu, Cosmin Mihai
2017-12-01
In the process of materials fracture, a very important parameter to study is the cracking rate growth da/dN. This paper proposes an analysis of the cracking rate, in a comparative way, by using four mathematical models:1 - polynomial method, by using successive iterations according to the ASTM E647 standard; 2 - model that uses the Paris formula; 3 - Walker formula method; 4 - NASGRO model or Forman - Newman - Konig equation, abbreviated as FNK model. This model is used in the NASA programs studies. For the tests, CT type specimens were made from stainless steel, V2A class, 10TiNiCr175 mark, and loaded to a variable tensile test axial - eccentrically, with the asymmetry coefficients: R= 0.1, 0.3 and 0.5; at the 213K (-60°C) temperature. There are analyzed the cracking rates variations according to the above models, especially through FNK method, highlighting the asymmetry factor variation.
Evaluation of molecular volume change of block copolymer depending on temperature: A SANS study
Kim, Tae-Hwan; Do, Changwoo; Han, Young-Soo
2017-12-24
Amphiphilic Pluronic triblock copolymers form various self-assembled structures such as sphere, cylinder, lamellae and so on, depending on temperature, leading to the increase of hydrophobicity of block copolymers. However, the effective molecular volume change of the block copolymer has not been fully exploited yet, when temperature increases. Here in this paper, we have investigated the effective molecular volume change of the block copolymer upon heating by using the contrast variation small angle neutron scattering. The scattering length densities (SLDs) of the block copolymer were experimentally obtained from the neutron scattering contrast variation method between the solvent and the block copolymermore » at varying temperature. Even though the SLD, which is the intrinsic property of the material, should not be changed by temperature elevation, it was dependent on temperature, indicating that the molecular volume is changed. Therefore, we obtained the increase rate of the molecular volume change of the block copolymer (the effective molecular volume change) from the comparison of the calculated SLD and the standard SLD, which is evaluated by plotting the SANS intensity at the first order Bragg peak as the function of temperature at each volume fraction of D 2O and H 2O that is about 25.5%–51.3% depending on temperature.« less
Evaluation of molecular volume change of block copolymer depending on temperature: A SANS study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Tae-Hwan; Do, Changwoo; Han, Young-Soo
Amphiphilic Pluronic triblock copolymers form various self-assembled structures such as sphere, cylinder, lamellae and so on, depending on temperature, leading to the increase of hydrophobicity of block copolymers. However, the effective molecular volume change of the block copolymer has not been fully exploited yet, when temperature increases. Here in this paper, we have investigated the effective molecular volume change of the block copolymer upon heating by using the contrast variation small angle neutron scattering. The scattering length densities (SLDs) of the block copolymer were experimentally obtained from the neutron scattering contrast variation method between the solvent and the block copolymermore » at varying temperature. Even though the SLD, which is the intrinsic property of the material, should not be changed by temperature elevation, it was dependent on temperature, indicating that the molecular volume is changed. Therefore, we obtained the increase rate of the molecular volume change of the block copolymer (the effective molecular volume change) from the comparison of the calculated SLD and the standard SLD, which is evaluated by plotting the SANS intensity at the first order Bragg peak as the function of temperature at each volume fraction of D 2O and H 2O that is about 25.5%–51.3% depending on temperature.« less
Estimating evaporative vapor generation from automobiles based on parking activities.
Dong, Xinyi; Tschantz, Michael; Fu, Joshua S
2015-07-01
A new approach is proposed to quantify the evaporative vapor generation based on real parking activity data. As compared to the existing methods, two improvements are applied in this new approach to reduce the uncertainties: First, evaporative vapor generation from diurnal parking events is usually calculated based on estimated average parking duration for the whole fleet, while in this study, vapor generation rate is calculated based on parking activities distribution. Second, rather than using the daily temperature gradient, this study uses hourly temperature observations to derive the hourly incremental vapor generation rates. The parking distribution and hourly incremental vapor generation rates are then adopted with Wade-Reddy's equation to estimate the weighted average evaporative generation. We find that hourly incremental rates can better describe the temporal variations of vapor generation, and the weighted vapor generation rate is 5-8% less than calculation without considering parking activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Prediction of air temperature for thermal comfort of people using sleeping bags: a review
NASA Astrophysics Data System (ADS)
Huang, Jianhua
2008-11-01
Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.
Prediction of air temperature for thermal comfort of people using sleeping bags: a review.
Huang, Jianhua
2008-11-01
Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.
Refractive indices of liquid crystal E7 depending on temperature and wavelengths
NASA Astrophysics Data System (ADS)
Ma, Mingjian; Li, Shuguang; Jing, Xili; Chen, Hailiang
2017-11-01
The dependence of refractive indices of liquid crystal (LC) on temperature is represented by the Haller approximation model, and its dependence on the wavelength is expressed by the extended Cauchy model. We derived the refractive indices expressions of nematic LC E7 depending on temperature and wavelength simultaneously by combining these two models. Based on the obtained expressions, one can acquire the refractive indices of E7 at arbitrary temperature and wavelengths. The birefringence, variation rate of refractive indices, macroscopic order parameter Q, and orientational order parameter ⟨P2⟩ of E7 were then discussed based on the expressions.
Geographic variation in avian incubation periods and parental influences on embryonic temperature
Martin, T.E.; Auer, S.K.; Bassar, R.D.; Niklison, Alina M.; Lloyd, P.
2007-01-01
Theory predicts shorter embryonic periods in species with greater embryo mortality risk and smaller body size. Field studies of 80 passerine species on three continents yielded data that largely conflicted with theory; incubation (embryonic) periods were longer rather than shorter in smaller species, and egg (embryo) mortality risk explained some variation within regions, but did not explain larger differences in incubation periods among geographic regions. Incubation behavior of parents seems to explain these discrepancies. Bird embryos are effectively ectothermic and depend on warmth provided by parents sitting on the eggs to attain proper temperatures for development. Parents of smaller species, plus tropical and southern hemisphere species, commonly exhibited lower nest attentiveness (percent of time spent on the nest incubating) than larger and northern hemisphere species. Lower nest attentiveness produced cooler minimum and average embryonic temperatures that were correlated with longer incubation periods independent of nest predation risk or body size. We experimentally tested this correlation by swapping eggs of species with cool incubation temperatures with eggs of species with warm incubation temperatures and similar egg mass. Incubation periods changed (shortened or lengthened) as expected and verified the importance of egg temperature on development rate. Slower development resulting from cooler temperatures may simply be a cost imposed on embryos by parents and may not enhance offspring quality. At the same time, incubation periods of transferred eggs did not match host species and reflect intrinsic differences among species that may result from nest predation and other selection pressures. Thus, geographic variation in embryonic development may reflect more complex interactions than previously recognized. ?? 2007 The Author(s).
NASA Astrophysics Data System (ADS)
Manesh, Afshin Taghva; Heidarnezhad, Zabi alah; Masnabadi, Nasrin
2013-07-01
The present work provides quantitative results for the rate of unimolecular carbon-hydrogen bond fission reaction of benzene and nitro benzene at elevated temperatures up to 2000 K. The potential energy surface for each C-H (in the ortho, meta, and para sites) bond fission reaction of nitro benzene was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C-H bond fission channel is barrier less reaction, we have used variational RRKM theory to predict rate constants. By means of calculated rate constant at the different temperatures, the activation energy and exponential factor were determined. The Arrhenius expression for C-H bond fission reaction of nitro benzene on the ortho, meta and para sites are k( T) = 2.1 × 1017exp(-56575.98/ T), k( T) = 2.1 × 1017exp(-57587.45/ T), and k( T) = 3.3 × 1016exp(-57594.79/ T) respectively. The Arrhenius expression for C-H bond fission reaction of benzene is k( T) = 2 × 1018exp(-59343.48.18/ T). The effect of NO2 group, location of hydrogen atoms on the substituted benzene ring, reaction degeneracy, benzene ring resonance and tunneling effect on the rate expression have been discussed.
NASA Astrophysics Data System (ADS)
Fei, Yang-yang; Meng, Xiang-dong; Gao, Ming; Yang, Yi; Wang, Hong; Ma, Zhi
2018-07-01
The temperature of the semiconductor diode increases under strong light illumination whether thermoelectric cooler is installed or not, which changes the output wavelength of the laser (Lee et al., 2017). However, other characteristics also vary as temperature increases. These variations may help the eavesdropper in practical quantum key distribution systems. We study the effects of temperature increase on gain-switched semiconductor lasers by simulating temperature dependent rate equations. The results show that temperature increase may cause large intensity fluctuation, decrease the output intensity and lead the signal state and decoy state distinguishable. We also propose a modified photon number splitting attack by exploiting the effects of temperature increase. Countermeasures are also proposed.
Effects of heat treating PM Rene' 95 slightly below the gamma' solvus
NASA Technical Reports Server (NTRS)
Dreshfield, R. L.
1977-01-01
An investigation was performed on as-hot-isostatically-pressed (As-HIP) Rene' 95 to obtain additional information on the variation of the amount of gamma prime with solutioning temperatures near the gamma prime solvus temperature and the resulting effects on tensile and stress rupture strength of As-HIP Rene' 95. The amount of gamma prime phase was found to increase at a rate of about 0.5% per degree Celsius as the temperature decreased from the solvus temperature to about 50 C below the gamma prime solvus temperature. The change in the amount of gamma prime phase with decreasing solutioning temperature was observed to be primarily associated with decreasing solubilities of Al+Ti+Nb and increasing solubility of Cr in the gamma phase.
Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS
NASA Astrophysics Data System (ADS)
Wang, Yongwei; Huai, Xiulan
2018-04-01
The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer.
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov
2016-02-01
Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.
NASA Technical Reports Server (NTRS)
Lahav, N.; White, D.; Chang, S.
1978-01-01
As geologically relevant models of prebiotic environments, systems consisting of clay, water, and amino acids were subjected to cyclic variations in temperature and water content. Fluctuations of both variables produced longer oligopeptides in higher yields than were produced by temperature fluctuations alone. The results suggest that fluctuating environments provided a favorable geological setting in which the rate and extent of chemical evolution would have been determined by the number and frequency of cycles.
NASA Astrophysics Data System (ADS)
Christopher, J.; Choudhary, B. K.; Isaac Samuel, E.; Mathew, M. D.; Jayakumar, T.
2012-01-01
Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300-873 K) at a strain rate of 1.3 × 10 -3 s -1. Ludwigson equation described true stress ( σ)-true plastic strain ( ɛ) data most accurately in the range 300-723 K. At high temperatures (773-873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate ( θ = dσ/ dɛ) and θσ with stress indicated two-stage work hardening behaviour. True stress-true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ- σ and θσ- σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.
Temperature effects on egg development and larval condition in the lesser sandeel, Ammodytes marinus
NASA Astrophysics Data System (ADS)
Régnier, Thomas; Gibb, Fiona M.; Wright, Peter J.
2018-04-01
Understanding the influence of temperature on egg development and larval condition in planktonic fish is a prerequisite to understanding the phenological impacts of climate change on marine food-webs. The lesser sandeel, Ammodytes marinus (Raitt 1934), is a key trophic link between zooplankton and many piscivorous fish, sea birds and mammals in the northeast Atlantic. Temperature-egg development relationships were determined for batches of lesser sandeel eggs. Hatching began as early as 19 days post fertilisation at 11 °C and as late as 36 days post fertilisation at 6 °C, which is faster than egg development rates reported for closely related species at the lower end of the tested temperature range. The average size of newly hatched larvae decreased with increasing incubation temperatures in early hatching larvae, but this effect was lost by the middle of the hatching period. While the study revealed important temperature effects on egg development rate, predicted variability based on the range of temperatures eggs experience in the field, suggests it is only a minor contributor to the observed inter-annual variation in hatch date.
Performance Charts for a Turbojet System
NASA Technical Reports Server (NTRS)
Karp, Irving M.
1947-01-01
Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2001-01-01
Mechanical testing of the elastic and viscoelastic response of an advanced thermoplastic polyimide (LaRC-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The notched tensile strength was shown to be a strong function of both molecular weight and temperature, whereas stiffness was only a strong function of temperature. A critical molecular weight was observed to occur at a weight average molecular weight of M, approx. 22,000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Low, molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. Furthermore, low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. At long timescales (less than 1100 hours) physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested. Low molecular weight materials are less influenced by the effects of physical aging.
Using a 3D profiler and infrared camera to monitor oven loading in fully cooked meat operations
NASA Astrophysics Data System (ADS)
Stewart, John; Giorges, Aklilu
2009-05-01
Ensuring meat is fully cooked is an important food safety issue for operations that produce "ready to eat" products. In order to kill harmful pathogens like Salmonella, all of the product must reach a minimum threshold temperature. Producers typically overcook the majority of the product to ensure meat in the most difficult scenario reaches the desired temperature. A difficult scenario can be caused by an especially thick piece of meat or by a surge of product into the process. Overcooking wastes energy, degrades product quality, lowers the maximum throughput rate of the production line and decreases product yield. At typical production rates of 6000lbs/hour, these losses from overcooking can have a significant cost impact on producers. A wide area 3D camera coupled with a thermal camera was used to measure the thermal mass variability of chicken breasts in a cooking process. Several types of variability are considered including time varying thermal mass (mass x temperature / time), variation in individual product geometry and variation in product temperature. The automatic identification of product arrangement issues that affect cooking such as overlapping product and folded products is also addressed. A thermal model is used along with individual product geometry and oven cook profiles to predict the percentage of product that will be overcooked and to identify products that may not fully cook in a given process.
Low-Temperature Friction-Stir Welding of 2024 Aluminum
NASA Technical Reports Server (NTRS)
Benavides, S.; Li, Y.; Murr, L. E.; Brown, D.; McClure, J. C.
1998-01-01
Solid state friction-stir welding (FSW) has been demonstrated to involve dynamic recrystallization producing ultra-fine, equiaxed grain structures to facilitate superplastic deformation as the welding or joining mechanism. However, the average residual, equiaxed, grain size in the weld zone has ranged from roughly 0.5 micron to slightly more than 10 micron, and the larger weld zone grain sizes have been characterized as residual or static grain growth as a consequence of the temperatures in the weld zone (where center-line temperatures in the FSW of 6061 Al have been shown to be as high as 480C or -0.8 T(sub M) where T(sub M) is the absolute melting temperature)). In addition, the average residual weld zone grain size has been observed to increase near the top of the weld, and to decrease with distance on either side of the weld-zone centerline, an d this corresponds roughly to temperature variations within the weld zone. The residual grain size also generally decreases with decreasing FSW tool rotation speed. These observations are consistent with the general rules for recrystallization where the recrystallized grain size decreases with increasing strain (or deformation) at constant strain rate, or with increasing strain-rate, or with increasing strain rate at constant strain; especially at lower ambient temperatures, (or annealing temperatures). Since the recrystallization temperature also decreases with increasing strain rate, the FSW process is somewhat complicated because the ambient temperature, the frictional heating fraction, and the adiabatic heating fraction )proportional to the product of strain and strain-rate) will all influence both the recrystallization and growth within the FSW zone. Significantly reducing the ambient temperature of the base metal or work pieces to be welded would be expected to reduce the residual weld-zone grain size. The practical consequences of this temperature reduction would be the achievement of low temperature welding. This study compares the residual grain sizes and microstructures in 2024 Al friction-stir welded at room temperature (about 30C and low temperature (-30C).
Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds
NASA Astrophysics Data System (ADS)
Lübken, F.-J.; Berger, U.; Baumgarten, G.
2009-11-01
Model results of mesospheric ice layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures decrease until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser extent, in PMC altitudes (-0.0166 km/yr). Ice layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and decreases above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on ice layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on ice layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on ice layers.
Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds
NASA Astrophysics Data System (ADS)
Lübken, F.-J.; Berger, U.; Baumgarten, G.
2009-01-01
Model results of mesospheric ice layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures decrease until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser extent, in PMC altitudes (-0.0166 km/yr). Ice layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and decreases above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on ice layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on ice layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on ice layers.
Ye, Jing-Jhao; Lee, Kuan-Ting; Lin, Jing-Siang; Chuang, Chiung-Cheng
2017-01-01
Continuously monitoring and efficiently managing pain has become an important issue. However, no study has investigated a change in physiological parameters during the process of pain production/relief. This study modeled the process of pain production/relief using ramped thermal stimulation (no pain: 37°C water, process of pain production: a heating rate of 1°C/min, and subject feels pain: water kept at the painful temperature for each subject, with each segment lasting 10 min). In this duration, the variation of the heat rate variability and photoplethysmography-derived parameters was observed. A total of 40 healthy individuals participated: 30 in the trial group (14 males and 16 females with a mean age of 22.5±1.9 years) and 10 in the control group (7 males and 3 females with a mean age of 22.5±1.3 years). The results showed that the numeric rating scale value was 5.03±1.99 when the subjects felt pain, with a temperature of 43.54±1.70°C. Heart rate, R-R interval, low frequency, high frequency, photoplethysmography amplitude, baseline, and autonomic nervous system state showed significant changes during the pain production process, but these changes differed during the period Segment D (painful temperature 10: min). In summary, the study observed that physiological parameters changed qualitatively during the process of pain production and relief and found that the high frequency, low frequency, and photoplethysmography parameters seemed to have different responses in four situations (no pain, pain production, pain experienced, and pain relief). The trends of these variations may be used as references in the clinical setting for continuously observing pain intensity.
Sane, Pooja; Varma, Nikhil; Ganguly, Arnab; Pikal, Michael; Alexeenko, Alina; Bogner, Robin H
2017-02-01
Product temperature during the primary drying step of freeze-drying is controlled by a set point chamber pressure and shelf temperature. However, recent computational modeling suggests a possible variation in local chamber pressure. The current work presents an experimental verification of the local chamber pressure gradients in a lab-scale freeze-dryer. Pressure differences between the center and the edges of a lab-scale freeze-dryer shelf were measured as a function of sublimation flux and clearance between the sublimation front and the shelf above. A modest 3-mTorr difference in pressure was observed as the sublimation flux was doubled from 0.5 to 1.0 kg·h -1 ·m -2 at a clearance of 2.6 cm. Further, at a constant sublimation flux of 1.0 kg·h -1 ·m -2 , an 8-fold increase in the pressure drop was observed across the shelf as the clearance was decreased from 4 to 1.6 cm. Scale-up of the pressure variation from lab- to a manufacturing-scale freeze-dryer predicted an increased uniformity in drying rates across the batch for two frequently used pharmaceutical excipients (mannitol and sucrose at 5% w/w). However, at an atypical condition of shelf temperature of +10°C and chamber pressure of 50 mTorr, the product temperature in the center vials was calculated to be a degree higher than the edge vial for a low resistance product, thus reversing the typical edge and center vial behavior. Thus, the effect of local pressure variation is more significant at the manufacturing-scale than at a lab-scale and accounting for the contribution of variations in the local chamber pressures can improve success in scale-up.
Jin, Xiao-gang; Zhang, Ming-jun; Wang, Sheng-jie; Zhu, Xiao-fan; Dong, Lei; Ren, Zheng-guo; Chen, Fen-li
2015-04-01
Based on stable isotopes in 409 precipitation samples provided by GNIP and meteorological records at the eight stations in Loess Plateau from January 1985 to December 2004, as well as the trajectory model of HYSPLIT 4.9, the spatial and temporal variations of d-excess and Δ18O were analyzed. The spatial distribution of secondary evaporation rate and the impact of meteorological factors on below-cloud secondary evaporation were also discussed. The result showed that: (1) During summer and winter monsoon periods, Δ18O showed an uptrend variation and d-excess showed a downtrend variation from south to north in Loess Plateau. From east to west, Δ180 showed an uptrend variation only in summer monsoon period and a downtrend variation in winter monsoon period. The value of d-excess also showed a downtrend variation. Amplitude of variation Δ18O and d-excess could indicate the routes of monsoon. (2) Secondary evaporation existed on an annual basis, and it was relatively significant during the summer monsoon period, with ranges from 1.51% to 5.88% and an average rate of 3.87%. While winter monsoon became lower, the rates ranged from 1.06% to 5.46%, and the average rate dropped to 3.03%. Monsoon had larger influence on secondary evaporation in margin area of the plateau, while the influence on the central stations was little. (3) Temperature had the highest contribution to secondary evaporation, followed by precipitation amount and water vapor pressure, and relative humidity had a small contribution. Moreover, the influence of wind speed and altitude on secondary evaporation was weak.
Adenosine A3 receptors regulate heart rate, motor activity and body temperature
Yang, Jiangning; Wang, Yingqing; Garcia-Roves, Pablo; Björnholm, Marie; Fredholm, Bertil B.
2010-01-01
Aim We wanted to examine the phenotype of mice that lack the adenosine A3 receptor (A3R). Methods We examined the heart rate, body temperature and locomotion continuously by telemetry over several days. In addition the effect of the adenosine analogue R - N6- phenylisopropyl-adenosine (R-PIA) was examined. In addition, we examined heat production and food intake. Results We found that the marked diurnal variation in activity, heart rate and body temperature, with markedly higher values at night than during day time, was reduced in the A3R knockout mice. Surprisingly, the reduction in heart rate, activity and body temperature seen after injection of R-PIA in wild type mice was virtually eliminated in the A3R knock-out mice. The marked reduction in activity was associated with a decreased heat production, as expected. However, the A3R knock-out mice, surprisingly, had a higher food intake but no difference in body weight compared to wild type mice. Conclusions The mice lacking adenosine A3 receptors exhibit a surprisingly clear phenotype with changes in e.g. diurnal rhythm and temperature regulation. Whether these effects are due to a physiological role of A3 receptors in these processes or if they represent a role in development remains to be elucidated. PMID:20121716
Rocha, P L; Branco, L G
1998-03-01
We assessed seasonal variations in the effects of temperature on hypoxia-induced alterations in the bullfrog Rana catesbeiana by measuring the heart rate, arterial blood pressure, breathing frequency, metabolic rate, blood gas levels, acid-base status and plasma glucose concentration. Regardless of the season, decreased body temperature was accompanied by a reduction in heart and breathing frequencies. Lower temperatures caused a significant decrease in arterial blood pressure during all four seasons. Hypoxia-induced changes in breathing frequency were proportional to body temperature and were more pronounced during winter, less so during spring and autumn and even smaller during summer. Season had no effect on the relationship between hypoxia and heart rate. At any temperature tested, the rate of oxygen consumption had a tendency to be highest during summer and lowest during winter, but the difference was significant only at 35 degrees C. The PaO2 and pH values showed no significant change during the year, but PaCO2 was almost twice as high during winter than in summer and spring, indicating increased plasma bicarbonate levels. Lower temperatures were accompanied by decreased plasma glucose levels, and this effect was greater during summer and smaller during autumn. Hypoxia-induced hyperglycaemia was influenced by temperature and season. During autumn and winter, plasma glucose level remained elevated regardless of temperature, probably to avoid dehydration and/or freezing. In winter, the bullfrog may be exposed not only to low temperatures but also to hypoxia. These animals show temperature-dependent responses that may be beneficial since at low body temperatures the set-points of most physiological responses to hypoxia are reduced, regardless of the season.
NASA Astrophysics Data System (ADS)
Maksimkin, O. P.; Tsay, K. V.; Garner, F. A.
2015-12-01
A hexagonal shroud containing a standard in-core fueled subassembly from the BN-350 reactor was examined after reaching 59 dpa maximum, followed by long-term storage underwater. Specimens were derived from both mid-face and rib-corner positions. It was shown that there were complex spatial variations in void swelling, mechanical properties, microhardness, radiation-induced magnetism as well as corrosion while underwater. The spatial variations arose from two major sources. The first source was variations in height associated with variations in dpa rate and irradiation temperature. The second source was shown to be spatial variations in starting microstructure arising primarily from a higher level of initial deformation and hardness in the rib-corners of the hexagonal shroud. With irradiation the differences in microhardness between the two regions disappeared, but void swelling in the rib areas was larger than at mid-face positions. The swelling enhancement at the corners is thought to arise primarily from the combined effect of temper annealing at a temperature known to remove carbon from the matrix before irradiation, and the influence of higher deformed microstructures to accelerate recrystallization, possibly with assistance from localized residual stresses. Swelling was relatively low at the bottom low-temperature end of the shroud, but increased on the upper end of the assembly, reflecting primarily a transition between a precipitation regime involving titanium carbide to one involving nickel-rich and silicon-rich G-phase.
INDICATORS OF CHANGE IN MID-ATLANTIC WATERSHEDS, AND CONSEQUENCES IN UPPER CHESAPEAKE BAY
The rate of change of atmospheric temperature in the Northern Hemisphere in the past century relative to the preceding millennium strongly suggests that we are in a period of rapid global climate change. The mid-Atlantic region is quite sensitive to larger-scale climate variation...
40 CFR 53.3 - General requirements for an equivalent method determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... temperature and pressure sensors, outdoor enclosure, electrical power supply, control devices and operator... rate cut-off; operation following power interruptions; effect of variations in power line voltage... other tests, full wind-tunnel tests similar to those described in § 53.62, or to special tests adapted...
Variations of the core luminosity and solar neutrino fluxes
NASA Astrophysics Data System (ADS)
Grandpierre, Attila
The aim of the present work is to analyze the geological and astrophysical data as well as presenting theoretical considerations indicating the presence of dynamic processes present in the solar core. The dynamic solar model (DSM) is suggested to take into account the presence of cyclic variations in the temperature of the solar core. Comparing the results of calculations of the CO2 content, albedo and solar evolutionary luminosity changes with the empirically determined global earthly temperatures, and taking into account climatic models, I determined the relation between the earthly temperature and solar luminosity. These results indicate to the observed maximum of 10o change on the global terrestrial surface temperature a related solar luminosity change around 4-5 % on a ten million years timescale, which is the timescale of heat diffusion from the solar core to the surface. The related solar core temperature changes are around 1 % only. At the same time, the cyclic luminosity changes of the solar core are shielded effectively by the outer zones since the radiation diffusion takes more than 105 years to reach the solar surface. The measurements of the solar neutrino fluxes with Kamiokande 1987-1995 showed variations higher than 40 % around the average, at the Super-Kamiokande the size of the apparent scatter decreased to 13 %. This latter scatter, if would be related completely to stochastic variations of the central temperature, would indicate a smaller than 1 % change. Fourier and wavelet analysis of the solar neutrino fluxes indicate only a marginally significant period around 200 days (Haubold, 1998). Helioseismic measurements are known to be very constraining. Actually, Castellani et al. (1999) remarked that the different solar models lead to slightly different sound speeds, and the different methods of regularization yield slightly different sound speeds, too. Therefore, they doubled the found parameter variations, and were really conservative assuming that errors add up linearly. This conservative error estimation gives δ u/u = 1.7 %, δ ρ/ρ = 7 % at r=0.06× Rsolar, and so the δ T/T = 9 %, since δ T/T ~ δ ρ/ρ + δ P/P. At r=0.04× Rsolar, δ u/u=2.2 %, δ ρ/ρ=10 %, δ T/T=13 %. At r=0, δ u/u=3.5 %, therefore δ ρ/ρ=16 % and so δ T/T=20 %. So even with the usual, not conservative error estimation, roughly dividing these conservative errors by 4, with δ u/u=0.4 %, we still get an allowed range cca. 2 % temperature change at r=0.06× Rsolar and higher in the more central regions. In solar core varying cyclically on a decade timescale, the longer timescale nuclear reactions cannot build up equilibrium. In such a short timescale the variations of the local temperature regulates the proton-proton chain instead of the global luminosity constraint that is applicable only on evolutionary timescales. Therefore, the temperature dependences of the pp cycle neutrinos will be different from the ones determined by solar model calculations with the luminosity constraint: instead of the usual pp ~ T-1/2, Be ~ T8, B~ T18. we determined by the nuclear reaction rates formulas pp ~ T4.2, Be ~ T-1/2, B~ T13.5, for τ < 102 years. These latter relations have high significance at estimating the uncertaintiesof the solar central temperatures without assuming the luminosity constraint. Although the purely astrophysical solutions seem to be ruled out, this is not the case for a model in which astrophysical effects are included besides the neutrino oscillations. Therefore a combined, DSM+MSW model is suggested to calculate the observed solar neutrino fluxes. At present we have three types of neutrino detectors, and they offer us the data as the total rates (3 measurements), zenith angle dependences, energy spectra and day-night variations, all together 6 kind of data. The highest statistical significance is found in the total rates data. The evaluation of these 6 data sets is not straightforward. For example, the combined fits to the rates+spectra+D/N changes give a bad fit to the total rates, indicating the need to include the astrophysical factors besides the MSW effect. The DSM suggest that the core dynamics is induced by intermittent events of dissipation of rotational energy in the solar core, in relation to angular momentum dissipation arising from the relative motion of the Sun and the mass center of the Solar System. Energetic estimations show the plausibility of the suggested mechanisms. The DSM may serve as a useful tool to describe the observed neutrino fluxes, shifting the allowed ranges of the MSW parameters into a more acceptable region. The role of the astrophysical factors in the solar neutrino problem is behind the fact the ``smoking guns'' of neutrino oscillations are not found yet.
Controlled environment life support system: Calcium-related leaf injuries on plants
NASA Technical Reports Server (NTRS)
Tibbitts, T. W.
1986-01-01
Calcium related injuries to plants grown in controlled environments under conditions which maximize plant growth rates are described. Procedures to encourage movement of calcium into developing leaves of lettuce plants were investigated. The time course and pattern of calcium accumulation was determined to develop effective control procedures for this injury, termed tipburn. Procedures investigated were: (1) increasing the relative humidity to saturation during the dark period and altering root temperatures, (2) maximizing water stress during light and minimizing water stress during dark periods, (3) shortening the light-dark cycle lengths in combination with elevated moisture levels during the dark cycles, (4) reducing nutrient concentrations and (5) vibrating the plants. Saturated humidities at night increased the rate of growth and the large fluctuation in plant water potential encouraged calcium movement to the young leaves and delayed tipburn. Root temperature regulation between 15 and 26 C was not effective in preventing tipburn. Attempts to modulate water stress produced little variation, but no difference in tipburn development. Variations in light-dark cycle lengths also had no effect on calcium concentrations within developing leaves and no variation in tipburn development. Low concentrations of nutrient solution delayed tipburn, presumably because of greater calcium transport in the low concentration plants. Shaking of the plants did not prevent tipburn, but did delay it slightly.
NASA Astrophysics Data System (ADS)
Cui, Lifang; Wang, Lunche; Qu, Sai; Singh, Ramesh P.; Lai, Zhongping; Yao, Rui
2018-05-01
Recently, extreme climate variation has been studied in different parts of the world, and the present study aims to study the impacts of climate extremes on vegetation. In this study, we analyzed the spatiotemporal variations of temperature and precipitation extremes during 1960-2015 in the Yangtze River Basin (YRB) using the Mann-Kendall (MK) test with Sen's slope estimator and kriging interpolation method based on daily precipitation (P), maximum temperature (T max), and minimum temperature (T min). We also analyzed the vegetation dynamics in the YRB during 1982-2015 using Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) datasets and investigated the relationship between temperature and precipitation extremes and NDVI using Pearson correlation coefficients. The results showed a pronounced increase in the annual mean maximum temperature (T nav) and mean minimum temperature (T xav) at the rate of 0.23 °C/10 years and 0.15 °C/10 years, respectively, during 1960-2015. In addition, the occurrence of warm days and warm nights shows increasing trends at the rate of 1.36 days/10 years and 1.70 days/10 years, respectively, while cold days and cold nights decreased at the rate of 1.09 days/10 years and 2.69 days/10 years, respectively, during 1960-2015. The precipitation extremes, such as very wet days (R95, the 95th percentile of daily precipitation events), very wet day precipitation (R95p, the number of days with rainfall above R95), rainstorm (R50, the number of days with rainfall above 50 mm), and maximum 1-day precipitation (RX1day), all show pronounced increasing trends during 1960-2015. In general, annual mean NDVI over the whole YRB increased at the rate of 0.01/10 years during 1982-2015, with an increasing transition around 1994. Spatially, annual mean NDVI increased in the northern, eastern, and parts of southwestern YRB, while it decreased in the YRD and parts of southern YRB during 1982-2015. The correlation coefficients showed that annual mean NDVI was closely correlated with temperature extremes during 1982-2015 and 1995-2015, but no significant correlation with precipitation extremes was observed. However, the decrease in NDVI was correlated with increasing R95p and R95 during 1982-1994.
Time-scale dependent sediment flux in the Tajik Pamir Mountains
NASA Astrophysics Data System (ADS)
Pohl, Eric; Gloaguen, Richard; Andermann, Christoff; Fuchs, Margret C.
2014-05-01
The Pamir Mountains (Pamirs) offer the unique possibility to observe landscape shaping processes in a complex climatic environment. While the Westerlies provide most of the moisture as snow in winter, the Indian summer monsoon can also contribute quite significantly to the water budget in summer. Water from snow and ice melt induced by temperature and rainfall mobilizes sediments from hillslopes, debris fans, and moraine remnants. These sediments are transported, re-deposited, and eventually carried out of the orogene. Different approaches are available to assess and quantify the erosion processes at different time-scales. Recent studies applying cosmogenic nuclide (CN) dating suggest erosion rates of approximately 0.65mm/yr for the last 1000 years. In this contribution we want to present modern erosion rates derived from historical archive suspended sediment yield (SSY) data and very recent in situ sampling data, including high-resolution turbidimeter measurements. 10-day averaged SSY data recorded in the past show less erosion by a factor of 2 to 10 compared to CN-derived erosion rates for different catchments. The 10-day SSY data are based on measurements that have been conducted in the morning and evening, thus not accounting for the entire diurnal variation. We installed a turbidimeter with a measuring interval of 10 minutes to better resolve these diurnal variations. We calibrate turbidity with in situ measurements carried out on a daily basis for 9 months to see whether the differences between CN and SSY measurements are really owed to diurnal variations or if rare high magnitude events. e.g. mudflows, landslides, or avalanches disclose this discrepancy. We present single high magnitude SSY events, uncover periodic diurnal sediment variations that systematically lag diurnal temperature variations and relate the sediment amount of such high magnitude events to the smoothed annual cycle. We use the obtained results to discuss whether past changes in climate could explain the observed difference between millennial scale CN vs decadal scale SSY measurements or if single high magnitude events must play the dominant role.
NASA Astrophysics Data System (ADS)
Kim, Ho Jun; Lee, Hae June
2018-03-01
The effect of neutral transport on the deposition rate profiles of thin films formed by plasma-enhanced chemical vapor deposition (PECVD) is investigated to improve the uniformity of amorphous hydrogenated silicon films. The PECVD reactor with a cylindrical showerhead is numerically simulated with a variation of the gas velocity and temperature in the capacitively coupled plasma with an intermediate-pressure SiH4/He gas mixture. The modulation of the gas velocity distribution results in a noticeable change in the density distributions of neutral molecules such as SiH4, SiH3, H, SiH2, and Si2H6, especially in the vicinity of the electrode edge. With the locally accelerated gas flow, the concomitant increase in Si2H6 density near the electrode edge induces increases in both the electron density and the deposition rate profile near the electrode edge. In addition, it is observed that changing the surface temperature distribution by changing the sidewall temperature can also effectively modulate the plasma density distributions. The simulated deposition rate profile matches the experimental data well, even under non-isothermal wall boundary conditions.
NASA Astrophysics Data System (ADS)
Arslanturk, Cihat
2011-02-01
Although tapered fins transfer more rate of heat per unit volume, they are not found in every practical application because of the difficulty in manufacturing and fabrications. Therefore, there is a scope to modify the geometry of a constant thickness fin in view of the less difficulty in manufacturing and fabrication as well as betterment of heat transfer rate per unit volume of the fin material. For the better utilization of fin material, it is proposed a modified geometry of new fin with a step change in thickness (SF) in the literature. In the present paper, the homotopy perturbation method has been used to evaluate the temperature distribution within the straight radiating fins with a step change in thickness and variable thermal conductivity. The temperature profile has an abrupt change in the temperature gradient where the step change in thickness occurs and thermal conductivity parameter describing the variation of thermal conductivity has an important role on the temperature profile and the heat transfer rate. The optimum geometry which maximizes the heat transfer rate for a given fin volume has been found. The derived condition of optimality gives an open choice to the designer.
Nucleation rates of Sn in undercooled Sn-Ag-Cu flip-chip solder joints
NASA Astrophysics Data System (ADS)
Arfaei, B.; Benedict, M.; Cotts, E. J.
2013-11-01
The nucleation of Sn from the melt in commercial SnAgCu flip chip solder joints was monitored at a number of different temperatures. Nucleation rates were estimated from measurements of nucleation times for 440 solder balls after one reflow and were found to be well epitomized by the expression I = 2 × 109 exp[(-1.6 × 105)/(T × (ΔT)2)] m-3 s-1, as per classical nucleation theory. After an additional reflow, the nucleation rates of the same 440 samples were observed to increase to I = 2 × 109 exp[(-8.9 × 104)/(T × (ΔT)2)] m-3 s-1. Thus it was shown that the expressions of classical nucleation theory well characterize nucleation kinetics for this system. These changes in nucleation kinetics were correlated with continued dissolution of Al and Ni in to the SnAgCu melt. Such increases in nucleation rates meant increases in the average solidification temperatures of the solder balls after reflow. Variations in the Sn grain morphology of the solder joints were correlated with these changes in solidification temperature, with larger Sn grains (beach ball Sn grain morphology) observed at higher solidification temperatures.
Hot electron inelastic scattering and transmission across graphene surfaces
NASA Astrophysics Data System (ADS)
Kong, Byoung Don; Champlain, James G.; Boos, J. Brad
2017-06-01
Inelastic scattering and transmission of externally injected hot carriers across graphene layers are considered as a function of graphene carrier density, temperature, and surrounding dielectric media. A finite temperature dynamic dielectric function for graphene for an arbitrary momentum q and frequency ω is found under the random phase approximation and a generalized scattering lifetime formalism is used to calculate the scattering and transmission rates. Unusual trends in scattering are found, including declining rates as graphene carrier density increases and interband transition excitations, which highlights the difference with out-of-plane as compared to in-plane transport. The results also show strong temperature dependence with a drastic increase in scattering at room temperature. The calculated scattering rate at T = 300 K shows a wide variation from 0.2 to 10 fs-1 depending on graphene carrier density, incident carrier momentum, and surrounding dielectrics. The analysis suggests that a transmission rate greater than 0.9 for a carrier with kinetic energy over 1 eV is achievable by carefully controlling the graphene carrier density in conjunction with the use of high-κ dielectric materials. Potential applications to electronic and electro-optical devices are also discussed.
Weather explains high annual variation in butterfly dispersal.
Kuussaari, Mikko; Rytteri, Susu; Heikkinen, Risto K; Heliölä, Janne; von Bagh, Peter
2016-07-27
Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark-release-recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79-91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. © 2016 The Author(s).
[Effect of air temperature and rainfall on wetland ecosystem CO2 exchange in China].
Chu, Xiao-jing; Han, Guang-xuan
2015-10-01
Wetland can be a potential efficient sink to reduce global warming due to its higher primary productivity and lower carbon decomposition rate. While there has been a series progress on the influence mechanism of ecosystem CO2 exchange over China' s wetlands, a systematic metaanalysis of data still needs to be improved. We compiled data of ecosystem CO2 exchange of 21 typical wetland vegetation types in China from 29 papers and carried out an integrated analysis of air temperature and precipitation effects on net ecosystem CO2 exchange (NEE), ecosystem respiration (Reco), gross primary productivity (GPP), the response of NEE to PAR, and the response of Reco to temperature. The results showed that there were significant responses (P<0.05) of NEE (R2 = 50%, R2=57%), GPP (R2 = 60%, R2 = 50%) Reco (R2 = 44%, R2=50%) with increasing air temperature and enhanced precipitation on the annual scale. On the growing season scale, air temperature accounted for 50% of the spatial variation of NEE, 36% of GPP and 19% of Reco, respectively. Both NEE (R2 = 33%) and GPP (R2 =25%) were correlated positively with precipitation (P<0.05). However, the relationship between Reco and precipitation was not significant (P>0.05). Across different Chinese wetlands, both precipitation and temperature had no significant effect on apparent quantum yield (α) or ecosystem respiration in the daytime (Reco,day, P>0.05). The maximum photosynthesis rate (Amax) was remarkably correlated with precipitation (P <0.01), but not with air temperature. Besides, there was no significant correlation between basal respiration (Rref) and precipitation (P>0.05). Precipitation was negatively correlated with temperature sensitivity of Reco (Q10, P<0.05). Furthermore, temperature accounted for 35% and 46% of the variations in temperature sensitivity of Reco (Q10) and basal respiration (Rref P<0.05), respectively.
NASA Astrophysics Data System (ADS)
Banda, N.; Krol, M. C.; van Weele, M.; van Noije, T.; Dlugokencky, E. J.; Röckmann, T.
2015-12-01
The eruption of Pinatubo in 1991 caused global scale changes in climate and radiation. Large perturbations in the methane growth rate were observed after the eruption, caused by variations in either methane sources or methane sinks. Natural methane emissions from wetlands are influenced by changes in temperature and precipitation, having a significant contribution to methane variability. The main removal of methane from the atmosphere is the reaction with the hydroxyl radical (OH). OH concentrations are in turn sensitive to temperature, humidity and the amount of UV radiation. In Bândă et al. (2015), we quantified the variability in methane sources and sinks in the 5 years following the eruption, using the 3D chemistry and transport model TM5. We derived an OH inter-annual variability of 1.6% during this period. A 4.5% increase in OH levels from 1992 to 1993, caused by enhanced stratospheric ozone depletion, a recovery of stratospheric aerosols and decreased NMVOC emissions, was found to contribute to the observed drop in methane growth rate. However, using bottom-up inventories of methane emissions, the exact timing and magnitude of the observed methane growth rate variations could not be matched by our simulations. The variability in natural wetland emissions and in biomass burning emissions is quite uncertain in this period. Emission reductions in the Former Soviet Union were also proposed as a reason for the observed decrease in methane growth rate. Based on the OH variability from our previous chemistry forward model simulations, we infer methane emissions after the Pinatubo eruption using a linearized inverse modeling setup. We can therefore quantify the variability in the methane emissions needed to match the methane variations observed in weekly air samples collected in NOAA's Cooperative Global Air Sampling Network and to identify the emission categories that contributed to these variations. Reference: Bândă, N., Krol, M., van Weele, M., van Noije, T., Le Sager, P., and Röckmann, T.: Can we explain the observed methane variability after the Mount Pinatubo eruption?, Atmos. Chem. Phys. Discuss., 15, 19111-19160, doi:10.5194/acpd-15-19111-2015, 2015.
NASA Astrophysics Data System (ADS)
Shah, Anjana K.; SempéRé, Jean-Christophe
1998-03-01
The Southeast Indian Ridge exhibits a transition in axial morphology from an East Pacific Rise-like axial high near 100°E to a Mid-Atlantic Ridge-like rift valley near 116°E but spreads at a nearly constant rate of 74-76 mm/yr. Assuming that the source of this transition lies in variations in mantle temperature, we use shipboard gravity-derived crustal thickness and ridge flank depth to estimate the variations in temperature associated with the changes in morphological style. Within the transitional region, SeaBeam 2000 bathymetry shows scattered instances of highs, valleys, and split volcanic ridges at the axis. A comparison of axial morphology to abyssal hill shapes and symmetry properties suggests that this unorganized distribution is due to the ridge axis episodically alternating between an axial valley and a volcanic ridge. Axial morphology can then be divided into three classes, with distinct geographic borders: axial highs and rifted highs are observed west of a transform fault at 102°45'E; rift valleys are observed east of a transform fault at 114°E; and an intermediate-style morphology which alternates between a volcanic ridge and a shallow axial valley is observed between the two. One segment, between 107° and 108°30'E, forms an exception to the geographical boundaries. Gravity-derived crustal thickness and flank depth generally vary monotonically over the region, with the exception of the segment between 107°E and 108°30'E. The long-wavelength variations in these properties correlate with the above morphological classification. Gravity-derived crustal thickness varies on average ˜2 km between the axial high and rift valley regions. The application of previous models relating crustal thickness and mantle temperature places the corresponding temperature variation at 25°C-50°C, depending on the model used. The average depth of ridge flanks varies by ˜550 m over the study area. For a variation of 25°-50°C, thermal models of the mantle predict depth variations of 75-150 m. These values are consistent with observations when the combined contributions of crustal thickness and mantle density to ridge flank depth are considered, assuming Airy isostasy. Crustal thickness variations differ at the two transitions described above: A difference of 750 m in crustal thickness is observed at the rift valley/intermediate-style transition, suggesting small variations in crustal thickness and mantle temperature drive this transition. At the axial high-rifted high/intermediate-style transition, crustal thickness variations are not resolvable, suggesting that this transition is controlled by threshold values of crustal thickness and mantle temperature, and is perhaps related to the presence of a steady state magma chamber.
Seasonal variation of sudden infant death syndrome in Hawaii.
Mage, David T
2004-11-01
To test whether the sudden infant death syndrome (SIDS) rate displays the universal winter maximum and summer minimum in Hawaii where there is no appreciable seasonal variation of temperature. The null hypothesis is tested that there is no seasonal variation of necropsied SIDS in Hawaii. The numbers of live births and SIDS cases by month for the years 1979 to 2002 were collected and the monthly SIDS distribution is predicted based on the age at death distribution. The state of Hawaii, located in the midst of the Pacific Ocean, has a semi-tropical climate with temperatures fluctuating diurnally as 25 +/- 5 degrees C throughout the year. Therefore homes are unheated and infants are not excessively swaddled. The Hawaii State Department of Health maintains vital statistics of all infant births and deaths. The results reject the null hypothesis of no seasonal variation of SIDS (p = 0.026). An explanation for the seasonal effect of the winter maximum and summer minimum for Hawaiian SIDS is that it arises from the cycle of the school session and summer vacation periods that represent variable intensity of a possible viral infection vector. SIDS rates in both Hawaii and the United States increase with parity, also indicating a possible role of school age siblings as carriers. The winter peak of the SIDS in Hawaii is support for the hypothesis that a low grade viral infection, insufficient by itself to be a visible cause of death at necropsy, may be implicated as contributing to SIDS in vulnerable infants.
Growth of analog Al(x)Ga(1-x)As/GaAs parabolic quantum wells by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Wang, S. M.; Treideris, G.; Chen, W. Q.; Andersson, T. G.
1993-01-01
Parabolic Al(x)Ga(1-x)As/GaAs quantum wells have been grown by molecular beam epitaxy with linear ramping of the Al effusion cell temperature, where the ramping rate was carefully analyzed to avoid a flux lag. The calculated potential profile from the temperature variation was very close to the parabolic one. Low-temperature photoluminescence showed clear interband transitions up to the n = 3 sublevels. The equal energy spacing between adjacent transitions involving heavy-hole states confirmed the parabolic shape of the quantum well.
Semones, Molly C.; Kuhn, Donald E.; Kriska, Tamas; Keszler, Agnes; Crockett, Elizabeth L.
2014-01-01
Changes in oxidative capacities and phospholipid remodeling accompany temperature acclimation in ectothermic animals. Both responses may alter redox status and membrane susceptibility to lipid peroxidation (LPO). We tested the hypothesis that phospholipid remodeling is sufficient to offset temperature-driven rates of LPO and, thus, membrane susceptibility to LPO is conserved. We also predicted that the content of LPO products is maintained over a range of physiological temperatures. To assess LPO susceptibility, rates of LPO were quantified with the fluorescent probe C11-BODIPY in mitochondria and sarcoplasmic reticulum from oxidative and glycolytic muscle of striped bass (Morone saxatilis) acclimated to 7°C and 25°C. We also measured phospholipid compositions, contents of LPO products [i.e., individual classes of phospholipid hydroperoxides (PLOOH)], and two membrane antioxidants. Despite phospholipid headgroup and acyl chain remodeling, these alterations do not counter the effect of temperature on LPO rates (i.e., LPO rates are generally not different among acclimation groups when normalized to phospholipid content and compared at a common temperature). Although absolute levels of PLOOH are higher in muscles from cold- than warm-acclimated fish, this difference is lost when PLOOH levels are normalized to total phospholipid. Contents of vitamin E and two homologs of ubiquinone are more than four times higher in mitochondria prepared from oxidative muscle of warm- than cold-acclimated fish. Collectively, our data demonstrate that although phospholipid remodeling does not provide a means for offsetting thermal effects on rates of LPO, differences in phospholipid quantity ensure a constant proportion of LPO products with temperature variation. PMID:25519739
Seasonal variation in methane emission from stored slurry and solid manures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husted, S.
1994-05-01
Methane (CH{sub 4}) is an important greenhouse gas and recent inventories have suggested that livestock manure makes a significant contribution to global CH{sub 4} emissions. The emission of CH{sub 4} from stored pig slurry, cattle slurry, pig solid manure, and cattle solid manure was followed during a 1-yr period. Methane emission was determined by dynamic chambers. Emission rates followed a ln-normal distribution for all four manures, Indicating large spatial and seasonal variation& Monthly geometric means for pig slurry, cattle slurry, pig solid manure, and cattle solid manure varied from 0.4 to 35.8, 0.0 to 34.5, 0.4 to 142.1, and 0.1more » to 42.7 g CH{sub 4} m{sup -3} d{sup -1}, respectively. For slurries CH{sub 4} emission rates increased significantly with storage temperatures, the Q{sub 10} value ranging from 14 to 5.7 depending on slurry type. The presence of a natural surface crust reduced CH{sub 4} emission from slurry by a factor of 11 to 12. Surface crust effects declined with increasing slurry temperature. Solid manures stored in dungheaps showed significant heat production. Pig solid manure temperatures were maintained at 30 to 60{degrees}C throughout most of the year, while cattle solid manure temperatures were close to ambient levels until late spring, when heat production was initiated. Methanogenesis in solid manure also increased with increasing temperatures. For pig solid manure, CH{sub 4} emission rates peaked at 35 to 45{degrees}C. No distinct temperature optimum could be detected for cattle solid manure, however, temperatures rarely exceeded 45{degrees}C. The Q{sub 10} values for dungheaps ranged from 2.7 to 10.3 depending on-manure type and Q{sub 10} temperature interval. Annual CH{sub 4} emissions from pig slurry, cattle slurry, pig solid manure, and cattle solid manure were estimated at 8.9, 15.5, 27.3, and 5.3 kg animal{sup -1} yr{sup -1}, respectively. 27 refs., 6 figs., 2 tabs.« less
Performance assessment of low pressure nuclear thermal propulsion
NASA Technical Reports Server (NTRS)
Gerrish, H. P., Jr.; Doughty, G. E.
1993-01-01
A low pressure nuclear thermal propulsion (LPNTP) system, which takes advantage of hydrogen dissociation/recombination, was proposed as a means of increasing engine specific impulse (Isp). The effect of hydrogen dissociation/recombination on LPNTP Isp is examined. A two-dimensional computer model was used to show that the optimum chamber pressure is approximately 100 psia (at a chamber temperature of 3,000 K), with an Isp approximately 15 s higher than at 1,000 psia. At high chamber temperatures and low chamber pressures, the increase in Isp is due to both lower average molecular weights caused by dissociation and added kinetic energy from monatomic hydrogen recombination. Monatomic hydrogen recombination increases the Isp more then hydrogen dissociation. Variations in the mole fraction of monatomic hydrogen are similar to variations in static pressure along the axial nozzle position. Most recombination occurs close to the nozzle throat. Practical variations in nozzle geometry have minimal impact on recombination. Other models which can simulate a wider range of nozzle designs should be used in the future. The uncertainty of the hydrogen kinetic reaction rates at high temperatures (approximately 3,000 K) affects the accuracy of the analysis and should be verified with simple bench tests.
NASA Astrophysics Data System (ADS)
Miller, S.; Knauer, J. P.; Radha, P. B.; Goncharov, V. N.
2017-10-01
Performance degradation in direct-drive inertial confinement fusion implosions can be caused by several effects, one of which is Rayleigh-Taylor (RT) instability growth during the deceleration phase. In room-temperature plastic target implosions, this deceleration-phase RT growth is enhanced by the density discontinuity and finite Atwood numbers at the fuel-pusher interface. For the first time, an experimental campaign at the Omega Laser Facility systematically varied the ratio of deuterium-to-tritium (D-to-T) within the DT gas fill to change the Atwood number. The goal of the experiment was to understand the effects of Atwood number variation on observables like apparent ion temperature, yield, and variations in areal density and bulk fluid motion, which lead to broadening of neutron spectra along different lines of sight. Simulations by the hydrodynamic codes LILAC and DRACO were used to study growth rates for different D-to-T ratios and identify observable quantities effected by Atwood number variation. Results from simulations and the experiment are presented. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
NASA Astrophysics Data System (ADS)
Inazu, D.; Hino, R.
2011-11-01
Ocean bottom pressure (OBP) data obtained by cabled seafloor observatories deployed around Japan, are known to be significantly affected by temperature changes. This paper examines the relationship between the OBP and temperature records of six OBP gauges in terms of a regression coefficient and lag at a wide range of frequencies. No significant temperature dependency is recognized in secular variations, while substantial increases, at rates of the order of 1 hPa/year, are commonly evident in the OBP records. Strong temperature dependencies are apparent for periods of hours to days, and we correct the OBP data based on the estimated OBP-temperature relationship. At periods longer than days, the temperature corrections work well for extracting geophysical signals for OBP data at a station off Hokkaido (KPG2), while other corrected data show insufficient signal-to-noise ratios. At a tsunami frequency, the correction can reduce OBP fluctuations, due to rapid temperature changes, by as much as millimeters, and is especially effective for data at a station off Shikoku (MPG2) at which rapid temperature changes most frequently occur. A tidal analysis shows that OBP data at a station off Honshu (TM1), and at KPG2, are useful for studies on the long-term variations of tidal constituents.
Pakshir, M; Bagheri, T; Kazemi, M R
2013-08-01
The aim of this study was to compare the electrochemical corrosion behaviour of stainless steel (SS) and nickel-titanium (Ni-Ti) orthodontic archwires in Ringer's solution at temperatures ranging from 15 to 55°C by using linear sweep voltametry and electrochemical impedance spectroscopy. Polarization curves show that the corrosion current density of SS is greater than that of Ni-Ti alloy. Since the corrosion current density is directly proportional to the corrosion rate, a great corrosion current density shows a lower resistance against corrosion. Therefore, in comparison with SS, Ni-Ti alloys have a lower corrosion rate. Results show that the temperature of the solution affects the corrosion rates of the alloys. As the temperature increases, the corrosion resistance of both of the alloys decreases, although these variations were not so large. Impedance measurements show that the electrochemical behaviour of Ni-Ti exhibits higher polarization resistance and lower capacitance, which means that passive film formed on this alloy is more homogeneous and thicker in comparison with SS. Results also show that polarization resistance of both alloys decreases slowly with increases in the temperature of the solution.
Dijkstra-Tiekstra, Margriet J; Setroikromo, Airies C; Kraan, Marcha; Gkoumassi, Effimia; de Wildt-Eggen, Janny
2014-12-01
Adding dimethyl sulfoxide (DMSO) to hematopoietic progenitor cells (HPCs) causes an exothermic reaction, potentially affecting their viability. The freezing method might also influence this. The aim was to investigate the effect of 1) precooling of DMSO and plasma (D/P) and white blood cell (WBC)-enriched product, 2) DMSO concentration of D/P, 3) freezing program, and 4) storage method on WBC quality. WBC-enriched product without CD34+ cells was used instead of HPCs. This was divided into six or eight portions. D/P (20 or 50%; precooled or room temperature [RT]) was added to the WBC-enriched product (precooled or RT), resulting in 10% DMSO, while monitoring temperature. The product was frozen using controlled-rate freezing ("fast-rate" or "slow-rate") and placed in vapor-phase or liquid nitrogen. After thawing, WBC recovery and viability were determined. Temperature increased most for precooled D/P to precooled WBC-enriched product, without influence of 20 or 50% D/P, but remained for all variations below 30°C. WBC recovery for both freezing programs was more than 95%. Recovery of WBC viability was higher for slow-rate freezing compared to fast-rate freezing (74% vs. 61%; p < 0.05) and also for 50% compared to 20% D/P (two test variations). Effect of precooling D/P or WBC-enriched product and of storage in vapor-phase or liquid nitrogen was marginal. Based on these results, precooling is not necessary. Fifty percent D/P is preferred over 20% D/P. Slow-rate freezing is preferred over fast-rate freezing. For safety reasons storage in vapor-phase nitrogen is preferred over storage in liquid nitrogen. Additional testing using real HPCs might be necessary. © 2014 AABB.
NASA Technical Reports Server (NTRS)
Wang, Guiling; Wang, Dagang; Trenberth, Kevin E.; Erfanian, Amir; Yu, Miao; Bosilovich, Michael G.; Parr, Dana T.
2017-01-01
Theoretical models predict that, in the absence of moisture limitation, extreme precipitation intensity could exponentially increase with temperatures at a rate determined by the Clausius-Clapeyron (C-C) relationship. Climate models project a continuous increase of precipitation extremes for the twenty-first century over most of the globe. However, some station observations suggest a negative scaling of extreme precipitation with very high temperatures, raising doubts about future increase of precipitation extremes. Here we show for the present-day climate over most of the globe,the curve relating daily precipitation extremes with local temperatures has a peak structure, increasing as expected at the low medium range of temperature variations but decreasing at high temperatures. However, this peak-shaped relationship does not imply a potential upper limit for future precipitation extremes. Climate models project both the peak of extreme precipitation and the temperature at which it peaks (T(sub peak)) will increase with warming; the two increases generally conform to the C-C scaling rate in mid- and high-latitudes,and to a super C-C scaling in most of the tropics. Because projected increases of local mean temperature (T(sub mean)) far exceed projected increases of T(sub peak) over land, the conventional approach of relating extreme precipitation to T(sub mean) produces a misleading sub-C-C scaling rate.
Evaluation of tear evaporation from ocular surface by functional infrared thermography.
Tan, Jen-Hong; Ng, E Y K; Acharya, U Rajendra
2010-11-01
A novel technique was developed to measure tear evaporation and monitor its variation with respect to time, for the studying of ocular physiology based on dynamic functional infrared thermography and the first law of thermodynamics using the measured ocular surface temperatures (OSTs). This is a noninvasive, noncontact temperature measuring method that is widely applied in the field of biomedicine. A simple method based on the ocular thermal data was proposed to measure the rate of tear evaporation. The OST of 60 normal subjects were recorded in the form of sequential thermal images. For each thermal sequence, the ocular region was selected and warped to a standard form. Thermal data within the regions were processed, on the basis of the first law of thermodynamics to derive the evaporation rate. For elder subjects (aged above 35), the rate was determined to be 55.82 Wm(-2) and for younger subjects, the rate was 58.9 Wm(-2). The corneal rate of evaporation in elder subjects was found statistically (p < 0.11) larger than their younger counterparts. The rate of blinking was observed to be related to the variation of evaporation rate. The authors have measured the evaporation rate on a sequence of thermographic images. A region of interest was selected at first and the same region on all the images were warped into a standard form. Calculations were performed based on the thermal data in those regions to obtain the values of interest. The authors found that the tear evaporation rate for subjects of all age groups was 57.36 +/- 12.73 Wm(-2) and the corneal tear evaporation was higher in elder subjects. The corneal rate of evaporation fluctuated in a larger magnitude in subjects who blinked more than average.
Thermal Sensitivity Of Sensing Coils For Fibre Gyroscopes
NASA Astrophysics Data System (ADS)
Mohr, F.; Kiesel, P.
1984-11-01
This contribution reports on investigations of the rotation rate error, which occurs at a fibre gyroscope output when its sensing coil is subjected to dynamic temperature variations. The severity of the problem is best illustrated by the fact that the tempera-ture nonuniformity of the sensor coil must be less than 0,01 °C if the system is to resolve rotation rates of 0,01 °/h /1/. This requirement can easily be met in the lab by use of sophisticated control and shielding techniques. However, for a system to be usable under common environmental conditions, special coiling and encapsulating techniques must be developed in order to achieve immunity versus thermal effects.
NASA Astrophysics Data System (ADS)
Nascimento, Micael; Ferreira, Marta S.; Pinto, João. L.
2017-08-01
In this work, an optical fiber sensing network has been developed to assess the impact of different environmental conditions on lithium batteries performance through the real time thermal monitoring. The battery is submitted to constant current charge and different discharge C-rates, under normal and abusive operating conditions. The results show that for the discharge C-rate of 5.77C, the LiB under cold and dry climates had 32.5% and 27.2% lower temperature variations, when compared with temperate climates, respectively. The higher temperature shift detected in the temperate climate was related to the battery better performance regarding discharge capacity and power capabilities.
Martin, Thomas E.; Oteyza, Juan C.; Boyce, Andy J.; Lloyd, Penn; Ton, Riccardo
2015-01-01
Parental behavior and effort vary extensively among species. Life-history theory suggests that age-specific mortality could cause this interspecific variation, but past tests have focused on fecundity as the measure of parental effort. Fecundity can cause costs of reproduction that confuse whether mortality is the cause or the consequence of parental effort. We focus on a trait, parental allocation of time and effort in warming embryos, that varies widely among species of diverse taxa and is not tied to fecundity. We conducted studies on songbirds of four continents and show that time spent warming eggs varies widely among species and latitudes and is not correlated with clutch size. Adult and offspring (nest) mortality explained most of the interspecific variation in time and effort that parents spend warming eggs, measured by average egg temperatures. Parental effort in warming eggs is important because embryonic temperature can influence embryonic development period and hence exposure time to predation risk. We show through correlative evidence and experimental swapping of embryos between species that parentally induced egg temperatures cause interspecific variation in embryonic development period. The strong association of age-specific mortality with parental effort in warming eggs and the subsequent effects on embryonic development time are unique results that can advance understanding of broad geographic patterns of life-history variation.
Richter-Boix, Alex; Teplitsky, Céline; Rogell, Björn; Laurila, Anssi
2010-02-01
In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open-canopy or partially closed-canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (Q(ST)) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (F(ST)). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in F(ST) at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature-induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
Orbital thermal analysis of lattice structured spacecraft using color video display techniques
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Palmer, M. T.
1983-01-01
A color video display technique is demonstrated as a tool for rapid determination of thermal problems during the preliminary design of complex space systems. A thermal analysis is presented for the lattice-structured Earth Observation Satellite (EOS) spacecraft at 32 points in a baseline non Sun-synchronous (60 deg inclination) orbit. Large temperature variations (on the order of 150 K) were observed on the majority of the members. A gradual decrease in temperature was observed as the spacecraft traversed the Earth's shadow, followed by a sudden rise in temperature (100 K) as the spacecraft exited the shadow. Heating rate and temperature histories of selected members and color graphic displays of temperatures on the spacecraft are presented.
NASA Astrophysics Data System (ADS)
Liu, Zhenling; Wen, Hu; Yu, Zhijin; Wang, Chao; Ma, Li
2018-02-01
The spontaneous combustion of coal in goaf at high geo temperatures is threatening safety production in coalmine. The TG-DSC is employed to study the variation of mass and energy at 4 atmospheres (mixed gases of N2, O2 and CO2) and heating rates (10°C/min) during oxidation of coal samples. The apparent activation energy and pre-exponential factor of coal oxidation decrease rapidly with increasing theCO2 concentration. Furthermore, its reaction rate is slow, its heat released reduces. Based on the conditions of 1301 face in the Longgucoalmine, a three-dimensional geometry model is developed to simulate the distributions stream field and temperature field and the variation characteristics ofCO2 concentration field after injecting liquidCO2. The results indicate that oxygen reached to depths of˜120m in goaf, 100m in the side of inlet air, and 10m in the side of outlet air before injecting liquidCO2. After injecting liquidCO2for 28.8min, the width of oxidation and heat accumulation zone is shortened by 20m, and the distance is 80m in the side of working face and 40˜60m in goafin the direction of dip affected by temperature.
Effects of Light and Temperature on the Association between Zea mays and Spirillum lipoferum1
Albrecht, Stephan L.; Okon, Yaacov; Burris, Robert H.
1977-01-01
Zea mays was grown on a low N nutrient solution under 16 conditions of light and temperature in a crossed-gradient room in an attempt to determine whether or not variation in climatic conditions influences N2 fixation by the association between maize and Spirillum lipoferum. Temperatures were 28, 32, 36, and 40 C and 10 C lower at night; light intensities were 500, 1,250, 2,400, and 3,000 ft-c. Plants harvested after 94 days showed no significant benefit from association with S. lipoferum either in dry weight production or in total N content; variations in temperature and light had only a small influence on N2 fixation under the conditions tested. Measurements of total N, together with designated assumptions, indicated that less than the equivalent of 0.5 kilogram of N was fixed/hectare during the entire growing period by the maize-S. lipoferum association. Rates of C2H2 reduction by replicate root samples generally were low and variable and did not correlate with the measurements of total N. PMID:16660131
Busing, Richard T.; Stephens, Luther A.; Clebsch, Edward E.C.
2004-01-01
A climate data set is presented for four sites spanning the elevation gradient in the Great Smoky Mountains from Gatlinburg to Clingmans Dome. Monthly mean values for cloud cover, temperature, humidity, precipitation, and soil moisture are included. Stephens (1969) is the source of all summarized mean monthly data. Values are the averages of four years (1947-1950) with moderate to high precipitation. Graphical displays show strong climatic patterns of variation among seasons and elevations. The upper stations had lower temperatures and higher precipitation totals; however, temperature lapse rates and variation in vapor pressure deficits decreased at upper elevations. To examine how well the four-year sample represents the long-term climate, temperature and precipitation for the Gatlinburg (1460 ft elevation at park headquarters) station were compared between the years in the sample and the years in the full record from 1928 to 2003. Trends related to season and elevation are consistent with earlier studies and provide a basis for interpretation of climate dynamics in the southern Appalachian Mountains.
NASA Astrophysics Data System (ADS)
Yao, Yingying; Huang, Xiang; Liu, Jie; Zheng, Chunmiao; He, Xiaobo; Liu, Chuankun
2015-08-01
Interactions between groundwater and surface water in arid regions are complex, and recharge-discharge processes are often influenced by the hydrological regime, climate and geology. Traditional methods such as hydraulic gradient measuring by piezometers, differential discharge gauging and conservative tracer experiments, are often inadequate to capture the spatial and temporal variation of exchange rates. In this study, the distribution and the size of the overall groundwater inflow zone (GIZ) and the hyporheic inflow zone (HIZ) in the middle Heihe River Basin, northwest China, are characterized, and the relative inflow flux is estimated by high-resolution temperature measurements. Distributed temperature sensing (DTS) was used to measure the mixing temperatures of a 5-km reach of streambed with a spatial resolution of 0.5 m. The sampling interval was 0.25 m, and the temporal interval was 15 and 10 min at Pingchuan and Banqiao experimental sites, respectively. Two separate measurement periods in Pingchuan (Ping1, Ping2) captured different meteorological and stream-flow conditions. The results show that the number and the size range of the individual HIZs are greater than those of GIZs. Groundwater upwelling (GIZ) causes a larger decrease in river-water temperature with less inflow flux compared with the HIZ. The distribution pattern of HIZs and GIZs is influenced by the hydrodynamics of the river and the hydraulic permeability of the riverbed. High-resolution temperature variation based on DTS is an effective predictor of distributed inflows from groundwater upwelling and hyporheic exchange in an arid region.
Seal, Prasenjit; Oyedepo, Gbenga; Truhlar, Donald G
2013-01-17
In the present work, we study the H atom abstraction reactions by hydroxyl radical at all five sites of 1-butanol. Multistructural variational transition state theory (MS-VTST) was employed to estimate the five thermal rate constants. MS-VTST utilizes a multifaceted dividing surface that accounts for the multiple conformational structures of the transition state, and we also include all the structures of the reactant molecule. The vibrational frequencies and minimum energy paths (MEPs) were computed using the M08-HX/MG3S electronic structure method. The required potential energy surfaces were obtained implicitly by direct dynamics employing interpolated variational transition state theory with mapping (IVTST-M) using a variational reaction path algorithm. The M08-HX/MG3S electronic model chemistry was then used to calculate multistructural torsional anharmonicity factors to complete the MS-VTST rate constant calculations. The results indicate that torsional anharmonicity is very important at higher temperatures, and neglecting it would lead to errors of 26 and 32 at 1000 and 1500 K, respectively. Our results for the sums of the site-specific rate constants agree very well with the experimental values of Hanson and co-workers at 896-1269 K and with the experimental results of Campbell et al. at 292 K, but slightly less well with the experiments of Wallington et al., Nelson et al., and Yujing and Mellouki at 253-372 K; nevertheless, the calculated rates are within a factor of 1.61 of all experimental values at all temperatures. This gives us confidence in the site-specific values, which are currently inaccessible to experiment.
Yu, Xing Xiu; Xui, Miao Miao; Zhao, Jin Hui; Zhang, Jia Peng; Wang, Wei; Guo, Ya Li; Xiao, Juan Hua
2018-04-01
The objective of this study was to investigate the rate of nitrogen mineralization in various soil layers (0-10, 10-20, and 20-30 cm) and its influencing factors under plastic film mulching ridge-furrow in a corn field of Wulongchi small watershed, Danjiangkou Reservoir Area. Results showed that the rate of soil ammonification decreased with soil depth during the entire maize growth period. The rate of nitrification in seedling, jointing, and heading stages decreased in the following order: 10-20 cm > 0-10 cm > 20-30 cm, while it increased with soil depth in maturation stage. The rate of soil nitrogen mineralization decreased with the increases in soil depth in the seedling, jointing and heading stages, whereas an opposite pattern was observed in maturation stage. Compared with non-filming, film mulching promoted the soil ammonification process in 0-10 cm and the soil nitrification and nitrogen mineralization processes in jointing, heading, and maturation stages in both 0-10 and 10-20 cm. However, the rates of soil nitrification and nitrogen mineralization under film mulching were much lower than those under non-filming in seedling stage. The stepwise regression analysis indicated that the main factors influencing soil nitrogen mineralization rate varied with soil depth. Soil moisture and total N content were the dominant controller for variation of soil nitrogen mineralization in 0-10 cm layer. Soil temperature, moisture, and total N content were dominant controller for that in 10-20 cm layer. Soil temperature drove the variation of soil nitrogen mineralization in 20-30 cm layer.
NASA Technical Reports Server (NTRS)
Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.
1977-01-01
The biomedical results from an experiment on a monkey subjected to space flight conditions are reported. A background history of the development and testing of an experiment system designed to permit measurement of physiological parameters in subhuman primates during continuous, comfortable, couch restraint for periods of up to 30 days is reviewed. Of major importance in the experimental design of the system was the use of a fiberglass pod, which could be sealed and subdivided into upper and lower parts, to monitor and control the physiological responses for various parts of the animal's body. The experiment was conducted within the Spacelab Simulator for a period of 11 days. Data recorded includes: Spacelab Simulator cabin temperature; ventilation rate; pod internal temperature; fraction percent oxygen; fraction percent carbon dioxide; oxygen consumption rate; carbon dioxide production rate; respiratory quotient; intrathoracic temperature; heart rate; mean aortic pressure; mean ventricular pressure; diurnal variation of parameters measured; comparison of mean preflight, flight, and postflight values of the parameters measured; and correlation matrix for the parameters measured.
NASA Astrophysics Data System (ADS)
Yozgatligil, Ahmet; Shafee, Sina
2016-11-01
Fire accidents in recent decades have drawn attention to safety issues associated with the design, construction and maintenance of tunnels. A reduced scale tunnel model constructed based on Froude scaling technique is used in the current work. Mixtures of n-heptane and ethanol are burned with ethanol volumetric fraction up to 30 percent and the longitudinal ventilation velocity varying from 0.5 to 2.5 m/s. The burning rates of the pool fires are measured using a precision load cell. The heat release rates of the fires are calculated according to oxygen calorimetry method and the temperature distributions inside the tunnel are also measured. Results of the experiments show that the ventilation velocity variation has a significant effect on the pool fire burning rate, smoke temperature and the critical ventilation velocity. With increased oxygen depletion in case of increased ethanol content of blended pool fires, the quasi-steady heat release rate values tend to increase as well as the ceiling temperatures while the combustion duration decreases.
Effects of Planetary Thermal Structure on the Ascent and Cooling of Magma on Venus
NASA Technical Reports Server (NTRS)
Sakimoto, Susan E. H.; Zuber, Maria T.
1995-01-01
Magellan radar images of the surface of Venus show a spatially broad distribution of volcanic features. Models of magmatic ascent processes to planetary surfaces indicate that the thermal structure of the interior significantly influences the rate of magmatic cooling and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of planetary thermal structure have the greatest influence on the cooling of buoyantly ascending magma, we have constructed magma cooling profiles for a plutonic ascent mechanism, and evaluated the profiles for variations in the surface and mantle temperature, surface temperature gradient, and thermal gradient curvature. Results show that, for a wide variety of thermal conditions, smaller and slower magma bodies are capable of reaching the surface on Venus compared to Earth, primarily due to the higher surface temperature of Venus. Little to no effect on the cooling and transport of magma are found to result from elevated mantle temperatures, elevation-dependent surface temperature variations, or details of the thermal gradient curvature. The enhanced tendency of magma to reach the surface on Venus may provide at least a partial explanation for the extensive spatial distribution of observed volcanism on the surface.
Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors
Novais, Susana; Nascimento, Micael; Grande, Lorenzo; Domingues, Maria Fátima; Antunes, Paulo; Alberto, Nélia; Leitão, Cátia; Oliveira, Ricardo; Koch, Stephan; Kim, Guk Tae; Passerini, Stefano; Pinto, João
2016-01-01
The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells. PMID:27589749
Variations in incubator temperature and humidity management: a survey of current practice.
Deguines, C; Décima, P; Pelletier, A; Dégrugilliers, L; Ghyselen, L; Tourneux, P
2012-03-01
To describe and assess routine procedures and practices for incubator temperature and humidity management in France in 2009. A questionnaire was sent to all the 186 neonatal care units in France. The questionnaire return rate was 86%. Seventy-five per cent of the units preferred skin servo-control to air temperature control in routine practice. Air temperature control was mainly used for infants with a gestational age of more than 28 weeks and aged over 7 days of life. In general, thermal management decisions did not depend on the infant's age but were based on a protocol applied specifically by each unit. All units humidified the incubator air, but there was a large difference between the lowest and highest reported humidity values (45% and 100% assumed to be a maximal value, respectively). More than 65% of the units used a fixed humidity value, rather than a variable, protocol-derived value. We observed large variations in incubator temperature and humidity management approaches from one neonatal care unit to another. There is a need for more evidence to better inform practice. A task force should be formed to guide clinical practice. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.
Temperature dependencies of Henry’s law constants for different plant sesquiterpenes
Copolovici, Lucian; Niinemets, Ülo
2018-01-01
Sesquiterpenes are plant-produced hydrocarbons with important ecological functions in plant-to-plant and plant-to-insect communication, but due to their high reactivity they can also play a significant role in atmospheric chemistry. So far, there is little information of gas/liquid phase partition coefficients (Henry’s law constants) and their temperature dependencies for sesquiterpenes, but this information is needed for quantitative simulation of the release of sesquiterpenes from plants and modeling atmospheric reactions in different phases. In this study, we estimated Henry’s law constants (Hpc) and their temperature responses for 12 key plant sesquiterpenes with varying structure (aliphatic, mono-, bi- and tricyclic sesquiterpenes). At 25 °C, Henry’s law constants varied 1.4-fold among different sesquiterpenes, and the values were within the range previously observed for monocyclic monoterpenes. Hpc of sesquiterpenes exhibited a high rate of increase, on average ca. 1.5-fold with a 10 °C increase in temperature (Q10). The values of Q10 varied 1.2-fold among different sesquiterpenes. Overall, these data demonstrate moderately high variation in Hpc values and Hpc temperature responses among different sesquiterpenes. We argue that these variations can importantly alter the emission kinetics of sesquiterpenes from plants. PMID:26291755
Zhao, Bo; Wu, Lianhai; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus v.
2015-01-01
Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q 10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest. PMID:25970791
Fan, Juan; Wang, Jinsong; Zhao, Bo; Wu, Lianhai; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus V
2015-01-01
Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest.
Annealing study of poly(etheretherketone)
NASA Technical Reports Server (NTRS)
Cebe, Peggy
1988-01-01
Annealing of PEEK has been studied for two materials cold-crystallized from the rubbery amorphous state. The first material is a low molecular weight PEEK; the second is commercially available neat resin. Differential scanning calorimetry was used to monitor the melting behavior of annealed samples. The effect of thermal history on melting behavior is very complex and depends upon annealing temperature, residence time at the annealing temperature, and subsequent scanning rate. Thermal stability of both materials is improved by annealing, and for an annealing temperature near the melting point, the polymer can be stabilized against reorganization during the scan. Variations of density, degree of crystallinity, and X-ray long period were studied as a function of annealing temperature for the commercial material.
Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.; Mullins, Frank; Steinhorst, R. Kirk
2012-01-01
We conducted a 3-year radiotelemetry study in the lower Snake River to (1) determine whether juvenile fall Chinook salmon Oncorhynchus tshawytscha pass dams during winter, when bypass systems and structures designed to prevent mortality are not operated; (2) determine whether downstream movement rate varies annually, seasonally, and from reservoir to reservoir; and (3) identify some of the factors that contribute to annual, seasonal, and spatial variation in downstream movement rate. Fall Chinook salmon juveniles moved downstream up to 169 km and at a sufficiently fast rate (7.5 km/d) such that large percentages (up to 93%) of the fish passed one or more dams during the winter. Mean downstream movement rate varied annually (9.2–11.3 km/d), increased from winter (7.5 km/d) to spring (16.4 km/d), and increased (from 6.9 to 16.8 km/d) as fish moved downstream from reservoir to reservoir. Fish condition factor at tagging explained some of the annual variation in downstream movement rate, whereas water particle velocity and temperature explained portions of the seasonal variation. An increase in migrational disposition as fish moved downstream helped to explain the spatial variation. The potential cost of winter movement might be reduced survival due to turbine passage at a time when the bypass systems and spillway passage structures are not operated. Efforts to understand and increase passage survival of winter migrants in large impoundments might help to rehabilitate some imperiled anadromous salmonid populations.
Electron Plasmas Cooled by Cyclotron-Cavity Resonance
Povilus, A. P.; DeTal, N. D.; Evans, L. T.; ...
2016-10-21
We observe that high-Q electromagnetic cavity resonances increase the cyclotron cooling rate of pure electron plasmas held in a Penning-Malmberg trap when the electron cyclotron frequency, controlled by tuning the magnetic field, matches the frequency of standing wave modes in the cavity. For certain modes and trapping configurations, this can increase the cooling rate by factors of 10 or more. In this paper, we investigate the variation of the cooling rate and equilibrium plasma temperatures over a wide range of parameters, including the plasma density, plasma position, electron number, and magnetic field.
Titan's stratospheric temperature asymmetry: a radiative origin?
Bézard, B; Coustenis, A; McKay, C P
1995-02-01
During the 1981 Voyager encounter, Titan's stratosphere exhibited a large thermal asymmetry, with high northern latitudes being colder than comparable southern latitudes. Given the short radiative time constant, this asymmetry would not be expected at the season of the Voyager observations (spring equinox), if the infrared and solar opacity sources were distributed symmetrically. We have investigated the radiative budget of Titan's stratosphere, using two selections of Voyager IRIS spectra recorded at symmetric northern and southern latitudes. In the region 0.1-1 mbar, temperatures are 7 K colder at 50 degrees N than at 53 degrees S and the difference reaches approximately 13 K at 5 mbar. On the other hand, the northern region is strongly enriched in nitriles and hydrocarbons, and the haze optical depth derived from the continuum emission between 8 and 15 micrometers is twice as large as in the south. Cooling rate profiles have been computed at the two locations, using the gas and haze abundances derived from the IRIS measurements. We find that, despite lower temperatures, the cooling rate profiles in the pressure range 0.15-5 mbar are 20 to 40% larger in the north than in the south, because of the enhanced concentrations of infrared radiators. Because the northern hemisphere appears darker than the southern one in the Voyager images, enhanced solar heating is also expected to take place at 50 degrees N. Solar heating rate profiles have been calculated, with two different assumptions on the origin of the hemispheric asymmetry. In the most likely case where it results from a variation in the absorbance of the haze material, the heating rates are found to be 12-15% larger at the northern location than at the southern one, a smaller increase than that in the cooling rates. If the lower albedo in the north results from an increase in the particle number density, a 55 to 75% difference is found for the pressure range 0.15-5 mbar, thus larger than that calculated for the cooling rates. Considering the uncertainties in the haze model, dynamical heat transport may significantly contribute to the meridional temperature gradients observed in the stratosphere. On the other hand, the latitudinal variation in gas and haze composition may be sufficient to explain the entire temperature asymmetry observed, without invoking a lag in the thermal response of the atmosphere due to dynamical inertia.
Stoks, Robby; Swillen, Ine; De Block, Marjan
2012-09-01
1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of predation risk on food chain length. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Modeling Modern Methane Emissions from Natural Wetlands. 2; Interannual Variations 1982-1993
NASA Technical Reports Server (NTRS)
Walter, Bernadette P.; Heimann, Martin; Mattews, Elaine; Hansen, James E. (Technical Monitor)
2001-01-01
A global run of a process-based methane model [Walter et al., this issue] is performed using high-frequency atmospheric forcing fields from ECMWF reanalyses of the period from 1982 to 1993. We calculate global annual methane emissions to be 260 Tg/ yr. 25% of methane emissions originate from wetlands north of 30 deg. N. Only 60% of the produced methane is emitted, while the rest is re-oxidized. A comparison of zonal integrals of simulated global wetland emissions and results obtained by an inverse modeling approach shows good agreement. In a test with data from two wetlands, the seasonality of simulated and observed methane emissions agrees well. The effects of sub-grid scale variations in model parameters and input data are examined. Modeled methane emissions show high regional, seasonal and interannual variability. Seasonal cycles of methane emissions are dominated by temperature in high latitude wetlands, and by changes in the water table in tropical wetlands. Sensitivity tests show that +/- 1 C changes in temperature lead to +/- 20 % changes in methane emissions from wetlands. Uniform changes of +/- 20% in precipitation alter methane emissions by about +/- 18%. Limitations in the model are analyzed. Simulated interannual variations in methane emissions from wetlands are compared to observed atmospheric growth rate anomalies. Our model simulation results suggest that contributions from other sources than wetlands and/or the sinks are more important in the tropics than north-of 30 deg. N. In higher northern latitudes, it seems that a large part, of the observed interannual variations can be explained by variations in wetland emissions. Our results also suggest that reduced wetland emissions played an important role in the observed negative methane growth rate anomaly in 1992.
Accelerated aging tests on ENEA-ASE solar coating for receiver tube suitable to operate up to 550 °C
NASA Astrophysics Data System (ADS)
Antonaia, A.; D'Angelo, A.; Esposito, S.; Addonizio, M. L.; Castaldo, A.; Ferrara, M.; Guglielmo, A.; Maccari, A.
2016-05-01
A patented solar coating for evacuated receiver, based on innovative graded WN-AlN cermet layer, has been optically designed and optimized to operate at high temperature with high performance and high thermal stability. This solar coating, being designed to operate in solar field with molten salt as heat transfer fluid, has to be thermally stable up to the maximum temperature of 550 °C. With the aim of determining degradation behaviour and lifetime prediction of the solar coating, we chose to monitor the variation of the solar absorptance αs after each thermal annealing cycle carried out at accelerated temperatures under vacuum. This prediction method was coupled with a preliminary Differential Thermal Analysis (DTA) in order to give evidence for any chemical-physical coating modification in the temperature range of interest before performing accelerated aging tests. In the accelerated aging tests we assumed that the temperature dependence of the degradation processes could be described by Arrhenius behaviour and we hypothesized that a linear correlation occurs between optical parameter variation rate (specifically, Δαs/Δt) and degradation process rate. Starting from Δαs/Δt values evaluated at 650 and 690 °C, Arrhenius plot gave an activation energy of 325 kJ mol-1 for the degradation phenomenon, where the prediction on the coating degradation gave a solar absorptance decrease of only 1.65 % after 25 years at 550 °C. This very low αs decrease gave evidence for an excellent stability of our solar coating, also when employed at the maximum temperature (550 °C) of a solar field operating with molten salt as heat transfer fluid.
Terblanche, John S.; Chown, Steven L.
2006-01-01
Summary Recent reviews of the adaptive hypotheses for animal responses to acclimation have highlighted the importance of distinguishing between developmental and adult (non-developmental) phenotypic plasticity. However, little work has been undertaken separating the effects of developmental plasticity from adult acclimation in physiological traits. Therefore, we investigate the relative contributions of these two distinct forms of plasticity to the environmental physiology of adult tsetse flies by exposing developing pupae or adult flies to different temperatures and comparing their responses. We also exposed flies to different temperatures during development and re-exposed them as adults to the same temperatures to investigate possible cumulative effects. Critical thermal maxima were relatively inflexible in response to acclimation temperatures (21, 25, 29 °C) with plasticity type accounting for the majority of the variation (49-67 %, nested ANOVA). By contrast, acclimation had a larger effect on critical thermal minima with treatment temperature accounting for most of the variance (84-92 %). Surprisingly little of the variance in desiccation rate could be explained by plasticity type (30-47 %). The only significant effect of acclimation on standard (resting) metabolic rate of adult flies occurred in response to 21 °C, resulting in treatment temperature, rather than plasticity type, accounting for the majority of the variance (30-76 %). This study demonstrates that the stage at which acclimation takes place has significant, though often different effects on several adult physiological traits in G. pallidipes, and therefore that it is not only important to consider the form of plasticity but also the direction of the response and its significance from a life-history perspective. PMID:16513933
DOT National Transportation Integrated Search
1985-01-01
The program was conducted to evaluate the variation in tire treadwear rates as : experienced on identical vehicles during the various environmental exposure : conditions of the winter, spring, and summer seasons. The diurnal/nocturnal effect : on the...
Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in...
The rate of change in Northern Hemisphere atmospheric temperature in the past century relative to the preceding millennium strongly suggests that we are in a period of rapid global climate change. The mid-Atlantic region is quite sensitive to larger scale climate variation, which...
Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi
2010-08-21
The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.
Seasonal variations of Mercury's magnesium dayside exosphere from MESSENGER observations
NASA Astrophysics Data System (ADS)
Merkel, Aimee W.; Cassidy, Timothy A.; Vervack, Ronald J.; McClintock, William E.; Sarantos, Menelaos; Burger, Matthew H.; Killen, Rosemary M.
2017-01-01
The Ultraviolet and Visible Spectrometer channel of the Mercury Atmospheric and Surface Composition Spectrometer instrument aboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft made near-daily observations of solar-scattered resonant emission from magnesium in Mercury's exosphere during the mission's orbital phase (March 2011-April 2015, ∼17 Mercury years). In this paper, a subset of these data (March 2013-April 2015) is described and analyzed to illustrate Mg's spatial and temporal variations. Dayside altitude profiles of emission are used to make estimates of the Mg density and temperature. The main characteristics of the Mg exosphere are (a) a predominant enhancement of emission in the morning (6 am-10 am) near perihelion, (b) a bulk temperature of ∼6000 K, consistent with impact vaporization as the predominant ejection process, (c) a near-surface density that varies from 5 cm-3 to 50 cm-3 and (d) a production rate that is strongest in the morning on the inbound leg of Mercury's orbit with rates ranging from 1 × 105 cm-2 s-1 to 8 × 105 cm-2 s-1.
Seasonal Variations of Mercury's Magnesium Dayside Exosphere from MESSENGER Observations
NASA Technical Reports Server (NTRS)
Merkel, Aimee W.; Cassidy, Timothy A.; Vervack, Ronald J., Jr.; McClintock, William E.; Sarantos, Menelaos; Burger, Matthew H.; Killen, Rosemary M.
2017-01-01
The Ultraviolet and Visible Spectrometer channel of the Mercury Atmospheric and Surface Composition Spectrometer instrument aboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft made near-daily observations of solar-scattered resonant emission from magnesium in Mercury's exosphere during the mission's orbital phase (March 2011-April 2015, approx.17 Mercury years). In this paper, a subset of these data (March 2013-April 2015) is described and analyzed to illustrate Mg's spatial and temporal variations. Dayside altitude profiles of emission are used to make estimates of the Mg density and temperature. The main characteristics of the Mg exosphere are (a) a predominant enhancement of emission in the morning (6 am-10 am) near perihelion, (b) a bulk temperature of approx. 6000 K, consistent with impact vaporization as the predominant ejection process, (c) a near-surface density that varies from 5/cu cm to 50/cu cm and (d) a production rate that is strongest in the morning on the inbound leg of Mercury's orbit with rates ranging from 1×10(exp 5)/sq cm/s to 8×10(exp 5)/sq cm/s.
Seasonal variations of isoprene emissions from deciduous trees
NASA Astrophysics Data System (ADS)
Xiaoshan, Zhang; Yujing, Mu; Wenzhi, Song; Yahui, Zhuang
Isoprene emission fluxes were investigated for 12 tree species in and around Beijing city. Bag-enclosure method was used to collect the air sample and GC-PID was used to directly analyze isoprene. Ginkgo and Magnolia denudata had negligible isoprene emissions, while significant emissions were observed for Platanus orientalis, Pendula loud, Populus simonii, and Salix matsudana koidz, and other remaining trees showed no sign of isoprene emission. Variations in isoprene emission with changes in light, temperature and season were investigated for Platanus orientalis and Pendula loud. Isoprene emission rates strongly depended on light, temperature and leaf age. The maximum emission rates for the two trees were observed in summer with values of about 232 and 213 μg g -1 dw h -1, respectively. The measured emission fluxes were used to evaluate "Guenther" emission algorithm. The emission fluxes predicted by the algorithm were in relatively good agreement with field measurements. However, there were large differences for the calculated median emission factors during spring, summer and fall. The 25-75 percentiles span of the emission factor data sets ranged from -33 to +15% of the median values.
Spectral behavior of the symbiotic nova AG Pegasi observed with IUE and HST
NASA Astrophysics Data System (ADS)
Sanad, M. R.; Bobrowsky, M.
2017-05-01
Ultraviolet spectra from the International Ultraviolet Explorer (IUE) and from the Hubble Space Telescope (HST) of the symbiotic novae AG Peg during the period 1978-1996 are analyzed. Some spectra showing the modulations of spectral lines at different times are presented. We determined the reddening from the 2200 Å feature, finding that E(B-V) = 0.10 ± 0.02. We studied N IV] at 1486 Å, C IV 1550 Å, and O III] at 1660 Å, produced in the fast wind from the hot white dwarf. The mean wind velocity of the three emission lines is 1300 km s-1 (FWHM). The mean wind mass loss rate is ˜6 × 10-7 M⊙ yr-1. The mean temperature is ˜6.5 × 105 K. The mean ultraviolet luminosity is ˜5 × 1033 erg s-1. The modulations of line fluxes in the emitting region at different times are attributed to the variations of density and temperature of the ejected matter as a result of variations in the rate of mass loss.
Observed diurnal variations in Mars Science Laboratory Dynamic Albedo of Neutrons passive mode data
NASA Astrophysics Data System (ADS)
Tate, C. G.; Moersch, J.; Jun, I.; Mitrofanov, I.; Litvak, M.; Boynton, W. V.; Drake, D.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Kozyrev, A. S.; Kuzmin, R.; Lisov, D.; Maclennan, E.; Malakhov, A.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Vostrukhin, A.
2018-06-01
The Mars Science Laboratory Dynamic Albedo of Neutrons (DAN) experiment measures the martian neutron leakage flux in order to estimate the amount of water equivalent hydrogen present in the shallow regolith. When DAN is operating in passive mode, it is sensitive to neutrons produced through the interactions of galactic cosmic rays (GCR) with the regolith and atmosphere and neutrons produced by the rover's Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). During the mission, DAN passive mode data were collected over the full diurnal cycle at the locations known as Rocknest (sols 60-100) and John Klein (sols 166-272). A weak, but unexpected, diurnal variation was observed in the neutron count rates reported at these locations. We investigate different hypotheses that could be causing these observed variations. These hypotheses are variations in subsurface temperature, atmospheric pressure, the exchange of water vapor between the atmosphere and regolith, and instrumental effects on the neutron count rates. Our investigation suggests the most likely factors contributing to the observed diurnal variations in DAN passive data are instrumental effects and time-variable preferential shielding of alpha particles, with other environmental effects only having small contributions.
Solar radiation increases suicide rate after adjusting for other climate factors in South Korea.
Jee, Hee-Jung; Cho, Chul-Hyun; Lee, Yu Jin; Choi, Nari; An, Hyonggin; Lee, Heon-Jeong
2017-03-01
Previous studies have indicated that suicide rates have significant seasonal variations. There is seasonal discordance between temperature and solar radiation due to the monsoon season in South Korea. We investigated the seasonality of suicide and assessed its association with climate variables in South Korea. Suicide rates were obtained from the National Statistical Office of South Korea, and climatic data were obtained from the Korea Meteorological Administration for the period of 1992-2010. We conducted analyses using a generalized additive model (GAM). First, we explored the seasonality of suicide and climate variables such as mean temperature, daily temperature range, solar radiation, and relative humidity. Next, we identified confounding climate variables associated with suicide rate. To estimate the adjusted effect of solar radiation on the suicide rate, we investigated the confounding variables using a multivariable GAM. Suicide rate showed seasonality with a pattern similar to that of solar radiation. We found that the suicide rate increased 1.008 times when solar radiation increased by 1 MJ/m 2 after adjusting for other confounding climate factors (P < 0.001). Solar radiation has a significant linear relationship with suicide after adjusting for region, other climate variables, and time trends. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Keppel, Gunnar; Anderson, Sharolyn; Williams, Craig; Kleindorfer, Sonia; O'Connell, Christopher
2017-01-01
Extreme heat events will become more frequent under anthropogenic climate change, especially in Mediterranean ecosystems. Microhabitats can considerably moderate (buffer) the effects of extreme weather events and hence facilitate the persistence of some components of the biodiversity. We investigate the microclimatic moderation provided by two important microhabitats (cavities formed by the leaves of the grass-tree Xanthorrhoea semiplana F.Muell., Xanthorrhoeaceae; and inside the leaf-litter) during the summer of 2015/16 on the Fleurieu Peninsula of South Australia. We placed microsensors inside and outside these microhabitats, as well as above the ground below the forest canopy. Grass-tree and leaf-litter microhabitats significantly buffered against high temperatures and low relative humidity, compared to ground-below-canopy sensors. There was no significant difference between grass-tree and leaf-litter temperatures: in both microhabitats, daily temperature variation was reduced, day temperatures were 1-5°C cooler, night temperatures were 0.5-3°C warmer, and maximum temperatures were up to 14.4°C lower, compared to ground-below-canopy sensors. Grass-tree and leaf-litter microhabitats moderated heat increase at an average rate of 0.24°C temperature per 1°C increase of ambient temperature in the ground-below-canopy microhabitat. The average daily variation in temperature was determined by the type (grass-tree and leaf-litter versus ground-below-canopy) of microhabitat (explaining 67%), the amount of canopy cover and the area of the vegetation fragment (together explaining almost 10% of the variation). Greater canopy cover increased the amount of microclimatic moderation provided, especially in the leaf-litter. Our study highlights the importance of microhabitats in moderating macroclimatic conditions. However, this moderating effect is currently not considered in species distribution modelling under anthropogenic climate change nor in the management of vegetation. This shortcoming will have to be addressed to obtain realistic forecasts of future species distributions and to achieve effective management of biodiversity.
Pressure and temperature interactions on cellular respiration: a review.
Sebert, P; Theron, M; Vettier, A
2004-06-01
Thermodynamic equations show that pressure and temperature can, theoretically, act in synergy or in opposite directions depending on their respective variations. Hence, they interact to establish rates of biological processes (pressure/temperature interactions, PTI). For such studies, it is interesting to use aquatic ectotherms, in particular fish, because it is easy to submit them to temperature and/or pressure changes. This review focuses on the effects of temperature and pressure changes on the energy metabolism of fish, mitochondrial oxygen consumption and functioning, showing that the observed effects do not always match the predictions made by equations or models. Unpublished results concerning the mitochondrial function of eels acclimatised at two temperatures and two pressures show that the mitochondrial targets of pressure and temperature are probably not the same. The possible mechanisms and consequences of PTI are discussed.
Barlow, Peter W; Fisahn, Joachim; Yazdanbakhsh, Nima; Moraes, Thiago A; Khabarova, Olga V; Gallep, Cristiano M
2013-05-01
Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a 'free-running' state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate.
Barlow, Peter W.; Fisahn, Joachim; Yazdanbakhsh, Nima; Moraes, Thiago A.; Khabarova, Olga V.; Gallep, Cristiano M.
2013-01-01
Background Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. Methods Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a ‘free-running’ state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. Key Results and Conclusions The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate. PMID:23532042
Reannealed Fiber Bragg Gratings Demonstrated High Repeatability in Temperature Measurements
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Juergens, Jeffrey R.
2004-01-01
Fiber Bragg gratings (FBGs) are formed by periodic variations of the refractive index of an optical fiber. These periodic variations allow an FBG to act as an embedded optical filter, passing the majority of light propagating through a fiber while reflecting back a narrow band of the incident light. The peak reflected wavelength of the FBG is known as the Bragg wavelength. Since the period and width of the refractive index variation in the fiber determines the wavelengths that are transmitted and reflected by the grating, any force acting on the fiber that alters the physical structure of the grating will change the wavelengths that are transmitted and reflected by it. Both thermal and mechanical forces acting on the grating will alter its physical characteristics, allowing the FBG sensor to detect both the temperature variations and the physical stresses and strains placed upon it. This ability to sense multiple physical forces makes the FBG a versatile sensor. To assess the feasibility of using Bragg gratings as temperature sensors for propulsion applications, researchers at the NASA Glenn Research Center evaluated the performance of Bragg gratings at elevated temperatures for up to 300 C. For these purposes, commercially available polyimide-coated high-temperature gratings were used that were annealed by the manufacturer to 300 C. To assure the most thermally stable gratings at the operating temperatures, we reannealed the gratings to 400 C at a very slow rate for 12 to 24 hr until their reflected optical powers were stabilized. The reannealed gratings were then subjected to periodic thermal cycling from room temperature to 300 C, and their peak reflected wavelengths were monitored. The setup shown is used for reannealing and thermal cycling the FBGs. Signals from the photodetectors and the spectrum analyzer were fed into a computer equipped with LabVIEW software. The software synchronously monitored the oven/furnace temperature and the optical spectrum analyzer as well as processed the data. Experimental results presented in the following graph show typical wavelength versus temperature dependence of a reannealed FBG through six thermal cycles (80 hr). The average standard deviation of the temperature-to-wavelength relationship ranged from 1.86 to 2.92 C over the six thermal cycles each grating was subjected to. This is an error of less than 1.0 percent of full scale throughout the entire evaluation temperature range from ambient to 300 C.
Thermal analysis of the vertical bridgman semiconductor crystal growth technique. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jasinski, T. J.
1982-01-01
The quality of semiconductor crystals grown by the vertical Bridgman technique is strongly influenced by the axial and radial variations of temperature within the charge. The relationship between the thermal parameters of the vertical Bridgman system and the thermal behavior of the charge are examined. Thermal models are developed which are capable of producing results expressable in analytical form and which can be used without recourse to extensive computer work for the preliminary thermal design of vertical Bridgman crystal growth systems. These models include the effects of thermal coupling between the furnace and the charge, charge translation rate, charge diameter, thickness and thermal conductivity of the confining crucible, thermal conductivity change and liberation of latent heat at the growth interface, and infinite charge length. The hot and cold zone regions, considered to be at spatially uniform temperatures, are separated by a gradient control region which provides added thermal design flexibility for controlling the temperature variations near the growth interface.
Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H
2015-12-29
The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals.
Poiré, Richard; Wiese-Klinkenberg, Anika; Parent, Boris; Mielewczik, Michael; Schurr, Ulrich; Tardieu, François; Walter, Achim
2010-06-01
Diel (24 h) leaf growth patterns were differently affected by temperature variations and the circadian clock in several plant species. In the monocotyledon Zea mays, leaf elongation rate closely followed changes in temperature. In the dicotyledons Nicotiana tabacum, Ricinus communis, and Flaveria bidentis, the effect of temperature regimes was less obvious and leaf growth exhibited a clear circadian oscillation. These differences were related neither to primary metabolism nor to altered carbohydrate availability for growth. The effect of endogenous rhythms on leaf growth was analysed under continuous light in Arabidopsis thaliana, Ricinus communis, Zea mays, and Oryza sativa. No rhythmic growth was observed under continuous light in the two monocotyledons, while growth rhythmicity persisted in the two dicotyledons. Based on model simulations it is concluded that diel leaf growth patterns in mono- and dicotyledons result from the additive effects of both circadian-clock-controlled processes and responses to environmental changes such as temperature and evaporative demand. Apparently very distinct diel leaf growth behaviour of monocotyledons and dicotyledons can thus be explained by the different degrees to which diel temperature variations affect leaf growth in the two groups of species which, in turn, depends on the extent of the leaf growth control by internal clocks.
Design of the PIXIE Adiabatic Demagnetization Refrigerators
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael
2012-01-01
The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.