Seol, Ye-In; Kim, Young-Kuk
2014-01-01
Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic voltage scaling (DVS). In this paper, we deal with pinwheel task model which is known as static and predictable task model and could be applied to various embedded or ubiquitous systems. In pinwheel task model, each task's priority is static and its execution sequence could be predetermined. There have been many static approaches to power-aware scheduling in pinwheel task model. But, in this paper, we will show that the dynamic priority scheduling results in power-aware scheduling could be applied to pinwheel task model. This method is more effective than adopting the previous static priority scheduling methods in saving energy consumption and, for the system being still static, it is more tractable and applicable to small sized embedded or ubiquitous computing. Also, we introduce a novel power-aware scheduling algorithm which exploits all slacks under preemptive earliest-deadline first scheduling which is optimal in uniprocessor system. The dynamic priority method presented in this paper could be applied directly to static systems of pinwheel task model. The simulation results show that the proposed algorithm with the algorithmic complexity of O(n) reduces the energy consumption by 10-80% over the existing algorithms.
2014-01-01
Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic voltage scaling (DVS). In this paper, we deal with pinwheel task model which is known as static and predictable task model and could be applied to various embedded or ubiquitous systems. In pinwheel task model, each task's priority is static and its execution sequence could be predetermined. There have been many static approaches to power-aware scheduling in pinwheel task model. But, in this paper, we will show that the dynamic priority scheduling results in power-aware scheduling could be applied to pinwheel task model. This method is more effective than adopting the previous static priority scheduling methods in saving energy consumption and, for the system being still static, it is more tractable and applicable to small sized embedded or ubiquitous computing. Also, we introduce a novel power-aware scheduling algorithm which exploits all slacks under preemptive earliest-deadline first scheduling which is optimal in uniprocessor system. The dynamic priority method presented in this paper could be applied directly to static systems of pinwheel task model. The simulation results show that the proposed algorithm with the algorithmic complexity of O(n) reduces the energy consumption by 10–80% over the existing algorithms. PMID:25121126
Zhimeng, Li; Chuan, He; Dishan, Qiu; Jin, Liu; Manhao, Ma
2013-01-01
Aiming to the imaging tasks scheduling problem on high-altitude airship in emergency condition, the programming models are constructed by analyzing the main constraints, which take the maximum task benefit and the minimum energy consumption as two optimization objectives. Firstly, the hierarchy architecture is adopted to convert this scheduling problem into three subproblems, that is, the task ranking, value task detecting, and energy conservation optimization. Then, the algorithms are designed for the sub-problems, and the solving results are corresponding to feasible solution, efficient solution, and optimization solution of original problem, respectively. This paper makes detailed introduction to the energy-aware optimization strategy, which can rationally adjust airship's cruising speed based on the distribution of task's deadline, so as to decrease the total energy consumption caused by cruising activities. Finally, the application results and comparison analysis show that the proposed strategy and algorithm are effective and feasible. PMID:23864822
2005-01-01
We investigate the effect of voltage-switching on task execution times and energy consumption for dual-speed hard real - time systems , and present a...scheduling algorithm and apply it to two real-life task sets. Our results show that energy can be conserved in embedded real - time systems using energy...aware task scheduling. We also show that switching times have a significant effect on the energy consumed in hard real - time systems .
NASA Astrophysics Data System (ADS)
Herz, A.; Herz, E.; Center, K.; George, P.; Axelrad, P.; Mutschler, S.; Jones, B.
2016-09-01
The Space Surveillance Network (SSN) is tasked with the increasingly difficult mission of detecting, tracking, cataloging and identifying artificial objects orbiting the Earth, including active and inactive satellites, spent rocket bodies, and fragmented debris. Much of the architecture and operations of the SSN are limited and outdated. Efforts are underway to modernize some elements of the systems. Even so, the ability to maintain the best current Space Situational Awareness (SSA) picture and identify emerging events in a timely fashion could be significantly improved by leveraging non-traditional sensor sites. Orbit Logic, the University of Colorado and the University of Texas at Austin are developing an innovative architecture and operations concept to coordinate the tasking and observation information processing of non - traditional assets based on information-theoretic approaches. These confirmed tasking schedules and the resulting data can then be used to "inform" the SSN tasking process. The 'Heimdall Web' system is comprised of core tasking optimization components and accompanying Web interfaces within a secure, split architecture that will for the first time allow non-traditional sensors to support SSA and improve SSN tasking. Heimdall Web application components appropriately score/prioritize space catalog objects based on covariance, priority, observability, expected information gain, and probability of detect - then coordinate an efficient sensor observation schedule for non-SSN sensors contributing to the overall SSA picture maintained by the Joint Space Operations Center (JSpOC). The Heimdall Web Ops concept supports sensor participation levels of "Scheduled", "Tasked" and "Contributing". Scheduled and Tasked sensors are provided optimized observation schedules or object tracking lists from central algorithms, while Contributing sensors review and select from a list of "desired track objects". All sensors are "Web Enabled" for tasking and feedback, supplying observation schedules, confirmed observations and related data back to Heimdall Web to complete the feedback loop for the next scheduling iteration.
Power Aware Distributed Systems
2004-01-01
detection or threshold functions to trigger the main CPU. The main processor can sleep and either wakeup on a schedule or by a positive threshold event...the RTOS must determine if wake-up latency can be tolerated (or, if it could be hidden by pre- wakeup ). The prediction accuracy for scheduling ...and processor shutdown/ wakeup . This analysis can be used to accurately analyze the schedulability of non-concrete periodic task sets, scheduled using
Characterizing and Mitigating Work Time Inflation in Task Parallel Programs
Olivier, Stephen L.; de Supinski, Bronis R.; Schulz, Martin; ...
2013-01-01
Task parallelism raises the level of abstraction in shared memory parallel programming to simplify the development of complex applications. However, task parallel applications can exhibit poor performance due to thread idleness, scheduling overheads, and work time inflation – additional time spent by threads in a multithreaded computation beyond the time required to perform the same work in a sequential computation. We identify the contributions of each factor to lost efficiency in various task parallel OpenMP applications and diagnose the causes of work time inflation in those applications. Increased data access latency can cause significant work time inflation in NUMA systems.more » Our locality framework for task parallel OpenMP programs mitigates this cause of work time inflation. Our extensions to the Qthreads library demonstrate that locality-aware scheduling can improve performance up to 3X compared to the Intel OpenMP task scheduler.« less
Optimal SSN Tasking to Enhance Real-time Space Situational Awareness
NASA Astrophysics Data System (ADS)
Ferreira, J., III; Hussein, I.; Gerber, J.; Sivilli, R.
2016-09-01
Space Situational Awareness (SSA) is currently constrained by an overwhelming number of resident space objects (RSOs) that need to be tracked and the amount of data these observations produce. The Joint Centralized Autonomous Tasking System (JCATS) is an autonomous, net-centric tool that approaches these SSA concerns from an agile, information-based stance. Finite set statistics and stochastic optimization are used to maintain an RSO catalog and develop sensor tasking schedules based on operator configured, state information-gain metrics to determine observation priorities. This improves the efficiency of sensors to target objects as awareness changes and new information is needed, not at predefined frequencies solely. A net-centric, service-oriented architecture (SOA) allows for JCATS integration into existing SSA systems. Testing has shown operationally-relevant performance improvements and scalability across multiple types of scenarios and against current sensor tasking tools.
VM Capacity-Aware Scheduling within Budget Constraints in IaaS Clouds
Thanasias, Vasileios; Lee, Choonhwa; Hanif, Muhammad; Kim, Eunsam; Helal, Sumi
2016-01-01
Recently, cloud computing has drawn significant attention from both industry and academia, bringing unprecedented changes to computing and information technology. The infrastructure-as-a-Service (IaaS) model offers new abilities such as the elastic provisioning and relinquishing of computing resources in response to workload fluctuations. However, because the demand for resources dynamically changes over time, the provisioning of resources in a way that a given budget is efficiently utilized while maintaining a sufficing performance remains a key challenge. This paper addresses the problem of task scheduling and resource provisioning for a set of tasks running on IaaS clouds; it presents novel provisioning and scheduling algorithms capable of executing tasks within a given budget, while minimizing the slowdown due to the budget constraint. Our simulation study demonstrates a substantial reduction up to 70% in the overall task slowdown rate by the proposed algorithms. PMID:27501046
VM Capacity-Aware Scheduling within Budget Constraints in IaaS Clouds.
Thanasias, Vasileios; Lee, Choonhwa; Hanif, Muhammad; Kim, Eunsam; Helal, Sumi
2016-01-01
Recently, cloud computing has drawn significant attention from both industry and academia, bringing unprecedented changes to computing and information technology. The infrastructure-as-a-Service (IaaS) model offers new abilities such as the elastic provisioning and relinquishing of computing resources in response to workload fluctuations. However, because the demand for resources dynamically changes over time, the provisioning of resources in a way that a given budget is efficiently utilized while maintaining a sufficing performance remains a key challenge. This paper addresses the problem of task scheduling and resource provisioning for a set of tasks running on IaaS clouds; it presents novel provisioning and scheduling algorithms capable of executing tasks within a given budget, while minimizing the slowdown due to the budget constraint. Our simulation study demonstrates a substantial reduction up to 70% in the overall task slowdown rate by the proposed algorithms.
Schedule-Aware Workflow Management Systems
NASA Astrophysics Data System (ADS)
Mans, Ronny S.; Russell, Nick C.; van der Aalst, Wil M. P.; Moleman, Arnold J.; Bakker, Piet J. M.
Contemporary workflow management systems offer work-items to users through specific work-lists. Users select the work-items they will perform without having a specific schedule in mind. However, in many environments work needs to be scheduled and performed at particular times. For example, in hospitals many work-items are linked to appointments, e.g., a doctor cannot perform surgery without reserving an operating theater and making sure that the patient is present. One of the problems when applying workflow technology in such domains is the lack of calendar-based scheduling support. In this paper, we present an approach that supports the seamless integration of unscheduled (flow) and scheduled (schedule) tasks. Using CPN Tools we have developed a specification and simulation model for schedule-aware workflow management systems. Based on this a system has been realized that uses YAWL, Microsoft Exchange Server 2007, Outlook, and a dedicated scheduling service. The approach is illustrated using a real-life case study at the AMC hospital in the Netherlands. In addition, we elaborate on the experiences obtained when developing and implementing a system of this scale using formal techniques.
How to Build the Master Schedule in 10 Easy Steps: A Guide for Secondary School Administrators
ERIC Educational Resources Information Center
Kussin, Steven S.
2007-01-01
This book is an incredibly valuable resource to anyone involved in building a master schedule. The author provides a comprehensive description of the processes involved and makes the reader aware of what needs to be considered and done throughout the process. One of the most time-consuming tasks for school leaders is creating a master schedule…
Data location-aware job scheduling in the grid. Application to the GridWay metascheduler
NASA Astrophysics Data System (ADS)
Delgado Peris, Antonio; Hernandez, Jose; Huedo, Eduardo; Llorente, Ignacio M.
2010-04-01
Grid infrastructures constitute nowadays the core of the computing facilities of the biggest LHC experiments. These experiments produce and manage petabytes of data per year and run thousands of computing jobs every day to process that data. It is the duty of metaschedulers to allocate the tasks to the most appropriate resources at the proper time. Our work reviews the policies that have been proposed for the scheduling of grid jobs in the context of very data-intensive applications. We indicate some of the practical problems that such models will face and describe what we consider essential characteristics of an optimum scheduling system: aim to minimise not only job turnaround time but also data replication, flexibility to support different virtual organisation requirements and capability to coordinate the tasks of data placement and job allocation while keeping their execution decoupled. These ideas have guided the development of an enhanced prototype for GridWay, a general purpose metascheduler, part of the Globus Toolkit and member of the EGEE's RESPECT program. Current GridWay's scheduling algorithm is unaware of data location. Our prototype makes it possible for job requests to set data needs not only as absolute requirements but also as functions for resource ranking. As our tests show, this makes it more flexible than currently used resource brokers to implement different data-aware scheduling algorithms.
Teaching Online: Where Do Faculty Spend Their Time?
ERIC Educational Resources Information Center
Mandernach, B. Jean; Holbeck, Rick
2016-01-01
An understanding of online teaching time requirements provides essential information to inform scheduling, course size and instructor workload; in addition, awareness of the distribution of time across online teaching tasks provides insight to focus faculty efforts and tailor professional development to target instructional needs. The purpose of…
ERIC Educational Resources Information Center
Herr, Judy; And Others
1995-01-01
Discusses time management skills, noting that effective time management entails awareness of such things as how we use time and when our mental energy peaks and falls. Offers time management suggestions for day-care administrators such as developing a realistic "to-do" list, scheduling uninterrupted time to engage in important tasks, and limiting…
A high performance load balance strategy for real-time multicore systems.
Cho, Keng-Mao; Tsai, Chun-Wei; Chiu, Yi-Shiuan; Yang, Chu-Sing
2014-01-01
Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS). Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper.
A High Performance Load Balance Strategy for Real-Time Multicore Systems
Cho, Keng-Mao; Tsai, Chun-Wei; Chiu, Yi-Shiuan; Yang, Chu-Sing
2014-01-01
Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS). Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper. PMID:24955382
T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors.
Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun
2016-07-08
Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.
A Comparison of a Brain-Based Adaptive System and a Manual Adaptable System for Invoking Automation
NASA Technical Reports Server (NTRS)
Bailey, Nathan R.; Scerbo, Mark W.; Freeman, Frederick G.; Mikulka, Peter J.; Scott, Lorissa A.
2004-01-01
Two experiments are presented that examine alternative methods for invoking automation. In each experiment, participants were asked to perform simultaneously a monitoring task and a resource management task as well as a tracking task that changed between automatic and manual modes. The monitoring task required participants to detect failures of an automated system to correct aberrant conditions under either high or low system reliability. Performance on each task was assessed as well as situation awareness and subjective workload. In the first experiment, half of the participants worked with a brain-based system that used their EEG signals to switch the tracking task between automatic and manual modes. The remaining participants were yoked to participants from the adaptive condition and received the same schedule of mode switches, but their EEG had no effect on the automation. Within each group, half of the participants were assigned to either the low or high reliability monitoring task. In addition, within each combination of automation invocation and system reliability, participants were separated into high and low complacency potential groups. The results revealed no significant effects of automation invocation on the performance measures; however, the high complacency individuals demonstrated better situation awareness when working with the adaptive automation system. The second experiment was the same as the first with one important exception. Automation was invoked manually. Thus, half of the participants pressed a button to invoke automation for 10 s. The remaining participants were yoked to participants from the adaptable condition and received the same schedule of mode switches, but they had no control over the automation. The results showed that participants who could invoke automation performed more poorly on the resource management task and reported higher levels of subjective workload. Further, those who invoked automation more frequently performed more poorly on the tracking task and reported higher levels of subjective workload. and the adaptable condition in the second experiment revealed only one significant difference: the subjective workload was higher in the adaptable condition. Overall, the results show that a brain-based, adaptive automation system may facilitate situation awareness for those individuals who are more complacent toward automation. By contrast, requiring operators to invoke automation manually may have some detrimental impact on performance but does appear to increases subjective workload relative to an adaptive system.
Thermal-Aware Test Access Mechanism and Wrapper Design Optimization for System-on-Chips
NASA Astrophysics Data System (ADS)
Yu, Thomas Edison; Yoneda, Tomokazu; Chakrabarty, Krishnendu; Fujiwara, Hideo
Rapid advances in semiconductor manufacturing technology have led to higher chip power densities, which places greater emphasis on packaging and temperature control during testing. For system-on-chips, peak power-based scheduling algorithms have been used to optimize tests under specified power constraints. However, imposing power constraints does not always solve the problem of overheating due to the non-uniform distribution of power across the chip. This paper presents a TAM/Wrapper co-design methodology for system-on-chips that ensures thermal safety while still optimizing the test schedule. The method combines a simplified thermal-cost model with a traditional bin-packing algorithm to minimize test time while satisfying temperature constraints. Furthermore, for temperature checking, thermal simulation is done using cycle-accurate power profiles for more realistic results. Experiments show that even a minimal sacrifice in test time can yield a considerable decrease in test temperature as well as the possibility of further lowering temperatures beyond those achieved using traditional power-based test scheduling.
T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors
Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun
2016-01-01
Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction. PMID:27399722
Using All-Sky Imaging to Improve Telescope Scheduling (Abstract)
NASA Astrophysics Data System (ADS)
Cole, G. M.
2017-12-01
(Abstract only) Automated scheduling makes it possible for a small telescope to observe a large number of targets in a single night. But when used in areas which have less-than-perfect sky conditions such automation can lead to large numbers of observations of clouds and haze. This paper describes the development of a "sky-aware" telescope automation system that integrates the data flow from an SBIG AllSky340c camera with an enhanced dispatch scheduler to make optimum use of the available observing conditions for two highly instrumented backyard telescopes. Using the minute-by-minute time series image stream and a self-maintained reference database, the software maintains a file of sky brightness, transparency, stability, and forecasted visibility at several hundred grid positions. The scheduling software uses this information in real time to exclude targets obscured by clouds and select the best observing task, taking into account the requirements and limits of each instrument.
Conflict-Aware Scheduling Algorithm
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Borden, Chester
2006-01-01
conflict-aware scheduling algorithm is being developed to help automate the allocation of NASA s Deep Space Network (DSN) antennas and equipment that are used to communicate with interplanetary scientific spacecraft. The current approach for scheduling DSN ground resources seeks to provide an equitable distribution of tracking services among the multiple scientific missions and is very labor intensive. Due to the large (and increasing) number of mission requests for DSN services, combined with technical and geometric constraints, the DSN is highly oversubscribed. To help automate the process, and reduce the DSN and spaceflight project labor effort required for initiating, maintaining, and negotiating schedules, a new scheduling algorithm is being developed. The scheduling algorithm generates a "conflict-aware" schedule, where all requests are scheduled based on a dynamic priority scheme. The conflict-aware scheduling algorithm allocates all requests for DSN tracking services while identifying and maintaining the conflicts to facilitate collaboration and negotiation between spaceflight missions. These contrast with traditional "conflict-free" scheduling algorithms that assign tracks that are not in conflict and mark the remainder as unscheduled. In the case where full schedule automation is desired (based on mission/event priorities, fairness, allocation rules, geometric constraints, and ground system capabilities/ constraints), a conflict-free schedule can easily be created from the conflict-aware schedule by removing lower priority items that are in conflict.
Efficient Execution of Microscopy Image Analysis on CPU, GPU, and MIC Equipped Cluster Systems.
Andrade, G; Ferreira, R; Teodoro, George; Rocha, Leonardo; Saltz, Joel H; Kurc, Tahsin
2014-10-01
High performance computing is experiencing a major paradigm shift with the introduction of accelerators, such as graphics processing units (GPUs) and Intel Xeon Phi (MIC). These processors have made available a tremendous computing power at low cost, and are transforming machines into hybrid systems equipped with CPUs and accelerators. Although these systems can deliver a very high peak performance, making full use of its resources in real-world applications is a complex problem. Most current applications deployed to these machines are still being executed in a single processor, leaving other devices underutilized. In this paper we explore a scenario in which applications are composed of hierarchical data flow tasks which are allocated to nodes of a distributed memory machine in coarse-grain, but each of them may be composed of several finer-grain tasks which can be allocated to different devices within the node. We propose and implement novel performance aware scheduling techniques that can be used to allocate tasks to devices. We evaluate our techniques using a pathology image analysis application used to investigate brain cancer morphology, and our experimental evaluation shows that the proposed scheduling strategies significantly outperforms other efficient scheduling techniques, such as Heterogeneous Earliest Finish Time - HEFT, in cooperative executions using CPUs, GPUs, and MICs. We also experimentally show that our strategies are less sensitive to inaccuracy in the scheduling input data and that the performance gains are maintained as the application scales.
Efficient Execution of Microscopy Image Analysis on CPU, GPU, and MIC Equipped Cluster Systems
Andrade, G.; Ferreira, R.; Teodoro, George; Rocha, Leonardo; Saltz, Joel H.; Kurc, Tahsin
2015-01-01
High performance computing is experiencing a major paradigm shift with the introduction of accelerators, such as graphics processing units (GPUs) and Intel Xeon Phi (MIC). These processors have made available a tremendous computing power at low cost, and are transforming machines into hybrid systems equipped with CPUs and accelerators. Although these systems can deliver a very high peak performance, making full use of its resources in real-world applications is a complex problem. Most current applications deployed to these machines are still being executed in a single processor, leaving other devices underutilized. In this paper we explore a scenario in which applications are composed of hierarchical data flow tasks which are allocated to nodes of a distributed memory machine in coarse-grain, but each of them may be composed of several finer-grain tasks which can be allocated to different devices within the node. We propose and implement novel performance aware scheduling techniques that can be used to allocate tasks to devices. We evaluate our techniques using a pathology image analysis application used to investigate brain cancer morphology, and our experimental evaluation shows that the proposed scheduling strategies significantly outperforms other efficient scheduling techniques, such as Heterogeneous Earliest Finish Time - HEFT, in cooperative executions using CPUs, GPUs, and MICs. We also experimentally show that our strategies are less sensitive to inaccuracy in the scheduling input data and that the performance gains are maintained as the application scales. PMID:26640423
Scheduling for Emergency Tasks in Industrial Wireless Sensor Networks
Xia, Changqing; Kong, Linghe; Zeng, Peng
2017-01-01
Wireless sensor networks (WSNs) are widely applied in industrial manufacturing systems. By means of centralized control, the real-time requirement and reliability can be provided by WSNs in industrial production. Furthermore, many approaches reserve resources for situations in which the controller cannot perform centralized resource allocation. The controller assigns these resources as it becomes aware of when and where accidents have occurred. However, the reserved resources are limited, and such incidents are low-probability events. In addition, resource reservation may not be effective since the controller does not know when and where accidents will actually occur. To address this issue, we improve the reliability of scheduling for emergency tasks by proposing a method based on a stealing mechanism. In our method, an emergency task is transmitted by stealing resources allocated to regular flows. The challenges addressed in our work are as follows: (1) emergencies occur only occasionally, but the industrial system must deliver the corresponding flows within their deadlines when they occur; (2) we wish to minimize the impact of emergency flows by reducing the number of stolen flows. The contributions of this work are two-fold: (1) we first define intersections and blocking as new characteristics of flows; and (2) we propose a series of distributed routing algorithms to improve the schedulability and to reduce the impact of emergency flows. We demonstrate that our scheduling algorithm and analysis approach are better than the existing ones by extensive simulations. PMID:28726738
Sensor-scheduling simulation of disparate sensors for Space Situational Awareness
NASA Astrophysics Data System (ADS)
Hobson, T.; Clarkson, I.
2011-09-01
The art and science of space situational awareness (SSA) has been practised and developed from the time of Sputnik. However, recent developments, such as the accelerating pace of satellite launch, the proliferation of launch capable agencies, both commercial and sovereign, and recent well-publicised collisions involving man-made space objects, has further magnified the importance of timely and accurate SSA. The United States Strategic Command (USSTRATCOM) operates the Space Surveillance Network (SSN), a global network of sensors tasked with maintaining SSA. The rapidly increasing number of resident space objects will require commensurate improvements in the SSN. Sensors are scarce resources that must be scheduled judiciously to obtain measurements of maximum utility. Improvements in sensor scheduling and fusion, can serve to reduce the number of additional sensors that may be required. Recently, Hill et al. [1] have proposed and developed a simulation environment named TASMAN (Tasking Autonomous Sensors in a Multiple Application Network) to enable testing of alternative scheduling strategies within a simulated multi-sensor, multi-target environment. TASMAN simulates a high-fidelity, hardware-in-the-loop system by running multiple machines with different roles in parallel. At present, TASMAN is limited to simulations involving electro-optic sensors. Its high fidelity is at once a feature and a limitation, since supercomputing is required to run simulations of appreciable scale. In this paper, we describe an alternative, modular and scalable SSA simulation system that can extend the work of Hill et al with reduced complexity, albeit also with reduced fidelity. The tool has been developed in MATLAB and therefore can be run on a very wide range of computing platforms. It can also make use of MATLAB’s parallel processing capabilities to obtain considerable speed-up. The speed and flexibility so obtained can be used to quickly test scheduling algorithms even with a relatively large number of space objects. We further describe an application of the tool by exploring how the relative mixture of electro-optical and radar sensors can impact the scheduling, fusion and achievable accuracy of an SSA system. By varying the mixture of sensor types, we are able to characterise the main advantages and disadvantages of each configuration.
Energy-driven scheduling algorithm for nanosatellite energy harvesting maximization
NASA Astrophysics Data System (ADS)
Slongo, L. K.; Martínez, S. V.; Eiterer, B. V. B.; Pereira, T. G.; Bezerra, E. A.; Paiva, K. V.
2018-06-01
The number of tasks that a satellite may execute in orbit is strongly related to the amount of energy its Electrical Power System (EPS) is able to harvest and to store. The manner the stored energy is distributed within the satellite has also a great impact on the CubeSat's overall efficiency. Most CubeSat's EPS do not prioritize energy constraints in their formulation. Unlike that, this work proposes an innovative energy-driven scheduling algorithm based on energy harvesting maximization policy. The energy harvesting circuit is mathematically modeled and the solar panel I-V curves are presented for different temperature and irradiance levels. Considering the models and simulations, the scheduling algorithm is designed to keep solar panels working close to their maximum power point by triggering tasks in the appropriate form. Tasks execution affects battery voltage, which is coupled to the solar panels through a protection circuit. A software based Perturb and Observe strategy allows defining the tasks to be triggered. The scheduling algorithm is tested in FloripaSat, which is an 1U CubeSat. A test apparatus is proposed to emulate solar irradiance variation, considering the satellite movement around the Earth. Tests have been conducted to show that the scheduling algorithm improves the CubeSat energy harvesting capability by 4.48% in a three orbit experiment and up to 8.46% in a single orbit cycle in comparison with the CubeSat operating without the scheduling algorithm.
Automatic, Rapid Replanning of Satellite Operations for Space Situational Awareness (SSA)
NASA Astrophysics Data System (ADS)
Stottler, D.; Mahan, K.
An important component of Space Situational Awareness (SSA) is knowledge of the status and tasking of blue forces (e.g. satellites and ground stations) and the rapid determination of the impacts of real or hypothetical changes and the ability to quickly replan based on those changes. For example, if an antenna goes down (either for benign reasons or from purposeful interference) determining which missions will be impacted is important. It is not simply the set of missions that were scheduled to utilize that antenna, because highly expert human schedulers will respond to the outage by intelligently replanning the real-time schedule. We have developed an automatic scheduling and deconfliction engine, called MIDAS (for Managed Intelligent Deconfliction And Scheduling) that interfaces to the current legacy system (ESD 2.7) which can perform this replanning function automatically. In addition to determining the impact of failed resources, MIDAS can also replan in response to a satellite under attack. In this situation, additional supports must be quickly scheduled and executed (while minimizing impacts to other missions). Because MIDAS is a fully automatic system, replacing a current human labor-intensive process, and provides very rapid turnaround (seconds) it can also be used by commanders to consider what-if questions and focus limited protection resources on the most critical resources. For example, the commander can determine the impact of a successful attack on one of two ground stations and place heavier emphasis on protecting the station whose loss would create the most severe impacts. The system is currently transitioning to operational use. The MIDAS system and its interface to the legacy ESD 2.7 system will be described along with the ConOps for different types of detailed operational scenarios.
An on-time power-aware scheduling scheme for medical sensor SoC-based WBAN systems.
Hwang, Tae-Ho; Kim, Dong-Sun; Kim, Jung-Guk
2012-12-27
The focus of many leading technologies in the field of medical sensor systems is on low power consumption and robust data transmission. For example, the implantable cardioverter-defibrillator (ICD), which is used to maintain the heart in a healthy state, requires a reliable wireless communication scheme with an extremely low duty-cycle, high bit rate, and energy-efficient media access protocols. Because such devices must be sustained for over 5 years without access to battery replacement, they must be designed to have extremely low power consumption in sleep mode. Here, an on-time, energy-efficient scheduling scheme is proposed that performs power adjustments to minimize the sleep-mode current. The novelty of this scheduler is that it increases the determinacy of power adjustment and the predictability of scheduling by employing non-pre-emptible dual priority scheduling. This predictable scheduling also guarantees the punctuality of important periodic tasks based on their serialization, by using their worst case execution time) and the power consumption optimization. The scheduler was embedded into a system on chip (SoC) developed to support the wireless body area network-a wakeup-radio and wakeup-timer for implantable medical devices. This scheduling system is validated by the experimental results of its performance when used with life-time extensions of ICD devices.
An On-Time Power-Aware Scheduling Scheme for Medical Sensor SoC-Based WBAN Systems
Hwang, Tae-Ho; Kim, Dong-Sun; Kim, Jung-Guk
2013-01-01
The focus of many leading technologies in the field of medical sensor systems is on low power consumption and robust data transmission. For example, the implantable cardioverter-defibrillator (ICD), which is used to maintain the heart in a healthy state, requires a reliable wireless communication scheme with an extremely low duty-cycle, high bit rate, and energy-efficient media access protocols. Because such devices must be sustained for over 5 years without access to battery replacement, they must be designed to have extremely low power consumption in sleep mode. Here, an on-time, energy-efficient scheduling scheme is proposed that performs power adjustments to minimize the sleep-mode current. The novelty of this scheduler is that it increases the determinacy of power adjustment and the predictability of scheduling by employing non-pre-emptible dual priority scheduling. This predictable scheduling also guarantees the punctuality of important periodic tasks based on their serialization, by using their worst case execution time) and the power consumption optimization. The scheduler was embedded into a system on chip (SoC) developed to support the wireless body area network—a wakeup-radio and wakeup-timer for implantable medical devices. This scheduling system is validated by the experimental results of its performance when used with life-time extensions of ICD devices. PMID:23271602
NASA Astrophysics Data System (ADS)
Aziz, Fazilah Abdul; Razali, Noraini; Najmiyah Jaafar, Nur
2016-02-01
Currently there are many automotive companies still unable to effectively prevent consequences of poor ergonomics in their manufacturing processes. This study purpose is to determine the surrounding factors that influence low ergonomics risk awareness among staffs at early product development phase in Malaysia automotive industry. In this study there are four variables, low ergonomic risk awareness, inappropriate method and tools, tight development schedule and lack of management support. The survey data were gathered from 245 respondents of local automotive companies in Malaysia. The data was analysed through multiple regression and moderated regression using the IBM SPSS software. Study results revealed that low ergonomic risk awareness has influenced by inappropriate method and tool, and tight development schedule. There were positive linear relationships between low ergonomic risk awareness and inappropriate method and tools, and tight development schedule. The more inappropriate method and tools applied; the lower their ergonomic risk awareness. The more tight development schedule is the lower ergonomic risk awareness. The relationship between low ergonomic risk awareness and inappropriate method and tools depends on staff's age, and education level. Furthermore the relationship between low ergonomic risk awareness and tight development schedule depends on staff's working experience and number of project involvement. The main contribution of this paper was identified the number of factors of low ergonomics risk awareness and offers better understanding on ergonomics among researchers and automotive manufacturer's employees during product development process.
User Acceptability of Physiological and Other Measures of Hazardous States of Awareness
NASA Technical Reports Server (NTRS)
Dickinson, Terry L.; Milkulka, Peter J.; Kwan, Doris; Fitzgibbons, Amy A.; Jinadu, Florence R.; Freeman, Frederick G.; Scerbo, Mark W.; Pope, A. T. (Technical Monitor)
2001-01-01
Two studies explored user acceptance of devices that measure hazardous states of awareness. In the first study, critical incident data were collected in two workshops from 11 operators working as air traffic controllers or commercial pilots. These critical incident data were used to develop a survey of the acceptability of awareness measures. In the second study, the survey was administered to 100 people also working as air traffic controllers or commercial pilots. Results show that operators are open to the inclusion of technology to measure HSAs even if that technology is somewhat invasive as long as feedback about the HSAs is considered to be useful and helpful. Nonetheless, a major concern is the legal complications associated with being recorded, particularly for older and more experienced operators. Air traffic controllers emphasized the importance of sharing technology information with supervisors in order to receive backup or assistance under conditions of task overload, whereas pilots emphasized the influence of work schedules on problems with awareness. Recommendations are offered concerning the implementation of devices to measure hazardous states of awareness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Koenig, Gregory A; Machovec, Dylan
2016-01-01
Abstract: The worth of completing parallel tasks is modeled using utility functions, which monotonically-decrease with time and represent the importance and urgency of a task. These functions define the utility earned by a task at the time of its completion. The performance of such a system is measured as the total utility earned by all completed tasks over some interval of time (e.g., 24 hours). To maximize system performance when scheduling dynamically arriving parallel tasks onto a high performance computing (HPC) system that is oversubscribed and energy-constrained, we have designed, analyzed, and compared different heuristic techniques. Four utility-aware heuristics (i.e.,more » Max Utility, Max Utility-per-Time, Max Utility-per-Resource, and Max Utility-per-Energy), three FCFS-based heuristics (Conservative Backfilling, EASY Backfilling, and FCFS with Multiple Queues), and a Random heuristic were examined in this study. A technique that is often used with the FCFS-based heuristics is the concept of a permanent reservation. We compare the performance of permanent reservations with temporary place-holders to demonstrate the advantages that place-holders can provide. We also present a novel energy filtering technique that constrains the maximum energy-per-resource used by each task. We conducted a simulation study to evaluate the performance of these heuristics and techniques in an energy-constrained oversubscribed HPC environment. With place-holders, energy filtering, and dropping tasks with low potential utility, our utility-aware heuristics are able to significantly outperform the existing FCFS-based techniques.« less
Diverse task scheduling for individualized requirements in cloud manufacturing
NASA Astrophysics Data System (ADS)
Zhou, Longfei; Zhang, Lin; Zhao, Chun; Laili, Yuanjun; Xu, Lida
2018-03-01
Cloud manufacturing (CMfg) has emerged as a new manufacturing paradigm that provides ubiquitous, on-demand manufacturing services to customers through network and CMfg platforms. In CMfg system, task scheduling as an important means of finding suitable services for specific manufacturing tasks plays a key role in enhancing the system performance. Customers' requirements in CMfg are highly individualized, which leads to diverse manufacturing tasks in terms of execution flows and users' preferences. We focus on diverse manufacturing tasks and aim to address their scheduling issue in CMfg. First of all, a mathematical model of task scheduling is built based on analysis of the scheduling process in CMfg. To solve this scheduling problem, we propose a scheduling method aiming for diverse tasks, which enables each service demander to obtain desired manufacturing services. The candidate service sets are generated according to subtask directed graphs. An improved genetic algorithm is applied to searching for optimal task scheduling solutions. The effectiveness of the scheduling method proposed is verified by a case study with individualized customers' requirements. The results indicate that the proposed task scheduling method is able to achieve better performance than some usual algorithms such as simulated annealing and pattern search.
Testing Task Schedulers on Linux System
NASA Astrophysics Data System (ADS)
Jelenković, Leonardo; Groš, Stjepan; Jakobović, Domagoj
Testing task schedulers on Linux operating system proves to be a challenging task. There are two main problems. The first one is to identify which properties of the scheduler to test. The second problem is how to perform it, e.g., which API to use that is sufficiently precise and in the same time supported on most platforms. This paper discusses the problems in realizing test framework for testing task schedulers and presents one potential solution. Observed behavior of the scheduler is the one used for “normal” task scheduling (SCHED_OTHER), unlike one used for real-time tasks (SCHED_FIFO, SCHED_RR).
A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path.
Xie, Zhiqiang; Shao, Xia; Xin, Yu
2016-01-01
To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective.
A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path
Xie, Zhiqiang; Shao, Xia; Xin, Yu
2016-01-01
To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective. PMID:27490901
Evaluation of scheduling techniques for payload activity planning
NASA Technical Reports Server (NTRS)
Bullington, Stanley F.
1991-01-01
Two tasks related to payload activity planning and scheduling were performed. The first task involved making a comparison of space mission activity scheduling problems with production scheduling problems. The second task consisted of a statistical analysis of the output of runs of the Experiment Scheduling Program (ESP). Details of the work which was performed on these two tasks are presented.
NASA Astrophysics Data System (ADS)
Li, Guoliang; Xing, Lining; Chen, Yingwu
2017-11-01
The autonomicity of self-scheduling on Earth observation satellite and the increasing scale of satellite network attract much attention from researchers in the last decades. In reality, the limited onboard computational resource presents challenge for the online scheduling algorithm. This study considered online scheduling problem for a single autonomous Earth observation satellite within satellite network environment. It especially addressed that the urgent tasks arrive stochastically during the scheduling horizon. We described the problem and proposed a hybrid online scheduling mechanism with revision and progressive techniques to solve this problem. The mechanism includes two decision policies, a when-to-schedule policy combining periodic scheduling and critical cumulative number-based event-driven rescheduling, and a how-to-schedule policy combining progressive and revision approaches to accommodate two categories of task: normal tasks and urgent tasks. Thus, we developed two heuristic (re)scheduling algorithms and compared them with other generally used techniques. Computational experiments indicated that the into-scheduling percentage of urgent tasks in the proposed mechanism is much higher than that in periodic scheduling mechanism, and the specific performance is highly dependent on some mechanism-relevant and task-relevant factors. For the online scheduling, the modified weighted shortest imaging time first and dynamic profit system benefit heuristics outperformed the others on total profit and the percentage of successfully scheduled urgent tasks.
Wave scheduling - Decentralized scheduling of task forces in multicomputers
NASA Technical Reports Server (NTRS)
Van Tilborg, A. M.; Wittie, L. D.
1984-01-01
Decentralized operating systems that control large multicomputers need techniques to schedule competing parallel programs called task forces. Wave scheduling is a probabilistic technique that uses a hierarchical distributed virtual machine to schedule task forces by recursively subdividing and issuing wavefront-like commands to processing elements capable of executing individual tasks. Wave scheduling is highly resistant to processing element failures because it uses many distributed schedulers that dynamically assign scheduling responsibilities among themselves. The scheduling technique is trivially extensible as more processing elements join the host multicomputer. A simple model of scheduling cost is used by every scheduler node to distribute scheduling activity and minimize wasted processing capacity by using perceived workload to vary decentralized scheduling rules. At low to moderate levels of network activity, wave scheduling is only slightly less efficient than a central scheduler in its ability to direct processing elements to accomplish useful work.
CQPSO scheduling algorithm for heterogeneous multi-core DAG task model
NASA Astrophysics Data System (ADS)
Zhai, Wenzheng; Hu, Yue-Li; Ran, Feng
2017-07-01
Efficient task scheduling is critical to achieve high performance in a heterogeneous multi-core computing environment. The paper focuses on the heterogeneous multi-core directed acyclic graph (DAG) task model and proposes a novel task scheduling method based on an improved chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm. A task priority scheduling list was built. A processor with minimum cumulative earliest finish time (EFT) was acted as the object of the first task assignment. The task precedence relationships were satisfied and the total execution time of all tasks was minimized. The experimental results show that the proposed algorithm has the advantage of optimization abilities, simple and feasible, fast convergence, and can be applied to the task scheduling optimization for other heterogeneous and distributed environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne F. Boyer; Gurdeep S. Hura
2005-09-01
The Problem of obtaining an optimal matching and scheduling of interdependent tasks in distributed heterogeneous computing (DHC) environments is well known to be an NP-hard problem. In a DHC system, task execution time is dependent on the machine to which it is assigned and task precedence constraints are represented by a directed acyclic graph. Recent research in evolutionary techniques has shown that genetic algorithms usually obtain more efficient schedules that other known algorithms. We propose a non-evolutionary random scheduling (RS) algorithm for efficient matching and scheduling of inter-dependent tasks in a DHC system. RS is a succession of randomized taskmore » orderings and a heuristic mapping from task order to schedule. Randomized task ordering is effectively a topological sort where the outcome may be any possible task order for which the task precedent constraints are maintained. A detailed comparison to existing evolutionary techniques (GA and PSGA) shows the proposed algorithm is less complex than evolutionary techniques, computes schedules in less time, requires less memory and fewer tuning parameters. Simulation results show that the average schedules produced by RS are approximately as efficient as PSGA schedules for all cases studied and clearly more efficient than PSGA for certain cases. The standard formulation for the scheduling problem addressed in this paper is Rm|prec|Cmax.,« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vydyanathan, Naga; Krishnamoorthy, Sriram; Sabin, Gerald M.
2009-08-01
Complex parallel applications can often be modeled as directed acyclic graphs of coarse-grained application-tasks with dependences. These applications exhibit both task- and data-parallelism, and combining these two (also called mixedparallelism), has been shown to be an effective model for their execution. In this paper, we present an algorithm to compute the appropriate mix of task- and data-parallelism required to minimize the parallel completion time (makespan) of these applications. In other words, our algorithm determines the set of tasks that should be run concurrently and the number of processors to be allocated to each task. The processor allocation and scheduling decisionsmore » are made in an integrated manner and are based on several factors such as the structure of the taskgraph, the runtime estimates and scalability characteristics of the tasks and the inter-task data communication volumes. A locality conscious scheduling strategy is used to improve inter-task data reuse. Evaluation through simulations and actual executions of task graphs derived from real applications as well as synthetic graphs shows that our algorithm consistently generates schedules with lower makespan as compared to CPR and CPA, two previously proposed scheduling algorithms. Our algorithm also produces schedules that have lower makespan than pure taskand data-parallel schedules. For task graphs with known optimal schedules or lower bounds on the makespan, our algorithm generates schedules that are closer to the optima than other scheduling approaches.« less
Exploiting Vector and Multicore Parallelsim for Recursive, Data- and Task-Parallel Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Bin; Krishnamoorthy, Sriram; Agrawal, Kunal
Modern hardware contains parallel execution resources that are well-suited for data-parallelism-vector units-and task parallelism-multicores. However, most work on parallel scheduling focuses on one type of hardware or the other. In this work, we present a scheduling framework that allows for a unified treatment of task- and data-parallelism. Our key insight is an abstraction, task blocks, that uniformly handles data-parallel iterations and task-parallel tasks, allowing them to be scheduled on vector units or executed independently as multicores. Our framework allows us to define schedulers that can dynamically select between executing task- blocks on vector units or multicores. We show that thesemore » schedulers are asymptotically optimal, and deliver the maximum amount of parallelism available in computation trees. To evaluate our schedulers, we develop program transformations that can convert mixed data- and task-parallel pro- grams into task block-based programs. Using a prototype instantiation of our scheduling framework, we show that, on an 8-core system, we can simultaneously exploit vector and multicore parallelism to achieve 14×-108× speedup over sequential baselines.« less
A Genetic-Based Scheduling Algorithm to Minimize the Makespan of the Grid Applications
NASA Astrophysics Data System (ADS)
Entezari-Maleki, Reza; Movaghar, Ali
Task scheduling algorithms in grid environments strive to maximize the overall throughput of the grid. In order to maximize the throughput of the grid environments, the makespan of the grid tasks should be minimized. In this paper, a new task scheduling algorithm is proposed to assign tasks to the grid resources with goal of minimizing the total makespan of the tasks. The algorithm uses the genetic approach to find the suitable assignment within grid resources. The experimental results obtained from applying the proposed algorithm to schedule independent tasks within grid environments demonstrate the applicability of the algorithm in achieving schedules with comparatively lower makespan in comparison with other well-known scheduling algorithms such as, Min-min, Max-min, RASA and Sufferage algorithms.
Barrett, A M; Galletta, Elizabeth E; Zhang, Jun; Masmela, Jenny R; Adler, Uri S
2014-01-01
Medication self-administration (MSA) may be cognitively challenging after stroke, but guidelines are currently lacking for identifying high-functioning stroke survivors who may have difficulty with this task. Complicating this matter, stroke survivors may not be aware of their cognitive problems (cognitive anosognosia) and may over-estimate their MSA competence. The authors wished to evaluate medication self-administration and MSA self-awareness in 24 consecutive acute stroke survivors undergoing inpatient rehabilitation, to determine if they would over-estimate their medication self-administration and if this predicted memory disorder. Stroke survivors were tested on the Hopkins Medication Schedule and also their memory, naming mood and dexterity were evaluated, comparing their performance to 17 matched controls. The anosognosia ratio indicated MSA over-estimation in stroke survivors compared with controls--no other over-estimation errors were noted relative to controls. A strong correlation was observed between over-estimation of MSA ability and verbal memory deficit, suggesting that formally assessing MSA and MSA self-awareness may help detect cognitive deficits. Assessing medication self-administration and MSA self-awareness may be useful in rehabilitation and successful community-return after stroke.
NASA Technical Reports Server (NTRS)
Smith, Greg
2003-01-01
Schedule Risk Assessment needs to determine the probability of finishing on or before a given point in time. Task in a schedule should reflect the "most likely" duration for each task. IN reality, each task is different and has a varying degree of probability of finishing within or after the duration specified. Schedule risk assessment attempt to quantify these probabilities by assigning values to each task. Bridges the gap between CPM scheduling and the project's need to know the likelihood of "when".
Technical Feasibility of a Mobile Context-Aware (Social) Learning Schedule Framework
ERIC Educational Resources Information Center
Yau, Jane Y. K.; Joy, Mike
2013-01-01
The purpose of this paper is to show the technical feasibility of implementing their mobile context-aware learning schedule (mCALS) framework as a software application on a mobile device using current technologies, prior to its actual implementation. This process draws a set of compatible mobile and context-aware technologies at present and can be…
On-the-fly scheduling as a manifestation of partial-order planning and dynamic task values.
Hannah, Samuel D; Neal, Andrew
2014-09-01
The aim of this study was to develop a computational account of the spontaneous task ordering that occurs within jobs as work unfolds ("on-the-fly task scheduling"). Air traffic control is an example of work in which operators have to schedule their tasks as a partially predictable work flow emerges. To date, little attention has been paid to such on-the-fly scheduling situations. We present a series of discrete-event models fit to conflict resolution decision data collected from experienced controllers operating in a high-fidelity simulation. Our simulations reveal air traffic controllers' scheduling decisions as examples of the partial-order planning approach of Hayes-Roth and Hayes-Roth. The most successful model uses opportunistic first-come-first-served scheduling to select tasks from a queue. Tasks with short deadlines are executed immediately. Tasks with long deadlines are evaluated to assess whether they need to be executed immediately or deferred. On-the-fly task scheduling is computationally tractable despite its surface complexity and understandable as an example of both the partial-order planning strategy and the dynamic-value approach to prioritization.
A Model and Algorithms For a Software Evolution Control System
1993-12-01
dynamic scheduling approaches can be found in [67). Task scheduling can also be characterized as preemptive and nonpreemptive . A task is preemptive ...is NP-hard for both the preemptive and nonpreemptive cases [671 [84). Scheduling nonpreemptive tasks with arbitrary ready times is NP-hard in both...the preemptive and nonpreemptive cases [671 [841. Scheduling nonpreemptive tasks with arbitrary ready times is NP-hard in both multiprocessor and
Cloud computing task scheduling strategy based on improved differential evolution algorithm
NASA Astrophysics Data System (ADS)
Ge, Junwei; He, Qian; Fang, Yiqiu
2017-04-01
In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.
Designing a fuzzy scheduler for hard real-time systems
NASA Technical Reports Server (NTRS)
Yen, John; Lee, Jonathan; Pfluger, Nathan; Natarajan, Swami
1992-01-01
In hard real-time systems, tasks have to be performed not only correctly, but also in a timely fashion. If timing constraints are not met, there might be severe consequences. Task scheduling is the most important problem in designing a hard real-time system, because the scheduling algorithm ensures that tasks meet their deadlines. However, the inherent nature of uncertainty in dynamic hard real-time systems increases the problems inherent in scheduling. In an effort to alleviate these problems, we have developed a fuzzy scheduler to facilitate searching for a feasible schedule. A set of fuzzy rules are proposed to guide the search. The situation we are trying to address is the performance of the system when no feasible solution can be found, and therefore, certain tasks will not be executed. We wish to limit the number of important tasks that are not scheduled.
ERIC Educational Resources Information Center
Ukrainetz, Teresa A.; Ross, Catherine L.; Harm, Heide M.
2009-01-01
Purpose: This study examined 2 schedules of treatment for phonemic awareness. Method: Forty-one 5- to 6-year-old kindergartners, including 22 English learners, with low letter-name and first-sound knowledge received 11 hr of phonemic awareness treatment: concentrated (CP, 3x/wk to December), dispersed (DP, 1x/wk to March), and dispersed vocabulary…
Do psychosis patients with poor insight show implicit awareness on the emotional stroop task?
Wiffen, Benjamin D R; O'Connor, Jennifer A; Russo, Manuela; Falcone, M Aurora; Joseph, Candice; Kolliakou, Anna; Di Forti, Marta; Murray, Robin M; David, Anthony S
2014-01-01
The insight into psychosis can be assessed reliably by clinicians from interviews with patients. However, patients may retain implicit awareness of illness while lacking explicit awareness. In a sample of first-episode psychosis patients, we used a test of processing of mental illness-related and other negative words as a measure of implicit awareness to see how this varied in relation to insight. An emotional-counting Stroop task tested reaction times to words of three types: psychosis-related (e.g. 'crazy'), general negative (e.g. 'cancer') and neutral (e.g. 'oyster'). Data were available from 43 patients and 23 healthy controls. Patients' insight was assessed using the Schedule for the Assessment of Insight (SAI-E). Patients reacted slower than controls to words across all conditions, and both patients and controls reacted slower to salient and negative words than neutral words. There was a near significant interaction between word type and group (Wilks' lambda = 0.53, p = 0.055); patients experienced greater interference from negative rather than psychosis-related words (p = 0.003), and controls experienced greater interference from salient rather than negative words (p = 0.01). Within the patient group, there was a correlation between insight and interference on salient words (r = 0.33, p = 0.05), such that those with less insight experienced less interference on psychosis-related words. Psychosis-related words were less threatening and less self-relevant to psychosis patients with less insight. This suggests that the lack of awareness such patients have of their illness is genuine and more likely to be mediated by lower-level information processing mechanisms than strategies such as conscious, motivated denial. Copyright © 2013 S. Karger AG, Basel.
Segment Fixed Priority Scheduling for Self Suspending Real Time Tasks
2016-08-11
Segment-Fixed Priority Scheduling for Self-Suspending Real -Time Tasks Junsung Kim, Department of Electrical and Computer Engineering, Carnegie...4 2.1 Application of a Multi-Segment Self-Suspending Real -Time Task Model ............................. 5 3 Fixed Priority Scheduling...1 Figure 2: A multi-segment self-suspending real -time task model
A new task scheduling algorithm based on value and time for cloud platform
NASA Astrophysics Data System (ADS)
Kuang, Ling; Zhang, Lichen
2017-08-01
Tasks scheduling, a key part of increasing resource utilization and enhancing system performance, is a never outdated problem especially in cloud platforms. Based on the value density algorithm of the real-time task scheduling system and the character of the distributed system, the paper present a new task scheduling algorithm by further studying the cloud technology and the real-time system: Least Level Value Density First (LLVDF). The algorithm not only introduces some attributes of time and value for tasks, it also can describe weighting relationships between these properties mathematically. As this feature of the algorithm, it can gain some advantages to distinguish between different tasks more dynamically and more reasonably. When the scheme was used in the priority calculation of the dynamic task scheduling on cloud platform, relying on its advantage, it can schedule and distinguish tasks with large amounts and many kinds more efficiently. The paper designs some experiments, some distributed server simulation models based on M/M/C model of queuing theory and negative arrivals, to compare the algorithm against traditional algorithm to observe and show its characters and advantages.
Helali, Faramarz
2009-01-01
To achieve ergonomics awareness in 3 subsidiary companies, an intervention team was formed. The aims of this study were to implement basic ergonomics through a participatory ergonomics intervention process that can support a continuous learning process and lead to an improvement in health and safety as well as in the work systems in the organization. The findings of this study (i.e., method, continuous learning and integration) were key to making the participatory ergonomics intervention successful. Furthermore, 4 issues of the ergonomics checkpoints (i.e., work schedules, work tasks, healthy work organization and learning) for assessing the work system were found suitable for both changing work schedules and for improving the work system. This paper describes the result of this project and also the experiences gained and the conclusions reached from using the International Labour Office's ergonomics checkpoints in the industries of industrially developing country.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.T.; James P. Meagher; Prasad Apte
2002-12-31
This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but wasmore » delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.« less
Zhang, Weizhe; Bai, Enci; He, Hui; Cheng, Albert M.K.
2015-01-01
Reducing energy consumption is becoming very important in order to keep battery life and lower overall operational costs for heterogeneous real-time multiprocessor systems. In this paper, we first formulate this as a combinatorial optimization problem. Then, a successful meta-heuristic, called Shuffled Frog Leaping Algorithm (SFLA) is proposed to reduce the energy consumption. Precocity remission and local optimal avoidance techniques are proposed to avoid the precocity and improve the solution quality. Convergence acceleration significantly reduces the search time. Experimental results show that the SFLA-based energy-aware meta-heuristic uses 30% less energy than the Ant Colony Optimization (ACO) algorithm, and 60% less energy than the Genetic Algorithm (GA) algorithm. Remarkably, the running time of the SFLA-based meta-heuristic is 20 and 200 times less than ACO and GA, respectively, for finding the optimal solution. PMID:26110406
Power-Aware Compiler Controllable Chip Multiprocessor
NASA Astrophysics Data System (ADS)
Shikano, Hiroaki; Shirako, Jun; Wada, Yasutaka; Kimura, Keiji; Kasahara, Hironori
A power-aware compiler controllable chip multiprocessor (CMP) is presented and its performance and power consumption are evaluated with the optimally scheduled advanced multiprocessor (OSCAR) parallelizing compiler. The CMP is equipped with power control registers that change clock frequency and power supply voltage to functional units including processor cores, memories, and an interconnection network. The OSCAR compiler carries out coarse-grain task parallelization of programs and reduces power consumption using architectural power control support and the compiler's power saving scheme. The performance evaluation shows that MPEG-2 encoding on the proposed CMP with four CPUs results in 82.6% power reduction in real-time execution mode with a deadline constraint on its sequential execution time. Furthermore, MP3 encoding on a heterogeneous CMP with four CPUs and four accelerators results in 53.9% power reduction at 21.1-fold speed-up in performance against its sequential execution in the fastest execution mode.
Fault-tolerant dynamic task graph scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal
2014-11-16
In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space andmore » time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.« less
NASA Technical Reports Server (NTRS)
Smith, Greg
2003-01-01
Schedule risk assessments determine the likelihood of finishing on time. Each task in a schedule has a varying degree of probability of being finished on time. A schedule risk assessment quantifies these probabilities by assigning values to each task. This viewgraph presentation contains a flow chart for conducting a schedule risk assessment, and profiles applicable several methods of data analysis.
Saunders, Richard R; McEntee, Julie E; Saunders, Muriel D
2005-01-01
The effects of variable-interval (VI) and fixed-ratio (FR) schedules of reinforcement for work-related behavior and an organizer for the work materials (behavioral prosthesis) were evaluated with 3 adults with severe or profound mental retardation. The participants had been recommended for study because of high rates of off-task and aberrant behavior in their daily vocational training programs. For 2 participants, VI and FR schedules resulted in the same outcome: more aberrant behavior than on-task and off-task behavior combined. The FR schedule nearly eliminated emission of aberrant and off-task behavior by the 3rd participant. Combining the behavioral prosthesis with FR reinforcement (FR+O) increased the proportion of time spent in on-task behavior by all participants under certain FR schedule parameters. Second-by-second analyses of the observation records revealed that FR schedules reduced off-task and aberrant behavior during work sequences (i.e., ratio runs), and FR+O led to a further reduction of these behaviors during postreinforcement pauses. Overall, the results show how organizer and schedule parameters can be adjusted to produce an optimized balance between productivity and reinforcement while undesirable behavior is minimized.
Maximally Expressive Modeling of Operations Tasks
NASA Technical Reports Server (NTRS)
Jaap, John; Richardson, Lea; Davis, Elizabeth
2002-01-01
Planning and scheduling systems organize "tasks" into a timeline or schedule. The tasks are defined within the scheduling system in logical containers called models. The dictionary might define a model of this type as "a system of things and relations satisfying a set of rules that, when applied to the things and relations, produce certainty about the tasks that are being modeled." One challenging domain for a planning and scheduling system is the operation of on-board experiments for the International Space Station. In these experiments, the equipment used is among the most complex hardware ever developed, the information sought is at the cutting edge of scientific endeavor, and the procedures are intricate and exacting. Scheduling is made more difficult by a scarcity of station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling International Space Station experiment operations calls for a "maximally expressive" modeling schema.
Provenance-aware optimization of workload for distributed data production
NASA Astrophysics Data System (ADS)
Makatun, Dzmitry; Lauret, Jérôme; Rudová, Hana; Šumbera, Michal
2017-10-01
Distributed data processing in High Energy and Nuclear Physics (HENP) is a prominent example of big data analysis. Having petabytes of data being processed at tens of computational sites with thousands of CPUs, standard job scheduling approaches either do not address well the problem complexity or are dedicated to one specific aspect of the problem only (CPU, network or storage). Previously we have developed a new job scheduling approach dedicated to distributed data production - an essential part of data processing in HENP (preprocessing in big data terminology). In this contribution, we discuss the load balancing with multiple data sources and data replication, present recent improvements made to our planner and provide results of simulations which demonstrate the advantage against standard scheduling policies for the new use case. Multi-source or provenance is common in computing models of many applications whereas the data may be copied to several destinations. The initial input data set would hence be already partially replicated to multiple locations and the task of the scheduler is to maximize overall computational throughput considering possible data movements and CPU allocation. The studies have shown that our approach can provide a significant gain in overall computational performance in a wide scope of simulations considering realistic size of computational Grid and various input data distribution.
On scheduling task systems with variable service times
NASA Astrophysics Data System (ADS)
Maset, Richard G.; Banawan, Sayed A.
1993-08-01
Several strategies have been proposed for developing optimal and near-optimal schedules for task systems (jobs consisting of multiple tasks that can be executed in parallel). Most such strategies, however, implicitly assume deterministic task service times. We show that these strategies are much less effective when service times are highly variable. We then evaluate two strategies—one adaptive, one static—that have been proposed for retaining high performance despite such variability. Both strategies are extensions of critical path scheduling, which has been found to be efficient at producing near-optimal schedules. We found the adaptive approach to be quite effective.
Task Scheduling in Desktop Grids: Open Problems
NASA Astrophysics Data System (ADS)
Chernov, Ilya; Nikitina, Natalia; Ivashko, Evgeny
2017-12-01
We survey the areas of Desktop Grid task scheduling that seem to be insufficiently studied so far and are promising for efficiency, reliability, and quality of Desktop Grid computing. These topics include optimal task grouping, "needle in a haystack" paradigm, game-theoretical scheduling, domain-imposed approaches, special optimization of the final stage of the batch computation, and Enterprise Desktop Grids.
NASA Astrophysics Data System (ADS)
Devaraj, Rajesh; Sarkar, Arnab; Biswas, Santosh
2015-11-01
In the article 'Supervisory control for fault-tolerant scheduling of real-time multiprocessor systems with aperiodic tasks', Park and Cho presented a systematic way of computing a largest fault-tolerant and schedulable language that provides information on whether the scheduler (i.e., supervisor) should accept or reject a newly arrived aperiodic task. The computation of such a language is mainly dependent on the task execution model presented in their paper. However, the task execution model is unable to capture the situation when the fault of a processor occurs even before the task has arrived. Consequently, a task execution model that does not capture this fact may possibly be assigned for execution on a faulty processor. This problem has been illustrated with an appropriate example. Then, the task execution model of Park and Cho has been modified to strengthen the requirement that none of the tasks are assigned for execution on a faulty processor.
Measurement of Temporal Awareness in Air Traffic Control
NASA Technical Reports Server (NTRS)
Rantanen, E.M.
2009-01-01
Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.
Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks
Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang
2016-01-01
The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN. PMID:27916807
Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks.
Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang
2016-11-28
The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN.
A method of operation scheduling based on video transcoding for cluster equipment
NASA Astrophysics Data System (ADS)
Zhou, Haojie; Yan, Chun
2018-04-01
Because of the cluster technology in real-time video transcoding device, the application of facing the massive growth in the number of video assignments and resolution and bit rate of diversity, task scheduling algorithm, and analyze the current mainstream of cluster for real-time video transcoding equipment characteristics of the cluster, combination with the characteristics of the cluster equipment task delay scheduling algorithm is proposed. This algorithm enables the cluster to get better performance in the generation of the job queue and the lower part of the job queue when receiving the operation instruction. In the end, a small real-time video transcode cluster is constructed to analyze the calculation ability, running time, resource occupation and other aspects of various algorithms in operation scheduling. The experimental results show that compared with traditional clustering task scheduling algorithm, task delay scheduling algorithm has more flexible and efficient characteristics.
ERIC Educational Resources Information Center
Cirelli, Christe A.; Sidener, Tina M.; Reeve, Kenneth F.; Reeve, Sharon A.
2016-01-01
The effects of activity schedules on on-task and on-schedule behavior were assessed with two boys at risk for attention-deficit/hyperactivity disorder (ADHD) and referred by their public school teachers as having difficulty during independent work time. On-task behavior increased for both participants after two training sessions. Teachers, peers,…
Machine Learning Based Online Performance Prediction for Runtime Parallelization and Task Scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J; Ma, X; Singh, K
2008-10-09
With the emerging many-core paradigm, parallel programming must extend beyond its traditional realm of scientific applications. Converting existing sequential applications as well as developing next-generation software requires assistance from hardware, compilers and runtime systems to exploit parallelism transparently within applications. These systems must decompose applications into tasks that can be executed in parallel and then schedule those tasks to minimize load imbalance. However, many systems lack a priori knowledge about the execution time of all tasks to perform effective load balancing with low scheduling overhead. In this paper, we approach this fundamental problem using machine learning techniques first to generatemore » performance models for all tasks and then applying those models to perform automatic performance prediction across program executions. We also extend an existing scheduling algorithm to use generated task cost estimates for online task partitioning and scheduling. We implement the above techniques in the pR framework, which transparently parallelizes scripts in the popular R language, and evaluate their performance and overhead with both a real-world application and a large number of synthetic representative test scripts. Our experimental results show that our proposed approach significantly improves task partitioning and scheduling, with maximum improvements of 21.8%, 40.3% and 22.1% and average improvements of 15.9%, 16.9% and 4.2% for LMM (a real R application) and synthetic test cases with independent and dependent tasks, respectively.« less
Considerations for Using an Incremental Scheduler for Human Exploration Task Scheduling
NASA Technical Reports Server (NTRS)
Jaap, John; Phillips, Shaun
2005-01-01
As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and objectives are met and resources are not overbooked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks.
Heimdall System for MSSS Sensor Tasking
NASA Astrophysics Data System (ADS)
Herz, A.; Jones, B.; Herz, E.; George, D.; Axelrad, P.; Gehly, S.
In Norse Mythology, Heimdall uses his foreknowledge and keen eyesight to keep watch for disaster from his home near the Rainbow Bridge. Orbit Logic and the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado (CU) have developed the Heimdall System to schedule observations of known and uncharacterized objects and search for new objects from the Maui Space Surveillance Site. Heimdall addresses the current need for automated and optimized SSA sensor tasking driven by factors associated with improved space object catalog maintenance. Orbit Logic and CU developed an initial baseline prototype SSA sensor tasking capability for select sensors at the Maui Space Surveillance Site (MSSS) using STK and STK Scheduler, and then added a new Track Prioritization Component for FiSST-inspired computations for predicted Information Gain and Probability of Detection, and a new SSA-specific Figure-of-Merit (FOM) for optimized SSA sensor tasking. While the baseline prototype addresses automation and some of the multi-sensor tasking optimization, the SSA-improved prototype addresses all of the key elements required for improved tasking leading to enhanced object catalog maintenance. The Heimdall proof-of-concept was demonstrated for MSSS SSA sensor tasking for a 24 hour period to attempt observations of all operational satellites in the unclassified NORAD catalog, observe a small set of high priority GEO targets every 30 minutes, make a sky survey of the GEO belt region accessible to MSSS sensors, and observe particular GEO regions that have a high probability of finding new objects with any excess sensor time. This Heimdall prototype software paves the way for further R&D that will integrate this technology into the MSSS systems for operational scheduling, improve the software's scalability, and further tune and enhance schedule optimization. The Heimdall software for SSA sensor tasking provides greatly improved performance over manual tasking, improved coordinated sensor usage, and tasking schedules driven by catalog improvement goals (reduced overall covariance, etc.). The improved performance also enables more responsive sensor tasking to address external events, newly detected objects, newly detected object activity, and sensor anomalies. Instead of having to wait until the next day's scheduling phase, events can be addressed with new tasking schedules immediately (within seconds or minutes). Perhaps the most important benefit is improved SSA based on an overall improvement to the quality of the space catalog. By driving sensor tasking and scheduling based on predicted Information Gain and other relevant factors, better decisions are made in the application of available sensor resources, leading to an improved catalog and better information about the objects of most interest. The Heimdall software solution provides a configurable, automated system to improve sensor tasking efficiency and responsiveness for SSA applications. The FISST algorithms for Track Prioritization, SSA specific task and resource attributes, Scheduler algorithms, and configurable SSA-specific Figure-of-Merit together provide optimized and tunable scheduling for the Maui Space Surveillance Site and possibly other sites and organizations across the U.S. military and for allies around the world.
Community-aware task allocation for social networked multiagent systems.
Wang, Wanyuan; Jiang, Yichuan
2014-09-01
In this paper, we propose a novel community-aware task allocation model for social networked multiagent systems (SN-MASs), where the agent' cooperation domain is constrained in community and each agent can negotiate only with its intracommunity member agents. Under such community-aware scenarios, we prove that it remains NP-hard to maximize system overall profit. To solve this problem effectively, we present a heuristic algorithm that is composed of three phases: 1) task selection: select the desirable task to be allocated preferentially; 2) allocation to community: allocate the selected task to communities based on a significant task-first heuristics; and 3) allocation to agent: negotiate resources for the selected task based on a nonoverlap agent-first and breadth-first resource negotiation mechanism. Through the theoretical analyses and experiments, the advantages of our presented heuristic algorithm and community-aware task allocation model are validated. 1) Our presented heuristic algorithm performs very closely to the benchmark exponential brute-force optimal algorithm and the network flow-based greedy algorithm in terms of system overall profit in small-scale applications. Moreover, in the large-scale applications, the presented heuristic algorithm achieves approximately the same overall system profit, but significantly reduces the computational load compared with the greedy algorithm. 2) Our presented community-aware task allocation model reduces the system communication cost compared with the previous global-aware task allocation model and improves the system overall profit greatly compared with the previous local neighbor-aware task allocation model.
A Technical Survey on Optimization of Processing Geo Distributed Data
NASA Astrophysics Data System (ADS)
Naga Malleswari, T. Y. J.; Ushasukhanya, S.; Nithyakalyani, A.; Girija, S.
2018-04-01
With growing cloud services and technology, there is growth in some geographically distributed data centers to store large amounts of data. Analysis of geo-distributed data is required in various services for data processing, storage of essential information, etc., processing this geo-distributed data and performing analytics on this data is a challenging task. The distributed data processing is accompanied by issues in storage, computation and communication. The key issues to be dealt with are time efficiency, cost minimization, utility maximization. This paper describes various optimization methods like end-to-end multiphase, G-MR, etc., using the techniques like Map-Reduce, CDS (Community Detection based Scheduling), ROUT, Workload-Aware Scheduling, SAGE, AMP (Ant Colony Optimization) to handle these issues. In this paper various optimization methods and techniques used are analyzed. It has been observed that end-to end multiphase achieves time efficiency; Cost minimization concentrates to achieve Quality of Service, Computation and reduction of Communication cost. SAGE achieves performance improvisation in processing geo-distributed data sets.
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Abdulhamid, Shafi'i Muhammad; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing.
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing. PMID:28467505
An expert system for planning and scheduling in a telerobotic environment
NASA Technical Reports Server (NTRS)
Ntuen, Celestine A.; Park, Eui H.
1991-01-01
A knowledge based approach to assigning tasks to multi-agents working cooperatively in jobs that require a telerobot in the loop was developed. The generality of the approach allows for such a concept to be applied in a nonteleoperational domain. The planning architecture known as the task oriented planner (TOP) uses the principle of flow mechanism and the concept of planning by deliberation to preserve and use knowledge about a particular task. The TOP is an open ended architecture developed with a NEXPERT expert system shell and its knowledge organization allows for indirect consultation at various levels of task abstraction. Considering that a telerobot operates in a hostile and nonstructured environment, task scheduling should respond to environmental changes. A general heuristic was developed for scheduling jobs with the TOP system. The technique is not to optimize a given scheduling criterion as in classical job and/or flow shop problems. For a teleoperation job schedule, criteria are situation dependent. A criterion selection is fuzzily embedded in the task-skill matrix computation. However, goal achievement with minimum expected risk to the human operator is emphasized.
VAXELN Experimentation: Programming a Real-Time Periodic Task Dispatcher Using VAXELN Ada 1.1
1987-11-01
synchronization to the SQM and VAXELN semaphores. Based on real-time scheduling theory, the optimal rate-monotonic scheduling algorithm [Lui 73...schedulability test based on the rate-monotonic algorithm , namely task-lumping [Sha 871, was necessary to cal- culate the theoretically expected schedulability...8217 Guide Digital Equipment Corporation, Maynard, MA, 1986. [Lui 73] Liu, C.L., Layland, J.W. Scheduling Algorithms for Multi-programming in a Hard-Real-Time
Sort-Mid tasks scheduling algorithm in grid computing.
Reda, Naglaa M; Tawfik, A; Marzok, Mohamed A; Khamis, Soheir M
2015-11-01
Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.
Sort-Mid tasks scheduling algorithm in grid computing
Reda, Naglaa M.; Tawfik, A.; Marzok, Mohamed A.; Khamis, Soheir M.
2014-01-01
Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan. PMID:26644937
Research on schedulers for astronomical observatories
NASA Astrophysics Data System (ADS)
Colome, Josep; Colomer, Pau; Guàrdia, Josep; Ribas, Ignasi; Campreciós, Jordi; Coiffard, Thierry; Gesa, Lluis; Martínez, Francesc; Rodler, Florian
2012-09-01
The main task of a scheduler applied to astronomical observatories is the time optimization of the facility and the maximization of the scientific return. Scheduling of astronomical observations is an example of the classical task allocation problem known as the job-shop problem (JSP), where N ideal tasks are assigned to M identical resources, while minimizing the total execution time. A problem of higher complexity, called the Flexible-JSP (FJSP), arises when the tasks can be executed by different resources, i.e. by different telescopes, and it focuses on determining a routing policy (i.e., which machine to assign for each operation) other than the traditional scheduling decisions (i.e., to determine the starting time of each operation). In most cases there is no single best approach to solve the planning system and, therefore, various mathematical algorithms (Genetic Algorithms, Ant Colony Optimization algorithms, Multi-Objective Evolutionary algorithms, etc.) are usually considered to adapt the application to the system configuration and task execution constraints. The scheduling time-cycle is also an important ingredient to determine the best approach. A shortterm scheduler, for instance, has to find a good solution with the minimum computation time, providing the system with the capability to adapt the selected task to varying execution constraints (i.e., environment conditions). We present in this contribution an analysis of the task allocation problem and the solutions currently in use at different astronomical facilities. We also describe the schedulers for three different projects (CTA, CARMENES and TJO) where the conclusions of this analysis are applied to develop a suitable routine.
Davies, Daniel K; Stock, Steven E; Wehmeyer, Michael L
2002-10-01
Achieving greater independence for individuals with mental retardation depends upon the acquisition of several key skills, including time-management and scheduling skills. The ability to perform tasks according to a schedule is essential to domains like independent living and employment. The use of a portable schedule prompting system to increase independence and self-regulation in time-management for individuals with mental retardation was examined. Twelve people with mental retardation participated in a comparison of their use of the technology system to perform tasks on a schedule with use of a written schedule. Results demonstrated the utility of a Palmtop computer with schedule prompting software to increase independence in the performance of vocational and daily living tasks by individuals with mental retardation.
Automatic generation of efficient orderings of events for scheduling applications
NASA Technical Reports Server (NTRS)
Morris, Robert A.
1994-01-01
In scheduling a set of tasks, it is often not known with certainty how long a given event will take. We call this duration uncertainty. Duration uncertainty is a primary obstacle to the successful completion of a schedule. If a duration of one task is longer than expected, the remaining tasks are delayed. The delay may result in the abandonment of the schedule itself, a phenomenon known as schedule breakage. One response to schedule breakage is on-line, dynamic rescheduling. A more recent alternative is called proactive rescheduling. This method uses statistical data about the durations of events in order to anticipate the locations in the schedule where breakage is likely prior to the execution of the schedule. It generates alternative schedules at such sensitive points, which can be then applied by the scheduler at execution time, without the delay incurred by dynamic rescheduling. This paper proposes a technique for making proactive error management more effective. The technique is based on applying a similarity-based method of clustering to the problem of identifying similar events in a set of events.
Devi, D Chitra; Uthariaraj, V Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods.
Devi, D. Chitra; Uthariaraj, V. Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods. PMID:26955656
NASA Technical Reports Server (NTRS)
Jaap, John; Davis, Elizabeth; Richardson, Lea
2004-01-01
Planning and scheduling systems organize tasks into a timeline or schedule. Tasks are logically grouped into containers called models. Models are a collection of related tasks, along with their dependencies and requirements, that when met will produce the desired result. One challenging domain for a planning and scheduling system is the operation of on-board experiments for the International Space Station. In these experiments, the equipment used is among the most complex hardware ever developed; the information sought is at the cutting edge of scientific endeavor; and the procedures are intricate and exacting. Scheduling is made more difficult by a scarcity of station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling International Space Station experiment operations calls for a maximally expressive modeling schema.
Novel Hybrid Scheduling Technique for Sensor Nodes with Mixed Criticality Tasks.
Micea, Mihai-Victor; Stangaciu, Cristina-Sorina; Stangaciu, Valentin; Curiac, Daniel-Ioan
2017-06-26
Sensor networks become increasingly a key technology for complex control applications. Their potential use in safety- and time-critical domains has raised the need for task scheduling mechanisms specially adapted to sensor node specific requirements, often materialized in predictable jitter-less execution of tasks characterized by different criticality levels. This paper offers an efficient scheduling solution, named Hybrid Hard Real-Time Scheduling (H²RTS), which combines a static, clock driven method with a dynamic, event driven scheduling technique, in order to provide high execution predictability, while keeping a high node Central Processing Unit (CPU) utilization factor. From the detailed, integrated schedulability analysis of the H²RTS, a set of sufficiency tests are introduced and demonstrated based on the processor demand and linear upper bound metrics. The performance and correct behavior of the proposed hybrid scheduling technique have been extensively evaluated and validated both on a simulator and on a sensor mote equipped with ARM7 microcontroller.
Integrated coding-aware intra-ONU scheduling for passive optical networks with inter-ONU traffic
NASA Astrophysics Data System (ADS)
Li, Yan; Dai, Shifang; Wu, Weiwei
2016-12-01
Recently, with the soaring of traffic among optical network units (ONUs), network coding (NC) is becoming an appealing technique for improving the performance of passive optical networks (PONs) with such inter-ONU traffic. However, in the existed NC-based PONs, NC can only be implemented by buffering inter-ONU traffic at the optical line terminal (OLT) to wait for the establishment of coding condition, such passive uncertain waiting severely limits the effect of NC technique. In this paper, we will study integrated coding-aware intra-ONU scheduling in which the scheduling of inter-ONU traffic within each ONU will be undertaken by the OLT to actively facilitate the forming of coding inter-ONU traffic based on the global inter-ONU traffic distribution, and then the performance of PONs with inter-ONU traffic can be significantly improved. We firstly design two report message patterns and an inter-ONU traffic transmission framework as the basis for the integrated coding-aware intra-ONU scheduling. Three specific scheduling strategies are then proposed for adapting diverse global inter-ONU traffic distributions. The effectiveness of the work is finally evaluated by both theoretical analysis and simulations.
Real-time design with peer tasks
NASA Technical Reports Server (NTRS)
Goforth, Andre; Howes, Norman R.; Wood, Jonathan D.; Barnes, Michael J.
1995-01-01
We introduce a real-time design methodology for large scale, distributed, parallel architecture, real-time systems (LDPARTS), as an alternative to those methods using rate or dead-line monotonic analysis. In our method the fundamental units of prioritization, work items, are domain specific objects with timing requirements (deadlines) found in user's specification. A work item consists of a collection of tasks of equal priority. Current scheduling theories are applied with artifact deadlines introduced by the designer whereas our method schedules work items to meet user's specification deadlines (sometimes called end-to-end deadlines). Our method supports these scheduling properties. Work item scheduling is based on domain specific importance instead of task level urgency and still meets as many user specification deadlines as can be met by scheduling tasks with respect to urgency. Second, the minimum (closest) on-line deadline that can be guaranteed for a work item of highest importance, scheduled at run time, is approximately the inverse of the throughput, measured in work items per second. Third, throughput is not degraded during overload and instead of resorting to task shedding during overload, the designer can specify which work items to shed. We prove these properties in a mathematical model.
Emergency response nurse scheduling with medical support robot by multi-agent and fuzzy technique.
Kono, Shinya; Kitamura, Akira
2015-08-01
In this paper, a new co-operative re-scheduling method corresponding the medical support tasks that the time of occurrence can not be predicted is described, assuming robot can co-operate medical activities with the nurse. Here, Multi-Agent-System (MAS) is used for the co-operative re-scheduling, in which Fuzzy-Contract-Net (FCN) is applied to the robots task assignment for the emergency tasks. As the simulation results, it is confirmed that the re-scheduling results by the proposed method can keep the patients satisfaction and decrease the work load of the nurse.
Daye, Dania; Banzi, Lynda; Jones, Philip; Choy, Garry; Shepard, Jo-Anne O
2018-01-01
Background Lung cancer is the leading cause of cancer-related deaths in the United States. Despite mandated insurance coverage for eligible patients, lung cancer screening rates remain low. Digital platforms, including social media, provide a potentially valuable tool to enhance health promotion and patient engagement related to lung cancer screening (LCS). Objective The aim was to assess the effectiveness of LCS digital awareness campaigns on utilization of low-dose computed tomography (LDCT) and visits to institutional online educational content. Methods A pay-per-click campaign utilizing Google and Facebook targeted adults aged 55 years and older and caregivers aged 18 years and older (eg, spouses, adult children) with LCS content during a 20-week intervention period from May to September 2016. A concurrent pay-per-click campaign using LinkedIn and Twitter targeted health care providers with LCS content. Geographic target radius was within 60 miles of an academic medical center. Social media data included aggregate demographics and click-through rates (CTRs). Primary outcome measures were visits to institutional Web pages and scheduled LDCT exams. Study period was 20 weeks before, during, and after the digital awareness campaigns. Results Weekly visits to the institutional LCS Web pages were significantly higher during the digital awareness campaigns compared to the 20-week period prior to implementation (mean 823.9, SD 905.8 vs mean 51, SD 22.3, P=.001). The patient digital awareness campaign surpassed industry standard CTRs on Google (5.85%, 1108/18,955 vs 1.8%) and Facebook (2.59%, 47,750/1,846,070 vs 0.8%). The provider digital awareness campaign surpassed industry standard CTR on LinkedIn (1.1%, 630/57,079 vs 0.3%) but not Twitter (0.19%, 1139/587,133 vs 0.25%). Mean scheduled LDCT exam volumes per week before, during, and after the digital awareness campaigns were 17.4 (SD 7.5), 20.4 (SD 5.4), and 26.2 (SD 6.4), respectively, with the difference between the mean number of scheduled exams after the digital awareness campaigns and the number of exams scheduled before and after the digital awareness campaigns being statistically significant (P<.001). Conclusions Implementation of the LCS digital awareness campaigns was associated with increased visits to institutional educational Web pages and scheduled LDCT exams. Digital platforms are an important tool to enhance health promotion activities and engagement with patients and providers. PMID:29449199
Awareness of financial skills in dementia.
Van Wielingen, L E; Tuokko, H A; Cramer, K; Mateer, C A; Hultsch, D F
2004-07-01
The present study examined the relations among levels of cognitive functioning, executive dysfunction, and awareness of financial management capabilities among a sample of 42 community-dwelling persons with dementia. Financial tasks on the Measure of Awareness of Financial Skills (MAFS) were dichotomized as simple or complex based on Piaget's operational levels of childhood cognitive development. Severity of global cognitive impairment and executive dysfunction were significantly related to awareness of financial abilities as measured by informant-participant discrepancy scores on the MAFS. For persons with mild and moderate/severe dementia, and persons with and without executive dysfunction, proportions of awareness within simple and complex financial task categories were tabulated. Significantly less awareness of financial abilities occurred on complex compared with simple tasks. Individuals with mild dementia were significantly less aware of abilities on complex items, whereas persons with moderate/severe dementia were less aware of abilities, regardless of task complexity. Similar patterns of awareness were observed for individuals with and without executive dysfunction. These findings support literature suggesting that deficits associated with dementia first occur for complex cognitive tasks involving inductive reasoning or decision-making in novel situations, and identify where loss of function in the financial domain may first be expected. Copyright Taylor & Francis Ltd
Underwater Robot Task Planning Using Multi-Objective Meta-Heuristics
Landa-Torres, Itziar; Manjarres, Diana; Bilbao, Sonia; Del Ser, Javier
2017-01-01
Robotics deployed in the underwater medium are subject to stringent operational conditions that impose a high degree of criticality on the allocation of resources and the schedule of operations in mission planning. In this context the so-called cost of a mission must be considered as an additional criterion when designing optimal task schedules within the mission at hand. Such a cost can be conceived as the impact of the mission on the robotic resources themselves, which range from the consumption of battery to other negative effects such as mechanic erosion. This manuscript focuses on this issue by devising three heuristic solvers aimed at efficiently scheduling tasks in robotic swarms, which collaborate together to accomplish a mission, and by presenting experimental results obtained over realistic scenarios in the underwater environment. The heuristic techniques resort to a Random-Keys encoding strategy to represent the allocation of robots to tasks and the relative execution order of such tasks within the schedule of certain robots. The obtained results reveal interesting differences in terms of Pareto optimality and spread between the algorithms considered in the benchmark, which are insightful for the selection of a proper task scheduler in real underwater campaigns. PMID:28375160
Underwater Robot Task Planning Using Multi-Objective Meta-Heuristics.
Landa-Torres, Itziar; Manjarres, Diana; Bilbao, Sonia; Del Ser, Javier
2017-04-04
Robotics deployed in the underwater medium are subject to stringent operational conditions that impose a high degree of criticality on the allocation of resources and the schedule of operations in mission planning. In this context the so-called cost of a mission must be considered as an additional criterion when designing optimal task schedules within the mission at hand. Such a cost can be conceived as the impact of the mission on the robotic resources themselves, which range from the consumption of battery to other negative effects such as mechanic erosion. This manuscript focuses on this issue by devising three heuristic solvers aimed at efficiently scheduling tasks in robotic swarms, which collaborate together to accomplish a mission, and by presenting experimental results obtained over realistic scenarios in the underwater environment. The heuristic techniques resort to a Random-Keys encoding strategy to represent the allocation of robots to tasks and the relative execution order of such tasks within the schedule of certain robots. The obtained results reveal interesting differences in terms of Pareto optimality and spread between the algorithms considered in the benchmark, which are insightful for the selection of a proper task scheduler in real underwater campaigns.
OGUPSA sensor scheduling architecture and algorithm
NASA Astrophysics Data System (ADS)
Zhang, Zhixiong; Hintz, Kenneth J.
1996-06-01
This paper introduces a new architecture for a sensor measurement scheduler as well as a dynamic sensor scheduling algorithm called the on-line, greedy, urgency-driven, preemptive scheduling algorithm (OGUPSA). OGUPSA incorporates a preemptive mechanism which uses three policies, (1) most-urgent-first (MUF), (2) earliest- completed-first (ECF), and (3) least-versatile-first (LVF). The three policies are used successively to dynamically allocate and schedule and distribute a set of arriving tasks among a set of sensors. OGUPSA also can detect the failure of a task to meet a deadline as well as generate an optimal schedule in the sense of minimum makespan for a group of tasks with the same priorities. A side benefit is OGUPSA's ability to improve dynamic load balance among all sensors while being a polynomial time algorithm. Results of a simulation are presented for a simple sensor system.
Ding, Yi; Liu, Ru-De; McBride, Catherine A; Fan, Chung-Hau; Xu, Le; Wang, Jia
2018-05-07
This study examined pinyin (the official phonetic system that transcribes the lexical tones and pronunciation of Chinese characters) invented spelling and English invented spelling in 72 Mandarin-speaking 6th graders who learned English as their second language. The pinyin invented spelling task measured segmental-level awareness including syllable and phoneme awareness, and suprasegmental-level awareness including lexical tones and tone sandhi in Chinese Mandarin. The English invented spelling task manipulated segmental-level awareness including syllable awareness and phoneme awareness, and suprasegmental-level awareness including word stress. This pinyin task outperformed a traditional phonological awareness task that only measured segmental-level awareness and may have optimal utility to measure unique phonological and linguistic features in Chinese reading. The pinyin invented spelling uniquely explained variance in Chinese conventional spelling and word reading in both languages. The English invented spelling uniquely explained variance in conventional spelling and word reading in both languages. Our findings appear to support the role of phonological activation in Chinese reading. Our experimental linguistic manipulations altered the phonological awareness item difficulties.
Morphological and syntactic awareness in poor comprehenders: another piece of the puzzle.
Tong, Xiuli; Deacon, S Hélène; Cain, Kate
2014-01-01
Poor comprehenders have intact word-reading skills but struggle specifically with understanding what they read. We investigated whether two metalinguistic skills, morphological and syntactic awareness, are specifically related to poor reading comprehension by including separate and combined measures of each. We identified poor comprehenders (n = 15) and average comprehenders (n = 15) in Grade 4 who were matched on word-reading accuracy and speed, vocabulary, nonverbal cognitive ability, and age. The two groups performed comparably on a morphological awareness task that involved both morphological and syntactic cues. However, poor comprehenders performed less well than average comprehenders on a derivational word analogy task in which there was no additional syntactic information, thus tapping only morphological awareness, and also less well on a syntactic awareness task, in which there were no morphological manipulations. Our task and participant-selection process ruled out key nonmetalinguistic sources of influence on these tasks. These findings suggest that the relationships among reading comprehension, morphological awareness, and syntactic awareness depend on the tasks used to measure the latter two. Future research needs to identify precisely in which ways these metalinguistic difficulties connect to challenges with reading comprehension.
A temporary deficiency in self-control: Can heightened motivation overcome this effect?
Kelly, Claire L; Crawford, Trevor J; Gowen, Emma; Richardson, Kelly; Sünram-Lea, Sandra I
2017-05-01
Self-control is important for everyday life and involves behavioral regulation. Self-control requires effort, and when completing two successive self-control tasks, there is typically a temporary drop in performance in the second task. High self-reported motivation and being made self-aware somewhat counteract this effect-with the result that performance in the second task is enhanced. The current study explored the relationship between self-awareness and motivation on sequential self-control task performance. Before employing self-control in an antisaccade task, participants initially applied self-control in an incongruent Stroop task or completed a control task. After the Stroop task, participants unscrambled sentences that primed self-awareness (each started with the word "I") or unscrambled neutral sentences. Motivation was measured after the antisaccade task. Findings revealed that, after exerting self-control in the incongruent Stroop task, motivation predicted erroneous responses in the antisaccade task for those that unscrambled neutral sentences, and high motivation led to fewer errors. Those primed with self-awareness were somewhat more motivated overall, but motivation did not significantly predict antisaccade performance. Supporting the resource allocation account, if one was motivated-intrinsically or via the manipulation of self-awareness-resources were allocated to both tasks leading to the successful completion of two sequential self-control tasks. © 2017 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.
Enabling New Operations Concepts for Lunar and Mars Exploration
NASA Astrophysics Data System (ADS)
Jaap, John; Maxwell, Theresa
2005-02-01
The planning and scheduling of human space activities is an expensive and time-consuming task that seldom provides the crew with the control, flexibility, or insight that they need. During the past thirty years, scheduling software has seen only incremental improvements; however, software limitations continue to prevent even evolutionary improvements in the ``operations concept'' that is used for human space missions. Space missions are planned on the ground long before they are executed in space, and the crew has little input or influence on the schedule. In recent years the crew has been presented with a ``job jar'' of activities that they can do whenever they have time, but the contents of the jar is limited to tasks that do not use scarce shared resources and do not have external timing constraints. Consequently, the crew has no control over the schedule of the majority of their own tasks. As humans venture farther from earth for longer durations, it will become imperative that they have the ability to plan and schedule not only their own activities, but also the unattended activities of the systems, equipment, and robots on the journey with them. Significant software breakthroughs are required to enable the change in the operations concept. The crew does not have the time to build or modify the schedule by hand. They only need to issue a request to schedule a task and the system should automatically do the rest. Of course, the crew should not be required to build the complete schedule. Controllers on the ground should contribute the models and schedules where they have the better knowledge. The system must allow multiple simultaneous users, some on earth and some in space. The Mission Operations Laboratory at NASA's Marshall Space Flight Center has been researching and prototyping a modeling schema, scheduling engine, and system architecture that can enable the needed paradigm shift - it can make the crew autonomous. This schema and engine can be the core of a planning and scheduling system that would enable multiple planners, some on the earth and some in space, to build one integrated timeline. Its modeling schema can capture all the task requirements; its scheduling engine can build the schedule automatically; and its architecture can allow those (on earth and in space) with the best knowledge of the tasks to schedule them. This paper describes the enabling technology and proposes an operations concept for astronauts autonomously scheduling their activities and the activities around them.
Enabling New Operations Concepts for Lunar and Mars Exploration
NASA Technical Reports Server (NTRS)
Jaap, John; Maxwell, Theresa
2005-01-01
The planning and scheduling of human space activities is an expensive and time-consuming task that seldom provides the crew with the control, flexibility, or insight that they need. During the past thirty years, scheduling software has seen only incremental improvements; however, software limitations continue to prevent even evolutionary improvements in the operations concept that is used for human space missions. Space missions are planned on the ground long before they are executed in space, and the crew has little input or influence on the schedule. In recent years the crew has been presented with a job jar of activities that they can do whenever they have time, but the contents of the jar is limited to tasks that do not use scarce shared resources and do not have external timing constraints. Consequently, the crew has no control over the schedule of the majority of their own tasks. As humans venture farther from earth for longer durations, it will become imperative that they have the ability to plan and schedule not only their own activities, but also the unattended activities of the systems, equipment, and robots on the journey with them. Significant software breakthroughs are required to enable the change in the operations concept. The crew does not have the time to build or modify the schedule by hand. They only need to issue a request to schedule a task and the system should automatically do the rest. Of course, the crew should not be required to build the complete schedule. Controllers on the ground should contribute the models and schedules where they have the better knowledge. The system must allow multiple simultaneous users, some on earth and some in space. The Mission Operations Laboratory at NASA's Marshall Space flight Center has been researching and prototyping a modeling schema, scheduling engine, and system architecture that can enable the needed paradigm shift - it can make the crew autonomous. This schema and engine can be the core of a planning and scheduling system that would enable multiple planners, some on the earth and some in space, to build one integrated timeline. Its modeling schema can capture all the task requirements; its scheduling engine can build the schedule automatically, and its architecture can allow those (on earth and in space) with the best knowledge of the tasks to schedule them. This paper describes the enabling technology and proposes an operations concept for astronauts autonomously scheduling their activities and the activities around them.
Emotional reactivity and awareness of task performance in Alzheimer's disease.
Mograbi, Daniel C; Brown, Richard G; Salas, Christian; Morris, Robin G
2012-07-01
Lack of awareness about performance in tasks is a common feature of Alzheimer's disease. Nevertheless, clinical anecdotes have suggested that patients may show emotional or behavioural responses to the experience of failure despite reporting limited awareness, an aspect which has been little explored experimentally. The current study investigated emotional reactions to success or failure in tasks despite unawareness of performance in Alzheimer's disease. For this purpose, novel computerised tasks which expose participants to systematic success or failure were used in a group of Alzheimer's disease patients (n=23) and age-matched controls (n=21). Two experiments, the first with reaction time tasks and the second with memory tasks, were carried out, and in each experiment two parallel tasks were used, one in a success condition and one in a failure condition. Awareness of performance was measured comparing participant estimations of performance with actual performance. Emotional reactivity was assessed with a self-report questionnaire and rating of filmed facial expressions. In both experiments the results indicated that, relative to controls, Alzheimer's disease patients exhibited impaired awareness of performance, but comparable differential reactivity to failure relative to success tasks, both in terms of self-report and facial expressions. This suggests that affective valence of failure experience is processed despite unawareness of task performance, which might indicate implicit processing of information in neural pathways bypassing awareness. Copyright © 2012 Elsevier Ltd. All rights reserved.
Novel Hybrid Scheduling Technique for Sensor Nodes with Mixed Criticality Tasks
Micea, Mihai-Victor; Stangaciu, Cristina-Sorina; Stangaciu, Valentin; Curiac, Daniel-Ioan
2017-01-01
Sensor networks become increasingly a key technology for complex control applications. Their potential use in safety- and time-critical domains has raised the need for task scheduling mechanisms specially adapted to sensor node specific requirements, often materialized in predictable jitter-less execution of tasks characterized by different criticality levels. This paper offers an efficient scheduling solution, named Hybrid Hard Real-Time Scheduling (H2RTS), which combines a static, clock driven method with a dynamic, event driven scheduling technique, in order to provide high execution predictability, while keeping a high node Central Processing Unit (CPU) utilization factor. From the detailed, integrated schedulability analysis of the H2RTS, a set of sufficiency tests are introduced and demonstrated based on the processor demand and linear upper bound metrics. The performance and correct behavior of the proposed hybrid scheduling technique have been extensively evaluated and validated both on a simulator and on a sensor mote equipped with ARM7 microcontroller. PMID:28672856
A sustainable genetic algorithm for satellite resource allocation
NASA Technical Reports Server (NTRS)
Abbott, R. J.; Campbell, M. L.; Krenz, W. C.
1995-01-01
A hybrid genetic algorithm is used to schedule tasks for 8 satellites, which can be modelled as a robot whose task is to retrieve objects from a two dimensional field. The objective is to find a schedule that maximizes the value of objects retrieved. Typical of the real-world tasks to which this corresponds is the scheduling of ground contacts for a communications satellite. An important feature of our application is that the amount of time available for running the scheduler is not necessarily known in advance. This requires that the scheduler produce reasonably good results after a short period but that it also continue to improve its results if allowed to run for a longer period. We satisfy this requirement by developing what we call a sustainable genetic algorithm.
Avoiding the conflict: Metacognitive awareness drives the selection of low-demand contexts.
Desender, Kobe; Buc Calderon, Cristian; Van Opstal, Filip; Van den Bussche, Eva
2017-07-01
Previous research attempted to explain how humans strategically adapt behavior in order to achieve successful task performance. Recently, it has been suggested that 1 potential strategy is to avoid tasks that are too demanding. Here, we report 3 experiments that investigate the empirically neglected role of metacognitive awareness in this process. In these experiments, participants could freely choose between performing a task in either a high-demand or a low-demand context. Using subliminal priming, we ensured that participants were not aware of the visual stimuli creating these different demand contexts. Our results showed that participants who noticed a difference in task difficulty (i.e., metacognitive aware participants) developed a clear preference for the low-demand context. In contrast, participants who experienced no difference in task difficulty (i.e., metacognitive unaware participants) based their choices on variables unrelated to cognitive demand (e.g., the color or location associated with a context), and did not develop a preference for the low-demand context. Crucially, this pattern was found despite identical task performance in both metacognitive awareness groups. A multiple regression approach confirmed that metacognitive awareness was the main factor driving the preference for low-demand contexts. These results argue for an important role of metacognitive awareness in the strategic avoidance of demanding tasks. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Multiresource allocation and scheduling for periodic soft real-time applications
NASA Astrophysics Data System (ADS)
Gopalan, Kartik; Chiueh, Tzi-cker
2001-12-01
Real-time applications that utilize multiple system resources, such as CPU, disks, and network links, require coordinated scheduling of these resources in order to meet their end-to-end performance requirements. Most state-of-the-art operating systems support independent resource allocation and deadline-driven scheduling but lack coordination among multiple heterogeneous resources. This paper describes the design and implementation of an Integrated Real-time Resource Scheduler (IRS) that performs coordinated allocation and scheduling of multiple heterogeneous resources on the same machine for periodic soft real-time application. The principal feature of IRS is a heuristic multi-resource allocation algorithm that reserves multiple resources for real-time applications in a manner that can maximize the number of applications admitted into the system in the long run. At run-time, a global scheduler dispatches the tasks of the soft real-time application to individual resource schedulers according to the precedence constraints between tasks. The individual resource schedulers, which could be any deadline based schedulers, can make scheduling decisions locally and yet collectively satisfy a real-time application's performance requirements. The tightness of overall timing guarantees is ultimately determined by the properties of individual resource schedulers. However, IRS maximizes overall system resource utilization efficiency by coordinating deadline assignment across multiple tasks in a soft real-time application.
Logan, Dustin M.; Hill, Kyle R.; Larson, Michael J.
2015-01-01
Poor awareness has been linked to worse recovery and rehabilitation outcomes following moderate-to-severe traumatic brain injury (M/S TBI). The error positivity (Pe) component of the event-related potential (ERP) is linked to error awareness and cognitive control. Participants included 37 neurologically healthy controls and 24 individuals with M/S TBI who completed a brief neuropsychological battery and the error awareness task (EAT), a modified Stroop go/no-go task that elicits aware and unaware errors. Analyses compared between-group no-go accuracy (including accuracy between the first and second halves of the task to measure attention and fatigue), error awareness performance, and Pe amplitude by level of awareness. The M/S TBI group decreased in accuracy and maintained error awareness over time; control participants improved both accuracy and error awareness during the course of the task. Pe amplitude was larger for aware than unaware errors for both groups; however, consistent with previous research on the Pe and TBI, there were no significant between-group differences for Pe amplitudes. Findings suggest possible attention difficulties and low improvement of performance over time may influence specific aspects of error awareness in M/S TBI. PMID:26217212
Wang, Zhaocai; Ji, Zuwen; Wang, Xiaoming; Wu, Tunhua; Huang, Wei
2017-12-01
As a promising approach to solve the computationally intractable problem, the method based on DNA computing is an emerging research area including mathematics, computer science and molecular biology. The task scheduling problem, as a well-known NP-complete problem, arranges n jobs to m individuals and finds the minimum execution time of last finished individual. In this paper, we use a biologically inspired computational model and describe a new parallel algorithm to solve the task scheduling problem by basic DNA molecular operations. In turn, we skillfully design flexible length DNA strands to represent elements of the allocation matrix, take appropriate biological experiment operations and get solutions of the task scheduling problem in proper length range with less than O(n 2 ) time complexity. Copyright © 2017. Published by Elsevier B.V.
The Emergence of Visual Awareness: Temporal Dynamics in Relation to Task and Mask Type
Kiefer, Markus; Kammer, Thomas
2017-01-01
One aspect of consciousness phenomena, the temporal emergence of visual awareness, has been subject of a controversial debate. How can visual awareness, that is the experiential quality of visual stimuli, be characterized best? Is there a sharp discontinuous or dichotomous transition between unaware and fully aware states, or does awareness emerge gradually encompassing intermediate states? Previous studies yielded conflicting results and supported both dichotomous and gradual views. It is well conceivable that these conflicting results are more than noise, but reflect the dynamic nature of the temporal emergence of visual awareness. Using a psychophysical approach, the present research tested whether the emergence of visual awareness is context-dependent with a temporal two-alternative forced choice task. During backward masking of word targets, it was assessed whether the relative temporal sequence of stimulus thresholds is modulated by the task (stimulus presence, letter case, lexical decision, and semantic category) and by mask type. Four masks with different similarity to the target features were created. Psychophysical functions were then fitted to the accuracy data in the different task conditions as a function of the stimulus mask SOA in order to determine the inflection point (conscious threshold of each feature) and slope of the psychophysical function (transition from unaware to aware within each feature). Depending on feature-mask similarity, thresholds in the different tasks were highly dispersed suggesting a graded transition from unawareness to awareness or had less differentiated thresholds indicating that clusters of features probed by the tasks quite simultaneously contribute to the percept. The latter observation, although not compatible with the notion of a sharp all-or-none transition between unaware and aware states, suggests a less gradual or more discontinuous emergence of awareness. Analyses of slopes of the fitted psychophysical functions also indicated that the emergence of awareness of single features is variable and might be influenced by the continuity of the feature dimensions. The present work thus suggests that the emergence of awareness is neither purely gradual nor dichotomous, but highly dynamic depending on the task and mask type. PMID:28316583
NASA Technical Reports Server (NTRS)
Moore, J. E.
1975-01-01
An enumeration algorithm is presented for solving a scheduling problem similar to the single machine job shop problem with sequence dependent setup times. The scheduling problem differs from the job shop problem in two ways. First, its objective is to select an optimum subset of the available tasks to be performed during a fixed period of time. Secondly, each task scheduled is constrained to occur within its particular scheduling window. The algorithm is currently being used to develop typical observational timelines for a telescope that will be operated in earth orbit. Computational times associated with timeline development are presented.
Is awareness necessary for true inference?
Leo, Peter D; Greene, Anthony J
2008-09-01
In transitive inference, participants learn a set of context-dependent discriminations that can be organized into a hierarchy that supports inference. Several studies show that inference occurs with or without task awareness. However, some studies assert that without awareness, performance is attributable to pseudoinference. By this account, inference-like performance is achieved by differential stimulus weighting according to the stimuli's proximity to the end items of the hierarchy. We implement an inference task that cannot be based on differential stimulus weighting. The design itself rules out pseudoinference strategies. Success on the task without evidence of deliberative strategies would therefore suggest that true inference can be achieved implicitly. We found that accurate performance on the inference task was not dependent on explicit awareness. The finding is consistent with a growing body of evidence that indicates that forms of learning and memory supporting inference and flexibility do not necessarily depend on task awareness.
TTSA: An Effective Scheduling Approach for Delay Bounded Tasks in Hybrid Clouds.
Yuan, Haitao; Bi, Jing; Tan, Wei; Zhou, MengChu; Li, Bo Hu; Li, Jianqiang
2017-11-01
The economy of scale provided by cloud attracts a growing number of organizations and industrial companies to deploy their applications in cloud data centers (CDCs) and to provide services to users around the world. The uncertainty of arriving tasks makes it a big challenge for private CDC to cost-effectively schedule delay bounded tasks without exceeding their delay bounds. Unlike previous studies, this paper takes into account the cost minimization problem for private CDC in hybrid clouds, where the energy price of private CDC and execution price of public clouds both show the temporal diversity. Then, this paper proposes a temporal task scheduling algorithm (TTSA) to effectively dispatch all arriving tasks to private CDC and public clouds. In each iteration of TTSA, the cost minimization problem is modeled as a mixed integer linear program and solved by a hybrid simulated-annealing particle-swarm-optimization. The experimental results demonstrate that compared with the existing methods, the optimal or suboptimal scheduling strategy produced by TTSA can efficiently increase the throughput and reduce the cost of private CDC while meeting the delay bounds of all the tasks.
The School Schedule--Servant or Mistress?
ERIC Educational Resources Information Center
Holmes, Mark
1984-01-01
Pointing out that time is a dimension of school wealth, the author explores its use in school schedules. Administrators need to be aware of the relationship between time allocation and learning consequences. (MD)
Jessup, Dana L; Glover Iv, McKinley; Daye, Dania; Banzi, Lynda; Jones, Philip; Choy, Garry; Shepard, Jo-Anne O; Flores, Efrén J
2018-02-15
Lung cancer is the leading cause of cancer-related deaths in the United States. Despite mandated insurance coverage for eligible patients, lung cancer screening rates remain low. Digital platforms, including social media, provide a potentially valuable tool to enhance health promotion and patient engagement related to lung cancer screening (LCS). The aim was to assess the effectiveness of LCS digital awareness campaigns on utilization of low-dose computed tomography (LDCT) and visits to institutional online educational content. A pay-per-click campaign utilizing Google and Facebook targeted adults aged 55 years and older and caregivers aged 18 years and older (eg, spouses, adult children) with LCS content during a 20-week intervention period from May to September 2016. A concurrent pay-per-click campaign using LinkedIn and Twitter targeted health care providers with LCS content. Geographic target radius was within 60 miles of an academic medical center. Social media data included aggregate demographics and click-through rates (CTRs). Primary outcome measures were visits to institutional Web pages and scheduled LDCT exams. Study period was 20 weeks before, during, and after the digital awareness campaigns. Weekly visits to the institutional LCS Web pages were significantly higher during the digital awareness campaigns compared to the 20-week period prior to implementation (mean 823.9, SD 905.8 vs mean 51, SD 22.3, P=.001). The patient digital awareness campaign surpassed industry standard CTRs on Google (5.85%, 1108/18,955 vs 1.8%) and Facebook (2.59%, 47,750/1,846,070 vs 0.8%). The provider digital awareness campaign surpassed industry standard CTR on LinkedIn (1.1%, 630/57,079 vs 0.3%) but not Twitter (0.19%, 1139/587,133 vs 0.25%). Mean scheduled LDCT exam volumes per week before, during, and after the digital awareness campaigns were 17.4 (SD 7.5), 20.4 (SD 5.4), and 26.2 (SD 6.4), respectively, with the difference between the mean number of scheduled exams after the digital awareness campaigns and the number of exams scheduled before and after the digital awareness campaigns being statistically significant (P<.001). Implementation of the LCS digital awareness campaigns was associated with increased visits to institutional educational Web pages and scheduled LDCT exams. Digital platforms are an important tool to enhance health promotion activities and engagement with patients and providers. ©Dana L Jessup, McKinley Glover IV, Dania Daye, Lynda Banzi, Philip Jones, Garry Choy, Jo-Anne O Shepard, Efrén J Flores. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 15.02.2018.
A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.
Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao
2018-05-23
The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.
Development of phonological awareness in bilingual chinese children.
Chen, Xi; Ku, Yu-Min; Koyama, Emiko; Anderson, Richard C; Li, Wenling
2008-11-01
This study investigated the phonological awareness of 219 first, second, and fourth grade Cantonese-speaking children from the south of China, who received immersion Mandarin instruction beginning in the first grade. Children received onset, rime and tone awareness tasks in Cantonese and Mandarin. Children performed better on the Cantonese onset awareness task in grade one, but the difference disappeared in higher grades. However, their performance on the rime and tone awareness tasks was better in Mandarin. These results reflect the phonological structure of the two languages: Mandarin has a more complex onset system, whereas Cantonese has more complex tone and rime systems. Moreover, children's phonological awareness increased faster in Mandarin, which likely resulted from Mandarin instruction. Confirmatory factor analysis suggested that onset-rime awareness is a universal construct, whereas tone awareness is a language-specific construct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreepathi, Sarat; D'Azevedo, Eduardo; Philip, Bobby
On large supercomputers, the job scheduling systems may assign a non-contiguous node allocation for user applications depending on available resources. With parallel applications using MPI (Message Passing Interface), the default process ordering does not take into account the actual physical node layout available to the application. This contributes to non-locality in terms of physical network topology and impacts communication performance of the application. In order to mitigate such performance penalties, this work describes techniques to identify suitable task mapping that takes the layout of the allocated nodes as well as the application's communication behavior into account. During the first phasemore » of this research, we instrumented and collected performance data to characterize communication behavior of critical US DOE (United States - Department of Energy) applications using an augmented version of the mpiP tool. Subsequently, we developed several reordering methods (spectral bisection, neighbor join tree etc.) to combine node layout and application communication data for optimized task placement. We developed a tool called mpiAproxy to facilitate detailed evaluation of the various reordering algorithms without requiring full application executions. This work presents a comprehensive performance evaluation (14,000 experiments) of the various task mapping techniques in lowering communication costs on Titan, the leadership class supercomputer at Oak Ridge National Laboratory.« less
The Design of a Real Time Operating System for a Fault Tolerant Microcomputer
1986-12-01
Scheduler then enqueues all the new jobs for the new frame. Upon completion of the Purge and Task Scheduler routines the Cycle Interrupt Handler returns...the scheduling of new tasks in a new minor cycle to make room for the new jobs . The purge operation will usually not remove the same number of jobs each
Time-critical multirate scheduling using contemporary real-time operating system services
NASA Technical Reports Server (NTRS)
Eckhardt, D. E., Jr.
1983-01-01
Although real-time operating systems provide many of the task control services necessary to process time-critical applications (i.e., applications with fixed, invariant deadlines), it may still be necessary to provide a scheduling algorithm at a level above the operating system in order to coordinate a set of synchronized, time-critical tasks executing at different cyclic rates. The scheduling requirements for such applications and develops scheduling algorithms using services provided by contemporary real-time operating systems.
1989-12-01
to construct because the mechanism is a dispatching procedure. Since all nonpreemptive schedules are contained in the set of all preemptive schedules...the optimal value of T’.. in the preemptive case is at least a lower bound on the optimal T., for the nonpreemptive schedules. This principle is the...adapt to changes in the enviro.nment. In hard real-time systems, tasks are also distinguished as preemptable and nonpreemptable . A task is preemptable
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127
Research on Scheduling Algorithm for Multi-satellite and Point Target Task on Swinging Mode
NASA Astrophysics Data System (ADS)
Wang, M.; Dai, G.; Peng, L.; Song, Z.; Chen, G.
2012-12-01
Nowadays, using satellite in space to observe ground is an important and major method to obtain ground information. With the development of the scientific technology in the field of space, many fields such as military and economic and other areas have more and more requirement of space technology because of the benefits of the satellite's widespread, timeliness and unlimited of area and country. And at the same time, because of the wide use of all kinds of satellites, sensors, repeater satellites and ground receiving stations, ground control system are now facing great challenge. Therefore, how to make the best value of satellite resources so as to make full use of them becomes an important problem of ground control system. Satellite scheduling is to distribute the resource to all tasks without conflict to obtain the scheduling result so as to complete as many tasks as possible to meet user's requirement under considering the condition of the requirement of satellites, sensors and ground receiving stations. Considering the size of the task, we can divide tasks into point task and area task. This paper only considers point targets. In this paper, a description of satellite scheduling problem and a chief introduction of the theory of satellite scheduling are firstly made. We also analyze the restriction of resource and task in scheduling satellites. The input and output flow of scheduling process are also chiefly described in the paper. On the basis of these analyses, we put forward a scheduling model named as multi-variable optimization model for multi-satellite and point target task on swinging mode. In the multi-variable optimization model, the scheduling problem is transformed the parametric optimization problem. The parameter we wish to optimize is the swinging angle of every time-window. In the view of the efficiency and accuracy, some important problems relating the satellite scheduling such as the angle relation between satellites and ground targets, positive and negative swinging angle and the computation of time window are analyzed and discussed. And many strategies to improve the efficiency of this model are also put forward. In order to solve the model, we bring forward the conception of activity sequence map. By using the activity sequence map, the activity choice and the start time of the activity can be divided. We also bring forward three neighborhood operators to search the result space. The front movement remaining time and the back movement remaining time are used to analyze the feasibility to generate solution from neighborhood operators. Lastly, the algorithm to solve the problem and model is put forward based genetic algorithm. Population initialization, crossover operator, mutation operator, individual evaluation, collision decrease operator, select operator and collision elimination operator is designed in the paper. Finally, the scheduling result and the simulation for a practical example on 5 satellites and 100 point targets with swinging mode is given, and the scheduling performances are also analyzed while the swinging angle in 0, 5, 10, 15, 25. It can be shown by the result that the model and the algorithm are more effective than those ones without swinging mode.
Cloud computing task scheduling strategy based on differential evolution and ant colony optimization
NASA Astrophysics Data System (ADS)
Ge, Junwei; Cai, Yu; Fang, Yiqiu
2018-05-01
This paper proposes a task scheduling strategy DEACO based on the combination of Differential Evolution (DE) and Ant Colony Optimization (ACO), aiming at the single problem of optimization objective in cloud computing task scheduling, this paper combines the shortest task completion time, cost and load balancing. DEACO uses the solution of the DE to initialize the initial pheromone of ACO, reduces the time of collecting the pheromone in ACO in the early, and improves the pheromone updating rule through the load factor. The proposed algorithm is simulated on cloudsim, and compared with the min-min and ACO. The experimental results show that DEACO is more superior in terms of time, cost, and load.
Hybrid glowworm swarm optimization for task scheduling in the cloud environment
NASA Astrophysics Data System (ADS)
Zhou, Jing; Dong, Shoubin
2018-06-01
In recent years many heuristic algorithms have been proposed to solve task scheduling problems in the cloud environment owing to their optimization capability. This article proposes a hybrid glowworm swarm optimization (HGSO) based on glowworm swarm optimization (GSO), which uses a technique of evolutionary computation, a strategy of quantum behaviour based on the principle of neighbourhood, offspring production and random walk, to achieve more efficient scheduling with reasonable scheduling costs. The proposed HGSO reduces the redundant computation and the dependence on the initialization of GSO, accelerates the convergence and more easily escapes from local optima. The conducted experiments and statistical analysis showed that in most cases the proposed HGSO algorithm outperformed previous heuristic algorithms to deal with independent tasks.
Expert mission planning and replanning scheduling system for NASA KSC payload operations
NASA Technical Reports Server (NTRS)
Pierce, Roger
1987-01-01
EMPRESS (Expert Mission Planning and REplanning Scheduling System) is an expert system created to assist payload mission planners at Kennedy in the long range planning and scheduling of horizontal payloads for space shuttle flights. Using the current flight manifest, these planners develop mission and payload schedules detailing all processing to be performed in the Operations and Checkout building at Kennedy. With the EMPRESS system, schedules are generated quickly using standard flows that represent the tasks and resources required to process a specific horizontal carrier. Resources can be tracked and resource conflicts can be determined and resolved interactively. Constraint relationships between tasks are maintained and can be enforced when a task is moved or rescheduled. The domain, structure, and functionality of the EMPRESS system is briefly designed. The limitations of the EMPRESS system are described as well as improvements expected with the EMPRESS-2 development.
Cogito ergo video: Task-relevant information is involuntarily boosted into awareness.
Gayet, Surya; Brascamp, Jan W; Van der Stigchel, Stefan; Paffen, Chris L E
2015-01-01
Only part of the visual information that impinges on our retinae reaches visual awareness. In a series of three experiments, we investigated how the task relevance of incoming visual information affects its access to visual awareness. On each trial, participants were instructed to memorize one of two presented hues, drawn from different color categories (e.g., red and green), for later recall. During the retention interval, participants were presented with a differently colored grating in each eye such as to elicit binocular rivalry. A grating matched either the task-relevant (memorized) color category or the task-irrelevant (nonmemorized) color category. We found that the rivalrous stimulus that matched the task-relevant color category tended to dominate awareness over the rivalrous stimulus that matched the task-irrelevant color category. This effect of task relevance persisted when participants reported the orientation of the rivalrous stimuli, even though in this case color information was completely irrelevant for the task of reporting perceptual dominance during rivalry. When participants memorized the shape of a colored stimulus, however, its color category did not affect predominance of rivalrous stimuli during retention. Taken together, these results indicate that the selection of task-relevant information is under volitional control but that visual input that matches this information is boosted into awareness irrespective of whether this is useful for the observer.
Online and offline awareness deficits: Anosognosia for spatial neglect.
Chen, Peii; Toglia, Joan
2018-04-12
Anosognosia for spatial neglect (ASN) can be offline or online. Offline ASN is general unawareness of having experienced spatial deficits. Online ASN is an awareness deficit of underestimating spatial difficulties that likely to occur in an upcoming task (anticipatory ASN) or have just occurred during the task (emergent ASN). We explored the relationships among spatial neglect, offline ASN, anticipatory ASN, and emergent ASN. Research Method/Design: Forty-four survivors of stroke answered questionnaires assessing offline and online self-awareness of spatial problems. The online questionnaire was asked immediately before and after each of 4 tests for spatial neglect, including shape cancellation, address and sentence copying, telephone dialing, and indented paragraph reading. Participants were certain they had difficulties in daily spatial tasks (offline awareness), in the task they were about to perform (anticipatory awareness) and had just performed (emergent awareness). Nonetheless, they consistently overestimated their spatial abilities, indicating ASN. Offline and online ASN appeared independent. Online ASN improved after task execution. Neglect severity was not positively correlated with offline ASN. Greater neglect severity correlated with both greater anticipatory and emergent ASN. Regardless of neglect severity, we found task-specific differences in emergent ASN but not in anticipatory ASN. Individuals with spatial neglect acknowledge their spatial difficulty (certainty of error occurrence) but may not necessarily recognize the extent of their difficulty (accuracy of error estimation). Our findings suggest that offline and online ASN are independent. A potential implication from the study is that familiar and challenging tasks may facilitate emergence of self-awareness. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Scheduling periodic jobs that allow imprecise results
NASA Technical Reports Server (NTRS)
Chung, Jen-Yao; Liu, Jane W. S.; Lin, Kwei-Jay
1990-01-01
The problem of scheduling periodic jobs in hard real-time systems that support imprecise computations is discussed. Two workload models of imprecise computations are presented. These models differ from traditional models in that a task may be terminated any time after it has produced an acceptable result. Each task is logically decomposed into a mandatory part followed by an optional part. In a feasible schedule, the mandatory part of every task is completed before the deadline of the task. The optional part refines the result produced by the mandatory part to reduce the error in the result. Applications are classified as type N and type C, according to undesirable effects of errors. The two workload models characterize the two types of applications. The optional parts of the tasks in an N job need not ever be completed. The resulting quality of each type-N job is measured in terms of the average error in the results over several consecutive periods. A class of preemptive, priority-driven algorithms that leads to feasible schedules with small average error is described and evaluated.
Defense Science Board Task Force Report: The Role of Autonomy in DoD Systems
2012-07-01
ASD(R&E) and the Military Services should schedule periodic, on-site collaborations that bring together academia, government and not-for-profit labs...expressing UxV activities, increased problem solving, planning and scheduling capabilities to enable dynamic tasking of distributed UxVs and tools for...industrial, governmental and military. Manufacturing has long exploited planning for logistics and matching product demand to production schedules
In-Space Crew-Collaborative Task Scheduling
NASA Technical Reports Server (NTRS)
Jaap, John; Meyer, Patrick; Davis, Elizabeth; Richardson, Lea
2007-01-01
For all past and current human space missions, the final scheduling of tasks to be done in space has been devoid of crew control, flexibility, and insight. Ground controllers, with minimal input from the crew, schedule the tasks and uplink the timeline to the crew or uplink the command sequences to the hardware. Prior to the International Space Station (ISS), the crew could make requests about tomorrow s timeline, they could omit a task, or they could request that something in the timeline be delayed. This lack of control over one's own schedule has had negative consequences. There is anecdotal consensus among astronauts that control over their own schedules will mitigate the stresses of long duration missions. On ISS, a modicum of crew control is provided by the job jar. Ground controllers prepare a task list (a.k.a. "job jar") of non-conflicting tasks from which jobs can be chosen by the in space crew. Because there is little free time and few interesting non-conflicting activities, the task-list approach provides little relief from the tedium of being micro-managed by the timeline. Scheduling for space missions is a complex and laborious undertaking which usually requires a large cadre of trained specialists and suites of complex software tools. It is a giant leap from today s ground prepared timeline (with a job jar) to full crew control of the timeline. However, technological advances, currently in-work or proposed, make it reasonable to consider scheduling a collaborative effort by the ground-based teams and the in-space crew. Collaboration would allow the crew to make minor adjustments, add tasks according to their preferences, understand the reasons for the placement of tasks on the timeline, and provide them a sense of control. In foreseeable but extraordinary situations, such as a quick response to anomalies and extended or unexpected loss of signal, the crew should have the autonomous ability to make appropriate modifications to the timeline, extend the timeline, or even start over with a new timeline. The Vision for Space Exploration (VSE), currently being pursued by the National Aeronautics and Space Administration (NASA), will send humans to Mars in a few decades. Stresses on the human mind will be exacerbated by the longer durations and greater distances, and it will be imperative to implement stress-reducing innovations such as giving the crew control of their daily activities.
Astronaut Office Scheduling System Software
NASA Technical Reports Server (NTRS)
Brown, Estevancio
2010-01-01
AOSS is a highly efficient scheduling application that uses various tools to schedule astronauts weekly appointment information. This program represents an integration of many technologies into a single application to facilitate schedule sharing and management. It is a Windows-based application developed in Visual Basic. Because the NASA standard office automation load environment is Microsoft-based, Visual Basic provides AO SS developers with the ability to interact with Windows collaboration components by accessing objects models from applications like Outlook and Excel. This also gives developers the ability to create newly customizable components that perform specialized tasks pertaining to scheduling reporting inside the application. With this capability, AOSS can perform various asynchronous tasks, such as gathering/ sending/ managing astronauts schedule information directly to their Outlook calendars at any time.
Distributed Processor/Memory Architectures Design Program
1975-02-01
Event Scheduling Plo 31 Globat LAl Message Input Event Sicheduling Fhou ..... ............... 106 32 It tc Iata Representation...298 138 GEX LEX Scheduling Phlmophy ....... ...................... 300 139 Executive Comirol Herarchy... Scheduler Subroutine lnterrelatiomhips . ..... ................. 312 145 Task Scheduler Message Scatuer. . ...... ....................... 315 146
Modifying the Frequency and Characteristics of Involuntary Autobiographical Memories
Vannucci, Manila; Batool, Iram; Pelagatti, Claudia; Mazzoni, Giuliana
2014-01-01
Recent studies have shown that involuntary autobiographical memories (IAMs) can be elicited in the laboratory. Here we assessed whether the specific instructions given to participants can change the nature of the IAMs reported, in terms of both their frequency and their characteristics. People were either made or not made aware that the aim of the study was to examine IAMs. They reported mental contents either whenever they became aware of them or following a predetermined schedule. Both making people aware of the aim of the study and following a fixed schedule of interruptions increased significantly the number of IAMs reported. When aware of the aim of the study, participants reported more specific memories that had been retrieved and rehearsed more often in the past. These findings demonstrate that the number and characteristics of memories depend on the procedure used. Explanations of these effects and their implications for research on IAMs are discussed. PMID:24717536
The Chronic Detrimental Impact of Interruptions in a Simulated Submarine Track Management Task.
Loft, Shayne; Sadler, Andreas; Braithwaite, Janelle; Huf, Samuel
2015-12-01
The objective of this article is to examine the extent to which interruptions negatively impact situation awareness and long-term performance in a submarine track management task where pre- and postinterruption display scenes remained essentially identical. Interruptions in command and control task environments can degrade performance well beyond the first postinterruption action typically measured for sequential static tasks, because individuals need to recover their situation awareness for multiple unfolding display events. Participants in the current study returned to an unchanged display scene following interruption and therefore could be more immune to such long-term performance deficits. The task required participants to monitor a display to detect contact heading changes and to make enemy engagement decisions. Situation awareness (Situation Present Assessment Method) and subjective workload (NASA-Task Load Index) were measured. The interruption replaced the display for 20 s with a blank screen, during which participants completed a classification task. Situation awareness after returning from interruption was degraded. Participants were slower to make correct engagement decisions and slower and less accurate in detecting heading changes, despite these task decisions being made at least 40 s following the interruption. Interruptions negatively impacted situation awareness and long-term performance because participants needed to redetermine the location and spatial relationship between the displayed contacts when returning from interruption, either because their situation awareness for the preinterruption scene decayed or because they did not encode the preinterruption scene. Interruption in work contexts such as submarines is unavoidable, and further understanding of how operators are affected is required to improve work design and training. © 2015, Human Factors and Ergonomics Society.
ERIC Educational Resources Information Center
Keetch, Katherine M.; Lee, Timothy D.
2007-01-01
Research suggests that allowing individuals to control their own practice schedule has a positive effect on motor learning. In this experiment we examined the effect of task difficulty and self-regulated practice strategies on motor learning. The task was to move a mouse-operated cursor through pattern arrays that differed in two levels of…
Scheduling techniques in the Request Oriented Scheduling Engine (ROSE)
NASA Technical Reports Server (NTRS)
Zoch, David R.
1991-01-01
Scheduling techniques in the ROSE are presented in the form of the viewgraphs. The following subject areas are covered: agenda; ROSE summary and history; NCC-ROSE task goals; accomplishments; ROSE timeline manager; scheduling concerns; current and ROSE approaches; initial scheduling; BFSSE overview and example; and summary.
NASA Astrophysics Data System (ADS)
Zhuravska, Iryna M.; Koretska, Oleksandra O.; Musiyenko, Maksym P.; Surtel, Wojciech; Assembay, Azat; Kovalev, Vladimir; Tleshova, Akmaral
2017-08-01
The article contains basic approaches to develop the self-powered information measuring wireless networks (SPIM-WN) using the distribution of tasks within multicore processors critical applying based on the interaction of movable components - as in the direction of data transmission as wireless transfer of energy coming from polymetric sensors. Base mathematic model of scheduling tasks within multiprocessor systems was modernized to schedule and allocate tasks between cores of one-crystal computer (SoC) to increase energy efficiency SPIM-WN objects.
Self-Regulated Learning: The Interactive Influence of Metacognitive Awareness and Goal-Setting.
ERIC Educational Resources Information Center
Ridley, D. Scott; And Others
1992-01-01
The interactive influences of goal-setting and metacognitive awareness on the performance of 89 undergraduate education majors were assessed. Individuals grouped according to high or low metacognitive awareness and a goal-setting or control-task condition completed a decision-making task. Results provide initial support for multidimensional…
A hierarchically distributed architecture for fault isolation expert systems on the space station
NASA Technical Reports Server (NTRS)
Miksell, Steve; Coffer, Sue
1987-01-01
The Space Station Axiomatic Fault Isolating Expert Systems (SAFTIES) system deals with the hierarchical distribution of control and knowledge among independent expert systems doing fault isolation and scheduling of Space Station subsystems. On its lower level, fault isolation is performed on individual subsystems. These fault isolation expert systems contain knowledge about the performance requirements of their particular subsystem and corrective procedures which may be involved in repsonse to certain performance errors. They can control the functions of equipment in their system and coordinate system task schedules. On a higher level, the Executive contains knowledge of all resources, task schedules for all systems, and the relative priority of all resources and tasks. The executive can override any subsystem task schedule in order to resolve use conflicts or resolve errors that require resources from multiple subsystems. Interprocessor communication is implemented using the SAFTIES Communications Interface (SCI). The SCI is an application layer protocol which supports the SAFTIES distributed multi-level architecture.
Lower-limb proprioceptive awareness in professional ballet dancers.
Kiefer, Adam W; Riley, Michael A; Shockley, Kevin; Sitton, Candace A; Hewett, Timothy E; Cummins-Sebree, Sarah; Haas, Jacqui G
2013-09-01
Enhanced proprioceptive feedback strengthens synergistic muscle groups and stabilizes the coordination of limbs, thus contributing to the movement efficiency of ballet dancers. The present study compared lower-limb proprioceptive awareness in professional ballet dancers to matched controls who had no dance training. Two assessment methods were used to test the hypothesis that ballet dancers would demonstrate increased proprioceptive awareness in the ankle, knee, and hip: 1. a joint-position matching task to assess static proprioceptive joint awareness, and 2. an eyes-closed, quiet standing task to assess both static and dynamic proprioceptive awareness through measures of center of pressure (COP) variability. Results of the matching task indicated that the dancers exhibited greater proprioceptive awareness than controls for all three joints (p < 0.001). Also, dancers were equally aware of the positioning of their ankle, knee, and hip joints (p > 0.05), whereas controls were less aware of their ankle position compared to their knee and hip joints (p < 0.001). Measures indexing COP variability during quiet standing did not differ between groups and thus failed to reflect increased proprioceptive awareness in dancers (all p > 0.05). This indicates that quiet stance may have limited value as a means for evaluating proprioception. These findings provide preliminary evidence that enhanced proprioceptive awareness of lower limb joints should be considered as an evaluative criterion for dancers' ability to learn complex ballet skills. They also indicate that quiet standing tasks may not provide sufficient challenge for dancers' enhanced proprioceptive awareness to manifest.
Scheduling in the Face of Uncertain Resource Consumption and Utility
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Dearden, Richard
2003-01-01
We discuss the problem of scheduling tasks that consume uncertain amounts of a resource with known capacity and where the tasks have uncertain utility. In these circumstances, we would like to find schedules that exceed a lower bound on the expected utility when executed. We show that the problems are NP- complete, and present some results that characterize the behavior of some simple heuristics over a variety of problem classes.
ERIC Educational Resources Information Center
Greve, Andrew W.
2017-01-01
The principal is ultimately responsible for decisions regarding the master schedule at the elementary level of education (Canady & Rettig, 2013; Young, 2008), and these scheduling decisions are influenced by multiple factors (Benamati, 2010; Harris, 2013; Howard & Rakoz, 2009). Although principals have become increasingly aware of the need…
CaLRS: A Critical-Aware Shared LLC Request Scheduling Algorithm on GPGPU
Ma, Jianliang; Meng, Jinglei; Chen, Tianzhou; Wu, Minghui
2015-01-01
Ultra high thread-level parallelism in modern GPUs usually introduces numerous memory requests simultaneously. So there are always plenty of memory requests waiting at each bank of the shared LLC (L2 in this paper) and global memory. For global memory, various schedulers have already been developed to adjust the request sequence. But we find few work has ever focused on the service sequence on the shared LLC. We measured that a big number of GPU applications always queue at LLC bank for services, which provide opportunity to optimize the service order on LLC. Through adjusting the GPU memory request service order, we can improve the schedulability of SM. So we proposed a critical-aware shared LLC request scheduling algorithm (CaLRS) in this paper. The priority representative of memory request is critical for CaLRS. We use the number of memory requests that originate from the same warp but have not been serviced when they arrive at the shared LLC bank to represent the criticality of each warp. Experiments show that the proposed scheme can boost the SM schedulability effectively by promoting the scheduling priority of the memory requests with high criticality and improves the performance of GPU indirectly. PMID:25729772
2017-06-01
able. If the autopilot is engaged on the INAV controlling solution side and the CDI source is changed to set up for the approach , the NAV mode...release. Distribution is unlimited. PROOF-OF-CONCEPT PART-TASK TRAINER TO ENHANCE SITUATION AWARENESS FOR INSTRUMENT APPROACH PROCEDURES IN AVIATION...CONCEPT PART-TASK TRAINER TO ENHANCE SITUATION AWARENESS FOR INSTRUMENT APPROACH PROCEDURES IN AVIATION DOMAIN 5. FUNDING NUMBERS 6. AUTHOR(S
Strategic behavior, workload, and performance in task scheduling
NASA Technical Reports Server (NTRS)
Moray, Neville; Dessouky, Mohamed I.; Kijowski, Brian A.; Adapathya, Ravi
1991-01-01
Scheduling theory is proposed as a normative model for strategic behavior when operators are confronted by several tasks, all of which should be completed within a fixed time span, and when they are free to choose the order in which the tasks should be done. Three experiments are described to investigate the effect of knowing the correct scheduling rule on the efficiency of performance, subjective workload, and choice of strategy under different conditions of time pressure. The most potent effects are from time pressure. The reasons for the weak effect of knowing the rules are discussed, and implications for strategic behavior, displays, and decision aids are indicated.
Implementation and Evaluation of Self-Scheduling in a Hospital System.
Wright, Christina; McCartt, Peggy; Raines, Diane; Oermann, Marilyn H
Inflexible work schedules affect job satisfaction and influence nurse turnover. Job satisfaction is a significant predictor of nurse retention. Acute care hospitals report that job satisfaction is influenced by autonomy and educational opportunity. This project discusses implementation of computer-based self-scheduling in a hospital system and its impact. It is important for staff development educators to be aware that self-scheduling may play a key role in autonomy, professional development, turnover, and hospital costs.
Design and Analysis of Self-Adapted Task Scheduling Strategies in Wireless Sensor Networks
Guo, Wenzhong; Xiong, Naixue; Chao, Han-Chieh; Hussain, Sajid; Chen, Guolong
2011-01-01
In a wireless sensor network (WSN), the usage of resources is usually highly related to the execution of tasks which consume a certain amount of computing and communication bandwidth. Parallel processing among sensors is a promising solution to provide the demanded computation capacity in WSNs. Task allocation and scheduling is a typical problem in the area of high performance computing. Although task allocation and scheduling in wired processor networks has been well studied in the past, their counterparts for WSNs remain largely unexplored. Existing traditional high performance computing solutions cannot be directly implemented in WSNs due to the limitations of WSNs such as limited resource availability and the shared communication medium. In this paper, a self-adapted task scheduling strategy for WSNs is presented. First, a multi-agent-based architecture for WSNs is proposed and a mathematical model of dynamic alliance is constructed for the task allocation problem. Then an effective discrete particle swarm optimization (PSO) algorithm for the dynamic alliance (DPSO-DA) with a well-designed particle position code and fitness function is proposed. A mutation operator which can effectively improve the algorithm’s ability of global search and population diversity is also introduced in this algorithm. Finally, the simulation results show that the proposed solution can achieve significant better performance than other algorithms. PMID:22163971
Sohbrit: Autonomous COTS System for Satellite Characterization
NASA Astrophysics Data System (ADS)
Blazier, N.; Tarin, S.; Wells, M.; Brown, N.; Nandy, P.; Woodbury, D.
As technology continues to improve, driving down the cost of commercial astronomical products while increasing their capabilities, manpower to run observations has become the limiting factor in acquiring continuous and repeatable space situational awareness data. Sandia National Laboratories set out to automate a testbed comprised entirely of commercial off-the-shelf (COTS) hardware for space object characterization (SOC) focusing on satellites in geosynchronous orbit. Using an entirely autonomous system allows collection parameters such as target illumination and nightly overlap to be accounted for habitually; this enables repeatable development of target light curves to establish patterns of life in a variety of spectral bands. The system, known as Sohbrit, is responsible for autonomously creating an optimized schedule, checking the weather, opening the observatory dome, aligning and focusing the telescope, executing the schedule by slewing to each target and imaging it in a number of spectral bands (e.g., B, V, R, I, wide-open) via a filter wheel, closing the dome at the end of observations, processing the data, and storing/disseminating the data for exploitation via the web. Sohbrit must handle various situations such as weather outages and focus changes due to temperature shifts and optical seeing variations without human interaction. Sohbrit can collect large volumes of data nightly due to its high level of automation. To store and disseminate these large quantities of data, we utilize a cloud-based big data architecture called Firebird, which exposes the data out to the community for use by developers and analysts. Sohbrit is the first COTS system we are aware of to automate the full process of multispectral geosynchronous characterization from scheduling all the way to processed, disseminated data. In this paper we will discuss design decisions, issues encountered and overcome during implementation, and show results produced by Sohbrit.
“So Big”: The Development of Body Self-awareness in Toddlers
Brownell, Celia A.; Zerwas, Stephanie; Ramani, Geetha B.
2012-01-01
Early development of body self-awareness was examined in 57 children at 18, 22, or 26 months of age, using tasks designed to require objective representation of one’s own body. All children made at least one body representation error, with approximately 2.5 errors per task on average. Errors declined with age. Children’s performance on comparison tasks that required them to reason about the relative size of objects and about objects as obstacles, without considering their own bodies, was unrelated to performance on the body awareness tasks. Thus, the ability to represent and reflect on one’s own body explicitly and objectively may be a unique dimension of early development, a distinct component of objective self-awareness which emerges in this age period. PMID:17883440
Predicting the reading skill of Japanese children.
Ogino, Tatsuya; Hanafusa, Kaoru; Morooka, Teruko; Takeuchi, Akihito; Oka, Makio; Ohtsuka, Yoko
2017-02-01
To clarify cognitive processes underlining the development of reading in children speaking Japanese as their first language, we examined relationships between performances of cognitive tasks in the preschool period and later reading abilities. Ninety-one normally developing preschoolers (41 girls and 50 boys; 5years 4months to 6years 4months, mean 5years 10months) participated as subjects. We conducted seven cognitive tasks including phonological awareness tasks, naming tasks, and working memory tasks in the preschool period. In terms of reading tasks, the hiragana naming task was administered in the preschool period; the reading times, which is a composite score of the monomoraic syllable reading task, the word and the non-word reading tasks, and the single sentence reading task, was evaluated in first and second grade; and the kanji reading task (naming task) was tested in second grade. Raven's colored progressive matrices and picture vocabulary test revised were also conducted in first grade. Correlation analyses between task scores and stepwise multiple regression analyses were implemented. Tasks tapping phonological awareness, lexical access, and verbal working memory showed significant correlations with reading tasks. In the multiple regression analyses the performances in the verbal working memory task played a key role in predicting character naming task scores (the hiragana naming task and the kanji reading task) while the digit naming task was an important predictor of reading times. Unexpectedly, the role of phonological (mora) awareness was modest among children speaking Japanese. Cognitive functions including phonological awareness, digit naming, and verbal working memory (especially the latter two) were involved in the development of reading skills of children speaking Japanese. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
An Optimal Scheduling Algorithm with a Competitive Factor for Real-Time Systems
1991-07-29
real - time systems in which the value of a task is proportional to its computation time. The system obtains the value of a given task if the task completes by its deadline. Otherwise, the system obtains no value for the task. When such a system is underloaded (i.e. there exists a schedule for which all tasks meet their deadlines), Dertouzos [6] showed that the earliest deadline first algorithm will achieve 100% of the possible value. We consider the case of a possibly overloaded system and present an algorithm which: 1. behaves like the earliest deadline first
SUMO: operation and maintenance management web tool for astronomical observatories
NASA Astrophysics Data System (ADS)
Mujica-Alvarez, Emma; Pérez-Calpena, Ana; García-Vargas, María. Luisa
2014-08-01
SUMO is an Operation and Maintenance Management web tool, which allows managing the operation and maintenance activities and resources required for the exploitation of a complex facility. SUMO main capabilities are: information repository, assets and stock control, tasks scheduler, executed tasks archive, configuration and anomalies control and notification and users management. The information needed to operate and maintain the system must be initially stored at the tool database. SUMO shall automatically schedule the periodical tasks and facilitates the searching and programming of the non-periodical tasks. Tasks planning can be visualized in different formats and dynamically edited to be adjusted to the available resources, anomalies, dates and other constrains that can arise during daily operation. SUMO shall provide warnings to the users notifying potential conflicts related to the required personal availability or the spare stock for the scheduled tasks. To conclude, SUMO has been designed as a tool to help during the operation management of a scientific facility, and in particular an astronomical observatory. This is done by controlling all operating parameters: personal, assets, spare and supply stocks, tasks and time constrains.
Parallel-aware, dedicated job co-scheduling within/across symmetric multiprocessing nodes
Jones, Terry R.; Watson, Pythagoras C.; Tuel, William; Brenner, Larry; ,Caffrey, Patrick; Fier, Jeffrey
2010-10-05
In a parallel computing environment comprising a network of SMP nodes each having at least one processor, a parallel-aware co-scheduling method and system for improving the performance and scalability of a dedicated parallel job having synchronizing collective operations. The method and system uses a global co-scheduler and an operating system kernel dispatcher adapted to coordinate interfering system and daemon activities on a node and across nodes to promote intra-node and inter-node overlap of said interfering system and daemon activities as well as intra-node and inter-node overlap of said synchronizing collective operations. In this manner, the impact of random short-lived interruptions, such as timer-decrement processing and periodic daemon activity, on synchronizing collective operations is minimized on large processor-count SPMD bulk-synchronous programming styles.
Implicit Behavioral Change in Response to Cognitive Tasks in Alzheimer Disease.
Bomilcar, Iris; Morris, Robin G; Brown, Richard G; Mograbi, Daniel C
2018-03-01
Lack of awareness about impairments is commonly found in Alzheimer disease (AD), but recent evidence suggests that patients may respond to the experience of illness despite limited awareness. In this study, we explored whether implicit emotional responses to experiences of failure in cognitive tasks would result in longer-term change in behavior. Twenty-two patients with AD were seen 1 week after a previous session in which they performed computer tasks that had been manipulated to be either too difficult (failure condition) or very easy (success condition) for them. At the second session, both types of tasks were set to have medium difficulty and were administered so that the participants decided how long to persist on each task. Task persistence was determined by relative time spent doing the tasks, considering that participants would be more likely to stop performing tasks in which they had experienced failure during the first session. Task persistence in the second session was not affected by performance in the first session. However, when participants' awareness of performance in the first session was taken into account, differences were found in persistence between tasks in the second session. During the second session, participants stopped performing tasks after a sequence of errors. There were no self-reported changes in motivation or enjoyment in response to task failure. These findings suggest that implicit learning of task valence may be compromised in AD, but that initial moments of awareness of performance may influence long-term adaptation in unaware patients.
A transportation-scheduling system for managing silvicultural projects
Jorge F. Valenzuela; H. Hakan Balci; Timothy McDonald
2005-01-01
A silvicultural project encompasses tasks such as sitelevel planning, regeneration, harvestin, and stand-tending treatments. an essential problem in managing silvicultural projects is to efficiently schedule the operations while considering project task due dates and costs of moving scarce resources to specific job locations. Transportation costs represent a...
A real-time architecture for time-aware agents.
Prouskas, Konstantinos-Vassileios; Pitt, Jeremy V
2004-06-01
This paper describes the specification and implementation of a new three-layer time-aware agent architecture. This architecture is designed for applications and environments where societies of humans and agents play equally active roles, but interact and operate in completely different time frames. The architecture consists of three layers: the April real-time run-time (ART) layer, the time aware layer (TAL), and the application agents layer (AAL). The ART layer forms the underlying real-time agent platform. An original online, real-time, dynamic priority-based scheduling algorithm is described for scheduling the computation time of agent processes, and it is shown that the algorithm's O(n) complexity and scalable performance are sufficient for application in real-time domains. The TAL layer forms an abstraction layer through which human and agent interactions are temporally unified, that is, handled in a common way irrespective of their temporal representation and scale. A novel O(n2) interaction scheduling algorithm is described for predicting and guaranteeing interactions' initiation and completion times. The time-aware predicting component of a workflow management system is also presented as an instance of the AAL layer. The described time-aware architecture addresses two key challenges in enabling agents to be effectively configured and applied in environments where humans and agents play equally active roles. It provides flexibility and adaptability in its real-time mechanisms while placing them under direct agent control, and it temporally unifies human and agent interactions.
It Is Not Just about the Schedule: Key Factors in Effective Reference Desk Scheduling and Management
ERIC Educational Resources Information Center
Sciammarella, Susan; Fernandes, Maria Isabel; McKay, Devin
2008-01-01
Reference desk scheduling is one of the most challenging tasks in the organizational structure of an academic library. The ability to turn this challenge into a workable and effective function lies with the scheduler and indirectly the cooperation of all librarians scheduled for reference desk service. It is the scheduler's sensitivity to such…
Task path planning, scheduling and learning for free-ranging robot systems
NASA Technical Reports Server (NTRS)
Wakefield, G. Steve
1987-01-01
The development of robotics applications for space operations is often restricted by the limited movement available to guided robots. Free ranging robots can offer greater flexibility than physically guided robots in these applications. Presented here is an object oriented approach to path planning and task scheduling for free-ranging robots that allows the dynamic determination of paths based on the current environment. The system also provides task learning for repetitive jobs. This approach provides a basis for the design of free-ranging robot systems which are adaptable to various environments and tasks.
Ding, Yi; Liu, Ru-De; McBride, Catherine; Zhang, Dake
2015-01-01
This study examined analytical pinyin (a phonological coding system for teaching pronunciation and lexical tones of Chinese characters) skills in 54 Mandarin-speaking fourth graders by using an invented spelling instrument that tapped into syllable awareness, phoneme awareness, lexical tones, and tone sandhi in Chinese. Pinyin invented spelling was significantly correlated with Chinese character recognition and Chinese phonological awareness (i.e., syllable deletion and phoneme deletion). In comparison to good and average readers, poor readers performed significantly worse on the invented spelling task, and a difference was also found between average and good readers. To differentiate readers at different levels, the pinyin invented spelling task, which examined both segmental and suprasegmental elements, was superior to the typical phonological awareness task, which examined segments only. Within this new task, items involving tone sandhi (Chinese language changes in which the tones of words alter according to predetermined rules) were more difficult to manipulate than were those without tone sandhi. The findings suggest that this newly developed task may be optimal for tapping unique phonological and linguistic features in reading of Chinese and examining particular tonal difficulties in struggling Chinese readers. In addition, the results suggest that phonics manipulations within tasks of phonological and tonal awareness can alter their difficulty levels. © Hammill Institute on Disabilities 2014.
In-Space Crew-Collaborative Task Scheduling
NASA Technical Reports Server (NTRS)
Jaap, John; Meyer, Patrick; Davis, Elizabeth; Richardson, Lea
2006-01-01
As humans venture farther from Earth for longer durations, it will become essential for those on the journey to have significant control over the scheduling of their own activities as well as the activities of their companion systems and robots. However, the crew will not do all the scheduling; timelines will be the result of collaboration with ground personnel. Emerging technologies such as in-space message buses, delay-tolerant networks, and in-space internet will be the carriers on which the collaboration rides. Advances in scheduling technology, in the areas of task modeling, scheduling engines, and user interfaces will allow the crew to become virtual scheduling experts. New concepts of operations for producing the timeline will allow the crew and the ground support to collaborate while providing safeguards to ensure that the mission will be effectively accomplished without endangering the systems or personnel.
Completable scheduling: An integrated approach to planning and scheduling
NASA Technical Reports Server (NTRS)
Gervasio, Melinda T.; Dejong, Gerald F.
1992-01-01
The planning problem has traditionally been treated separately from the scheduling problem. However, as more realistic domains are tackled, it becomes evident that the problem of deciding on an ordered set of tasks to achieve a set of goals cannot be treated independently of the problem of actually allocating resources to the tasks. Doing so would result in losing the robustness and flexibility needed to deal with imperfectly modeled domains. Completable scheduling is an approach which integrates the two problems by allowing an a priori planning module to defer particular planning decisions, and consequently the associated scheduling decisions, until execution time. This allows a completable scheduling system to maximize plan flexibility by allowing runtime information to be taken into consideration when making planning and scheduling decision. Furthermore, through the criteria of achievability placed on deferred decision, a completable scheduling system is able to retain much of the goal-directedness and guarantees of achievement afforded by a priori planning. The completable scheduling approach is further enhanced by the use of contingent explanation-based learning, which enables a completable scheduling system to learn general completable plans from example and improve its performance through experience. Initial experimental results show that completable scheduling outperforms classical scheduling as well as pure reactive scheduling in a simple scheduling domain.
Individual differences in strategic flight management and scheduling
NASA Technical Reports Server (NTRS)
Wickens, Christopher D.; Raby, Mireille
1991-01-01
A group of 30 instrument-rated pilots was made to fly simulator approaches to three airports under conditions of low, medium, and high workload conditions. An analysis is presently conducted of the difference in discrete task scheduling between the group of 10 highest and 10 lowest performing pilots in the sample; this categorization was based on the mean of various flight-profile measures. The two groups were found to differ from each other only in terms of the time when specific events were conducted, and of the optimality of scheduling for certain high-priority tasks. These results are assessed in view of the relative independence of task-management skills from aircraft-control skills.
Early Orthographic Influences on Phonemic Awareness Tasks: Evidence from a Preschool Training Study
ERIC Educational Resources Information Center
Castles, Anne; Wilson, Katherine; Coltheart, Max
2011-01-01
Experienced readers show influences of orthographic knowledge on tasks ostensibly tapping phonemic awareness. Here we draw on data from an experimental training study to demonstrate that even preschoolers show influences of their emerging orthographic abilities in such tasks. A total of 40 children were taught some letter-sound correspondences but…
40 CFR Appendix II to Part 86 - Temperature Schedules
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Temperature Schedules II Appendix II... to Part 86—Temperature Schedules (a) Ambient temperature cycle for the diurnal emission portion of the evaporative emission test (see § 86.133). Table I—Temperature Versus Time Sequence Use linear...
ComprehensiveBench: a Benchmark for the Extensive Evaluation of Global Scheduling Algorithms
NASA Astrophysics Data System (ADS)
Pilla, Laércio L.; Bozzetti, Tiago C.; Castro, Márcio; Navaux, Philippe O. A.; Méhaut, Jean-François
2015-10-01
Parallel applications that present tasks with imbalanced loads or complex communication behavior usually do not exploit the underlying resources of parallel platforms to their full potential. In order to mitigate this issue, global scheduling algorithms are employed. As finding the optimal task distribution is an NP-Hard problem, identifying the most suitable algorithm for a specific scenario and comparing algorithms are not trivial tasks. In this context, this paper presents ComprehensiveBench, a benchmark for global scheduling algorithms that enables the variation of a vast range of parameters that affect performance. ComprehensiveBench can be used to assist in the development and evaluation of new scheduling algorithms, to help choose a specific algorithm for an arbitrary application, to emulate other applications, and to enable statistical tests. We illustrate its use in this paper with an evaluation of Charm++ periodic load balancers that stresses their characteristics.
Li, Xuejun; Xu, Jia; Yang, Yun
2015-01-01
Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.
Li, Xuejun; Xu, Jia; Yang, Yun
2015-01-01
Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts. PMID:26357510
Developing NDE Techniques for Large Cryogenic Tanks
NASA Technical Reports Server (NTRS)
Parker, Don; Starr, Stan
2009-01-01
The Shuttle and Constellation Programs require very large cryogenic ground storage tanks in which to store liquid oxygen and hydrogen. The existing LC-39 pad tanks, which will be passed onto Constellation, are 40 years old and have received minimal refurbishment or even inspection, because they can only be temperature cycled a few times before being overhauled (a costly operation in both time and dollars). Numerous questions exist on the performance and reliability of these old tanks which could cause a major Program schedule disruption. Consequently, with the passing of the first two tanks to Constellation to occur this year, there is growing awareness that NDE is needed to detect problems early in these tanks so that corrective actions can be scheduled when least disruptive. Time series thermal images of two sides of the Pad B LH2 tank have been taken over multiple days to demonstrate the effects of environmental conditions to the solar heating of the tank and therefore the effectiveness of thermal imaging.
NASA Technical Reports Server (NTRS)
Biefeld, Eric; Cooper, Lynne
1990-01-01
The findings are documented of the OMP research task, which investigated the applicability of artificial intelligence (AI) technology in support of automated scheduling. The goals of the effort are summarized and the technical accomplishments are highlighted. The OMP task succeeded in identifying how AI technology could be applied and demonstrated an AI-based automated scheduling approach through the OMP prototypes.
Memory consolidation and contextual interference effects with computer games.
Shewokis, Patricia A
2003-10-01
Some investigators of the contextual interference effect contend that there is a direct relation between the amount of practice and the contextual interference effect based on the prediction that the improvement in learning tasks in a random practice schedule, compared to a blocked practice schedule, increases in magnitude as the amount of practice during acquisition on the tasks increases. Research using computer games in contextual interference studies has yielded a large effect (f = .50) with a random practice schedule advantage during transfer. These investigations had a total of 36 and 72 acquisition trials, respectively. The present study tested this prediction by having 72 college students, who were randomly assigned to a blocked or random practice schedule, practice 102 trials of three computer-game tasks across three days. After a 24-hr. interval, 6 retention and 5 transfer trials were performed. Dependent variables were time to complete an event in seconds and number of errors. No significant differences were found for retention and transfer. These results are discussed in terms of how the amount of practice, task-related factors, and memory consolidation mediate the contextual interference effect.
The impact of walking while using a smartphone on pedestrians' awareness of roadside events.
Lin, Ming-I Brandon; Huang, Yu-Ping
2017-04-01
Previous studies have shown that using a cell phone to talk or text while walking changes gait kinematics and encourages risky street-crossing behaviors. However, less is known about how the motor-cognitive interference imposed by smartphone tasks affects pedestrians' situational awareness to environmental targets relevant to pedestrian safety. This study systematically investigated the influence of smartphone use on detection of and responses to a variety of roadside events in a semi-virtual walking environment. Twenty-four healthy participants completed six treadmill walking sessions while engaged in a concurrent picture-dragging, texting, or news-reading task. During distracted walking, they were required to simultaneously monitor the occurrence of road events for two different levels of event frequency. Performance measures for smartphone tasks and event responses, eye movements, and perceived workload and situational awareness were compared across different dual-task conditions. The results revealed that during dual-task walking, the reading app was associated with a significantly higher level of perceived workload, and impaired awareness of the surrounding environment to a greater extent compared with the texting or picture-dragging apps. Pedestrians took longer to visually detect the roadside events in the reading and texting conditions than in the dragging condition. Differences in event response performances were mainly dependent on their salient features but were also affected by the type of smartphone task. Texting was found to make participants more reliant on their central vision to detect road events. Moreover, different gaze-scanning patterns were adopted by participants to better protect dual-task performance in response to the changes in road-event frequency. The findings of relationships between workload, dual-task performances, and allocation strategies for visual attention further our understanding of pedestrian behavior and safety. By knowing how attentional and motor demands involved in different smartphone tasks affect pedestrians' awareness to critical roadside events, effective awareness campaigns might be devised to discourage smartphone use while walking. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gamma band activity and the P3 reflect post-perceptual processes, not visual awareness
Pitts, Michael A.; Padwal, Jennifer; Fennelly, Daniel; Martínez, Antígona; Hillyard, Steven A.
2014-01-01
A primary goal in cognitive neuroscience is to identify neural correlates of conscious perception (NCC). By contrasting conditions in which subjects are aware versus unaware of identical visual stimuli, a number of candidate NCCs have emerged, among them induced gamma band activity in the EEG and the P3 event-related potential. In most previous studies, however, the critical stimuli were always directly relevant to the subjects’ task, such that aware versus unaware contrasts may well have included differences in post-perceptual processing in addition to differences in conscious perception per se. Here, in a series of EEG experiments, visual awareness and task relevance were manipulated independently. Induced gamma activity and the P3 were absent for task-irrelevant stimuli regardless of whether subjects were aware of such stimuli. For task-relevant stimuli, gamma and the P3 were robust and dissociable, indicating that each reflects distinct post-perceptual processes necessary for carrying-out the task but not for consciously perceiving the stimuli. Overall, this pattern of results challenges a number of previous proposals linking gamma band activity and the P3 to conscious perception. PMID:25063731
Automated Scheduling Via Artificial Intelligence
NASA Technical Reports Server (NTRS)
Biefeld, Eric W.; Cooper, Lynne P.
1991-01-01
Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.
Low Latency Workflow Scheduling and an Application of Hyperspectral Brightness Temperatures
NASA Astrophysics Data System (ADS)
Nguyen, P. T.; Chapman, D. R.; Halem, M.
2012-12-01
New system analytics for Big Data computing holds the promise of major scientific breakthroughs and discoveries from the exploration and mining of the massive data sets becoming available to the science community. However, such data intensive scientific applications face severe challenges in accessing, managing and analyzing petabytes of data. While the Hadoop MapReduce environment has been successfully applied to data intensive problems arising in business, there are still many scientific problem domains where limitations in the functionality of MapReduce systems prevent its wide adoption by those communities. This is mainly because MapReduce does not readily support the unique science discipline needs such as special science data formats, graphic and computational data analysis tools, maintaining high degrees of computational accuracies, and interfacing with application's existing components across heterogeneous computing processors. We address some of these limitations by exploiting the MapReduce programming model for satellite data intensive scientific problems and address scalability, reliability, scheduling, and data management issues when dealing with climate data records and their complex observational challenges. In addition, we will present techniques to support the unique Earth science discipline needs such as dealing with special science data formats (HDF and NetCDF). We have developed a Hadoop task scheduling algorithm that improves latency by 2x for a scientific workflow including the gridding of the EOS AIRS hyperspectral Brightness Temperatures (BT). This workflow processing algorithm has been tested at the Multicore Computing Center private Hadoop based Intel Nehalem cluster, as well as in a virtual mode under the Open Source Eucalyptus cloud. The 55TB AIRS hyperspectral L1b Brightness Temperature record has been gridded at the resolution of 0.5x1.0 degrees, and we have computed a 0.9 annual anti-correlation to the El Nino Southern oscillation in the Nino 4 region, as well as a 1.9 Kelvin decadal Arctic warming in the 4u and 12u spectral regions. Additionally, we will present the frequency of extreme global warming events by the use of a normalized maximum BT in a grid cell relative to its local standard deviation. A low-latency Hadoop scheduling environment maintains data integrity and fault tolerance in a MapReduce data intensive Cloud environment while improving the "time to solution" metric by 35% when compared to a more traditional parallel processing system for the same dataset. Our next step will be to improve the usability of our Hadoop task scheduling system, to enable rapid prototyping of data intensive experiments by means of processing "kernels". We will report on the performance and experience of implementing these experiments on the NEX testbed, and propose the use of a graphical directed acyclic graph (DAG) interface to help us develop on-demand scientific experiments. Our workflow system works within Hadoop infrastructure as a replacement for the FIFO or FairScheduler, thus the use of Apache "Pig" latin or other Apache tools may also be worth investigating on the NEX system to improve the usability of our workflow scheduling infrastructure for rapid experimentation.
A derived heuristics based multi-objective optimization procedure for micro-grid scheduling
NASA Astrophysics Data System (ADS)
Li, Xin; Deb, Kalyanmoy; Fang, Yanjun
2017-06-01
With the availability of different types of power generators to be used in an electric micro-grid system, their operation scheduling as the load demand changes with time becomes an important task. Besides satisfying load balance constraints and the generator's rated power, several other practicalities, such as limited availability of grid power and restricted ramping of power output from generators, must all be considered during the operation scheduling process, which makes it difficult to decide whether the optimization results are accurate and satisfactory. In solving such complex practical problems, heuristics-based customized optimization algorithms are suggested. However, due to nonlinear and complex interactions of variables, it is difficult to come up with heuristics in such problems off-hand. In this article, a two-step strategy is proposed in which the first task deciphers important heuristics about the problem and the second task utilizes the derived heuristics to solve the original problem in a computationally fast manner. Specifically, the specific operation scheduling is considered from a two-objective (cost and emission) point of view. The first task develops basic and advanced level knowledge bases offline from a series of prior demand-wise optimization runs and then the second task utilizes them to modify optimized solutions in an application scenario. Results on island and grid connected modes and several pragmatic formulations of the micro-grid operation scheduling problem clearly indicate the merit of the proposed two-step procedure.
Incremental Scheduling Engines for Human Exploration of the Cosmos
NASA Technical Reports Server (NTRS)
Jaap, John; Phillips, Shaun
2005-01-01
As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and objectives are met and resources are not overbooked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks and those of their companion robots.
Incremental Scheduling Engines: Cost Savings through Automation
NASA Technical Reports Server (NTRS)
Jaap, John; Phillips, Shaun
2005-01-01
As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and ob.jectives are met and resources are not over-booked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper, presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks and those of their companion robots.
Maximally Expressive Task Modeling
NASA Technical Reports Server (NTRS)
Japp, John; Davis, Elizabeth; Maxwell, Theresa G. (Technical Monitor)
2002-01-01
Planning and scheduling systems organize "tasks" into a timeline or schedule. The tasks are defined within the scheduling system in logical containers called models. The dictionary might define a model of this type as "a system of things and relations satisfying a set of rules that, when applied to the things and relations, produce certainty about the tasks that are being modeled." One challenging domain for a planning and scheduling system is the operation of on-board experiment activities for the Space Station. The equipment used in these experiments is some of the most complex hardware ever developed by mankind, the information sought by these experiments is at the cutting edge of scientific endeavor, and the procedures for executing the experiments are intricate and exacting. Scheduling is made more difficult by a scarcity of space station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling space station experiment operations calls for a "maximally expressive" modeling schema. Modeling even the simplest of activities cannot be automated; no sensor can be attached to a piece of equipment that can discern how to use that piece of equipment; no camera can quantify how to operate a piece of equipment. Modeling is a human enterprise-both an art and a science. The modeling schema should allow the models to flow from the keyboard of the user as easily as works of literature flowed from the pen of Shakespeare. The Ground Systems Department at the Marshall Space Flight Center has embarked on an effort to develop a new scheduling engine that is highlighted by a maximally expressive modeling schema. This schema, presented in this paper, is a synergy of technological advances and domain-specific innovations.
NASA Technical Reports Server (NTRS)
Lak, Tibor; Weeks, D. P.
1995-01-01
The primary challenge of the X-33 CAN is to build and test a prototype LO2 and LH2 densification ground support equipment (GSE) unit, and perform tank thermodynamic testing within the 15 month phase 1 period. The LO2 and LH2 propellant densification system will be scaled for the IPTD LO2 and LH2 tank configurations. The IPTD tanks were selected for the propellant technology demonstration because of the potential benefits to the phase 1 plan: tanks will be built in time to support thermodynamic testing; minimum cost; minimum schedule risk; future testing at MSFC will build on phase 1 data base; and densification system will be available to support X-33 and RLV engine test at IPTD. The objective of the task 1 effort is to define the preliminary requirements of the propellant densification GSE and tank recirculation system. The key densification system design parameters to be established in Task 1 are: recirculation flow rate; heat exchanger inlet temperature; heat exchanger outlet temperature; maximum heat rejection rate; vent flow rate (GN2 and GH2); densification time; and tank pressure level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
St Germain, Shawn Walter; Farris, Ronald Keith; Thomas, Kenneth David
The long-term viability of existing nuclear power plants in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet refueling outages are highly complex operations, involving multiple concurrent and dependent activitiesmore » that are somewhat challenging to coordinate; therefore, finding ways to improve refueling outage performance, while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center (AOCC) project is a research and development (R&D) demonstration activity under the LWRS Program. LWRS is an R&D program that works closely with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current fleet of NPPs. As such, the LWRS Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, INL is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. The overall focus is on developing an AOCC with the following capabilities that enables plant and OCC staff to; Collaborate in real-time to address emergent issues; Effectively communicate outage status to all workers involved in the outage; Effectively communicate discovered conditions in the field to the OCC; Provide real-time work status; Provide automatic pending support notifications; Provide real-time requirements monitoring; Maximize their collective situational awareness to improve decision-making; and Leverage macro data to better support resource allocation. INL has partnered with several commercial NPP utilities to develop a number of advanced outage management technologies. These outage management technologies have focused on both collaborative technologies for control centers and developing mobile technologies for NPP field workers. This report describes recent efforts made in developing a suite of outage technologies to support more effective schedule management. Currently, a master outage schedule is created months in advance using the plant’s existing scheduling software (e.g., Primavera P6). Typically, during the outage, the latest version of the schedule is printed at the beginning of each shift. INL and its partners are developing technologies that will have capabilities such as Automatic Schedule Updating, Automatic Pending Support Notifications, and the ability to allocate and schedule outage support task resources on a sub-hour basis (e.g., outage Micro-Scheduling). The remaining sections of this report describe in more detail the scheduling challenges that occur during outages, how the outage scheduling technologies INL is developing helps address those challenges, and the latest developments on this task (e.g., work accomplished to date and the path forward)« less
40 CFR Appendix II to Part 86 - Temperature Schedules
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Temperature Schedules II Appendix II... Appendix II to Part 86—Temperature Schedules (a) Ambient temperature cycle for the diurnal emission portion of the evaporative emission test (see § 86.133). Table I—Temperature Versus Time Sequence Use linear...
40 CFR Appendix II to Part 86 - Temperature Schedules
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Temperature Schedules II Appendix II... Appendix II to Part 86—Temperature Schedules (a) Ambient temperature cycle for the diurnal emission portion of the evaporative emission test (see § 86.133). Table I—Temperature Versus Time Sequence Use linear...
40 CFR Appendix II to Part 86 - Temperature Schedules
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Temperature Schedules II Appendix II... Appendix II to Part 86—Temperature Schedules (a) Ambient temperature cycle for the diurnal emission portion of the evaporative emission test (see § 86.133). Table I—Temperature Versus Time Sequence Use linear...
40 CFR Appendix II to Part 86 - Temperature Schedules
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Temperature Schedules II Appendix II... Appendix II to Part 86—Temperature Schedules (a) Ambient temperature cycle for the diurnal emission portion of the evaporative emission test (see § 86.133). Table I—Temperature Versus Time Sequence Use linear...
ERIC Educational Resources Information Center
Svalgaard, Lotte
2017-01-01
In Action Learning programmes, it is held central to work on real business challenges (task) while learning about team and self (process); staying mindful aware of the process is referred to in this paper as "double awareness", and emphasises noticing and acting on process cues while working on the task. As business challenges within…
Gradations of awareness in a modified sequence learning task.
Norman, Elisabeth; Price, Mark C; Duff, Simon C; Mentzoni, Rune A
2007-12-01
We argue performance in the serial reaction time (SRT) task is associated with gradations of awareness that provide examples of fringe consciousness [Mangan, B. (1993b). Taking phenomenology seriously: the "fringe" and its implications for cognitive research. Consciousness and Cognition, 2, 89-108, Mangan, B. (2003). The conscious "fringe": Bringing William James up to date. In B. J. Baars, W. P. Banks & J. B. Newman (Eds.), Essential sources in the scientific study of consciousness (pp. 741-759). Cambridge, MA: The MIT Press.], and address limitations of the traditional SRT procedure, including criticism of exclusion generation tasks. Two experiments are conducted with a modified SRT procedure where irrelevant stimulus attributes obscure the sequence rule. Our modified paradigm, which includes a novel exclusion task, makes it easier to demonstrate a previously controversial influence of response stimulus interval (RSI) on awareness. It also allows identification of participants showing fringe consciousness rather than explicit sequence knowledge, as reflected by dissociations between different awareness measures. The NEO-PI-R variable Openness to Feelings influenced the diversity of subjective feelings reported during two awareness measures, but not the degree of learning and awareness as previously found with traditional SRT tasks [Norman, E., Price, M. C., & Duff, S. C. (2006). Fringe consciousness in sequence learning: the influence of individual differences. Consciousness and Cognition, 15(4), 723-760.]. This suggests possible distinctions between two components of fringe consciousness.
ERIC Educational Resources Information Center
Tanaka, Hiroya; Oki, Nanaho
2015-01-01
This practical paper discusses the effect of explicit instruction to raise Japanese EFL learners' pragmatic awareness using online discourse completion tasks. The five-part tasks developed by the authors use American TV drama scenes depicting particular speech acts and include explicit instruction in these speech acts. 46 Japanese EFL college…
ERIC Educational Resources Information Center
Tsuji, Hiromi; Doherty, Martin J.
2014-01-01
The development of metalinguistic awareness for linguistic politeness was examined in 68 Japanese-speaking children aged between three and five years old. A politeness judgement task was administered together with several phonological judgement tasks and false-belief tasks. Four- and five-year old Japanese children, but not three-year-olds, made…
African American English Dialect and Performance on Nonword Spelling and Phonemic Awareness Tasks
ERIC Educational Resources Information Center
Kohler, Candida T.; Bahr, Ruth Huntley; Silliman, Elaine R.; Bryant, Judith Becker; Apel, Kenn; Wilkinson, Louise C.
2007-01-01
Purpose: To evaluate the role of dialect on phonemic awareness and nonword spelling tasks. These tasks were selected for their reliance on phonological and orthographic processing, which may be influenced by dialect use. Method: Eighty typically developing African American children in Grades 1 and 3 were first screened for dialect use and then…
Remote Collaboration on Task Scheduling for Humans at Mars
NASA Technical Reports Server (NTRS)
Jaap, John; Meyer, Patrick; Davis, Elizabeth; Richardson, Lea
2006-01-01
As humans venture farther from Earth for longer durations, it will become essential for those on the journey to have significant control over the scheduling of their own activities as well as the activities of their companion systems and robots. However, the crew will not do all the scheduling; timelines will be the result of collaboration with ground personnel. Emerging technologies such as in-space message buses, delay-tolerant networks, and in-space internet will be the carriers on which the collaboration rides. Advances in scheduling technology, in the areas of task modeling, scheduling engines, and user interfaces will allow the crew to become virtual scheduling experts. New concepts of operations for producing the timeline will allow the crew and the ground support to collaborate while providing safeguards to ensure that the mission will be effectively accomplished without endangering the systems or personnel.
In-Space Crew-Collaborative Task Scheduling
NASA Technical Reports Server (NTRS)
Jaap, John; Meyer, Patrick; Davis, Elizabeth; Richardson, Lea
2006-01-01
As humans venture farther from earth for longer durations, it will become essential for those on the journey to have significant control over the scheduling of their own activities as well as the activities of their companion systems and robots. However, there are many reasons why the crew will not do all the scheduling; timelines will be the result of collaboration with ground personnel. Emerging technologies such as in-space message buses, delay-tolerant networks, and in-space internet will be the carriers on which the collaboration rides. Advances in scheduling technology, in the areas of task modeling, scheduling engines, and user interfaces will allow the crew to become virtual scheduling experts. New concepts of operations for producing the timeline will allow the crew and the ground support to collaborate while providing safeguards to ensure that the mission will be effectively accomplished without endangering the systems or personnel.
Artificial intelligence for the CTA Observatory scheduler
NASA Astrophysics Data System (ADS)
Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro
2014-08-01
The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint Propagation techniques. A simulation platform, an analysis tool and different test case scenarios for CTA were developed to test the performance of the scheduler and are also described.
W-MAC: A Workload-Aware MAC Protocol for Heterogeneous Convergecast in Wireless Sensor Networks
Xia, Ming; Dong, Yabo; Lu, Dongming
2011-01-01
The power consumption and latency of existing MAC protocols for wireless sensor networks (WSNs) are high in heterogeneous convergecast, where each sensor node generates different amounts of data in one convergecast operation. To solve this problem, we present W-MAC, a workload-aware MAC protocol for heterogeneous convergecast in WSNs. A subtree-based iterative cascading scheduling mechanism and a workload-aware time slice allocation mechanism are proposed to minimize the power consumption of nodes, while offering a low data latency. In addition, an efficient schedule adjustment mechanism is provided for adapting to data traffic variation and network topology change. Analytical and simulation results show that the proposed protocol provides a significant energy saving and latency reduction in heterogeneous convergecast, and can effectively support data aggregation to further improve the performance. PMID:22163753
Analysis of tasks for dynamic man/machine load balancing in advanced helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, C.C.
1987-10-01
This report considers task allocation requirements imposed by advanced helicopter designs incorporating mixes of human pilots and intelligent machines. Specifically, it develops an analogy between load balancing using distributed non-homogeneous multiprocessors and human team functions. A taxonomy is presented which can be used to identify task combinations likely to cause overload for dynamic scheduling and process allocation mechanisms. Designer criteria are given for function decomposition, separation of control from data, and communication handling for dynamic tasks. Possible effects of n-p complete scheduling problems are noted and a class of combinatorial optimization methods are examined.
A meta-heuristic method for solving scheduling problem: crow search algorithm
NASA Astrophysics Data System (ADS)
Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi
2018-04-01
Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Harold C.; Ibanez, Daniel Alejandro
This report documents the ASC/ATDM Kokkos deliverable "Production Portable Dy- namic Task DAG Capability." This capability enables applications to create and execute a dynamic task DAG ; a collection of heterogeneous computational tasks with a directed acyclic graph (DAG) of "execute after" dependencies where tasks and their dependencies are dynamically created and destroyed as tasks execute. The Kokkos task scheduler executes the dynamic task DAG on the target execution resource; e.g. a multicore CPU, a manycore CPU such as Intel's Knights Landing (KNL), or an NVIDIA GPU. Several major technical challenges had to be addressed during development of Kokkos' Taskmore » DAG capability: (1) portability to a GPU with it's simplified hardware and micro- runtime, (2) thread-scalable memory allocation and deallocation from a bounded pool of memory, (3) thread-scalable scheduler for dynamic task DAG, (4) usability by applications.« less
Reifman, Jaques; Kumar, Kamal; Wesensten, Nancy J; Tountas, Nikolaos A; Balkin, Thomas J; Ramakrishnan, Sridhar
2016-12-01
Computational tools that predict the effects of daily sleep/wake amounts on neurobehavioral performance are critical components of fatigue management systems, allowing for the identification of periods during which individuals are at increased risk for performance errors. However, none of the existing computational tools is publicly available, and the commercially available tools do not account for the beneficial effects of caffeine on performance, limiting their practical utility. Here, we introduce 2B-Alert Web, an open-access tool for predicting neurobehavioral performance, which accounts for the effects of sleep/wake schedules, time of day, and caffeine consumption, while incorporating the latest scientific findings in sleep restriction, sleep extension, and recovery sleep. We combined our validated Unified Model of Performance and our validated caffeine model to form a single, integrated modeling framework instantiated as a Web-enabled tool. 2B-Alert Web allows users to input daily sleep/wake schedules and caffeine consumption (dosage and time) to obtain group-average predictions of neurobehavioral performance based on psychomotor vigilance tasks. 2B-Alert Web is accessible at: https://2b-alert-web.bhsai.org. The 2B-Alert Web tool allows users to obtain predictions for mean response time, mean reciprocal response time, and number of lapses. The graphing tool allows for simultaneous display of up to seven different sleep/wake and caffeine schedules. The schedules and corresponding predicted outputs can be saved as a Microsoft Excel file; the corresponding plots can be saved as an image file. The schedules and predictions are erased when the user logs off, thereby maintaining privacy and confidentiality. The publicly accessible 2B-Alert Web tool is available for operators, schedulers, and neurobehavioral scientists as well as the general public to determine the impact of any given sleep/wake schedule, caffeine consumption, and time of day on performance of a group of individuals. This evidence-based tool can be used as a decision aid to design effective work schedules, guide the design of future sleep restriction and caffeine studies, and increase public awareness of the effects of sleep amounts, time of day, and caffeine on alertness. © 2016 Associated Professional Sleep Societies, LLC.
Scheduling periodic jobs using imprecise results
NASA Technical Reports Server (NTRS)
Chung, Jen-Yao; Liu, Jane W. S.; Lin, Kwei-Jay
1987-01-01
One approach to avoid timing faults in hard, real-time systems is to make available intermediate, imprecise results produced by real-time processes. When a result of the desired quality cannot be produced in time, an imprecise result of acceptable quality produced before the deadline can be used. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. Since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result, the amount of processor time assigned to any task in a valid schedule can be less than the amount of time required to complete the task. A meaningful formulation of the scheduling problem must take into account the overall quality of the results. Depending on the different types of undesirable effects caused by errors, jobs are classified as type N or type C. For type N jobs, the effects of errors in results produced in different periods are not cumulative. A reasonable performance measure is the average error over all jobs. Three heuristic algorithms that lead to feasible schedules with small average errors are described. For type C jobs, the undesirable effects of errors produced in different periods are cumulative. Schedulability criteria of type C jobs are discussed.
FALCON: A distributed scheduler for MIMD architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimshaw, A.S.; Vivas, V.E. Jr.
1991-01-01
This paper describes FALCON (Fully Automatic Load COordinator for Networks), the scheduler for the Mentat parallel processing system. FALCON has a modular structure and is designed for systems that use a task scheduling mechanism. FALCON is distributed, stable, supports system heterogeneities, and employs a sender-initiated adaptive load sharing policy with static task assignment. FALCON is parameterizable and is implemented in Mentat, a working distributed system. We present the design and implementation of FALCON as well as a brief introduction to those features of the Mentat run-time system that influence FALCON. Performance measures under different scheduler configurations are also presented andmore » analyzed with respect to the system parameters. 36 refs., 8 figs.« less
A human factors approach to range scheduling for satellite control
NASA Technical Reports Server (NTRS)
Wright, Cameron H. G.; Aitken, Donald J.
1991-01-01
Range scheduling for satellite control presents a classical problem: supervisory control of a large-scale dynamic system, with unwieldy amounts of interrelated data used as inputs to the decision process. Increased automation of the task, with the appropriate human-computer interface, is highly desirable. The development and user evaluation of a semi-automated network range scheduling system is described. The system incorporates a synergistic human-computer interface consisting of a large screen color display, voice input/output, a 'sonic pen' pointing device, a touchscreen color CRT, and a standard keyboard. From a human factors standpoint, this development represents the first major improvement in almost 30 years to the satellite control network scheduling task.
NASA Technical Reports Server (NTRS)
Logan, J. R.; Pulvermacher, M. K.
1991-01-01
Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.
High-throughput Analysis of Large Microscopy Image Datasets on CPU-GPU Cluster Platforms
Teodoro, George; Pan, Tony; Kurc, Tahsin M.; Kong, Jun; Cooper, Lee A. D.; Podhorszki, Norbert; Klasky, Scott; Saltz, Joel H.
2014-01-01
Analysis of large pathology image datasets offers significant opportunities for the investigation of disease morphology, but the resource requirements of analysis pipelines limit the scale of such studies. Motivated by a brain cancer study, we propose and evaluate a parallel image analysis application pipeline for high throughput computation of large datasets of high resolution pathology tissue images on distributed CPU-GPU platforms. To achieve efficient execution on these hybrid systems, we have built runtime support that allows us to express the cancer image analysis application as a hierarchical data processing pipeline. The application is implemented as a coarse-grain pipeline of stages, where each stage may be further partitioned into another pipeline of fine-grain operations. The fine-grain operations are efficiently managed and scheduled for computation on CPUs and GPUs using performance aware scheduling techniques along with several optimizations, including architecture aware process placement, data locality conscious task assignment, data prefetching, and asynchronous data copy. These optimizations are employed to maximize the utilization of the aggregate computing power of CPUs and GPUs and minimize data copy overheads. Our experimental evaluation shows that the cooperative use of CPUs and GPUs achieves significant improvements on top of GPU-only versions (up to 1.6×) and that the execution of the application as a set of fine-grain operations provides more opportunities for runtime optimizations and attains better performance than coarser-grain, monolithic implementations used in other works. An implementation of the cancer image analysis pipeline using the runtime support was able to process an image dataset consisting of 36,848 4Kx4K-pixel image tiles (about 1.8TB uncompressed) in less than 4 minutes (150 tiles/second) on 100 nodes of a state-of-the-art hybrid cluster system. PMID:25419546
Effect of Spatial Titration on Task Performance
ERIC Educational Resources Information Center
Glowacki, Lawrence
1976-01-01
A reinforcement schedule and spatial titration method were used to determine task-reinforcement area separation most preferred and effective in two third-grade boys. Errors in task performance decreased task-reinforcement area separation, while correct responses in task performance increased task-reinforcement area separation. (Author)
Surprise Benefits of Arena Scheduling
ERIC Educational Resources Information Center
Surloff, Andrew
2008-01-01
One of the most challenging tasks a principal must accomplish every year is the construction of the master schedule. Free from the magnetic scheduling boards and wall charts of yesteryear, principals now have technological tools--such as programs that offer schools solutions for their scheduling needs--that can save time and enable them to work…
Attention capture without awareness in a non-spatial selection task.
Oriet, Chris; Pandey, Mamata; Kawahara, Jun-Ichiro
2017-02-01
Distractors presented prior to a critical target in a rapid sequence of visually-presented items induce a lag-dependent deficit in target identification, particularly when the distractor shares a task-relevant feature of the target. Presumably, such capture of central attention is important for bringing a target into awareness. The results of the present investigation suggest that greater capture of attention by a distractor is not accompanied by greater awareness of it. Moreover, awareness tends to be limited to superficial characteristics of the target such as colour. The findings are interpreted within the context of a model that assumes sudden increases in arousal trigger selection of information for consolidation in working memory. In this conceptualization, prolonged analysis of distractor items sharing task-relevant features leads to larger target identification deficits (i.e., greater capture) but no increase in awareness. Copyright © 2016 Elsevier Inc. All rights reserved.
Wingard, Jeffrey C; Goodman, Jarid; Leong, Kah-Chung; Packard, Mark G
2015-09-01
Studies employing brain lesion or intracerebral drug infusions in rats have demonstrated a double dissociation between the roles of the hippocampus and dorsolateral striatum in place and response learning. The hippocampus mediates a rapid cognitive learning process underlying place learning, whereas the dorsolateral striatum mediates a relatively slower learning process in which stimulus-response habits underlying response learning are acquired in an incremental fashion. One potential implication of these findings is that hippocampus-dependent learning may benefit from a relative massing of training trials, whereas dorsal striatum-dependent learning may benefit from a relative distribution of training trials. In order to examine this hypothesis, the present study compared the effects of massed (30s inter-trial interval; ITI) or spaced (30min ITI) training on acquisition of a hippocampus-dependent place learning task, and a dorsolateral striatum-dependent response task in a plus-maze. In the place task rats swam from varying start points (N or S) to a hidden escape platform located in a consistent spatial location (W). In the response task rats swam from varying start points (N or S) to a hidden escape platform located in the maze arm consistent with a body-turn response (left). In the place task, rats trained with the massed trial schedule acquired the task quicker than rats trained with the spaced trial schedule. In the response task, rats trained with the spaced trial schedule acquired the task quicker than rats trained with the massed trial schedule. The double dissociation observed suggests that the reinforcement parameters most conducive to effective learning in hippocampus-dependent and dorsolateral striatum-dependent learning may have differential temporal characteristics. Copyright © 2015 Elsevier B.V. All rights reserved.
Self-recognition, theory-of-mind, and self-awareness: what side are you on?
Morin, Alain
2011-05-01
A fashionable view in comparative psychology states that primates possess self-awareness because they exhibit mirror self-recognition (MSR), which in turn makes it possible to infer mental states in others ("theory-of-mind"; ToM). In cognitive neuroscience, an increasingly popular position holds that the right hemisphere represents the centre of self-awareness because MSR and ToM tasks presumably increase activity in that hemisphere. These two claims are critically assessed here as follows: (1) MSR should not be equated with full-blown self-awareness, as it most probably only requires kinaesthetic self-knowledge and does not involve access to one's mental events; (2) ToM and self-awareness are fairly independent and should also not be taken as equivalent notions; (3) MSR and ToM tasks engage medial and left brain areas; (4) other self-awareness tasks besides MSR and ToM tasks (e.g., self-description, autobiography) mostly recruit medial and left brain areas; (5) and recent neuropsychological evidence implies that inner speech (produced by the left hemisphere) plays a significant role in self-referential activity. The main conclusions reached based on this analysis are that (a) organisms that display MSR most probably do not possess introspective self-awareness, and (b) self-related processes most likely engage a distributed network of brain regions situated in both hemispheres.
A format for the interchange of scheduling models
NASA Technical Reports Server (NTRS)
Jaap, John P.; Davis, Elizabeth K.
1994-01-01
In recent years a variety of space-activity schedulers have been developed within the aerospace community. Space-activity schedulers are characterized by their need to handle large numbers of activities which are time-window constrained and make high demands on many scarce resources, but are minimally constrained by predecessor/successor requirements or critical paths. Two needs to exchange data between these schedulers have materialized. First, there is significant interest in comparing and evaluating the different scheduling engines to ensure that the best technology is applied to each scheduling endeavor. Second, there is a developing requirement to divide a single scheduling task among different sites, each using a different scheduler. In fact, the scheduling task for International Space Station Alpha (ISSA) will be distributed among NASA centers and among the international partners. The format used to interchange scheduling data for ISSA will likely use a growth version of the format discussed in this paper. The model interchange format (or MIF, pronounced as one syllable) discussed in this paper is a robust solution to the need to interchange scheduling requirements for space activities. It is highly extensible, human-readable, and can be generated or edited with common text editors. It also serves well the need to support a 'benchmark' data case which can be delivered on any computer platform.
Multi-Satellite Scheduling Approach for Dynamic Areal Tasks Triggered by Emergent Disasters
NASA Astrophysics Data System (ADS)
Niu, X. N.; Zhai, X. J.; Tang, H.; Wu, L. X.
2016-06-01
The process of satellite mission scheduling, which plays a significant role in rapid response to emergent disasters, e.g. earthquake, is used to allocate the observation resources and execution time to a series of imaging tasks by maximizing one or more objectives while satisfying certain given constraints. In practice, the information obtained of disaster situation changes dynamically, which accordingly leads to the dynamic imaging requirement of users. We propose a satellite scheduling model to address dynamic imaging tasks triggered by emergent disasters. The goal of proposed model is to meet the emergency response requirements so as to make an imaging plan to acquire rapid and effective information of affected area. In the model, the reward of the schedule is maximized. To solve the model, we firstly present a dynamic segmenting algorithm to partition area targets. Then the dynamic heuristic algorithm embedding in a greedy criterion is designed to obtain the optimal solution. To evaluate the model, we conduct experimental simulations in the scene of Wenchuan Earthquake. The results show that the simulated imaging plan can schedule satellites to observe a wider scope of target area. We conclude that our satellite scheduling model can optimize the usage of satellite resources so as to obtain images in disaster response in a more timely and efficient manner.
Accessing Information on the Mars Exploration Rovers Mission
NASA Astrophysics Data System (ADS)
Walton, J. D.; Schreiner, J. A.
2005-12-01
In January 2004, the Mars Exploration Rovers (MER) mission successfully deployed two robotic geologists - Spirit and Opportunity - to opposite sides of the red planet. Onboard each rover is an array of cameras and scientific instruments that send data back to Earth, where ground-based systems process and store the information. During the height of the mission, a team of about 250 scientists and engineers worked around the clock to analyze the collected data, determine a strategy and activities for the next day and then carefully compose the command sequences that would instruct the rovers in how to perform their tasks. The scientists and engineers had to work closely together to balance the science objectives with the engineering constraints so that the mission achieved its goals safely and quickly. To accomplish this coordinated effort, they adhered to a tightly orchestrated schedule of meetings and processes. To keep on time, it was critical that all team members were aware of what was happening, knew how much time they had to complete their tasks, and could easily access the information they need to do their jobs. Computer scientists and software engineers at NASA Ames Research Center worked closely with the mission managers at the Jet Propulsion Laboratory (JPL) to create applications that support the mission. One such application, the Collaborative Information Portal (CIP), helps mission personnel perform their daily tasks, whether they work inside mission control or the science areas at JPL, or in their homes, schools, or offices. With a three-tiered, service-oriented architecture (SOA) - client, middleware, and data repository - built using Java and commercial software, CIP provides secure access to mission schedules and to data and images transmitted from the Mars rovers. This services-based approach proved highly effective for building distributed, flexible applications, and is forming the basis for the design of future mission software systems. Almost two years after the landings on Mars, the rovers are still going strong, and CIP continues to provide data access to mission personnel.
Using Web GIS "Climate" for Adaptation to Climate Change
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara
2015-04-01
A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation. Passing this course raises awareness of the general public, as well as prepares the user for subsequent registration in the system and work with its tools in conducting independent research. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants 13-05-12034 and 14-05-00502.
A Hybrid Task Graph Scheduler for High Performance Image Processing Workflows.
Blattner, Timothy; Keyrouz, Walid; Bhattacharyya, Shuvra S; Halem, Milton; Brady, Mary
2017-12-01
Designing applications for scalability is key to improving their performance in hybrid and cluster computing. Scheduling code to utilize parallelism is difficult, particularly when dealing with data dependencies, memory management, data motion, and processor occupancy. The Hybrid Task Graph Scheduler (HTGS) improves programmer productivity when implementing hybrid workflows for multi-core and multi-GPU systems. The Hybrid Task Graph Scheduler (HTGS) is an abstract execution model, framework, and API that increases programmer productivity when implementing hybrid workflows for such systems. HTGS manages dependencies between tasks, represents CPU and GPU memories independently, overlaps computations with disk I/O and memory transfers, keeps multiple GPUs occupied, and uses all available compute resources. Through these abstractions, data motion and memory are explicit; this makes data locality decisions more accessible. To demonstrate the HTGS application program interface (API), we present implementations of two example algorithms: (1) a matrix multiplication that shows how easily task graphs can be used; and (2) a hybrid implementation of microscopy image stitching that reduces code size by ≈ 43% compared to a manually coded hybrid workflow implementation and showcases the minimal overhead of task graphs in HTGS. Both of the HTGS-based implementations show good performance. In image stitching the HTGS implementation achieves similar performance to the hybrid workflow implementation. Matrix multiplication with HTGS achieves 1.3× and 1.8× speedup over the multi-threaded OpenBLAS library for 16k × 16k and 32k × 32k size matrices, respectively.
Modeling the Violation of Reward Maximization and Invariance in Reinforcement Schedules
La Camera, Giancarlo; Richmond, Barry J.
2008-01-01
It is often assumed that animals and people adjust their behavior to maximize reward acquisition. In visually cued reinforcement schedules, monkeys make errors in trials that are not immediately rewarded, despite having to repeat error trials. Here we show that error rates are typically smaller in trials equally distant from reward but belonging to longer schedules (referred to as “schedule length effect”). This violates the principles of reward maximization and invariance and cannot be predicted by the standard methods of Reinforcement Learning, such as the method of temporal differences. We develop a heuristic model that accounts for all of the properties of the behavior in the reinforcement schedule task but whose predictions are not different from those of the standard temporal difference model in choice tasks. In the modification of temporal difference learning introduced here, the effect of schedule length emerges spontaneously from the sensitivity to the immediately preceding trial. We also introduce a policy for general Markov Decision Processes, where the decision made at each node is conditioned on the motivation to perform an instrumental action, and show that the application of our model to the reinforcement schedule task and the choice task are special cases of this general theoretical framework. Within this framework, Reinforcement Learning can approach contextual learning with the mixture of empirical findings and principled assumptions that seem to coexist in the best descriptions of animal behavior. As examples, we discuss two phenomena observed in humans that often derive from the violation of the principle of invariance: “framing,” wherein equivalent options are treated differently depending on the context in which they are presented, and the “sunk cost” effect, the greater tendency to continue an endeavor once an investment in money, effort, or time has been made. The schedule length effect might be a manifestation of these phenomena in monkeys. PMID:18688266
Modeling the violation of reward maximization and invariance in reinforcement schedules.
La Camera, Giancarlo; Richmond, Barry J
2008-08-08
It is often assumed that animals and people adjust their behavior to maximize reward acquisition. In visually cued reinforcement schedules, monkeys make errors in trials that are not immediately rewarded, despite having to repeat error trials. Here we show that error rates are typically smaller in trials equally distant from reward but belonging to longer schedules (referred to as "schedule length effect"). This violates the principles of reward maximization and invariance and cannot be predicted by the standard methods of Reinforcement Learning, such as the method of temporal differences. We develop a heuristic model that accounts for all of the properties of the behavior in the reinforcement schedule task but whose predictions are not different from those of the standard temporal difference model in choice tasks. In the modification of temporal difference learning introduced here, the effect of schedule length emerges spontaneously from the sensitivity to the immediately preceding trial. We also introduce a policy for general Markov Decision Processes, where the decision made at each node is conditioned on the motivation to perform an instrumental action, and show that the application of our model to the reinforcement schedule task and the choice task are special cases of this general theoretical framework. Within this framework, Reinforcement Learning can approach contextual learning with the mixture of empirical findings and principled assumptions that seem to coexist in the best descriptions of animal behavior. As examples, we discuss two phenomena observed in humans that often derive from the violation of the principle of invariance: "framing," wherein equivalent options are treated differently depending on the context in which they are presented, and the "sunk cost" effect, the greater tendency to continue an endeavor once an investment in money, effort, or time has been made. The schedule length effect might be a manifestation of these phenomena in monkeys.
NASA Technical Reports Server (NTRS)
Short, Nick, Jr.; Bedet, Jean-Jacques; Bodden, Lee; Boddy, Mark; White, Jim; Beane, John
1994-01-01
The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational since October 1, 1993. Its mission is to support the Earth Observing System (EOS) by providing rapid access to EOS data and analysis products, and to test Earth Observing System Data and Information System (EOSDIS) design concepts. One of the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an estimated several Petabytes (10(exp 15)) of data will be permanently stored. Accessing that amount of information is a formidable task that will require innovative approaches. As a precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has implemented a prototype of a constraint-based task and resource scheduler to improve the performance of the DADS. This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell Technology Center in cooperation the Information Science and Technology Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes better use of limited resources, prevents backlog of data, provides information about resources bottlenecks and performance characteristics. The prototype which is developed concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as ingestion and distribution with priority, precedence, resource requirements (disk and network bandwidth) and temporal constraints. HTRS supports schedule updates, insertions, and retrieval of task information via an Application Program Interface (API). The prototype has demonstrated with a few examples, the substantial advantages of using HTRS over scheduling algorithms such as a First In First Out (FIFO) queue. The kernel scheduling engine for HTRS, called Kronos, has been successfully applied to several other domains such as space shuttle mission scheduling, demand flow manufacturing, and avionics communications scheduling.
ERIC Educational Resources Information Center
Hockey, G. Robert J.; Earle, Fiona
2006-01-01
Two experiments tested the hypothesis that task-induced mental fatigue is moderated by control over work scheduling. Participants worked for 2 hr on simulated office work, with control manipulated by a yoking procedure. Matched participants were assigned to conditions of either high control (HC) or low control (LC). HC participants decided their…
Feelings of energy, exercise-related self-efficacy, and voluntary exercise participation.
Yoon, Seok; Buckworth, Janet; Focht, Brian; Ko, Bomna
2013-12-01
This study used a path analysis approach to examine the relationship between feelings of energy, exercise-related self-efficacy beliefs, and exercise participation. A cross-sectional mailing survey design was used to measure feelings of physical and mental energy, task and scheduling self-efficacy beliefs, and voluntary moderate and vigorous exercise participation in 368 healthy, full-time undergraduate students (mean age = 21.43 ± 2.32 years). The path analysis revealed that the hypothesized path model had a strong fit to the study data. The path model showed that feelings of physical energy had significant direct effects on task and scheduling self-efficacy beliefs as well as exercise behaviors. In addition, scheduling self-efficacy had direct effects on moderate and vigorous exercise participation. However, there was no significant direct relationship between task self-efficacy and exercise participation. The path model also revealed that scheduling self-efficacy partially mediated the relationship between feelings of physical energy and exercise participation.
NASA Technical Reports Server (NTRS)
Davari, Sadegh; Sha, Lui
1992-01-01
In the design of real-time systems, tasks are often assigned priorities. Preemptive priority driven schedulers are used to schedule tasks to meet the timing requirements. Priority inversion is the term used to describe the situation when a higher priority task's execution is delayed by lower priority tasks. Priority inversion can occur when there is contention for resources among tasks of different priorities. The duration of priority inversion could be long enough to cause tasks to miss their dead lines. Priority inversion cannot be completely eliminated. However, it is important to identify sources of priority inversion and minimize the duration of priority inversion. In this paper, a comprehensive review of the problem of and solutions to unbounded priority inversion is presented.
Effort in Multitasking: Local and Global Assessment of Effort.
Kiesel, Andrea; Dignath, David
2017-01-01
When performing multiple tasks in succession, self-organization of task order might be superior compared to external-controlled task schedules, because self-organization allows optimizing processing modes and thus reduces switch costs, and it increases commitment to task goals. However, self-organization is an additional executive control process that is not required if task order is externally specified and as such it is considered as time-consuming and effortful. To compare self-organized and externally controlled task scheduling, we suggest assessing global subjective and objectives measures of effort in addition to local performance measures. In our new experimental approach, we combined characteristics of dual tasking settings and task switching settings and compared local and global measures of effort in a condition with free choice of task sequence and a condition with cued task sequence. In a multi-tasking environment, participants chose the task order while the task requirement of the not-yet-performed task remained the same. This task preview allowed participants to work on the previously non-chosen items in parallel and resulted in faster responses and fewer errors in task switch trials than in task repetition trials. The free-choice group profited more from this task preview than the cued group when considering local performance measures. Nevertheless, the free-choice group invested more effort than the cued group when considering global measures. Thus, self-organization in task scheduling seems to be effortful even in conditions in which it is beneficiary for task processing. In a second experiment, we reduced the possibility of task preview for the not-yet-performed tasks in order to hinder efficient self-organization. Here neither local nor global measures revealed substantial differences between the free-choice and a cued task sequence condition. Based on the results of both experiments, we suggest that global assessment of effort in addition to local performance measures might be a useful tool for multitasking research.
Job-shop scheduling applied to computer vision
NASA Astrophysics Data System (ADS)
Sebastian y Zuniga, Jose M.; Torres-Medina, Fernando; Aracil, Rafael; Reinoso, Oscar; Jimenez, Luis M.; Garcia, David
1997-09-01
This paper presents a method for minimizing the total elapsed time spent by n tasks running on m differents processors working in parallel. The developed algorithm not only minimizes the total elapsed time but also reduces the idle time and waiting time of in-process tasks. This condition is very important in some applications of computer vision in which the time to finish the total process is particularly critical -- quality control in industrial inspection, real- time computer vision, guided robots. The scheduling algorithm is based on the use of two matrices, obtained from the precedence relationships between tasks, and the data obtained from the two matrices. The developed scheduling algorithm has been tested in one application of quality control using computer vision. The results obtained have been satisfactory in the application of different image processing algorithms.
Zammitt, Nicola N; Warren, Roderick E; Deary, Ian J; Frier, Brian M
2008-03-01
Recovery times of cognitive functions were examined after exposure to hypoglycemia in people with diabetes with and without impaired hypoglycemia awareness. A total of 36 subjects with type 1 diabetes were studied (20 with normal hypoglycemia awareness [NHA] and 16 with impaired hypoglycemia awareness [IHA]). A hyperinsulinemic glucose clamp was used to lower blood glucose to 2.5 mmol/l (45 mg/dl) (hypoglycemia) for 1 h or to maintain blood glucose at 4.5 mmol/l (81 mg/dl) (euglycemia) on separate occasions. Cognitive tests were applied during each experimental condition and were repeated at 10- to 15-min intervals for 90 min after euglycemia had been restored. In the NHA group, performance was impaired on all cognitive tasks during hypoglycemia and remained impaired for up to 75 min on the choice reaction time (CRT) task (P = 0.03, eta(2) = 0.237). In the IHA group, performance did not deteriorate significantly during hypoglycemia. When all subjects were analyzed within the same general linear model, performance was impaired during hypoglycemia on all tasks. Significant impairment during recovery persisted for up to 40 min on the CRT task (P = 0.04, eta(2) = 0.125) with a significant glycemia-awareness interaction for CRT after one hour of hypoglycemia (P = 0.045, eta(2) = 0.124). Performance on the trail-making B task was impaired for up to 10 min after euglycemia was restored (P = 0.024, eta(2) = 0.158). Following hypoglycemia, the recovery time for different cognitive tasks varied considerably. In the IHA group, performance was not significantly impaired during hypoglycemia. The state of awareness of hypoglycemia may influence cognitive function during and after hypoglycemia.
Weidemann, Gabrielle; Satkunarajah, Michelle; Lovibond, Peter F.
2016-01-01
Can conditioning occur without conscious awareness of the contingency between the stimuli? We trained participants on two separate reaction time tasks that ensured attention to the experimental stimuli. The tasks were then interleaved to create a differential Pavlovian contingency between visual stimuli from one task and an airpuff stimulus from the other. Many participants were unaware of the contingency and failed to show differential eyeblink conditioning, despite attending to a salient stimulus that was contingently and contiguously related to the airpuff stimulus over many trials. Manipulation of awareness by verbal instruction dramatically increased awareness and differential eyeblink responding. These findings cast doubt on dual-system theories, which propose an automatic associative system independent of cognition, and provide strong evidence that cognitive processes associated with awareness play a causal role in learning. PMID:26905277
Yokoi, Teruo; Aoyama, Keiji; Ishida, Kie; Okamura, Hitoshi
2012-05-01
The conditions associated with wandering in people with dementia include purposeless activity, purposeful actions, irritation, and symptoms of depression. The words and actions of 5 people admitted to long-term health care facilities who often exhibited wandering behavior were observed, and the above conditions were studied based on our self-awareness model (consisting of "theory of mind," "self-evaluation," and "self-consciousness"). One person who had not passed the theory of mind task but had passed the self-evaluation task was aware of her wandering. However, she could not understand where she wanted to go or for what purpose. Four persons who had not passed the self-evaluation tasks were not aware of their wandering and had no purpose for their wandering.
Koffarnus, Mikhail N; Katz, Jonathan L
2011-02-01
Increased signal-detection accuracy on the 5-choice serial reaction time (5-CSRT) task has been shown with drugs that are useful clinically in treating attention deficit hyperactivity disorder (ADHD), but these increases are often small and/or unreliable. By reducing the reinforcer frequency, it may be possible to increase the sensitivity of this task to pharmacologically induced improvements in accuracy. Rats were trained to respond on the 5-CSRT task on a fixed ratio (FR) 1, FR 3, or FR 10 schedule of reinforcement. Drugs that were and were not expected to enhance performance were then administered before experimental sessions. Significant increases in accuracy of signal detection were not typically obtained under the FR 1 schedule with any drug. However, d-amphetamine, methylphenidate, and nicotine typically increased accuracy under the FR 3 and FR 10 schedules. Increasing the FR requirement in the 5-CSRT task increases the likelihood of a positive result with clinically effective drugs, and may more closely resemble conditions in children with attention deficits.
Effects of practice schedule and task specificity on the adaptive process of motor learning.
Barros, João Augusto de Camargo; Tani, Go; Corrêa, Umberto Cesar
2017-10-01
This study investigated the effects of practice schedule and task specificity based on the perspective of adaptive process of motor learning. For this purpose, tasks with temporal and force control learning requirements were manipulated in experiments 1 and 2, respectively. Specifically, the task consisted of touching with the dominant hand the three sequential targets with specific movement time or force for each touch. Participants were children (N=120), both boys and girls, with an average age of 11.2years (SD=1.0). The design in both experiments involved four practice groups (constant, random, constant-random, and random-constant) and two phases (stabilisation and adaptation). The dependent variables included measures related to the task goal (accuracy and variability of error of the overall movement and force patterns) and movement pattern (macro- and microstructures). Results revealed a similar error of the overall patterns for all groups in both experiments and that they adapted themselves differently in terms of the macro- and microstructures of movement patterns. The study concludes that the effects of practice schedules on the adaptive process of motor learning were both general and specific to the task. That is, they were general to the task goal performance and specific regarding the movement pattern. Copyright © 2017 Elsevier B.V. All rights reserved.
Practice schedule and acquisition, retention, and transfer of a throwing task in 6-yr.-old children.
Granda Vera, Juan; Montilla, Mariano Medina
2003-06-01
Earlier studies have raised questions about the usefulness of variable and random practice in learning motor tasks so this study was designed to investigate the effects of contextual interference in young children, and specifically to evaluate the effectiveness of variable or random practice structure in 6-yr.-old boys and girls. Participants on a variable practice schedule showed better performances than those on a blocked schedule. The differences between the two groups were significant in the acquisition, retention, and transfer phases. These results support the hypothesis that contextual interference enhances skill learning. Because the study involved groups of young children in the setting of their normally scheduled physical education class, the practical applications of the results are evident.
Scheduling quality of precise form sets which consist of tasks of circular type in GRID systems
NASA Astrophysics Data System (ADS)
Saak, A. E.; Kureichik, V. V.; Kravchenko, Y. A.
2018-05-01
Users’ demand in computer power and rise of technology favour the arrival of Grid systems. The quality of Grid systems’ performance depends on computer and time resources scheduling. Grid systems with a centralized structure of the scheduling system and user’s task are modeled by resource quadrant and re-source rectangle accordingly. A Non-Euclidean heuristic measure, which takes into consideration both the area and the form of an occupied resource region, is used to estimate scheduling quality of heuristic algorithms. The authors use sets, which are induced by the elements of square squaring, as an example of studying the adapt-ability of a level polynomial algorithm with an excess and the one with minimal deviation.
Power plant maintenance scheduling using ant colony optimization: an improved formulation
NASA Astrophysics Data System (ADS)
Foong, Wai Kuan; Maier, Holger; Simpson, Angus
2008-04-01
It is common practice in the hydropower industry to either shorten the maintenance duration or to postpone maintenance tasks in a hydropower system when there is expected unserved energy based on current water storage levels and forecast storage inflows. It is therefore essential that a maintenance scheduling optimizer can incorporate the options of shortening the maintenance duration and/or deferring maintenance tasks in the search for practical maintenance schedules. In this article, an improved ant colony optimization-power plant maintenance scheduling optimization (ACO-PPMSO) formulation that considers such options in the optimization process is introduced. As a result, both the optimum commencement time and the optimum outage duration are determined for each of the maintenance tasks that need to be scheduled. In addition, a local search strategy is presented in this article to boost the robustness of the algorithm. When tested on a five-station hydropower system problem, the improved formulation is shown to be capable of allowing shortening of maintenance duration in the event of expected demand shortfalls. In addition, the new local search strategy is also shown to have significantly improved the optimization ability of the ACO-PPMSO algorithm.
Physician Attitudes Toward Adult Vaccines and Other Preventive Practices, United States, 2012.
Hurley, Laura P; Bridges, Carolyn B; Harpaz, Rafael; Allison, Mandy A; O' Leary, Sean T; Crane, Lori A; Brtnikova, Michaela; Stokley, Shannon; Beaty, Brenda L; Jimenez-Zambrano, Andrea; Kempe, Allison
2016-01-01
We described the following among U.S. primary care physicians: (1) perceived importance of vaccines recommended by the Advisory Committee on Immunization Practices relative to U.S. Preventive Services Task Force (USPSTF) preventive services, (2) attitudes toward the U.S. adult immunization schedule, and (3) awareness and use of Medicare preventive service visits. We conducted an Internet and mail survey from March to June 2012 among national networks of general internists and family physicians. We received responses from 352 of 445 (79%) general internists and 255 of 409 (62%) family physicians. For a 67-year-old hypothetical patient, 540/606 (89%, 95% confidence interval [CI] 87, 92) of physicians ranked seasonal influenza vaccine and 487/607 (80%, 95% CI 77, 83) ranked pneumococcal vaccine as very important, whereas 381/604 (63%, 95% CI 59, 67) ranked Tdap/Td vaccine and 288/607 (47%, 95% CI 43, 51) ranked herpes zoster vaccine as very important (p<0.001). All Grade A USPSTF recommendations were considered more important than Tdap/Td and herpes zoster vaccines. For the hypothetical patient aged 30 years, the number and percentage of physicians who reported that the Tdap/Td vaccine (377/604; 62%, 95% CI 59, 66) is very important was greater than the number and percentage who reported that the seasonal influenza vaccine (263/605; 43%, 95% CI 40, 47) is very important (p<0.001), and all Grade A and Grade B USPSTF recommendations were more often reported as very important than was any vaccine. A total of 172 of 587 physicians (29%) found aspects of the adult immunization schedule confusing. Among physicians aware of "Welcome to Medicare" and annual wellness visits, 492/514 (96%, 95% CI 94, 97) and 329/496 (66%, 95% CI 62, 70), respectively, reported having conducted fewer than 10 such visits in the previous month. Despite lack of prioritization of vaccines by ACIP, physicians are prioritizing some vaccines over others and ranking some vaccines below other preventive services. These attitudes and confusion about the immunization schedule may result in missed opportunities for vaccination. Medicare preventive visits are not being used widely despite offering a venue for delivery of preventive services, including vaccinations.
Assessing embodied interpersonal emotion regulation in somatic symptom disorders: a case study
Okur Güney, Zeynep; Sattel, Heribert; Cardone, Daniela; Merla, Arcangelo
2015-01-01
The aim of the present study was to examine the intra- and interpersonal emotion regulation of patients with somatic symptom disorders (SSDs) during interactions with significant others (i.e., romantic partners). We presented two case couples for analysis. The first couple consisted of a patient with SSD and his healthy partner, whereas the second couple consisted of two healthy partners. The couples underwent an interpersonal experiment that involved baseline, anger and relaxation tasks. During each task, partners’ cutaneous facial temperature, heart rate and skin conductance levels were measured simultaneously. Participants’ trait-emotion regulation, state-affect reports for self and other, and attachment styles were also examined. The experimental phases were successful in creating variations in physiological processes and affective experience. As expected, emotion regulation difficulties predicted higher increase in the course of temperature at each phase. Besides, the patient showed restricted awareness and reflection to emotions despite his higher autonomic activity compared to healthy controls. Both partners of the first couple revealed limited ability in understanding the other’s emotions, whereas the second couple performed relatively better in that domain. The temperature variations between the patient and his partner were significantly correlated while the correlations of temperature changes between the second couple were negligible except anger task. The study supported the merits of an embodied interpersonal approach in clinical studies. The tentative results of the cases were discussed in the light of findings in emotion regulation and attachment research. PMID:25713544
Designing for Temporal Awareness: The Role of Temporality in Time-Critical Medical Teamwork
Kusunoki, Diana S.; Sarcevic, Aleksandra
2016-01-01
This paper describes the role of temporal information in emergency medical teamwork and how time-based features can be designed to support the temporal awareness of clinicians in this fast-paced and dynamic environment. Engagement in iterative design activities with clinicians over the course of two years revealed a strong need for time-based features and mechanisms, including timestamps for tasks based on absolute time and automatic stopclocks measuring time by counting up since task performance. We describe in detail the aspects of temporal awareness central to clinicians’ awareness needs and then provide examples of how we addressed these needs through the design of a shared information display. As an outcome of this process, we define four types of time representation techniques to facilitate the design of time-based features: (1) timestamps based on absolute time, (2) timestamps relative to the process start time, (3) time since task performance, and (4) time until the next required task. PMID:27478880
The Effect of Practice Schedule on Context-Dependent Learning.
Lee, Ya-Yun; Fisher, Beth E
2018-03-02
It is well established that random practice compared to blocked practice enhances motor learning. Additionally, while information in the environment may be incidental, learning is also enhanced when an individual performs a task within the same environmental context in which the task was originally practiced. This study aimed to disentangle the effects of practice schedule and incidental/environmental context on motor learning. Participants practiced three finger sequences under either a random or blocked practice schedule. Each sequence was associated with specific incidental context (i.e., color and location on the computer screen) during practice. The participants were tested under the conditions when the sequence-context associations remained the same or were changed from that of practice. When the sequence-context association was changed, the participants who practiced under blocked schedule demonstrated greater performance decrement than those who practiced under random schedule. The findings suggested that those participants who practiced under random schedule were more resistant to the change of environmental context.
ERIC Educational Resources Information Center
Gao, Shan; Wei, Yonggang; Bai, Junjie; Lin, Chongde; Li, Hong
2009-01-01
This research investigated the development of affective decision-making (ADM) during early childhood, in particular role of difficulty in learning a gain/loss schedule. In Experiment 1, we administrated the Children's Gambling Task (CGT) to 60 Chinese children aged 3 and 4, replicating the results obtained by Kerr and Zelazo [Kerr, A., & Zelazo,…
The Child's Awareness of Parental Beliefs Concerning the Child: A Developmental Study.
ERIC Educational Resources Information Center
Alessandri, Steven M.; Wozniak, Robert H.
1987-01-01
This study investigated 24 adolescents' and 10 preadolescents' awareness of the beliefs that parents hold regarding them. Patterns of agreement between parents and between parents and children concerning the children's likely behavior in a variety of situations (as measured by the Family Belief Interview Schedule) were examined. (Author/BN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrens, J.P.; Shapiro, L.G.; Tanimoto, S.L.
1997-04-01
This paper describes a computing environment which supports computer-based scientific research work. Key features include support for automatic distributed scheduling and execution and computer-based scientific experimentation. A new flexible and extensible scheduling technique that is responsive to a user`s scheduling constraints, such as the ordering of program results and the specification of task assignments and processor utilization levels, is presented. An easy-to-use constraint language for specifying scheduling constraints, based on the relational database query language SQL, is described along with a search-based algorithm for fulfilling these constraints. A set of performance studies show that the environment can schedule and executemore » program graphs on a network of workstations as the user requests. A method for automatically generating computer-based scientific experiments is described. Experiments provide a concise method of specifying a large collection of parameterized program executions. The environment achieved significant speedups when executing experiments; for a large collection of scientific experiments an average speedup of 3.4 on an average of 5.5 scheduled processors was obtained.« less
Particle swarm optimization based space debris surveillance network scheduling
NASA Astrophysics Data System (ADS)
Jiang, Hai; Liu, Jing; Cheng, Hao-Wen; Zhang, Yao
2017-02-01
The increasing number of space debris has created an orbital debris environment that poses increasing impact risks to existing space systems and human space flights. For the safety of in-orbit spacecrafts, we should optimally schedule surveillance tasks for the existing facilities to allocate resources in a manner that most significantly improves the ability to predict and detect events involving affected spacecrafts. This paper analyzes two criteria that mainly affect the performance of a scheduling scheme and introduces an artificial intelligence algorithm into the scheduling of tasks of the space debris surveillance network. A new scheduling algorithm based on the particle swarm optimization algorithm is proposed, which can be implemented in two different ways: individual optimization and joint optimization. Numerical experiments with multiple facilities and objects are conducted based on the proposed algorithm, and simulation results have demonstrated the effectiveness of the proposed algorithm.
Gyurcsik, Nancy C; Estabrooks, Paul A; Frahm-Templar, Melissa J
2003-06-15
To examine whether aquatic exercise-related goals, task self-efficacy, and scheduling self-efficacy are predictive of aquatic exercise attendance in individuals with arthritis. A secondary objective was to determine whether high attendees differed from low attendees on goals and self-efficacy. The sample comprised 216 adults with arthritis (mean age 69.21 years). Measures included exercise-related goal difficulty and specificity, task and scheduling self-efficacy, and 8-week aquatic exercise attendance. Results of a multiple hierarchical regression analysis were significant (P < 0.01). Goal difficulty, specificity, and task self-efficacy were independent predictors of attendance (P < 0.05). A significant multivariate analysis of variance (P < 0.01) indicated that high attendees had higher task and scheduling self-efficacy and lower goal difficulty than did low attendees (P < 0.05). Support for the importance of exercise-related goal setting and self-efficacy was demonstrated. Implications pertain to the design of interventions to impact aquatic exercise.
Utilization Bound of Non-preemptive Fixed Priority Schedulers
NASA Astrophysics Data System (ADS)
Park, Moonju; Chae, Jinseok
It is known that the schedulability of a non-preemptive task set with fixed priority can be determined in pseudo-polynomial time. However, since Rate Monotonic scheduling is not optimal for non-preemptive scheduling, the applicability of existing polynomial time tests that provide sufficient schedulability conditions, such as Liu and Layland's bound, is limited. This letter proposes a new sufficient condition for non-preemptive fixed priority scheduling that can be used for any fixed priority assignment scheme. It is also shown that the proposed schedulability test has a tighter utilization bound than existing test methods.
Run-time implementation issues for real-time embedded Ada
NASA Technical Reports Server (NTRS)
Maule, Ruth A.
1986-01-01
A motivating factor in the development of Ada as the department of defense standard language was the high cost of embedded system software development. It was with embedded system requirements in mind that many of the features of the language were incorporated. Yet it is the designers of embedded systems that seem to comprise the majority of the Ada community dissatisfied with the language. There are a variety of reasons for this dissatisfaction, but many seem to be related in some way to the Ada run-time support system. Some of the areas in which the inconsistencies were found to have the greatest impact on performance from the standpoint of real-time systems are presented. In particular, a large part of the duties of the tasking supervisor are subject to the design decisions of the implementer. These include scheduling, rendezvous, delay processing, and task activation and termination. Some of the more general issues presented include time and space efficiencies, generic expansions, memory management, pragmas, and tracing features. As validated compilers become available for bare computer targets, it is important for a designer to be aware that, at least for many real-time issues, all validated Ada compilers are not created equal.
ERIC Educational Resources Information Center
Randell, Jordan; Searle, Rob; Reed, Phil
2012-01-01
Schedules of reinforcement typically produce reliable patterns of behaviour, and one factor that can cause deviations from these normally reliable patterns is schizotypy. Low scorers on the unusual experiences subscale of the Oxford-Liverpool Inventory of Feelings and Experiences performed as expected on a yoked random-ratio (RR), random-interval…
Cure Schedule for Stycast 2651/Catalyst 11.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kropka, Jamie Michael; McCoy, John D.
2017-11-01
The Henkel technical data sheet (TDS) for Stycast 2651/Catalyst 11 lists three alternate cure schedules for the material, each of which would result in a different state of reaction and different material properties. Here, a cure schedule that attains full reaction of the material is defined. The use of this cure schedule will eliminate variance in material properties due to changes in the cure state of the material, and the cure schedule will serve as the method to make material prior to characterizing properties. The following recommendation was motivated by (1) a desire to cure at a single temperature formore » ease of manufacture and (2) a desire to keep the cure temperature low (to minimize residual stress build-up associated with the cooldown from the cure temperature to room temperature) without excessively limiting the cure reaction due to vitrification (i.e., material glass transition temperature, T g, exceeding cure temperature).« less
NASA Astrophysics Data System (ADS)
Witantyo; Rindiyah, Anita
2018-03-01
According to data from maintenance planning and control, it was obtained that highest inventory value is non-routine components. Maintenance components are components which procured based on maintenance activities. The problem happens because there is no synchronization between maintenance activities and the components required. Reliability Centered Maintenance method is used to overcome the problem by reevaluating maintenance activities required components. The case chosen is roller mill system because it has the highest unscheduled downtime record. Components required for each maintenance activities will be determined by its failure distribution, so the number of components needed could be predicted. Moreover, those components will be reclassified from routine component to be non-routine component, so the procurement could be carried out regularly. Based on the conducted analysis, failure happens in almost every maintenance task are classified to become scheduled on condition task, scheduled discard task, schedule restoration task and no schedule maintenance. From 87 used components for maintenance activities are evaluated and there 19 components that experience reclassification from non-routine components to routine components. Then the reliability and need of those components were calculated for one-year operation period. Based on this invention, it is suggested to change all of the components in overhaul activity to increase the reliability of roller mill system. Besides, the inventory system should follow maintenance schedule and the number of required components in maintenance activity so the value of procurement will be decreased and the reliability system will increase.
Ochoa, Cristian; Alvarez-Moya, Eva M; Penelo, Eva; Aymami, M Neus; Gómez-Peña, Mónica; Fernández-Aranda, Fernando; Granero, Roser; Vallejo-Ruiloba, Julio; Menchón, José Manuel; Lawrence, Natalia S; Jiménez-Murcia, Susana
2013-01-01
A variety of cognitive and emotional processes influence the decision-making deficits observed in pathological gambling (PG). This study investigated the role of immediate/delayed sensitivity to reward and punishment, executive functions, impulsivity and explicit knowledge in relation to decision-making performance on the original Iowa Gambling Task (IGT-ABCD) and a variant (IGT-EFGH). We assessed 131 consecutive patients with a diagnosis of PG by using executive functioning and decision-making tasks, self-report measures of impulsivity and explicit knowledge. The majority of pathological gamblers (PGs) showed deficits in decision-making, characterized mainly by myopia for the future. Decisions made under risk showed different predictors. Performance on the IGT-ABCD for decisions made under risk was predicted by medium and high levels of explicit knowledge of the task, as well as by scores on the Disorderliness subscale and the degree of Stroop interference. By contrast, IGT-EFGH results were only associated with self-report impulsivity measures. Decision making in PG involves distinct patterns of deficits, and the predictors differ depending on the reinforcement schedule. Decisions made under risk on the IGT-ABCD are associated with explicit knowledge, executive functions and impulsivity traits related to conscious awareness and control processes. On the IGT-EFGH, however, only impulsivity traits predict decision making. Copyright © American Academy of Addiction Psychiatry.
Drosopoulos, Spyridon; Harrer, Dorothea; Born, Jan
2011-03-01
Sleep supports the conversion of implicitly acquired information into explicitly available knowledge. Currently, it is unclear if awareness about the presence of regularities in the stimulus material can modulate this conversion. Forty participants were trained on a serial reaction time task (SRTT). Twenty participants were informed afterwards that there was some regularity in the underlying sequence, without giving them any specific details about this regularity (aware condition); twenty other participants were not informed (unaware condition). Ten participants in each group slept the night after training, whereas 10 remained awake. After a second night of (recovery) sleep, a generation task followed where the target positions of the trained SRTT had to be deliberately generated. Both "sleep" and "awareness" improved generation task performance, but the two factors did not interact. We conclude that whilst sleep facilitates the conversion of implicit into explicit knowledge, the effect of awareness is not specific to sleep-dependent consolidation. Copyright © 2010 Elsevier B.V. All rights reserved.
Evidence of weak conscious experiences in the exclusion task
Sandberg, Kristian; Del Pin, Simon H.; Bibby, Bo M.; Overgaard, Morten
2014-01-01
Exclusion tasks have been proposed as objective measures of unconscious perception as they do not depend upon subjective ratings. In exclusion tasks, participants have to complete a task without using a previously presented prime. Use of the prime is taken as evidence for unconscious processing in the absence of awareness, yet it may also simply indicate that participants have weak experiences but fail to realize that these affect the response or fail to counter the effect on the response. Here, we tested this claim by allowing participants to rate their experience of a masked prime on the perceptual awareness scale (PAS) after the exclusion task. Results showed that the prime was used almost as often when participants reported having seen a “weak glimpse” of the prime as when they claimed to have “no experience” of the prime, thus suggesting participants frequently have weak (possibly contentless) experiences of the stimulus when failing to exclude. This indicates that the criteria for report of awareness is lower (i.e., more liberal) than that for exclusion and that failure to exclude should not be taken as evidence of complete absence of awareness. PMID:25295024
Producing bilinguals through immersion education: Development of metalinguistic awareness
Bialystok, Ellen; Peets, Kathleen F.; Moreno, Sylvain
2014-01-01
This study examined metalinguistic awareness in children who were becoming bilingual in an immersion education program. The purpose was to determine at what point in emerging bilingualism the previously reported metalinguistic advantages appear and what types of metalinguistic tasks reveal these developmental differences. Participants were 124 children in second and fifth grades who were enrolled in either a French immersion or a regular English program. All children were from monolingual English-speaking homes and attended local public schools in middle socioeconomic neighborhoods. Measures included morphological awareness, syntactic awareness, and verbal fluency, with all testing in English. These tasks differed in their need for executive control, a cognitive ability that is enhanced in bilingual children. Overall, the metalinguistic advantages reported in earlier research emerged gradually, with advantages for tasks requiring more executive control (grammaticality judgment) appearing later and some tasks improving but not exceeding performance of monolinguals (verbal fluency) even by fifth grade. These findings demonstrate the gradual emergence of changes in metalinguistic concepts associated with bilingualism over a period of about 5 years. Performance on English-language proficiency tasks was maintained by French immersion children throughout in spite of schooling being conducted in French. PMID:24744451
Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid
2016-01-01
Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239
Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid
2016-01-01
Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.
Enabling a New Planning and Scheduling Paradigm
NASA Technical Reports Server (NTRS)
Jaap, John; Davis, Elizabeth
2004-01-01
The Flight Projects Directorate at NASA's Marshall Space Flight Center is developing a new planning and scheduling environment and a new scheduling algorithm to enable a paradigm shift in planning and scheduling concepts. Over the past 33 years Marshall has developed and evolved a paradigm for generating payload timelines for Skylab, Spacelab, various other Shuttle payloads, and the International Space Station. The current paradigm starts by collecting the requirements, called "tasks models," from the scientists and technologists for the tasks that they want to be done. Because of shortcomings in the current modeling schema, some requirements are entered as notes. Next a cadre with knowledge of vehicle and hardware modifies these models to encompass and be compatible with the hardware model; again, notes are added when the modeling schema does not provide a better way to represent the requirements. Finally, another cadre further modifies the models to be compatible with the scheduling engine. This last cadre also submits the models to the scheduling engine or builds the timeline manually to accommodate requirements that are expressed in notes. A future paradigm would provide a scheduling engine that accepts separate science models and hardware models. The modeling schema would have the capability to represent all the requirements without resorting to notes. Furthermore, the scheduling engine would not require that the models be modified to account for the capabilities (limitations) of the scheduling engine. The enabling technology under development at Marshall has three major components. (1) A new modeling schema allows expressing all the requirements of the tasks without resorting to notes or awkward contrivances. The chosen modeling schema is both maximally expressive and easy to use. It utilizes graphics methods to show hierarchies of task constraints and networks of temporal relationships. (2) A new scheduling algorithm automatically schedules the models without the intervention of a scheduling expert. The algorithm is tuned for the constraint hierarchies and the complex temporal relationships provided by the modeling schema. It has an extensive search algorithm which can exploit timing flexibilities and constraint and relationship options. (3) A web-based architecture allows multiple remote users to simultaneously model science and technology requirements and other users to model vehicle and hardware characteristics. The architecture allows the users to submit scheduling requests directly to the scheduling engine and immediately see the results. These three components are integrated so that science and technology experts with no knowledge of the vehicle or hardware subsystems and no knowledge of the internal workings of the scheduling engine have the ability to build and submit scheduling requests and see the results. The immediate feedback will hone the users' modeling skills and ultimately enable them to produce the desired timeline. This paper summarizes the three components of the enabling technology and describes how this technology would make a new paradigm possible.
ERIC Educational Resources Information Center
Carson, Keyla D; Gast, David L.; Ayres, Kevin M.
2008-01-01
The purpose of this study was to evaluate the effectiveness of using a photo activity schedule book to increase independent transitioning between vocational tasks inside a school cafeteria and at a community job site. Three students with mild to moderate intellectual disabilities, enrolled in a self-contained classroom in a public high school,…
Modeling Motivational and Action Attitudes
2015-01-14
build on a few branches of this work to establish the properties of a productive schedule. As procrastination is one of the most damaging errors in...time manage- ment, we first reference recent work that has documented the negative effects of procrastination on performance. In one study, O’Donoghue...and Rabin [25] showed that people procrastinate more on important tasks, which inspired us to prioritize important tasks in scheduling. Motivation for
ERIC Educational Resources Information Center
Mills, Caroline; Chapparo, Christine
2017-01-01
The aim of this study was to determine the impact of a classroom sensory activity schedule (SAS) on cognitive strategy use during task performance. This work studies a single-system AB research design with seven students with autism and intellectual disability. Repeated measures using the Perceive, Recall, Plan and Perform (PRPP) Cognitive Task…
DOT National Transportation Integrated Search
2010-05-01
This report documents the results of a strategic job analysis that examined the job tasks and knowledge, skills, abilities, and other characteristics (KSAOs) needed to perform the job of a work schedule manager. The strategic job analysis compared in...
DOT National Transportation Integrated Search
2010-05-01
This report documents the results of a strategic job analysis that examined the job tasks and knowledge, skills, abilities, and other characteristics (KSAOs) needed to perform the job of a work schedule manager. The strategic job analysis compared in...
Alternative Work Schedules: Definitions
ERIC Educational Resources Information Center
Journal of the College and University Personnel Association, 1977
1977-01-01
The term "alternative work schedules" encompasses any variation of the requirement that all permanent employees in an organization or one shift of employees adhere to the same five-day, seven-to-eight-hour schedule. This article defines staggered hours, flexible working hours (flexitour and gliding time), compressed work week, the task system, and…
Effects of Activity Schedules on Challenging Behavior for Children with Autism
ERIC Educational Resources Information Center
Scalzo, Rachel; Davis, Tonya N.; Weston, Regan; Dukes, Elizabeth; Leeper, Dana; Min, Nandar; Mom, Allen; Stone, Jessica; Weber, Alex
2017-01-01
This study examined activity schedules as an intervention to decrease challenging behavior and increase academic engagement during work tasks scheduled after free play activities in three boys diagnosed with autism spectrum disorder (ASD). Functional analysis results indicated all participants' challenging behavior was maintained, at least in…
Naval Postgraduate School Solar Cell Array Tester
2010-12-01
PROGRAM MANAGEMENT ................................45 1. SCHEDULE .....................................47 B. BUDGET...budget and schedule from December 2009 to September 2010. In addition, a total development cost estimate, including labor, equipment, and testing... scheduler becomes active, all tasks become eligible to run, and normal operations begin. Figure 21 shows a diagram of the startup actions [32
A self-organizing neural network for job scheduling in distributed systems
NASA Astrophysics Data System (ADS)
Newman, Harvey B.; Legrand, Iosif C.
2001-08-01
The aim of this work is to describe a possible approach for the optimization of the job scheduling in large distributed systems, based on a self-organizing Neural Network. This dynamic scheduling system should be seen as adaptive middle layer software, aware of current available resources and making the scheduling decisions using the "past experience." It aims to optimize job specific parameters as well as the resource utilization. The scheduling system is able to dynamically learn and cluster information in a large dimensional parameter space and at the same time to explore new regions in the parameters space. This self-organizing scheduling system may offer a possible solution to provide an effective use of resources for the off-line data processing jobs for future HEP experiments.
Prediction based proactive thermal virtual machine scheduling in green clouds.
Kinger, Supriya; Kumar, Rajesh; Sharma, Anju
2014-01-01
Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated.
ERIC Educational Resources Information Center
Mahoney, Joseph L.; Harris, Angel L.; Eccles, Jacquelynne S.
2006-01-01
There is increasing awareness that how young people spend their time outside of school has consequences for their development. As part of this awareness, interest in organized activities--extracurricular activities, after-school programs, and youth organizations--has grown markedly. On balance, the bulk of research on organized activities has…
Carter, Christine E; Grahn, Jessica A
2016-01-01
Repetition is the most commonly used practice strategy by musicians. Although blocks of repetition continue to be suggested in the pedagogical literature, work in the field of cognitive psychology suggests that repeated events receive less processing, thereby reducing the potential for long-term learning. Motor skill learning and sport psychology research offer an alternative. Instead of using a blocked practice schedule, with practice completed on one task before moving on to the next task, an interleaved schedule can be used, in which practice is frequently alternated between tasks. This frequent alternation involves more effortful processing, resulting in increased long-term learning. The finding that practicing in an interleaved schedule leads to better retention than practicing in a blocked schedule has been labeled the "contextual interference effect." While the effect has been observed across a wide variety of fields, few studies have researched this phenomenon in a music-learning context, despite the broad potential for application to music practice. This study compared the effects of blocked and interleaved practice schedules on advanced clarinet performance in an ecologically valid context. Ten clarinetists were given one concerto exposition and one technical excerpt to practice in a blocked schedule (12 min per piece) and a second concerto exposition and technical excerpt to practice in an interleaved schedule (3 min per piece, alternating until a total of 12 min of practice were completed on each piece). Participants sight-read the four pieces prior to practice and performed them at the end of practice and again one day later. The sight-reading and two performance run-throughs of each piece were recorded and given to three professional clarinetists to rate using a percentage scale. Overall, whenever there was a ratings difference between the conditions, pieces practiced in the interleaved schedule were rated better than those in the blocked schedule, although results varied across raters. Participant questionnaires also revealed that the interleaved practice schedule had positive effects on factors such as goal setting, focus, and mistake identification. Taken together, these results suggest that an interleaved practice schedule may be a more effective practice strategy than continuous repetition in a music-learning context.
Carter, Christine E.; Grahn, Jessica A.
2016-01-01
Repetition is the most commonly used practice strategy by musicians. Although blocks of repetition continue to be suggested in the pedagogical literature, work in the field of cognitive psychology suggests that repeated events receive less processing, thereby reducing the potential for long-term learning. Motor skill learning and sport psychology research offer an alternative. Instead of using a blocked practice schedule, with practice completed on one task before moving on to the next task, an interleaved schedule can be used, in which practice is frequently alternated between tasks. This frequent alternation involves more effortful processing, resulting in increased long-term learning. The finding that practicing in an interleaved schedule leads to better retention than practicing in a blocked schedule has been labeled the “contextual interference effect.” While the effect has been observed across a wide variety of fields, few studies have researched this phenomenon in a music-learning context, despite the broad potential for application to music practice. This study compared the effects of blocked and interleaved practice schedules on advanced clarinet performance in an ecologically valid context. Ten clarinetists were given one concerto exposition and one technical excerpt to practice in a blocked schedule (12 min per piece) and a second concerto exposition and technical excerpt to practice in an interleaved schedule (3 min per piece, alternating until a total of 12 min of practice were completed on each piece). Participants sight-read the four pieces prior to practice and performed them at the end of practice and again one day later. The sight-reading and two performance run-throughs of each piece were recorded and given to three professional clarinetists to rate using a percentage scale. Overall, whenever there was a ratings difference between the conditions, pieces practiced in the interleaved schedule were rated better than those in the blocked schedule, although results varied across raters. Participant questionnaires also revealed that the interleaved practice schedule had positive effects on factors such as goal setting, focus, and mistake identification. Taken together, these results suggest that an interleaved practice schedule may be a more effective practice strategy than continuous repetition in a music-learning context. PMID:27588014
Chuan, He; Dishan, Qiu; Jin, Liu
2012-01-01
The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible. PMID:23365522
Toward an Autonomous Telescope Network: the TBT Scheduler
NASA Astrophysics Data System (ADS)
Racero, E.; Ibarra, A.; Ocaña, F.; de Lis, S. B.; Ponz, J. D.; Castillo, M.; Sánchez-Portal, M.
2015-09-01
Within the ESA SSA program, it is foreseen to deploy several robotic telescopes to provide surveillance and tracking services for hazardous objects. The TBT project will procure a validation platform for an autonomous optical observing system in a realistic scenario, consisting of two telescopes located in Spain and Australia, to collect representative test data for precursor SSA services. In this context, the planning and scheduling of the night consists of two software modules, the TBT Scheduler, that will allow the manual and autonomous planning of the night, and the control of the real-time response of the system, done by the RTS2 internal scheduler. The TBT Scheduler allocates tasks for both telescopes without human intervention. Every night it takes all the inputs needed and prepares the schedule following some predefined rules. The main purpose of the scheduler is the distribution of the time for follow-up of recently discovered targets and surveys. The TBT Scheduler considers the overall performance of the system, and combine follow-up with a priori survey strategies for both kind of objects. The strategy is defined according to the expected combined performance for both systems the upcoming night (weather, sky brightness, object accessibility and priority). Therefore, TBT Scheduler defines the global approach for the network and relies on the RTS2 internal scheduler for the final detailed distribution of tasks at each sensor.
Scheduling in the Face of Uncertain Resource Consumption and Utility
NASA Technical Reports Server (NTRS)
Koga, Dennis (Technical Monitor); Frank, Jeremy; Dearden, Richard
2003-01-01
We discuss the problem of scheduling tasks that consume a resource with known capacity and where the tasks have varying utility. We consider problems in which the resource consumption and utility of each activity is described by probability distributions. In these circumstances, we would like to find schedules that exceed a lower bound on the expected utility when executed. We first show that while some of these problems are NP-complete, others are only NP-Hard. We then describe various heuristic search algorithms to solve these problems and their drawbacks. Finally, we present empirical results that characterize the behavior of these heuristics over a variety of problem classes.
Effects of workload preview on task scheduling during simulated instrument flight.
Andre, A D; Heers, S T; Cashion, P A
1995-01-01
Our study examined pilot scheduling behavior in the context of simulated instrument flight. Over the course of the flight, pilots flew along specified routes while scheduling and performing several flight-related secondary tasks. The first phase of flight was flown under low-workload conditions, whereas the second phase of flight was flown under high-workload conditions in the form of increased turbulence and a disorganized instrument layout. Six pilots were randomly assigned to each of three workload preview groups. Subjects in the no-preview group were not given preview of the increased-workload conditions. Subjects in the declarative preview group were verbally informed of the nature of the flight workload manipulation but did not receive any practice under the high-workload conditions. Subjects in the procedural preview group received the same instructions as the declarative preview group but also flew half of the practice flight under the high-workload conditions. The results show that workload preview fostered efficient scheduling strategies. Specifically, those pilots with either declarative or procedural preview of future workload demands adopted an efficient strategy of scheduling more of the difficult secondary tasks during the low-workload phase of flight. However, those pilots given a procedural preview showed the greatest benefits in overall flight performance.
A task scheduler framework for self-powered wireless sensors.
Nordman, Mikael M
2003-10-01
The cost and inconvenience of cabling is a factor limiting widespread use of intelligent sensors. Recent developments in short-range, low-power radio seem to provide an opening to this problem, making development of wireless sensors feasible. However, for these sensors the energy availability is a main concern. The common solution is either to use a battery or to harvest ambient energy. The benefit of harvested ambient energy is that the energy feeder can be considered as lasting a lifetime, thus it saves the user from concerns related to energy management. The problem is, however, the unpredictability and unsteady behavior of ambient energy sources. This becomes a main concern for sensors that run multiple tasks at different priorities. This paper proposes a new scheduler framework that enables the reliable assignment of task priorities and scheduling in sensors powered by ambient energy. The framework being based on environment parameters, virtual queues, and a state machine with transition conditions, dynamically manages task execution according to priorities. The framework is assessed in a test system powered by a solar panel. The results show the functionality of the framework and how task execution reliably is handled without violating the priority scheme that has been assigned to it.
User-Assisted Store Recycling for Dynamic Task Graph Schedulers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt, Mehmet Can; Krishnamoorthy, Sriram; Agrawal, Gagan
The emergence of the multi-core era has led to increased interest in designing effective yet practical parallel programming models. Models based on task graphs that operate on single-assignment data are attractive in several ways: they can support dynamic applications and precisely represent the available concurrency. However, they also require nuanced algorithms for scheduling and memory management for efficient execution. In this paper, we consider memory-efficient dynamic scheduling of task graphs. Specifically, we present a novel approach for dynamically recycling the memory locations assigned to data items as they are produced by tasks. We develop algorithms to identify memory-efficient store recyclingmore » functions by systematically evaluating the validity of a set of (user-provided or automatically generated) alternatives. Because recycling function can be input data-dependent, we have also developed support for continued correct execution of a task graph in the presence of a potentially incorrect store recycling function. Experimental evaluation demonstrates that our approach to automatic store recycling incurs little to no overheads, achieves memory usage comparable to the best manually derived solutions, often produces recycling functions valid across problem sizes and input parameters, and efficiently recovers from an incorrect choice of store recycling functions.« less
A multitasking general executive for compound continuous tasks.
Salvucci, Dario D
2005-05-06
As cognitive architectures move to account for increasingly complex real-world tasks, one of the most pressing challenges involves understanding and modeling human multitasking. Although a number of existing models now perform multitasking in real-world scenarios, these models typically employ customized executives that schedule tasks for the particular domain but do not generalize easily to other domains. This article outlines a general executive for the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture that, given independent models of individual tasks, schedules and interleaves the models' behavior into integrated multitasking behavior. To demonstrate the power of the proposed approach, the article describes an application to the domain of driving, showing how the general executive can interleave component subtasks of the driving task (namely, control and monitoring) and interleave driving with in-vehicle secondary tasks (radio tuning and phone dialing). 2005 Lawrence Erlbaum Associates, Inc.
Munnelly, Anita; Dymond, Simon
2014-03-01
Two experiments investigated the potential facilitative effects of prior instructed awareness and predetermined learning criteria on humans' ability to make transitive inference (TI) judgments. Participants were first exposed to a learning phase and required to learn five premise pairs (A+B-, B+C-, C+D-, D+E-, E+F-). Testing followed, where participants made judgments on novel non-endpoint (BD, BE and CE) and endpoint inferential pairs (AC, AD, AE, AF, BF, CF and DF), as well as learned premise pairs. Across both experiments, one group were made aware that the stimuli could be arranged in a hierarchy, while another group were not given this instruction. Results demonstrated that prior instructional task awareness led to a minor performance advantage, but that this difference was not significant. Furthermore, in Experiment 2, inferential test trial accuracy was not correlated with a post-experimental measure of awareness. Thus, the current findings suggest that successful TI task performance may occur in the absence of awareness, and that repeated exposure to learning and test phases may allow weak inferential performances to emerge gradually. Further research and alternative methods of measuring awareness and its role in TI are needed. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Kuppen, Sarah; Huss, Martina; Fosker, Tim; Fegan, Natasha; Goswami, Usha
2011-01-01
We explore the relationships between basic auditory processing, phonological awareness, vocabulary, and word reading in a sample of 95 children, 55 typically developing children, and 40 children with low IQ. All children received nonspeech auditory processing tasks, phonological processing and literacy measures, and a receptive vocabulary task.…
Assessing Self-Awareness through Gaze Agency
Crespi, Sofia Allegra; de’Sperati, Claudio
2016-01-01
We define gaze agency as the awareness of the causal effect of one’s own eye movements in gaze-contingent environments, which might soon become a widespread reality with the diffusion of gaze-operated devices. Here we propose a method for measuring gaze agency based on self-monitoring propensity and sensitivity. In one task, naïf observers watched bouncing balls on a computer monitor with the goal of discovering the cause of concurrently presented beeps, which were generated in real-time by their saccades or by other events (Discovery Task). We manipulated observers’ self-awareness by pre-exposing them to a condition in which beeps depended on gaze direction or by focusing their attention to their own eyes. These manipulations increased propensity to agency discovery. In a second task, which served to monitor agency sensitivity at the sensori-motor level, observers were explicitly asked to detect gaze agency (Detection Task). Both tasks turned out to be well suited to measure both increases and decreases of gaze agency. We did not find evident oculomotor correlates of agency discovery or detection. A strength of our approach is that it probes self-monitoring propensity–difficult to evaluate with traditional tasks based on bodily agency. In addition to putting a lens on this novel cognitive function, measuring gaze agency could reveal subtle self-awareness deficits in pathological conditions and during development. PMID:27812138
48 CFR 1852.216-80 - Task ordering procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... specified in the schedule. The Contractor may incur costs under this contract in performance of task orders... contemplated task order. (2) Proposed performance standards to be used as criteria for determining whether the... the task order, including special instructions or other information necessary for performance of the...
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Matijevic, J. R.
1987-01-01
Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.
van Veluw, Susanne J; Chance, Steven A
2014-03-01
The perception of self and others is a key aspect of social cognition. In order to investigate the neurobiological basis of this distinction we reviewed two classes of task that study self-awareness and awareness of others (theory of mind, ToM). A reliable task to measure self-awareness is the recognition of one's own face in contrast to the recognition of others' faces. False-belief tasks are widely used to identify neural correlates of ToM as a measure of awareness of others. We performed an activation likelihood estimation meta-analysis, using the fMRI literature on self-face recognition and false-belief tasks. The brain areas involved in performing false-belief tasks were the medial prefrontal cortex (MPFC), bilateral temporo-parietal junction, precuneus, and the bilateral middle temporal gyrus. Distinct self-face recognition regions were the right superior temporal gyrus, the right parahippocampal gyrus, the right inferior frontal gyrus/anterior cingulate cortex, and the left inferior parietal lobe. Overlapping brain areas were the superior temporal gyrus, and the more ventral parts of the MPFC. We confirmed that self-recognition in contrast to recognition of others' faces, and awareness of others involves a network that consists of separate, distinct neural pathways, but also includes overlapping regions of higher order prefrontal cortex where these processes may be combined. Insights derived from the neurobiology of disorders such as autism and schizophrenia are consistent with this notion.
The involuntary nature of binge drinking: goal directedness and awareness of intention
Doñamayor, Nuria; Strelchuk, Daniela; Baek, Kwangyeol; Banca, Paula
2017-01-01
Abstract Binge drinking represents a public health issue and is a known risk factor in the development of alcohol use disorders. Previous studies have shown behavioural as well as neuroanatomical alterations associated with binge drinking. Here, we address the question of the automaticity or involuntary nature of the behaviour by assessing goal‐directed behaviour and intentionality. In this study, we used a computational two‐step task, designed to discern between model‐based/goal‐directed and model‐free/habitual behaviours, and the classic Libet clock task, to study intention awareness, in a sample of 31 severe binge drinkers (BD) and 35 matched healthy volunteers. We observed that BD had impaired goal‐directed behaviour in the two‐step task compared with healthy volunteers. In the Libet clock task, BD showed delayed intention awareness. Further, we demonstrated that alcohol use severity, as reflected by the alcohol use disorders identification test, correlated with decreased conscious awareness of volitional intention in BD, although it was unrelated to performance on the two‐step task. However, the time elapsed since the last drinking binge influenced the model‐free scores, with BD showing less habitual behaviour after longer abstinence. Our findings suggest that the implementation of goal‐directed strategies and the awareness of volitional intention are affected in current heavy alcohol users. However, the modulation of these impairments by alcohol use severity and abstinence suggests a state effect of alcohol use in these measures and that top‐down volitional control might be ameliorated with alcohol use cessation. PMID:28419776
Objective Situation Awareness Measurement Based on Performance Self-Evaluation
NASA Technical Reports Server (NTRS)
DeMaio, Joe
1998-01-01
The research was conducted in support of the NASA Safe All-Weather Flight Operations for Rotorcraft (SAFOR) program. The purpose of the work was to investigate the utility of two measurement tools developed by the British Defense Evaluation Research Agency. These tools were a subjective workload assessment scale, the DRA Workload Scale and a situation awareness measurement tool. The situation awareness tool uses a comparison of the crew's self-evaluation of performance against actual performance in order to determine what information the crew attended to during the performance. These two measurement tools were evaluated in the context of a test of innovative approach to alerting the crew by way of a helmet mounted display. The situation assessment data are reported here. The performance self-evaluation metric of situation awareness was found to be highly effective. It was used to evaluate situation awareness on a tank reconnaissance task, a tactical navigation task, and a stylized task used to evaluated handling qualities. Using the self-evaluation metric, it was possible to evaluate situation awareness, without exact knowledge the relevant information in some cases and to identify information to which the crew attended or failed to attend in others.
Disadvantageous Deck Selection in the Iowa Gambling Task: The Effect of Cognitive Load
Hawthorne, Melissa J.; Pierce, Benton H.
2015-01-01
Research has shown that cognitive load affects overall Iowa Gambling Task (IGT) performance, but it is unknown whether such load impacts the selection of the individual decks that correspond to gains or losses. Here, participants performed the IGT either in a full attention condition or while engaged in a number monitoring task to divide attention. Results showed that the full attention group was more aware of the magnitude of gains or losses for each draw (i.e., payoff awareness) than was the divided attention group. However, the divided attention group was more sensitive to the frequency of the losses (i.e., frequency awareness), as evidenced by their increased preference for Deck B, which is the large but infrequent loss deck. An analysis across blocks showed that the number monitoring group was consistently more aware of loss frequency, whereas the full attention group shifted between awareness of loss frequency and awareness of payoff amount. Furthermore, the full attention group was better able to weigh loss frequency and payoff amount when making deck selections. These findings support the notion that diminished cognitive resources may result in greater selection of Deck B, otherwise known as the prominent Deck B phenomenon. PMID:27247661
1987-09-15
MAC; CODE NUMBER: NONE AND REPAIR PARTS AND SPECIAL TOOLS LIST (RPSTL). RESPONSIBILITY: ROY & ILS DURATION: 32.00 WORK DAYS PRE PPPL SCHEDULE...ILS DURATION: 22.00 WORK DAYS R/V PPPL SCHEDULE: DVPMARPS REVIEW AND VALIDATE PRELIMINARY PROVISIONING PARTS LIST. CODE NUMBER: NONE RESPONSIBILITY
Scheduling real-time, periodic jobs using imprecise results
NASA Technical Reports Server (NTRS)
Liu, Jane W. S.; Lin, Kwei-Jay; Natarajan, Swaminathan
1987-01-01
A process is called a monotone process if the accuracy of its intermediate results is non-decreasing as more time is spent to obtain the result. The result produced by a monotone process upon its normal termination is the desired result; the error in this result is zero. External events such as timeouts or crashes may cause the process to terminate prematurely. If the intermediate result produced by the process upon its premature termination is saved and made available, the application may still find the result unusable and, hence, acceptable; such a result is said to be an imprecise one. The error in an imprecise result is nonzero. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. This problem differs from the traditional scheduling problems since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result. Consequently, the amounts of processor time assigned to tasks in a valid schedule can be less than the amounts of time required to complete the tasks. A meaningful formulation of this problem taking into account the quality of the overall result is discussed. Three algorithms for scheduling jobs for which the effects of errors in results produced in different periods are not cumulative are described, and their relative merits are evaluated.
Advanced Mirror Technology Development (AMTD) Project Status
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2014-01-01
To date, AMTD Phase 1 has accomplished all of its technical tasks on-schedule and on-budget. AMTD was awarded a Phase 2 contract. We are now performing Phase 2 tasks along with those tasks continued from Phase 1.
I can see clearly now: the effects of age and perceptual load on inattentional blindness
Remington, Anna; Cartwright-Finch, Ula; Lavie, Nilli
2014-01-01
Attention and awareness are known to be linked (e.g., see Lavie et al., 2014, for a review). However the extent to which this link changes over development is not fully understood. Most research concerning the development of attention has investigated the effects of attention on distraction, visual search and spatial orienting, typically using reaction time measures which cannot directly support conclusions about conscious awareness. Here we used Lavie’s Load Theory of Attention and Cognitive Control to examine the development of attention effects on awareness. According to Load Theory, awareness levels are determined by the availability of attentional capacity. We hypothesized that attentional capacity develops with age, and consequently that awareness rates should increase with development due to the enhanced capacity. Thus we predicted that greater rates of inattentional blindness (IB) would be found at a younger age, and that lower levels of load will be sufficient to exhaust capacity and cause IB in children but not adults. We tested this hypothesis using an IB paradigm with adults and children aged 7–8, 9–10, 11–12 and 13 years old. Participants performed a line-length judgment task (indicating which arm of a cross is longer) and on the last trial were asked to report whether they noticed an unexpected task-irrelevant stimulus (a small square) in the display. Perceptual load was varied by changing the line-length difference (with a smaller difference in the conditions of higher load). The results supported our hypothesis: levels of awareness increased with age, and a moderate increase in the perceptual load of the task led to greater IB for children but not adults. These results extended across both peripheral and central presentations of the task stimuli. Overall, these findings establish the development of capacity for awareness and demonstrate the critical role of the perceptual load in the attended task. PMID:24795596
I can see clearly now: the effects of age and perceptual load on inattentional blindness.
Remington, Anna; Cartwright-Finch, Ula; Lavie, Nilli
2014-01-01
Attention and awareness are known to be linked (e.g., see Lavie et al., 2014, for a review). However the extent to which this link changes over development is not fully understood. Most research concerning the development of attention has investigated the effects of attention on distraction, visual search and spatial orienting, typically using reaction time measures which cannot directly support conclusions about conscious awareness. Here we used Lavie's Load Theory of Attention and Cognitive Control to examine the development of attention effects on awareness. According to Load Theory, awareness levels are determined by the availability of attentional capacity. We hypothesized that attentional capacity develops with age, and consequently that awareness rates should increase with development due to the enhanced capacity. Thus we predicted that greater rates of inattentional blindness (IB) would be found at a younger age, and that lower levels of load will be sufficient to exhaust capacity and cause IB in children but not adults. We tested this hypothesis using an IB paradigm with adults and children aged 7-8, 9-10, 11-12 and 13 years old. Participants performed a line-length judgment task (indicating which arm of a cross is longer) and on the last trial were asked to report whether they noticed an unexpected task-irrelevant stimulus (a small square) in the display. Perceptual load was varied by changing the line-length difference (with a smaller difference in the conditions of higher load). The results supported our hypothesis: levels of awareness increased with age, and a moderate increase in the perceptual load of the task led to greater IB for children but not adults. These results extended across both peripheral and central presentations of the task stimuli. Overall, these findings establish the development of capacity for awareness and demonstrate the critical role of the perceptual load in the attended task.
Strategic workload management and decision biases in aviation
NASA Technical Reports Server (NTRS)
Raby, Mireille; Wickens, Christopher D.
1994-01-01
Thirty pilots flew three simulated landing approaches under conditions of low, medium, and high workload. Workload conditions were created by varying time pressure and external communications requirements. Our interest was in how the pilots strategically managed or adapted to the increasing workload. We independently assessed the pilot's ranking of the priority of different discrete tasks during the approach and landing. Pilots were found to sacrifice some aspects of primary flight control as workload increased. For discrete tasks, increasing workload increased the amount of time in performing the high priority tasks, decreased the time in performing those of lowest priority, and did not affect duration of performance episodes or optimality of scheduling of tasks of any priority level. Individual differences analysis revealed that high-performing subjects scheduled discrete tasks earlier in the flight and shifted more often between different activities.
Teaching Task Sequencing via Verbal Mediation.
ERIC Educational Resources Information Center
Rusch, Frank R.; And Others
1987-01-01
Verbal sequence training was used to teach a moderately mentally retarded woman to sequence job-related tasks. Learning to say the tasks in the proper sequence resulted in the employee performing her tasks in that sequence, and the employee was capable of mediating her own work behavior when scheduled changes occurred. (Author/JDD)
Ollis, Stewart; Button, Chris; Fairweather, Malcolm
2005-03-01
The contextual interference (CI) effect has been investigated through practice schedule manipulations within both basic and applied studies. Despite extensive research activity there is little conclusive evidence regarding the optimal practice structure of real world manipulative tasks in professional training settings. The present study therefore assessed the efficacy of practising simple and complex knot-tying skills in professional fire-fighters training. Forty-eight participants were quasi-randomly assigned to various practice schedules along the CI continuum. Twenty-four participants were students selected for their novice knot-tying capabilities and 24 were experienced fire-fighters who were more 'experienced knot-tiers'. They were assessed for skill acquisition, retention and transfer effects having practiced tying knots classified as simple or complex. Surprisingly, high levels of CI scheduling enhance learning for novices even when practising a complex task. The findings also revealed that CI benefits are most apparent as learners engage in tasks high in transfer distality. In conclusion, complexity and experience are mediating factors influencing the potency of the CI training effect in real-world settings.
Developing Multicultural Awareness: An In-service Day Proposal for Rend Lake College, Ina, Illinois.
ERIC Educational Resources Information Center
Rust, Joseph Henry
Noting that the state of Illinois mandates that community colleges address cultural diversity in their curriculum, this paper presents a proposal for a day-long in-service faculty education program to make faculty aware that cultural diversity exists at Rend Lake College (Illinois). The paper begins with a schedule for the in-service day, offering…
Yang, Hui; Zhang, Jie; Zhao, Yongli; Ji, Yuefeng; Li, Hui; Lin, Yi; Li, Gang; Han, Jianrui; Lee, Young; Ma, Teng
2014-07-28
Data center interconnection with elastic optical networks is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. We previously implemented enhanced software defined networking over elastic optical network for data center application [Opt. Express 21, 26990 (2013)]. On the basis of it, this study extends to consider the time-aware data center service scheduling with elastic service time and service bandwidth according to the various time sensitivity requirements. A novel time-aware enhanced software defined networking (TeSDN) architecture for elastic data center optical interconnection has been proposed in this paper, by introducing a time-aware resources scheduling (TaRS) scheme. The TeSDN can accommodate the data center services with required QoS considering the time dimensionality, and enhance cross stratum optimization of application and elastic optical network stratums resources based on spectrum elasticity, application elasticity and time elasticity. The overall feasibility and efficiency of the proposed architecture is experimentally verified on our OpenFlow-based testbed. The performance of TaRS scheme under heavy traffic load scenario is also quantitatively evaluated based on TeSDN architecture in terms of blocking probability and resource occupation rate.
Prediction Based Proactive Thermal Virtual Machine Scheduling in Green Clouds
Kinger, Supriya; Kumar, Rajesh; Sharma, Anju
2014-01-01
Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated. PMID:24737962
ERIC Educational Resources Information Center
Zaman, Maliha
2010-01-01
Students may avoid working on difficult tasks because it takes them longer to complete those tasks, which results in a delay to reinforcement. Research studies show that reinforcer and response dimensions can be manipulated within a concurrent operants framework to bias choice allocation toward more difficult tasks. The current study extends…
ERIC Educational Resources Information Center
Branum-Martin, Lee; Mehta, Paras D.; Fletcher, Jack M.; Carlson, Coleen D.; Ortiz, Alba; Carlo, Maria; Francis, David J.
2006-01-01
The construct validity of English and Spanish phonological awareness (PA) tasks was examined with a sample of 812 kindergarten children from 71 transitional bilingual education program classrooms located in 3 different types of geographic regions in California and Texas. Tasks of PA, including blending nonwords, segmenting words, and phoneme…
The Development of Body Self-Awareness
ERIC Educational Resources Information Center
Moore, Chris; Mealiea, Jennifer; Garon, Nancy; Povinelli, Daniel J.
2007-01-01
Two experiments examined toddlers' performance on a new task designed to examine the development of body self-awareness. The new task was conceived from observations by Piaget (1953/1977) and theoretical work from Povinelli and Cant (1995) and involved a toy shopping cart to the back of which a small mat had been attached. Children were asked to…
Determination of the Underlying Task Scheduling Algorithm for an Ada Runtime System
1989-12-01
was also curious as to how well I could model the test cases with Ada programs . In particular, I wanted to see whether I could model the equal arrival...parameter relationshis=s required to detect the execution of individual algorithms. These test cases were modeled using Ada programs . Then, the...results were analyzed to determine whether the Ada programs were capable of revealing the task scheduling algorithm used by the Ada run-time system. This
DOT National Transportation Integrated Search
1998-10-11
This paper describes a preliminary cognitive task analysis (CTA) that is being conducted to examine how experienced train dispatchers manage and schedule trains. The CTA uses ethnographic field observations and structured interview techniques. The ob...
NASA Technical Reports Server (NTRS)
Freeman, Frederick G.
1993-01-01
The increased use of automation in the cockpits of commercial planes has dramatically decreased the workload requirements of pilots, enabling them to function more efficiently and with a higher degree of safety. Unfortunately, advances in technology have led to an unexpected problem: the decreased demands on pilots have increased the probability of inducing 'hazardous states of awareness.' A hazardous state of awareness is defined as a decreased level of alertness or arousal which makes an individual less capable of reacting to unique or emergency types of situations. These states tend to be induced when an individual is not actively processing information. Under such conditions a person is likely to let his/her mind wander, either to internal states or to irrelevant external conditions. As a result, they are less capable of reacting quickly to emergency situations. Since emergencies are relatively rare, and since the high automated cockpit requires progressively decreasing levels of engagement, the probability of being seduced into a lowered state of awareness is increasing. This further decreases the readiness of the pilot to react to unique circumstances such as system failures. The HEM Lab at NASA-Langley Research Center has been studying how these states of awareness are induced and what the physiological correlates of these different states are. Specifically, they have been interested in studying electroencephalographic (EEG) measures of different states of alertness to determine if such states can be identified and, hopefully, avoided. The project worked on this summer involved analyzing the EEG and the event related potentials (ERP) data collected while subjects performed under two conditions. Each condition required subjects to perform a relatively boring vigilance task. The purpose of using these tasks was to induce a decreased state of awareness while still requiring the subject to process information. Each task involved identifying an infrequently presented target stimulus. In addition to the task requirements, irrelevant tones were presented in the background. Research has shown that even though these stimuli are not attended, ERP's to them can still be elicited. The amplitude of the ERP waves has been shown to change as a function of a person's level of alertness. ERP's were also collected and analyzed for the target stimuli for each task. Brain maps were produced based on the ERP voltages for the different stimuli. In addition to the ERP's, a quantitative EEG (QEEG) was performed on the data using a fast Fourier technique to produce a power spectral analysis of the EEG. This analysis was conducted on the continuous EEG while the subjects were performing the tasks. Finally, a QEEG was performed on periods during the task when subjects indicated that they were in an altered state of awareness. During the tasks, subjects were asked to indicate by pressing a button when they realized their level of task awareness had changed. EEG epochs were collected for times just before and just after subjects made this reponse. The purpose of this final analysis was to determine whether or not subjective indices of level of awareness could be correlated with different patterns of EEG.
Fixed-Time Schedule Effects in Combination with Response-Dependent Schedules
ERIC Educational Resources Information Center
Borrero, John C.; Bartels-Meints, Jamie A.; Sy, Jolene R.; Francisco, Monica T.
2011-01-01
We evaluated the effects of fixed-interval (FI), fixed-time (FT), and conjoint (combined) FI FT reinforcement schedules on the responding of 3 adults who had been diagnosed with schizophrenia. Responding on vocational tasks decreased for 2 of 3 participants under FT alone relative to FI alone. Responding under FI FT resulted in response…
Robust Aircraft Squadron Scheduling in the Face of Absenteeism
2008-03-01
Complicating matters is absenteeism . If one or more pilots are unable to perform their previously assigned tasks, due to sickness, aircraft failure, or...ROBUST AIRCRAFT SQUADRON SCHEDULING IN THE FACE OF ABSENTEEISM THESIS Osman B Gokcen, 1st...or the United States Government. AFIT/GOR/ENS/08-06 ROBUST AIRCRAFT SQUADRON SCHEDULING IN THE FACE OF ABSENTEEISM THESIS
The R-Shell approach - Using scheduling agents in complex distributed real-time systems
NASA Technical Reports Server (NTRS)
Natarajan, Swaminathan; Zhao, Wei; Goforth, Andre
1993-01-01
Large, complex real-time systems such as space and avionics systems are extremely demanding in their scheduling requirements. The current OS design approaches are quite limited in the capabilities they provide for task scheduling. Typically, they simply implement a particular uniprocessor scheduling strategy and do not provide any special support for network scheduling, overload handling, fault tolerance, distributed processing, etc. Our design of the R-Shell real-time environment fcilitates the implementation of a variety of sophisticated but efficient scheduling strategies, including incorporation of all these capabilities. This is accomplished by the use of scheduling agents which reside in the application run-time environment and are responsible for coordinating the scheduling of the application.
Sankaran, Ramanan; Angel, Jordan; Brown, W. Michael
2015-04-08
The growth in size of networked high performance computers along with novel accelerator-based node architectures has further emphasized the importance of communication efficiency in high performance computing. The world's largest high performance computers are usually operated as shared user facilities due to the costs of acquisition and operation. Applications are scheduled for execution in a shared environment and are placed on nodes that are not necessarily contiguous on the interconnect. Furthermore, the placement of tasks on the nodes allocated by the scheduler is sub-optimal, leading to performance loss and variability. Here, we investigate the impact of task placement on themore » performance of two massively parallel application codes on the Titan supercomputer, a turbulent combustion flow solver (S3D) and a molecular dynamics code (LAMMPS). Benchmark studies show a significant deviation from ideal weak scaling and variability in performance. The inter-task communication distance was determined to be one of the significant contributors to the performance degradation and variability. A genetic algorithm-based parallel optimization technique was used to optimize the task ordering. This technique provides an improved placement of the tasks on the nodes, taking into account the application's communication topology and the system interconnect topology. As a result, application benchmarks after task reordering through genetic algorithm show a significant improvement in performance and reduction in variability, therefore enabling the applications to achieve better time to solution and scalability on Titan during production.« less
Kang, Sung Gu; Ryu, Byung Ju; Yang, Kyung Sook; Ko, Young Hwii; Cho, Seok; Kang, Seok Ho; Patel, Vipul R; Cheon, Jun
2015-01-01
A robotic virtual reality simulator (Mimic dV-Trainer) can be a useful training method for the da Vinci surgical system. Herein, we investigate several repetitive training schedules and determine which is the most effective. A total of 30 medical students were enrolled and were divided into 3 groups according to the training schedule. Group 1 performed the task 1 hour daily for 4 consecutive days, group II performed the task on once per week for 1 hour for 4 consecutive weeks, and group III performed the task for 4 consecutive hours in 1 day. The effects of training were investigated by analyzing the number of repetitions and the time required to complete the "Tube 2" simulation task when the learning curve plateau was reached. The point at which participants reached a stable score was evaluated using the cumulative sum control graph. The average time to complete the task at the learning curve plateau was 150.3 seconds in group I, 171.9 seconds in group II, and 188.5 seconds in group III. The number of task repetitions required to reach the learning curve plateau was 45 repetitions in group I, 36 repetitions in group II, and 39 repetitions in group III. Therefore, there was continuous improvement in the time required to perform the task after 40 repetitions in group I only. There was a significant correlation between improvement in each trial interval and attempt, and the correlation coefficient (0.924) in group I was higher than that in group II (0.899) and group III (0.838). Daily 1-hour practice sessions performed for 4 consecutive days resulted in the best final score, continuous score improvement, and effective training while minimizing fatigue. This repetition schedule can be used for effectively training novices in future. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Zoubrinetzky, Rachel; Collet, Gregory; Serniclaes, Willy; Nguyen-Morel, Marie-Ange; Valdois, Sylviane
2016-01-01
We tested the hypothesis that the categorical perception deficit of speech sounds in developmental dyslexia is related to phoneme awareness skills, whereas a visual attention (VA) span deficit constitutes an independent deficit. Phoneme awareness tasks, VA span tasks and categorical perception tasks of phoneme identification and discrimination using a d/t voicing continuum were administered to 63 dyslexic children and 63 control children matched on chronological age. Results showed significant differences in categorical perception between the dyslexic and control children. Significant correlations were found between categorical perception skills, phoneme awareness and reading. Although VA span correlated with reading, no significant correlations were found between either categorical perception or phoneme awareness and VA span. Mediation analyses performed on the whole dyslexic sample suggested that the effect of categorical perception on reading might be mediated by phoneme awareness. This relationship was independent of the participants' VA span abilities. Two groups of dyslexic children with a single phoneme awareness or a single VA span deficit were then identified. The phonologically impaired group showed lower categorical perception skills than the control group but categorical perception was similar in the VA span impaired dyslexic and control children. The overall findings suggest that the link between categorical perception, phoneme awareness and reading is independent from VA span skills. These findings provide new insights on the heterogeneity of developmental dyslexia. They suggest that phonological processes and VA span independently affect reading acquisition.
Zoubrinetzky, Rachel; Collet, Gregory; Serniclaes, Willy; Nguyen-Morel, Marie-Ange; Valdois, Sylviane
2016-01-01
We tested the hypothesis that the categorical perception deficit of speech sounds in developmental dyslexia is related to phoneme awareness skills, whereas a visual attention (VA) span deficit constitutes an independent deficit. Phoneme awareness tasks, VA span tasks and categorical perception tasks of phoneme identification and discrimination using a d/t voicing continuum were administered to 63 dyslexic children and 63 control children matched on chronological age. Results showed significant differences in categorical perception between the dyslexic and control children. Significant correlations were found between categorical perception skills, phoneme awareness and reading. Although VA span correlated with reading, no significant correlations were found between either categorical perception or phoneme awareness and VA span. Mediation analyses performed on the whole dyslexic sample suggested that the effect of categorical perception on reading might be mediated by phoneme awareness. This relationship was independent of the participants’ VA span abilities. Two groups of dyslexic children with a single phoneme awareness or a single VA span deficit were then identified. The phonologically impaired group showed lower categorical perception skills than the control group but categorical perception was similar in the VA span impaired dyslexic and control children. The overall findings suggest that the link between categorical perception, phoneme awareness and reading is independent from VA span skills. These findings provide new insights on the heterogeneity of developmental dyslexia. They suggest that phonological processes and VA span independently affect reading acquisition. PMID:26950210
Cotes-Ruiz, Iván Tomás; Prado, Rocío P.; García-Galán, Sebastián; Muñoz-Expósito, José Enrique; Ruiz-Reyes, Nicolás
2017-01-01
Nowadays, the growing computational capabilities of Cloud systems rely on the reduction of the consumed power of their data centers to make them sustainable and economically profitable. The efficient management of computing resources is at the heart of any energy-aware data center and of special relevance is the adaptation of its performance to workload. Intensive computing applications in diverse areas of science generate complex workload called workflows, whose successful management in terms of energy saving is still at its beginning. WorkflowSim is currently one of the most advanced simulators for research on workflows processing, offering advanced features such as task clustering and failure policies. In this work, an expected power-aware extension of WorkflowSim is presented. This new tool integrates a power model based on a computing-plus-communication design to allow the optimization of new management strategies in energy saving considering computing, reconfiguration and networks costs as well as quality of service, and it incorporates the preeminent strategy for on host energy saving: Dynamic Voltage Frequency Scaling (DVFS). The simulator is designed to be consistent in different real scenarios and to include a wide repertory of DVFS governors. Results showing the validity of the simulator in terms of resources utilization, frequency and voltage scaling, power, energy and time saving are presented. Also, results achieved by the intra-host DVFS strategy with different governors are compared to those of the data center using a recent and successful DVFS-based inter-host scheduling strategy as overlapped mechanism to the DVFS intra-host technique. PMID:28085932
Cotes-Ruiz, Iván Tomás; Prado, Rocío P; García-Galán, Sebastián; Muñoz-Expósito, José Enrique; Ruiz-Reyes, Nicolás
2017-01-01
Nowadays, the growing computational capabilities of Cloud systems rely on the reduction of the consumed power of their data centers to make them sustainable and economically profitable. The efficient management of computing resources is at the heart of any energy-aware data center and of special relevance is the adaptation of its performance to workload. Intensive computing applications in diverse areas of science generate complex workload called workflows, whose successful management in terms of energy saving is still at its beginning. WorkflowSim is currently one of the most advanced simulators for research on workflows processing, offering advanced features such as task clustering and failure policies. In this work, an expected power-aware extension of WorkflowSim is presented. This new tool integrates a power model based on a computing-plus-communication design to allow the optimization of new management strategies in energy saving considering computing, reconfiguration and networks costs as well as quality of service, and it incorporates the preeminent strategy for on host energy saving: Dynamic Voltage Frequency Scaling (DVFS). The simulator is designed to be consistent in different real scenarios and to include a wide repertory of DVFS governors. Results showing the validity of the simulator in terms of resources utilization, frequency and voltage scaling, power, energy and time saving are presented. Also, results achieved by the intra-host DVFS strategy with different governors are compared to those of the data center using a recent and successful DVFS-based inter-host scheduling strategy as overlapped mechanism to the DVFS intra-host technique.
Dissociable effects of practice variability on learning motor and timing skills.
Caramiaux, Baptiste; Bevilacqua, Frédéric; Wanderley, Marcelo M; Palmer, Caroline
2018-01-01
Motor skill acquisition inherently depends on the way one practices the motor task. The amount of motor task variability during practice has been shown to foster transfer of the learned skill to other similar motor tasks. In addition, variability in a learning schedule, in which a task and its variations are interweaved during practice, has been shown to help the transfer of learning in motor skill acquisition. However, there is little evidence on how motor task variations and variability schedules during practice act on the acquisition of complex motor skills such as music performance, in which a performer learns both the right movements (motor skill) and the right time to perform them (timing skill). This study investigated the impact of rate (tempo) variability and the schedule of tempo change during practice on timing and motor skill acquisition. Complete novices, with no musical training, practiced a simple musical sequence on a piano keyboard at different rates. Each novice was assigned to one of four learning conditions designed to manipulate the amount of tempo variability across trials (large or small tempo set) and the schedule of tempo change (randomized or non-randomized order) during practice. At test, the novices performed the same musical sequence at a familiar tempo and at novel tempi (testing tempo transfer), as well as two novel (but related) sequences at a familiar tempo (testing spatial transfer). We found that practice conditions had little effect on learning and transfer performance of timing skill. Interestingly, practice conditions influenced motor skill learning (reduction of movement variability): lower temporal variability during practice facilitated transfer to new tempi and new sequences; non-randomized learning schedule improved transfer to new tempi and new sequences. Tempo (rate) and the sequence difficulty (spatial manipulation) affected performance variability in both timing and movement. These findings suggest that there is a dissociable effect of practice variability on learning complex skills that involve both motor and timing constraints.
Energy-aware scheduling of surveillance in wireless multimedia sensor networks.
Wang, Xue; Wang, Sheng; Ma, Junjie; Sun, Xinyao
2010-01-01
Wireless sensor networks involve a large number of sensor nodes with limited energy supply, which impacts the behavior of their application. In wireless multimedia sensor networks, sensor nodes are equipped with audio and visual information collection modules. Multimedia contents are ubiquitously retrieved in surveillance applications. To solve the energy problems during target surveillance with wireless multimedia sensor networks, an energy-aware sensor scheduling method is proposed in this paper. Sensor nodes which acquire acoustic signals are deployed randomly in the sensing fields. Target localization is based on the signal energy feature provided by multiple sensor nodes, employing particle swarm optimization (PSO). During the target surveillance procedure, sensor nodes are adaptively grouped in a totally distributed manner. Specially, the target motion information is extracted by a forecasting algorithm, which is based on the hidden Markov model (HMM). The forecasting results are utilized to awaken sensor node in the vicinity of future target position. According to the two properties, signal energy feature and residual energy, the sensor nodes decide whether to participate in target detection separately with a fuzzy control approach. Meanwhile, the local routing scheme of data transmission towards the observer is discussed. Experimental results demonstrate the efficiency of energy-aware scheduling of surveillance in wireless multimedia sensor network, where significant energy saving is achieved by the sensor awakening approach and data transmission paths are calculated with low computational complexity.
Report of the Cost Assessment and Validation Task Force on the International Space Station
NASA Technical Reports Server (NTRS)
1998-01-01
The Cost Assessment and Validation (CAV) Task Force was established for independent review and assessment of cost, schedule and partnership performance on the International Space Station (ISS) Program. The CAV Task Force has made the following key findings: The International Space Station Program has made notable and reasonable progress over the past four years in defining and executing a very challenging and technically complex effort. The Program size, complexity, and ambitious schedule goals were beyond that which could be reasonably achieved within the $2.1 billion annual cap or $17.4 billion total cap. A number of critical risk elements are likely to have an adverse impact on the International Space Station cost and schedule. The schedule uncertainty associated with Russian implementation of joint Partnership agreements is the major threat to the ISS Program. The Fiscal Year (FY) 1999 budget submission to Congress is not adequate to execute the baseline ISS Program, cover normal program growth, and address the known critical risks. Additional annual funding of between $130 million and $250 million will be required. Completion of ISS assembly is likely to be delayed from one to three years beyond December 2003.
Cost Assessment and Validation Task Force on the International Space Station
NASA Technical Reports Server (NTRS)
1998-01-01
The Cost Assessment and Validation (CAV) Task Force was established for independent review and assessment of cost, schedule and partnership performance on the International Space Station (ISS) Program. The CAV Task Force has made the following key findings: The International Space Station Program has made notable and reasonable progress over the past four years in defining and executing a very challenging and technically complex effort; The Program, size, complexity, and ambitious schedule goals were beyond that which could be reasonably achieved within the $2.1 billion annual cap or $17.4 billion total cap; A number of critical risk elements are likely to have an adverse impact on the International Space Station cost and schedule; The schedule uncertainty associated with Russian implementation of joint Partnership agreements is the major threat to the ISS Program; The Fiscal Year (FY) 1999 budget submission to Congress is not adequate to execute the baseline ISS Program, cover normal program, growth, and address the known critical risks. Additional annual funding of between $130 million and $250 million will be required; and Completion of ISS assembly is likely to be delayed from, one to three years beyond December 2003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Allan Ray
1987-05-01
Increases in high speed hardware have mandated studies in software techniques to exploit the parallel capabilities. This thesis examines the effects a run-time scheduler has on a multiprocessor. The model consists of directed, acyclic graphs, generated from serial FORTRAN benchmark programs by the parallel compiler Parafrase. A multitasked, multiprogrammed environment is created. Dependencies are generated by the compiler. Tasks are bidimensional, i.e., they may specify both time and processor requests. Processor requests may be folded into execution time by the scheduler. The graphs may arrive at arbitrary time intervals. The general case is NP-hard, thus, a variety of heuristics aremore » examined by a simulator. Multiprogramming demonstrates a greater need for a run-time scheduler than does monoprogramming for a variety of reasons, e.g., greater stress on the processors, a larger number of independent control paths, more variety in the task parameters, etc. The dynamic critical path series of algorithms perform well. Dynamic critical volume did not add much. Unfortunately, dynamic critical path maximizes turnaround time as well as throughput. Two schedulers are presented which balance throughput and turnaround time. The first requires classification of jobs by type; the second requires selection of a ratio value which is dependent upon system parameters. 45 refs., 19 figs., 20 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoddard, Larry; Galluzzo, Geoff; Andrew, Daniel
The Department of Energy’s (DOE’s) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO hasmore » a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and 30 percent further reductions by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO 2 (sCO2) cycles. DOE retained Black & Veatch to support SETO’s SunShot Initiative for CSP solar power tower technology in the following areas: 1. Concept definition, including costs and schedule, of a flexible test facility to be used to test and prove components in part to support financing. 2. Concept definition, including costs and schedule, of an integrated high temperature molten salt (MS) facility with thermal energy storage and with a supercritical CO 2 cycle generating approximately 10MWe. 3. Concept definition, including costs and schedule, of an integrated high temperature falling particle facility with thermal energy storage and with a supercritical CO 2 cycle generating approximately 10MWe. This report addresses the concept definition of the sCO2 power generation system, a sub-set of items 2 and 3 above. Other reports address the balance of items 1 to 3 above as well as the MS/sCO2 integrated 10MWe facility, Item 2.« less
Molten Salt: Concept Definition and Capital Cost Estimate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoddard, Larry; Andrew, Daniel; Adams, Shannon
The Department of Energy’s (DOE’s) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO hasmore » a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and to reduce costs 30 percent further by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO 2 (sCO2) cycles. DOE retained Black & Veatch to support SETO’s SunShot Initiative for CSP solar power tower technology in the following areas: 1. Concept definition, including costs and schedule, of a flexible test facility to be used to test and prove components in part to support financing. 2. Concept definition, including costs and schedule, of an integrated high temperature molten salt (MS) facility with thermal energy storage and with a supercritical CO 2 cycle generating approximately 10MWe. 3. Concept definition, including costs and schedule, of an integrated high temperature falling particle facility with thermal energy storage and with a supercritical CO 2 cycle generating approximately 10MWe. This report addresses the concept definition of the MS/sCO2 integrated 10MWe facility, Item No. 2 above. Other reports address Items No. 1 and No. 3 above.« less
A Scheduling Algorithm for Replicated Real-Time Tasks
NASA Technical Reports Server (NTRS)
Yu, Albert C.; Lin, Kwei-Jay
1991-01-01
We present an algorithm for scheduling real-time periodic tasks on a multiprocessor system under fault-tolerant requirement. Our approach incorporates both the redundancy and masking technique and the imprecise computation model. Since the tasks in hard real-time systems have stringent timing constraints, the redundancy and masking technique are more appropriate than the rollback techniques which usually require extra time for error recovery. The imprecise computation model provides flexible functionality by trading off the quality of the result produced by a task with the amount of processing time required to produce it. It therefore permits the performance of a real-time system to degrade gracefully. We evaluate the algorithm by stochastic analysis and Monte Carlo simulations. The results show that the algorithm is resilient under hardware failures.
Task scheduling in dataflow computer architectures
NASA Technical Reports Server (NTRS)
Katsinis, Constantine
1994-01-01
Dataflow computers provide a platform for the solution of a large class of computational problems, which includes digital signal processing and image processing. Many typical applications are represented by a set of tasks which can be repetitively executed in parallel as specified by an associated dataflow graph. Research in this area aims to model these architectures, develop scheduling procedures, and predict the transient and steady state performance. Researchers at NASA have created a model and developed associated software tools which are capable of analyzing a dataflow graph and predicting its runtime performance under various resource and timing constraints. These models and tools were extended and used in this work. Experiments using these tools revealed certain properties of such graphs that require further study. Specifically, the transient behavior at the beginning of the execution of a graph can have a significant effect on the steady state performance. Transformation and retiming of the application algorithm and its initial conditions can produce a different transient behavior and consequently different steady state performance. The effect of such transformations on the resource requirements or under resource constraints requires extensive study. Task scheduling to obtain maximum performance (based on user-defined criteria), or to satisfy a set of resource constraints, can also be significantly affected by a transformation of the application algorithm. Since task scheduling is performed by heuristic algorithms, further research is needed to determine if new scheduling heuristics can be developed that can exploit such transformations. This work has provided the initial development for further long-term research efforts. A simulation tool was completed to provide insight into the transient and steady state execution of a dataflow graph. A set of scheduling algorithms was completed which can operate in conjunction with the modeling and performance tools previously developed. Initial studies on the performance of these algorithms were done to examine the effects of application algorithm transformations as measured by such quantities as number of processors, time between outputs, time between input and output, communication time, and memory size.
ERIC Educational Resources Information Center
Rose, Heath; Galloway, Nicola
2017-01-01
In this article, we describe and evaluate an innovative pedagogical task designed to raise awareness of Global Englishes and to challenge standard language ideology in an English language classroom. The task encouraged the learning and debate of the controversial Speak Good English Movement, which campaigns for Singaporeans to use a…
Phonological Neighborhood Density Effects in a Rhyme Awareness Task in Five-Year-Old Children.
ERIC Educational Resources Information Center
De Cara, Bruno; Goswami, Usha
2003-01-01
Investigates one plausible source of the emergence of phonological awareness--phonological neighborhood density in a group of 5-year-old children, most of whom were pre-readers. Subjects with a high vocabulary age showed neighborhood density effects in a rhyme oddity task, but 5-year-olds with lower vocabulary ages did not. (Author/VWL)
Thinking with Your Hands: Speech-Gesture Activity during an L2 Awareness-Raising Task
ERIC Educational Resources Information Center
van Compernolle, Remi A.; Williams, Lawrence
2011-01-01
This article reports on a study of second language (L2) French learners' self-generated use of gesture to think through and resolve a metalinguistic awareness-raising task during small-group work with an expert mediator. Although the use of gesture in L2 communication and pedagogy has recently received increasing attention, little research has…
ERIC Educational Resources Information Center
Yasuda, Sachiko
2011-01-01
This study examines how novice foreign language (FL) writers develop their genre awareness, linguistic knowledge, and writing competence in a genre-based writing course that incorporates email-writing tasks. To define genre, the study draws on systemic functional linguistics (SFL) that sees language as a resource for making meaning in a particular…
Scheduling time-critical graphics on multiple processors
NASA Technical Reports Server (NTRS)
Meyer, Tom W.; Hughes, John F.
1995-01-01
This paper describes an algorithm for the scheduling of time-critical rendering and computation tasks on single- and multiple-processor architectures, with minimal pipelining. It was developed to manage scientific visualization scenes consisting of hundreds of objects, each of which can be computed and displayed at thousands of possible resolution levels. The algorithm generates the time-critical schedule using progressive-refinement techniques; it always returns a feasible schedule and, when allowed to run to completion, produces a near-optimal schedule which takes advantage of almost the entire multiple-processor system.
System-level power optimization for real-time distributed embedded systems
NASA Astrophysics Data System (ADS)
Luo, Jiong
Power optimization is one of the crucial design considerations for modern electronic systems. In this thesis, we present several system-level power optimization techniques for real-time distributed embedded systems, based on dynamic voltage scaling, dynamic power management, and management of peak power and variance of the power profile. Dynamic voltage scaling has been widely acknowledged as an important and powerful technique to trade off dynamic power consumption and delay. Efficient dynamic voltage scaling requires effective variable-voltage scheduling mechanisms that can adjust voltages and clock frequencies adaptively based on workloads and timing constraints. For this purpose, we propose static variable-voltage scheduling algorithms utilizing criticalpath driven timing analysis for the case when tasks are assumed to have uniform switching activities, as well as energy-gradient driven slack allocation for a more general scenario. The proposed techniques can achieve closeto-optimal power savings with very low computational complexity, without violating any real-time constraints. We also present algorithms for power-efficient joint scheduling of multi-rate periodic task graphs along with soft aperiodic tasks. The power issue is addressed through both dynamic voltage scaling and power management. Periodic task graphs are scheduled statically. Flexibility is introduced into the static schedule to allow the on-line scheduler to make local changes to PE schedules through resource reclaiming and slack stealing, without interfering with the validity of the global schedule. We provide a unified framework in which the response times of aperiodic tasks and power consumption are dynamically optimized simultaneously. Interconnection network fabrics point to a new generation of power-efficient and scalable interconnection architectures for distributed embedded systems. As the system bandwidth continues to increase, interconnection networks become power/energy limited as well. Variable-frequency links have been designed by circuit designers for both parallel and serial links, which can adaptively regulate the supply voltage of transceivers to a desired link frequency, to exploit the variations in bandwidth requirement for power savings. We propose solutions for simultaneous dynamic voltage scaling of processors and links. The proposed solution considers real-time scheduling, flow control, and packet routing jointly. It can trade off the power consumption on processors and communication links via efficient slack allocation, and lead to more power savings than dynamic voltage scaling on processors alone. For battery-operated systems, the battery lifespan is an important concern. Due to the effects of discharge rate and battery recovery, the discharge pattern of batteries has an impact on the battery lifespan. Battery models indicate that even under the same average power consumption, reducing peak power current and variance in the power profile can increase the battery efficiency and thereby prolong battery lifetime. To take advantage of these effects, we propose battery-driven scheduling techniques for embedded applications, to reduce the peak power and the variance in the power profile of the overall system under real-time constraints. The proposed scheduling algorithms are also beneficial in addressing reliability and signal integrity concerns by effectively controlling peak power and variance of the power profile.
Cache Sharing and Isolation Tradeoffs in Multicore Mixed-Criticality Systems
2015-05-01
form of lockdown registers, to provide way-based partitioning. These alternatives are illustrated in Fig. 1 with respect to a quad-core ARM Cortex A9... processor (as we do for Level-A and -B tasks), but they did not consider MC systems. Altmeyer et al. [1] considered uniprocessor scheduling on a system with a...framework. We randomly generated task sets and determined the fraction that were schedulable on our target hardware platform, the quad-core ARM Cortex A9
The Use of the MASCOT Philosophy for the Construction of Ada Programs,
1983-10-01
dependent units must be recompiled. Because of Ada’s commitment to abstract data types tasks are treated as data types with certain restrictions. A task...3.3.3.1.4 End of Slice Action The scheduling algorithm determines, for each type of Slice termination, how the Scheduler treats Activities whose Slice has...Pools. The MASCOT Machine treats them as constructionally equivalent (refer 3.3.1.1.1). Because of the constraints brought in by the formulation of
1977-05-01
simulated rmotions ; and detaiJl.s on the daily work/rest schedule, as well as the overall run ,schedule (Ref.20). * Volume 4, "Crew Cognitive Functions...the outset: 1) the very small sampling of well- motivated crewmen made it difficult to generalize the results to a wider population; and 2) the...a:; backups. Selection of primary crewmen was based on satisfactory task learning and motivation demonstrated during the training period, any minor
Follow-On Development of Structured Training for the Close Combat Tactical Trainer.
1998-07-01
and Evaluation ( IOT &E) scheduled for the second quarter of FY 1998. Though the STRUCCTT Project provided a variety of exercises for the initial...References 73 APPENDIX A. ACRONYMS A-l B. FORMATIVE EVALUATION PROJECT LOG B-l C. TASK CHARTS C-l D. TASK FORCE SCHEDULE D-l E. SURVEY...phases of all three missions. The proponent selected tables to be developed assuring that most capabilities of the CCTT were used during the IOT &E
Kosmadopoulos, Anastasi; Sargent, Charli; Darwent, David; Zhou, Xuan; Dawson, Drew; Roach, Gregory D
2014-12-01
Extended wakefulness, sleep loss, and circadian misalignment are factors associated with an increased accident risk in shiftwork. Splitting shifts into multiple shorter periods per day may mitigate these risks by alleviating prior wake. However, the effect of splitting the sleep-wake schedule on the homeostatic and circadian contributions to neurobehavioural performance and subjective assessments of one's ability to perform are not known. Twenty-nine male participants lived in a time isolation laboratory for 13 d, assigned to one of two 28-h forced desynchrony (FD) schedules. Depending on the assigned schedule, participants were provided the same total time in bed (TIB) each FD cycle, either consolidated into a single period (9.33 h TIB) or split into two equal halves (2 × 4.67 h TIB). Neurobehavioural performance was regularly assessed with a psychomotor vigilance task (PVT) and subjectively-assessed ability was measured with a prediction of performance on a visual analogue scale. Polysomnography was used to assess sleep, and core body temperature was recorded to assess circadian phase. On average, participants obtained the same amount of sleep in both schedules, but those in the split schedule obtained more slow wave sleep (SWS) on FD days. Mixed-effects ANOVAs indicated no overall difference between the standard and split schedules in neurobehavioural performance or predictions of performance. Main effects of circadian phase and prior wake were present for both schedules, such that performance and subjective ratings of ability were best around the circadian acrophase, worst around the nadir, and declined with increasing prior wake. There was a schedule by circadian phase interaction for all neurobehavioural performance metrics such that performance was better in the split schedule than the standard schedule around the nadir. There was no such interaction for predictions of performance. Performance during the standard schedule was significantly better than the split schedule at 2 h of prior wake, but declined at a steeper rate such that the schedules converged by 4.5-7 h of prior wake. Overall, the results indicate that when the total opportunity for sleep per day is satisfactory, a split sleep-wake schedule is not detrimental to sleep or performance. Indeed, though not reflected in subjective assessments of performance capacity, splitting the schedule may be of some benefit, given its reduction of neurobehavioural impairment at night and its association with increased SWS. Therefore, for some industries that require operations to be sustained around the clock, implementing a split work-rest schedule may be of assistance.
Peripheral Social Awareness Information in Collaborative Work.
ERIC Educational Resources Information Center
Spring, Michael B.; Vathanophas, Vichita
2003-01-01
Discusses being aware of other members of a team in a collaborative environment and reports on a study that examined group performance on a task that was computer mediated with and without awareness information. Examines how an awareness tool impacts the quality of a collaborative work effort and the communications between group members.…
Affinity-aware checkpoint restart
Saini, Ajay; Rezaei, Arash; Mueller, Frank; ...
2014-12-08
Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core mapsmore » and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.« less
Affinity-aware checkpoint restart
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saini, Ajay; Rezaei, Arash; Mueller, Frank
Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core mapsmore » and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.« less
TASAR Certification and Operational Approval Requirements - Analyses and Results
NASA Technical Reports Server (NTRS)
Koczo, Stefan, Jr.
2015-01-01
This report documents the results of research and development work performed by Rockwell Collins in addressing the Task 1 objectives under NASA Contract NNL12AA11C. Under this contract Rockwell Collins provided analytical support to the NASA Langley Research Center (LaRC) in NASA's development of a Traffic Aware Strategic Aircrew Requests (TASAR) flight deck Electronic Flight Bag (EFB) application for technology transition into operational use. The two primary objectives of this contract were for Rockwell Collins and the University of Iowa OPL to 1) perform an implementation assessment of TASAR toward early certification and operational approval of TASAR as an EFB application (Task 1 of this contract), and 2) design, develop and conduct two Human-in-the-Loop (HITL) simulation experiments that evaluate TASAR and the associated Traffic Aware Planner (TAP) software application to determine the situational awareness and workload impacts of TASAR in the flight deck, while also assessing the level of comprehension, usefulness, and usability of the features of TAP (Task 2 of this contract). This report represents the Task 1 summary report. The Task 2 summary report is provided in [0].
Schedulers with load-store queue awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tong; Eichenberger, Alexandre E.; Jacob, Arpith C.
2017-02-07
In one embodiment, a computer-implemented method includes tracking a size of a load-store queue (LSQ) during compile time of a program. The size of the LSQ is time-varying and indicates how many memory access instructions of the program are on the LSQ. The method further includes scheduling, by a computer processor, a plurality of memory access instructions of the program based on the size of the LSQ.
Schedulers with load-store queue awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tong; Eichenberger, Alexandre E.; Jacob, Arpith C.
2017-01-24
In one embodiment, a computer-implemented method includes tracking a size of a load-store queue (LSQ) during compile time of a program. The size of the LSQ is time-varying and indicates how many memory access instructions of the program are on the LSQ. The method further includes scheduling, by a computer processor, a plurality of memory access instructions of the program based on the size of the LSQ.
DEVELOPMENT AND APPLICATION OF METHODS TO ASSESS HUMAN EXPOSURE TO PESTICIDES
Note: this task is schedule to end September 2003. Two tasks will take its place: method development for emerging pesticides including chiral chemistry applications, and in-house laboratory operations. Field sampling methods are covered under a new task proposed this year.
<...
ERIC Educational Resources Information Center
Tiger, Jeffrey H.; Toussaint, Karen A.; Roath, Christopher T.
2010-01-01
The current study compared the effects of choice and no-choice reinforcement conditions on the task responding of 3 children with autism across 2 single-operant paradigm reinforcer assessments. The first assessment employed simple fixed-ratio (FR) schedules; the second used progressive-ratio (PR) schedules. The latter assessment identified the…
Scheduling for energy and reliability management on multiprocessor real-time systems
NASA Astrophysics Data System (ADS)
Qi, Xuan
Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.
A Bio-Inspired Model-Based Approach for Context-Aware Post-WIMP Tele-Rehabilitation.
López-Jaquero, Víctor; Rodríguez, Arturo C; Teruel, Miguel A; Montero, Francisco; Navarro, Elena; Gonzalez, Pascual
2016-10-13
Tele-rehabilitation is one of the main domains where Information and Communication Technologies (ICT) have been proven useful to move healthcare from care centers to patients' home. Moreover, patients, especially those carrying out a physical therapy, cannot use a traditional Window, Icon, Menu, Pointer (WIMP) system, but they need to interact in a natural way, that is, there is a need to move from WIMP systems to Post-WIMP ones. Moreover, tele-rehabilitation systems should be developed following the context-aware approach, so that they are able to adapt to the patients' context to provide them with usable and effective therapies. In this work a model-based approach is presented to assist stakeholders in the development of context-aware Post-WIMP tele-rehabilitation systems. It entails three different models: (i) a task model for designing the rehabilitation tasks; (ii) a context model to facilitate the adaptation of these tasks to the context; and (iii) a bio-inspired presentation model to specify thoroughly how such tasks should be performed by the patients. Our proposal overcomes one of the limitations of the model-based approach for the development of context-aware systems supporting the specification of non-functional requirements. Finally, a case study is used to illustrate how this proposal can be put into practice to design a real world rehabilitation task.
Cultural differences in self-recognition: the early development of autonomous and related selves?
Ross, Josephine; Yilmaz, Mandy; Dale, Rachel; Cassidy, Rose; Yildirim, Iraz; Suzanne Zeedyk, M
2017-05-01
Fifteen- to 18-month-old infants from three nationalities were observed interacting with their mothers and during two self-recognition tasks. Scottish interactions were characterized by distal contact, Zambian interactions by proximal contact, and Turkish interactions by a mixture of contact strategies. These culturally distinct experiences may scaffold different perspectives on self. In support, Scottish infants performed best in a task requiring recognition of the self in an individualistic context (mirror self-recognition), whereas Zambian infants performed best in a task requiring recognition of the self in a less individualistic context (body-as-obstacle task). Turkish infants performed similarly to Zambian infants on the body-as-obstacle task, but outperformed Zambians on the mirror self-recognition task. Verbal contact (a distal strategy) was positively related to mirror self-recognition and negatively related to passing the body-as-obstacle task. Directive action and speech (proximal strategies) were negatively related to mirror self-recognition. Self-awareness performance was best predicted by cultural context; autonomous settings predicted success in mirror self-recognition, and related settings predicted success in the body-as-obstacle task. These novel data substantiate the idea that cultural factors may play a role in the early expression of self-awareness. More broadly, the results highlight the importance of moving beyond the mark test, and designing culturally sensitive tests of self-awareness. © 2016 John Wiley & Sons Ltd.
Heartbeat-based error diagnosis framework for distributed embedded systems
NASA Astrophysics Data System (ADS)
Mishra, Swagat; Khilar, Pabitra Mohan
2012-01-01
Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.
Heartbeat-based error diagnosis framework for distributed embedded systems
NASA Astrophysics Data System (ADS)
Mishra, Swagat; Khilar, Pabitra Mohan
2011-12-01
Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.
The Effect of a Workload-Preview on Task-Prioritization and Task-Performance
ERIC Educational Resources Information Center
Minotra, Dev
2012-01-01
With increased volume and sophistication of cyber attacks in recent years, maintaining situation awareness and effective task-prioritization strategy is critical to the task of cybersecurity analysts. However, high levels of mental-workload associated with the task of cybersecurity analyst's limits their ability to prioritize tasks.…
System and method for optimal load and source scheduling in context aware homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, Pradeep; Foslien Graber, Wendy; Mangsuli, Purnaprajna R.
A controller for controlling energy consumption in a home includes a constraints engine to define variables for multiple appliances in the home corresponding to various home modes and persona of an occupant of the home. A modeling engine models multiple paths of energy utilization of the multiple appliances to place the home into a desired state from a current context. An optimal scheduler receives the multiple paths of energy utilization and generates a schedule as a function of the multiple paths and a selected persona to place the home in a desired state.
Agent-Based Simulations for Project Management
NASA Technical Reports Server (NTRS)
White, J. Chris; Sholtes, Robert M.
2011-01-01
Currently, the most common approach used in project planning tools is the Critical Path Method (CPM). While this method was a great improvement over the basic Gantt chart technique being used at the time, it now suffers from three primary flaws: (1) task duration is an input, (2) productivity impacts are not considered , and (3) management corrective actions are not included. Today, computers have exceptional computational power to handle complex simulations of task e)(eculion and project management activities (e.g ., dynamically changing the number of resources assigned to a task when it is behind schedule). Through research under a Department of Defense contract, the author and the ViaSim team have developed a project simulation tool that enables more realistic cost and schedule estimates by using a resource-based model that literally turns the current duration-based CPM approach "on its head." The approach represents a fundamental paradigm shift in estimating projects, managing schedules, and reducing risk through innovative predictive techniques.
Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments
Kadima, Hubert; Granado, Bertrand
2013-01-01
We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361
Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.
Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand
2013-01-01
We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.
ERIC Educational Resources Information Center
Pelios, Lillian V.; MacDuff, Gregory S.; Axelrod, Saul
2003-01-01
This study evaluated a treatment package to improve on-task academic skills by three children with autism. Program components included delayed reinforcement for on-task and on-schedule responding, fading of instructional prompts and instructor's presence, unpredictable supervision, and response cost for off-task responding. On-task and on-schedule…
ERIC Educational Resources Information Center
Reed, Derek D.; DiGennaro Reed, Florence D.; Campisano, Natalie; Lacourse, Kristen; Azulay, Richard L.
2012-01-01
The assessment and improvement of staff members' subjective valuation of nonpreferred work tasks may be one way to increase the quality of staff members' work life. The Task Enjoyment Motivation Protocol (Green, Reid, Passante, & Canipe, 2008) provides a process for supervisors to identify the aversive qualities of nonpreferred job tasks.…
Space station human productivity study. Volume 5: Management plans
NASA Technical Reports Server (NTRS)
1985-01-01
The 67 Management Plans represent recommended study approaches for resolving 108 of the 305 Issues which were identified. Each study Management Plan is prepared in three formats: Management Plan Overview (lists the subsumed Issues, study background, and related overview information); Study Plan (details the study approach by tasks, lists special needs, and describes expected study products); Schedule-Task Flow (provides a time-lined schedule for the study tasks and resource requirements). The Management Relationships Matrix, included in this volume, shows the data input-output relationships among all recommended studies. A listing is also included which cross-references the unresolved requirements to Issues to management plans. A glossary of all abbreviations utilized is provided.
NPS-SCAT; Communications System Design, Test and Integration of NPS’ First CubeSat
2010-09-01
18 c. MHX (Primary Transceiver) Wakeup Task ...19 d. Transmit MHX (Primary Transceiver) Task .20 e. Receive MHX (Primary Transceiver...Beacon Antenna Deploy Task......................17 Figure 8. Collect Data Task...............................19 Figure 9. MHX Wakeup Task...to provide education while keeping scheduling and cost minimal, and maintaining a standard for building a launchable spacecraft. The CubeSat
3 CFR 102.171-102.999 - [Reserved
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aug. 31 National Wilderness Month, 2010 54455 8554 Sept. 1 National Childhood Obesity Awareness Month...: Establishing a Task Force on Childhood Obesity 7197 Feb. 23 Notice: Continuation of the National Emergency... (Proc. 8578)Childhood Cancer Awareness Month, National (Proc. 8556)Childhood Obesity Awareness Month...
ERIC Educational Resources Information Center
Malenfant, Nathalie; Grondin, Simon; Boivin, Michel; Forget-Dubois, Nadine; Robaey, Philippe; Dionne, Ginette
2012-01-01
This study tested whether the association between temporal processing (TP) and reading is mediated by phonological awareness (PA) in a normative sample of 615 eight-year-olds. TP was measured with auditory and bimodal (visual-auditory) temporal order judgment tasks and PA with a phoneme deletion task. PA partially mediated the association between…
Mirtazapine and ketanserin alter preference for gambling-like schedules of reinforcement in rats.
Persons, Amanda L; Tedford, Stephanie E; Celeste Napier, T
2017-07-03
Drug and behavioral addictions have overlapping features, e.g., both manifest preference for larger, albeit costlier, reinforcement options in cost/benefit decision-making tasks. Our prior work revealed that the mixed-function serotonergic compound, mirtazapine, attenuates behaviors by rats motivated by abused drugs. To extend this work to behavioral addictions, here we determined if mirtazapine and/or ketanserin, another mixed-function serotonin-acting compound, can alter decision-making in rats that is independent of drug (or food)-motivated reward. Accordingly, we developed a novel variable-ratio task in rats wherein intracranial self-stimulation was used as the positive reinforcer. Using lever pressing for various levels of brain stimulation, the operant task provided choices between a small brain stimulation current delivered on a fixed-ratio schedule (i.e., a predictable reward) and a large brain stimulation delivered following an unpredictable number of responses (i.e., a variable-ratio schedule). This task allowed for demonstration of individualized preference and detection of shifts in motivational influences during a pharmacological treatment. Once baseline preference was established, we determined that pretreatment with mirtazapine or ketanserin significantly decreased preference for the large reinforcer presented after gambling-like schedules of reinforcement. When the rats were tested the next day without drug, preference for the unpredictable large reinforcer option was restored. These data demonstrate that mirtazapine and ketanserin can reduce preference for larger, costlier reinforcement options, and illustrate the potential for these drugs to alter behavior. Copyright © 2017 Elsevier Inc. All rights reserved.
Sleepless night, restless mind: Effects of sleep deprivation on mind wandering.
Poh, Jia-Hou; Chong, Pearlynne L H; Chee, Michael W L
2016-10-01
Sleep deprivation can result in degradation of sustained attention through increased distraction by task-irrelevant exogenous stimuli. However, attentional failures in the sleep-deprived state could also be a result of task-unrelated thoughts (TUTs, or mind wandering). Here, well-rested and sleep-deprived participants performed a visual search task under high and low perceptual load conditions. Thought probes were administered at irregular intervals to gauge the frequency of TUTs and level of meta-awareness of mind wandering. Despite sleep-deprived participants reporting more TUTs, they also reported less awareness of TUTs. Although the frequency of TUTs decreased in the high load condition in well-rested participants, they were equally frequent across low and high perceptual load conditions in sleep-deprived participants. Together, these findings suggest that sleep deprivation can result in a loss of ability to allocate attentional resources according to task demands consistent with diminished executive control. This may have been exacerbated by reduced meta-awareness. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
ERIC Educational Resources Information Center
Chan, Jessica S.; Wade-Woolley, Lesly
2018-01-01
Background: This study was designed to extend our understanding of phonology and reading to include suprasegmental awareness using measures of prosodic awareness, which are complex tasks that tap into the rhythmic aspects of phonology. By requiring participants to access, reflect on and manipulate word stress, the prosodic awareness measures used…
Initial Insights into Phoneme Awareness Intervention for Children with Complex Communication Needs
ERIC Educational Resources Information Center
Clendon, Sally; Gillon, Gail; Yoder, David
2005-01-01
This study provides insights into the benefits of phoneme awareness intervention for children with complex communication needs (CCN). The specific aims of the study were: (1) to determine whether phoneme awareness skills can be successfully trained in children with CCN; and (2) to observe any transfer effects to phoneme awareness tasks not…
Exteroceptive and Interoceptive Body-Self Awareness in Fibromyalgia Patients
Valenzuela-Moguillansky, Camila; Reyes-Reyes, Alejandro; Gaete, María I.
2017-01-01
Fibromyalgia is a widespread chronic pain disease characterized by generalized musculoskeletal pain and fatigue. It substantially affects patients' relationship with their bodies and quality of life, but few studies have investigated the relationship between pain and body awareness in fibromyalgia. We examined exteroceptive and interoceptive aspects of body awareness in 30 women with fibromyalgia and 29 control participants. Exteroceptive body awareness was assessed by a body-scaled action-anticipation task in which participants estimated whether they could pass through apertures of different widths. Interoceptive sensitivity (IS) was assessed by a heartbeat detection task where participants counted their heartbeats during different time intervals. Interoceptive awareness was assessed by the Multidimensional Assessment of Interoceptive Awareness (MAIA). The “passability ratio” (the aperture size for a 50% positive response rate, divided by shoulder width), assessed by the body-scaled action-anticipation task, was higher for fibromyalgia participants, indicating disrupted exteroceptive awareness. Overestimating body size correlated positively with pain and its impact on functionality, but not with pain intensity. There was no difference in IS between groups. Fibromyalgia patients exhibited a higher tendency to note bodily sensations and decreased body confidence. In addition, the passability ratio and IS score correlated negatively across the whole sample, suggesting an inverse relationship between exteroceptive and interoceptive body awareness. There was a lower tendency to actively listen to the body for insight, with higher passability ratios across the whole sample. Based on our results and building on the fear-avoidance model, we outline a proposal that highlights possible interactions between exteroceptive and interoceptive body awareness and pain. Movement based contemplative practices that target sensory-motor integration and foster non-judgmental reconnection with bodily sensations are suggested to improve body confidence, functionality, and quality of life. PMID:28348526
Exteroceptive and Interoceptive Body-Self Awareness in Fibromyalgia Patients.
Valenzuela-Moguillansky, Camila; Reyes-Reyes, Alejandro; Gaete, María I
2017-01-01
Fibromyalgia is a widespread chronic pain disease characterized by generalized musculoskeletal pain and fatigue. It substantially affects patients' relationship with their bodies and quality of life, but few studies have investigated the relationship between pain and body awareness in fibromyalgia. We examined exteroceptive and interoceptive aspects of body awareness in 30 women with fibromyalgia and 29 control participants. Exteroceptive body awareness was assessed by a body-scaled action-anticipation task in which participants estimated whether they could pass through apertures of different widths. Interoceptive sensitivity (IS) was assessed by a heartbeat detection task where participants counted their heartbeats during different time intervals. Interoceptive awareness was assessed by the Multidimensional Assessment of Interoceptive Awareness (MAIA). The "passability ratio" (the aperture size for a 50% positive response rate, divided by shoulder width), assessed by the body-scaled action-anticipation task, was higher for fibromyalgia participants, indicating disrupted exteroceptive awareness. Overestimating body size correlated positively with pain and its impact on functionality, but not with pain intensity. There was no difference in IS between groups. Fibromyalgia patients exhibited a higher tendency to note bodily sensations and decreased body confidence. In addition, the passability ratio and IS score correlated negatively across the whole sample, suggesting an inverse relationship between exteroceptive and interoceptive body awareness. There was a lower tendency to actively listen to the body for insight, with higher passability ratios across the whole sample. Based on our results and building on the fear-avoidance model, we outline a proposal that highlights possible interactions between exteroceptive and interoceptive body awareness and pain. Movement based contemplative practices that target sensory-motor integration and foster non-judgmental reconnection with bodily sensations are suggested to improve body confidence, functionality, and quality of life.
Maas, Marjo J M; van Dulmen, Simone A; Sagasser, Margaretha H; Heerkens, Yvonne F; van der Vleuten, Cees P M; Nijhuis-van der Sanden, Maria W G; van der Wees, Philip J
2015-11-12
Clinical practice guidelines are intended to improve the process and outcomes of patient care. However, their implementation remains a challenge. We designed an implementation strategy, based on peer assessment (PA) focusing on barriers to change in physical therapy care. A previously published randomized controlled trial showed that PA was more effective than the usual strategy "case discussion" in improving adherence to a low back pain guideline. Peer assessment aims to enhance knowledge, communication, and hands-on clinical skills consistent with guideline recommendations. Participants observed and evaluated clinical performance on the spot in a role-play simulating clinical practice. Participants performed three roles: physical therapist, assessor, and patient. This study explored the critical features of the PA program that contributed to improved guideline adherence in the perception of participants. Dutch physical therapists working in primary care (n = 49) organized in communities of practice (n = 6) participated in the PA program. By unpacking the program we identified three main tasks and eleven subtasks. After the program was finished, a questionnaire was administered in which participants were asked to rank the program tasks from high to low learning value and to describe their impact on performance improvement. Overall ranking results were calculated. Additional semi-structured interviews were conducted to elaborate on the questionnaires results and were transcribed verbatim. Questionnaires comments and interview transcripts were analyzed using template analysis. Program tasks related to performance in the therapist role were perceived to have the highest impact on learning, although task perceptions varied from challenging to threatening. Perceptions were affected by the role-play format and the time schedule. Learning outcomes were awareness of performance, improved attitudes towards the guideline, and increased self-efficacy beliefs in managing patients with low back pain. Learning was facilitated by psychological safety and the quality of feedback. The effectiveness of PA can be attributed to the structured and performance-based design of the program. Participants showed a strong cognitive and emotional commitment to performing the physical therapist role. That might have contributed to an increased awareness of strength and weakness in clinical performance and a motivation to change routine practice.
NASA Astrophysics Data System (ADS)
Fyle, Clifford Omodele
The purpose of this study was to examine whether field-dependent/independent style awareness affects learning outcomes and learning strategies used in a hypermedia instructional module. Field-dependent/independent style was measured using the Global Embedded Figures Test. Style awareness meant that students were provided with information and explanations about their individual cognitive styles and the learning strategies that accommodate those styles. The study entailed examining students' achievement in a multiple-choice test and performance in a design task, and also their navigation patterns as they studied a science-oriented Webquest. The sample consisted of 149 eighth-grade students in 10 sections of a science class taught by two teachers in a public middle school. A two-group posttest-only design on one factor (style awareness) was used. Sixty-eight students in five sections of the class were assigned to the treatment group (field dependent/independent style awareness) while the other 81 students in five sections were assigned to the control group (no field dependent/independent style awareness). The study took place over a period of 6 days. On the first day, students in the treatment group were first tested and debriefed on their individual styles. Next, all students in both the treatment and control groups studied the hypermedia instructional module (Webquest) over a period of two days. On the fourth and fifth days students worked on the performance tasks, and on the sixth day students took the multiple-choice test and students in the control group were tested and debriefed on their individual styles. The findings indicate that style awareness significantly influenced the learning strategies of field-dependent students as they studied and carried out learning tasks in the Webquest. Field-dependent students with style awareness used hypertext links and navigated the menu sequentially a greater number of times than their counterparts with no style awareness. Correspondingly, there were no significant findings for field-independent students of the effects of style awareness on learning strategies. The findings also revealed significant differences in terms of style awareness and its interactions with achievement on the multiple-choice test. Both field-dependent and field-independent students with style awareness achieved higher scores than their counterparts who received no style awareness. There were however no significant findings with respect to the effects of style awareness on performance on the design task. Overall this study demonstrated that providing middle-school students with cognitive-style awareness training can improve both their academic performance as well as enable them to adopt more effective learning strategies when learning in hypermedia environments.
Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru; Naito, Eiichi
2017-04-21
Proprioception is somatic sensation that allows us to sense and recognize position, posture, and their changes in our body parts. It pertains directly to oneself and may contribute to bodily awareness. Likewise, one's face is a symbol of oneself, so that visual self-face recognition directly contributes to the awareness of self as distinct from others. Recently, we showed that right-hemispheric dominant activity in the inferior fronto-parietal cortices, which are connected by the inferior branch of the superior longitudinal fasciculus (SLF III), is associated with proprioceptive illusion (awareness), in concert with sensorimotor activity. Herein, we tested the hypothesis that visual self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal SLF III network. We scanned brain activity using functional magnetic resonance imaging while twenty-two right-handed healthy adults performed two tasks. One was a proprioceptive illusion task, where blindfolded participants experienced a proprioceptive illusion of right hand movement. The other was a visual self-face recognition task, where the participants judged whether an observed face was their own. We examined whether the self-face recognition and the proprioceptive illusion commonly activated the inferior fronto-parietal cortices connected by the SLF III in a right-hemispheric dominant manner. Despite the difference in sensory modality and in the body parts involved in the two tasks, both tasks activated the right inferior fronto-parietal cortices, which are likely connected by the SLF III, in a right-side dominant manner. Here we discuss possible roles for right inferior fronto-parietal activity in bodily awareness and self-awareness. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Position-aware deep multi-task learning for drug-drug interaction extraction.
Zhou, Deyu; Miao, Lei; He, Yulan
2018-05-01
A drug-drug interaction (DDI) is a situation in which a drug affects the activity of another drug synergistically or antagonistically when being administered together. The information of DDIs is crucial for healthcare professionals to prevent adverse drug events. Although some known DDIs can be found in purposely-built databases such as DrugBank, most information is still buried in scientific publications. Therefore, automatically extracting DDIs from biomedical texts is sorely needed. In this paper, we propose a novel position-aware deep multi-task learning approach for extracting DDIs from biomedical texts. In particular, sentences are represented as a sequence of word embeddings and position embeddings. An attention-based bidirectional long short-term memory (BiLSTM) network is used to encode each sentence. The relative position information of words with the target drugs in text is combined with the hidden states of BiLSTM to generate the position-aware attention weights. Moreover, the tasks of predicting whether or not two drugs interact with each other and further distinguishing the types of interactions are learned jointly in multi-task learning framework. The proposed approach has been evaluated on the DDIExtraction challenge 2013 corpus and the results show that with the position-aware attention only, our proposed approach outperforms the state-of-the-art method by 0.99% for binary DDI classification, and with both position-aware attention and multi-task learning, our approach achieves a micro F-score of 72.99% on interaction type identification, outperforming the state-of-the-art approach by 1.51%, which demonstrates the effectiveness of the proposed approach. Copyright © 2018 Elsevier B.V. All rights reserved.
An Enabling Technology for New Planning and Scheduling Paradigms
NASA Technical Reports Server (NTRS)
Jaap, John; Davis, Elizabeth
2004-01-01
The Night Projects Directorate at NASA's Marshall Space Flight Center is developing a new planning and scheduling environment and a new scheduling algorithm to enable a paradigm shift in planning and scheduling concepts. Over the past 33 years Marshall has developed and evolved a paradigm for generating payload timelines for Skylab, Spacelab, various other Shuttle payloads, and the International Space Station. The current paradigm starts by collecting the requirements, called ?ask models," from the scientists and technologists for the tasks that are to be scheduled. Because of shortcomings in the current modeling schema, some requirements are entered as notes. Next, a cadre with knowledge of vehicle and hardware modifies these models to encompass and be compatible with the hardware model; again, notes are added when the modeling schema does not provide a better way to represent the requirements. Finally, the models are modified to be compatible with the scheduling engine. Then the models are submitted to the scheduling engine for automatic scheduling or, when requirements are expressed in notes, the timeline is built manually. A future paradigm would provide a scheduling engine that accepts separate science models and hardware models. The modeling schema would have the capability to represent all the requirements without resorting to notes. Furthermore, the scheduling engine would not require that the models be modified to account for the capabilities (limitations) of the scheduling engine. The enabling technology under development at Marshall has three major components: (1) A new modeling schema allows expressing all the requirements of the tasks without resorting to notes or awkward contrivances. The chosen modeling schema is both maximally expressive and easy to use. It utilizes graphical methods to show hierarchies of task constraints and networks of temporal relationships. (2) A new scheduling algorithm automatically schedules the models without the intervention of a scheduling expert. The algorithm is tuned for the constraint hierarchies and the complex temporal relationships provided by the modeling schema. It has an extensive search algorithm that can exploit timing flexibilities and constraint and relationship options. (3) An innovative architecture allows multiple remote users to simultaneously model science and technology requirements and other users to model vehicle and hardware characteristics. The architecture allows the remote users to submit scheduling requests directly to the scheduling engine and immediately see the results. These three components are integrated so that science and technology experts with no knowledge of the vehicle or hardware subsystems and no knowledge of the internal workings of the scheduling engine have the ability to build and submit scheduling requests and see the results. The immediate feedback will hone the users' modeling skills and ultimately enable them to produce the desired timeline. This paper summarizes the three components of the enabling technology and describes how this technology would make a new paradigm possible.
Saiegh-Haddad, Elinor; Taha, Haitham
2017-11-01
The study is a cross-sectional developmental investigation of morphological and phonological awareness in word spelling and reading in Arabic in reading-accuracy disabled (RD) children and in age-matched typically developing (TR) controls in grades 1-4 (N = 160). Morphological awareness tasks targeted the root and word pattern derivational system of Arabic, in both the oral and the written modalities. Phonological awareness employed a variety of orally administered segmentation and deletion tasks. The results demonstrated early deficits in morphological awareness, besides deficits in phonological awareness, in RD children as compared with typically developing controls, as well as in word and pseudoword spelling and reading (voweled and unvoweled). While phonological awareness emerged as the strongest predictor of reading, morphological awareness was also found to predict unique variance in reading, and even more so in spelling, beyond phonological awareness and cognitive skills. The results demonstrate the early emergence of morphological awareness deficits, alongside phonological deficits in Arabic RD, as well as the role of morphological processing in early reading and spelling. These findings reflect the centrality of derivational morphology in the structure of the spoken and the written Arabic word. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
A Multitasking General Executive for Compound Continuous Tasks
ERIC Educational Resources Information Center
Salvucci, Dario D.
2005-01-01
As cognitive architectures move to account for increasingly complex real-world tasks, one of the most pressing challenges involves understanding and modeling human multitasking. Although a number of existing models now perform multitasking in real-world scenarios, these models typically employ customized executives that schedule tasks for the…
Colé, Pascale; Cavalli, Eddy; Duncan, Lynne G.; Theurel, Anne; Gentaz, Edouard; Sprenger-Charolles, Liliane; El-Ahmadi, Abdessadek
2018-01-01
Children from low-SES families are known to show delays in aspects of language development which underpin reading acquisition such as vocabulary and listening comprehension. Research on the development of morphological skills in this group is scarce, and no studies exist in French. The present study investigated the involvement of morphological knowledge in the very early stages of reading acquisition (decoding), before reading comprehension can be reliably assessed. We assessed listening comprehension, receptive vocabulary, phoneme awareness, morphological awareness as well as decoding, word reading and non-verbal IQ in 703 French first-graders from low-SES families after 3 months of formal schooling (November). Awareness of derivational morphology was assessed using three oral tasks: Relationship Judgment (e.g., do these words belong to the same family or not? heat-heater … ham-hammer); Lexical Sentence Completion [e.g., Someone who runs is a …? (runner)]; and Non-lexical Sentence Completion [e.g., Someone who lums is a…? (lummer)]. The tasks differ on implicit/explicit demands and also tap different kinds of morphological knowledge. The Judgement task measures the phonological and semantic properties of the morphological relationship and the Sentence Completion tasks measure knowledge of morphological production rules. Data were processed using a graphical modeling approach which offers key information about how skills known to be involved in learning to read are organized in memory. This modeling approach was therefore useful in revealing a potential network which expresses the conditional dependence structure between skills, after which recursive structural equation modeling was applied to test specific hypotheses. Six main conclusions can be drawn from these analyses about low SES reading acquisition: (1) listening comprehension is at the heart of the reading acquisition process; (2) word reading depends directly on phonemic awareness and indirectly on listening comprehension; (3) decoding depends on word reading; (4) Morphological awareness and vocabulary have an indirect influence on word reading via both listening comprehension and phoneme awareness; (5) the components of morphological awareness assessed by our tasks have independent relationships with listening comprehension; and (6) neither phonemic nor morphological awareness influence vocabulary directly. The implications of these results with regard to early reading acquisition among low SES groups are discussed. PMID:29725313
Colé, Pascale; Cavalli, Eddy; Duncan, Lynne G; Theurel, Anne; Gentaz, Edouard; Sprenger-Charolles, Liliane; El-Ahmadi, Abdessadek
2018-01-01
Children from low-SES families are known to show delays in aspects of language development which underpin reading acquisition such as vocabulary and listening comprehension. Research on the development of morphological skills in this group is scarce, and no studies exist in French. The present study investigated the involvement of morphological knowledge in the very early stages of reading acquisition (decoding), before reading comprehension can be reliably assessed. We assessed listening comprehension, receptive vocabulary, phoneme awareness, morphological awareness as well as decoding, word reading and non-verbal IQ in 703 French first-graders from low-SES families after 3 months of formal schooling (November). Awareness of derivational morphology was assessed using three oral tasks: Relationship Judgment (e.g., do these words belong to the same family or not? heat-heater … ham-hammer); Lexical Sentence Completion [e.g., Someone who runs is a …? (runner)]; and Non-lexical Sentence Completion [e.g., Someone who lums is a…? (lummer)]. The tasks differ on implicit/explicit demands and also tap different kinds of morphological knowledge. The Judgement task measures the phonological and semantic properties of the morphological relationship and the Sentence Completion tasks measure knowledge of morphological production rules. Data were processed using a graphical modeling approach which offers key information about how skills known to be involved in learning to read are organized in memory. This modeling approach was therefore useful in revealing a potential network which expresses the conditional dependence structure between skills, after which recursive structural equation modeling was applied to test specific hypotheses. Six main conclusions can be drawn from these analyses about low SES reading acquisition: (1) listening comprehension is at the heart of the reading acquisition process; (2) word reading depends directly on phonemic awareness and indirectly on listening comprehension; (3) decoding depends on word reading; (4) Morphological awareness and vocabulary have an indirect influence on word reading via both listening comprehension and phoneme awareness; (5) the components of morphological awareness assessed by our tasks have independent relationships with listening comprehension; and (6) neither phonemic nor morphological awareness influence vocabulary directly. The implications of these results with regard to early reading acquisition among low SES groups are discussed.
ERIC Educational Resources Information Center
Wilkoff, Will
2002-01-01
Pediatrician offers principals four suggestions to help alleviate sleep deprivation in children: Include sleep in the curriculum, raise parental awareness, consider the child's sleep habits in evaluations, and create "sleep-friendly" policies and schedules. (PKP)
Cognitive task analysis of network analysts and managers for network situational awareness
NASA Astrophysics Data System (ADS)
Erbacher, Robert F.; Frincke, Deborah A.; Wong, Pak Chung; Moody, Sarah; Fink, Glenn
2010-01-01
The goal of our project is to create a set of next-generation cyber situational-awareness capabilities with applications to other domains in the long term. The situational-awareness capabilities being developed focus on novel visualization techniques as well as data analysis techniques designed to improve the comprehensibility of the visualizations. The objective is to improve the decision-making process to enable decision makers to choose better actions. To this end, we put extensive effort into ensuring we had feedback from network analysts and managers and understanding what their needs truly are. This paper discusses the cognitive task analysis methodology we followed to acquire feedback from the analysts. This paper also provides the details we acquired from the analysts on their processes, goals, concerns, etc. A final result we describe is the generation of a task-flow diagram.
Hu, Xiaoqing; Pornpattananangkul, Narun; Rosenfeld, J Peter
2013-05-01
In an event-related potential (ERP)-based concealed information test (CIT), we investigated the effect of manipulated awareness of concealed information on the ERPs. Participants either committed a mock crime or not (guilty vs. innocent) before the CIT, and received feedback regarding either specific (high awareness) or general (low awareness) task performance during the CIT. We found that awareness and recognition of the crime-relevant information differentially influenced the frontal-central N200 and parietal P300: Probe elicited a larger N200 than irrelevant only when guilty participants were in the high awareness condition, whereas the P300 was mainly responsive to information recognition. No N200-P300 correlation was found, allowing for a combined measure of both yielding the highest detection efficiency in the high awareness group (AUC = .91). Finally, a color-naming Stroop task following the CIT revealed that guilty participants showed larger interference effects than innocent participants, suggesting that the former expended more attentional resources during the CIT. Copyright © 2013 Society for Psychophysiological Research.
Natsopoulou, Myrsini E; McMahon, Dino P; Paxton, Robert J
Task allocation in social insect colonies is generally organised into an age-related division of labour, termed the temporal polyethism schedule, which may in part have evolved to reduce infection of the colony's brood by pests and pathogens. The temporal polyethism schedule is sensitive to colony perturbations that may lead to adaptive changes in task allocation, maintaining colony homeostasis. Though social insects can be infected by a range of parasites, little is known of how these parasites impact within-colony behaviour and the temporal polyethism schedule. We use honey bees ( Apis mellifera ) experimentally infected by two of their emerging pathogens, Deformed wing virus (DWV), which is relatively understudied concerning its behavioural impact on its host, and the exotic microsporidian Nosema ceranae . We examined parasite effects on host temporal polyethism and patterns of activity within the colony. We found that pathogens accelerated the temporal polyethism schedule, but without reducing host behavioural repertoire. Infected hosts exhibited increased hyperactivity, allocating more time to self-grooming and foraging-related tasks. The strength of behavioural alterations we observed was found to be pathogen specific; behavioural modifications were more pronounced in virus-treated hosts versus N. ceranae -treated hosts, with potential benefits for the colony in terms of reducing within-colony transmission. Investigating the effects of multiple pathogens on behavioural patterns of social insects could play a crucial role in understanding pathogen spread within a colony and their effects on colony social organisation.
An Analysis of Task-Scheduling for a Generic Avionics Mission Computer
2006-04-01
3 3. 1. 3 Response Time Analysis........................................................................... 8 3. 2 Non - Preemptive ...Fixed Priority Scheduling ...................................................... 10 3. 2. 1 Simple Non - Preemptive Response Time Test...10 3. 2. 2 Non - Preemptive Response Time Test .................................................. 12 3. 3 Asynchronous Fixed
When money is not enough: awareness, success, and variability in motor learning.
Manley, Harry; Dayan, Peter; Diedrichsen, Jörn
2014-01-01
When performing a skill such as throwing a dart, many different combinations of joint motions suffice to hit the target. The motor system adapts rapidly to reduce bias in the desired outcome (i.e., the first-order moment of the error); however, the essence of skill is to produce movements with less variability (i.e., to reduce the second-order moment). It is easy to see how feedback about success or failure could sculpt performance to achieve this aim. However, it is unclear whether the dimensions responsible for success or failure need to be known explicitly by the subjects, or whether learning can proceed without explicit awareness of the movement parameters that need to change. Here, we designed a redundant, two-dimensional reaching task in which we could selectively manipulate task success and the variability of action outcomes, whilst also manipulating awareness of the dimension along which performance could be improved. Variability was manipulated either by amplifying natural errors, leaving the correlation between the executed movement and the visual feedback intact, or by adding extrinsic noise, decorrelating movement and feedback. We found that explicit, binary, feedback about success or failure was only sufficient for learning when participants were aware of the dimension along which motor behavior had to change. Without such awareness, learning was only present when extrinsic noise was added to the feedback, but not when task success or variability was manipulated in isolation; learning was also much slower. Our results highlight the importance of conscious awareness of the relevant dimension during motor learning, and suggest that higher-order moments of outcome signals are likely to play a significant role in skill learning in complex tasks.
NASA Technical Reports Server (NTRS)
Butcher, L.; Jonas, T.; Wood, W.
1982-01-01
The heavy schedule of tracking activities at the Echo Deep Space Station (DSS 12) prevents some time-consuming maintenance tasks from being performed. Careful coordination prior to and during a mandatory task (antenna panel replacement) made it possible to do a large number of unrelated tasks that ordinarily would have to be deferred. The maintenance and operations tasks accomplished during the downtime are described.
Non-visual biological effects of light on human cognition, alertness, and mood
NASA Astrophysics Data System (ADS)
Li, Huaye; Wang, Huihui; Shen, Junfei; Sun, Peng; Xie, Ting; Zhang, Siman; Zheng, Zhenrong
2017-09-01
Light exerts non-visual effects on a wide range of biological functions and behavior apart from the visual effect. Light can regulate human circadian rhythms, like the secretion of melatonin and cortisol. Light also has influence on body's physiological parameters, such as blood pressure, heart rate and body temperature. However, human cognitive performance, alertness and mood under different lighting conditions have not been considered thoroughly especially for the complicated visual task like surgical operating procedure. In this paper, an experiment was conducted to investigate the cognition, alertness and mood of healthy participants in a simulated operating room (OR) in the hospital. A LED surgical lamp was used as the light source, which is mixed by three color LEDs (amber, green and blue). The surgical lamp is flexible on both spectrum and intensity. Exposed to different light settings, which are varied from color temperature and luminance, participants were asked to take psychomotor vigilance task (PVT) for alertness measurement, alphabet test for cognitive performance measurement, positive and negative affect schedule (PANAS) for mood measurement. The result showed the participants' cognitive performance, alertness and mood are related to the color temperature and luminance of the LED light. This research will have a guidance for the surgical lighting environment, which can not only enhance doctors' efficiency during the operations, but also create a positive and peaceful surgical lighting environment.
A Dynamic Scheduling Method of Earth-Observing Satellites by Employing Rolling Horizon Strategy
Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma
2013-01-01
Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments. PMID:23690742
Developing optimal nurses work schedule using integer programming
NASA Astrophysics Data System (ADS)
Shahidin, Ainon Mardhiyah; Said, Mohd Syazwan Md; Said, Noor Hizwan Mohamad; Sazali, Noor Izatie Amaliena
2017-08-01
Time management is the art of arranging, organizing and scheduling one's time for the purpose of generating more effective work and productivity. Scheduling is the process of deciding how to commit resources between varieties of possible tasks. Thus, it is crucial for every organization to have a good work schedule for their staffs. The job of Ward nurses at hospitals runs for 24 hours every day. Therefore, nurses will be working using shift scheduling. This study is aimed to solve the nurse scheduling problem at an emergency ward of a private hospital. A 7-day work schedule for 7 consecutive weeks satisfying all the constraints set by the hospital will be developed using Integer Programming. The work schedule for the nurses obtained gives an optimal solution where all the constraints are being satisfied successfully.
A dynamic scheduling method of Earth-observing satellites by employing rolling horizon strategy.
Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma
2013-01-01
Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments.
1991-01-30
states that continual education and training at all levels of the company is the most important element in enabling companies to gain competitive...staked on information known to be inaccurate and educated guesses from the same people who provided much of the original inaccurate information. The second... educated guesses. 7.1.2.6 Implementation Cost/Schedule Refer to Paragraph 7.1.1.6. 7.1-8 TASK ORDER NO. 18 PROCESS CHARACTERIZATION SCHEDULER RECEIVES ITEM
Space Tug Docking Study. Volume 5: Cost Analysis
NASA Technical Reports Server (NTRS)
1976-01-01
The cost methodology, summary cost data, resulting cost estimates by Work Breakdown Structure (WBS), technical characteristics data, program funding schedules and the WBS for the costing are discussed. Cost estimates for two tasks of the study are reported. The first, developed cost estimates for design, development, test and evaluation (DDT&E) and theoretical first unit (TFU) at the component level (Level 7) for all items reported in the data base. Task B developed total subsystem DDT&E costs and funding schedules for the three candidate Rendezvous and Docking Systems: manual, autonomous, and hybrid.
Real-Time Performance Feedback for the Manual Control of Spacecraft
NASA Astrophysics Data System (ADS)
Karasinski, John Austin
Real-time performance metrics were developed to quantify workload, situational awareness, and manual task performance for use as visual feedback to pilots of aerospace vehicles. Results from prior lunar lander experiments with variable levels of automation were replicated and extended to provide insights for the development of real-time metrics. Increased levels of automation resulted in increased flight performance, lower workload, and increased situational awareness. Automated Speech Recognition (ASR) was employed to detect verbal callouts as a limited measure of subjects' situational awareness. A one-dimensional manual tracking task and simple instructor-model visual feedback scheme was developed. This feedback was indicated to the operator by changing the color of a guidance element on the primary flight display, similar to how a flight instructor points out elements of a display to a student pilot. Experiments showed that for this low-complexity task, visual feedback did not change subject performance, but did increase the subjects' measured workload. Insights gained from these experiments were applied to a Simplified Aid for EVA Rescue (SAFER) inspection task. The effects of variations of an instructor-model performance-feedback strategy on human performance in a novel SAFER inspection task were investigated. Real-time feedback was found to have a statistically significant effect of improving subject performance and decreasing workload in this complicated four degree of freedom manual control task with two secondary tasks.
Improving children's affective decision making in the Children's Gambling Task.
Andrews, Glenda; Moussaumai, Jennifer
2015-11-01
Affective decision making was examined in 108 children (3-, 4-, and 5-year-olds) using the Children's Gambling Task (CGT). Children completed the CGT and then responded to awareness questions. Children in the binary_experience and binary_experience+awareness (not control) conditions first completed two simpler versions. Children in the binary_experience+awareness condition also responded to questions about relational components of the simpler versions. Experience with simpler versions facilitated decision making in 4- and 5-year-olds, but 3-year-olds' advantageous choices declined across trial blocks in the binary_experience and control conditions. Responding to questions about relational components further benefited the 4- and 5-year-olds. The 3-year-olds' advantageous choices on the final block were at chance level in the binary_experience+awareness condition but were below chance level in the other conditions. Awareness following the CGT was strongly correlated with advantageous choices and with age. Awareness was demonstrated by 5-year-olds (all conditions) and 4-year-olds (binary_experience and binary_experience+awareness) but not by 3-year-olds. The findings demonstrate the importance of complexity and conscious awareness in cognitive development. Copyright © 2015 Elsevier Inc. All rights reserved.
Zangrillo, Amanda N; Fisher, Wayne W; Greer, Brian D; Owen, Todd M; DeSouza, Andresa A
2016-01-01
Previous research has supported functional communication training (FCT) as an effective intervention for reducing challenging behavior. Clinicians often program schedule-thinning procedures to increase the portability of the treatment (i.e., reinforcement is provided less frequently). For individuals with escape-maintained problem behavior, chained schedules have proven effective in increasing task completion and supplemental procedures may ameliorate reemergence of challenging behavior as access to reinforcement is decreased. The present study compared the use of a chained schedule-thinning procedure with and without alternative reinforcement (e.g., toys and activities) embedded in an intervention in which escape from the task is provided contingent on a request for a break. Two individuals with escape-maintained challenging behavior participated. We compared two treatment conditions, escape-only and escape-to-tangibles, using a single-subject, alternating treatments design with each treatment implemented in a distinct academic context. With the escape-to-tangibles treatment, we reached the final schedule in both contexts with both participants (4 successes out of 4 applications). We did not reach the final schedule with either participant with the escape-only intervention (0 successes out of 2 applications). The current results provided preliminary confirmation that providing positive plus negative reinforcement would decrease destructive behavior, increase compliance, and facilitate reinforcer-schedule thinning.
Zangrillo, Amanda N.; Fisher, Wayne W.; Greer, Brian D.; Owen, Todd M.; DeSouza, Andresa A.
2016-01-01
Objective Previous research has supported functional communication training (FCT) as an effective intervention for reducing challenging behavior. Clinicians often program schedule-thinning procedures to increase the portability of the treatment (i.e., reinforcement is provided less frequently). For individuals with escape-maintained problem behavior, chained schedules have proven effective in increasing task completion and supplemental procedures may ameliorate reemergence of challenging behavior as access to reinforcement is decreased. The present study compared the use of a chained schedule-thinning procedure with and without alternative reinforcement (e.g., toys and activities) embedded in an intervention in which escape from the task is provided contingent on a request for a break. Method Two individuals with escape-maintained challenging behavior participated. We compared two treatment conditions, escape-only and escape-to-tangibles, using a single-subject, alternating treatments design with each treatment implemented in a distinct academic context. Results With the escape-to-tangibles treatment, we reached the final schedule in both contexts with both participants (4 successes out of 4 applications). We did not reach the final schedule with either participant with the escape-only intervention (0 successes out of 2 applications). Conclusion The current results provided preliminary confirmation that providing positive plus negative reinforcement would decrease destructive behavior, increase compliance, and facilitate reinforcer-schedule thinning. PMID:28626579
Continuous vs. intermittent work with Canadian Forces NBC clothing.
McLellan, T M; Jacobs, I; Bain, J B
1993-07-01
This study examined the benefits of work and rest schedules on soldiers' work tolerance (WTT) while wearing various levels of nuclear, biological and chemical (NBC) defence protective clothing in a warm environment (30 degrees C and 50% R.H.). Eight unacclimatized males were assigned to exercise at either a light (walking 1.11 m.s-1 0% grade, alternating with lifting 10 kg) or heavy metabolic rate (walking 1.33 m.s-1 7.5% grade, alternating with lifting 20 kg). Subjects were tested wearing three levels of clothing protection: combat clothing (L); combats and a semi-permeable NBC overgarment with the hood down (M); combats and NBC overgarment, gloves, boots and respirator (H). For each clothing configuration, subjects were evaluated using both a "continuous" exercise protocol and an intermittent work and rest schedule. WTT was defined as the time until rectal temperature (Tre) reached 39.3 degrees C, heart rate reached 95% maximum, dizziness or nausea precluded further exercise, or 5 h had elapsed. Assuming a resting VO2 of 4 ml.kg-1 x min-1 an average metabolic rate was calculated for all trials. A decreasing hyperbolic function described the relationship between WTT and metabolic rate for M and H. These relationships facilitate quantification of appropriate work and rest schedules if the metabolic rate of a task is known.
Achieving reutilization of scheduling software through abstraction and generalization
NASA Technical Reports Server (NTRS)
Wilkinson, George J.; Monteleone, Richard A.; Weinstein, Stuart M.; Mohler, Michael G.; Zoch, David R.; Tong, G. Michael
1995-01-01
Reutilization of software is a difficult goal to achieve particularly in complex environments that require advanced software systems. The Request-Oriented Scheduling Engine (ROSE) was developed to create a reusable scheduling system for the diverse scheduling needs of the National Aeronautics and Space Administration (NASA). ROSE is a data-driven scheduler that accepts inputs such as user activities, available resources, timing contraints, and user-defined events, and then produces a conflict-free schedule. To support reutilization, ROSE is designed to be flexible, extensible, and portable. With these design features, applying ROSE to a new scheduling application does not require changing the core scheduling engine, even if the new application requires significantly larger or smaller data sets, customized scheduling algorithms, or software portability. This paper includes a ROSE scheduling system description emphasizing its general-purpose features, reutilization techniques, and tasks for which ROSE reuse provided a low-risk solution with significant cost savings and reduced software development time.
Determination of awareness in patients with severe brain injury using EEG power spectral analysis
Goldfine, Andrew M.; Victor, Jonathan D.; Conte, Mary M.; Bardin, Jonathan C.; Schiff, Nicholas D.
2011-01-01
Objective To determine whether EEG spectral analysis could be used to demonstrate awareness in patients with severe brain injury. Methods We recorded EEG from healthy controls and three patients with severe brain injury, ranging from minimally conscious state (MCS) to locked-in-state (LIS), while they were asked to imagine motor and spatial navigation tasks. We assessed EEG spectral differences from 4 to 24 Hz with univariate comparisons (individual frequencies) and multivariate comparisons (patterns across the frequency range). Results In controls, EEG spectral power differed at multiple frequency bands and channels during performance of both tasks compared to a resting baseline. As patterns of signal change were inconsistent between controls, we defined a positive response in patient subjects as consistent spectral changes across task performances. One patient in MCS and one in LIS showed evidence of motor imagery task performance, though with patterns of spectral change different from the controls. Conclusion EEG power spectral analysis demonstrates evidence for performance of mental imagery tasks in healthy controls and patients with severe brain injury. Significance EEG power spectral analysis can be used as a flexible bedside tool to demonstrate awareness in brain-injured patients who are otherwise unable to communicate. PMID:21514214
Operations mission planner beyond the baseline
NASA Technical Reports Server (NTRS)
Biefeld, Eric; Cooper, Lynne
1991-01-01
The scheduling of Space Station Freedom must satisfy four major requirements. It must ensure efficient housekeeping operations, maximize the collection of science, respond to changes in tasking and available resources, and accommodate the above changes in a manner that minimizes disruption of the ongoing operations of the station. While meeting these requirements the scheduler must cope with the complexity, scope, and flexibility of SSF operations. This requires the scheduler to deal with an astronomical number of possible schedules. The Operations Mission Planner (OMP) is centered around minimally disruptive replanning and the use of heuristics limit search in scheduling. OMP has already shown several artificial intelligence based scheduling techniques such as Interleaved Iterative Refinement and Bottleneck Identification using Process Chronologies.
Advanced Platform Systems Technology study. Volume 4: Technology advancement program plan
NASA Technical Reports Server (NTRS)
1983-01-01
An overview study of the major technology definition tasks and subtasks along with their interfaces and interrelationships is presented. Although not specifically indicated in the diagram, iterations were required at many steps to finalize the results. The development of the integrated technology advancement plan was initiated by using the results of the previous two tasks, i.e., the trade studies and the preliminary cost and schedule estimates for the selected technologies. Descriptions for the development of each viable technology advancement was drawn from the trade studies. Additionally, a logic flow diagram depicting the steps in developing each technology element was developed along with descriptions for each of the major elements. Next, major elements of the logic flow diagrams were time phased, and that allowed the definition of a technology development schedule that was consistent with the space station program schedule when possible. Schedules show the major milestone including tests required as described in the logic flow diagrams.
TASKILLAN II - Pilot strategies for workload management
NASA Technical Reports Server (NTRS)
Segal, Leon D.; Wickens, Christopher D.
1990-01-01
This study focused on the strategies used by pilots in managing their workload level, and their subsequent task performance. Sixteen licensed pilots flew 42 missions on a helicopter simulation, and were evaluated on their performance of the overall mission, as well as individual tasks. Pilots were divided in four groups, defined by the presence or absence of scheduling control over tasks and the availability of intelligence concerning the type and stage of difficulties imposed during the flight. Results suggest that intelligence supported strategies that yielded significant higher performance levels, while scheduling control seemed to have no impact on performance. Both difficulty type and the stage of difficulty impacted performance significantly, with strongest effects for time stresss and difficulties imposed late in the flight.
Schedule Matters: Understanding the Relationship between Schedule Delays and Costs on Overruns
NASA Technical Reports Server (NTRS)
Majerowicz, Walt; Shinn, Stephen A.
2016-01-01
This paper examines the relationship between schedule delays and cost overruns on complex projects. It is generally accepted by many project practitioners that cost overruns are directly related to schedule delays. But what does "directly related to" actually mean? Some reasons or root causes for schedule delays and associated cost overruns are obvious, if only in hindsight. For example, unrealistic estimates, supply chain difficulties, insufficient schedule margin, technical problems, scope changes, or the occurrence of risk events can negatively impact schedule performance. Other factors driving schedule delays and cost overruns may be less obvious and more difficult to quantify. Examples of these less obvious factors include project complexity, flawed estimating assumptions, over-optimism, political factors, "black swan" events, or even poor leadership and communication. Indeed, is it even possible the schedule itself could be a source of delay and subsequent cost overrun? Through literature review, surveys of project practitioners, and the authors' own experience on NASA programs and projects, the authors will categorize and examine the various factors affecting the relationship between project schedule delays and cost growth. The authors will also propose some ideas for organizations to consider to help create an awareness of the factors which could cause or influence schedule delays and associated cost growth on complex projects.
Prosodic Awareness and Punctuation Ability in Adult Readers
ERIC Educational Resources Information Center
Heggie, Lindsay; Wade-Woolley, Lesly
2018-01-01
We examined the relationship between two metalinguistic tasks: prosodic awareness and punctuation ability. Specifically, we investigated whether adults' ability to punctuate was related to the degree to which they are aware of and able to manipulate prosody in spoken language. English-speaking adult readers (n = 115) were administered a receptive…
The Connection among Morphological, Phonological, Orthographic, and Processing Skills, and Reading
ERIC Educational Resources Information Center
Clark, Teixeira L.
2017-01-01
Research on morphological awareness has shown that it contributes to literacy outcomes. However, because of the way morphological awareness is traditionally measured, there is speculation that tasks may reflect cognitive flexibility, working memory, or some other type of executive processing, versus awareness of morphology. Further complicating…
Effects of Morphological Awareness on Second Language Vocabulary Knowledge
ERIC Educational Resources Information Center
Akbulut, Fatma Demiray
2017-01-01
This research has analysed the impact of morphological treatment in English morphological awareness task. The main aim of this study is to understand the relationship between morphological awareness and vocabulary knowledge of university preparatory class students. In second language learning environment, fifty-two preparatory class students have…
Phonological Awareness and Musical Aptitude.
ERIC Educational Resources Information Center
Peynircioglu, Zehra F.; Durgunoglu, Aydyn Y.; Oney-Kusefoglu, Banu
2002-01-01
Examines the relationship between phonological awareness and musical aptitude in pre-school Turkish and American children. Finds that children in the high musical aptitude group did much better on all tasks than those in the low musical aptitude group, showing that success in manipulating linguistic sounds was related to awareness of distinct…
Wierzchoń, Michał; Wronka, Eligiusz; Paulewicz, Borysław; Szczepanowski, Remigiusz
2016-01-01
The present research investigated metacognitive awareness of emotional stimuli and its psychophysiological correlates. We used a backward masking task presenting participants with fearful or neutral faces. We asked participants for face discrimination and then probed their metacognitive awareness with confidence rating (CR) and post-decision wagering (PDW) scales. We also analysed psychophysiological correlates of awareness with event-related potential (ERP) components: P1, N170, early posterior negativity (EPN), and P3. We have not observed any differences between PDW and CR conditions in the emotion identification task. However, the "aware" ratings were associated with increased accuracy performance. This effect was more pronounced in PDW, especially for fearful faces, suggesting that emotional stimuli awareness may be enhanced by monetary incentives. EEG analysis showed larger N170, EPN and P3 amplitudes in aware compared to unaware trials. It also appeared that both EPN and P3 ERP components were more pronounced in the PDW condition, especially when emotional faces were presented. Taken together, our ERP findings suggest that metacognitive awareness of emotional stimuli depends on the effectiveness of both early and late visual information processing. Our study also indicates that awareness of emotional stimuli can be enhanced by the motivation induced by wagering. PMID:27490816
Wierzchoń, Michał; Wronka, Eligiusz; Paulewicz, Borysław; Szczepanowski, Remigiusz
2016-01-01
The present research investigated metacognitive awareness of emotional stimuli and its psychophysiological correlates. We used a backward masking task presenting participants with fearful or neutral faces. We asked participants for face discrimination and then probed their metacognitive awareness with confidence rating (CR) and post-decision wagering (PDW) scales. We also analysed psychophysiological correlates of awareness with event-related potential (ERP) components: P1, N170, early posterior negativity (EPN), and P3. We have not observed any differences between PDW and CR conditions in the emotion identification task. However, the "aware" ratings were associated with increased accuracy performance. This effect was more pronounced in PDW, especially for fearful faces, suggesting that emotional stimuli awareness may be enhanced by monetary incentives. EEG analysis showed larger N170, EPN and P3 amplitudes in aware compared to unaware trials. It also appeared that both EPN and P3 ERP components were more pronounced in the PDW condition, especially when emotional faces were presented. Taken together, our ERP findings suggest that metacognitive awareness of emotional stimuli depends on the effectiveness of both early and late visual information processing. Our study also indicates that awareness of emotional stimuli can be enhanced by the motivation induced by wagering.
Integration of domain and resource-based reasoning for real-time control in dynamic environments
NASA Technical Reports Server (NTRS)
Morgan, Keith; Whitebread, Kenneth R.; Kendus, Michael; Cromarty, Andrew S.
1993-01-01
A real-time software controller that successfully integrates domain-based and resource-based control reasoning to perform task execution in a dynamically changing environment is described. The design of the controller is based on the concept of partitioning the process to be controlled into a set of tasks, each of which achieves some process goal. It is assumed that, in general, there are multiple ways (tasks) to achieve a goal. The controller dynamically determines current goals and their current criticality, choosing and scheduling tasks to achieve those goals in the time available. It incorporates rule-based goal reasoning, a TMS-based criticality propagation mechanism, and a real-time scheduler. The controller has been used to build a knowledge-based situation assessment system that formed a major component of a real-time, distributed, cooperative problem solving system built under DARPA contract. It is also being employed in other applications now in progress.
Efficient parallel architecture for highly coupled real-time linear system applications
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Homaifar, Abdollah; Barua, Soumavo
1988-01-01
A systematic procedure is developed for exploiting the parallel constructs of computation in a highly coupled, linear system application. An overall top-down design approach is adopted. Differential equations governing the application under consideration are partitioned into subtasks on the basis of a data flow analysis. The interconnected task units constitute a task graph which has to be computed in every update interval. Multiprocessing concepts utilizing parallel integration algorithms are then applied for efficient task graph execution. A simple scheduling routine is developed to handle task allocation while in the multiprocessor mode. Results of simulation and scheduling are compared on the basis of standard performance indices. Processor timing diagrams are developed on the basis of program output accruing to an optimal set of processors. Basic architectural attributes for implementing the system are discussed together with suggestions for processing element design. Emphasis is placed on flexible architectures capable of accommodating widely varying application specifics.
Cue Representation and Situational Awareness in Task Analysis
ERIC Educational Resources Information Center
Carl, Diana R.
2009-01-01
Task analysis in human performance technology is used to determine how human performance can be well supported with training, job aids, environmental changes, and other interventions. Early work by Miller (1953) and Gilbert (1969, 1974) addressed cue processing in task execution and recommended cue descriptions in task analysis. Modern task…
The Effects of Written Language Awareness on First Grade Reading Achievement.
ERIC Educational Resources Information Center
Taylor, Nancy E.; Blum, Irene H.
A battery of four reading readiness assessment tasks was administered to 267 first grade students to determine if the tasks predicted reading achievement as well as the Metropolitan Readiness Test (MRT). The four tasks, which were the best predictors in a previous study of seven readiness tasks, were the aural word boundaries task, the…
Task Complexity and Modality: Exploring Learners' Experience from the Perspective of Flow
ERIC Educational Resources Information Center
Cho, Minyoung
2018-01-01
Despite an increased awareness of language learner performance in task-based instruction, little is known about how learners perceive and respond to different task factors. This study investigates the effects of task complexity and modality on (a) learners' perception of task difficulty, skill, and its balance, and on (b) learners' task…
Phonological awareness of English by Chinese and Korean bilinguals
NASA Astrophysics Data System (ADS)
Chung, Hyunjoo; Schmidt, Anna; Cheng, Tse-Hsuan
2002-05-01
This study examined non-native speakers phonological awareness of spoken English. Chinese speaking adults, Korean speaking adults, and English speaking adults were tested. The L2 speakers had been in the US for less than 6 months. Chinese and Korean allow no consonant clusters and have limited numbers of consonants allowable in syllable final position, whereas English allows a variety of clusters and various consonants in syllable final position. Subjects participated in eight phonological awareness tasks (4 replacement tasks and 4 deletion tasks) based on English phonology. In addition, digit span was measured. Preliminary analysis indicates that Chinese and Korean speaker errors appear to reflect L1 influences (such as orthography, phonotactic constraints, and phonology). All three groups of speakers showed more difficulty with manipulation of rime than onset, especially with postvocalic nasals. Results will be discussed in terms of syllable structure, L1 influence, and association with short term memory.
The role of awareness of repetition during the development of automaticity in a dot-counting task
Shadbolt, Emma
2018-01-01
This study examined whether being aware of the repetition of stimuli in a simple numerosity task could aid the development of automaticity. The numerosity task used in this study was a simple counting task. Thirty-four participants were divided into two groups. One group was instructed that the stimuli would repeat many times throughout the experiment. The results showed no significant differences in the way automatic processing developed between the groups. Similarly, there was no correlation between the point at which automatic processing developed and the point at which participants felt they benefitted from the repetition of stimuli. These results suggest that extra-trial features of a task may have no effect on the development of automaticity, a finding consistent with the instance theory of automatisation. PMID:29404220
Medical Situational Awareness in Theater Advanced Concept Technology Demonstration Project Proposal
2004-06-01
making it an impossible task to sort, understand , and generate actionable knowledge within operational timeframes. Medical Situational Awareness in...need for greater medical situation awareness in theater and for greater integration of theater medical information into the net-centric rapid...There is a need for greater Medical Situation Awareness in theater and for greater integration of theater medical information into the ForceNet
Application of decentralized cooperative problem solving in dynamic flexible scheduling
NASA Astrophysics Data System (ADS)
Guan, Zai-Lin; Lei, Ming; Wu, Bo; Wu, Ya; Yang, Shuzi
1995-08-01
The object of this study is to discuss an intelligent solution to the problem of task-allocation in shop floor scheduling. For this purpose, the technique of distributed artificial intelligence (DAI) is applied. Intelligent agents (IAs) are used to realize decentralized cooperation, and negotiation is realized by using message passing based on the contract net model. Multiple agents, such as manager agents, workcell agents, and workstation agents, make game-like decisions based on multiple criteria evaluations. This procedure of decentralized cooperative problem solving makes local scheduling possible. And by integrating such multiple local schedules, dynamic flexible scheduling for the whole shop floor production can be realized.
Space shuttle maintenance program planning document
NASA Technical Reports Server (NTRS)
Brown, D. V.
1972-01-01
A means for developing a space shuttle maintenance program which will be acceptable to the development centers, the operators (KSC and AF), and the manufacturer is presented. The general organization and decision processes for determining the essential scheduled maintenance requirements for the space shuttle orbiter are outlined. The development of initial scheduled maintenance programs is discussed. The remaining maintenance, that is non-scheduled or non-routine maintenance, is directed by the findings of the scheduled maintenance program and the normal operation of the shuttle. The remaining maintenance consists of maintenance actions to correct discrepancies noted during scheduled maintenance tasks, nonscheduled maintenance, normal operation, or condition monitoring.
Comparing Book- and Tablet-Based Picture Activity Schedules: Acquisition and Preference.
Giles, Aimee; Markham, Victoria
2017-09-01
Picture activity schedules consist of a sequence of images representing the order of tasks for a person to complete. Although, picture activity schedules have traditionally been presented in a book format, recently picture activity schedules have been evaluated on technological devices such as an iPod™ touch. The present study compared the efficiency of picture activity schedule acquisition on book- and tablet-based modalities. In addition, participant preference for each modality was assessed. Three boys aged below 5 years with a diagnosis of autism participated. Participants were taught to follow the schedules using both modalities. Following mastery of each modality of picture activity schedule, a concurrent-chains preference assessment was conducted to evaluate participant preference for each modality. Differences in acquisition rates across the two modalities were marginal. Preference for book- or tablet-based schedules was idiosyncratic across participants.
NASA Astrophysics Data System (ADS)
Guo, Peng; Cheng, Wenming; Wang, Yi
2014-10-01
The quay crane scheduling problem (QCSP) determines the handling sequence of tasks at ship bays by a set of cranes assigned to a container vessel such that the vessel's service time is minimized. A number of heuristics or meta-heuristics have been proposed to obtain the near-optimal solutions to overcome the NP-hardness of the problem. In this article, the idea of generalized extremal optimization (GEO) is adapted to solve the QCSP with respect to various interference constraints. The resulting GEO is termed the modified GEO. A randomized searching method for neighbouring task-to-QC assignments to an incumbent task-to-QC assignment is developed in executing the modified GEO. In addition, a unidirectional search decoding scheme is employed to transform a task-to-QC assignment to an active quay crane schedule. The effectiveness of the developed GEO is tested on a suite of benchmark problems introduced by K.H. Kim and Y.M. Park in 2004 (European Journal of Operational Research, Vol. 156, No. 3). Compared with other well-known existing approaches, the experiment results show that the proposed modified GEO is capable of obtaining the optimal or near-optimal solution in a reasonable time, especially for large-sized problems.
NASA Astrophysics Data System (ADS)
Buchner, Johannes
2011-12-01
Scheduling, the task of producing a time table for resources and tasks, is well-known to be a difficult problem the more resources are involved (a NP-hard problem). This is about to become an issue in Radio astronomy as observatories consisting of hundreds to thousands of telescopes are planned and operated. The Square Kilometre Array (SKA), which Australia and New Zealand bid to host, is aiming for scales where current approaches -- in construction, operation but also scheduling -- are insufficent. Although manual scheduling is common today, the problem is becoming complicated by the demand for (1) independent sub-arrays doing simultaneous observations, which requires the scheduler to plan parallel observations and (2) dynamic re-scheduling on changed conditions. Both of these requirements apply to the SKA, especially in the construction phase. We review the scheduling approaches taken in the astronomy literature, as well as investigate techniques from human schedulers and today's observatories. The scheduling problem is specified in general for scientific observations and in particular on radio telescope arrays. Also taken into account is the fact that the observatory may be oversubscribed, requiring the scheduling problem to be integrated with a planning process. We solve this long-term scheduling problem using a time-based encoding that works in the very general case of observation scheduling. This research then compares algorithms from various approaches, including fast heuristics from CPU scheduling, Linear Integer Programming and Genetic algorithms, Branch-and-Bound enumeration schemes. Measures include not only goodness of the solution, but also scalability and re-scheduling capabilities. In conclusion, we have identified a fast and good scheduling approach that allows (re-)scheduling difficult and changing problems by combining heuristics with a Genetic algorithm using block-wise mutation operations. We are able to explain and eradicate two problems in the literature: The inability of a GA to properly improve schedules and the generation of schedules with frequent interruptions. Finally, we demonstrate the scheduling framework for several operating telescopes: (1) Dynamic re-scheduling with the AUT Warkworth 12m telescope, (2) Scheduling for the Australian Mopra 22m telescope and scheduling for the Allen Telescope Array. Furthermore, we discuss the applicability of the presented scheduling framework to the Atacama Large Millimeter/submillimeter Array (ALMA, in construction) and the SKA. In particular, during the development phase of the SKA, this dynamic, scalable scheduling framework can accommodate changing conditions.
Task rotation in an underground coal mine: A pilot study.
Jones, Olivia F; James, Carole L
2018-01-01
Task rotation is used to decrease the risk of workplace injuries and improve work satisfaction. To investigate the feasibility, benefits and challenges of implementing a task rotation schedule within an underground coalmine in NSW, Australia. A mixed method case control pilot study with the development and implementation of a task rotation schedule for 6 months with two work crews. A questionnaire including The Nordic Musculoskeletal Questionnaire, The Need for Recovery after Work Scale, and The Australian WHOQOL- BREF Australian Edition was used to survey workers at baseline, 3 and 6 months. A focus group was completed with the intervention crew and management at the completion of the study. In total, twenty-seven participants completed the survey. Significant improvements in the psychological and environmental domains of the WHOQOL-BREF questionnaire were found in the intervention crew. Musculoskeletal pain was highest in the elbow, lower back and knee, and fatigue scores improved, across both groups. The intervention crew felt 'mentally fresher', 'didn't do the same task twice in a row', and 'had more task variety which made the shift go quickly'. Task rotation was positively regarded, with psychological benefits identified. Three rotations during a 9-hour shift were feasible and practical in this environment.
"Knowing What You Don't Know": Language Insight in Semantic Dementia.
Savage, Sharon A; Piguet, Olivier; Hodges, John R
2015-01-01
Reduced insight commonly occurs in dementia and can be specific to one area of functioning. Despite recent models identifying a role for semantic memory, little investigation of insight has been conducted in semantic dementia (SD), with patients often described as being aware of their language problems. This study aims to investigate language insight in SD. Twenty-two SD (n = 11 severe, n = 11 mild-moderate) and 9 nonfluent primary progressive aphasic patients completed three experimental language tasks to assess knowledge and awareness of certain words. Skills in evaluating language were tested by comparing performance ratings on the Cookie Theft task with objective scoring. Awareness regarding the existence and previous use of certain words was tested using two additional tasks. While SD patients were as accurate as nonfluent patients in rating their own performance on the Cookie Theft immediately following the task, they were significantly poorer at evaluating the same content re-recorded, or other examples of poor language. Compared to nonfluent patients, severe SD patients also made more errors identifying previously known low frequency words. Lastly, when tested on labels for specific aspects of an object, only SD patients made errors regarding the existence, or their past knowledge, of certain words. SD patients show a general awareness of their language impairments, but have difficulty evaluating language content. These difficulties adversely affect the ability to reflect upon current and past language skills producing an under-awareness of language deficits. This mild, secondary form of anosognosia appears to increase with greater levels of semantic impairment.
ERIC Educational Resources Information Center
Panahi, Ali
2012-01-01
In most settings, task-based language teaching and testing have been dissociated from each other. That is why this study came to rethink of the learners' views towards awareness and implementation of task-based language teaching through IELTS listening tasks. To these objectives, after sketching instrumentation, the learners were divided into…
Dynamic I/O Power Management for Hard Real-Time Systems
2005-01-01
recently emerged as an attractive alternative to inflexible hardware solutions. DPM for hard real - time systems has received relatively little attention...In particular, energy-driven I/O device scheduling for real - time systems has not been considered before. We present the first online DPM algorithm...which we call Low Energy Device Scheduler (LEDES), for hard real - time systems . LEDES takes as inputs a predetermined task schedule and a device-usage
1992-06-01
Vi th this sampling schedule the data logger has enough (data. storage capacity for, a five yea r deploymeneit-. SYsteim specifica tionis are shown...sit [I t ille check is pwrformed as a virttial device. called -Ilinei check". which is scheduled in the task tabhe aid(] executed by the systsenm cot...PCI as FSK carrier detect input- add function (5) to do timer/counter control - stop counter when defaults set I 6. Instrument scheduler software
Robinson, Candice L; Romero, José R; Kempe, Allison; Pellegrini, Cynthia; Szilagyi, Peter
2018-02-09
In October 2017, the Advisory Committee on Immunization Practices (ACIP) approved the Recommended Immunization Schedule for Children and Adolescents Aged 18 Years or Younger - United States, 2018. The 2018 child and adolescent immunization schedule summarizes ACIP recommendations, including several changes from the 2017 immunization schedules, in three figures and footnotes to the figures. These documents can be found on the CDC immunization schedule website (https://www.cdc.gov/vaccines/schedules/index.html). These immunization schedules are approved by ACIP (https://www.cdc.gov/vaccines/acip/index.html), the American Academy of Pediatrics (https://www.aap.org), the American Academy of Family Physicians (https://www.aafp.org), and the American College of Obstetricians and Gynecologists (https://www.acog.org). Health care providers are advised to use the figures and the footnotes together. The full ACIP recommendations for each vaccine, including contraindications and precautions, can be found at https://www.cdc.gov/vaccines/hcp/acip-recs/index.html. Providers should be aware that changes in recommendations for specific vaccines can occur between annual updates to the childhood/adolescent immunization schedules. If errors or omissions are discovered within the child and adolescent schedule, CDC posts revised versions on the CDC immunization schedule website.
Robinson, Candice L; Romero, José R; Kempe, Allison; Pellegrini, Cynthia
2017-02-10
In October 2016, the Advisory Committee on Immunization Practices (ACIP) approved the Recommended Immunization Schedule for Children and Adolescents Aged 18 Years or Younger-United States, 2017. The 2017 child and adolescent immunization schedule summarizes ACIP recommendations, including several changes from the 2016 immunization schedules, in three figures, and footnotes for the figures. These documents can be found on the CDC immunization schedule website (https://www.cdc.gov/vaccines/schedules/index.html). These immunization schedules are approved by ACIP (https://www.cdc.gov/vaccines/acip/index.html), the American Academy of Pediatrics (https://www.aap.org), the American Academy of Family Physicians (https://www.aafp.org), and the American College of Obstetricians and Gynecologists (http://www.acog.org). Health care providers are advised to use the figures and the combined footnotes together. The full ACIP recommendations for each vaccine, including contraindications and precautions, can be found at https://www.cdc.gov/vaccines/hcp/acip-recs/index.html. Providers should be aware that changes in recommendations for specific vaccines can occur between annual updates to the childhood/adolescent immunization schedules. If errors or omissions are discovered within the child and adolescent schedule, CDC posts revised versions on the CDC immunization schedule website.
ERIC Educational Resources Information Center
Zhang, Dongbo; Koda, Keiko; Leong, Che Kan
2016-01-01
This longitudinal study examined the contribution of morphological awareness to bilingual word learning of Malay-English bilingual children in Singapore where English is the medium of instruction. Participants took morphological awareness and lexical inference tasks in both English and Malay twice with an interval of about half a year, the first…
The Role of Awareness for Complex Planning Task Performance: A Microgaming Study
ERIC Educational Resources Information Center
Lukosch, Heide; Groen, Daan; Kurapati, Shalini; Klemke, Roland; Verbraeck, Alexander
2016-01-01
This study introduces the concept of microgames to support situated learning in order to foster situational awareness (SA) of planners in seaport container terminals. In today's complex working environments, it is often difficult to develop the required level of understanding of a given situation, described as situational awareness. A container…
Vaquero, Joaquín M M; Fiacconi, Chris; Milliken, Bruce
2010-12-01
The qualitative difference method for distinguishing between aware and unaware processes was applied here to a spatial priming task. Participants were asked simply to locate a target stimulus that appeared in one of four locations, and this target stimulus was preceded by a prime in one of the same four locations. The prime location predicted the location of the target with high probability (p = .75), but prime and target mismatched on a task-relevant feature (identity, color). Across 5 experiments, we observed repetition costs in the absence of awareness of the contingency, and repetition benefits in the presence of awareness of the contingency. These results were particularly clear-cut in Experiment 4, in which awareness was defined by reference to self-reported strategy use. Finally, Experiment 5 showed that frequency-based implicit learning effects were present in our experiments but that these implicit learning effects were not strong enough to override repetition costs that pushed performance in the opposite direction. The results of these experiments constitute a novel application of the qualitative difference method to the study of awareness, learning of contingencies, and strategic control.
Rith-Najarian, Leslie R.; McLaughlin, Katie A.; Sheridan, Margaret A.; Nock, Matthew K.
2014-01-01
Extensive research among adults supports the biopsychosocial (BPS) model of challenge and threat, which describes relationships among stress appraisals, physiological stress reactivity, and performance; however, no previous studies have examined these relationships in adolescents. Perceptions of stressors as well as physiological reactivity to stress increase during adolescence, highlighting the importance of understanding the relationships among stress appraisals, physiological reactivity, and performance during this developmental period. In this study, 79 adolescent participants reported on stress appraisals before and after a Trier Social Stress Test in which they performed a speech task. Physiological stress reactivity was defined by changes in cardiac output and total peripheral resistance from a baseline rest period to the speech task, and performance on the speech was coded using an objective rating system. We observed in adolescents only two relationships found in past adult research on the BPS model variables: (1) pre-task stress appraisal predicted post-task stress appraisal and (2) performance predicted post-task stress appraisal. Physiological reactivity during the speech was unrelated to pre- and post-task stress appraisals and to performance. We conclude that the lack of association between post-task stress appraisal and physiological stress reactivity suggests that adolescents might have low self-awareness of physiological emotional arousal. Our findings further suggest that adolescent stress appraisals are based largely on their performance during stressful situations. Developmental implications of this potential lack of awareness of one’s physiological and emotional state during adolescence are discussed. PMID:24491123
Rith-Najarian, Leslie R; McLaughlin, Katie A; Sheridan, Margaret A; Nock, Matthew K
2014-03-01
Extensive research among adults supports the biopsychosocial (BPS) model of challenge and threat, which describes relationships among stress appraisals, physiological stress reactivity, and performance; however, no previous studies have examined these relationships in adolescents. Perceptions of stressors as well as physiological reactivity to stress increase during adolescence, highlighting the importance of understanding the relationships among stress appraisals, physiological reactivity, and performance during this developmental period. In this study, 79 adolescent participants reported on stress appraisals before and after a Trier Social Stress Test in which they performed a speech task. Physiological stress reactivity was defined by changes in cardiac output and total peripheral resistance from a baseline rest period to the speech task, and performance on the speech was coded using an objective rating system. We observed in adolescents only two relationships found in past adult research on the BPS model variables: (1) pre-task stress appraisal predicted post-task stress appraisal and (2) performance predicted post-task stress appraisal. Physiological reactivity during the speech was unrelated to pre- and post-task stress appraisals and to performance. We conclude that the lack of association between post-task stress appraisal and physiological stress reactivity suggests that adolescents might have low self-awareness of physiological emotional arousal. Our findings further suggest that adolescent stress appraisals are based largely on their performance during stressful situations. Developmental implications of this potential lack of awareness of one's physiological and emotional state during adolescence are discussed.
Deformation-Aware Log-Linear Models
NASA Astrophysics Data System (ADS)
Gass, Tobias; Deselaers, Thomas; Ney, Hermann
In this paper, we present a novel deformation-aware discriminative model for handwritten digit recognition. Unlike previous approaches our model directly considers image deformations and allows discriminative training of all parameters, including those accounting for non-linear transformations of the image. This is achieved by extending a log-linear framework to incorporate a latent deformation variable. The resulting model has an order of magnitude less parameters than competing approaches to handling image deformations. We tune and evaluate our approach on the USPS task and show its generalization capabilities by applying the tuned model to the MNIST task. We gain interesting insights and achieve highly competitive results on both tasks.
The Ames-Lockheed orbiter processing scheduling system
NASA Technical Reports Server (NTRS)
Zweben, Monte; Gargan, Robert
1991-01-01
A general purpose scheduling system and its application to Space Shuttle Orbiter Processing at the Kennedy Space Center (KSC) are described. Orbiter processing entails all the inspection, testing, repair, and maintenance necessary to prepare the Shuttle for launch and takes place within the Orbiter Processing Facility (OPF) at KSC, the Vehicle Assembly Building (VAB), and on the launch pad. The problems are extremely combinatoric in that there are thousands of tasks, resources, and other temporal considerations that must be coordinated. Researchers are building a scheduling tool that they hope will be an integral part of automating the planning and scheduling process at KSC. The scheduling engine is domain independent and is also being applied to Space Shuttle cargo processing problems as well as wind tunnel scheduling problems.
NASA Technical Reports Server (NTRS)
Krupp, Joseph C.
1991-01-01
The Electric Power Control System (EPCS) created by Decision-Science Applications, Inc. (DSA) for the Lewis Research Center is discussed. This system makes decisions on what to schedule and when to schedule it, including making choices among various options or ways of performing a task. The system is goal-directed and seeks to shape resource usage in an optimal manner using a value-driven approach. Discussed here are considerations governing what makes a good schedule, how to design a value function to find the best schedule, and how to design the algorithm that finds the schedule that maximizes this value function. Results are shown which demonstrate the usefulness of the techniques employed.
Pegoraro, Luiz F L; Dantas, Clarissa R; Banzato, Claudio E M; Fuentes, Daniel
2013-06-01
Previous studies have shown correlations between poor insight and neurocognitive impairment in schizophrenia. Deficit schizophrenia has been associated with worse cognitive functioning and poorer insight. This study aimed at investigating the relationship between insight dimensions (measured by Schedule for the Assessment of Insight-Expanded Version and its factors) and specific neurocognitive functions (assessed through a battery of neuropsychological tests) considering separately patients with deficit (n=29) and nondeficit schizophrenia (n=44), categorized according to the Schedule for the Deficit Syndrome. We found that working memory correlated positively and significantly with awareness of mental illness in both groups. In nondeficit group, awareness of mental illness correlated additionally with verbal fluency and attention. If confirmed by further studies, these results may have important consequences, such as the need of tailoring differently cognitive rehabilitation for each group. Copyright © 2013 Elsevier B.V. All rights reserved.
Reconfigurable manufacturing execution system for pipe cutting
NASA Astrophysics Data System (ADS)
Yin, Y. H.; Xie, J. Y.
2011-08-01
This article presents a reconfigurable manufacturing execution system (RMES) filling the gap between enterprise resource planning and resource layer for pipe-cutting production with mass customisation and rapid adaptation to dynamic market, which consists of planning and scheduling layer and executive control layer. Starting from customer's task and process requirements, the cutting trajectories are planned under generalised mathematical model able to reconfigure in accordance with various intersecting types' joint, and all tasks are scheduled by nesting algorithm to maximise the utilisation rate of rough material. This RMES for pipe cutting has been effectively implemented in more than 100 companies.
Koch, Sven H; Weir, Charlene; Haar, Maral; Staggers, Nancy; Agutter, Jim; Görges, Matthias; Westenskow, Dwayne
2012-01-01
Fatal errors can occur in intensive care units (ICUs). Researchers claim that information integration at the bedside may improve nurses' situation awareness (SA) of patients and decrease errors. However, it is unclear which information should be integrated and in what form. Our research uses the theory of SA to analyze the type of tasks, and their associated information gaps. We aimed to provide recommendations for integrated, consolidated information displays to improve nurses' SA. Systematic observations methods were used to follow 19 ICU nurses for 38 hours in 3 clinical practice settings. Storyboard methods and concept mapping helped to categorize the observed tasks, the associated information needs, and the information gaps of the most frequent tasks by SA level. Consensus and discussion of the research team was used to propose recommendations to improve information displays at the bedside based on information deficits. Nurses performed 46 different tasks at a rate of 23.4 tasks per hour. The information needed to perform the most common tasks was often inaccessible, difficult to see at a distance or located on multiple monitoring devices. Current devices at the ICU bedside do not adequately support a nurse's information-gathering activities. Medication management was the most frequent category of tasks. Information gaps were present at all levels of SA and across most of the tasks. Using a theoretical model to understand information gaps can aid in designing functional requirements. Integrated information that enhances nurses' Situation Awareness may decrease errors and improve patient safety in the future.
Weir, Charlene; Haar, Maral; Staggers, Nancy; Agutter, Jim; Görges, Matthias; Westenskow, Dwayne
2012-01-01
Objective Fatal errors can occur in intensive care units (ICUs). Researchers claim that information integration at the bedside may improve nurses' situation awareness (SA) of patients and decrease errors. However, it is unclear which information should be integrated and in what form. Our research uses the theory of SA to analyze the type of tasks, and their associated information gaps. We aimed to provide recommendations for integrated, consolidated information displays to improve nurses' SA. Materials and Methods Systematic observations methods were used to follow 19 ICU nurses for 38 hours in 3 clinical practice settings. Storyboard methods and concept mapping helped to categorize the observed tasks, the associated information needs, and the information gaps of the most frequent tasks by SA level. Consensus and discussion of the research team was used to propose recommendations to improve information displays at the bedside based on information deficits. Results Nurses performed 46 different tasks at a rate of 23.4 tasks per hour. The information needed to perform the most common tasks was often inaccessible, difficult to see at a distance or located on multiple monitoring devices. Current devices at the ICU bedside do not adequately support a nurse's information-gathering activities. Medication management was the most frequent category of tasks. Discussion Information gaps were present at all levels of SA and across most of the tasks. Using a theoretical model to understand information gaps can aid in designing functional requirements. Conclusion Integrated information that enhances nurses' Situation Awareness may decrease errors and improve patient safety in the future. PMID:22437074
The Methodology for Developing Mobile Agent Application for Ubiquitous Environment
NASA Astrophysics Data System (ADS)
Matsuzaki, Kazutaka; Yoshioka, Nobukazu; Honiden, Shinichi
A methodology which enables a flexible and reusable development of mobile agent application to a mobility aware indoor environment is provided in this study. The methodology is named Workflow-awareness model based on a concept of a pair of mobile agents cooperating to perform a given task. A monolithic mobile agent application with numerous concerns in a mobility aware setting is divided into a master agent (MA) and a shadow agent (SA) according to a type of tasks. The MA executes a main application logic which includes monitoring a user's physical movement and coordinating various services. The SA performs additional tasks depending on environments to aid the MA in achieving efficient execution without losing application logic. "Workflow-awareness (WFA)" means that the SA knows the MA's execution state transition so that the SA can provide a proper task at a proper timing. A prototype implementation of the methodology is done with a practical use of AspectJ. AspectJ is used to automate WFA by weaving communication modules to both MA and SA. Usefulness of this methodology concerning its efficiency and software engineering aspects are analyzed. As for the effectiveness, the overhead of WFA is relatively small to the whole expenditure time. And from the view of the software engineering, WFA is possible to provide a mechanism to deploy one application in various situations.
Tong, Xiuhong; McBride, Catherine; Lo, Jason Chor Ming; Shu, Hua
2017-11-01
In the present study, we used a three-time point longitudinal design to investigate the associations of morphological awareness to word reading and spelling in a small group of those with and without dyslexia taken from a larger sample of 164 Hong Kong Chinese children who remained in a longitudinal study across ages 6, 7 and 8. Among those 164 children, 15 had been diagnosed as having dyslexia by professional psychologists, and 15 other children manifested average reading ability and had been randomly selected from the sample for comparison. All children were administered a battery of tasks including Chinese character recognition, word dictation, morphological awareness, phonological awareness and rapid automatized naming. Multivariate analysis of variance and predictive discriminate analysis were performed to examine whether the dyslexic children showed differences in the cognitive-linguistic tasks in comparison with controls. Results suggested that the dyslexic groups had poorer performance in morphological awareness and RAN across all 3 years. However, phonological awareness was not stable in distinguishing the groups. Findings suggest that morphological awareness is a relatively strong correlate of spelling difficulties in Chinese, but phonological awareness is not. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Mechanism to support generic collective communication across a variety of programming models
Almasi, Gheorghe [Ardsley, NY; Dozsa, Gabor [Ardsley, NY; Kumar, Sameer [White Plains, NY
2011-07-19
A system and method for supporting collective communications on a plurality of processors that use different parallel programming paradigms, in one aspect, may comprise a schedule defining one or more tasks in a collective operation, an executor that executes the task, a multisend module to perform one or more data transfer functions associated with the tasks, and a connection manager that controls one or more connections and identifies an available connection. The multisend module uses the available connection in performing the one or more data transfer functions. A plurality of processors that use different parallel programming paradigms can use a common implementation of the schedule module, the executor module, the connection manager and the multisend module via a language adaptor specific to a parallel programming paradigm implemented on a processor.
Automated power management and control
NASA Technical Reports Server (NTRS)
Dolce, James L.
1991-01-01
A comprehensive automation design is being developed for Space Station Freedom's electric power system. A joint effort between NASA's Office of Aeronautics and Exploration Technology and NASA's Office of Space Station Freedom, it strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. The initial station operation will use ground-based dispatches to perform the necessary command and control tasks. These tasks constitute planning and decision-making activities that strive to eliminate unplanned outages. We perceive an opportunity to help these dispatchers make fast and consistent on-line decisions by automating three key tasks: failure detection and diagnosis, resource scheduling, and security analysis. Expert systems will be used for the diagnostics and for the security analysis; conventional algorithms will be used for the resource scheduling.
7 CFR 305.23 - Steam sterilization treatment schedules.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Steam sterilization treatment schedules. 305.23... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Heat Treatments § 305.23 Steam sterilization treatment schedules. Treatment schedule Temperature( °F) Pressure Exposure period...
Situation awareness measures for simulated submarine track management.
Loft, Shayne; Bowden, Vanessa; Braithwaite, Janelle; Morrell, Daniel B; Huf, Samuel; Durso, Francis T
2015-03-01
The aim of this study was to examine whether the Situation Present Assessment Method (SPAM) and the Situation Awareness Global Assessment Technique (SAGAT) predict incremental variance in performance on a simulated submarine track management task and to measure the potential disruptive effect of these situation awareness (SA) measures. Submarine track managers use various displays to localize and track contacts detected by own-ship sensors. The measurement of SA is crucial for designing effective submarine display interfaces and training programs. Participants monitored a tactical display and sonar bearing-history display to track the cumulative behaviors of contacts in relationship to own-ship position and landmarks. SPAM (or SAGAT) and the Air Traffic Workload Input Technique (ATWIT) were administered during each scenario, and the NASA Task Load Index (NASA-TLX) and Situation Awareness Rating Technique were administered postscenario. SPAM and SAGAT predicted variance in performance after controlling for subjective measures of SA and workload, and SA for past information was a stronger predictor than SA for current/future information. The NASA-TLX predicted performance on some tasks. Only SAGAT predicted variance in performance on all three tasks but marginally increased subjective workload. SPAM, SAGAT, and the NASA-TLX can predict unique variance in submarine track management performance. SAGAT marginally increased subjective workload, but this increase did not lead to any performance decrement. Defense researchers have identified SPAM as an alternative to SAGAT because it would not require field exercises involving submarines to be paused. SPAM was not disruptive, but it is potentially problematic that SPAM did not predict variance in all three performance tasks. © 2014, Human Factors and Ergonomics Society.
Multicore job scheduling in the Worldwide LHC Computing Grid
NASA Astrophysics Data System (ADS)
Forti, A.; Pérez-Calero Yzquierdo, A.; Hartmann, T.; Alef, M.; Lahiff, A.; Templon, J.; Dal Pra, S.; Gila, M.; Skipsey, S.; Acosta-Silva, C.; Filipcic, A.; Walker, R.; Walker, C. J.; Traynor, D.; Gadrat, S.
2015-12-01
After the successful first run of the LHC, data taking is scheduled to restart in Summer 2015 with experimental conditions leading to increased data volumes and event complexity. In order to process the data generated in such scenario and exploit the multicore architectures of current CPUs, the LHC experiments have developed parallelized software for data reconstruction and simulation. However, a good fraction of their computing effort is still expected to be executed as single-core tasks. Therefore, jobs with diverse resources requirements will be distributed across the Worldwide LHC Computing Grid (WLCG), making workload scheduling a complex problem in itself. In response to this challenge, the WLCG Multicore Deployment Task Force has been created in order to coordinate the joint effort from experiments and WLCG sites. The main objective is to ensure the convergence of approaches from the different LHC Virtual Organizations (VOs) to make the best use of the shared resources in order to satisfy their new computing needs, minimizing any inefficiency originated from the scheduling mechanisms, and without imposing unnecessary complexities in the way sites manage their resources. This paper describes the activities and progress of the Task Force related to the aforementioned topics, including experiences from key sites on how to best use different batch system technologies, the evolution of workload submission tools by the experiments and the knowledge gained from scale tests of the different proposed job submission strategies.
Technology for planning and scheduling under complex constraints
NASA Astrophysics Data System (ADS)
Alguire, Karen M.; Pedro Gomes, Carla O.
1997-02-01
Within the context of law enforcement, several problems fall into the category of planning and scheduling under constraints. Examples include resource and personnel scheduling, and court scheduling. In the case of court scheduling, a schedule must be generated considering available resources, e.g., court rooms and personnel. Additionally, there are constraints on individual court cases, e.g., temporal and spatial, and between different cases, e.g., precedence. Finally, there are overall objectives that the schedule should satisfy such as timely processing of cases and optimal use of court facilities. Manually generating a schedule that satisfies all of the constraints is a very time consuming task. As the number of court cases and constraints increases, this becomes increasingly harder to handle without the assistance of automatic scheduling techniques. This paper describes artificial intelligence (AI) technology that has been used to develop several high performance scheduling applications including a military transportation scheduler, a military in-theater airlift scheduler, and a nuclear power plant outage scheduler. We discuss possible law enforcement applications where we feel the same technology could provide long-term benefits to law enforcement agencies and their operations personnel.
Understanding how train dispatchers manage and control trains : results of a cognitive task analysis
DOT National Transportation Integrated Search
2001-05-01
This report documents the results of a Cognitive Task Analysis that examined how experienced railroad dispatchers manage and : schedule trains in todays environment. The objective was to understand the cognitive demands placed on railroad dispatch...
Understanding how train dispatchers manage and control trains : results of a cognitive task analysis
DOT National Transportation Integrated Search
2001-05-01
This report documents the results ofaCognitive Task Analysis that examined how experienced railroad dispatchers manage and : schedule trains in today's environment. The objective was to understand the cognitive demands placed on railroad dispatchers ...
DOT National Transportation Integrated Search
2001-05-01
This report documents the results of a Cognitive Task Analysis that examined how experienced railroad dispatchers manage and schedule trains in todays environment. The objective was to understand the cognitive demands placed on railroad dispatcher...
40 CFR 52.2059 - Control strategy: Particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) Pennsylvania has committed to undertake a comprehensive program... Investigating and Controlling Nontraditional Particulate Matter Emissions Task Completion date Scheduled tasks...
40 CFR 52.2059 - Control strategy: Particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) Pennsylvania has committed to undertake a comprehensive program... Investigating and Controlling Nontraditional Particulate Matter Emissions Task Completion date Scheduled tasks...
40 CFR 52.2059 - Control strategy: Particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) Pennsylvania has committed to undertake a comprehensive program... Investigating and Controlling Nontraditional Particulate Matter Emissions Task Completion date Scheduled tasks...
40 CFR 52.2059 - Control strategy: Particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) Pennsylvania has committed to undertake a comprehensive program... Investigating and Controlling Nontraditional Particulate Matter Emissions Task Completion date Scheduled tasks...
Task-specific image partitioning.
Kim, Sungwoong; Nowozin, Sebastian; Kohli, Pushmeet; Yoo, Chang D
2013-02-01
Image partitioning is an important preprocessing step for many of the state-of-the-art algorithms used for performing high-level computer vision tasks. Typically, partitioning is conducted without regard to the task in hand. We propose a task-specific image partitioning framework to produce a region-based image representation that will lead to a higher task performance than that reached using any task-oblivious partitioning framework and existing supervised partitioning framework, albeit few in number. The proposed method partitions the image by means of correlation clustering, maximizing a linear discriminant function defined over a superpixel graph. The parameters of the discriminant function that define task-specific similarity/dissimilarity among superpixels are estimated based on structured support vector machine (S-SVM) using task-specific training data. The S-SVM learning leads to a better generalization ability while the construction of the superpixel graph used to define the discriminant function allows a rich set of features to be incorporated to improve discriminability and robustness. We evaluate the learned task-aware partitioning algorithms on three benchmark datasets. Results show that task-aware partitioning leads to better labeling performance than the partitioning computed by the state-of-the-art general-purpose and supervised partitioning algorithms. We believe that the task-specific image partitioning paradigm is widely applicable to improving performance in high-level image understanding tasks.
Job shop scheduling problem with late work criterion
NASA Astrophysics Data System (ADS)
Piroozfard, Hamed; Wong, Kuan Yew
2015-05-01
Scheduling is considered as a key task in many industries, such as project based scheduling, crew scheduling, flight scheduling, machine scheduling, etc. In the machine scheduling area, the job shop scheduling problems are considered to be important and highly complex, in which they are characterized as NP-hard. The job shop scheduling problems with late work criterion and non-preemptive jobs are addressed in this paper. Late work criterion is a fairly new objective function. It is a qualitative measure and concerns with late parts of the jobs, unlike classical objective functions that are quantitative measures. In this work, simulated annealing was presented to solve the scheduling problem. In addition, operation based representation was used to encode the solution, and a neighbourhood search structure was employed to search for the new solutions. The case studies are Lawrence instances that were taken from the Operations Research Library. Computational results of this probabilistic meta-heuristic algorithm were compared with a conventional genetic algorithm, and a conclusion was made based on the algorithm and problem.
Lallier, Marie; Acha, Joana; Carreiras, Manuel
2016-01-01
This study investigates whether orthographic consistency and transparency of languages have an impact on the development of reading strategies and reading sub-skills (i.e. phonemic awareness and visual attention span) in bilingual children. We evaluated 21 French (opaque)-Basque (transparent) bilingual children and 21 Spanish (transparent)-Basque (transparent) bilingual children at Grade 2, and 16 additional children of each group at Grade 5. All of them were assessed in their common language (i.e. Basque) on tasks measuring word and pseudoword reading, phonemic awareness and visual attention span skills. The Spanish speaking groups showed better Basque pseudoword reading and better phonemic awareness abilities than their French speaking peers, but only in the most difficult conditions of the tasks. However, on the visual attention span task, the French-Basque bilinguals showed the most efficient visual processing strategies to perform the task. Therefore, learning to read in an additional language affected differently Basque literacy skills, depending on whether this additional orthography was opaque (e.g. French) or transparent (e.g. Spanish). Moreover, we showed that the most noteworthy effects of Spanish and French orthographic transparency on Basque performance were related to the size of the phonological and visual grain used to perform the tasks. © 2015 John Wiley & Sons Ltd.
Does working memory capacity predict cross-modally induced failures of awareness?
Kreitz, Carina; Furley, Philip; Simons, Daniel J; Memmert, Daniel
2016-01-01
People often fail to notice unexpected stimuli when they are focusing attention on another task. Most studies of this phenomenon address visual failures induced by visual attention tasks (inattentional blindness). Yet, such failures also occur within audition (inattentional deafness), and people can even miss unexpected events in one sensory modality when focusing attention on tasks in another modality. Such cross-modal failures are revealing because they suggest the existence of a common, central resource limitation. And, such central limits might be predicted from individual differences in cognitive capacity. We replicated earlier evidence, establishing substantial rates of inattentional deafness during a visual task and inattentional blindness during an auditory task. However, neither individual working memory capacity nor the ability to perform the primary task predicted noticing in either modality. Thus, individual differences in cognitive capacity did not predict failures of awareness even though the failures presumably resulted from central resource limitations. Copyright © 2015 Elsevier Inc. All rights reserved.
Planning and Scheduling for Fleets of Earth Observing Satellites
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)
2001-01-01
We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.
Error Argumentation Enhance Adaptability in Adults With Low Motor Ability.
Lee, Chi-Mei; Bo, Jin
2016-01-01
The authors focused on young adults with varying degrees of motor difficulties and examined their adaptability in a visuomotor adaptation task where the visual feedback of participants' movement error was presented with either 1:1 ratio (i.e., regular feedback schedule) or 1:2 ratio (i.e., enhanced feedback schedule). Within-subject design was used with two feedback schedules counter-balanced and separated for 10 days. Results revealed that participants with greater motor difficulties showed less adaptability than those with normal motor abilities in the regular feedback schedule; however, all participants demonstrated similar level of adaptability in the enhanced feedback schedule. The results suggest that error argumentation enhances adaptability in adults with low motor ability.
Corlett, P R; Canavan, S V; Nahum, L; Appah, F; Morgan, P T
2014-01-01
Dreams might represent a window on altered states of consciousness with relevance to psychotic experiences, where reality monitoring is impaired. We examined reality monitoring in healthy, non-psychotic individuals with varying degrees of dream awareness using a task designed to assess confabulatory memory errors - a confusion regarding reality whereby information from the past feels falsely familiar and does not constrain current perception appropriately. Confabulatory errors are common following damage to the ventromedial prefrontal cortex (vmPFC). Ventromedial function has previously been implicated in dreaming and dream awareness. In a hospital research setting, physically and mentally healthy individuals with high (n = 18) and low (n = 13) self-reported dream awareness completed a computerised cognitive task that involved reality monitoring based on familiarity across a series of task runs. Signal detection theory analysis revealed a more liberal acceptance bias in those with high dream awareness, consistent with the notion of overlap in the perception of dreams, imagination and reality. We discuss the implications of these results for models of reality monitoring and psychosis with a particular focus on the role of vmPFC in default-mode brain function, model-based reinforcement learning and the phenomenology of dreaming and waking consciousness.
Exploring Assessment Demands and Task Supports in Early Childhood Phonological Awareness Assessments
ERIC Educational Resources Information Center
Cassano, Christina M.; Steiner, Lilly
2016-01-01
Phonological awareness is assessed in various ways in both research studies and early childhood classrooms. The measures used to assess phonological awareness are related closely, although they differ in the linguistic unit used (e.g., word, syllable, onset-rime, or phoneme), the position of the linguistic unit (e.g., initial, medial, final), the…
ERIC Educational Resources Information Center
Holt, Samantha; Yuill, Nicola
2014-01-01
Children with autism are said to lack other-awareness, which restricts their opportunities for peer collaboration. We assessed other-awareness in non-verbal children with autism and typically-developing preschoolers collaborating on a shared computerised picture-sorting task. The studies compared a novel interface, designed to support…
Rapanelli, Maximiliano; Frick, Luciana Romina; Bernardez-Vidal, Micaela; Zanutto, Bonifacio Silvano
2013-11-15
Blockade of N-methyl-d-aspartate receptor (NMDA) by the noncompetitive NMDA receptor (NMDAR) antagonist MK-801 produces behavioral abnormalities and alterations in prefrontal cortex (PFC) functioning. Due to the critical role of the PFC in operant conditioning task learning, we evaluated the effects of acute, repeated postnatal injections of MK-801 (0.1mg/kg) on learning performance. We injected Long-Evans rats i.p. with MK-801 (0.1mg/kg) using three different administration schedules: injection 40 min before beginning the task (during) (n=12); injection twice daily for six consecutive days prior to beginning the experimental procedures (prior) (n=12); or twice daily subcutaneous injections from postnatal day 7 to 11 (postnatal) (n=12). Next, we orally administered risperidone (serotonin receptor 2A and dopamine receptor 2 antagonist, 1mg/kg) or buspirone (serotonin receptor 1A partial agonist, 10mg/kg) to animals treated with the MK-801 schedule described above. The postnatal and prior administration schedules produced severe learning deficits, whereas injection of MK-801 just before training sessions had only mild effects on acquisition of an operant conditioning. Risperidone was able to reverse the detrimental effect of MK-801 in the animals that were treated with MK-801 during and prior training sessions. In contrast, buspirone was only effective at mitigating the cognitive deficits induced by MK-801 when administered during the training procedures. The data demonstrates that NMDA antagonism disrupts basic mechanisms of learning in a simple PFC-mediated operant conditioning task, and that buspirone and risperidone failed to attenuate the learning deficits when NMDA neurotransmission was blocked in the early stages of the postnatal period. Copyright © 2013 Elsevier B.V. All rights reserved.
Understanding how train dispatchers manage and control trains : results of a cognitive task analysis
DOT National Transportation Integrated Search
1999-03-01
This report documents the results of a preliminary Cognitive Task Analysis (CTA) that examined how experienced train dispatchers manage and : schedule trains in today's environment The objective was to understand the cognitive demands placed on train...
Unconscious cues bias first saccades in a free-saccade task.
Huang, Yu-Feng; Tan, Edlyn Gui Fang; Soon, Chun Siong; Hsieh, Po-Jang
2014-10-01
Visual-spatial attention can be biased towards salient visual information without visual awareness. It is unclear, however, whether such bias can further influence free-choices such as saccades in a free viewing task. In our experiment, we presented visual cues below awareness threshold immediately before people made free saccades. Our results showed that masked cues could influence the direction and latency of the first free saccade, suggesting that salient visual information can unconsciously influence free actions. Copyright © 2014 Elsevier Inc. All rights reserved.
48 CFR 2452.216-70 - Estimated cost, base fee and award fee.
Code of Federal Regulations, 2010 CFR
2010-10-01
...] increments on the schedule set forth in the Performance Evaluation Plan established by the government. The amount payable shall be based on the progress toward completion of contract tasks as determined by the... payments of the award fee in accordance with the schedule established in the Performance Evaluation Plan...
Effectiveness of Time-Based Attention Schedules on Students in Inclusive Classrooms in Turkey
ERIC Educational Resources Information Center
Sazak Pinar, Elif
2015-01-01
This study examines the effectiveness of fixed-time (FT) and variable-time (VT) schedules and attention on the problem behaviors and on-task behaviors of students with and without intellectual disabilities in inclusive classrooms in Turkey. Three second-grade students with intellectual disabilities, three students without intellectual…
A Model Schedule for a Capital Improvement Program.
ERIC Educational Resources Information Center
Oates, Arnold D.; Burch, A. Lee
The Model Schedule for a Capital Improvement Program described in this paper encourages school leaders to consider a more holistic view of the planning process. It is intended to assist those responsible for educational facility planning, who must assure that all important and relevant tasks are accomplished in a timely manner. The model's six…
Static Scheduler for Hard Real-Time Tasks on Multiprocessor Systems
1992-09-01
Foundation of Computer Science, 1980 . [SIM83] Simons, B., "Multiprocessor Scheduling of Unit-Time Jobs with Arbitrary Release Times and Deadlines", SIAM...Research Office Attn: Dr. David Hislop P. O. Box 12211 Research Triangle Park, NC 27709-2211 31. Persistent Data Systems 75 W. Chapel Ridge Road Attn: Dr
One for All: Maintaining a Single Schedule Database for Large Development Projects
NASA Technical Reports Server (NTRS)
Hilscher, R.; Howerton, G.
1999-01-01
Efficiently maintaining and controlling a single schedule database in an Integrated Product Team environment is a significant challenge. It's accomplished effectively with the right combination of tools, skills, strategy, creativity, and teamwork. We'll share our lessons learned maintaining a 20,000 plus task network on a 36 month project.
Crew Integration & Automation Testbed and Robotic Follower Programs
2001-05-30
Evolving Technologies for Reduced Crew Operation” Vehicle Tech Demo #1 (VTT) Vehicle Tech Demo #2 ( CAT ATD) Two Man Transition Future Combat...Simulation Advanced Electronic Architecture Concept Vehicle Shown with Onboard Safety Driver Advanced Interfaces CAT ATD Exit Criteria...Provide 1000 Hz control loop for critical real-time tasks CAT Workload IPT Process and Product Schedule Crew Task List Task Timelines Workload Analysis
2012-03-01
Vroom , V . H . (1964). Work and motivation . New York: Wiley. 16 Distribution A: Approved for public release; Distribution unlimited. 88 ABW Cleared...sustained attention tasks. Theorists have attempted to explain vigilance decrements as a function of arousal/ motivation ( Vroom , 1964; Yerkes & Dodson...DISTRIBUTION STATEMENT. Allen J. Rowe Gregory J. Barbato Work Unit Manager
Planning the FUSE Mission Using the SOVA Algorithm
NASA Technical Reports Server (NTRS)
Lanzi, James; Heatwole, Scott; Ward, Philip R.; Civeit, Thomas; Calvani, Humberto; Kruk, Jeffrey W.; Suchkov, Anatoly
2011-01-01
Three documents discuss the Sustainable Objective Valuation and Attainability (SOVA) algorithm and software as used to plan tasks (principally, scientific observations and associated maneuvers) for the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. SOVA is a means of managing risk in a complex system, based on a concept of computing the expected return value of a candidate ordered set of tasks as a product of pre-assigned task values and assessments of attainability made against qualitatively defined strategic objectives. For the FUSE mission, SOVA autonomously assembles a week-long schedule of target observations and associated maneuvers so as to maximize the expected scientific return value while keeping the satellite stable, managing the angular momentum of spacecraft attitude- control reaction wheels, and striving for other strategic objectives. A six-degree-of-freedom model of the spacecraft is used in simulating the tasks, and the attainability of a task is calculated at each step by use of strategic objectives as defined by use of fuzzy inference systems. SOVA utilizes a variant of a graph-search algorithm known as the A* search algorithm to assemble the tasks into a week-long target schedule, using the expected scientific return value to guide the search.
7 CFR 305.8 - Sulfuryl fluoride treatment schedules.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Sulfuryl fluoride treatment schedules. 305.8 Section 305.8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... fluoride treatment schedules. Treatment schedule Pressure Temperature ( °F) Dosage rate(lb/1000 cubic feet...
Human Factors in Aeronautics at NASA
NASA Technical Reports Server (NTRS)
Mogford, Richard
2016-01-01
This is a briefing to a regularly meeting DoD group called the Human Systems Community of Interest: Mission Effectiveness. I was asked to address human factors in aeronautics at NASA. (Exploration (space) human factors has apparently already been covered.) The briefing describes human factors organizations at NASA Ames and Langley. It then summarizes some aeronautics tasks that involve the application of human factors in the development of specific tools and capabilities. The tasks covered include aircrew checklists, dispatch operations, Playbook, Dynamic Weather Routes, Traffic Aware Strategic Aircrew Requests, and Airplane State Awareness and Prediction Technologies. I mention that most of our aeronautics work involves human factors as embedded in development tasks rather than basic research.
Interactive computer aided shift scheduling.
Gaertner, J
2001-12-01
This paper starts with a discussion of computer aided shift scheduling. After a brief review of earlier approaches, two conceptualizations of this field are introduced: First, shift scheduling as a field that ranges from extremely stable rosters at one pole to rather market-like approaches on the other pole. Unfortunately, already small alterations of a scheduling problem (e.g., the number of groups, the number of shifts) may call for rather different approaches and tools. Second, their environment shapes scheduling problems and scheduling has to be done within idiosyncratic organizational settings. This calls for the amalgamation of scheduling with other tasks (e.g., accounting) and for reflections whether better solutions might become possible by changes in the problem definition (e.g., other service levels, organizational changes). Therefore shift scheduling should be understood as a highly connected problem. Building upon these two conceptualizations, a few examples of software that ease scheduling in some areas of this field are given and future research questions are outlined.
Software Cost-Estimation Model
NASA Technical Reports Server (NTRS)
Tausworthe, R. C.
1985-01-01
Software Cost Estimation Model SOFTCOST provides automated resource and schedule model for software development. Combines several cost models found in open literature into one comprehensive set of algorithms. Compensates for nearly fifty implementation factors relative to size of task, inherited baseline, organizational and system environment and difficulty of task.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spielman, Zachary; Hill, Racheal; LeBlanc, Katya
Control room modernization is critical to extending the life of the 99 operating commercial nuclear power plants (NPP) within the United States. However, due to the lack of evidence demonstrating the efficiency and effectiveness of recent candidate technologies, current NPP control rooms operate without the benefit of various newer technologies now available. As nuclear power plants begin to extend their licenses to continue operating for another 20 years, there is increased interest in modernizing the control room and supplementing the existing control boards with advanced technologies. As part of a series of studies investigating the benefits of advanced control roommore » technologies, the researchers conducted an experimental study to observe the effect of Task-Based Overview Displays (TODs) on operator workload and situation awareness (SA) while completing typical operating scenarios. Researchers employed the Situation Awareness Rating Technique (SART) and the NASA Task Load Index (TLX) as construct measures.« less
A Correlation Between Quality Management Metrics and Technical Performance Measurement
2007-03-01
Engineering Working Group SME Subject Matter Expert SoS System of Systems SPI Schedule performance Index SSEI System of Systems Engineering and...and stated as such [Q, M , M &G]. The QMM equation is given by: 12 QMM=0.92RQM+0.67EPM+0.55RKM+1.86PM, where: RGM is the requirements management...schedule. Now if corrective action is not taken, the project/task will be completed behind schedule and over budget. m . As well as the derived
Distributed Signal Processing in Wireless Sensor Networks
2005-08-01
in sensor networks. Previous endeavors focused on how to schedule trackers to go to sleep or to wake up trackers based on detection outcomes. On the...one hand, all nodes wake up according to a predefined schedule so that only involved nodes are kept active for the exact duration of a task execution...Recently a new MAC - S-MAC [70] has been proposed, and it enables nodes to sleep not only for a scheduled period, but also for other periods for which
1987-06-01
INDUSTRY JOINT ENDEAVOR AGREEMENTS o PRESENT CSI TECHNOLOGY SOA FOR KEY ISSUES o SPECIFIC CSI TECHNOLOGY PROGRAMS/TASKS o SCHEDULE - WHAT IS EXPECTED...RESULTS BE USED IN THIS REGARD? o WHAT ARE SELECTION CRITERIA FOR GUEST INVESTIGATORS? o WHAT IS CURRENT COFS SCHEDULE ? o ARE USERS AND TECHNOLOGY...build to cost and schedule , meeting both the presidentially mandated milestone for permanent manned presence in 1994 and the budget constraints placed
The balanced mind: the variability of task-unrelated thoughts predicts error monitoring
Allen, Micah; Smallwood, Jonathan; Christensen, Joanna; Gramm, Daniel; Rasmussen, Beinta; Jensen, Christian Gaden; Roepstorff, Andreas; Lutz, Antoine
2013-01-01
Self-generated thoughts unrelated to ongoing activities, also known as “mind-wandering,” make up a substantial portion of our daily lives. Reports of such task-unrelated thoughts (TUTs) predict both poor performance on demanding cognitive tasks and blood-oxygen-level-dependent (BOLD) activity in the default mode network (DMN). However, recent findings suggest that TUTs and the DMN can also facilitate metacognitive abilities and related behaviors. To further understand these relationships, we examined the influence of subjective intensity, ruminative quality, and variability of mind-wandering on response inhibition and monitoring, using the Error Awareness Task (EAT). We expected to replicate links between TUT and reduced inhibition, and explored whether variance in TUT would predict improved error monitoring, reflecting a capacity to balance between internal and external cognition. By analyzing BOLD responses to subjective probes and the EAT, we dissociated contributions of the DMN, executive, and salience networks to task performance. While both response inhibition and online TUT ratings modulated BOLD activity in the medial prefrontal cortex (mPFC) of the DMN, the former recruited a more dorsal area implying functional segregation. We further found that individual differences in mean TUTs strongly predicted EAT stop accuracy, while TUT variability specifically predicted levels of error awareness. Interestingly, we also observed co-activation of salience and default mode regions during error awareness, supporting a link between monitoring and TUTs. Altogether our results suggest that although TUT is detrimental to task performance, fluctuations in attention between self-generated and external task-related thought is a characteristic of individuals with greater metacognitive monitoring capacity. Achieving a balance between internally and externally oriented thought may thus aid individuals in optimizing their task performance. PMID:24223545
Using Grid Benchmarks for Dynamic Scheduling of Grid Applications
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert
2003-01-01
Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.
NASA Technical Reports Server (NTRS)
Lala, J. H.; Smith, T. B., III
1983-01-01
The software developed for the Fault-Tolerant Multiprocessor (FTMP) is described. The FTMP executive is a timer-interrupt driven dispatcher that schedules iterative tasks which run at 3.125, 12.5, and 25 Hz. Major tasks which run under the executive include system configuration control, flight control, and display. The flight control task includes autopilot and autoland functions for a jet transport aircraft. System Displays include status displays of all hardware elements (processors, memories, I/O ports, buses), failure log displays showing transient and hard faults, and an autopilot display. All software is in a higher order language (AED, an ALGOL derivative). The executive is a fully distributed general purpose executive which automatically balances the load among available processor triads. Provisions for graceful performance degradation under processing overload are an integral part of the scheduling algorithms.
Spelling and Morphology in Dyslexia: A Developmental Study Across the School Years.
Schiff, Rachel; Levie, Ronit
2017-11-01
The current study examined the effect of morphological knowledge on spelling development in Hebrew-speaking schoolchildren, adolescents and adults with dyslexia, compared with typically developing (TD) peers. Participants were 238 Hebrew-speaking readers of five grade levels of whom 139 were TD and 99 had developmental dyslexia (DD). Participants were tested on a function letter spelling task, a phonological awareness task and a morphological awareness task. The overall picture that emerged from the results is that performance on all measures increased with grade level, with TD participants always scoring higher than peers with DD. Moreover, the higher the morphological complexity in spelling and irregularity in noun inflection, the higher the differences between the DD and TD participants. Finally, performance on the morphological awareness task contributed to spelling morphologically more complex spelling items in the TD, but not in the DD group. From clinical and educational perspectives, these results strongly suggest that rigorous morphological instruction is necessary in teaching children and adolescents with dyslexia to identify and use morphological cues in spoken and written Hebrew. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Choi, Younggeun; Gordon, James; Park, Hyeshin; Schweighofer, Nicolas
2011-08-03
Current guidelines for rehabilitation of arm and hand function after stroke recommend that motor training focus on realistic tasks that require reaching and manipulation and engage the patient intensively, actively, and adaptively. Here, we investigated the feasibility of a novel robotic task-practice system, ADAPT, designed in accordance with such guidelines. At each trial, ADAPT selects a functional task according to a training schedule and with difficulty based on previous performance. Once the task is selected, the robot picks up and presents the corresponding tool, simulates the dynamics of the tasks, and the patient interacts with the tool to perform the task. Five participants with chronic stroke with mild to moderate impairments (> 9 months post-stroke; Fugl-Meyer arm score 49.2 ± 5.6) practiced four functional tasks (selected out of six in a pre-test) with ADAPT for about one and half hour and 144 trials in a pseudo-random schedule of 3-trial blocks per task. No adverse events occurred and ADAPT successfully presented the six functional tasks without human intervention for a total of 900 trials. Qualitative analysis of trajectories showed that ADAPT simulated the desired task dynamics adequately, and participants reported good, although not excellent, task fidelity. During training, the adaptive difficulty algorithm progressively increased task difficulty leading towards an optimal challenge point based on performance; difficulty was then continuously adjusted to keep performance around the challenge point. Furthermore, the time to complete all trained tasks decreased significantly from pretest to one-hour post-test. Finally, post-training questionnaires demonstrated positive patient acceptance of ADAPT. ADAPT successfully provided adaptive progressive training for multiple functional tasks based on participant's performance. Our encouraging results establish the feasibility of ADAPT; its efficacy will next be tested in a clinical trial.
The LHCb Grid Simulation: Proof of Concept
NASA Astrophysics Data System (ADS)
Hushchyn, M.; Ustyuzhanin, A.; Arzymatov, K.; Roiser, S.; Baranov, A.
2017-10-01
The Worldwide LHC Computing Grid provides access to data and computational resources to analyze it for researchers with different geographical locations. The grid has a hierarchical topology with multiple sites distributed over the world with varying number of CPUs, amount of disk storage and connection bandwidth. Job scheduling and data distribution strategy are key elements of grid performance. Optimization of algorithms for those tasks requires their testing on real grid which is hard to achieve. Having a grid simulator might simplify this task and therefore lead to more optimal scheduling and data placement algorithms. In this paper we demonstrate a grid simulator for the LHCb distributed computing software.
ERIC Educational Resources Information Center
Svalberg, Agneta Marie-Louise
2012-01-01
This study explored some MA students' perceptions of a Grammar Awareness course for language teachers. The aim was to understand how group tasks might help students build Grammar Awareness. Two cohorts of students were surveyed and interviewed. In this paper, the survey responses are discussed in some depth. While the first cohort was left to…
The Role of Phoneme and Onset-Rime Awareness in Second Language Reading Acquisition
ERIC Educational Resources Information Center
Haigh, Corinne A.; Savage, Robert; Erdos, Caroline; Genesee, Fred
2011-01-01
This study investigated the link between phoneme and onset-rime awareness and reading outcomes in children learning to read in a second language (L2). Closely matched phoneme and onset-rime awareness tasks were administered in English and French in the spring of kindergarten to English-dominant children in French immersion programmes (n=98).…
Cognitive deficits associated with impaired awareness of hypoglycaemia in type 1 diabetes.
Hansen, Tor I; Olsen, Sandra E; Haferstrom, Elise C D; Sand, Trond; Frier, Brian M; Håberg, Asta K; Bjørgaas, Marit R
2017-06-01
The aim of this study was to compare cognitive function in adults with type 1 diabetes who have impaired awareness of hypoglycaemia with those who have normal awareness of hypoglycaemia. A putative association was sought between cognitive test scores and a history of severe hypoglycaemia. A total of 68 adults with type 1 diabetes were included: 33 had impaired and 35 had normal awareness of hypoglycaemia, as confirmed by formal testing. The groups were matched for age, sex and diabetes duration. Cognitive tests of verbal memory, object-location memory, pattern separation, executive function, working memory and processing speed were administered. Participants with impaired awareness of hypoglycaemia scored significantly lower on the verbal and object-location memory tests and on the pattern separation test (Cohen's d -0.86 to -0.55 [95% CI -1.39, -0.05]). Participants with impaired awareness of hypoglycaemia had reduced planning ability task scores, although the difference was not statistically significant (Cohen's d 0.57 [95% CI 0, 1.14]). Frequency of exposure to severe hypoglycaemia correlated with the number of cognitive tests that had not been performed according to instructions. Impaired awareness of hypoglycaemia was associated with diminished learning, memory and pattern separation. These cognitive tasks all depend on the hippocampus, which is vulnerable to neuroglycopenia. The findings suggest that hypoglycaemia contributes to the observed correlation between impaired awareness of hypoglycaemia and impaired cognition.
Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon
2015-01-01
Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly “domain general” conflict processing mechanisms, instead of conflict source specific effects. PMID:26169473
Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon
2015-07-14
Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly "domain general" conflict processing mechanisms, instead of conflict source specific effects.
Martyr, Anthony; Clare, Linda; Nelis, Sharon M; Roberts, Judith L; Robinson, Julia U; Roth, Ilona; Markova, Ivana S; Woods, Robert T; Whitaker, Christopher J; Morris, Robin G
2011-01-01
To determine whether people with dementia (PwD), and carers of PwD, show a processing bias to dementia-related words in an emotional Stroop task, and if so, whether the presence of such a bias is related to level of explicit awareness of the condition. Seventy-nine people with early stage Alzheimer's disease (AD), vascular or mixed dementia, and their carers, completed an emotional Stroop task. Time taken to colour-name dementia-related and neutral words was compared within and between groups. Additionally, as a comparison, ratings of the awareness of the condition shown by PwD were made on the basis of a detailed interview with each PwD and his/her carer. PwD and carers showed the same level of increase in response times to salient compared to neutral words. In the PwD this effect was unrelated to the degree of awareness that they demonstrated regarding the condition. The emotional Stroop effect in response to dementia-related words in PwD indicates that preserved implicit awareness of the condition can be elicited even where there is reduced explicit awareness. Copyright © 2010 John Wiley & Sons, Ltd.
Speech Auditory Alerts Promote Memory for Alerted Events in a Video-Simulated Self-Driving Car Ride.
Nees, Michael A; Helbein, Benji; Porter, Anna
2016-05-01
Auditory displays could be essential to helping drivers maintain situation awareness in autonomous vehicles, but to date, few or no studies have examined the effectiveness of different types of auditory displays for this application scenario. Recent advances in the development of autonomous vehicles (i.e., self-driving cars) have suggested that widespread automation of driving may be tenable in the near future. Drivers may be required to monitor the status of automation programs and vehicle conditions as they engage in secondary leisure or work tasks (entertainment, communication, etc.) in autonomous vehicles. An experiment compared memory for alerted events-a component of Level 1 situation awareness-using speech alerts, auditory icons, and a visual control condition during a video-simulated self-driving car ride with a visual secondary task. The alerts gave information about the vehicle's operating status and the driving scenario. Speech alerts resulted in better memory for alerted events. Both auditory display types resulted in less perceived effort devoted toward the study tasks but also greater perceived annoyance with the alerts. Speech auditory displays promoted Level 1 situation awareness during a simulation of a ride in a self-driving vehicle under routine conditions, but annoyance remains a concern with auditory displays. Speech auditory displays showed promise as a means of increasing Level 1 situation awareness of routine scenarios during an autonomous vehicle ride with an unrelated secondary task. © 2016, Human Factors and Ergonomics Society.
Energy-efficient fault tolerance in multiprocessor real-time systems
NASA Astrophysics Data System (ADS)
Guo, Yifeng
The recent progress in the multiprocessor/multicore systems has important implications for real-time system design and operation. From vehicle navigation to space applications as well as industrial control systems, the trend is to deploy multiple processors in real-time systems: systems with 4 -- 8 processors are common, and it is expected that many-core systems with dozens of processing cores will be available in near future. For such systems, in addition to general temporal requirement common for all real-time systems, two additional operational objectives are seen as critical: energy efficiency and fault tolerance. An intriguing dimension of the problem is that energy efficiency and fault tolerance are typically conflicting objectives, due to the fact that tolerating faults (e.g., permanent/transient) often requires extra resources with high energy consumption potential. In this dissertation, various techniques for energy-efficient fault tolerance in multiprocessor real-time systems have been investigated. First, the Reliability-Aware Power Management (RAPM) framework, which can preserve the system reliability with respect to transient faults when Dynamic Voltage Scaling (DVS) is applied for energy savings, is extended to support parallel real-time applications with precedence constraints. Next, the traditional Standby-Sparing (SS) technique for dual processor systems, which takes both transient and permanent faults into consideration while saving energy, is generalized to support multiprocessor systems with arbitrary number of identical processors. Observing the inefficient usage of slack time in the SS technique, a Preference-Oriented Scheduling Framework is designed to address the problem where tasks are given preferences for being executed as soon as possible (ASAP) or as late as possible (ALAP). A preference-oriented earliest deadline (POED) scheduler is proposed and its application in multiprocessor systems for energy-efficient fault tolerance is investigated, where tasks' main copies are executed ASAP while backup copies ALAP to reduce the overlapped execution of main and backup copies of the same task and thus reduce energy consumption. All proposed techniques are evaluated through extensive simulations and compared with other state-of-the-art approaches. The simulation results confirm that the proposed schemes can preserve the system reliability while still achieving substantial energy savings. Finally, for both SS and POED based Energy-Efficient Fault-Tolerant (EEFT) schemes, a series of recovery strategies are designed when more than one (transient and permanent) faults need to be tolerated.
7 CFR 305.16 - Cold treatment schedules.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Cold treatment schedules. 305.16 Section 305.16... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Cold Treatments § 305.16 Cold treatment schedules. Treatment schedule Temperature ( °F) Exposure period T107-a 1 34 or below 14 days. 35 or below 16...
Staying Mindful in Action: The Challenge of "Double Awareness" on Task and Process in an Action Lab
ERIC Educational Resources Information Center
Svalgaard, Lotte
2016-01-01
Action Learning is a well-proven method to integrate "task" and "process", as learning about team and self (process) takes place while delivering on a task or business challenge of real importance (task). An Action Lab® is an intensive Action Learning programme lasting for 5 days, which aims at balancing and integrating…
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Pope, Alan T.; Freeman, Frederick G.
2001-01-01
Prinzel, Hadley, Freeman, and Mikulka found that adaptive task allocation significantly enhanced performance only when used at the endpoints of the task workload continuum (i.e., very low or high workload), but that the technique degraded performance if invoked during other levels of task demand. These researchers suggested that other techniques should be used in conjunction with adaptive automation to help minimize the onset of hazardous states of awareness (HSA) and keep the operator 'in-the-loop.' The paper reports on such a technique that uses psychophysiological self-regulation to modulate the level of task engagement. Eighteen participants were assigned to three groups (self-regulation, false feedback, and control) and performed a compensatory tracking task that was cycled between three levels of task difficulty on the basis of the electroencephalogram (EEG) record. Those participants who had received self-regulation training performed significantly better and reported lower NASA-TLX scores than participants in the false feedback and control groups. Furthermore, the false feedback and control groups had significantly more task allocations resulting in return-to-manual performance decrements and higher EEG difference scores. Theoretical and practical implications of these results for adaptive automation are discussed.
Diamanti, Vassiliki; Mouzaki, Angeliki; Ralli, Asimina; Antoniou, Faye; Papaioannou, Sofia; Protopapas, Athanassios
2017-01-01
Different language skills are considered fundamental for successful reading and spelling acquisition. Extensive evidence has highlighted the central role of phonological awareness in early literacy experiences. However, many orthographic systems also require the contribution of morphological awareness. The goal of this study was to examine the morphological and phonological awareness skills of preschool children as longitudinal predictors of reading and spelling ability by the end of first grade, controlling for the effects of receptive and expressive vocabulary skills. At Time 1 preschool children from kindergartens in the Greek regions of Attika, Crete, Macedonia, and Thessaly were assessed on tasks tapping receptive and expressive vocabulary, phonological awareness (syllable and phoneme), and morphological awareness (inflectional and derivational). Tasks were administered through an Android application for mobile devices (tablets) featuring automatic application of ceiling rules. At Time 2 one year later the same children attending first grade were assessed on measures of word and pseudoword reading, text reading fluency, text reading comprehension, and spelling. Complete data from 104 children are available. Hierarchical linear regression and commonality analyses were conducted for each outcome variable. Reading accuracy for both words and pseudowords was predicted not only by phonological awareness, as expected, but also by morphological awareness, suggesting that understanding the functional role of word parts supports the developing phonology-orthography mappings. However, only phonological awareness predicted text reading fluency at this age. Longitudinal prediction of reading comprehension by both receptive vocabulary and morphological awareness was already evident at this age, as expected. Finally, spelling was predicted by preschool phonological awareness, as expected, as well as by morphological awareness, the contribution of which is expected to increase due to the spelling demands of Greek inflectional and derivational suffixes introduced at later grades.
Cortical networks involved in visual awareness independent of visual attention.
Webb, Taylor W; Igelström, Kajsa M; Schurger, Aaron; Graziano, Michael S A
2016-11-29
It is now well established that visual attention, as measured with standard spatial attention tasks, and visual awareness, as measured by report, can be dissociated. It is possible to attend to a stimulus with no reported awareness of the stimulus. We used a behavioral paradigm in which people were aware of a stimulus in one condition and unaware of it in another condition, but the stimulus drew a similar amount of spatial attention in both conditions. The paradigm allowed us to test for brain regions active in association with awareness independent of level of attention. Participants performed the task in an MRI scanner. We looked for brain regions that were more active in the aware than the unaware trials. The largest cluster of activity was obtained in the temporoparietal junction (TPJ) bilaterally. Local independent component analysis (ICA) revealed that this activity contained three distinct, but overlapping, components: a bilateral, anterior component; a left dorsal component; and a right dorsal component. These components had brain-wide functional connectivity that partially overlapped the ventral attention network and the frontoparietal control network. In contrast, no significant activity in association with awareness was found in the banks of the intraparietal sulcus, a region connected to the dorsal attention network and traditionally associated with attention control. These results show the importance of separating awareness and attention when testing for cortical substrates. They are also consistent with a recent proposal that awareness is associated with ventral attention areas, especially in the TPJ.
Sarri, Margarita; Greenwood, Richard; Kalra, Lalit; Driver, Jon
2011-01-01
Previous research has shown that prism adaptation (prism adaptation) can ameliorate several symptoms of spatial neglect after right-hemisphere damage. But the mechanisms behind this remain unclear. Recently we reported that prisms may increase leftward awareness for neglect in a task using chimeric visual objects, despite apparently not affecting awareness in a task using chimeric emotional faces (Sarri et al., 2006). Here we explored potential reasons for this apparent discrepancy in outcome, by testing further whether the lack of a prism effect on the chimeric face task task could be explained by: i) the specific category of stimuli used (faces as opposed to objects); ii) the affective nature of the stimuli; and/or iii) the particular task implemented, with the chimeric face task requiring forced-choice judgements of lateral ‘preference’ between pairs of identical, but left/right mirror-reversed chimeric face tasks (as opposed to identification for the chimeric object task). We replicated our previous pattern of no impact of prisms on the emotional chimeric face task here in a new series of patients, while also similarly finding no beneficial impact on another lateral ‘preference’ measure that used non-face non-emotional stimuli, namely greyscale gradients. By contrast, we found the usual beneficial impact of prism adaptation (prism adaptation) on some conventional measures of neglect, and improvements for at least some patients in a different face task, requiring explicit discrimination of the chimeric or non-chimeric nature of face stimuli. The new findings indicate that prism therapy does not alter spatial biases in neglect as revealed by ‘lateral preference tasks’ that have no right or wrong answer (requiring forced-choice judgements on left/right mirror-reversed stimuli), regardless of whether these employ face or non-face stimuli. But our data also show that prism therapy can beneficially modulate some aspects of visual awareness in spatial neglect not only for objects, but also for face stimuli, in some cases. PMID:20171612
Effects of Using an Ipod App to Manage Recreation Tasks
ERIC Educational Resources Information Center
Uphold, Nicole M.; Douglas, Karen H.; Loseke, Dannell L.
2016-01-01
A withdrawal design study evaluated the effectiveness of using constant time delay to teach six adults with a developmental disability to program and use an iPod touch® as an electronic photographic activity schedule (ePAS). The ePAS, created with the First Then Visual Schedule app, consisted of photographs of different exercises to complete…
Operator Objective Function Guidance for a Real-Time Unmanned Vehicle Scheduling Algorithm
2012-12-01
Consensus - Based Decentralized Auctions for Robust Task Allocation ,” IEEE Transactions on Robotics and Automation, Vol. 25, No. 4, No. 4, 2009, pp. 912...planning for the fleet. The decentralized task planner used in OPS-USERS is the consensus - based bundle algorithm (CBBA), a decentralized , polynomial...and surveillance (OPS-USERS), which leverages decentralized algorithms for vehicle routing and task allocation . This
Increasing Crew Autonomy for Long Duration Exploration Missions: Self-Scheduling
NASA Technical Reports Server (NTRS)
Marquez, Jessica J.; Hillenius, Steven; Deliz, Ivonne; Kanefsky, Bob; Zheng, Jimin; Reagan, Marcum L.
2017-01-01
Over the last three years, we have been investigating the operational concept of crew self-scheduling as a method of increasing crew autonomy for future exploration missions. Through Playbook, a planning and scheduling software tool, we have incrementally increased the ability for Earth analog mission crews to modify their schedules. Playbook allows the crew to add new activities from scratch, add new activities or groups of activities through a Task List, and reschedule or reassign flexible activities. The crew is also able to identify if plan modifications create violations, i.e., plan constraints not being met. This paper summarizes our observations with qualitative evidence from four NASA Extreme Environment Mission Operations (NEEMO) analog missions that supported self-scheduling as a feasible operational concept.
MacDuff, G S; Krantz, P J; McClannahan, L E
1993-01-01
We used a graduated guidance procedure to teach 4 boys with autism to follow photographic activity schedules to increase on-task and on-schedule behavior. The multiple baseline across participants design included baseline, teaching, maintenance, resequencing of photographs, and generalization to novel photographs phases. The results indicated that photographic activity schedules (albums depicting after-school activities) produced sustained engagement, and skills generalized to a new sequence of photographs and to new photographs. The acquisition of schedule-following skills enabled these children with severe developmental disabilities to display lengthy response chains, independently change activities, and change activities in different group home settings in the absence of immediate supervision and prompts from others. PMID:8473261
Real Time Metrics and Analysis of Integrated Arrival, Departure, and Surface Operations
NASA Technical Reports Server (NTRS)
Sharma, Shivanjli; Fergus, John
2017-01-01
A real time dashboard was developed in order to inform and present users notifications and integrated information regarding airport surface operations. The dashboard is a supplement to capabilities and tools that incorporate arrival, departure, and surface air-traffic operations concepts in a NextGen environment. As trajectory-based departure scheduling and collaborative decision making tools are introduced in order to reduce delays and uncertainties in taxi and climb operations across the National Airspace System, users across a number of roles benefit from a real time system that enables common situational awareness. In addition to shared situational awareness the dashboard offers the ability to compute real time metrics and analysis to inform users about capacity, predictability, and efficiency of the system as a whole. This paper describes the architecture of the real time dashboard as well as an initial set of metrics computed on operational data. The potential impact of the real time dashboard is studied at the site identified for initial deployment and demonstration in 2017; Charlotte-Douglas International Airport. Analysis and metrics computed in real time illustrate the opportunity to provide common situational awareness and inform users of metrics across delay, throughput, taxi time, and airport capacity. In addition, common awareness of delays and the impact of takeoff and departure restrictions stemming from traffic flow management initiatives are explored. The potential of the real time tool to inform the predictability and efficiency of using a trajectory-based departure scheduling system is also discussed.
A distributed scheduling algorithm for heterogeneous real-time systems
NASA Technical Reports Server (NTRS)
Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi
1991-01-01
Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.
Design tool for multiprocessor scheduling and evaluation of iterative dataflow algorithms
NASA Technical Reports Server (NTRS)
Jones, Robert L., III
1995-01-01
A graph-theoretic design process and software tool is defined for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. Graph-search algorithms and analysis techniques are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool applies the design process to a given problem and includes performance optimization through the inclusion of additional precedence constraints among the schedulable tasks.