Sample records for temperature-dependent core material

  1. Coupled Monte Carlo neutronics and thermal hydraulics for power reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernnat, W.; Buck, M.; Mattes, M.

    The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code ormore » memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)« less

  2. Insights into Mercury's interior structure from geodesy measurements and global contraction

    NASA Astrophysics Data System (ADS)

    Rivoldini, A.; Van Hoolst, T.

    2014-04-01

    The measurements of the gravitational field of Mercury by MESSENGER [6] and improved measurements of the spin state of Mercury [3] provide important insights on its interior structure. In particular, these data give strong constraints on the radius and density of Mercury's core [5, 2]. However, present geodesy data do not provide strong constraints on the radius of the inner core. The data allow for models with a fully molten liquid core to models which have an inner core radius that is smaller than about 1760km [5], if it is assumed that sulfur is the only light element in the core. Models without an inner core are, however, at odds with the observed internally generated magnetic field of Mercury since Mercury's dynamo cannot operate by secular cooling alone at present. The present radius of the inner core depends mainly on Mercury's thermal state and light elements inside the core. Because of the secular cooling of the planet,the temperature inside the core drops below the liquidus temperature of the core material somewhere in the core and leads to the formation of an inner core and to the global contraction of the planet. The amount of contraction depends on the temperature decrease, on the thermal expansion of the materials inside the planet, and on the volume of crystallized liquid core alloy. In this study we use geodesy data, the recent estimate about the radial contraction of Mercury [1], and thermo-chemical evolution calculations in order to improve our knowledge about Mercury's inner core radius and thermal state. Since data from remote sensing of Mercury's surface [4] indicate that Mercury formed under reducing conditions we consider models that have sulfur and silicon as light elements inside their core. Unlike sulfur, which does almost not partition into solid iron under Mercury's core pressure and temperature conditions, silicon partitions virtually equally between solid and liquid iron. As a consequence, the density difference between the liquid and the crystallized material is smaller than for sulfur as only light element inside the core and therefore, for a given inner core radius the contraction of the planet is likely smaller.

  3. Measurements of mineral thermal conductivity at high pressures and temperatures with the laser-heated diamond anvil cell

    NASA Astrophysics Data System (ADS)

    McGuire, C. P.; Rainey, E.; Kavner, A.

    2016-12-01

    The high-pressure, high-temperature thermal conductivities of lower mantle oxides and silicates play an important role in governing the heat flow across the core-mantle boundary, and the thermal conductivity of core materials determines, at first order, the power required to run the geodynamo. Uncertainties in the pressure-dependence and compositional-dependence of thermal conductivities has complicated our understanding of the heat flow in the deep earth and has implications for the geodynamo mechanism (Buffett, 2012). The goal of this study is to measure how thermal conductivity varies with pressure and composition using a technique that combines temperature measurements as a function of power input in the laser-heated diamond anvil cell (LHDAC) with a model of three-dimensional heat flow (Rainey & Kavner, 2014). In one set of experiments, we measured temperature versus laser-power for iron, iron silicide, and stainless steel (Fe:Cr:Ni = 70:19:11 wt%), using a variety of insulating layers. In another set of experiments, we measured temperature vs. laser power for a series of Fe-bearing periclase (Mg1-x,FexO) samples, with compositions ranging from x = .24 to x = .78. These experiments were conducted up to pressures of 25 GPa and temperatures of 2800 K. A numerical model for heat conduction in the LHDAC is used to forward model the temperature versus laser power curves at successive pressures, solving for the change in thermal conductivity of the material required to best reproduce the measurements. The heat flow model is implemented using a finite element full-approximation storage (FAS) multi-grid solver, which allows for efficient computation with flexible inputs for geometry and material properties in the diamond anvil cell (Rainey et al., 2013). We use the results of our experiments and model to extract pressure and compositional dependencies of thermal conductivity for the materials described herein. The results are used to help constrain models of the thermal properties of core and mantle materials.

  4. Magnetic and Electrical Characteristics of Cobalt-Based Amorphous Materials and Comparison to a Permalloy Type Polycrystalline Material

    NASA Technical Reports Server (NTRS)

    Wieserman, William R.; Schwarze, Gene E.; Niedra, Janis M.

    2005-01-01

    Magnetic component designers are always looking for improved soft magnetic core materials to increase the efficiency, temperature rating and power density of transformers, motors, generators and alternators, and energy density of inductors. In this paper, we report on the experimental investigation of commercially available cobalt-based amorphous alloys which, in their processing, were subjected to two different types of magnetic field anneals: A longitudinal magnetic field anneal or a transverse magnetic field anneal. The longitudinal field annealed material investigated was Metglas 2714A. The electrical and magnetic characteristics of this material were investigated over the frequency range of 1 to 200 kHz and temperature range of 23 to 150 C for both sine and square wave voltage excitation. The specific core loss was lower for the square than the sine wave voltage excitation for the same maximum flux density, frequency and temperature. The transverse magnetic field annealed core materials include Metglas 2714AF and Vacuumschmelze 6025F. These two materials were experimentally characterized over the frequency range of 10 to 200 kHz for sine wave voltage excitation and 23 C only. A comparison of the 2174A to 2714AF found that 2714AF always had lower specific core loss than 2714A for any given magnetic flux density and frequency and the ratio of specific core loss of 2714A to 2714AF was dependent on both magnetic flux density and frequency. A comparison was also made of the 2714A, 2714AF, and 6025F materials to two different tape thicknesses of the polycrystalline Supermalloy material and the results show that 2714AF and 6025F have the lowest specific core loss at 100 kHz over the magnetic flux density range of 0.1 to 0.4 Tesla.

  5. Temperature dependence Infrared and Raman studies of III-V/II-VI core-shell nanostructures

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia S.; McCombe, Bruce D.; Lucey, Derrick

    2005-03-01

    The temperature dependence (8 K < T < 300 K) of optical phonon modes confined in InP/II-VI core-shell nanostructures have been investigated by far-infrared (FIR) and Raman scattering spectroscopies. The core-shell nanostructures were fabricated by colloidal chemistry and characterized by transmission electron microscopy and X-ray diffraction prior to being embedded in a polycrystalline CsI matrix for the present studies. The FIR measurements of InP/ZnSe sample exhibits three absorption features, one clearly due to the Froelich mode of the InP cores, and the others related to modes associated with the shell layer and its coupling to the matrix. Strong mixing of the characteristic vibrations of each constituent material was observed for InP/ZnS sample. Raman scattering (457.9 nm excitation) features were determined without polarization selection in the backscattering geometry. Interesting T-dependent resonant Raman effect of the surface optical phonon modes has been discovered in InP/ZnSe sample. Reasonable agreement is obtained between the Raman and FIR results, as well as with theoretical calculations.

  6. Possibility of Exciton Mediated Superconductivity in Nano-Sized Sn/Si Core-Shell Clusters: A Process Technology towards Heterogeneous Material in Nano-Scale

    NASA Astrophysics Data System (ADS)

    Kurokawa, Yuichiro; Hihara, Takehiko; Ichinose, Ikuo; Sumiyama, Kenji

    2012-07-01

    We have produced Sn/Si core-shell cluster assemblies by a plasma-gas-condensation cluster beam deposition apparatus. For the sample with Si content = 12 at. %, the temperature dependence of electrical resistivity exhibits a metallic behavior above 10 K and the onset of superconducting transition below 6.1 K. With decreasing temperature, the thermomagnetic curve for the sample with Si content = 8 at. % begins to decrease steadily toward negative value below 7.7 K, indicating the Meissner effect. An increase in the transition temperature, TC is attributable to exciton-type superconductivity.

  7. Physical properties of self-, dual-, and light-cured direct core materials.

    PubMed

    Rüttermann, Stefan; Alberts, Ian; Raab, Wolfgang H M; Janda, Ralf R

    2011-08-01

    The objective of this study is to evaluate flexural strength, flexural modulus, compressive strength, curing temperature, curing depth, volumetric shrinkage, water sorption, and hygroscopic expansion of two self-, three dual-, and three light-curing resin-based core materials. Flexural strength and water sorption were measured according to ISO 4049, flexural modulus, compressive strength, curing temperature, and curing depth according to well-proven, literature-known methods, and the volumetric behavior was determined by the Archimedes' principle. ANOVA was calculated to find differences between the materials' properties, and correlation of water sorption and hygroscopic expansion was analysed according to Pearson (p < 0.05). Clearfil Photo Core demonstrated the highest flexural strength (125 ± 12 MPa) and curing depth (15.2 ± 0.1 mm) and had the highest flexural modulus (≈12.6 ± 1.2 GPa) concertedly with Multicore HB. The best compressive strength was measured for Voco Rebilda SC and Clearfil DC Core Auto (≈260 ± 10 MPa). Encore SuperCure Contrast had the lowest water sorption (11.8 ± 3.3 µg mm(-3)) and hygroscopic expansion (0.0 ± 0.2 vol.%). Clearfil Photo Core and Encore SuperCure Contrast demonstrated the lowest shrinkage (≈2.1 ± 0.1 vol.%). Water sorption and hygroscopic expansion had a very strong positive correlation. The investigated core materials significantly differed in the tested properties. The performance of the materials depended on their formulation, as well as on the respective curing process.

  8. Structural materials issues for the next generation fission reactors

    NASA Astrophysics Data System (ADS)

    Chant, I.; Murty, K. L.

    2010-09-01

    Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.

  9. Cooling vests with phase change materials: the effects of melting temperature on heat strain alleviation in an extremely hot environment.

    PubMed

    Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar

    2011-06-01

    A previous study by the authors using a heated thermal manikin showed that the cooling rates of phase change material (PCM) are dependent on temperature gradient, mass, and covering area. The objective of this study was to investigate if the cooling effects of the temperature gradient observed on a thermal manikin could be validated on human subjects in extreme heat. The subjects wore cooling vests with PCMs at two melting temperatures (24 and 28°C) and fire-fighting clothing and equipment, thus forming three test groups (vest24, vest28 and control group without the vest). They walked on a treadmill at a speed of 5 km/h in a climatic chamber (air temperature = 55°C, relative humidity = 30%, vapour pressure = 4,725 Pa, and air velocity = 0.4 m/s). The results showed that the PCM vest with a lower melting temperature (24°C) has a stronger cooling effect on the torso and mean skin temperatures than that with a higher melting temperature (28°C). Both PCM vests mitigate peak core temperature increase during the resting recovery period. The two PCM vests tested, however, had no significant effect on the alleviation of core temperature increase during exercise in the heat. To study the possibility of effective cooling of core temperature, cooling garments with PCMs at even lower melting temperatures (e.g. 15°C) and a larger covering area should be investigated.

  10. Temperature dependence of the triplet diffusion and quenching rates in films of an Ir(ppy)3 -cored dendrimer

    NASA Astrophysics Data System (ADS)

    Ribierre, J. C.; Ruseckas, A.; Samuel, I. D. W.; Staton, S. V.; Burn, P. L.

    2008-02-01

    We study photoluminescence and triplet-triplet exciton annihilation in a neat film of a fac-tris(2-phenylpyridyl)iridium(III) [Ir(ppy)3] -cored dendrimer and in its blend with a 4,4' -bis( N -carbazolyl)biphenyl host for the temperature range of 77-300K . The nearest neighbor hopping rate of triplet excitons is found to increase by a factor of 2 with temperature between 150 and 300K and is temperature independent at lower temperature. The intermolecular quenching rate follows the Arrhenius law with an activation energy of 7meV , which can be explained by stronger dipole-dipole interactions with the donor molecule in the higher triplet substate. The results indicate that energy disorder has no significant effect on triplet transport and quenching in these materials.

  11. Improvements on the interior structure of Mercury expected from geodesy measurements

    NASA Astrophysics Data System (ADS)

    Rivoldini, A.; van Hoolst, T.; Verhoeven, O.

    2008-09-01

    ABSTRACT We assess the improvements on the interior structure of Mercury provided by expected data from geodesy experiments to be performed with the MESSENGER and BepiColombo orbiters. The observation of obliquity will allow estimating the moment of inertia, whereas measurements of libration will determine the moment of inertia of the silicate shell (mantle and crust). Tidal measurements will constrain the Love numbers that characterize the response of Mercury to the solar tidal forcing. Here, we construct depth-dependent interior structure models of Mercury for several plausible chemical compositions of the core and of the mantle using recent data on core and mantle materials. In particular we study the core structure for different mantle mineralogies and two different temperature profiles. We investigate the influence of the core light element concentration, temperature, and melting law on core state and inner core size. We compute libration amplitude, obliquity, tidal deformation, and tidal changes in the external potential for our models.

  12. Pulsed Laser Techniques to Determine Lattice and Radiative Thermal Conductivity of Deep Planetary Materials at Extreme Pressure-Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Lobanov, S.; Goncharov, A. F.; Holtgrewe, N.; Konopkova, Z.; McWilliams, R. S.

    2017-12-01

    Thermal conductivity of deep planetary materials determines the planetary heat transport mode and properties (e.g. magnetic field) and can be used to decipher the planetary thermal history. Due to the lack of direct measurements of the lattice and radiative conductivity of the relevant materials at the planetary conditions, the current geodynamical models use theoretical calculations and extrapolations of the available experimental data. Here we describe our pulsed laser techniques that enable direct measurements of the lattice and radiative lattice conductivity of the Earth's mantle and core materials and also of noble gases and simple molecules present in the interiors of giant planets (e.g. hydrogen). Flash heating laser techniques working in a pump-probe mode that include time resolved two-side radiative and thermoreflection temperature probes employ various laser and photo-detector configurations, which provide a measure of the thermal fluxes propagating through the samples confined in the diamond anvil cell cavity. A supercontinuum ultra-bright broadband laser source empower accurate measurements of the optical properties of planetary materials used to extract the radiative conductivity. Finite element calculations serve to extract the temperature and pressure dependent thermal conductivity and temperature gradients across the sample. We report thermal conductivity measurements of the Earth's minerals (postperovskite, bridgmanite, ferropericlase) and their assemblies (pyrolite) and core materials (Fe and alloys with Si and O) at the realistic deep Earth's pressure temperature conditions. We thank J.-F.Lin, M. Murakami, J. Badro for contributing to this work.

  13. Molecular Simulation Studies of Covalently and Ionically Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hong, Bingbing

    Solvent-free covalently- or ionically-grafted nanoparticles (CGNs and IGNs) are a new class of organic-inorganic hybrid composite materials exhibiting fluid-like behaviors around room temperature. With similar structures to prior systems, e.g. nanocomposites, neutral or charged colloids, ionic liquids, etc, CGNs and IGNs inherit the functionality of inorganic nanopariticles, the facile processibility of polymers, as well as conductivity and nonvolatility from their constituent materials. In spite of the extensive prior experimental research having covered synthesis and measurements of thermal and dynamic properties, little progress in understanding of these new materials at the molecular level has been achieved, because of the lack of simulation work in this new area. Atomistic and coarse-grained molecular dynamics simulations have been performed in this thesis to investigate the thermodynamics, structure, and dynamics of these systems and to seek predictive methods predictable for their properties. Starting from poly(ethylene oxide) oligomers (PEO) melts, we established atomistic models based on united-atom representations of methylene. The Green-Kubo and Einstein-Helfand formulas were used to calculate the transport properties. The simulations generate densities, viscosities, diffusivities, in good agreement with experimental data. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. Coupled with thermodynamic integration methods, the models give good predictions of pressure-composition-density relations for CO 2 + PEO oligomers. Water effects on the Henry's constant of CO 2 in PEO have also been investigated. The dependence of the calculated Henry's constants on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. CGNs are modeled by the inclusion of solid-sphere nanoparticles into the atomistic oligomers. The calculated viscosities from Green-Kubo relationships and temperature extrapolation are of the same order of magnitude as experimental values, but show a smaller activation energy relative to real CGNs systems. Grafted systems have higher viscosities, smaller diffusion coefficients, and slower chain dynamics than the ungrafted counterparts - nanocomposites - at high temperatures. At lower temperatures, grafted systems exhibit faster dynamics for both nanoparticles and chains relative to ungrafted systems, because of lower aggregation of nanoparticles and enhanced correlations between nanoparticles and chains. This agrees with the experimental observation that the new materials have liquid-like behavior in the absence of a solvent. To lower the simulated temperatures into the experimental range, we established a coarse-grained CGNs model by matching structural distribution functions to atomistic simulation data. In contrast with linear polymer systems, for which coarse-graining always accelerate dynamics, coarse-graining of grafted nanoparticles can either accelerate or slowdown the core motions, depending on the length of the grafted chains. This can be qualitatively predicted by a simple transition-state theory. Similar atomistic models to CGNs were developed for IGNs, with ammonium counterions described by an explicit-hydrogen way; these were in turn compared with "generic" coarse-grained IGNs. The elimination of chemical details in the coarse-grained models does not bring in qualitative changes to the radial distribution functions and diffusion of atomistic IGNs, but saves considerable simulation resources and make simulations near room temperatures affordable. The chain counterions in both atomistic and coarse-grained models are mobile, moving from site to site and from nanoparticle to nanoparticle. At the same temperature and the same core volume fractions, the nanoparticle diffusivities in coarse-grained IGNs are slower by a factor ten than the cores of CGNs. The coarse-grained IGNs models are later used to investigate the system dynamics through analysis of the dependence on temperature and structural parameters of the transport properties (self-diffusion coefficients, viscosities and conductivities). Further, migration kinetics of oligomeric counterions is analyzed in a manner analogous to unimer exchange between micellar aggregates. The counterion migrations follow the "double-core" mechanism and are kinetically controlled by neighboring-core collisions. (Abstract shortened by UMI.)

  14. Irreversible phase transitions due to laser-based T-jump heating of precursor Eu:ZrO{sub 2}/Tb:Y{sub 2}O{sub 3} core/shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunawidjaja, Ray; Diez-y-Riega, Helena; Eilers, Hergen, E-mail: eilers@wsu.edu

    2015-09-15

    Amorphous precursors of Eu-doped-ZrO{sub 2}/Tb-doped-Y{sub 2}O{sub 3} (p-Eu:ZrO{sub 2}/p-Tb:Y{sub 2}O{sub 3}) core/shell nanoparticles are rapidly heated to temperatures between 200 °C and 950 °C for periods between 2 s and 60 s using a CO{sub 2} laser. During this heating process the nanoparticles undergo irreversible phase changes. The fluorescence spectra due to Eu{sup 3+} dopants in the core and Tb{sup 3+} dopants in the shell are used to identify distinct phases within the material and to generate time/temperature phase diagrams. Such phase diagrams can potentially help to determine unknown time/temperature histories in thermosensor applications. - Graphical abstract: A CO{sub 2}more » laser is used for rapid heating of p-Eu:ZrO{sub 2}/p-Tb:Y{sub 2}O{sub 3} core/shell nanoparticles. Optical spectra are used to identify distinct phases and to determine its thermal history. - Highlights: • Synthesized oxide precursors of lanthanide doped core/shell nanoparticles. • Heated core/shell nanoparticles via laser-based T-jump technique. • Observed time- and temperature-dependent irreversible phase transition.« less

  15. Very high temperature behavior of HTGR core materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soo, P.; Uneberg, G.; Sabatini, R.

    1978-01-01

    A description is given of experiments to investigate the behavior of HTGR core materials during hypothetical heatup accidents in which the core temperature is assumed to reach values between 2400/sup 0/C and the graphite sublimation range (>3600/sup 0/C). The work includes BISO coated fuel particle failure, simulated fission product migration in core graphite, and graphite sublimation behavior.

  16. Thermo-responsive plasmonic nanohybrids with tunable optical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Lingyu; Song, Gang

    2017-10-01

    In this paper, we study the temperature-dependent optical properties of gold-silver core-shell (Au@Ag) nanorods coated by a thermo-responsive polymer poly (N-isopropylacrylamide) (PNIPAM). The wavelength of the plasmonic resonant absorption of the nanohybrids changes with temperature due to the combination effects of the plasmon resonance of the core and the thermal response of the shell. Using effective medium theory, we find that with increase of temperature, the absorption peak red-shifts due to the competition effects from the changes of the thickness and the effective refractive index of the polymer shell. The working wavelength can be tuned by the aspect ratio of nanorods. Moreover, the temperature sensitivity of plasmon resonance increases with the increase of the aspect ratio. Our studies provide a proof-of-concept design of thermal responsive plasmonic smart material.

  17. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  18. Enhanced magnetocaloric effect material

    DOEpatents

    Lewis, Laura J. H.

    2006-07-18

    A magnetocaloric effect heterostructure having a core layer of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, and a constricting material layer coated on at least one surface of the magnetocaloric material core layer. The constricting material layer may enhance the magnetocaloric effect by restriction of volume changes of the core layer during application of a magnetic field to the heterostructure. A magnetocaloric effect heterostructure powder comprising a plurality of core particles of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, wherein each of the core particles is encapsulated within a coating of a constricting material is also disclosed. A method for enhancing the magnetocaloric effect within a giant magnetocaloric material including the step of coating a surface of the magnetocaloric material with a constricting material is disclosed.

  19. Temperature dependent electron delocalization in CdSe/CdS type-I core-shell systems: An insight from scanning tunneling spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Biswajit; Chakrabarti, Sudipto; Pal, Amlan J., E-mail: sspajp@iacs.res.in

    2016-03-14

    Core-shell nanocrystals having a type-I band-alignment confine charge carriers to the core. In this work, we choose CdSe/CdS core-shell nano-heterostructures that evidence confinement of holes only. Such a selective confinement occurs in the core-shell nanocrystals due to a low energy-offset of conduction band (CB) edges resulting in delocalization of electrons and thus a decrease in the conduction band-edge. Since the delocalization occurs through a thermal assistance, we study temperature dependence of selective delocalization process through scanning tunneling spectroscopy. From the density of states (DOS), we observe that the electrons are confined to the core at low temperatures. Above a certainmore » temperature, they become delocalized up to the shell leading to a decrease in the CB of the core-shell system due to widening of quantum confinement effect. With holes remaining confined to the core due to a large offset in the valence band (VB), we record the topography of the core-shell nanocrystals by probing their CB and VB edges separately. The topographies recorded at different temperatures representing wave-functions of electrons and holes corresponded to the results obtained from the DOS spectra. The results evidence temperature-dependent wave-function delocalization of one-type of carriers up to the shell layer in core-shell nano-heterostructures.« less

  20. Preliminary Analysis of SiC BWR Channel Box Performance under Normal Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, Brian; Singh, Gyanender P.; Gorton, Jacob

    SiC-SiC composites are being considered for applications in the core components, including BWR channel box and fuel rod cladding, of light water reactors to improve accident tolerance. In the extreme nuclear reactor environment, core components like the BWR channel box will be exposed to neutron damage and a corrosive environment. To ensure reliable and safe operation of a SiC channel box, it is important to assess its deformation behavior under in-reactor conditions including the expected neutron flux and temperature distributions. In particular, this work has evaluated the effect of non-uniform dimensional changes caused by spatially varying neutron flux and temperaturesmore » on the deformation behavior of the channel box over the course of one cycle of irradiation. These analyses have been performed using the fuel performance modeling code BISON and the commercial finite element analysis code Abaqus, based on fast flux and temperature boundary conditions have been calculated using the neutronics and thermal-hydraulics codes Serpent2 and COBRA-TF, respectively. The dependence of dimensions and thermophysical properties on fast flux and temperature has been incorporated into the material models. These initial results indicate significant bowing of the channel box with a lateral displacement greater than 6.5mm. The channel box bowing behavior is time dependent, and driven by the temperature dependence of the SiC irradiation-induced swelling and the neutron flux/fluence gradients. The bowing behavior gradually recovers during the course of the operating cycle as the swelling of the SiC-SiC material saturates. However, the bending relaxation due to temperature gradients does not fully recover and residual bending remains after the swelling saturates in the entire channel box.« less

  1. Improved Readout Scheme for SQUID-Based Thermometry

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin

    2007-01-01

    An improved readout scheme has been proposed for high-resolution thermometers, (HRTs) based on the use of superconducting quantum interference devices (SQUIDs) to measure temperature- dependent magnetic susceptibilities. The proposed scheme would eliminate counting ambiguities that arise in the conventional scheme, while maintaining the superior magnetic-flux sensitivity of the conventional scheme. The proposed scheme is expected to be especially beneficial for HRT-based temperature control of multiplexed SQUIDbased bolometer sensor arrays. SQUID-based HRTs have become standard for measuring and controlling temperatures in the sub-nano-Kelvin temperature range in a broad range of low-temperature scientific and engineering applications. A typical SQUIDbased HRT that utilizes the conventional scheme includes a coil wound on a core made of a material that has temperature- dependent magnetic susceptibility in the temperature range of interest. The core and the coil are placed in a DC magnetic field provided either by a permanent magnet or as magnetic flux inside a superconducting outer wall. The aforementioned coil is connected to an input coil of a SQUID. Changes in temperature lead to changes in the susceptibility of the core and to changes in the magnetic flux detected by the SQUID. The SQUID readout instrumentation is capable of measuring magnetic-flux changes that correspond to temperature changes down to a noise limit .0.1 nK/Hz1/2. When the flux exceeds a few fundamental flux units, which typically corresponds to a temperature of .100 nK, the SQUID is reset. The temperature range can be greatly expanded if the reset events are carefully tracked and counted, either by a computer running appropriate software or by a dedicated piece of hardware.

  2. In situ simultaneous strain and temperature measurement of adaptive composite materials using a fiber Bragg grating based sensor

    NASA Astrophysics Data System (ADS)

    Yoon, Hyuk-Jin; Costantini, Daniele M.; Michaud, Veronique; Limberger, Hans G.; Manson, Jan-Anders; Salathe, Rene P.; Kim, Chun-Gon; Hong, Chang-Sun

    2005-05-01

    An optical fiber sensor to simultaneously measure strain and temperature was designed and embedded into an adaptive composite laminate which exhibits a shape change upon thermal activation. The sensor is formed by two fiber Bragg gratings, which are written in optical fibers with different core dopants. The two gratings were spliced close to each other and a sensing element resulted with Bragg gratings of similar strain sensitivity but different response to temperature. This is due to the dependence of the fiber thermo-optic coefficient on core dopants and relative concentrations. The sensor was tested on an adaptive composite laminate made of unidirectional Kevlar-epoxy pre-preg plies. Several 150μm diameter pre-strained NiTiCu shape memory alloy wires were embedded in the composite laminate together with one fiber sensor. Simultaneous monitoring of strain and temperature during the curing process and activation in an oven was demonstrated.

  3. Nondestructive evaluation of nuclear-grade graphite

    NASA Astrophysics Data System (ADS)

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-01

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  4. Fiber optic gas sensor

    NASA Technical Reports Server (NTRS)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  5. Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor

    NASA Technical Reports Server (NTRS)

    Butler, C.; Albright, D.

    2007-01-01

    Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.

  6. The Faraday effect of natural and artificial ferritins.

    PubMed

    Koralewski, M; Kłos, J W; Baranowski, M; Mitróová, Z; Kopčanský, P; Melníková, L; Okuda, M; Schwarzacher, W

    2012-09-07

    Measurements of the Faraday rotation at room temperature over the light wavelength range of 300-680 nm for horse spleen ferritin (HSF), magnetoferritin with different loading factors (LFs) and nanoscale magnetite and Fe(2)O(3) suspensions are reported. The Faraday rotation and the magnetization of the materials studied present similar magnetic field dependences and are characteristic of a superparamagnetic system. The dependence of the Faraday rotation on the magnetic field is described, excluding HSF and Fe(2)O(3), by a Langevin function with a log-normal distribution of the particle size allowing the core diameters of the substances studied to be calculated. It was found that the specific Verdet constant depends linearly on the LF. Differences in the Faraday rotation spectra and their magnetic field dependences allow discrimination between magnetoferritin with maghemite and magnetite cores which can be very useful in biomedicine.

  7. Bioactive compounds and encapsulation of Yanang (Tiliacora triandra) leaves.

    PubMed

    Singthong, Jittra; Oonsivilai, Ratchadaporn; Oonmetta-Aree, Jirawan; Ningsanond, Suwayd

    2014-01-01

    Yanang (Tiliacora triandra) has been known as vegetable and herbal in northeast Thailand and Lao People's Democratic Republic. Extracts from Yanang leaves contain high amounts of polyphenol constituents possessing antioxidant activity. This work investigated bioactive compounds of Yanang extracts prepared by infusion with water, ethanol and acetone. Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability of bioactive compounds was evaluated using phenolic compounds, total antioxidant, carotenoids and chlorophyll. The study of the bioactivity of Yanang extracts found that extraction with water was the appropriate application. The study of Yanang encapsulation demonstrated that gum Arabic, as coating agents, protected bioactive compounds of Yanang. Optimized condition for the encapsulation was at the ratio of core to wall {1:4}, in gum Arabic concentration 10% (w/v), and inlet temperature at 160▯C. The results show that the bioactive compounds were mainly affected by the ratio of core to wall material. Besides, moisture content and particle size of encapsulation depend on inlet temperature of spray drying, and gum Arabic concentration, respectively. This optimization reveals that the encapsulation process did not lose the bioactive compounds. Yanang extract with water was the main phenolic compound and showed high antioxidant activities. This study demonstrates the potentials of using spray drying process and optimization for the encapsulation of herbal products.

  8. How to realize a spin-dependent Seebeck diode effect in metallic zigzag γ-graphyne nanoribbons?

    PubMed

    Wu, Dan-Dan; Liu, Qing-Bo; Fu, Hua-Hua; Wu, Ruqian

    2017-11-30

    The spin-dependent Seebeck effect (SDSE) is one of the core topics of spin caloritronics. In the traditional device designs of spin-dependent Seebeck rectifiers and diodes, finite spin-dependent band gaps of materials are required to realize the on-off characteristic in thermal spin currents, and nearly zero charge current should be achieved to reduce energy dissipation. Here, we propose that two ferromagnetic zigzag γ-graphyne nanoribbons (ZγGNRs) without any spin-dependent band gaps around the Fermi level can not only exhibit the SDSE, but also display rectifier and diode effects in thermal spin currents characterized by threshold temperatures, which originates from the compensation effect occurring in spin-dependent transmissions but not from the spin-splitting band gaps in materials. The metallic characteristics of ZγGNRs bring about an advantage that the gate voltage is an effective route to adjust the symmetry of spin-splitting bands to obtain pure thermal spin currents. The results provide a new mechanism to realize spin-Seebeck rectifier and diode effects in 2D materials and expand material candidates towards spin-Seebeck device applications.

  9. Magnetism and thermal evolution of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Spohn, T.; Schubert, G.

    1983-01-01

    The absence in the cases of Venus and Mars of the substantial intrinsic magnetic fields of the earth and Mercury is considered, in light of thermal history calculations which suggest that, while the cores of Mercury and the earth are continuing to freeze, the cores of Venus and Mars may still be completely liquid. It is noted that completely fluid cores, lacking intrinsic heat sources, are not likely to sustain thermal convection for the age of the solar system, but cool to a subadiabatic, conductive state that cannot maintain a dynamo because of the gravitational energy release and the chemically driven convection that accompany inner core growth. The models presented include realistic pressure- and composition-dependent freezing curves for the core, and material parameters are chosen so that correct present-day values of heat outflow, upper mantle temperature and viscosity, and inner core radius, are obtained for the earth.

  10. Effect of an adhesive resin luting agent on the dowel-head retention of three different core materials.

    PubMed

    Aksoy, Gokhan; Cotert, H Serdar; Korkut, Levent

    2005-05-01

    A dowel-and-core restoration may fail due to failure at either the dowel-tooth or dowel head-core material interface. Long-term clinical success of a dowel-and-core restoration depends on retention of both the dowel to the tooth and the dowel head to the core material. Thus, strengthening of the dowel head-core interface is important. This study evaluated the retention between a prefabricated dowel and 3 different core materials with or without a dual-polymerized adhesive resin luting agent. Sixty prefabricated dowels (Gold Plated Anchorage Post) were divided into 3 groups (n=20) consisting of 1 of 3 core materials, amalgam (Standalloy F), light-polymerized resin composite (Clearfil Ray), or glass ionomer (Chelon-Silver). Each core group was divided into 2 subgroups (n=10), and a dual-polymerized adhesive resin luting agent (Panavia F) was applied to the dowel heads of 1 of these subgroups before application of the core material. The manufacturing procedure was standardized by using a plastic index (4.5-mm internal diameter and 5-mm height) and a custom-made dowel holder, which held the dowel head. Prepared specimens were stored in water at room temperature for 3 months and then loaded to fracture in a universal testing machine with a crosshead speed of 0.05 mm/min until failure. Bond strengths were recorded (MPa). Data were analyzed with 2-way analysis of variance (ANOVA) in a 2 x 3 factorial randomized design (alpha=.05). Afterward, core material differences were computed with 1-way ANOVA for both of the bonded and nonbonded groups. Post hoc multiple comparisons were made with the Dunnett C multiple range test. Dowel-head retention values (MPa) of the tested core materials (mean +/- SD) from the highest to the lowest were as follows: bonded amalgam core, 296.1 +/- 108; bonded composite core, 284.3 +/- 38.3; nonbonded composite core, 177.0 +/- 53.7; nonbonded amalgam core, 128.5 +/- 35.0; bonded glass-ionomer core (GIC), 128.0 +/- 24.5; nonbonded GIC, 61.8 +/- 13.3. Two-way ANOVA revealed significant differences between the core material groups and between the bonded and nonbonded groups (P <.001). The interaction between the core material and bond variables was also significant (P =.018). One-way ANOVA revealed statistically significant differences between the bonded (P <.001) and also between the nonbonded core material groups (P <.001). Post hoc multiple comparisons showed that the dowel-head retention of the GIC was significantly weaker than the post-head retention for amalgam and resin composite, whether bonded or not. Within the limitations of this study, the adhesive resin luting agent tested appeared to have a significant strengthening effect on the dowel-head retention of the core materials.

  11. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Murty, K. L.; Charit, I.

    2008-12-01

    Generation-IV reactor design concepts envisioned thus far cater toward a common goal of providing safer, longer lasting, proliferation-resistant and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-IV reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This paper presents a summary of various Gen-IV reactor concepts, with emphasis on the structural materials issues depending on the specific application areas. This paper also discusses the challenges involved in using the existing materials under both service and off-normal conditions. Tasks become increasingly complex due to the operation of various fundamental phenomena like radiation-induced segregation, radiation-enhanced diffusion, precipitation, interactions between impurity elements and radiation-produced defects, swelling, helium generation and so forth. Further, high temperature capability (e.g. creep properties) of these materials is a critical, performance-limiting factor. It is demonstrated that novel alloy and microstructural design approaches coupled with new materials processing and fabrication techniques may mitigate the challenges, and the optimum system performance may be achieved under much demanding conditions.

  12. Anionic Pt in Silicate Melts at Low Oxygen Fugacity: Speciation, Partitioning and Implications for Core Formation Processes on Asteroids

    NASA Technical Reports Server (NTRS)

    Medard, E.; Martin, A. M.; Righter, K.; Malouta, A.; Lee, C.-T.

    2017-01-01

    Most siderophile element concentrations in planetary mantles can be explained by metal/ silicate equilibration at high temperature and pressure during core formation. Highly siderophile elements (HSE = Au, Re, and the Pt-group elements), however, usually have higher mantle abundances than predicted by partitioning models, suggesting that their concentrations have been set by late accretion of material that did not equilibrate with the core. The partitioning of HSE at the low oxygen fugacities relevant for core formation is however poorly constrained due to the lack of sufficient experimental constraints to describe the variations of partitioning with key variables like temperature, pressure, and oxygen fugacity. To better understand the relative roles of metal/silicate partitioning and late accretion, we performed a self-consistent set of experiments that parameterizes the influence of oxygen fugacity, temperature and melt composition on the partitioning of Pt, one of the HSE, between metal and silicate melts. The major outcome of this project is the fact that Pt dissolves in an anionic form in silicate melts, causing a dependence of partitioning on oxygen fugacity opposite to that reported in previous studies.

  13. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating.

    PubMed

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-07-31

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  14. Strategy for thermometry via Tm³⁺-doped NaYF₄ core-shell nanoparticles.

    PubMed

    Zhou, Shaoshuai; Jiang, Guicheng; Li, Xinyue; Jiang, Sha; Wei, Xiantao; Chen, Yonghu; Yin, Min; Duan, Changkui

    2014-12-01

    Optical thermometers usually make use of the fluorescence intensity ratio of two thermally coupled energy levels, with the relative sensitivity constrained by the limited energy gap. Here we develop a strategy by using the upconversion (UC) emissions originating from two multiplets with opposite temperature dependences to achieve higher relative temperature sensitivity. We show that the intensity ratio of the two UC emissions, ³F(2,3) and ¹G₄, of Tm³⁺ in β-NaYF₄:20%Yb³⁺, 0.5%Tm³⁺/NaYF₄:1%Pr³⁺ core-shell nanoparticles under 980 nm laser excitation exhibits high relative temperature sensitivity between 350 and 510 K, with a maximum of 1.53%  K⁻¹ at 417 K. This demonstrates the validity of the strategy, and that the studied material has the potential for high-performance optical thermometry.

  15. Different 57Fe microenvironments in the nanosized iron cores in human liver ferritin and its pharmaceutical analogues on the basis of temperature dependent Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Alenkina, I. V.; Klencsár, Z.; Kuzmann, E.; Semionkin, V. A.

    2017-02-01

    Mössbauer spectra of human liver ferritin and its pharmaceutical analogues Ferrum Lek and Maltofer® measured at various temperatures within the range of 295-83 K were fitted using five quadrupole doublets related to different 57Fe microenvironments in various layers/regions of the ferrihydrite and akaganéite iron cores. The observed anomalous temperature dependences of some Mössbauer parameters were considered as a result of low temperature structural rearrangements in different layers/regions in the iron core.

  16. Mössbauer spectroscopy of human liver ferritin and its analogue, Ferrum Lek, in the temperature range of 295-90 K: Comparison within the homogeneous iron core model

    NASA Astrophysics Data System (ADS)

    Alenkina, Irina V.; Oshtrakh, Michael I.; Klencsár, Zoltán; Kuzmann, Ernő; Semionkin, Vladimir A.

    2014-10-01

    Human liver ferritin and its pharmaceutical analogue, Ferrum Lek, containing nanosized hydrous ferric oxides cores in the forms of ferrihydrite and akaganéite, respectively, were studied using Mössbauer spectroscopy with a high velocity resolution in the temperature range of 295-90 K. To simplify comparison, these spectra were fitted using one quadrupole doublet within the homogeneous iron core model. An unusual line broadening with a temperature decrease was observed in this way for human liver ferritin below ˜150 K and for Ferrum Lek below ˜130 K. Some anomalies were also observed below these temperatures for spectral area and quadrupole splitting. The Debye temperature for both iron cores was evaluated from temperature dependence of isomer shift using the temperature dependence of the second-order Doppler shift.

  17. High temperature superconducting composite conductor and method for manufacturing the same

    DOEpatents

    Holesinger, Terry G.; Bingert, John F.

    2002-01-01

    A high temperature superconducting composite conductor is provided including a high temperature superconducting material surrounded by a noble metal layer, the high temperature superconducting composite conductor characterized as having a fill factor of greater than about 40. Additionally, the conductor can be further characterized as containing multiple cores of high temperature superconducting material surrounded by a noble metal layer, said multiple cores characterized as having substantially uniform geometry in the cross-sectional dimensions. Processes of forming such a high temperature superconducting composite conductor are also provided.

  18. Magneto thermal conductivity of superconducting Nb with intermediate level of impurity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.S. Sharath Chandra, M.K. Chattopadhyay, S.B. Roy, V.C. Sahni, G.R. Myneni

    2012-03-01

    Niobium materials with intermediate purity level are used for fabrication of superconducting radio frequency cavities (SCRF), and thermal conductivity is an important parameter influencing the performance of such SCRF cavities. We report here the temperature and magnetic field dependence of thermal conductivity {kappa} for superconducting niobium (Nb) samples, for which the electron mean free path I{sub e}, the phonon mean free path I{sub g}, and the vortex core diameter 2r{sub C} are of the same order of magnitude. The measured thermal conductivity is analyzed using the effective gap model (developed for I{sub e} >> 2r{sub C} (Dubeck et al 1963more » Phys. Rev. Lett. 10 98)) and the normal core model (developed for I{sub e} << 2r{sub C} (Ward and Dew-Hughes 1970 J. Phys. C: Solid St. Phys. 3 2245)). However, it is found that the effective gap model is not suitable for low temperatures when I{sub e} {approx} 2r{sub C}. The normal core model, on the other hand, is able to describe {kappa}(T,H) over the entire temperature range except in the field regime between H{sub C1} and H{sub C2} i.e. in the mixed state. It is shown that to understand the complete behavior of {kappa} in the mixed state, the scattering of quasi-particles from the vortex cores and the intervortex quasi-particle tunneling are to be invoked. The quasi-particle scattering from vortices for the present system is understood in terms of the framework of Sergeenkov and Ausloos (1995 Phys. Rev. B 52 3614) extending their approach to the case of Nb. The intervortex tunneling is understood within the framework of Schmidbauer et al (1970 Z. Phys. 240 30). Analysis of the field dependence of thermal conductivity shows that while the quasi-particle scattering from vortices dominates in the low fields, the intervortex quasi-particle tunneling dominates in high fields. Analysis of the temperature dependence of thermal conductivity shows that while the quasi-particle scattering is dominant at low temperatures, the intervortex quasi-particle tunneling is dominant at high temperatures.« less

  19. Comparison of high temperature, high frequency core loss and dynamic B-H loops of a 2V-49Fe-49Co and a grain oriented 3Si-Fe alloy

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1992-01-01

    The design of power magnetic components such as transformers, inductors, motors, and generators, requires specific knowledge about the magnetic and electrical characteristics of the magnetic materials used in these components. Limited experimental data exists that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency over a wide flux density range. An experimental investigation of a 2V-49-Fe-49Co (Supermendur) and a grain oriented 3 Si-Fe (Magnesil) alloy was conducted over the temperature range of 23 to 300 C and frequency range of 0.1 to 10 kHz. The effects of temperature, frequency, and maximum flux density on the core loss and dynamic B-H loops for sinusoidal voltage excitation conditions are examined for each of these materials. A comparison of the core loss of these two materials is also made over the temperature and frequency range investigated.

  20. Constraining Mercury's interior structure with geodesy data and its present thermal state

    NASA Astrophysics Data System (ADS)

    Rivoldini, Attilio; Van Hoolst, Tim; Noack, Lena

    2015-04-01

    Recent measurements of Mercury's spin state and gravitational field supplemented by the assumption that the planet's core is made of iron and sulfur give strong constraints on its interior structure. In particular, they allow a precise determination of Mercury's core size and average mantle density. Present geodesy data do, however, almost not constrain the size of the inner core. Interior structure models with a fully molten liquid core as well as models with an inner core almost as large as the core agree with the observations. Additionally, the observed internally generated magnetic field of Mercury does not preclude the absence of an inner core, since remelting of iron snow inside the core could produce a sufficient buoyancy flux to drive magnetic field generation by compositional convection. Although sulfur is ubiquitously invoked as being the principal candidate light element in terrestrial planet's cores its abundance in the core depends on the redox conditions during planetary formation. Remote sensing data of Mercury's surface by MESSENGER indicate that Mercury formed under reducing conditions. As a consequence, substantial amounts of other light elements like for example silicon and carbon could be present together with sulfur inside Mercury's core. Compared to sulfur, which does almost not partition into solid iron at Mercury's core conditions, silicon partitions almost equally well between solid and liquid iron whereas a few percent of carbon can partition into solid iron. Therefore, compared to a pure iron-sulfur core, if silicon and carbon are present in the core the density jump at the inner-core outer-core boundary could be smaller and induce a large enough change in the inner-core flattening to alter Mercury's libration amplitude. Moreover, the presence of carbon together with sulfur further reduces the core solidus temperature, potentially delaying the onset of inner core formation. Finally, if both silicon and sulfur are present in sufficient quantities a thin layer much enriched in sulfur and depleted in silicon could form at the top of the core as a consequence of a large immiscibility region in liquid Fe-S-Si at Mercury's core conditions. The present radius of an inner core depends mainly on Mercury's thermal state and concentration of light elements inside the core. Because of the secular cooling of the planet, at a time in Mercury's evolution the temperature inside the core drops below the core liquidus temperature somewhere in the core, which can lead to the formation of an inner core and to the global contraction of the planet. The amount of contraction depends mainly on the temperature decrease, on the thermal expansion of the materials inside the planet, on the volume of crystallized iron-rich core liquid, and on the volume of crystallized crust. In this study we use geodesy data (88 day libration amplitude, polar moment of inertia, and tidal Love number), the recent estimate about the radial contraction of Mercury, and thermo-chemical evolution calculations taking into account the formation of the crust, a growing inner core, and modeling the formation of iron-rich snow in the core in order to improve our knowledge about Mercury's inner core radius and thermal state. Since data from remote sensing of Mercury's surface indicate that Mercury formed under reducing conditions we consider models that have sulfur, silicon, and carbon as light elements inside their core.

  1. Size-selective breaking of the core-shell structure of gallium nanoparticles.

    PubMed

    Catalán Gómez, Sergio; Redondo-Cubero, Andres; Palomares Simon, Francisco Javier; Vazquez Burgos, Luis; Nogales, Emilio; Nucciarelli, Flavio; Mendez, Bianchi; Gordillo, Nuria; Pau, Jose Luis

    2018-06-11

    Core-shell gallium nanoparticles (Ga NPs) have recently been proposed as an ultraviolet plasmonic material for different applications but only at room temperature. Here, the thermal stability as a function of the size of the NPs is reported over a wide range of temperatures. We analyse the chemical and structural properties of the oxide shell by x-ray photoelectron spectroscopy and atomic force microscopy. We demonstrate the inverse dependence of the shell breaking temperature with the size of the NPs. Spectroscopic ellipsometry is used for tracking the rupture and its mechanism is systematically investigated by scanning electron microscopy, grazing incidence x-ray diffraction and cathodoluminescence. Taking advantage of the thermal stability of the NPs, we perform complete oxidations that lead to homogenous gallium oxide NPs. Thus, this study set the physical limits of Ga NPs to last at high temperatures, and opens up the possibility to achieve totally oxidized NPs while keeping their sphericity. © 2018 IOP Publishing Ltd.

  2. Apparatus and Method for Increasing the Diameter of Metal Alloy Wires Within a Molten Metal Pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  3. Apparatus and method for increasing the diameter of metal alloy wires within a molten metal pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  4. Magnetic latch trigger for inherent shutdown assembly

    DOEpatents

    Sowa, Edmund S.

    1976-01-01

    An inherent shutdown assembly for a nuclear reactor is provided. A neutron absorber is held ready to be inserted into the reactor core by a magnetic latch. The latch includes a magnet whose lines of force are linked by a yoke of material whose Curie point is at the critical temperature of the reactor at which the neutron absorber is to be inserted into the reactor core. The yoke is in contact with the core coolant or fissionable material so that when the coolant or the fissionable material increase in temperature above the Curie point the yoke loses its magnetic susceptibility and the magnetic link is broken, thereby causing the absorber to be released into the reactor core.

  5. Penetrator Coring Apparatus for Cometary Surfaces

    NASA Technical Reports Server (NTRS)

    Braun, David F.; Heinrich, Michael; Ai, Huirong Anita; Ahrens, Thomas J.

    2004-01-01

    Touch and go impact coring is an attractive technique for sampling cometary nuclei and asteroidal surface on account of the uncertain strength properties and low surface gravities of these objects. Initial coring experiments in low temperature (approx. 153K polycrystalline ice) and porous rock demonstrate that simultaneous with impact coring, measurements of both the penetration strength and constraints on the frictional properties of surface materials can be obtained upon core penetration and core sample extraction. The method of sampling an asteroid, to be deployed, on the now launched MUSES-C mission, employs a small gun device that fires into the asteroid and the resulted impact ejecta is collected for return to Earth. This technique is well suited for initial sampling in a very low gravity environment and deployment depends little on asteroid surface mechanical properties. Since both asteroids and comets are believed to have altered surface properties a simple sampling apparatus that preserves stratigraphic information, such as impact coring is an attractive alternate to impact ejecta collection.

  6. Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature

    NASA Technical Reports Server (NTRS)

    Bird, Richard K.; Lapointe, Thomas S.

    2013-01-01

    Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.

  7. Magnetic and Electrical Characteristics of Permalloy Thin Tape Bobbin Cores

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Wieserman, William R.; Niedra, Janis M.

    2005-01-01

    The core loss, that is, the power loss, of a soft ferromagnetic material is a function of the flux density, frequency, temperature, excitation type (voltage or current), excitation waveform (sine, square, etc.) and lamination or tape thickness. In previously published papers we have reported on the specific core loss and dynamic B-H loop results for several polycrystalline, nanocrystalline, and amorphous soft magnetic materials. In this previous research we investigated the effect of flux density, frequency, temperature, and excitation waveform for voltage excitation on the specific core loss and dynamic B-H loop. In this paper, we will report on an experimental study to investigate the effect of tape thicknesses of 1, 1/2, 1/4, and 1/8-mil Permalloy type magnetic materials on the specific core loss. The test cores were fabricated by winding the thin tapes on ceramic bobbin cores. The specific core loss tests were conducted at room temperature and over the frequency range of 10 kHz to 750 kHz using sine wave voltage excitation. The results of this experimental investigation will be presented primarily in graphical form to show the effect of tape thickness, frequency, and magnetic flux density on the specific core loss. Also, the experimental results when applied to power transformer design will be briefly discussed.

  8. ZnO core spike particles and nano-networks and their wide range of applications

    NASA Astrophysics Data System (ADS)

    Wille, S.; Mishra, Y. K.; Gedamu, D.; Kaps, S.; Jin, X.; Koschine, T.; Bathnagar, A.; Adelung, R.

    2011-05-01

    In our approach we are producing a polymer composite material with ZnO core spike particles as concave fillers. The core spike particles are synthesized by a high throughput method. Using PDMS (Polydimethylsiloxane) as a matrix material the core spike particles achieve not only a high mechanical reinforcement but also influence other material properties in a very interesting way, making such a composite very interesting for a wide range of applications. In a very similar synthesis route a nanoscopic ZnO-network is produced. As a ceramic this network can withstand high temperatures like 1300 K. In addition this material is quite elastic. To find a material with these two properties is a really difficult task, as polymers tend to decompose already at lower temperatures and metals melt. Especially under ambient conditions, often oxygen creates a problem for metals at these temperatures. If this material is at the same time a semiconductor, it has a high potential as a multifunctional material. Ceramic or classical semiconductors like III-V or IIVI type are high temperature stable, but typically brittle. This is different on the nanoscale. Even semiconductor wires like silicon with a very small diameter do not easily built up enough stress that leads to a failure while being bent, because in a first order approximation the maximum stress of a fiber scales with its diameter.

  9. Green chemistry solutions for sol-gel micro-encapsulation of phase change materials for high-temperature thermal energy storage

    NASA Astrophysics Data System (ADS)

    Romero-Sanchez, Maria Dolores; Piticescu, Radu-Robert; Motoc, Adrian Mihail; Aran-Ais, Francisca; Tudor, Albert Ioan

    2018-06-01

    NaNO3 has been selected as phase change material (PCM) due to its convenient melting and crystallization temperatures for thermal energy storage (TES) in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation) into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks). As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2) instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300-500 °C). Thus, NaNO3 has been microencapsulated by sol-gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.

  10. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires.

    PubMed

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T; Martinez, Julio A

    2016-01-08

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  11. Pre-melting Behaviour in fcc Metals

    NASA Astrophysics Data System (ADS)

    Pamato, M. G.; Wood, I. G.; Dobson, D. P.; Hunt, S.; Vocadlo, L.

    2016-12-01

    Although the Earth's core is accepted to be made of an iron-nickel alloy with a few percent of light elements, its exact structure and composition are still unknown. Seismological and mineralogical models in the Earth's inner core do not agree, with mineralogical models derived from ab initiocalculations predicting shear-wave velocities up to 30% greater than seismically observed values. Recent computer simulations revealed that such difference may be explained by a dramatic, non-linear, softening of the elastic constants of Fe prior to melting. Up to date, computer calculations are the only result on pre-melting of direct applicability to the Earth's core and it is essential to systematically investigate such phenomena at inner core pressures and temperatures. Measuring the pressure dependence of pre-melting effects at such conditions and to the required precision is however extremely challenging. Also, pre-melting effects have been observed or suggested to occur in other materials, particularly noble metals, which exhibit large departures from linearity (modulus defects) at elevated temperatures. The aim of this study is to investigate to what extent pre-melting behaviour occurs in the physical properties of other metals at more experimentally tractable conditions. In particular, we report measurements of density and thermal expansion coefficients of both pure and alloyed gold (Au) up to their melting points. Au is an ideal test material since it crystallises in a simple monatomic face-centred structure and has a relatively low melting temperature. Precise measurements of unit cell lattice parameters were performed using a PANalytical X'Pert Pro powder diffractometer, equipped with an incident beam monochromator (giving very high resolution diffraction patterns) and with environmental stages covering the range from 40 K to 1373 K, with a readily achievable temperature resolution of 1K. We will discuss the circumstances under which pre-melting occurs, its mechanism(s), the effect of impurities and defects in the solid, and the consequences of pre-melting in the Earth's core.

  12. How cores grow by pebble accretion. I. Direct core growth

    NASA Astrophysics Data System (ADS)

    Brouwers, M. G.; Vazan, A.; Ormel, C. W.

    2018-03-01

    Context. Planet formation by pebble accretion is an alternative to planetesimal-driven core accretion. In this scenario, planets grow by the accretion of cm- to m-sized pebbles instead of km-sized planetesimals. One of the main differences with planetesimal-driven core accretion is the increased thermal ablation experienced by pebbles. This can provide early enrichment to the planet's envelope, which influences its subsequent evolution and changes the process of core growth. Aims: We aim to predict core masses and envelope compositions of planets that form by pebble accretion and compare mass deposition of pebbles to planetesimals. Specifically, we calculate the core mass where pebbles completely evaporate and are absorbed before reaching the core, which signifies the end of direct core growth. Methods: We model the early growth of a protoplanet by calculating the structure of its envelope, taking into account the fate of impacting pebbles or planetesimals. The region where high-Z material can exist in vapor form is determined by the temperature-dependent vapor pressure. We include enrichment effects by locally modifying the mean molecular weight of the envelope. Results: In the pebble case, three phases of core growth can be identified. In the first phase (Mcore < 0.23-0.39 M⊕), pebbles impact the core without significant ablation. During the second phase (Mcore < 0.5M⊕), ablation becomes increasingly severe. A layer of high-Z vapor starts to form around the core that absorbs a small fraction of the ablated mass. The rest of the material either rains out to the core or instead mixes outwards, slowing core growth. In the third phase (Mcore > 0.5M⊕), the high-Z inner region expands outwards, absorbing an increasing fraction of the ablated material as vapor. Rainout ends before the core mass reaches 0.6 M⊕, terminating direct core growth. In the case of icy H2O pebbles, this happens before 0.1 M⊕. Conclusions: Our results indicate that pebble accretion can directly form rocky cores up to only 0.6 M⊕, and is unable to form similarly sized icy cores. Subsequent core growth can proceed indirectly when the planet cools, provided it is able to retain its high-Z material.

  13. Thermal conductivity at the nanoscale: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Lyver, John W., IV

    With the growing use of nanotechnology and nanodevices in many fields of engineering and science, a need for understanding the thermal properties of such devices has increased. The ability for nanomaterials to conduct heat is highly dependent on the purity of the material, internal boundaries due to material changes and the structure of the material itself. Experimentally measuring the heat transport at the nanoscale is extremely difficult and can only be done as a macro output from the device. Computational methods such as various Monte Carlo (MC) and molecular dynamics (MD) techniques for studying the contribution of atomic vibrations associated with heat transport properties are very useful. The Green--Kubo method in conjunction with Fourier's law for calculating the thermal conductivity, kappa, has been used in this study and has shown promise as one approach well adapted for understanding nanosystems. Investigations were made of the thermal conductivity using noble gases, modeled with Lennard-Jones (LJ) interactions, in solid face-centered cubic (FCC) structures. MC and MD simulations were done to study homogeneous monatomic and binary materials as well as slabs of these materials possessing internal boundaries. Additionally, MD simulations were done on silicon carbide nanowires, nanotubes, and nanofilaments using a potential containing two-body and three-body terms. The results of the MC and MD simulations were matched against available experimental and other simulations and showed that both methods can accurately simulate real materials in a fraction of the time and effort. The results of the study show that in compositionally disordered materials the selection of atomic components by their mass, hard-core atomic diameter, well depth, and relative concentration can change the kappa by as much as an order of magnitude. It was found that a 60% increase in mass produces a 25% decrease in kappa. A 50% increase in interatomic strength produces a 25% increase in kappa, while as little as a 10% change in the hard core radius can almost totally suppress a materials ability to conduct heat. Additionally, for two LJ materials sharing an interface, the atomic vibrations altering the heat energy depend on the type of internal boundary in the material. Mass increases across the interfacial boundary enhance excitation of the very low frequency (ballistic) vibrational modes, while the opposite effect is seen as increases in hard core radius and interatomic strength enhance excitation of higher frequency vibrational modes. Additionally, it was found that this effect was diminished for higher temperatures around half the Debye temperatures. In nanodevices and nanomachines, there is an additional factor that degrades heat transport at the boundary. In fact, the interface induces a temperature jump consistent with a thermal resistance created by the boundary. It was found that the temperature jump, which is due to a boundary resistance, was significant in boundaries involving small mass changes, lesser in changes in hard core radii changes and even lesser for interatomic strength changes. The study of SiC nanowires and nanotubes showed that the structural changes produced vastly different kappa. The kappa in closely packed structures like nanowires and nanofilaments approximated that of the bulk SiC, yet were less sensitive to temperature than the 1/T relationship traditionally found in bulk systems. The more open nanostructures, like nanotubes, had vastly lower kappa values and are almost totally insensitive to temperature variation. The results of this study can be used in the design of nano-machines where heat generation and transport is a concern. Additionally, the design of nano-machines which transport heat like nano-refrigerators or nano-heaters may be possible due to a better selection of materials with the understanding of how the materials affect their nanothermal properties at the nano scale.

  14. High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials.

    PubMed

    Xu, Yonghao; Chen, Xianfeng; Zhu, Yu

    2008-03-17

    An intensive temperature sensor based on a liquid-core optical fiber has been demonstrated for the measuring the temperature of the environment. The core of fiber is filled with a mixture of toluene and chloroform in order to make the refractive index of the liquid-core and the cladding of the fiber close. The experiment shows that a temperature sensitivity of about 5 dB/K and a tunable temperature range (from 20 o C to 60 o C) can be achieved. Based on the dielectric-clad liquid core fiber model, a simulation was carried out and the calculated results were in good accord with the experimental measurement.

  15. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction

    PubMed Central

    Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K.; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K.; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D.; Sunkara, Mahendra K.; Gupta, Gautam

    2016-01-01

    Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance. PMID:27282871

  16. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction.

    PubMed

    Cummins, Dustin R; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D; Sunkara, Mahendra K; Gupta, Gautam

    2016-06-10

    Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance.

  17. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction

    DOE PAGES

    Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; ...

    2016-06-10

    In this study, hydrogen evolution reaction is catalyzed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoO x/MoS 2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ~100 mV improvement in over potential following exposure to dilute hydrazine, while also showing a 10-fold increase inmore » current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoO x core in the core-shell nanowires, which leads to improved electrocatalytic performance.« less

  18. Temperature-dependent micellar structures in poly(styrene-b-isoprene) diblock copolymer solutions near the critical micelle temperature

    NASA Astrophysics Data System (ADS)

    Bang, Joona; Viswanathan, Karthik; Lodge, Timothy P.; Park, Moon Jeong; Char, Kookheon

    2004-12-01

    The temperature dependence of the micelle structures formed by poly(styrene-b-isoprene) (SI) diblock copolymers in the selective solvents diethyl phthalate (DEP) and tetradecane (C14), which are selective for the PS and PI blocks, respectively, have been investigated by small angle neutron scattering (SANS). Two nearly symmetric SI diblock copolymers, one with a perdeuterated PS block and the other with a perdeuterated PI block, were examined in both DEP and C14. The SANS scattering length density of the solvent was matched closely to either the core or the corona block. The resulting core and corona contrast data were fitted with a detailed model developed by Pedersen and co-workers. The fits provide quantitative information on micellar characteristics such as aggregation number, core size, overall size, solvent fraction in the core, and corona thickness. As temperature increases, the solvent selectivity decreases, leading to substantial solvent swelling of the core and a decrease in the aggregation number and core size. Both core and corona chains are able to relax their conformations near the critical micelle temperature due to a decrease in the interfacial tension, even though the corona chains are always under good solvent conditions.

  19. Numerical and Experimental Approaches Toward Understanding Lava Flow Heat Transfer

    NASA Astrophysics Data System (ADS)

    Rumpf, M.; Fagents, S. A.; Hamilton, C.; Crawford, I. A.

    2013-12-01

    We have performed numerical modeling and experimental studies to quantify the heat transfer from a lava flow into an underlying particulate substrate. This project was initially motivated by a desire to understand the transfer of heat from a lava flow into the lunar regolith. Ancient regolith deposits that have been protected by a lava flow may contain ancient solar wind, solar flare, and galactic cosmic ray products that can give insight into the history of our solar system, provided the records were not heated and destroyed by the overlying lava flow. In addition, lava-substrate interaction is an important aspect of lava fluid dynamics that requires consideration in lava emplacement models Our numerical model determines the depth to which the heat pulse will penetrate beneath a lava flow into the underlying substrate. Rigorous treatment of the temperature dependence of lava and substrate thermal conductivity and specific heat capacity, density, and latent heat release are imperative to an accurate model. Experiments were conducted to verify the numerical model. Experimental containers with interior dimensions of 20 x 20 x 25 cm were constructed from 1 inch thick calcium silicate sheeting. For initial experiments, boxes were packed with lunar regolith simulant (GSC-1) to a depth of 15 cm with thermocouples embedded at regular intervals. Basalt collected at Kilauea Volcano, HI, was melted in a gas forge and poured directly onto the simulant. Initial lava temperatures ranged from ~1200 to 1300 °C. The system was allowed to cool while internal temperatures were monitored by a thermocouple array and external temperatures were monitored by a Forward Looking Infrared (FLIR) video camera. Numerical simulations of the experiments elucidate the details of lava latent heat release and constrain the temperature-dependence of the thermal conductivity of the particulate substrate. The temperature-dependence of thermal conductivity of particulate material is not well known, especially at high temperatures. It is important to have this property well constrained as substrate thermal conductivity is the greatest influence on the rate of lava-substrate heat transfer. At Kilauea and Mauna Loa Volcanoes, Hawaii, and other volcanoes that threaten communities, lava may erupt over a variety of substrate materials including cool lava flows, volcanic tephra, soils, sand, and concrete. The composition, moisture, organic content, porosity, and grain size of the substrate dictate the thermophysical properties, thus affecting the transfer of heat from the lava flow into the substrate and flow mobility. Particulate substrate materials act as insulators, subduing the rate of heat transfer from the flow core. Therefore, lava that flows over a particulate substrate will maintain higher core temperatures over a longer period, enhancing flow mobility and increasing the duration and aerial coverage of the resulting flow. Lava flow prediction models should include substrate specification with temperature dependent material property definitions for an accurate understanding of flow hazards.

  20. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  1. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1978-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, F.; Zimmerman, B.; Heard, F.

    A number of N Reactor core heatup studies have been performed using the TRUMP-BD computer code. These studies were performed to address questions concerning the dependency of results on potential variations in the material properties and/or modeling assumptions. This report described and documents a series of 31 TRUMP-BD runs that were performed to determine the sensitivity of calculated inner-fuel temperatures to a variety of TRUMP input parameters and also to a change in the node density in a high-temperature-gradient region. The results of this study are based on the 32-in. model. 18 refs., 17 figs., 2 tab.

  3. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irshad, Muneeb; Siraj, Khurram, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com; Javed, Fayyaz

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in bothmore » single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.« less

  4. Measuring Moisture Levels in Graphite Epoxy Composite Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Youngquist, Robert; Starr, Stanley

    2011-01-01

    Graphite epoxy composite (GEC) materials are used in the construction of rocket fairings, nose cones, interstage adapters, and heat shields due to their high strength and light weight. However, they absorb moisture depending on the environmental conditions they are exposed to prior to launch. Too much moisture absorption can become a problem when temperature and pressure changes experienced during launch cause the water to vaporize. The rapid state change of the water can result in structural failure of the material. In addition, heat and moisture combine to weaken GEC structures. Diffusion models that predict the total accumulated moisture content based on the environmental conditions are one accepted method of determining if the material strength has been reduced to an unacceptable level. However, there currently doesn t exist any field measurement technique to estimate the actual moisture content of a composite structure. A multi-layer diffusion model was constructed with Mathematica to predict moisture absorption and desorption from the GEC sandwich structure. This model is used in conjunction with relative humidity/temperature sensors both on the inside and outside of the material to determine the moisture levels in the structure. Because the core materials have much higher diffusivity than the face sheets, a single relative humidity measurement will accurately reflect the moisture levels in the core. When combined with an external relative humidity measurement, the model can be used to determine the moisture levels in the face sheets. Since diffusion is temperaturedependent, the temperature measurements are used to determine the diffusivity of the face sheets for the model computations.

  5. Influence of peak oral temperatures on veneer–core interface stress state

    PubMed Central

    Marrelli, Massimo; Pujia, Antonella; Apicella, Davide; Sansalone, Salvatore; Tatullo, Marco

    2015-01-01

    Abstract Objective: There is a growing interest for the use of Y-TZP zirconia as core material in veneered all-ceramic prostheses. The objective of this study was to evaluate the influence of CET on the stress distribution of a porcelain layered to zirconia core single crowns by finite elements analysis. Material and methods: CET of eight different porcelains was considered during the analysis. Results: Results of this study indicated that the mismatch in CET between the veneering porcelain and the Y-TZP zirconia core has to be minimum (0.5–1 μm/mK) so as to decrease the growing of residual stresses which could bring chipping. Conclusions: The stress state due to temperature variation should be carefully taken into consideration while studying the effect of mechanical load on zirconia core crown by FEA. The interfacial stress state can be increased by temperature variation up to 20% with respect to the relative failure parameter (interface strength in this case). This means that stress due to mechanical load combined to temperature variation-induced stress can lead porcelain veneer–zirconia core interfaces to failure. PMID:28642897

  6. The effect of winding and core support material on the thermal gain dependence of a fluxgate magnetometer sensor

    NASA Astrophysics Data System (ADS)

    Miles, David M.; Mann, Ian R.; Kale, Andy; Milling, David K.; Narod, Barry B.; Bennest, John R.; Barona, David; Unsworth, Martyn J.

    2017-10-01

    Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc.) which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C-1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK) engineering plastic (virgin, 30 % glass filled and 30 % carbon filled), and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C-1) had a thermal gain dependence within 5 ppm°C-1 of a traditional sensor constructed from MACOR ceramic (8.1 ppm°C-1). If a modest increase in thermal dependence can be tolerated or compensated, then 30 % glass-filled PEEK is a good candidate for future fluxgate sensors as it is more economical, easier to machine, lighter, and more robust than MACOR.

  7. Severe accident modeling of a PWR core with different cladding materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, S. C.; Henry, R. E.; Paik, C. Y.

    2012-07-01

    The MAAP v.4 software has been used to model two severe accident scenarios in nuclear power reactors with three different materials as fuel cladding. The TMI-2 severe accident was modeled with Zircaloy-2 and SiC as clad material and a SBO accident in a Zion-like, 4-loop, Westinghouse PWR was modeled with Zircaloy-2, SiC, and 304 stainless steel as clad material. TMI-2 modeling results indicate that lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would result if SiC was substituted for Zircaloy-2 as cladding. SBO modeling results indicate that the calculated time to RCSmore » rupture would increase by approximately 20 minutes if SiC was substituted for Zircaloy-2. Additionally, when an extended SBO accident (RCS creep rupture failure disabled) was modeled, significantly lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would be generated by substituting SiC for Zircaloy-2 or stainless steel cladding. Because the rate of SiC oxidation reaction with elevated temperature H{sub 2}O (g) was set to 0 for this work, these results should be considered preliminary. However, the benefits of SiC as a more accident tolerant clad material have been shown and additional investigation of SiC as an LWR core material are warranted, specifically investigations of the oxidation kinetics of SiC in H{sub 2}O (g) over the range of temperatures and pressures relevant to severe accidents in LWR 's. (authors)« less

  8. Performance of High-frequency High-flux Magnetic Cores at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Hammoud, Ahmad; Elbuluk, Malik E.; Patterson, Richard L.

    2002-01-01

    Three magnetic powder cores and one ferrite core, which are commonly used in inductor and transformer design for switch mode power supplies, were selected for investigation at cryogenic temperatures. The powder cores are Molypermalloy Core (MPC), High Flux Core (HFC), and Kool Mu Core (KMC). The performance of four inductors utilizing these cores has been evaluated as a function of temperature from 20 C to -180 C. All cores were wound with the same wire type and gauge to obtain equal values of inductance at room temperature. Each inductor was evaluated in terms of its inductance, quality (Q) factor, resistance, and dynamic hysteresis characteristics (B-H loop) as a function of temperature and frequency. Both sinusoidal and square wave excitations were used in these investigations. Measured data obtained on the inductance showed that both the MPC and the HFC cores maintain a constant inductance value, whereas with the KMC and ferrite core hold a steady value in inductance with frequency but decrease as temperature is decreased. All cores exhibited dependency, with varying degrees, in their quality factor and resistance on test frequency and temperature. Except for the ferrite, all cores exhibited good stability in the investigated properties with temperature as well as frequency. Details of the experimental procedures and test results are presented and discussed in the paper.

  9. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  10. Thermal-mechanical behavior of high precision composite mirrors

    NASA Technical Reports Server (NTRS)

    Kuo, C. P.; Lou, M. C.; Rapp, D.

    1993-01-01

    Composite mirror panels were designed, constructed, analyzed, and tested in the framework of a NASA precision segmented reflector task. The deformations of the reflector surface during the exposure to space enviroments were predicted using a finite element model. The composite mirror panels have graphite-epoxy or graphite-cyanate facesheets, separated by an aluminum or a composite honeycomb core. It is pointed out that in order to carry out detailed modeling of composite mirrors with high accuracy, it is necessary to have temperature dependent properties of the materials involved and the type and magnitude of manufacturing errors and material nonuniformities. The structural modeling and analysis efforts addressed the impact of key design and materials parameters on the performance of mirrors.

  11. Study of the Molecular Dynamics of Multiarm Star Polymers with a Poly(ethyleneimine) Core and Poly(lactide) Multiarms

    PubMed Central

    Román, Frida; Colomer, Pere; Calventus, Yolanda; Hutchinson, John M.

    2017-01-01

    Multiarm star polymers, denoted PEIx-PLAy and containing a hyperbranched poly(ethyleneimine) (PEI) core of different molecular weights x and poly(lactide) (PLA) arms with y ratio of lactide repeat units to N links were used in this work. Samples were preconditioned to remove the moisture content and then characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy (DRS). The glass transition temperature, Tg, is between 48 and 50 °C for all the PEIx-PLAy samples. The dielectric curves show four dipolar relaxations: γ, β, α, and α′ in order of increasing temperature. The temperatures at which these relaxations appear, together with their dependence on the frequency, allows relaxation maps to be drawn, from which the activation energies of the sub-Tg γ- and β-relaxations and the Vogel–Fulcher–Tammann parameters of the α-relaxation glass transition are obtained. The dependence of the characteristic features of these relaxations on the molecular weight of the PEI core and on the ratio of lactide repeat units to N links permits the assignation of molecular motions to each relaxation. The γ-relaxation is associated with local motions of the –OH groups of the poly(lactide) chains, the β-relaxation with motions of the main chain of poly(lactide), the α-relaxation with global motions of the complete assembly of PEI core and PLA arms, and the α′-relaxation is related to the normal mode relaxation due to fluctuations of the end-to-end vector in the PLA arms, without excluding the possibility that it could be a Maxwell–Wagner–Sillars type ionic peak because the material may have nano-regions of different conductivity. PMID:28772486

  12. Study of the Molecular Dynamics of Multiarm Star Polymers with a Poly(ethyleneimine) Core and Poly(lactide) Multiarms.

    PubMed

    Román, Frida; Colomer, Pere; Calventus, Yolanda; Hutchinson, John M

    2017-02-04

    Multiarm star polymers, denoted PEI x -PLA y and containing a hyperbranched poly(ethyleneimine) (PEI) core of different molecular weights x and poly(lactide) (PLA) arms with y ratio of lactide repeat units to N links were used in this work. Samples were preconditioned to remove the moisture content and then characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy (DRS). The glass transition temperature, T g , is between 48 and 50 °C for all the PEI x -PLA y samples. The dielectric curves show four dipolar relaxations: γ, β, α, and α' in order of increasing temperature. The temperatures at which these relaxations appear, together with their dependence on the frequency, allows relaxation maps to be drawn, from which the activation energies of the sub- T g γ- and β-relaxations and the Vogel-Fulcher-Tammann parameters of the α-relaxation glass transition are obtained. The dependence of the characteristic features of these relaxations on the molecular weight of the PEI core and on the ratio of lactide repeat units to N links permits the assignation of molecular motions to each relaxation. The γ-relaxation is associated with local motions of the -OH groups of the poly(lactide) chains, the β-relaxation with motions of the main chain of poly(lactide), the α-relaxation with global motions of the complete assembly of PEI core and PLA arms, and the α'-relaxation is related to the normal mode relaxation due to fluctuations of the end-to-end vector in the PLA arms, without excluding the possibility that it could be a Maxwell-Wagner-Sillars type ionic peak because the material may have nano-regions of different conductivity.

  13. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    NASA Astrophysics Data System (ADS)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  14. Magnetization of Extraterrestrial Allende material may relate to terrestrial descend

    NASA Astrophysics Data System (ADS)

    Kletetschka, Gunther

    2018-04-01

    The origin of magnetization in Allende may have significant implications for our understanding of core formation/differentiation/dynamo processes in chondrite parent bodies. The magnetic Allende data may contain information that could constrain the magnetic history of Allende. The measurements on Allende chondrules reveal an existence of magnetization component that was likely acquired during the meteorite transit to terrestrial conditions. Both the pyrrhotite carrying magnetic remanence intensity and direction of the chondrules change erratically when subjecting the Allende meteorite's chondrules to temperatures near 77 K and back to room temperature. Chondrules with more intense original magnetization are denser and contain larger inverse thermoremanent magnetization (ITRM). Temperature dependent monitoring of ITRM revealed that magnetization was acquired at temperature near 270 K. Such temperature is consistent with the condition when, in addition to temperature increase, the atmospheric uniaxial pressure applied during the meteorite entry on the porous material was responsible for meteorite break up in the atmosphere. During this process, collapse of the pore space in the matrix and some chondrules would generate crystalline anisotropy energy accumulation within pyrrhotite grains in form of parasitic magnetic transition.

  15. Development of Ferrite-Coated Soft Magnetic Composites: Correlation of Microstructure to Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Sunday, Katie Jo

    Soft magnetic composites (SMCs) comprised of ferrite-coated ferrous powder permit isotropic magnetic flux capabilities, lower core losses, and complex designs through the use of traditional powder metallurgy techniques. Current coating materials and methods are vastly limited by the nonmagnetic properties of organic and some inorganic coatings and their inability to withstand high heat treatments for proper stress relief of core powder after compaction. Ferrite-based coatings are ferrimagnetic, highly resistive, and boast high melting temperatures, thus providing adequate electrical barriers between metallic particles. These insulating layers are necessary for reducing eddy current losses by increasing resistivity in order to improve the overall magnetic efficiency and subsequent frequency range. The goals of this work are to correlate ferrite-coated Fe powder composites microstructure for the coating and core powder to magnetic properties such as permeability, coercivity, and core loss. We first explore the relevant concepts of SMC materials from their composition to processing steps to pertinent properties. This thesis employs a suite of characterization techniques for powder and composite properties. We use X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to provide a complete understanding of the effect of processing conditions on ferrite-coated Fe-based SMCs. Magnetic, mechanical, and electrical properties are then analyzed to correlate microstructural features and determine their effect on such properties. In the second part of this thesis, we present a proof of concept study on Al2O3- and Al2O3- Fe3O4-coated Fe powder composites, illustrating magnetization is highly dependent on ferromagnetic volume. We then expand on previous work to compare an ideal, crystalline state using Fe3O 4-Fe thin film heterostructures to a highly strained state using bulk powder studies. Fe3O4-coated Fe composites are produced via mechanical milling and analyzed for magnetic core loss dependence on particle size, cure temperature, and microstructure of both coating and core powder. We present a significant increase in core loss related to eddy current loss from coating particles sintering and Fe grain growth. Lastly, a more resistive coating material, NiZnCu-ferrite, is applied for improved resistivity, which leads to lower eddy current loss and improved magnetic performance. By highlighting the importance of microstructure and composition on magnetic properties, a closer look at interfacial features and local microstrain are necessary and accomplished in this work. Future developments of ferrite-based SMC coatings are required to transform the use of electromagnetic devices in today's society.

  16. Analysis of fixed bed data for the extraction of a rate mechanism for the reaction of hematite with methane

    DOE PAGES

    Breault, Ronald W.; Monazam, Esmail R.

    2015-04-01

    In this study, chemical looping combustion is a promising technology for the capture of CO 2 involving redox materials as oxygen carriers. The effects of reduction conditions, namely, temperature and fuel partial pressure on the conversion products are investigated. The experiments were conducted in a laboratory fixed-bed reactor that was operated cyclically with alternating reduction and oxidation periods. Reactions are assumed to occur in the shell surrounding the particle grains with diffusion of oxygen to the surface from the grain core. Activation energies for the shell and core reactions range from 9 to 209 kJ/mol depending on the reaction step.

  17. Comprehensive study of thermal properties of lunar core samples

    NASA Technical Reports Server (NTRS)

    Langseth, M. G.; Horath, K.

    1975-01-01

    The feasibility of a technique for measuring the thermal conductivity of lunar core samples was investigated. The thermal conduction equation for a composite cylinder was solved to obtain a mathematical expression for the surface temperature of the core tube filled with lunar material. The sample is heated by radiation from the outside at a known rate, the variation of the temperature at the surface of the core tube is measured, and the thermal conductivity determined by comparing the observed temperature with the theoretically expected one. The apparatus used in the experiment is described.

  18. The effect of core configuration on temperature coefficient of reactivity in IRR-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettan, M.; Silverman, I.; Shapira, M.

    1997-08-01

    Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is coremore » behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.« less

  19. Ultrahigh-Temperature Regeneration of Long Period Gratings (LPGs) in Boron-Codoped Germanosilicate Optical Fibre

    PubMed Central

    Liu, Wen; Cook, Kevin; Canning, John

    2015-01-01

    The regeneration of UV-written long period gratings (LPG) in boron-codoped germanosilicate “W” fibre is demonstrated and studied. They survive temperatures over 1000 °C. Compared with regenerated FBGs fabricated in the same type of fibre, the evolution curves of LPGs during regeneration and post-annealing reveal even more detail of glass relaxation. Piece-wise temperature dependence is observed, indicating the onset of a phase transition of glass in the core and inner cladding at ~500 °C and ~250 °C, and the melting of inner cladding between 860 °C and 900 °C. An asymmetric spectral response with increasing and decreasing annealing temperature points to the complex process dependent material system response. Resonant wavelength tuning by adjusting the dwell temperature at which regeneration is undertaken is demonstrated, showing a shorter resonant wavelength and shorter time for stabilisation with higher dwell temperatures. All the regenerated LPGs are nearly strain-insensitive and cannot be tuned by applying loads during annealing as done for regenerated FBGs. PMID:26307991

  20. On the Composition and Temperature of the Terrestrial Planetary Core

    NASA Astrophysics Data System (ADS)

    Fei, Yingwei

    2013-06-01

    The existence of liquid cores of terrestrial planets such as the Earth, Mar, and Mercury has been supported by various observation. The liquid state of the core provides a unique opportunity for us to estimate the temperature of the core if we know the melting temperature of the core materials at core pressure. Dynamic compression by shock wave, laser-heating in diamond-anvil cell, and resistance-heating in the multi-anvil device can melt core materials over a wide pressure range. There have been significant advances in both dynamic and static experimental techniques and characterization tool. In this tal, I will review some of the recent advances and results relevant to the composition and thermal state of the terrestrial core. I will also present new development to analyze the quenched samples recovered from laser-heating diamond-anvil cell experiments using combination of focused ion beam milling, high-resolution SEM imaging, and quantitative chemical analysi. With precision milling of the laser-heating spo, the melting point and element partitioning between solid and liquid can be precisely determined. It is also possible to re-construct 3D image of the laser-heating spot at multi-megabar pressures to better constrain melting point and understanding melting process. The new techniques allow us to extend precise measurements of melting relations to core pressures, providing better constraint on the temperature of the cor. The research is supported by NASA and NSF grants.

  1. Outcome of impact disruption of iron meteorites at room temperature

    NASA Astrophysics Data System (ADS)

    Katsura, T.; Nakamura, A.; Takabe, A.; Okamoto, T.; Sangen, K.; Hasegawa, S.; Liu, X.; Mashimo, T.

    2014-07-01

    The iron meteorites and some M-class asteroids are generally understood to originate in the cores of differentiated planetesimals or in the local melt pools of primitive bodies. On these primitive bodies and planetesimals, a wide range of collisional events at different mass scales, temperatures, and impact velocities would have occurred. Iron materials have a brittle-ductile transition at a certain temperature, which depends on metallurgical factors such as grain size and purity, and on conditions such as strain-rate and confining pressure [1]. An evolutional scenario of iron meteorite parent bodies was proposed in which they formed in the terrestrial planet region, after which they were scattered into the main belt by collisions, Yarkovsky thermal forces, and resonances [2]. In this case, they may have experienced collisional evolution in the vicinity of the Earth before they were scattered into the main belt. The size distribution of iron bodies in the main belt may therefore have depended on the disruption threshold of iron bodies at temperature above the brittle-ductile transition. This paper presents the results of impact-disruption experiments of iron meteorite and steel specimens mm-cm in size as projectiles or targets conducted at room temperature using three light-gas guns and one powder gun. Our iron specimens were almost all smaller in size than their counterparts (as targets or projectiles, respectively). The fragment size distribution of iron material was different from that of rocks. In iron fragmentation, a higher percentage of the mass is concentrated in larger fragments, i.e., the mass fraction of fine fragments is much less than that of rocks shown in the Figure (left). This is probably due to the ductile nature of the iron materials at room temperature. Furthermore, the Figure (right) shows that the largest fragment mass fraction f is dependent not only on the energy density but also on the size of the specimens. In order to obtain a generalized empirical relationship for f, we assumed a power-law dependence of f on initial peak pressure P_0 normalized by a dynamic strength, Y, which was defined to be dependent on the size of the iron material. A least-squares fit to the data of iron meteorite specimens resulted in the following relationship: f∝ ({P_0}/{Y})^{-2.1}. The deformation of the iron materials was found to be most significant when the initial pressure greatly exceeded the dynamic strength of the material.

  2. Wide Temperature Magnetization Characteristics of Transverse Magnetically Annealed Amorphous Tapes for High Frequency Aerospace Magnetics

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    1999-01-01

    100 kHz magnetization properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of B(sub peak). Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at B(sub peak) = 0.1 T and 50 C only. Basic exciting winding current and induced voltage data were taken on bare toroidal cores, in a standard type measurement setup. A linear permeability model, which represents the core by a parallel L-R circuit, is used to interpret and present the magnetization characteristics and several figures of merit applicable to inductor materials are reviewed. The 100 kHz permeability thus derived decreases with increasing temperature for the Fe-based, nanocrystalline material, but increases roughly linearly with temperature for the two Co-based materials, as long as B(sub peak) is sufficiently low to avoid saturation effects. Due to the high permeabilities, rather low values of the 'quality factor' Q, from about 20 to below unity, were obtained over the frequency range of 50 kHz to 1 MHz (50 C, B(sub peak) = 0.1 T). Therefore these cores must be gapped in order to make up high Q or high current inductors. However, being rugged, low core loss materials with flat B-H loop characteristics, they may provide new solutions to specialty inductor applications.

  3. Memory effect versus exchange bias for maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nadeem, K.; Krenn, H.; Szabó, D. V.

    2015-11-01

    We studied the temperature dependence of memory and exchange bias effects and their dependence on each other in maghemite (γ-Fe2O3) nanoparticles by using magnetization studies. Memory effect in zero field cooled process in nanoparticles is a fingerprint of spin-glass behavior which can be due to i) surface disordered spins (surface spin-glass) and/or ii) randomly frozen and interacting nanoparticles core spins (super spin-glass). Temperature region (25-70 K) for measurements has been chosen just below the average blocking temperature (TB=75 K) of the nanoparticles. Memory effect (ME) shows a non-monotonous behavior with temperature. It shows a decreasing trend with decreasing temperature and nearly vanishes below 30 K. However it also decreased again near the blocking temperature of the nanoparticles e.g., 70 K. Exchange bias (EB) in these nanoparticles arises due to core/shell interface interactions. The EB increases sharply below 30 K due to increase in core/shell interactions, while ME starts vanishing below 30 K. We conclude that the core/shell interface interactions or EB have not enhanced the ME but may reduce it in these nanoparticles.

  4. Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator

    NASA Astrophysics Data System (ADS)

    Feng, Li-shuang; Wang, Kai; Jiao, Hong-chen; Wang, Jun-jie; Liu, Dan-ni; Yang, Zhao-hua

    2018-01-01

    A novel hybrid air-core photonic band-gap fiber (PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coefficient of air-core PBF and Panda fiber. Experimental results show that the relative temperature dependent birefringence coefficient of air-core PBF is 1.42×10-8/°C, which is typically 16 times less than that of Panda fiber. Then, we extract the geometry profile of air-core PBF from scanning electron microscope (SEM) images. Numerical modal is built to distinguish the fast axis and slow axis in the fiber. By precisely setting the length difference in air-core PBF and Panda fiber between two 90° polarization-axis rotated splicing points, the hybrid air-core PBF ring resonator is constructed, and the finesse of the resonator is 8.4. Environmental birefringence variation induced by temperature change can be well compensated, and experimental results show an 18-fold reduction in thermal sensitivity, compared with resonator with twin 0° polarization-axis rotated splices.

  5. The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots.

    PubMed

    Narayanaswamy, Arun; Feiner, L F; Meijerink, A; van der Zaag, P J

    2009-09-22

    Visual color changes between 300 and 510 K were observed in the photoluminescence (PL) of colloidal InP/ZnS core-shell nanocrystals. A subsequent study of PL spectra in the range 2-510 K and fitting the temperature dependent line shift and line width to theoretical models show that the dominant (dephasing) interaction is due to scattering by acoustic phonons of about 23 meV. Low temperature photoluminescence excitation measurements show that the excitonic band gap depends approximately inversely linearly on the quantum dot size d, which is distinctly weaker than the dependence predicted by current theories.

  6. Designing for time-dependent material response in spacecraft structures

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Oleksuk, Lynda L. S.; Bowles, D. E.

    1992-01-01

    To study the influence on overall deformations of the time-dependent constitutive properties of fiber-reinforced polymeric matrix composite materials being considered for use in orbiting precision segmented reflectors, simple sandwich beam models are developed. The beam models include layers representing the face sheets, the core, and the adhesive bonding of the face sheets to the core. A three-layer model lumps the adhesive layers with the face sheets or core, while a five-layer model considers the adhesive layers explicitly. The deformation response of the three-layer and five-layer sandwich beam models to a midspan point load is studied. This elementary loading leads to a simple analysis, and it is easy to create this loading in the laboratory. Using the correspondence principle of viscoelasticity, the models representing the elastic behavior of the two beams are transformed into time-dependent models. Representative cases of time-dependent material behavior for the facesheet material, the core material, and the adhesive are used to evaluate the influence of these constituents being time-dependent on the deformations of the beam. As an example of the results presented, if it assumed that, as a worst case, the polymer-dominated shear properties of the core behave as a Maxwell fluid such that under constant shear stress the shear strain increases by a factor of 10 in 20 years, then it is shown that the beam deflection increases by a factor of 1.4 during that time. In addition to quantitative conclusions, several assumptions are discussed which simplify the analyses for use with more complicated material models. Finally, it is shown that the simpler three-layer model suffices in many situations.

  7. Reconfigurable Polymer Shells on Shape-Anisotropic Gold Nanoparticle Cores.

    PubMed

    Kim, Juyeong; Song, Xiaohui; Kim, Ahyoung; Luo, Binbin; Smith, John W; Ou, Zihao; Wu, Zixuan; Chen, Qian

    2018-05-03

    Reconfigurable hybrid nanoparticles made by decorating flexible polymer shells on rigid inorganic nanoparticle cores can provide a unique means to build stimuli-responsive functional materials. The polymer shell reconfiguration has been expected to depend on the local core shape details, but limited systematic investigations have been undertaken. Here, two literature methods are adapted to coat either thiol-terminated polystyrene (PS) or polystyrene-poly(acrylic acid) (PS-b-PAA) shells onto a series of anisotropic gold nanoparticles of shapes not studied previously, including octahedron, concave cube, and bipyramid. These core shapes are complex, rendering shell contours with nanoscale details (e.g., local surface curvature, shell thickness) that are imaged and analyzed quantitatively using the authors' customized analysis codes. It is found that the hybrid nanoparticles based on the chosen core shapes, when coated with the above two polymer shells, exhibit distinct shell segregations upon a variation in solvent polarity or temperature. It is demonstrated for the PS-b-PAA-coated hybrid nanoparticles, the shell segregation is maintained even after a further decoration of the shell periphery with gold seeds; these seeds can potentially facilitate subsequent deposition of other nanostructures to enrich structural and functional diversity. These synthesis, imaging, and analysis methods for the hybrid nanoparticles of anisotropically shaped cores can potentially aid in their predictive design for materials reconfigurable from the bottom up. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chemical composition of Earth's core

    NASA Astrophysics Data System (ADS)

    Saxena, S.

    2017-12-01

    Many planetary scientists accept that the condensed planetesimals in the solar nebula eventually led to accretion of the earth. The details of the process have not been worked out. From the metallurgical experience, it is assumed that Earth's core may have formed by density differentiation with iron sinking to the core and the slag forming the mantle. This would be a post-accretionary process with temperature developing with self-compression. The problem with this hypothesis was recognized some time ago in that the seismic density profile of the core does not match the density of iron and requires the addition of a light element. Many elements such as Si, O, C and s have been proposed as diluents to decrease the density of a purely iron core. How and when this will be accomplished is still under discussion. Since the planetesimals (or condensates) formed in a well stirred nebula, it may be argued that a variety of condensed solids and fluids may have accreted and compressed without differentiation and the core does not necessarily contain mainly the differentiated iron. It is a matter of accumulating the condensate composition that would result in a density of 12 to 13 g/cm3 in the inner core. Therefore, we need a thermodynamic database that extends to 6000 K over the pressure range of ambient to 360 GPa. The development of such a database is currently in progress. It is a database with multicomponent solutions (C-Fe-Ni-S-Si) and all the major elements in the solar gas. Thermodynamic calculations using a preliminary dataset reveal that the solid species condensed at a temperature of 650 K and a pressure of 0.001 bar pressure, when self-compressed to various pressures and temperatures, yield densities that are appropriate for the mantle and core. Depending on H2/O of the escaping fluid, the formation of hydrous minerals, carbides, carbonates and iron melts with significant other elements have been found. Earth's core may have formed from solar condensate materials representing a range of solids avaeraging the seismic density of 13 kg/m3. Such material does not have to be Fe-Ni alloy but could be many different solids and a multielement alloy. Appropriate PVT equations of state have been used in arriving at this conclusion.

  9. Post-inscription tuning of multicore fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Lindley, Emma Y.; Min, Seong-sik; Leon-Saval, Sergio G.; Bland-Hawthorn, Joss

    2016-07-01

    Fiber Bragg gratings are used in astronomy for their ability to suppress narrow atmospheric emission lines of temporally varying brightness before the light is dispersed. These gratings can only operate in a single-mode fiber as the suppressed wavelength depends on mode velocity in the core. Recent experiments with fibers containing multiple single-moded cores have demonstrated the potential for inscribing identical gratings across all cores in a single pass. We have already improved the uniformity of gratings in 7-core fibers via modifications to the writing process; further progress can be achieved by tuning the gratings of the outer and inner cores relative to one another. Our eventual goal is to make the entire fiber suppress one wavelength to a depth of 30 dB or greater. By coating the fiber in a heat-conductive material with a high expansion coefficient, we can examine the effects of temperature and strain on the spectral response of each core. In this paper we present methods and results from experiments concerning the post-write tuning of gratings in multicore fibers.

  10. Fabrication and evaluation of enhanced diffusion bonded titanium honeycomb core sandwich panels with titanium aluminide face sheets

    NASA Technical Reports Server (NTRS)

    Hoffmann, E. K.; Bird, R. K.; Bales, T. T.

    1989-01-01

    A joining process was developed for fabricating lightweight, high temperature sandwich panels for aerospace applications using Ti-14Al-21Nb face sheets and Ti-3Al-2.5V honeycomb core. The process, termed Enhanced Diffusion Bonding (EDB), relies on the formation of a eutectic liquid through solid-state diffusion at elevated temperatures and isothermal solidification to produce joints in thin-gage titanium and titanium aluminide structural components. A technique employing a maskant on the honeycomb core was developed which permitted electroplating a controlled amount of EDB material only on the edges of the honeycomb core in order to minimize the structural weight and metallurgical interaction effects. Metallurgical analyses were conducted to determine the interaction effects between the EDB materials and the constituents of the sandwich structure following EDB processing. The initial mechanical evaluation was conducted with butt joint specimens tested at temperatures from 1400 - 1700 F. Further mechanical evaluation was conducted with EDB sandwich specimens using flatwise tension tests at temperatures from 70 - 1100 F and edgewise compression tests at ambient temperature.

  11. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Erdong; Li, Qiming; Swartzentruber, Brian

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN coremore » of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.« less

  12. Effects of core-to-dentin thickness ratio on the biaxial flexural strength, reliability, and fracture mode of bilayered materials of zirconia core (Y-TZP) and veneer indirect composite resins.

    PubMed

    Su, Naichuan; Liao, Yunmao; Zhang, Hai; Yue, Li; Lu, Xiaowen; Shen, Jiefei; Wang, Hang

    2017-01-01

    Indirect composite resins (ICR) are promising alternatives as veneering materials for zirconia frameworks. The effects of core-to-dentin thickness ratio (C/Dtr) on the mechanical property of bilayered veneer ICR/yttria-tetragonal zirconia polycrystalline (Y-TZP) core disks have not been previously studied. The purpose of this in vitro study was to assess the effects of C/Dtr on the biaxial flexural strength, reliability, and fracture mode of bilayered veneer ICR/ Y-TZP core disks. A total of 180 bilayered 0.6-mm-thick composite resin disks in core material and C/Dtr of 2:1, 1:1, and 1:2 were tested with either core material placed up or placed down for piston-on-3-ball biaxial flexural strength. The mean biaxial flexural strength, Weibull modulus, and fracture mode were measured to evaluate the variation trend of the biaxial flexural strength, reliability, and fracture mode of the bilayered disks with various C/Dtr. One-way analysis of variance (ANOVA) and chi-square tests were used to evaluate the variation tendency of fracture mode with the C/Dtr or material placed down during testing (α=.05). Light microscopy was used to identify the fracture mode. The mean biaxial flexural strength and reliability improved with the increase in C/Dtr when specimens were tested with the core material either up and down, and depended on the materials that were placed down during testing. The rates of delamination, Hertzian cone cracks, subcritical radial cracks, and number of fracture fragments partially depended on the C/Dtr and the materials that were placed down during testing. The biaxial flexural strength, reliability, and fracture mode in bilayered structures of Y-TZP core and veneer ICR depend on both the C/Dtr and the material that was placed down during testing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Development of SPR temperature sensor using Au/TiO2 on hetero-core optical fiber

    NASA Astrophysics Data System (ADS)

    Kitagawa, Sho; Yamazaki, Hiroshi; Hosoki, Ai; Nishiyama, Michiko; Watanabe, Kazuhiro

    2016-03-01

    This paper describes a novel temperature sensor based on a hetero-core structured fiber optic surface plasmon resonance (SPR) sensor with multi-layer thin film of gold (Au) and titanium dioxide (TiO2). Temperature condition is an essential parameter in chemical plants for avoiding fire accident and controlling qualities of chemical substances. Several fiber optic temperature sensors have been developed for some advantages such as immunity to electromagnetic interference, corrosion resistance and no electrical leakage. The proposed hetero-core fiber optic SPR sensor detects temperature condition by measuring slight refractive index changes of TiO2 which has a large thermo-optic coefficient. We experimentally confirmed that the SPR resonant wavelength in the hetero-core SPR sensor with coating an Au film which slightly depended on temperature changes in the range from 20 °C to 80 °C. In addition, it was experimentally shown that the proposed SPR temperature sensor with multi-layer film of Au and TiO2 had the SPR resonant wavelength shift of 1.6 nm due to temperature change from -10 °C to 50 °C. As a result, a series of experiments successfully demonstrated that the proposed sensor was able to detect temperature directly depending on the thermo-optic effect of TiO2.

  14. Nuclear reactor shutdown system

    DOEpatents

    Bhate, Suresh K.; Cooper, Martin H.; Riffe, Delmar R.; Kinney, Calvin L.

    1981-01-01

    An inherent shutdown system for a nuclear reactor having neutron absorbing rods affixed to an armature which is held in an upper position by a magnetic flux flowing through a Curie temperature material. The Curie temperature material is fixedly positioned about the exterior of an inner duct in an annular region through which reactor coolant flows. Elongated fuel rods extending from within the core upwardly toward the Curie temperature material are preferably disposed within the annular region. Upon abnormal conditions which result in high neutron flux and coolant temperature, the Curie material loses its magnetic permeability, breaking the magnetic flux path and allowing the armature and absorber rods to drop into the core, thus shutting down the fissioning reaction. The armature and absorber rods are retrieved by lowering the housing for the electromagnet forming coils which create a magnetic flux path which includes the inner duct wall. The coil housing then is raised, resetting the armature.

  15. Making the case for high temperature low sag (htls) overhead transmission line conductors

    NASA Astrophysics Data System (ADS)

    Banerjee, Koustubh

    The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow in the grid is to use High Temperature Low Sag (HTLS) since it fulfills essential criteria of less sag and good material performance with temperature. HTLS conductors like Aluminum Conductor Composite Reinforced (ACCR) and Aluminum Conductor Carbon Composite (ACCC) are expected to face high operating temperatures of 150-200 degree Celsius in order to achieve the desired increased power flow. Therefore, it is imperative to characterize the material performance of these conductors with temperature. The work presented in this thesis addresses the characterization of carbon composite core based and metal matrix core based HTLS conductors. The thesis focuses on the study of variation of tensile strength of the carbon composite core with temperature and the level of temperature rise of the HTLS conductors due to fault currents cleared by backup protection. In this thesis, Dynamic Mechanical Analysis (DMA) was used to quantify the loss in storage modulus of carbon composite cores with temperature. It has been previously shown in literature that storage modulus is correlated to the tensile strength of the composite. Current temperature relationships of HTLS conductors were determined using the IEEE 738-2006 standard. Temperature rise of these conductors due to fault currents were also simulated. All simulations were performed using Microsoft Visual C++ suite. Tensile testing of metal matrix core was also performed. Results of DMA on carbon composite cores show that the storage modulus, hence tensile strength, decreases rapidly in the temperature range of intended use. DMA on composite cores subjected to heat treatment were conducted to investigate any changes in the variation of storage modulus curves. The experiments also indicates that carbon composites cores subjected to temperatures at or above 250 degree Celsius can cause permanent loss of mechanical properties including tensile strength. The fault current temperature analysis of carbon composite based conductors reveal that fault currents eventually cleared by backup protection in the event of primary protection failure can cause damage to fiber matrix interface.

  16. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  17. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  18. Superconductive magnetic-field-trapping device

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1965-01-01

    An apparatus which enables the establishment of a magnetic field in air that has the same intensity as the ones in ferromagnetic materials is described. The apparatus is comprised of a core of ferromagnetic material and is surrounded by a cylinder made of a material that has superconducting properties when cooled below a critical temperature. A method is provided for producing a magnetic field through the ferromagnetic core. The core can also be split and pulled apart when it is required that the center of the cavity be left empty.

  19. Laboratory experiments on the impact disruption of iron meteorites at temperature of near-Earth space

    NASA Astrophysics Data System (ADS)

    Katsura, Takekuni; Nakamura, Akiko M.; Takabe, Ayana; Okamoto, Takaya; Sangen, Kazuyoshi; Hasegawa, Sunao; Liu, Xun; Mashimo, Tsutomu

    2014-10-01

    Iron meteorites and some M-class asteroids are generally understood to be fragments that were originally part of cores of differentiated planetesimals or part of local melt pools on primitive bodies. The parent bodies of iron meteorites may have formed in the terrestrial planet region, from which they were then scattered into the main belt (Bottke, W.F., Nesvorný, D., Grimm, R.E., Morbidelli, A., O'Brien, D.P. [2006]. Nature 439, 821-824). Therefore, a wide range of collisional events at different mass scales, temperatures, and impact velocities would have occurred between the time when the iron was segregated and the impact that eventually exposed the iron meteorites to interplanetary space. In this study, we performed impact disruption experiments of iron meteorite specimens as projectiles or targets at room temperature to increase understanding of the disruption process of iron bodies in near-Earth space. Our iron specimens (as projectiles or targets) were almost all smaller in size than their counterparts (as targets or projectiles, respectively). Experiments of impacts of steel specimens were also conducted for comparison. The fragment mass distribution of the iron material was different from that of rocks. In the iron fragmentation, a higher percentage of the mass was concentrated in larger fragments, probably due to the ductile nature of the material at room temperature. The largest fragment mass fraction f was dependent not only on the energy density but also on the size d of the specimen. We assumed a power-law dependence of the largest fragment mass fraction to initial peak pressure P0 normalized by a dynamic strength, Y, which was defined to be dependent on the size of the iron material. A least squares fit to the data of iron meteorite specimens resulted in the following relationship: f∝∝d, indicating a large size dependence of f. Additionally, the deformation of the iron materials in high-velocity shots was found to be most significant when the initial pressure greatly exceeded the dynamic strength of the material.

  20. METHOD AND APPARATUS FOR IMPROVING PERFORMANCE OF A FAST REACTOR

    DOEpatents

    Koch, L.J.

    1959-01-20

    A specific arrangement of the fertile material and fissionable material in the active portion of a fast reactor to achieve improvement in performance and to effectively lower the operating temperatures in the center of the reactor is described. According to this invention a group of fuel elements containing fissionable material are assembled to form a hollow fuel core. Elements containing a fertile material, such as depleted uranium, are inserted into the interior of the fuel core to form a central blanket. Additional elemenis of fertile material are arranged about the fuel core to form outer blankets which in tunn are surrounded by a reflector. This arrangement of fuel core and blankets results in substantial flattening of the flux pattern.

  1. Effect of Sintering Temperature on Magnetic Core-Loss Properties of a NiCuZn Ferrite for High-Frequency Power Converters

    NASA Astrophysics Data System (ADS)

    Yan, Yi; Ngo, Khai D. T.; Hou, Dongbin; Mu, Mingkai; Mei, Yunhui; Lu, Guo-Quan

    2015-10-01

    In an effort to find a magnetic material for making low-loss magnetic components for high-power-density converters, we investigated the magnetic core-loss characteristics of a commercial NiCuZn ferrite (LSF 50) at 5 MHz as a function of the sintering temperature of the ferrite powder. The ferrite powder was compacted into toroid cores and then sintered at 850°C, 900°C, 950°C, 1000°C, and 1050°C for 2 h. The sintered densities of the cores increased at higher sintering temperatures. The magnetic properties of the sintered cores—complex permeability and core-loss density—were measured. We found that both the real and imaginary parts of the relative permeability increased with sintering temperature. The core-loss results at 5 MHz showed that the cores sintered at 950°C and 1000°C had the lowest core-loss densities, being two to three times lower than that of a commercial NiZn ferrite (4F1) core. Microstructures of the sintered cores were examined by scanning electron microscopy; the grains grew significantly at higher sintering temperatures.

  2. Improved Optical-Fiber Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Egalon, Claudio O.

    1993-01-01

    In optical-fiber temperature sensors of proposed type, phosphorescence and/or fluorescence in temperature-dependent coating layers coupled to photodetectors. Phosphorescent and/or fluorescent behavior(s) of coating material(s) depend on temperature; coating material or mixture of materials selected so one can deduce temperature from known temperature dependence of phosphorescence and/or fluorescence spectrum, and/or characteristic decay of fluorescence. Basic optical configuration same as that of optical-fiber chemical detectors described in "Making Optical-Fiber Chemical Detectors More Sensitive" (LAR-14525).

  3. Analysis of loss-of-coolant accident for a fast-spectrum lithium-cooled nuclear reactor for space-power applications

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Petrik, E. J.; Kieffer, A. W.

    1972-01-01

    A two-dimensional, transient, heat-transfer analysis was made to determine the temperature response in the core of a conceptual space-power nuclear reactor following a total loss of reactor coolant. With loss of coolant from the reactor, the controlling mode of heat transfer is thermal radiation. In one of the schemes considered for removing decay heat from the core, it was assumed that the 4 pi shield which surrounds the core acts as a constant-temperature sink (temperature, 700 K) for absorption of thermal radiation from the core. Results based on this scheme of heat removal show that melting of fuel in the core is possible only when the emissivity of the heat-radiating surfaces in the core is less than about 0.40. In another scheme for removing the afterheat, the core centerline fuel pin was replaced by a redundant, constant temperature, coolant channel. Based on an emissivity of 0.20 for all material surfaces in the core, the calculated maximum fuel temperature for this scheme of heat removal was 2840 K, or about 90 K less than the melting temperature of the UN fuel.

  4. Materials Selection for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  5. Wide Temperature Core Loss Characteristics of Transverse Magnetically Annealed Amorphous Tapes for High Frequency Aerospace Magnetics

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    1999-01-01

    100 kHz core loss properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of B(sub peak). For B-fields not close to saturation, the core loss is not sensitive to temperature in this range and is as low as seen in the best MnZn power ferrites at their optimum temperatures. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at B(sub peak) = 0.1 T and 50 C only. For example, the 100 kHz specific core loss ranged from 50 - 70 mW/cubic cm for the 3 materials, when measured at 0.1 T and 50 C. This very low high frequency core loss, together with near zero saturation magnetostriction and insensitivity to rough handling, makes these amorphous ribbons strong candidates for power magnetics applications in wide temperature aerospace environments.

  6. In situ TEM and analytical STEM studies of ZnO nanotubes with Sn cores and Sn nanodrops

    NASA Astrophysics Data System (ADS)

    Ortega, Y.; Jäger, W.; Piqueras, J.; Häussler, D.; Fernández, P.

    2013-10-01

    ZnO nanorods with Sn core regions grown by a thermal evaporation-deposition method from a mixture of SnO2 and ZnS powders as precursors, are used to study the behaviour of liquid metal in the nanotubes' core regions and the formation of liquid metal nanodrops at the tube ends by in situ TEM experiments. The compositions of the core materials and of the nanodrops were assessed by employing HAADF-STEM imaging and spatially resolved EDXS measurements. By applying variable thermal load through changing the electron-beam flux of the electron microscope, melting of the metallic core can be induced and the behaviour of the liquid metal of the nanorods can be monitored locally. Within the nanorod core, melting and reversible thermal expansion and contraction of Sn core material is reproducibly observed. For nanotubes with core material near-tip regions, a nanodrop emerges from the tip upon melting the core material, followed by reabsorption of the melt into the core and re-solidification upon decreasing the heat load, being reminiscent of a ‘soldering nanorod’. The radius of the liquid nanodrop can reach a few tens of nanometres, containing a total volume of 10-20 up to 10-18 l of liquid Sn. In situ TEM confirms that the radius of the nanodrop can be controlled via the thermal load: it increases with increasing temperature and decreases with decreasing temperature. In addition, some phenomena related to structure modifications during extended electron-beam exposure are also described.

  7. Thermally induced fracture for core-veneered dental ceramic structures.

    PubMed

    Zhang, Zhongpu; Guazzato, Massimiliano; Sornsuwan, Tanapon; Scherrer, Susanne S; Rungsiyakull, Chaiy; Li, Wei; Swain, Michael V; Li, Qing

    2013-09-01

    Effective and reliable clinical uses of dental ceramics necessitate an insightful analysis of the fracture behaviour under critical conditions. To better understand failure characteristics of porcelain veneered to zirconia core ceramic structures, thermally induced cracking during the cooling phase of fabrication is studied here by using the extended finite element method (XFEM). In this study, a transient thermal analysis of cooling is conducted first to determine the temperature distributions. The time-dependent temperature field is then imported to the XFEM model for viscoelastic thermomechanical analysis, which predicts thermally induced damage and cracking at different time steps. Temperature-dependent material properties are used in both transient thermal and thermomechanical analyses. Three typical ceramic structures are considered in this paper, namely bi-layered spheres, squat cylinders and dental crowns with thickness ratios of either 1:2 or 1:1. The XFEM fracture patterns exhibit good agreement with clinical observation and the in vitro experimental results obtained from scanning electron microscopy characterization. The study reveals that fast cooling can lead to thermal fracture of these different bi-layered ceramic structures, and cooling rate (in terms of heat transfer coefficient) plays a critical role in crack initiation and propagation. By exploring different cooling rates, the heat transfer coefficient thresholds of fracture are determined for different structures, which are of clear clinical implication. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Theoretical evidence of the observed kinetic order dependence on temperature during the N(2)O decomposition over Fe-ZSM-5.

    PubMed

    Guesmi, Hazar; Berthomieu, Dorothee; Bromley, Bryan; Coq, Bernard; Kiwi-Minsker, Lioubov

    2010-03-28

    The characterization of Fe/ZSM5 zeolite materials, the nature of Fe-sites active in N(2)O direct decomposition, as well as the rate limiting step are still a matter of debate. The mechanism of N(2)O decomposition on the binuclear oxo-hydroxo bridged extraframework iron core site [Fe(II)(mu-O)(mu-OH)Fe(II)](+) inside the ZSM-5 zeolite has been studied by combining theoretical and experimental approaches. The overall calculated path of N(2)O decomposition involves the oxidation of binuclear Fe(II) core sites by N(2)O (atomic alpha-oxygen formation) and the recombination of two surface alpha-oxygen atoms leading to the formation of molecular oxygen. Rate parameters computed using standard statistical mechanics and transition state theory reveal that elementary catalytic steps involved into N(2)O decomposition are strongly dependent on the temperature. This theoretical result was compared to the experimentally observed steady state kinetics of the N(2)O decomposition and temperature-programmed desorption (TPD) experiments. A switch of the reaction order with respect to N(2)O pressure from zero to one occurs at around 800 K suggesting a change of the rate determining step from the alpha-oxygen recombination to alpha-oxygen formation. The TPD results on the molecular oxygen desorption confirmed the mechanism proposed.

  9. Temperature dependent recombination dynamics in InP/ZnS colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Shirazi, R.; Kopylov, O.; Kovacs, A.; Kardynał, B. E.

    2012-08-01

    In this letter, we investigate exciton recombination in InP/ZnS core-shell colloidal nanocrystals over a wide temperature range. Over the entire range between room temperature and liquid helium temperature, multi-exponential exciton decay curves are observed and well explained by the presence of bright and dark exciton states, as well as defect states. Two different types of defect are present: one located at the core-shell interface and the other on the surface of the nanocrystal. Based on the temperature dependent contributions of all four states to the total photoluminescence signal, we estimate that the four states are distributed within a 20 meV energy band in nanocrystals that emit at 1.82 eV.

  10. Body and brain temperature coupling: the critical role of cerebral blood flow

    PubMed Central

    Ackerman, Joseph J. H.; Yablonskiy, Dmitriy A.

    2010-01-01

    Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; α-chloralose, αCS; and isoflurane, IF) with αCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO2 in 40% O2 and 55% N2). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under αCS anesthesia (ca. 2°C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials—αCS anesthesia resulted in the largest brain temperature increase (0.32 ± 0.08°C), while CH and IF anesthesia lead to smaller increases (0.12 ± 0.03 and 0.16 ± 0.05°C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2–3 min under CH and IF anesthesia and ~4 min under αCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures. PMID:19277681

  11. Body and brain temperature coupling: the critical role of cerebral blood flow.

    PubMed

    Zhu, Mingming; Ackerman, Joseph J H; Yablonskiy, Dmitriy A

    2009-08-01

    Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; alpha-chloralose, alphaCS; and isoflurane, IF) with alphaCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO(2) in 40% O(2) and 55% N(2)). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under alphaCS anesthesia (ca. 2 degrees C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials--alphaCS anesthesia resulted in the largest brain temperature increase (0.32 +/- 0.08 degrees C), while CH and IF anesthesia lead to smaller increases (0.12 +/- 0.03 and 0.16 +/- 0.05 degrees C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2-3 min under CH and IF anesthesia and approximately 4 min under alphaCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures.

  12. 740,000-year Deuterium Record in an Ice Core from Dome C, Antarctica

    DOE Data Explorer

    Jouzel, Jean [Laboratoire des Sciences du Climat et de l'Environnement

    2004-01-01

    Because isotopic fractions of the heavier oxygen-18 (18O) and deuterium (2H) in snowfall are temperature-dependent and a strong spatial correlation exists between the annual mean temperature and the mean isotopic fraction of 18O or 2H in precipitation, it is possible to derive temperature records from the records of those isotopes in ice cores.

  13. Temperature Monitoring and Perioperative Thermoregulation

    PubMed Central

    Sessler, Daniel I.

    2008-01-01

    Most clinically available thermometers accurately report the temperature of whatever tissue is being measured. The difficulty is that no reliably core-temperature measuring sites are completely non-invasive and easy to use — especially in patients not having general anesthesia. Nonetheless, temperature can be reliably measured in most patients. Body temperature should be measured in patients having general anesthesia exceeding 30 minutes in duration, and in patients having major operations under neuraxial anesthesia. Core body temperature is normally tightly regulated. All general anesthetics produce a profound dose-dependent reduction in the core temperature triggering cold defenses including arterio-venous shunt vasoconstriction and shivering. Anesthetic-induced impairment of normal thermoregulatory control, and the resulting core-to-peripheral redistribution of body heat, is the primary cause of hypothermia in most patients. Neuraxial anesthesia also impairs thermoregulatory control, although to a lesser extant than general anesthesia. Prolonged epidural analgesia is associated with hyperthermia whose cause remains unknown. PMID:18648241

  14. Effect of shell thickness on the exchange bias blocking temperature and coercivity in Co-CoO core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Reethu, K.; Thanveer, T.; Myint, M. T. Z.; Al-Harthi, S. H.

    2017-08-01

    The exchange bias blocking temperature distribution of naturally oxidized Co-CoO core-shell nanoparticles exhibits two distinct signatures. These are associated with the existence of two magnetic entities which are responsible for the temperature dependence of an exchange bias field. One is from the CoO grains which undergo thermally activated magnetization reversal. The other is from the disordered spins at the Co-CoO interface which exhibits spin-glass-like behavior. We investigated the oxide shell thickness dependence of the exchange bias effect. For particles with a 3 nm thick CoO shell, the predominant contribution to the temperature dependence of exchange bias is the interfacial spin-glass layer. On increasing the shell thickness to 4 nm, the contribution from the spin-glass layer decreases, while upholding the antiferromagnetic grain contribution. For samples with a 4 nm CoO shell, the exchange bias training was minimal. On the other hand, 3 nm samples exhibited both the training effect and a peak in coercivity at an intermediate set temperature Ta. This is explained using a magnetic core-shell model including disordered spins at the interface.

  15. Pu-Zr alloy for high-temperature foil-type fuel

    DOEpatents

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  16. Pu-ZR Alloy high-temperature activation-measurement foil

    DOEpatents

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  17. Magnetic switch for reactor control rod. [LMFBR

    DOEpatents

    Germer, J.H.

    1982-09-30

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  18. Magnetic switch for reactor control rod

    DOEpatents

    Germer, John H.

    1986-01-01

    A magnetic reed switch assembly for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electromagnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  19. METHOD AND APPARATUS FOR PRODUCING POWER

    DOEpatents

    Wollan, E.O.

    1961-06-27

    A neutronic reactor comprising two discrete zones; namely, an inner zone containing fissionable material and an outer zone containing fertile material is described. The inner zone is operated at a low temperature and is cooled by pressurized water. The outer zone is operated at a substantially higher temperature and is cooled by steam flashed from the inner zone. The reactor is particularly advantageous in that it produces high temperature steam; yet the materials of construction in the core (inner zone) are not restricted to materials capable of withstanding high temperature operation.

  20. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer

    NASA Astrophysics Data System (ADS)

    Marciniak, L.; Prorok, K.; Francés-Soriano, L.; Pérez-Prieto, J.; Bednarkiewicz, A.

    2016-02-01

    The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale.The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale. Electronic supplementary information (ESI) available: Characterization, structural and morphological characterization of nanocrystals, the measurement setup. See DOI: 10.1039/c5nr08223d

  1. Polymer/silica hybrid waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Niu, Donghai; Wang, Xibin; Sun, Shiqi; Jiang, Minghui; Xu, Qiang; Wang, Fei; Wu, Yuanda; Zhang, Daming

    2018-04-01

    A highly sensitive waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer was designed and experimentally demonstrated. The interferometer is based on the polymer/silica hybrid waveguide structure, and Norland Optical Adhesive 73 (NOA 73) was employed as the waveguide core to enhance the temperature sensitivity. The influence of the different length differences between the two interferometer arms on the sensitivity of the sensor was systemically studied. It is shown that the maximum temperature sensitivity of -431 pm °C-1 can be obtained in the range of 25 °C-75 °C, while the length difference is 92 μm. Moreover, the temperature sensitivity contributions from different core materials were also investigated experimentally. It is shown that the waveguide material and microstructure of the device have significant influences on the sensitivity of the waveguide temperature sensor.

  2. Magnetic response of hybrid ferromagnetic and antiferromagnetic core-shell nanostructures

    NASA Astrophysics Data System (ADS)

    Khan, U.; Li, W. J.; Adeela, N.; Irfan, M.; Javed, K.; Wan, C. H.; Riaz, S.; Han, X. F.

    2016-03-01

    The synthesis of FeTiO3-Ni(Ni80Fe20) core-shell nanostructures by a two-step method (sol-gel and DC electrodeposition) has been demonstrated. XRD analysis confirms the rhombohedral crystal structure of FeTiO3(FTO) with space group R3&cmb.macr;. Transmission electron microscopy clearly depicts better morphology of nanostructures with shell thicknesses of ~25 nm. Room temperature magnetic measurements showed significant enhancement of magnetic anisotropy for the permalloy (Ni80Fe20)-FTO over Ni-FTO core-shell nanostructures. Low temperature magnetic measurements of permalloy-FeTiO3 core-shell structure indicated a strong exchange bias mechanism with magnetic coercivity below the antiferromagnetic Neel temperature (TN = 59 K). The exchange bias is attributed to the alignment of magnetic moments in the antiferromagnetic material at low temperature. Our scheme opens a path towards optimum automotive systems and wireless communications wherein broader bandwidths and smaller sizes are required.The synthesis of FeTiO3-Ni(Ni80Fe20) core-shell nanostructures by a two-step method (sol-gel and DC electrodeposition) has been demonstrated. XRD analysis confirms the rhombohedral crystal structure of FeTiO3(FTO) with space group R3&cmb.macr;. Transmission electron microscopy clearly depicts better morphology of nanostructures with shell thicknesses of ~25 nm. Room temperature magnetic measurements showed significant enhancement of magnetic anisotropy for the permalloy (Ni80Fe20)-FTO over Ni-FTO core-shell nanostructures. Low temperature magnetic measurements of permalloy-FeTiO3 core-shell structure indicated a strong exchange bias mechanism with magnetic coercivity below the antiferromagnetic Neel temperature (TN = 59 K). The exchange bias is attributed to the alignment of magnetic moments in the antiferromagnetic material at low temperature. Our scheme opens a path towards optimum automotive systems and wireless communications wherein broader bandwidths and smaller sizes are required. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07946b

  3. Implications of the Homogeneous Nucleation Barrier for Top-Down Crystallization in Mercury's Core

    NASA Astrophysics Data System (ADS)

    Huguet, L.; Hauck, S. A.; Van Orman, J. A.; Jing, Z.

    2018-05-01

    Crystallization of solids in planetary cores depends both on ambient temperatures falling below the liquidus and on the ability to nucleate crystal growth. We discuss the implications of the nucleation barrier for thermal evolution of Mercury's core.

  4. An assessment of fracture resistance of three composite resin core build-up materials on three prefabricated non-metallic posts, cemented in endodontically treated teeth: an in vitro study

    PubMed Central

    Pal, Bhupinder; Pujari, Prashant

    2015-01-01

    Endodontically treated teeth with excessive loss of tooth structure would require to be restored with post and core to enhance the strength and durability of the tooth and to achieve retention for the restoration. The non-metallic posts have a superior aesthetic quality. Various core build-up materials can be used to build-up cores on the posts placed in endodontically treated teeth. These materials would show variation in their bonding with the non-metallic posts thus affecting the strength and resistance to fracture of the remaining tooth structure. Aims. The aim of the study was to assess the fracture resistance of three composite resin core build-up materials on three prefabricated non-metallic posts, cemented in extracted endodontically treated teeth. Material and Methods. Forty-five freshly extracted maxillary central incisors of approximately of the same size and shape were selected for the study. They were divided randomly into 3 groups of 15 each, depending on the types of non-metallic posts used. Each group was further divided into 3 groups (A, B and C) of 5 samples each depending on three core build-up material used. Student’s unpaired ‘t’ test was also used to analyse and compare each group with the other groups individually, and decide whether their comparisons were statistically significant. Results. Luxacore showed the highest fracture resistance among the three core build-up materials with all the three posts systems. Ti-core had intermediate values of fracture resistance and Lumiglass had the least values of fracture resistance. PMID:25755926

  5. Stark parameter dependence of the rest core charge of the emitters for multiply charged ions spectral lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šćepanović, M., E-mail: mara.scepanovic@gmail.com; Purić, J.

    2016-03-25

    Stark width and shift simultaneous dependence on the upper level ionization potential and rest core charge of the emitter has been evaluated and discussed. It has been verified that the found relations, connecting Stark broadening parameters with upper level ionization potential and rest core charge of the emitters for particular electron temperature and density, can be used for prediction of Stark line width and shift data in case of ions for which observed data, or more detailed calculations, are not yet available. Stark widths and shifts published data are used to demonstrate the existence of other kinds of regularities withinmore » similar spectra of different elements and their ionization stages. The emphasis is on the Stark parameter dependence on the upper level ionization potential and on the rest core charge for the lines from similar spectra of multiply charged ions. The found relations connecting Stark widths and shift parameters with upper level ionization potential, rest core charge and electron temperature were used for a prediction of new Stark broadening data, thus avoiding much more complicated procedures.« less

  6. Scalable Super-Resolution Synthesis of Core-Vest Composites Assisted by Surface Plasmons.

    PubMed

    Montazeri, A O; Kim, Y; Fang, Y S; Soheilinia, N; Zaghi, G; Clark, J K; Maboudian, R; Kherani, N P; Carraro, C

    2018-02-15

    The behavior of composite nanostructures depends on both size and elemental composition. Accordingly, concurrent control of size, shape, and composition of nanoparticles is key to tuning their functionality. In typical core-shell nanoparticles, the high degree of symmetry during shell formation results in fully encapsulated cores with severed access to the surroundings. We commingle light parameters (wavelength, intensity, and pulse duration) with the physical properties of nanoparticles (size, shape, and composition) to form hitherto unrealized core-vest composite nanostructures (CVNs). Unlike typical core-shells, the plasmonic core of the resulting CVNs selectively maintains physical access to its surrounding. Tunable variations in local temperature profiles ≳50 °C are plasmonically induced over starburst-shaped nanoparticles as small as 50-100 nm. These temperature variations result in CVNs where the shell coverage mirrors the temperature variations. The precision thus offered individually tailors access pathways of the core and the shell.

  7. DYNAMICAL ACCRETION OF PRIMORDIAL ATMOSPHERES AROUND PLANETS WITH MASSES BETWEEN 0.1 AND 5 M {sub ⊕} IN THE HABITABLE ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stökl, Alexander; Dorfi, Ernst A.; Johnstone, Colin P.

    2016-07-10

    In the early, disk-embedded phase of evolution of terrestrial planets, a protoplanetary core can accumulate gas from the circumstellar disk into a planetary envelope. In order to relate the accumulation and structure of this primordial atmosphere to the thermal evolution of the planetary core, we calculated atmosphere models characterized by the surface temperature of the core. We considered cores with masses between 0.1 and 5 M {sub ⊕} situated in the habitable zone around a solar-like star. The time-dependent simulations in 1D-spherical symmetry include the hydrodynamics equations, gray radiative transport, and convective energy transport. Using an implicit time integration scheme,more » we can use large time steps and and thus efficiently cover evolutionary timescales. Our results show that planetary atmospheres, when considered with reference to a fixed core temperature, are not necessarily stable, and multiple solutions may exist for one core temperature. As the structure and properties of nebula-embedded planetary atmospheres are an inherently time-dependent problem, we calculated estimates for the amount of primordial atmosphere by simulating the accretion process of disk gas onto planetary cores and the subsequent evolution of the embedded atmospheres. The temperature of the planetary core is thereby determined from the computation of the internal energy budget of the core. For cores more massive than about one Earth mass, we obtain that a comparatively short duration of the disk-embedded phase (∼10{sup 5} years) is sufficient for the accumulation of significant amounts of hydrogen atmosphere that are unlikely to be removed by later atmospheric escape processes.« less

  8. Facesheet Delamination of Composite Sandwich Materials at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Odegard, Gregory M.; Herring, Helen M.

    2003-01-01

    The next generation of space transportation vehicles will require advances in lightweight structural materials and related design concepts to meet the increased demands on performance. One potential source for significant structural weight reduction is the replacement of traditional metallic cryogenic fuel tanks with new designs for polymeric matrix composite tanks. These new tank designs may take the form of thin-walled sandwich constructed with lightweight core and composite facesheets. Life-time durability requirements imply the materials must safely carry pressure loads, external structural loads, resist leakage and operate over an extremely wide temperature range. Aside from catastrophic events like tank wall penetration, one of the most likely scenarios for failure of a tank wall of sandwich construction is the permeation of cryogenic fluid into the sandwich core and the subsequent delamination of the sandwich facesheet due to the build-up of excessive internal pressure. The research presented in this paper was undertaken to help understand this specific problem of core to facesheet delamination in cryogenic environments and relate this data to basic mechanical properties. The experimental results presented herein provide data on the strain energy release rate (toughness) of the interface between the facesheet and the core of a composite sandwich subjected to simulated internal pressure. A unique test apparatus and associated test methods are described and the results are presented to highlight the effects of cryogenic temperature on the measured material properties.

  9. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  10. Sound velocity of iron-light element compounds and the chemical structure of the inner core

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Sakamaki, T.; Fukui, H.; Tanaka, R.; Shibazaki, Y.; Kamada, S.; Sakairi, T.; Takahashi, S.; Tsutsui, S.; Baron, A. Q. R.

    2016-12-01

    The light elements in the core could constrain the conditions of accretion, subsequent magma ocean, and core formation stages of the Earth. There are several studies for sound velocity measurements of the iron-light elements alloys. However, the measurements are not enough to constrain the light element abundance in the core tightly at present due to inter-laboratory inconsistencies using different methods which are originated from the difficulties to make such measurements under the extreme conditions. We measured the sound velocity of iron alloy compounds at high pressure and temperature relevant to the Earth's core using double-sided laser heating of a DAC combined with inelastic X-ray scattering at SPring-8. We measured the compressional velocity of hcp-Fe up to 166 GPa and 3000 K, and derived a clear temperature dependence of the Birch's law for hcp-Fe. We measured the compressional velocity of Fe0.89Si0.11 alloy and Fe3C at high pressure and temperature, and we could not detect temperature dependency in Birch's law in these compounds. Additionally, we measured the sound velocity of Fe3S, Fe0.83Ni0.09Si0.08 alloy, and FeH at high pressure. Combining our new data set which showed remarkable differences from previous data on the sound velocity, we present a model of the chemical structure of the inner core. The outer core composition was also estimated based on partitioning behaviors of these light elements between solid and liquid iron alloys under the core conditions.

  11. Simulation based efficiency prediction of a Brushless DC drive applied in ventricular assist devices.

    PubMed

    Pohlmann, André; Hameyer, Kay

    2012-01-01

    Ventricular Assist Devices (VADs) are mechanical blood pumps that support the human heart in order to maintain a sufficient perfusion of the human body and its organs. During VAD operation blood damage caused by hemolysis, thrombogenecity and denaturation has to be avoided. One key parameter causing the blood's denaturation is its temperature which must not exceed 42 °C. As a temperature rise can be directly linked to the losses occuring in the drive system, this paper introduces an efficiency prediction chain for Brushless DC (BLDC) drives which are applied in various VAD systems. The presented chain is applied to various core materials and operation ranges, providing a general overview on the loss dependencies.

  12. Interfacial heat transfer in multiphase molten pools with gas injection

    NASA Astrophysics Data System (ADS)

    Bilbao Y Leon, Rosa Marina

    1998-12-01

    In the very unlikely event of a severe reactor accident involving core meltdown and pressure vessel failure, it is vital to identify the circumstances that would allow the molten core material to cool down and resolidify, bringing core debris to a safe and stable state. In this type of accident, the molten material which escapes from the reactor pressure vessel will accumulate as a molten pool in the reactor cavity below. To achieve coolability of the corium in this configuration it has been proposed to flood the cavity with water from above forming a layered structure where upward heat loss from the molten pool to the water will cause the core material to quench and solidify. The effectiveness of this procedure depends largely on the rate of upward heat loss as well as on the formation and stability of an upper crust. In this situation the molten pool becomes a three phase mixture: the solid and liquid slurry formed by the molten pool cooled to a temperature below the temperature of liquidus, agitated by the gases formed in the concrete ablation process. The present work quantifies the partition of the heat losses upward and downward considering the influence of the solid fraction in the pool and the viscosity effects, and the rate of heat loss through a solid layer. To complete this task a intermediate scale experimental test section has been designed and built at the University of Wisconsin - Madison, in which simulant materials are used to model the process of heat and mass transfer which involves the molten pool, the solid layer atop and the coolant layer above. The design includes volumetric heating, gas injection from the bottom and solids within the pool. New experimental results showing the heat transfer behavior for pools with different viscosities and various solid fractions are presented. The current results indicate a power split which favors heat transfer upward to the coolant simulant above by a 2:1 or 3:1 ratio. In addition, the power split is unaffected by the viscosity of the pool, the solid fractions in the pool and the superficial velocity.

  13. Interface engineered ferrite@ferroelectric core-shell nanostructures: A facile approach to impart superior magneto-electric coupling

    NASA Astrophysics Data System (ADS)

    Abraham, Ann Rose; Raneesh, B.; Das, Dipankar; Oluwafemi, Oluwatobi Samuel; Thomas, Sabu; Kalarikkal, Nandakumar

    2018-04-01

    The electric field control of magnetism in multiferroics is attractive for the realization of ultra-fast and miniaturized low power device applications like nonvolatile memories. Room temperature hybrid multiferroic heterostructures with core-shell (0-0) architecture (ferrite core and ferroelectric shell) were developed via a two-step method. High-Resolution Transmission Electron Microscopy (HRTEM) images confirm the core-shell structure. The temperature dependant magnetization measurements and Mossbauer spectra reveal superparamagnetic nature of the core-shell sample. The ferroelectric hysteresis loops reveal leaky nature of the samples. The results indicate the promising applications of the samples for magneto-electric memories and spintronics.

  14. A Way to Select Electrical Sheets of the Segment Stator Core Motors.

    NASA Astrophysics Data System (ADS)

    Enomoto, Yuji; Kitamura, Masashi; Sakai, Toshihiko; Ohara, Kouichiro

    The segment stator core, high density winding coil, high-energy-product permanent magnet are indispensable technologies in the development of a compact and also high efficient motors. The conventional design method for the segment stator core mostly depended on experienced knowledge of selecting a suitable electromagnetic material, far from optimized design. Therefore, we have developed a novel design method in the selection of a suitable electromagnetic material based on the correlation evaluation between the material characteristics and motor performance. It enables the selection of suitable electromagnetic material that will meet the motor specification.

  15. Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner

    PubMed Central

    Ford, Brett; Deng, Weiwei; Clausen, Jenni; Oliver, Sandra; Boden, Scott; Hemming, Megan; Trevaskis, Ben

    2016-01-01

    An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene. PMID:27580625

  16. Correlative Microscopy of Neutron-Irradiated Materials

    DOE PAGES

    Briggs, Samuel A.; Sridharan, Kumar; Field, Kevin G.

    2016-12-31

    A nuclear reactor core is a highly demanding environment that presents several unique challenges for materials performance. Materials in modern light water reactor (LWR) cores must survive several decades in high-temperature (300-350°C) aqueous corrosion conditions while being subject to large amounts of high-energy neutron irradiation. Next-generation reactor designs seek to use more corrosive coolants (e.g., molten salts) and even greater temperatures and neutron doses. The high amounts of disorder and unique crystallographic defects and microchemical segregation effects induced by radiation inevitably lead to property degradation of materials. Thus, maintaining structural integrity and safety margins over the course of the reactor'smore » service life thus necessitates the ability to understand and predict these degradation phenomena in order to develop new, radiation-tolerant materials that can maintain the required performance in these extreme conditions.« less

  17. Stress distribution and mechanical properties of free and assembled Ni3Al nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhurkin, E. E.; Hautier, G.; Hou, M.

    2006-03-01

    Classical molecular dynamics with a semiempirical N -body potential is used to study the distribution of local stress in bimetallic Ni3Al nanoparticles and in cluster-assembled materials. The materials considered are synthesized with these particles by low-energy deposition at 0.5eV per atom and by compaction with an external pressure of 2GPa , thus featuring different nanostructures. Both are nanoporous, the lowest density being obtained by deposition. Their mechanical response to a uniaxial external load is then studied and deformation mechanisms are identified and are found to be similar in both nanostructures. In the core of isolated clusters, the partial pressures on the nickel and aluminium subsystems are found to differ by several GPa and, as a balance to surface tension, the hydrostatic core pressure is positive and depends on the cluster size. The surface stress is tensile and, because of structural disorder, the partial pressures distributions on Ni and Al at the surface are scattered. When nanostructured systems are formed, strong and highly inhomogeneous shear stress appears, the cluster cores may become tensile, and the interfacial areas remain mainly tensile as well. The partial pressure difference between Ni and Al is somewhat reduced. It is shown that the effect of temperature is to reduce this difference still further and to homogenize the spatial stress distribution. When subjected to a uniaxial stress, both materials display an elastic and a plastic regime. The elastic limit is the lowest for the most porous material and decreases with increasing temperature. Plastic deformation is dominated by both grain boundary sliding and by the enlargement of the open volumes, without evidence for the nucleation of cracks. These open volumes are found to facilitate dislocation activity which is evidenced in grains with sizes as small as two nanometers. This dislocation activity is found to result in the production of stacking faults as well as to the recovery of defects induced by the deposition or by the compaction.

  18. Historical Isotopic Temperature Record from the Vostok Ice Core (420,000 years BP-present)

    DOE Data Explorer

    Petit, J. R. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Raynaud, D. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Lorius, C. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Jouzel, J. [Laboratoire des Sciences du Climat et de l'Environnement; Delaygue, G. [Laboratoire des Sciences du Climat et de l'Environnement; Barkov, N. I. [Arctic and Antarctic Research Inst. (AARI), St. Petersburg (Russian Federation); Kotlyakov, V. M. [Institute of Geography, Russia

    2000-01-01

    Because isotopic fractions of the heavier oxygen-18 (18O) and deuterium (D) in snowfall are temperature-dependent and a strong spatial correlation exists between the annual mean temperature and the mean isotopic ratio (18O or δD) of precipitation, it is possible to derive ice-core climate records. The record presented by Jouzel et al. (1987) was the first ice core record to span a full glacial-interglacial cycle. That record was based on an ice core drilled at the Russian Vostok station in central east Antarctica. The 2083-m ice core was obtained during a series of drillings in the early 1970s and 1980s and was the result of collaboration between French and former-Soviet scientists. Drilling continued at Vostok and was completed in January 1998, reaching a depth of 3623 m, the deepest ice core ever recovered (Petit et al. 1997, 1999). The resulting core allows the ice core record of climate properties at Vostok to be extended to ~420 kyr BP.

  19. Molecular Dynamics Simulations of Star Polymeric Molecules with Diblock Arms, a Comparative Study.

    PubMed

    Swope, William C; Carr, Amber C; Parker, Amanda J; Sly, Joseph; Miller, Robert D; Rice, Julia E

    2012-10-09

    We have performed all atom explicit solvent molecular dynamics simulations of three different star polymeric systems in water, each star molecule consisting of 16 diblock copolymer arms bound to a small adamantane core. The arms of each system consist of an inner "hydrophobic" block (either polylactide, polyvalerolactone, or polyethylene) and an outer hydrophilic block (polyethylene oxide, PEO). These models exhibit unusual structure very close to the core (clearly an artifact of our model) but which we believe becomes "normal" or bulk-like at relatively short distances from this core. We report on a number of temperature-dependent thermodynamic (structural/energetic) properties as well as kinetic properties. Our observations suggest that under physiological conditions, the hydrophobic regions of these systems may be solid and glassy, with only rare and shallow penetration by water, and that a sharp boundary exists between the hydrophobic cores and either the PEO or water. The PEO in these models is seen to be fully water-solvated at low temperatures but tends to phase separate from water as the temperature is increased, reminiscent of a lower critical solution temperature exhibited by PEO-water mixtures. Water penetration concentration and depth is composition and temperature dependent with greater water penetration for the most ester-rich star polymer.

  20. Multibeam Interferometer Using a Photonic Crystal Fiber with Two Asymmetric Cores for Torsion, Strain and Temperature Sensing

    PubMed Central

    Naeem, Khurram; Kwon, Il-Bum; Chung, Youngjoo

    2017-01-01

    We present a fiber-optic multibeam Mach-Zehnder interferometer (m-MZI) for simultaneous multi-parameter measurement. The m-MZI is comprised of a section of photonic crystal fiber integrated with two independent cores of distinct construction and birefringence properties characterized for torsion, strain and temperature sensing. Due to the presence of small core geometry and use of a short fiber length, the sensing device demonstrates inter-modal interference in the small core alongside the dominant inter-core interference between the cores for each of the orthogonal polarizations. The output spectrum of the device is characterized by the three-beam interference model and is polarization-dependent. The two types of interferometers present in the fiber m-MZI exhibit distinct sensitivities to torsion, strain and temperature for different polarizations, and matrix coefficients allowing simultaneous measurement of the three sensing parameters are proposed in experiment. PMID:28085046

  1. High temperature, flexible, fiber-preform seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Strocky, Paul J. (Inventor)

    1992-01-01

    A seal is mounted in a rectangular groove in a movable structural panel. The seal comprises a fiber preform constructed of multiple layers of fiber having a uniaxial core. Helical fibers are wound over the core. The fibers are of materials capable of withstanding high temperatures and are both left-hand and right-hand wound. An outer layer wrapped over said helical fibers prevents abrasion damage.

  2. A Full-Core Resonance Self-Shielding Method Using a Continuous-Energy Quasi–One-Dimensional Slowing-Down Solution that Accounts for Temperature-Dependent Fuel Subregions and Resonance Interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuxuan; Martin, William; Williams, Mark

    In this paper, a correction-based resonance self-shielding method is developed that allows annular subdivision of the fuel rod. The method performs the conventional iteration of the embedded self-shielding method (ESSM) without subdivision of the fuel to capture the interpin shielding effect. The resultant self-shielded cross sections are modified by correction factors incorporating the intrapin effects of radial variation of the shielded cross section, radial temperature distribution, and resonance interference. A quasi–one-dimensional slowing-down equation is developed to calculate such correction factors. The method is implemented in the DeCART code and compared with the conventional ESSM and subgroup method with benchmark MCNPmore » results. The new method yields substantially improved results for both spatially dependent reaction rates and eigenvalues for typical pressurized water reactor pin cell cases with uniform and nonuniform fuel temperature profiles. Finally, the new method is also proved effective in treating assembly heterogeneity and complex material composition such as mixed oxide fuel, where resonance interference is much more intense.« less

  3. Rheology of welding: experimental constraints

    NASA Astrophysics Data System (ADS)

    Quane, S. L.; Russell, J. K.; Kennedy, L. A.

    2003-04-01

    The rheological behavior of pyroclastic deposits during welding is incompletely understood and is based on a surprisingly small number of experimental studies. Previous pioneering experimental studies were done on small (1 cm thick) samples of ash/crystal mixtures under constant load. They established minimum welding temperatures between 600 and 700^oC under loads of 0.7 MPa (˜40 m of ignimbrite) to 3.6 MPa (˜250 m depth of ignimbrite). However, these data are neither sufficiently comprehensive nor coherent enough to fully describe the rheology of pyroclastic mixtures. In addition, previous studies did not examine the microstructural and geometric changes associated with welding compaction. Our goal is to provide accurate and comprehensive constitutive relationships between material properties, temperature, load and strain rate for pyroclastic material undergoing welding. Here we present results from a newly designed experimental apparatus. The experimental apparatus consists of a LoadTrac II fully automated uniaxial compression load frame manufactured by Geocomp Corporation. The load frame has a built in displacement transducer and can run both constant strain rate (10-6 to 0.25 cm/s) and constant load (up to 1150 kg) tests to a maximum displacement of 7.5 cm. The sample assembly comprises 5 cm diameter cylindrical upper and lower pistons (insulating ceramic with steel conductive ends) housed in a copper jacket. Samples are 5 cm diameter cores and can vary in length from 1 to 15 cm depending on experimental needs. A fiber insulated tube furnace capable of reaching temperatures ≈1000^oC surrounds the sample assembly. Temperature is measured using a thermocouple located inside the sample through the bottom piston; the furnace controller is capable of maintaining temperature fluctuations to <5^oC. Deformation experiments are performed on pre-fabricated cylinders of soda-lime glass beads and rhyolitic volcanic ash, as well as, cores of pumiceous rhyodacite. Experimental runs use strain rates of 10-4 and 10-5 cm/s and loads of ˜0 to 4.5 MPa. Experiments are run at temperatures between 400 and 850^oC corresponding to below and above the calorimetric glass transition temperatures of the respective materials. Data deriving from constant load and constant strain rate experiments are being used to constrain rheological models for welding of pyroclastic material.

  4. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    NASA Astrophysics Data System (ADS)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  5. Impact of screw and edge dislocations on the thermal conductivity of individual nanowires and bulk GaN: a molecular dynamics study.

    PubMed

    Termentzidis, Konstantinos; Isaiev, Mykola; Salnikova, Anastasiia; Belabbas, Imad; Lacroix, David; Kioseoglou, Joseph

    2018-02-14

    We report the thermal transport properties of wurtzite GaN in the presence of dislocations using molecular dynamics simulations. A variety of isolated dislocations in a nanowire configuration are analyzed and found to considerably reduce the thermal conductivity while impacting its temperature dependence in a different manner. Isolated screw dislocations reduce the thermal conductivity by a factor of two, while the influence of edge dislocations is less pronounced. The relative reduction of thermal conductivity is correlated with the strain energy of each of the five studied types of dislocations and the nature of the bonds around the dislocation core. The temperature dependence of the thermal conductivity follows a physical law described by a T -1 variation in combination with an exponent factor that depends on the material's nature, type and the structural characteristics of the dislocation core. Furthermore, the impact of the dislocation density on the thermal conductivity of bulk GaN is examined. The variation and absolute values of the total thermal conductivity as a function of the dislocation density are similar for defected systems with both screw and edge dislocations. Nevertheless, we reveal that the thermal conductivity tensors along the parallel and perpendicular directions to the dislocation lines are different. The discrepancy of the anisotropy of the thermal conductivity grows with increasing density of dislocations and it is more pronounced for the systems with edge dislocations. Besides the fundamental insights of the presented results, these could also be used for the identification of the type of dislocations when one experimentally obtains the evolution of thermal conductivity with temperature since each type of dislocation has a different signature, or one could extract the density of dislocations with a simple measurement of thermal anisotropy.

  6. Plastic deformation of FeSi at high pressures: implications for planetary cores

    NASA Astrophysics Data System (ADS)

    Kupenko, Ilya; Merkel, Sébastien; Achorner, Melissa; Plückthun, Christian; Liermann, Hanns-Peter; Sanchez-Valle, Carmen

    2017-04-01

    The cores of terrestrial planets is mostly comprised of a Fe-Ni alloy, but it should additionally contain some light element(s) in order to explain the observed core density. Silicon has long been considered as a likely candidate because of geochemical and cosmochemical arguments: the Mg/Si and Fe/Si ratios of the Earth does not match those of the chondrites. Since silicon preferentially partition into iron-nickel metal, having 'missing' silicon in the core would solve this problem. Moreover, the evidence of present (e.g. Mercury) or ancient (e.g. Mars) magnetic fields on the terrestrial planets is a good indicator of (at least partially) liquid cores. The estimated temperature profiles of these planets, however, lay below iron melting curve. The addition of light elements in their metal cores could allow reducing their core-alloy melting temperature and, hence, the generation of a magnetic field. Although the effect of light elements on the stability and elasticity of Fe-Ni alloys has been widely investigated, their effect on the plasticity of core materials remains largely unknown. Yet, this information is crucial for understanding how planetary cores deform. Here we investigate the plastic deformation of ɛ-FeSi up to 50 GPa at room temperature employing a technique of radial x-ray diffraction in diamond anvil cells. Stoichiometric FeSi endmember is a good first-order approximation of the Fe-FeSi system and a good starting material to develop new experimental perspectives. In this work, we focused on the low-pressure polymorph of FeSi that would be the stable phase in the cores of small terrestrial planets. We will present the analysis of measured data and discuss their potential application to constrain plastic deformation in planetary cores.

  7. Thermal Evolution of Earht's Core during Accretion: a Preliminary Solid Inner Core at the End of Accrfetion.

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.

    2015-12-01

    Growth of an inner core has conventionally been related to core cooling blow the liquidus of iron. It is however possible that the core of the proto-Earth solidifies upon pressure increase during accretion. The lithostatic pressure in the proto-Earth increases immediately after merging each impactor, and the pressure-dependent liquidus of iron may supersede the temperature near the center resulting in a solid inner core. Assuming that Earth is formed by accreting a few dozen Moon to Mars size planetary embryos, the thermal evolution of the proto-Earth's core is investigated during accretion. The collision of an embryo heats the Earth differentially and the rotating low-viscosity, differentially heated core stratifies, creating a spherically symmetric stable and radially increasing temperature distribution. Convection occurs in the outer core while heat transfers by conduction in deeper parts. It is assumed that the iron core of an embryo pools at the bottom of partially molten mantle and thermally equilibrates with surroundings. It then descends as an iron diapir in the solid silicate mantle, while releasing its gravitational energy. Depending on its temperature when arrives at the core mantle boundary, it may spread on the core creating a hot layer or plunge into the core and descend to a neutrally buoyant level while further releasing its gravitational energy. A few dozen thermal evolution models of the core are investigates to examine effects of major parameters such as: total number of impacting embryos; partitioning of the gravitational energy released during the descent of the diaper in the mantle (between the silicate mantle and the iron diaper), and in the core (between the proto-Earth's core and that of the embryo); and gravitational energy and latent heat released due to the core solidification. All of the models predict a large solid inner core, about 1500 to 2000 km in radius, at the end of accretion.

  8. Dimerization effects on coacervation property of an elastin-derived synthetic peptide (FPGVG)5.

    PubMed

    Suyama, Keitaro; Taniguchi, Suguru; Tatsubo, Daiki; Maeda, Iori; Nose, Takeru

    2016-04-01

    Elastin, a core protein of the elastic fibers, exhibits the coacervation (temperature-dependent reversible association/dissociation) under physiological conditions. Because of this characteristic, elastin and elastin-derived peptides have been considered to be useful as base materials for developing various biomedical products, skin substitutes, synthetic vascular grafts, and drug delivery systems. Although elastin-derived polypeptide (Val-Pro-Gly-Val-Gly)n also has been known to demonstrate coacervation property, a sufficiently high (VPGVG)n repetition number (n>40) is required for coacervation. In the present study, a series of elastin-derived peptide (Phe-Pro-Gly-Val-Gly)5 dimers possessing high coacervation potential were newly developed. These novel dimeric peptides exhibited coacervation at significantly lower concentrations and temperatures than the commonly used elastin-derived peptide analogs; this result suggests that the coacervation ability of the peptides is enhanced by dimerization. Circular dichroism (CD) measurements indicate that the dimers undergo similar temperature-dependent and reversible conformational changes when coacervation occurs. The molecular dynamics calculation results reveal that the sheet-turn-sheet motif involving a type II β-turn-like structure commonly observed among the dimers and caused formation of globular conformation of them. These synthesized peptide dimers may be useful not only as model peptides for structural analysis of elastin and elastin-derived peptides, but also as base materials for developing various temperature-sensitive biomedical and industrial products. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  9. The Effect of Temperature on Faceplate/Core Delamination in Composite/Titanium Sandwich Plates

    NASA Technical Reports Server (NTRS)

    Liechti, Kenneth M.; Marton, Balazs

    2000-01-01

    A study was made of the delamination behavior of sandwich beams made of titanium core bonded to face-plates that consisted of carbon fiber reinforced polymer composite. Nominally mode I behavior was considered at 23C and 180C, by making use of a specially reinforced double cantilever (DCB) specimens. The toughness of the bond between the faceplate and the core was determined on the basis of a beam on elastic foundation analysis. The specimen compliance, and toughness were all independent of temperature in these relatively short-term experiments. The fracture mechanism showed temperature dependence, due to the hygrothermal sensitivity of the adhesive.

  10. Defined polymer shells on nanoparticles via a continuous aerosol-based process

    NASA Astrophysics Data System (ADS)

    Sigmund, Stephanie; Akgün, Ertan; Meyer, Jörg; Hubbuch, Jürgen; Wörner, Michael; Kasper, Gerhard

    2014-08-01

    A continuous aerosol-based process is described for the encapsulation of nanoparticles with a thin polymer shell. The process is essentially based on directed binary collisions between gas-borne core particles and liquid monomer droplets carrying opposite electrical charges, followed by photo-initiated polymerization. Once the two streams are mixed together, the process runs to completion on a time scale of about 2 min or less, required for coagulation and polymerization. Gold, silica, and sodium chloride nanoparticles were successfully coated by this technique with PHDDA [poly(hexanediol diacrylate)] and/or crosslinked PMMA [poly(methyl methacrylate)]. It was found that all core materials as well as agglomerates were wettable at room temperature and that the spreading kinetics of the monomer were fast enough to cover the core particles uniformly within the time scale provided for coagulation. The shell thickness depends on the volume ratio between core particles and monomer droplets. This was demonstrated for a combination of monodisperse silica spheres ( d = 241 nm) and polydisperse methyl methacrylate droplets, resulting in a theoretical shell thickness of 18 nm. There was very good agreement between measurements by TEM and electrical mobility spectroscopy. The results revealed that about 90 % or more of the core-shell structures were formed from 1:1 collisions between a core particle and a single monomer droplet.

  11. Advanced sample environments for in situ neutron diffraction studies of nuclear materials

    NASA Astrophysics Data System (ADS)

    Reiche, Helmut Matthias

    Generation IV nuclear reactor concepts, such as the supercritical-water-cooled nuclear reactor (SCWR), are actively researched internationally. Operating conditions above the critical point of water (374°C, 22.1 MPa) and fuel core temperature that potentially exceed 1850°C put a high demand on the surrounding materials. For their safe application, it is essential to characterize and understand the material properties on an atomic scale such as crystal structure and grain orientation (texture) changes as a function of temperature and stress. This permits the refinement of models predicting the macroscopic behavior of the material. Neutron diffraction is a powerful tool in characterizing such crystallographic properties due to their deep penetration depth into condensed matter. This leads to the ability to study bulk material properties, as opposed to surface effects, and allows for complex sample environments to study e.g. the individual contributions of thermo-mechanical processing steps during manufacturing, operating or accident scenarios. I present three sample environments for in situ neutron diffraction studies that provide such crystallographic information and have been successfully commissioned and integrated into the user program of the High Pressure -- Preferred Orientation (HIPPO) diffractometer at the Los Alamos Neutron Science Center (LANSCE) user facility. I adapted a sample changer for reliable and fast automated texture measurements of multiple specimens. I built a creep furnace combining a 2700 N load frame with a resistive vanadium furnace, capable of temperatures up to 1000°C, and manipulated by a pair of synchronized rotation stages. This combination allows following deformation and temperature dependent texture and strain evolutions in situ. Utilizing the presented sample changer and creep furnace we studied pressure tubes made of Zr-2.5wt%Nb currently employed in CANDURTM nuclear reactors and proposed for future SCWRs, acting as the primary containment vessel of high temperature heavy water (D2O) inside the reactor core. The measured sample texture shows that upon traversing the phase transition, which proceeded according to the Burger orientation relationship, variant selection occurred during heating and cooling of the zirconium alloy. Experimental results of lattice strains depending on the crystallographic orientation can be used to calculate strain pole figures which grant insight into the three-dimensional mechanical response of a polycrystalline aggregate and represent an extremely powerful material model validation tool. Lastly, I developed a resistive graphite high-temperature furnace with sample motion for in situ crystal structure and texture measurements of nuclear materials at steady-state temperatures up to at least 2200°C. This permits in situ observation of e.g. phase transitions and coefficients of thermal expansion, as well as phase formation and texture development during solidification. Utilizing this apparatus, I investigated the carbothermic reduction of UO2 nanopowder forming uranium carbide, a promising Generation IV reactor fuel. The onset of the UO2 + 2C → UC + CO2 reaction was observed at 1440°C with the bulk portion being complete at 1500°C. I describe the novel synthesis for this nanoparticle UO2 powder, which closely imitates observed nano grains in partially burnt reactor fuels. Of the three opposing structure models reported for the non-quenchable cubic UC2 phase, stable between 1769°C and 2560°C, the NaCl-type structure according to Bowman is found to be correct. This is deemed major progress as the CaF2-type structure was used for recent thermal modeling of safety critical factors in nuclear reactors. A temperature dependent increase in density due to carbon diffusion has been observed and quantified. I provide first experimental data of an unspecified, reversible order-disorder transition in this delta-phase with its onset at ˜1800°C which is likely due to rotating C2 molecules in the sublattice.

  12. Carbon Solubility in Metallic Iron and Melting Relations in the Fe-C System at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fei, Y.

    2006-05-01

    Carbon has been proposed to be one of the light elements in the Earth's core. Knowledge of phase relations in the Fe-C system at high pressure and temperature is needed to understand the carbon content in the core and its effect on the physical properties and the temperature of the core. Experimental data in this system at high pressure and temperature are limited. In this study we report new experimental data on melting relations up to 25 GPa. The experiments were performed using piston-cylinder and multi-anvil devices at the Geophysical Laboratory. Mixtures of fine power of pure iron and graphite with different carbon content were prepared as starting materials. The starting materials were loaded into MgO capsules and then compressed to the desired pressures, using various high-pressure cell assemblies that have been calibrated at high pressure. High temperatures were achieved using either graphite heater (<6 GPa) or rhenium heater at higher pressures and measured with a tungsten-rhenium thermocouple. Melting relations were determined with a JEOL JXA-8900 electron microprobe, based on quench textures and chemical composition of the quenched phases. Powder X- ray diffraction technique was also used to identify phases and determine unit cell parameters. A positive slope between the solubility of carbon in metallic iron and pressure was found at elevated temperatures. The eutectic temperature increases with increasing pressure. The liquidus temperature determined in this study is significantly lower than the calculated value in previous study. Our study presents directly experimental measurements of the melting relations in the Fe-C system at high pressure and temperature, which provides better constraints on composition and temperature of the Earth's core.

  13. Magnetic response of hybrid ferromagnetic and antiferromagnetic core-shell nanostructures.

    PubMed

    Khan, U; Li, W J; Adeela, N; Irfan, M; Javed, K; Wan, C H; Riaz, S; Han, X F

    2016-03-21

    The synthesis of FeTiO3-Ni(Ni80Fe20) core-shell nanostructures by a two-step method (sol-gel and DC electrodeposition) has been demonstrated. XRD analysis confirms the rhombohedral crystal structure of FeTiO3(FTO) with space group R3[combining macron]. Transmission electron microscopy clearly depicts better morphology of nanostructures with shell thicknesses of ∼25 nm. Room temperature magnetic measurements showed significant enhancement of magnetic anisotropy for the permalloy (Ni80Fe20)-FTO over Ni-FTO core-shell nanostructures. Low temperature magnetic measurements of permalloy-FeTiO3 core-shell structure indicated a strong exchange bias mechanism with magnetic coercivity below the antiferromagnetic Neel temperature (TN = 59 K). The exchange bias is attributed to the alignment of magnetic moments in the antiferromagnetic material at low temperature. Our scheme opens a path towards optimum automotive systems and wireless communications wherein broader bandwidths and smaller sizes are required.

  14. Control of the Speed of a Light-Induced Spin Transition through Mesoscale Core-Shell Architecture.

    PubMed

    Felts, Ashley C; Slimani, Ahmed; Cain, John M; Andrus, Matthew J; Ahir, Akhil R; Abboud, Khalil A; Meisel, Mark W; Boukheddaden, Kamel; Talham, Daniel R

    2018-05-02

    The rate of the light-induced spin transition in a coordination polymer network solid dramatically increases when included as the core in mesoscale core-shell particles. A series of photomagnetic coordination polymer core-shell heterostructures, based on the light-switchable Rb a Co b [Fe(CN) 6 ] c · mH 2 O (RbCoFe-PBA) as core with the isostructural K j Ni k [Cr(CN) 6 ] l · nH 2 O (KNiCr-PBA) as shell, are studied using temperature-dependent powder X-ray diffraction and SQUID magnetometry. The core RbCoFe-PBA exhibits a charge transfer-induced spin transition (CTIST), which can be thermally and optically induced. When coupled to the shell, the rate of the optically induced transition from low spin to high spin increases. Isothermal relaxation from the optically induced high spin state of the core back to the low spin state and activation energies associated with the transition between these states were measured. The presence of a shell decreases the activation energy, which is associated with the elastic properties of the core. Numerical simulations using an electro-elastic model for the spin transition in core-shell particles supports the findings, demonstrating how coupling of the core to the shell changes the elastic properties of the system. The ability to tune the rate of optically induced magnetic and structural phase transitions through control of mesoscale architecture presents a new approach to the development of photoswitchable materials with tailored properties.

  15. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature

    PubMed Central

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang

    2016-01-01

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability. PMID:25953120

  16. Evaluation of the Transient Liquid Phase (TLP) Bonding Process for Ti3Al-Based Honeycomb Core Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Hoffman, Eric K.

    1998-01-01

    The suitability of using transient liquid phase (TLP) bonding to fabricate honeycomb core sandwich panels with Ti-14Al-21Nb (wt%) titanium aluminide (T3Al) face sheets for high-temperature hypersonic vehicle applications was evaluated. Three titanium alloy honeycomb cores and one Ti3Al alloy honeycomb core were investigated. Edgewise compression (EWC) and flatwise tension (FWT) tests on honeycomb core sandwich specimens and tensile tests of the face sheet material were conducted at temperatures ranging from room temperature to 1500 F. EWC tests indicated that the honeycomb cores and diffusion bonded joints were able to stabilize the face sheets up to and beyond the face sheet compressive yield strength for all temperatures investigated. The specimens with the T3Al honeycomb core produced the highest FWT strengths at temperatures above 1000 F. Tensile tests indicated that TLP processing conditions resulted in decreases in ductility of the Ti-14Al-21Nb face sheets. Microstructural examination showed that the side of the face sheets to which the filler metals had been applied was transformed from equiaxed alpha2 grains to coarse plates of alpha2 with intergranular Beta. Fractographic examination of the tensile specimens showed that this transformed region was dominated by brittle fracture.

  17. Microwave processed NiMg ferrite: Studies on structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Chandra Babu Naidu, K.; Madhuri, W.

    2016-12-01

    Ferrites are magnetic semiconductors realizing an important role in electrical and electronic circuits where electrical and magnetic property coupling is required. Though ferrite materials are known for a long time, there is a large scope in the improvement of their properties (vice sintering and frequency dependence of electrical and magnetic properties) with the current technological trends. Forth coming technology is aimed at miniaturization and smart gadgets, electrical components like inductors and transformers cannot be included in integrated circuits. These components are incorporated into the circuit as surface mount devices whose fabrication involves low temperature co-firing of ceramics and microwave monolithic integrated circuits technologies. These technologies demand low temperature sinter-ability of ferrites. This article presents low temperature microwave sintered Ni-Mg ferrites of general chemical formula Ni1-xMgxFe2O4 (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) for potential applications as transformer core materials. The series of ferrites are characterized using X-ray diffractometer, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer for investigating structural, morphological and magnetic properties respectively. The initial permeability is studied with magnesium content, temperature and frequency in the temperature range of 308 K-873 K and 42 Hz-5 MHz.

  18. Preparation and characterization of Phase change material microcapsules by a core-shell-like emulsion polymerization method

    NASA Astrophysics Data System (ADS)

    Ding, Li-ming; Pei, Guang-ling

    2015-07-01

    Phase change material microcapsules (MicroPCMs) were synthesized by a coreshell-like emulsion polymerization method. Styrene and methylacrylic acid copolymer (PS- MAA) was used as a wall material, and paraffin was used as a core material in order to prepare spherical, high resistance and high enthalpy MicroPCMs. Scanning Electron Microscope (SEM), laser particle size analyzer, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetry (TG) and Differential Scanning Calorimeter (DSC) were employed to characterize the MicroPCMs. The results indicated that the average particle size of MicroPCMs was 42.29 μm, and the content of paraffin within microcapsules was 57.6%. The melting temperature and crystallization temperature were 30.7°C and 25.2°C.The melting enthalpy and crystallization enthalpy were -84.1 J/g and 91.3 J/g, respectively.

  19. Design of space-type electronic power transformers

    NASA Technical Reports Server (NTRS)

    Ahearn, J. F.; Lagadinos, J. C.

    1977-01-01

    Both open and encapsulated varieties of high reliability, low weight, and high efficiency moderate and high voltage transformers were investigated to determine the advantages and limitations of their construction in the ranges of power and voltage required for operation in the hard vacuum environment of space. Topics covered include: (1) selection of the core material; (2) preliminary calculation of core dimensions; (3) selection of insulating materials including magnet wire insulation, coil forms, and layer and interwinding insulation; (4) coil design; (5) calculation of copper losses, core losses and efficiency; (6) calculation of temperature rise; and (7) optimization of design with changes in core selection or coil design as required to meet specifications.

  20. Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures: Revision 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katoh, Yutai; Terrani, Kurt A.

    2015-08-01

    Fuels and core structures in current light water reactors (LWR’s) are vulnerable to catastrophic failure in severe accidents as unfortunately evidenced by the March 2011 Fukushima Dai-ichi Nuclear Power Plant Accident. This vulnerability is attributed primarily to the rapid oxidation kinetics of zirconium alloys in a water vapor environment at very high temperatures. Zr alloys are the primary material in LWR cores except for the fuel itself. Therefore, alternative materials with reduced oxidation kinetics as compared to zirconium alloys are sought to enable enhanced accident-tolerant fuels and cores.

  1. CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotas, J.F.; Stroh, K.R.

    1983-01-01

    The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident thatmore » simulates a control-rod withdrawal at full power.« less

  2. Size-exclusion chromatography using core-shell particles.

    PubMed

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Thermo-optical characterization of cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots embedded in biocompatible materials.

    PubMed

    Pilla, Viviane; Alves, Leandro P; Iwazaki, Adalberto N; Andrade, Acácio A; Antunes, Andrea; Munin, Egberto

    2013-09-01

    Cadmium selenide/zinc sulfide (CdSe/ZnS) core-shell quantum dots (QDs) embedded in biocompatible materials were thermally and optically characterized with a thermal lens (TL) technique. Transient TL measurements were performed with a mode-mismatched, dual-beam (excitation and probe) configuration. A thermo-optical study of the CdSe/ZnS QDs was performed for different core diameters (3.5, 4.0, 5.2, and 6.6 nm) in aqueous solution and synthetic saliva, and three different core diameters (2.4, 2.9, and 4.1 nm) embedded in restorative dental resin (0.025% by mass). The thermal diffusivity results are characteristic of the biocompatible matrices. The radiative quantum efficiencies for aqueous solution and biofluid materials are dependent on the core size of the CdSe/ZnS core-shell QDs. The results obtained from the fluorescence spectral measurements for the biocompatible materials support the TL results.

  4. Advanced Na-NiCl2 Battery Using Nickel-Coated Graphite with Core-Shell Microarchitecture.

    PubMed

    Chang, Hee-Jung; Canfield, Nathan L; Jung, Keeyoung; Sprenkle, Vincent L; Li, Guosheng

    2017-04-05

    Stationary electric energy storage devices (rechargeable batteries) have gained increasing prominence due to great market needs, such as smoothing the fluctuation of renewable energy resources and supporting the reliability of the electric grid. With regard to raw materials availability, sodium-based batteries are better positioned than lithium batteries due to the abundant resource of sodium in Earth's crust. However, the sodium-nickel chloride (Na-NiCl 2 ) battery, one of the most attractive stationary battery technologies, is hindered from further market penetration by its high material cost (Ni cost) and fast material degradation at its high operating temperature. Here, we demonstrate the design of a core-shell microarchitecture, nickel-coated graphite, with a graphite core to maintain electrochemically active surface area and structural integrity of the electron percolation pathway while using 40% less Ni than conventional Na-NiCl 2 batteries. An initial energy density of 133 Wh/kg (at ∼C/4) and energy efficiency of 94% are achieved at an intermediate temperature of 190 °C.

  5. Properties of 5052 Aluminum For Use as Honeycomb Core in Manned Spaceflight

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.

    2018-01-01

    This work explains that the properties of Al 5052 material used commonly for honeycomb cores in sandwich panels are highly dependent on the tempering condition. It has not been common to specify the temper when ordering HC material nor is it common for the supplier to state what the temper is. For aerospace uses, a temper of H38 or H39 is probably recommended. This temper should be stated in the bill of material and should be verified upon receipt of the core. To this end some properties provided herein can aid as benchmark values.

  6. Is age-dependent, ketamine-induced apoptosis in the rat somatosensory cortex influenced by temperature?

    PubMed Central

    Gutierrez, Silvia; Carnes, Ansley; Finucane, Beth; Oelsner, Gabrielle Musci William; Hicks, Lucretia; Russell, Gregory B.; Liu, Chun; Turner, Christopher P.

    2010-01-01

    General anesthetics have long been thought to be relatively safe but recent clinical studies have revealed that exposure of very young children (4 years or less) to agents that act by blocking the N-methyl-D-aspartate receptor (NMDAR) can lead to cognitive deficits as they mature. In rodent and non-human primate studies, blockade of this receptor during the perinatal period leads to a number of molecular, cellular and behavioral pathologies. Despite the overwhelming evidence from such studies, doubt remains as to their clinical relevance. A key issue is whether the primary injury (apoptotic cell death) is specific to receptor blockade or due to non-specific, patho-physiological changes. Principal to this argument is that loss of core body temperature following NMDAR blockade could explain why injury is observed hours later. We therefore examined the neurotoxicity of the general anesthetic ketamine in P7, P14 and P21 rats while monitoring core body temperature. We found that, at P7, ketamine induced the pro-apoptotic enzyme activated caspase-3 in a dose-dependent manner. As expected, injury was greatly diminished by P14 and absent by P21. However, contrary to expectations, we found that core body temperature was not a factor in determining injury. Our data imply that injury is directly related to receptor blockade and is unlikely to be overcome by artificially changing core body temperature. PMID:20298758

  7. Core-shelled mesoporous CoFe2O4-SiO2 material with good adsorption and high-temperature magnetic recycling capabilities

    NASA Astrophysics Data System (ADS)

    Li, Zhi'ang; Wang, Jianlin; Liu, Min; Chen, Tong; Chen, Jifang; Ge, Wen; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin

    2018-04-01

    Residues of organic dye in industrial effluents cause severe water system pollution. Although several methods, such as biodegradation and activated carbon adsorption, are available for treating these effluents before their discharge into waterbodies, secondary pollution by adsorbents and degrading products remains an issue. Therefore, new materials should be identified to solve this problem. In this work, CoFe2O4-SiO2 core-shell structures were synthesized using an improved Stöber method by coating mesoporous silica onto CoFe2O4 nanoparticles. The specific surface areas of the synthesized particles range from 30 m2/g to 150 m2/g and vary according to the dosage amount of tetraethoxysilane. Such core-shelled nanoparticles have the following advantages for treating industrial effluents mixed with dye: good adsorption capability, above-room-temperature magnetic recycling capability, and heat-enduring stability. Through adsorption of methylene blue, a typical dyeing material, the core-shell-structured particles show a good adsorption capability of approximately 33 mg/L. The particles are easily and completely collected by magnets, which is possible due to the magnetic property of core CoFe2O4. Heat treatment can burn out the adsorbed dyes and good adsorption performance is sustained even after several heat-treating loops. This property overcomes the common problem of particles with Fe3O4 as a core, by which Fe3O4 is oxidized to nonmagnetic α-Fe2O3 at the burning temperature. We also designed a miniature of effluent-treating pipeline, which demonstrates the potential of the application.

  8. Method of making hermetic seals for hermetic terminal assemblies

    DOEpatents

    Hsu, John S.; Marlino, Laura D.; Ayers, Curtis W.

    2010-04-13

    This invention teaches methods of making a hermetic terminal assembly comprising the steps of: inserting temporary stops, shims and jigs on the bottom face of a terminal assembly thereby blocking assembly core open passageways; mounting the terminal assembly inside a vacuum chamber using a temporary assembly perimeter seal and flange or threaded assembly interfaces; mixing a seal admixture and hardener in a mixer conveyor to form a polymer seal material; conveying the polymer seal material into a polymer reservoir; feeding the polymer seal material from the reservoir through a polymer outlet valve and at least one polymer outlet tube into the terminal assembly core thereby filling interstitial spaces in the core adjacent to service conduits, temporary stop, and the terminal assembly casing; drying the polymer seal material at room temperature thereby hermetically sealing the core of the terminal assembly; removing the terminal assembly from the vacuum chamber, and; removing the temporary stops, shims.

  9. Beth-Uhlenbeck approach for repulsive interactions between baryons in a hadron gas

    NASA Astrophysics Data System (ADS)

    Vovchenko, Volodymyr; Motornenko, Anton; Gorenstein, Mark I.; Stoecker, Horst

    2018-03-01

    The quantum mechanical Beth-Uhlenbeck (BU) approach for repulsive hard-core interactions between baryons is applied to the thermodynamics of a hadron gas. The second virial coefficient a2—the "excluded volume" parameter—calculated within the BU approach is found to be temperature dependent, and it differs dramatically from the classical excluded volume (EV) model result. At temperatures T =100 -200 MeV, the widely used classical EV model underestimates the EV parameter for nucleons at a given value of the nucleon hard-core radius by large factors of 3-4. Previous studies, which employed the hard-core radii of hadrons as an input into the classical EV model, have to be re-evaluated using the appropriately rescaled EV parameters. The BU approach is used to model the repulsive baryonic interactions in the hadron resonance gas (HRG) model. Lattice data for the second- and fourth-order net baryon susceptibilities are described fairly well when the temperature dependent BU baryonic excluded volume parameter corresponds to nucleon hard-core radii of rc=0.25 -0.3 fm. Role of the attractive baryonic interactions is also considered. It is argued that HRG model with a constant baryon-baryon EV parameter vN N≃1 fm3 provides a simple yet efficient description of baryon-baryon interaction in the crossover temperature region.

  10. Thermoelectric-pyroelectric hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites.

    PubMed

    Yeo, Taehan; Hwang, Hayoung; Shin, Dongjoon; Seo, Byungseok; Choi, Wonjoon

    2017-02-10

    There is an urgent need to develop a suitable energy source owing to the rapid development of various innovative devices using micro-nanotechnology. The thermopower wave (TW), which produces a high specific power during the combustion of solid fuel inside micro-nanostructure materials, is a unique energy source for unusual platforms that cannot use conventional energy sources. Here, we report on the significant enhancement of hybrid energy generation of pyroelectrics and thermoelectrics from TWs in carbon nanotube (CNT)-PZT (lead zirconate titanate, P(Z 0.5 -T 0.5 )) composites for the first time. Conventional TWs use only charge carrier transport driven by the temperature gradient along the core materials to produce voltage. In this study, a core-shell structure of CNTs-PZTs was prepared to utilize both the temperature gradient along the core material (thermoelectrics) and the dynamic change in the temperature of the shell structure (pyroelectrics) induced by TWs. The dual mechanism of energy generation in CNT-PZT composites amplified the average peak and duration of the voltage up to 403 mV and 612 ms, respectively, by a factor of 2 and 60 times those for the composites without a PZT layer. Furthermore, dynamic voltage measurements and structural analysis in repetitive TWs confirmed that CNT-PZT composites maintain the original performance in multiple TWs, which improves the reusability of materials. The advanced TWs obtained by the application of a PZT layer as a pyroelectric material contributes to the extension of the usable energy portion as well as the development of TW-based operating devices.

  11. Mixing in classical novae: a 2-D sensitivity study

    NASA Astrophysics Data System (ADS)

    Casanova, J.; José, J.; García-Berro, E.; Calder, A.; Shore, S. N.

    2011-03-01

    Context. Classical novae are explosive phenomena that take place in stellar binary systems. They are powered by mass transfer from a low-mass, main sequence star onto a white dwarf. The material piles up under degenerate conditions and a thermonuclear runaway ensues. The energy released by the suite of nuclear processes operating at the envelope heats the material up to peak temperatures of ~(1-4) × 108 K. During these events, about 10-4-10-5M⊙, enriched in CNO and other intermediate-mass elements, are ejected into the interstellar medium. To account for the gross observational properties of classical novae (in particular, a metallicity enhancement in the ejecta above solar values), numerical models assume mixing between the (solar-like) material transferred from the companion and the outermost layers (CO- or ONe-rich) of the underlying white dwarf. Aims: The nature of the mixing mechanism that operates at the core-envelope interface has puzzled stellar modelers for about 40 years. Here we investigate the role of Kelvin-Helmholtz instabilities as a natural mechanism for self-enrichment of the accreted envelope with core material. Methods: The feasibility of this mechanism is studied by means of the multidimensional code FLASH. Here, we present a series of 9 numerical simulations perfomed in two dimensions aimed at testing the possible influence of the initial perturbation (duration, strength, location, and size), the resolution adopted, or the size of the computational domain on the results. Results: We show that results do not depend substantially on the specific choice of these parameters, demonstrating that Kelvin-Helmholtz instabilities can naturally lead to self-enrichment of the accreted envelope with core material, at levels that agree with observations. Movie is only available in electronic form at http://www.aanda.org

  12. Design Considerations for High Temperature Power Inductors

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    2005-01-01

    A uniform B-field approximation model is used to develop design formulas for single-layer wound, toroidal core, ac power inductors that must handle a specified current. Such a geometry is well suited for high temperature, high frequency inductors, where removal of heat from the core becomes critical. Explicit expressions are derived for core radii, core and winding volumes, winding turns and core permeability as functions of a dimensional scaling ratio (S). A limit on the maximum allowed core B-field leads to the result that the minimum core volume is proportional to the permeability, which has a lower bound. Plots versus S are provided for a specific case, to show that good designs can be picked in the overlap regions around the minima in mass and overall size, where the mass and size are relatively flat. Data to 250 C are presented for an MPP core based inductor to show that a quasi-linear, high temperature inductor can be constructed with available materials. A similar development is applied to a toroidal air-core geometry, showing that for the same ratings, such an inductor is considerably bigger and more massive, at least in the single-layer version.

  13. Multi-functional materials by powder processing for a thermal protection system with self-cooling capability: Perspirable skin

    NASA Astrophysics Data System (ADS)

    Sun, Li

    Aerodynamic heating generated by the friction between the atmosphere and the space vehicle's surface at reentry can enhance the temperature on the surface as high as 1700°C. A Thermal Protection System (TPS) is needed to inhibit the heat entering into the vehicle. Presently, the completely passive thermal protection is used for TPS. The thermal ablation/erosion and oxidization reaction of the current TPS is the major threat to the safety of the space vehicle. Therefore, a new design for TPS with actively self-cooling capability was proposed by bio-mimicking the perspiration of the human body, henceforth called Perspirable skin. The design of Perspirable Skin consists of core material shrink-fitted into a skin panel such as Reinforced Carbon-Carbon (RCC) Composite. The core material contains a very small Coefficient of Thermal Expansion (CTE) compared to the panel material. As temperature increases, the gap between the core and the skin are produced due to the CTE difference. Compressed gas on board the space vehicle will blow out from the gap once the surface temperature reaches a critical value. The cold gas flows over the surface and mixes with the atmospheric air to compensate for the frictional heat. With Perspirable Skin, the highest temperature on the surface is expected to decrease, and we assumed it to be around half of the present temperature. This dissertation focuses on the selection of the core materials and their manufacturing by powder processing. Based on a series of experiments, several results were obtained: (1) the effect of powder mixing on the compaction capability and sintering capability was determined; (2) a flat 3-layered Al 2O3/ZrO2 Functionally Graded Material (FGM) without cracks was fabricated; (3) the factors contributing to the cracks in the multi-layered materials were investigated; (4) an isotropic negative thermal expansion material, ZrW2O8, as well as its composites with ZrO2 were processed by in-situ reaction of WO3 and ZrO2; (5) several CTE prediction models on composites containing ZrW2O 8 were studied and proposed as a better scheme for applying the contiguity of phase; (6) a novel processing technique to produce ZrW2O 8-ZrO2 continuous FGMs was developed; and (7) the thermal and mechanical properties of the various materials were measured. Finally, using finite element analysis (FEA), the complete design of Perspirable Skin has been accomplished.

  14. Charge transport in highly efficient iridium cored electrophosphorescent dendrimers

    NASA Astrophysics Data System (ADS)

    Markham, Jonathan P. J.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.; Weiter, Martin; Bässler, Heinz

    2004-01-01

    Electrophosphorescent dendrimers are promising materials for highly efficient light-emitting diodes. They consist of a phosphorescent core onto which dendritic groups are attached. Here, we present an investigation into the optical and electronic properties of highly efficient phosphorescent dendrimers. The effect of dendrimer structure on charge transport and optical properties is studied using temperature-dependent charge-generation-layer time-of-flight measurements and current voltage (I-V) analysis. A model is used to explain trends seen in the I-V characteristics. We demonstrate that fine tuning the mobility by chemical structure is possible in these dendrimers and show that this can lead to highly efficient bilayer dendrimer light-emitting diodes with neat emissive layers. Power efficiencies of 20 lm/W were measured for devices containing a second-generation (G2) Ir(ppy)3 dendrimer with a 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene electron transport layer.

  15. The MELTSPREAD Code for Modeling of Ex-Vessel Core Debris Spreading Behavior, Code Manual – Version3-beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, M. T.

    MELTSPREAD3 is a transient one-dimensional computer code that has been developed to predict the gravity-driven flow and freezing behavior of molten reactor core materials (corium) in containment geometries. Predictions can be made for corium flowing across surfaces under either dry or wet cavity conditions. The spreading surfaces that can be selected are steel, concrete, a user-specified material (e.g., a ceramic), or an arbitrary combination thereof. The corium can have a wide range of compositions of reactor core materials that includes distinct oxide phases (predominantly Zr, and steel oxides) plus metallic phases (predominantly Zr and steel). The code requires input thatmore » describes the containment geometry, melt “pour” conditions, and cavity atmospheric conditions (i.e., pressure, temperature, and cavity flooding information). For cases in which the cavity contains a preexisting water layer at the time of RPV failure, melt jet breakup and particle bed formation can be calculated mechanistically given the time-dependent melt pour conditions (input data) as well as the heatup and boiloff of water in the melt impingement zone (calculated). For core debris impacting either the containment floor or previously spread material, the code calculates the transient hydrodynamics and heat transfer which determine the spreading and freezing behavior of the melt. The code predicts conditions at the end of the spreading stage, including melt relocation distance, depth and material composition profiles, substrate ablation profile, and wall heatup. Code output can be used as input to other models such as CORQUENCH that evaluate long term core-concrete interaction behavior following the transient spreading stage. MELTSPREAD3 was originally developed to investigate BWR Mark I liner vulnerability, but has been substantially upgraded and applied to other reactor designs (e.g., the EPR), and more recently to the plant accidents at Fukushima Daiichi. The most recent round of improvements that are documented in this report have been specifically implemented to support industry in developing Severe Accident Water Management (SAWM) strategies for Boiling Water Reactors.« less

  16. POMC neurons in heat: A link between warm temperatures and appetite suppression.

    PubMed

    Vicent, Maria A; Mook, Conor L; Carter, Matthew E

    2018-05-01

    When core body temperature increases, appetite and food consumption decline. A higher core body temperature can occur during exercise, during exposure to warm environmental temperatures, or during a fever, yet the mechanisms that link relatively warm temperatures to appetite suppression are unknown. A recent study in PLOS Biology demonstrates that neurons in the mouse hypothalamus that express pro-opiomelanocortin (POMC), a neural population well known to suppress food intake, also express a temperature-sensitive ion channel, transient receptor potential vanilloid 1 (TRPV1). Slight increases in body temperature cause a TRPV1-dependent increase in activity in POMC neurons, which suppresses feeding in mice. Taken together, this study suggests a novel mechanism linking body temperature and food-seeking behavior.

  17. Vapor Pressure and Predicted Stability of American Contact Dermatitis Society Core Allergens

    PubMed Central

    Jou, Paul C.; Siegel, Paul D.; Warshaw, Erin M.

    2018-01-01

    Background Accurate patch testing is reliant on proper preparation of patch test allergens. The stability of patch test allergens is dependent on several factors including vapor pressure (VP). Objective This investigation reviews the VP of American Contact Dermatitis Society Core Allergens and compares stability predictions based on VP with those established through clinical testing. Methods Standard references were accessed for determining VP in millimeters of mercury and associated temperature in degrees celsius. If multiple values were listed, VP at temperatures that most approximate indoor storage conditions (20°C and 25°C) were chosen. For mixes, the individual component with the highest VP was chosen as the overall VP, assuming that the most volatile substance would evaporate first. Antigens were grouped into low (≤0.001 mm Hg), moderate (<1 to >0.001 mm Hg), and high (≥1 mm Hg) volatility using arbitrary cutoff values. Conclusions This review is consistent with previously reported data on formaldehyde, acrylates, and fragrance material instability. Given lack of testing data, VP can be useful in predicting patch test compound stability. Measures such as air-tight multidose reagent containers, sealed single-application dispensers, preparation of patches immediately before application, and storage at lower temperatures may remedy some of these issues. PMID:27427821

  18. Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation.

    PubMed

    Wang, Xiangfu; Zheng, Jin; Xuan, Yan; Yan, Xiaohong

    2013-09-09

    NaYbF(4):Tm3+@SiO(2) core-shell micro-particles were synthesized by a hydrothermal method and subsequent ultrasonic coating process. Optical temperature sensing has been observed in NaYbF4: Tm(3+)@SiO(2)core-shell micro-particles with a 980 nm infrared laser as excitation source.The fluorescence intensity ratios, optical temperature sensitivity, and temperature dependent population re-distribution ability from the thermally coupled (1)D(2)/(1)G(4) and (3)F(2) /(3)H(4) levels of the Tm(3+) ion have been analyzed as a function of temperature in the range of 100~700 K in order to check its availability as a optical temperature sensor. A better behavior as a lowtemperature sensor has been obtained with a minimum sensitivity of 5.4 × 10(-4) K(-1) at 430 K. It exhibits temperature induced population re-distribution from (1)D(2) /(1)G(4) thermally coupled levels at higher temperature range.

  19. Isotopic Anomalies in Primitive Solar System Matter: Spin-State Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva S.; Charnley, Steven B.; Cordiner, Martin A.; Milan, Stefanie N.

    2012-01-01

    Organic material found in meteorites and interplanetary dust particles is enriched in D and N-15, This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar core. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and N-15 and can account for the largest isotop c enrichments measured in carbonaceous meteorites, However, more recent measurements have shown that, in some primitive samples, a large N-15 enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, N-15 enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both N-15 and D in dense cloud cores, We also show that while the nitriles, HCN and HNC, contain the greatest N-15 enrichment, this is not expected to correlate with extreme D emichment. These calculations therefore support the view that Solar System N-15 and D isotopic anomalies have an interstellar heritage, We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  20. Comparative Wide Temperature Core Loss Characteristics of Two Candidate Ferrites for the NASA/TRW 1500 W PEBB Converter

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1999-01-01

    High frequency core loss and magnetization properties of commercial type MN8CX and PC40, high resistivity, MnZn based, power ferrites are presented over the temperature range of -l50 C to 150 C, at selected values of peak flux density (B (sub p)). Most of the data is at 100 kHz, with some data extended to 200 and 300 kHz for the MN8CX. Plots of the specific Core loss against temperature exhibit the minimal characteristic of such ferrites. These plots show that the MN8CX is optimized for minimum loss at about 25 C, whereas the PC40 is optimized at about 80 C. At the points of minimum loss and for the same B (sub p), the MN8CX has roughly half the losses of the PC40 at the lower flux densities. This loss ratio continues down to cryogenic temperatures. However, above about 80 C the losses are practically equal. The lowest 100 kHz loss recorded, 50 mW/cm3 for the MNGCX at a B (sub p) of 0.1T, equals that of a very low loss, Co based, transverse magnetically annealed, amorphous ribbon material. Except possibly at lower B (sub p) or much higher frequencies, these ferrites are not competitive for low losses over a wide temperature range with certain specialty amorphous materials. Permeability is computed from a linear model, plots against temperature are presented and again compared to the specialty amorphous materials.

  1. Method and apparatus for producing a carbon based foam article having a desired thermal-conductivity gradient

    DOEpatents

    Klett, James W [Knoxville, TN; Cameron, Christopher Stan [Sanford, NC

    2010-03-02

    A carbon based foam article is made by heating the surface of a carbon foam block to a temperature above its graphitizing temperature, which is the temperature sufficient to graphitize the carbon foam. In one embodiment, the surface is heated with infrared pulses until heat is transferred from the surface into the core of the foam article such that the graphitizing temperature penetrates into the core to a desired depth below the surface. The graphitizing temperature is maintained for a time sufficient to substantially entirely graphitize the portion of the foam article from the surface to the desired depth below the surface. Thus, the foam article is an integral monolithic material that has a desired conductivity gradient with a relatively high thermal conductivity in the portion of the core that was graphitized and a relatively low thermal conductivity in the remaining portion of the foam article.

  2. Thermally induced stresses in cross-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Cooper, D. E.; Tompkins, S. S.

    1986-01-01

    An approximate solution for determining stresses in cross-ply composite tubes subjected to a circumferential temperature gradient is presented. The solution is based on the principle of complementary virtual work (PCVW) in conjunction with a Ritz approximation on the stress field and accounts for the temperature dependence of material properties. The PCVW method is compared with a planar elasticity solution using temperature-independent material properties and a Navier approach. The net effect of including temperature-dependent material properties is that the peak absolute values of the stresses are reduced. The dependence of the stresses on the circumferential location is also reduced in comparison with the case of temperature-independent properties.

  3. Beyond the classic thermoneutral zone

    PubMed Central

    Kingma, Boris RM; Frijns, Arjan JH; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached. PMID:27583296

  4. Beyond the classic thermoneutral zone: Including thermal comfort.

    PubMed

    Kingma, Boris Rm; Frijns, Arjan Jh; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached.

  5. Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.

    1994-01-01

    It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.

  6. Enhancement of radiation tolerance in GaAs/AlGaAs core-shell and InP nanowires.

    PubMed

    Li, Fajun; Xie, Xiaolong; Gao, Qian; Tan, Liying; Zhou, Yanping; Yang, Qingbo; Ma, Jing; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2018-06-01

    Radiation effects on semiconductor nanowires (NWs) have attracted the attention of the research community due to their potential applications in space and atomic fields. The effective implementation of NW devices in a radiation environment is a matter of concern. Here, the photoluminescence (PL) and time-resolved PL (TRPL) measurements were performed on both GaAs and InP NWs at room temperature before and after 1 MeV H + irradiation with fluences ranging from 1 × 10 11 to 5 × 10 13 p cm -2 . It is found that the degradation of lifetime is size-dependent, and typically the minority carrier lifetime damage coefficient is closely correlated with the material and NW diameter. Compared to GaAs and InP bulk material counterparts, the lifetime damage coefficient of NWs decreases by a factor of about one order of magnitude. After irradiation, GaAs NWs with a smaller diameter show a much lower lifetime damage coefficient while InP NWs show an increase in carrier radiative lifetime. The increased size-dependent radiation hardness is mainly attributed to the defect sink effect and/or the improvement of a room temperature dynamic annealing mechanism of the NWs. The InP NWs also showed higher radiation tolerance than GaAs NWs.

  7. Al{sub 2}O{sub 3} - TiO{sub 2}-A simple sol-gel strategy to the synthesis of low temperature sintered alumina-aluminium titanate composites through a core-shell approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasankar, M.; Ananthakumar, S.; Mukundan, P.

    A simple sol-gel based core-shell approach for the synthesis of alumina-aluminium titanate composite is reported. Alumina is the core and titania is the shell. The coating of titania has been performed in aqueous medium on alumina particle by means of heterocoagulation of titanyl chloride. Further heat treatment results in low temperature formation of aluminium titanate as well as low temperature sintering of alumina-aluminium titanate composites. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactants due to the core-shell approach involving nanoparticles. The mechanism of formation of aluminium titanate and themore » observations on densification features in the present process are compared with that of mixture of oxides under identical conditions. The sintered alumina-aluminium titanate composite has an average grain size of 2 {mu}m. - Graphical abstract: The article presents a simple sol-gel process through core-shell approach to the synthesis of low temperature sintered alumina-aluminium titanate. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactant due to the core-shell approach. This material showed the better microstructure control compared to the standard solid-state mixing route.« less

  8. Temperature dependence of the optical absorption spectra of InP/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2017-03-01

    The optical-absorption spectra of InP/ZnS (core/shell) quantum dots have been studied in a broad temperature range of T = 6.5-296 K. Using the second-order derivative spectrophotometry technique, the energies of optical transitions at room temperature were found to be E 1 = 2.60 ± 0.02 eV (for the first peak of excitonic absorption in the InP core) and E 2 = 4.70 ± 0.02 eV (for processes in the ZnS shell). The experimental curve of E 1( T) has been approximated for the first time in the framework of a linear model and in terms of the Fan's formula. It is established that the temperature dependence of E 1 is determined by the interaction of excitons and longitudinal acoustic phonons with hω = 15 meV.

  9. Post-impact alteration of the Manson impact structure

    NASA Technical Reports Server (NTRS)

    Crossey, L. J.; Mccarville, P.

    1993-01-01

    Core materials from the Manson impact site (Manson, Iowa) are examined in order to evaluate post-impact alteration processes. Diagenetic interpretation of post-impact events is based on petrologic, mineralogic, and geochemical investigation of core materials including the following: target strata, disturbed and disrupted strata, ejecta, breccias, microbreccias, and impact melt. The diagenetic study utilizes research cores obtained by the continental scientific drilling project (CSDP) at the Manson structure, as well as core and cuttings of related materials. Samples include impactites (breccias, microbreccias, and melt material), crater fill material (sedimentary clast breccias), disturbed and disrupted target rocks, and reference target material (Amoco Eisheid No. 1 materials). The study of multiple cores will permit development of a regional picture of post-impact thermal history. The specific objectives are as follows: (1) provide a detailed description of authigenic and alteration mineralogy from diverse lithologies encountered in research drill cores at the Manson impact structure, and (2) identify and relate significant post-impact mineral alteration to post-impact thermal regime (extent and duration). Results will provide mineralogical and geochemical constraints on models for post-impact processes including the following: infilling of the crater depression; cooling and hydrothermal alteration of melt rocks; and subsequent long-term, low-temperature alteration of target rocks, breccias, and melt rocks. Preliminary petrologic and x-ray diffraction examination of fracture linings and void fillings from research core M1 indicate the presence of quartz, chlorite, mixed-layer clays, gypsum/anhydrite, calcite, and minor pyrite.

  10. The Effect of Temperature Dependent Material Nonlinearities on the Response of Piezoelectric Composite Plates

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1997-01-01

    Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.

  11. FaceSheet Push-off Tests to Determine Composite Sandwich Toughness at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Herring, Helen M.

    2001-01-01

    A new novel test method, associated analysis, and experimental procedures are developed to investigate the toughness of the facesheet-to-core interface of a sandwich material at cryogenic temperatures. The test method is designed to simulate the failure mode associated with facesheet debonding from high levels of gas pressure in the sandwich core. The effects of specimen orientation are considered, and the results of toughness measurements are presented. Comparisons are made between room and liquid nitrogen (-196 C) test temperatures. It was determined that the test method is insensitive to specimen facesheet orientation and strain energy release rate increases with a decrease in the test temperature.

  12. Temperature Dependence of Power Reflectivity of the First-Wall Materials in the Synchrotron Radiation Range

    NASA Astrophysics Data System (ADS)

    Takada, Noriharu; Nagatsu, Masaaki; Shimada, Michiya

    1995-07-01

    The temperature dependence of power reflectivity in the synchrotron radiation range was measured for candidate first-wall materials of the fusion reactor, such as B4C-coated isotropic graphite, C/C composite material, silicon carbide (SiC), tungsten (W), molybdenum (Mo) and SUS-316. The measurements were carried out using a vacuum vessel with a pressure of about 3 mTorr to avoid oxidation. Distinct temperature dependence of reflectivity was observed only for B4C-coated isotropic graphite. For the other materials, power reflectivities were insensitive to temperature in the range from 300 K to ˜900 K. Theoretical analysis of the results is also presented.

  13. Paleotemperatures derived from the EPICA Dome-C core based on isotopic diffusion in the firn pack.

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Johnsen, S. J.; Vinther, B.; Sheldon, S.; Ritz, C.; Masson-Delmotte, V.

    2009-04-01

    Water isotope ratios as measured from ice core samples have been used as a proxy for past temperatures. Based i.a. on a Rayleigh fractionation process they record the cloud temperature during snow formation. However, changes in the temperature and humidity of the vapor source can also affect the isotopic signal of the polar precipitation, thus inducing isotopic artifacts. Furthermore, for the case of the Antarctic ice cap, temperature inversions frequently occur during snow formation. As a result, the cloud temperature as recorded by the water isotopes can differ significantly from the temperature at the surface. After the deposition of snow and until pore close off, a diffusive process occurs in the pore space of the firn pack, mixing water vapor from different layers and smoothing the isotopic profiles. The smoothing depends only on the resulting diffusion length. This process is temperature dependent and it presents a slightly different rate between the two isotopic species of water, H218O and HD16O. This is because the fractionation factors as defined for these two isotopic species have a different dependence on temperature. In this study we present a temperature reconstruction based on the different diffusion rates of H218O and HD16O water molecules in firn. The advantage of such an approach is that the temperatures estimated represent the actual conditions in the firn stack. As a result, we can surpass the artifacts that can possibly disrupt the use of the classical technique. We will present temperature estimations as extracted from two high resolution (2.5 cm) data sets, from the EPICA Dome C deep core focused on the Holoene Climatic Optimum and the Last Glacial Maximum and compare them with results obtained with the classical slope method as well as constrains imposed by the measured temperature profile. We will also address the problems of spectral power estimation for determining the diffusion lengths.

  14. Wide Temperature Characteristics of Transverse Magnetically Annealed Amorphous Tapes for High Frequency Aerospace Magnetics

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1999-01-01

    100 kHz core loss and magnetization properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 to 150 C, at selected values of B(sub peak). For B-fields not close to saturation, the core loss is not sensitive to temperature in this range and is as low as seen in the best MnZn power ferrites at their optimum temperatures. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, at B(sub peak) = 0.1 T and 50 C only. A linear permeability model is used to interpret and present the magnetization characteristics and several figures of merit applicable to inductor materials arc reviewed. This linear modeling shows that, due to their high permeabilities, these cores must he gapped in order to make up high Q or high current inductors. However, they should serve well, as is, for high frequency, anti ratcheting transformer applications.

  15. Core-shell microstructured nanocomposites for synergistic adjustment of environmental temperature and humidity

    NASA Astrophysics Data System (ADS)

    Zhang, Haiquan; Yuan, Yanping; Zhang, Nan; Sun, Qingrong; Cao, Xiaoling

    2016-11-01

    The adjustment of temperature and humidity is of great importance in a variety of fields. Composites that can perform both functions are prepared by mixing phase change materials (PCMs) with hygroscopic materials. However, the contact area between the adsorbent and humid air is inevitably decreased in such structures, which reduces the number of mass transfer channels for water vapor. An approach entailing the increase in the mass ratio of the adsorbent is presented here to improve the adsorption capacity. A core-shell CuSO4/polyethylene glycol (PEG) nanomaterial was developed to satisfy the conflicting requirements of temperature control and dehumidification. The results show that the equilibrium adsorption capacity of the PEG coating layer was enhanced by a factor of 188 compared with that of the pure PEG powder. The coating layer easily concentrates vapor, providing better adsorption properties for the composite. Furthermore, the volume modification of the CuSO4 matrix was reduced by 80% by the PEG coated layer, a factor that increases the stability of the composite. For the phase change process, the crystallization temperature of the coating layer was adjusted between 37.2 and 46.3 °C by interfacial tension. The core-shell CuSO4/PEG composite reported here provides a new general approach for the simultaneous control of temperature and humidity.

  16. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature.

    PubMed

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang; Rogers, John A

    2016-01-07

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preparation of SiC/SiO2 core-shell nanowires via molten salt mediated carbothermal reduction route

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Yan, Shuai; Jia, Quanli; Huang, Juntong; Lin, Liangxu; Zhang, Shaowei

    2016-06-01

    The growth of silicon carbide (SiC) crystal generally requires a high temperature, especially when low quality industrial wastes are used as the starting raw materials. In this work, SiC/SiO2 core-shell nanowires (NWs) were synthesized from low cost silica fume and sucrose via a molten salt mediated carbothermal reduction (CR) route. The molten salt was found to be effective in promoting the SiC growth and lowering the synthesis temperature. The resultant NWs exhibited a heterostructure composed of a 3C-SiC core of 100 nm in diameter and a 5-10 nm thick amorphous SiO2 shell layer. The photoluminescence spectrum of the achieved SiC NWs displayed a significant blue shift (a dominant luminescence at round 422 nm), which suggested that they were high quality and could be a promising candidate material for future optoelectronic applications.

  18. Short-term hot-hardness characteristics of five case hardened steels

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Zaretsky, E. V.

    1975-01-01

    Short-term hot-hardness studies were performed with carburized and hardened AISI 8620, CBS 1000, CBS 1000M, CBS 600, and Vasco X-2 steels. Case and core hardness measurements were made at temperatures from 294 to 811 K (70 to 1000 F). The data were compared with data for high-speed tool steels and AISI 52100. The materials tested can be ranked as follows in order of decreasing hot-hardness retention: (1) Vasco X-2; equivalent to through-hardened tool steels up to 644 K (700 F) above which Vasco X-2 is inferior; (2) CBS 1000, (3) CBS 1000M; (4) CBS 6000; better hardness retention at elevated temperatures than through-hardened AISI 52100; and (5) AISI 8620. For the carburized steels, the change in hardness with temperature of the case and core are similar for a given material. The short-term hot hardness of these materials can be predicted with + or - 1 point Rockwell C.

  19. Study of CT Scan Flooding System at High Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.

    2017-12-01

    CT scan flooding experiment can scan micro-pore in different flooding stages by the use of CT scan technology, without changing the external morphology and internal structure of the core, and observe the distribution characterization in pore medium of different flooding fluid under different pressure.thus,it can rebuilt the distribution images of oil-water distribution in different flooding stages. However,under extreme high pressure and temperature conditions,the CT scan system can not meet the requirements. Container of low density materials or thin shell can not resist high pressure,while high density materials or thick shell will cause attenuation and scattering of X-ray. The experiment uses a simple Ct scanning systems.X ray from a point light source passing trough a micro beryllium shell on High pressure stainless steal container,continuously irradiates the core holder that can continuously 360° rotate along the core axis. A rare earth intensifying screen behind the core holder emitting light when irradiated with X ray can show the core X ray section image. An optical camera record the core X ray images through a transparency high pressure glazing that placed on the High pressure stainless steal container.Thus,multiple core X ray section images can reconstruct the 3D core reconstruction after a series of data processing.The experiment shows that both the micro beryllium shell and rare earth intensifying screen can work in high temperature and high pressure environment in the stainless steal container. This way that X-ray passes through a thin layer of micro beryllium shell , not high pressure stainless steal shell,avoid the attenuation and scattering of X-ray from the container shell,while improving the high-pressure experiment requirements.

  20. Influence of cold isostatic pressing on the magnetic properties of Ni-Zn-Cu ferrite

    NASA Astrophysics Data System (ADS)

    Le, Trong Trung; Valdez-Nava, Zarel; Lebey, Thierry; Mazaleyrat, Frédéric

    2018-04-01

    In power electronics, there is the need to develop solutions to increase the power density of converters. Interleaved multicellular transformers allow interleaving many switching cells and, as a result, a possible increase in the power density. This converter is often composed of a magnetic core having the function of an intercell transformer (ICT) and, depending on the complexity of the designed architecture, its shape could be extremely complex. The switching frequencies (1-10 MHz) for the new wide band gap semiconductors (SiC, GaN) allow to interleave switching cell at higher frequencies than silicon-based semiconductors (<1 MHz). Intercell transformers must follow this increase in frequency times-fold the number of switching cells. Current applications for ICT transformers use Mn-Zn based materials, but their limit in frequency drive raises the need of higher frequency magnetic materials, such Ni-Zn ferrites. These materials can operate in medium and high power converters up to 10 MHz. We propose to use Ni0,30Zn0,57Cu0,15Fe2O4 ferrite and to compress it by cold isostatic pressing (CIP) into a a green ceramic block and to machine it to obtain the desired ICT of complex shape prior sintering. We compare the magnetic permeability spectra and hysteresis loops the CIP and uniaxially pressed ferrites. The effect of temperature and sintering time as well as high-pressure on properties will be presented in detail. The magnetic properties of the sintered cores are strongly dependent on the microstructure obtained.

  1. A scaling and experimental approach for investigating in-vessel cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, R.E.

    1997-02-01

    The TMI-2 accident experienced the relocation of a large quantity of core material to the lower plenum. The TMI-2 vessel investigation project concluded that approximately 20 metric tonnes of once molten fuel material drained into the RPV lower head. As a result, the lower head wall experienced a thermal transient that has been characterized as reaching temperatures as high as 1100{degrees}C, then a cooling transient with a rate of 10 to 100{degrees}C/min. Two mechanisms have been proposed as possible explanations for this cooling behavior. One is the ingression of water through core material as a result of interconnected cracks inmore » the frozen debris and/or water ingression around the crust which is formed on internal structures (core supports and in-core instrumentation) in the lower head. The second focuses on the lack of adhesion of oxidic core debris to the RPV wall when the debris contacts the wall. Furthermore, the potential for strain of the RPV lower head when the wall is overheated could provide for a significant cooling path for water to ingress between the RPV and the frozen core material next to the wall. To examine these proposed mechanisms, a set of scaled experiments have been developed to examine the potential for cooling. These are performed in a scaled system in which the high temperature molten material is iron termite and the RPV wall is carbon steel. A termite mass of 40 kg is used and the simulated reactor vessels have water in the lower head at pressures up to 2.2 MPa. Furthermore, two different thicknesses of the vessel wall are examined with the thicker vessel having virtually no potential for material creep during the experiment and the thinner wall having the potential for substantial creep. Moreover, the experiment includes the option of having molten iron as the first material to drain into the RPV lower head or molten aluminum oxide being the only material that drains into the test configuration.« less

  2. Anomalous temperature dependence of layer spacing of de Vries liquid crystals: Compensation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, K.; Kocot, A.; Vij, J. K., E-mail: jvij@tcd.ie

    Smectic liquid crystals that exhibit temperature independent layer thickness offer technological advantages for their use in displays and photonic devices. The dependence of the layer spacing in SmA and SmC phases of de Vries liquid crystals is found to exhibit distinct features. On entering the SmC phase, the layer thickness initially decreases below SmA to SmC (T{sub A–C}) transition temperature but increases anomalously with reducing temperature despite the molecular tilt increasing. This anomalous observation is being explained quantitatively. Results of IR spectroscopy show that layer shrinkage is caused by tilt of the mesogen's rigid core, whereas the expansion is causedmore » by the chains getting more ordered with reducing temperature. This mutual compensation arising from molecular fragments contributing to the layer thickness differs from the previous models. The orientational order parameter of the rigid core of the mesogen provides direct evidence for de Vries cone model in the SmA phase for the two compounds investigated.« less

  3. Nuclear reactor removable radial shielding assembly having a self-bowing feature

    DOEpatents

    Pennell, William E.; Kalinowski, Joseph E.; Waldby, Robert N.; Rylatt, John A.; Swenson, Daniel V.

    1978-01-01

    A removable radial shielding assembly for use in the periphery of the core of a liquid-metal-cooled fast-breeder reactor, for closing interassembly gaps in the reactor core assembly load plane prior to reactor criticality and power operation to prevent positive reactivity insertion. The assembly has a lower nozzle portion for inserting into the core support and a flexible heat-sensitive bimetallic central spine surrounded by blocks of shielding material. At refueling temperature and below the spine is relaxed and in a vertical position so that the tolerances permitted by the interassembly gaps allow removal and replacement of the various reactor core assemblies. During an increase in reactor temperature from refueling to hot standby, the bimetallic spine expands, bowing the assembly toward the core center line, exerting a radially inward gap-closing-force on the above core load plane of the reactor core assembly, closing load plane interassembly gaps throughout the core prior to startup and preventing positive reactivity insertion.

  4. Improved Thermoplastic/Iron-Particle Transformer Cores

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Bryant, Robert G.; Namkung, Min

    2004-01-01

    A method of fabricating improved transformer cores from composites of thermoplastic matrices and iron-particles has been invented. Relative to commercially available laminated-iron-alloy transformer cores, the cores fabricated by this method weigh less and are less expensive. Relative to prior polymer-matrix/ iron-particle composite-material transformer cores, the cores fabricated by this method can be made mechanically stronger and more magnetically permeable. In addition, whereas some prior cores have exhibited significant eddy-current losses, the cores fabricated by this method exhibit very small eddy-current losses. The cores made by this method can be expected to be attractive for use in diverse applications, including high-signal-to-noise transformers, stepping motors, and high-frequency ignition coils. The present method is a product of an experimental study of the relationships among fabrication conditions, final densities of iron particles, and mechanical and electromagnetic properties of fabricated cores. Among the fabrication conditions investigated were molding pressures (83, 104, and 131 MPa), and molding temperatures (250, 300, and 350 C). Each block of core material was made by uniaxial-compression molding, at the applicable pressure/temperature combination, of a mixture of 2 weight percent of LaRC (or equivalent high-temperature soluble thermoplastic adhesive) with 98 weight percent of approximately spherical iron particles having diameters in the micron range. Each molded block was cut into square cross-section rods that were used as core specimens in mechanical and electromagnetic tests. Some of the core specimens were annealed at 900 C and cooled slowly before testing. For comparison, a low-carbon-steel core was also tested. The results of the tests showed that density, hardness, and rupture strength generally increased with molding pressure and temperature, though the correlation was rather weak. The weakness of the correlation was attributed to the pores in the specimens. The maximum relative permeabilities of cores made without annealing ranged from 30 to 110, while those of cores made with annealing ranged from 900 to 1,400. However, the greater permeabilities of the annealed specimens were not associated with noticeably greater densities. The major practical result of the investigation was the discovery of an optimum distribution of iron-particle sizes: It was found that eddy-current losses in the molded cores were minimized by using 100 mesh (corresponding to particles with diameters less than or equal to 100 m) iron particles. The effect of optimization of particle sizes on eddy-current losses is depicted in the figure.

  5. Did the formation of D″ cause the Archaean-Proterozoic transition?

    NASA Astrophysics Data System (ADS)

    Campbell, Ian H.; Griffiths, Ross W.

    2014-02-01

    The MgO content of the highest MgO plume-related komatiites and picrites remained constant at 32±2.5% between 3.5 and 2.7 Ga, then fell to 21±3% by ca. 2.0 Ga, a value similar to the present day value. Because there is a linear relationship between the liquidus temperature of dry magmas and their MgO content this observation implies that the temperature of mantle plumes changed little between 3.5 and 2.7 Ga, and then fell by 200-250 °C between 2.7 and 2.0 Ga to a temperature similar to that of present plumes. We suggest that Archaean plumes originate from the core-mantle boundary and that their temperature remained constant because the temperature of the outer core was buffered by solidification of the Fe-Ni inner core. At about 2.7 Ga dense former basaltic crust began to accumulate at the core and eventually covered it to produce an insulating layer that reduced the heat flux out of the core and lowered the temperature of mantle plumes. The temperature of mantle plumes fell as the dense layer above the core thickened until it exceeded the critical thickness required for convection. Because heat is transferred rapidly across the convecting part of the insulating layer, any further increase in its thickness by the addition more basaltic material has no influence on the temperature at the top of the layer, which is the source of Post-Archaean mantle plumes. We equate the dense layer above the core with the seismically identified layer D″. Our analyses suggest the drop in plume temperatures produced by a dense insulating layer above the core will be about 40% once it starts to convect, which is consistent with the observed drop inferred from the decrease in the MgO content of komatiites and picrites at that time.

  6. Toward unraveling a secret of the lower mantle: Detecting and characterizing piles using a grain size-dependent, composite rheology

    NASA Astrophysics Data System (ADS)

    Schierjott, Jana; Rozel, Antoine; Tackley, Paul

    2017-04-01

    Seismic studies show two antipodal regions of low shear velocity at the core-mantle boundary (CMB), one beneath the Pacific and one beneath Africa. These regions, called Large Low Shear Velocity Provinces (LLSVPs), are thought to be thermally and chemically distinct and thus have a different density and viscosity. Whereas there is some general consensus about the density of the LLSVPs, their viscosity is still debated. So far, in numerical studies the viscosity is treated as either depth- and/or temperature- dependent but the potential grain size-dependence of the viscosity is neglected most of the time. In this study we use a self-consistent convection model which includes a grain size- dependent rheology based on the approach by Rozel et al. (2011). Further, we consider a basal primordial layer and a time-dependent basalt production to dynamically form the present-day chemical heterogeneities, similar to earlier studies, e.g by Nakagawa & Tackley (2014). Our study comprises three main parts: 1) We perform a parameter study which includes different densities and viscosities of the imposed primordial layer. 2) We detect possible piles and compute their average effective viscosity, density, rheology and grain size. 3) We test the influence of grain size evolution on the development and morphology of piles and compare it to non-grain size models. Our preliminary results show that a higher density and/or viscosity of the piles is needed to keep them at the core-mantle boundary (CMB). Relatively to the ambient mantle grain size is high in the piles but due to the temperature at the CMB the viscosity is not remarkably different than the one of ordinary plumes. We observe that grain size is lower if the density of the imposed primordial material is lower than basalt. In that case the average temperature of the pile is also reduced. Interestingly, changing the reference viscosity is responsible for a change in the average viscosity of the pile but not for a different average grain size.

  7. Can a grain size-dependent viscosity help yielding realistic seismic velocities of LLSVPs?

    NASA Astrophysics Data System (ADS)

    Schierjott, J.; Cheng, K. W.; Rozel, A.; Tackley, P. J.

    2017-12-01

    Seismic studies show two antipodal regions of low shear velocity at the core-mantle boundary (CMB), one beneath the Pacific and one beneath Africa. These regions, called Large Low Shear Velocity Provinces (LLSVPs), are thought to be thermally and chemically distinct and thus have a different density and viscosity. Whereas there is some general consensus about the density of the LLSVPs the viscosity is still a very debated topic. So far, in numerical studies the viscosity is treated as either depth- and/or temperature- dependent but the potential grain size- dependence of the viscosity is neglected most of the time. In this study we use a self-consistent convection model which includes a grain size- dependent rheology based on the approach by Rozel et al. (2011) and Rozel (2012). Further, we consider a primordial layer and a time-dependent basalt production at the surface to dynamically form the present-day chemical heterogeneities, similar to earlier studies, e.g by Nakagawa & Tackley (2014). With this model we perform a parameter study which includes different densities and viscosities of the imposed primordial layer. We detect possible thermochemical piles based on different criterions, compute their average effective viscosity, density, rheology and grain size and investigate which detecting criterion yields the most realistic results. Our preliminary results show that a higher density and/or viscosity of the piles is needed to keep them at the core-mantle boundary (CMB). Relatively to the ambient mantle grain size is high in the piles but due to the temperature at the CMB the viscosity is not remarkably different than the one of ordinary plumes. We observe that grain size is lower if the density of the LLSVP is lower than the one of our MORB material. In that case the average temperature of the LLSVP is also reduced. Interestingly, changing the reference viscosity is responsible for a change in the average viscosity of the LLSVP but not for a different average grain size. Finally, we compare the numerical results with seismological observations by computing 1D seismic velocity profiles (p-wave, shear-wave and bulk velocities) inside and outside our detected piles using thermodynamic data calculated from Perple_X .

  8. Temperature Dependent Photoluminescence of CuInS2 with ZnS Capping

    DTIC Science & Technology

    2014-05-11

    cadmium or zinc like cadmium selenide. The optical properties of core-type nanocrystals can be fine-tuned by changing the quantum dot size. Core...Physics Department To August 2011 University of Notre Dame, South Bend, Indiana - Computational work involving the half-life of Fe60 - Data

  9. Cable for prospecting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebouc, L.; Marmignon, J.

    1983-03-29

    A cable for prospecting, said cable including a core of conductor wires surrounded by insulating material and by armour formed by at least one layer of helically wound steel wires. It includes, from its center to its periphery, inside the armour, an axial monofilament made of a polymer that withstands high temperatures, said monofilament forming the insulation of an inner conductor, an outer conductor and a sheath made of a thermoplastic substance that withstands high temperatures, said inner conductor serving a different electrical function than said core of conductor wires.

  10. Development of graphite/polyimide honeycomb core materials

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1978-01-01

    Honeycomb panel constructions consisting entirely of graphite/polyimide composites were developed and evaluated. Graphite/polyimide composites, were used in the honeycomb core webs and in pre-cured sandwich skins. Polyimide adhesives were also developed and evaluated for use in skin-core bonding. The purpose of this program was to develop light weight sandwich constructions for high temperature applications which could provide comparable shear strength and stiffness to metallic honeycomb constructions.

  11. Taking the temperature of the interiors of magnetically heated nanoparticles.

    PubMed

    Dong, Juyao; Zink, Jeffrey I

    2014-05-27

    The temperature increase inside mesoporous silica nanoparticles induced by encapsulated smaller superparamagnetic nanocrystals in an oscillating magnetic field is measured using a crystalline optical nanothermometer. The detection mechanism is based on the temperature-dependent intensity ratio of two luminescence bands in the upconversion emission spectrum of NaYF4:Yb(3+), Er(3+). A facile stepwise phase transfer method is developed to construct a dual-core mesoporous silica nanoparticle that contains both a nanoheater and a nanothermometer in its interior. The magnetically induced heating inside the nanoparticles varies with different experimental conditions, including the magnetic field induction power, the exposure time to the magnetic field, and the magnetic nanocrystal size. The temperature increase of the immediate nanoenvironment around the magnetic nanocrystals is monitored continuously during the magnetic oscillating field exposure. The interior of the nanoparticles becomes much hotter than the macroscopic solution and cools to the temperature of the ambient fluid on a time scale of seconds after the magnetic field is turned off. This continuous absolute temperature detection method offers quantitative insight into the nanoenvironment around magnetic materials and opens a path for optimizing local temperature controls for physical and biomedical applications.

  12. Tunability of temperature dependent THz photonic band gaps in 1-D photonic crystals composed of graded index materials and semiconductor InSb

    NASA Astrophysics Data System (ADS)

    Singh, Bipin K.; Pandey, Praveen C.; Rastogi, Vipul

    2018-05-01

    Tunable temperature dependent terahertz photonic band gaps (PBGs) in one-dimensional (1-D) photonic crystal composed of alternating layers of graded index and semiconductor materials are demonstrated. Results show the influence of temperature, geometrical parameters, grading profile and material damping factor on the PBGs. Number of PBG increases with increasing the layer thickness and their bandwidth can be tuned with external temperature and grading parameters. Lower order band gap is more sensitive to the temperature which shows increasing trend with temperature, and higher order PBGs can also be tuned by controlling the external temperature. Band edges of PBGs are shifted toward higher frequency side with increasing the temperature. Results show that the operational frequencies of PBGs are unaffected when loss involved. This work enables to design tunable Temperature dependent terahertz photonic devices such as reflectors, sensors and filters etc.

  13. Enhanced flexibility and electron-beam-controlled shape recovery in alumina-coated Au and Ag core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Vlassov, Sergei; Polyakov, Boris; Vahtrus, Mikk; Mets, Magnus; Antsov, Mikk; Oras, Sven; Tarre, Aivar; Arroval, Tõnis; Lõhmus, Rünno; Aarik, Jaan

    2017-12-01

    The proper choice of coating materials and methods in core-shell nanowire (NW) engineering is crucial to assuring improved characteristics or even new functionalities of the resulting composite structures. In this paper, we have reported electron-beam-induced reversible elastic-to-plastic transition in Ag/Al2O3 and Au/Al2O3 NWs prepared by the coating of Ag and Au NWs with Al2O3 by low-temperature atomic layer deposition. The observed phenomenon enabled freezing the bent core-shell NW at any arbitrary curvature below the yield strength of the materials and later restoring its initially straight profile by irradiating the NW with electrons. In addition, we demonstrated that the coating efficiently protects the core material from fracture and plastic yield, allowing it to withstand significantly higher deformations and stresses in comparison to uncoated NW.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D. H.; Reigel, M. M.

    A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposedmore » to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.« less

  15. Transition-Metal Nitride Core@Noble-Metal Shell Nanoparticles as Highly CO Tolerant Catalysts

    DOE PAGES

    Garg, Aaron; Milina, Maria; Ball, Madelyn; ...

    2017-05-25

    Core–shell architectures offer an effective way to tune and enhance the properties of noble-metal catalysts. Herein, we demonstrate the synthesis of Pt shell on titanium tungsten nitride core nanoparticles (Pt/TiWN) by high temperature ammonia nitridation of a parent core–shell carbide material (Pt/TiWC). X-ray photoelectron spectroscopy revealed significant core-level shifts for Pt shells supported on TiWN cores, corresponding to increased stabilization of the Pt valence d-states. The modulation of the electronic structure of the Pt shell by the nitride core translated into enhanced CO tolerance during hydrogen electrooxidation in the presence of CO. In conclusion, the ability to control shell coveragemore » and vary the heterometallic composition of the shell and nitride core opens up attractive opportunities to synthesize a broad range of new materials with tunable catalytic properties.« less

  16. Transition-Metal Nitride Core@Noble-Metal Shell Nanoparticles as Highly CO Tolerant Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Aaron; Milina, Maria; Ball, Madelyn

    Core–shell architectures offer an effective way to tune and enhance the properties of noble-metal catalysts. Herein, we demonstrate the synthesis of Pt shell on titanium tungsten nitride core nanoparticles (Pt/TiWN) by high temperature ammonia nitridation of a parent core–shell carbide material (Pt/TiWC). X-ray photoelectron spectroscopy revealed significant core-level shifts for Pt shells supported on TiWN cores, corresponding to increased stabilization of the Pt valence d-states. The modulation of the electronic structure of the Pt shell by the nitride core translated into enhanced CO tolerance during hydrogen electrooxidation in the presence of CO. In conclusion, the ability to control shell coveragemore » and vary the heterometallic composition of the shell and nitride core opens up attractive opportunities to synthesize a broad range of new materials with tunable catalytic properties.« less

  17. Numerical simulation of the induction heating of hybrid semi-finished materials into the semi-solid state

    NASA Astrophysics Data System (ADS)

    Seyboldt, Christoph; Liewald, Mathias

    2017-10-01

    Current research activities at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. As part of the research project "Hybrid interaction during and after thixoforging of multi-material systems", which is founded by the German Research Foundation (DFG), a thixoforging process for producing hybrid components with cohesive metal-to-metal connections is developed. In this context, this paper deals with the numerical simulation of the inductive heating process of hybrid semi-finished materials, consisting of two different aluminium alloys. By reason of the skin effect that leads to inhomogeneous temperature distributions during inductive heating processes, the aluminium alloy with the higher melting point is thereby assembled in the outer side and the alloy with the lower melting point is assembled in the core of the semi-finished material. In this way, the graded heat distribution can be adapted to the used materialś flow properties that are heavily heat dependent. Without this graded heat distribution a proper forming process in the semi-solid state will not be possible. For numerically modelling the inductive heating system of the institute, a coupling of the magnetostatic and the thermal solver was realized by using Ansys Workbench. While the electromagnetic field and its associated heat production rate were solved in a frequency domain, the temperature development was solved in the time based domain. The numerical analysis showed that because of the high thermal conductivity of the aluminium, which leads to a rapid temperature equalization in the semi-finished material, the heating process has to be fast and with a high frequency for produce most heat in the outer region of the material. Finally, the obtained numerical results were validated with experimental heating tests.

  18. Rocky core solubility in Jupiter and giant exoplanets.

    PubMed

    Wilson, Hugh F; Militzer, Burkhard

    2012-03-16

    Gas giants are believed to form by the accretion of hydrogen-helium gas around an initial protocore of rock and ice. The question of whether the rocky parts of the core dissolve into the fluid H-He layers following formation has significant implications for planetary structure and evolution. Here we use ab initio calculations to study rock solubility in fluid hydrogen, choosing MgO as a representative example of planetary rocky materials, and find MgO to be highly soluble in H for temperatures in excess of approximately 10,000 K, implying the potential for significant redistribution of rocky core material in Jupiter and larger exoplanets.

  19. Space and Missile Systems Center Standard: Parts, Materials, and Processes Control Program for Launch Vehicles -SMC-S-011 (2012)

    DTIC Science & Technology

    2012-07-03

    Specification for MIL-PRF-39008 Resistor Fixed, Composition ( Insulated ), Established Reliability, General Specification for MIL-S-45743 Soldering, Manual...2.1.5 Prohibited Relays 1. Plug-in types 2. Solder-sealed relays 2.1.6 Prohibited Resistors 1. All hollow glass or hollow ceramic core devices 2...lowest maximum temperature. This may be the core material, the insulation of the magnet, etc. 2/ Current rating for each winding shall be less than

  20. Canted spin structure and the first order magnetic transition in CoFe2O4 nanoparticles coated by amorphous silica

    NASA Astrophysics Data System (ADS)

    Lyubutin, I. S.; Starchikov, S. S.; Gervits, N. E.; Korotkov, N. Yu.; Dmitrieva, T. V.; Lin, Chun-Rong; Tseng, Yaw-Teng; Shih, Kun-Yauh; Lee, Jiann-Shing; Wang, Cheng-Chien

    2016-10-01

    The functional polymer (PMA-co-MAA) latex microspheres were used as a core template to prepare magnetic hollow spheres consisting of CoFe2O4/SiO2 composites. The spinel type crystal structure of CoFe2O4 ferrite is formed under annealing, whereas the polymer cores are completely removed after annealing at 450 °C. Magnetic and Mössbauer spectroscopy measurements reveal very interesting magnetic properties of the CoFe2O4/SiO2 hollow spheres strongly dependent on the particle size which can be tuned by the annealing temperature. In the ground state of low temperatures, the CoFe2O4 nanoparticles are in antiferromagnetic state due to the canted magnetic structure. Under heating in the applied field, the magnetic structure gradually transforms from canted to collinear, which increases the magnetization. The Mössbauer data revealed that the small size CoFe2O4/SiO2 particles (2.2-4.3 nm) do not show superparamagnetic behavior but transit from the magnetic to the paramagnetic state by a jump-like magnetic transition of the first order This effect is a specific property of the magnetic nanoparticles isolated by inert material, and can be initiated by internal pressure creating at the particle surface. The suggested method of synthesis can be modified with various bio-ligands on the silane surface, and such materials can find many applications in diagnostics and bio-separation.

  1. Exfoliated BN shell-based high-frequency magnetic core-shell materials.

    PubMed

    Zhang, Wei; Patel, Ketan; Ren, Shenqiang

    2017-09-14

    The miniaturization of electric machines demands high frequency magnetic materials with large magnetic-flux density and low energy loss to achieve a decreased dimension of high rotational speed motors. Herein, we report a solution-processed high frequency magnetic composite (containing a nanometal FeCo core and a boron nitride (BN) shell) that simultaneously exhibits high electrical resistivity and magnetic permeability. The frequency dependent complex initial permeability and the mechanical robustness of nanocomposites are intensely dependent on the content of BN insulating phase. The results shown here suggest that insulating magnetic nanocomposites have potential for application in next-generation high-frequency electric machines with large electrical resistivity and permeability.

  2. Temperature dependence of material gain of InGaAsP/InP nano-heterostructure

    NASA Astrophysics Data System (ADS)

    Yadav, Rashmi; Alvi, P. A.

    2014-04-01

    This paper deals with temperature dependent study on material gain of InGaAsP/InP lasing nano-heterostructure with in TE mode. The model is based on simple separate confinement heterostructure (SCH). Material gain for the structure has been simulated for below and above the room temperatures. Different behaviors of the material gain for both ranges of the temperature have been reported in this paper. The results obtained in the simulation of the heterostructures suggest that only the shift in maximum gain takes place that appears at the lasing wavelength ˜ 1.40 μm.

  3. Iron-rich (Fe1-x-yNixCoy)88Zr7B4Cu1 nanocrystalline magnetic materials for high temperature applications with minimal magnetostriction

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Dong, Bowen; Lan, Song; Willard, Matthew A.

    2018-05-01

    As inductor technology advances, greater efficiency and smaller components demand new core materials. With recent developments of nanocrystalline magnetic materials, soft magnetic properties of these cores can be greatly improved. FeCo-based nanocrystalline magnetic alloys have resulted in good soft magnetic properties and high Curie temperatures; however, magnetoelastic anisotropies persist as a main source of losses. This investigation focuses on the design of a new Fe-based (Fe,Ni,Co)88Zr7B4Cu1 alloy with reduced magnetostriction and potential for operation at elevated temperatures. The alloys have been processed by arc melting, melt spinning, and annealing in a protective atmosphere to produce nanocrystalline ribbons. These ribbons have been analyzed for structure, hysteresis, and magnetostriction using X-Ray diffraction, vibrating sample magnetometry (VSM), and a home-built magnetostriction system, respectively. In addition, Curie temperatures of the amorphous phase were analyzed to determine the best performing, high-temperature material. Our best result was found for a Fe77Ni8.25Co2.75Zr7B4Cu1 alloy with a 12 nm average crystallite size (determined from Scherrer broadening) and a 2.873 Å lattice parameter determined from the Nelson-Riley function. This nanocrystalline alloy possesses a coercivity of 10 A/m, magnetostrictive coefficient of 4.8 ppm, and amorphous phase Curie temperature of 218°C.

  4. Thermal barrier and support for nuclear reactor fuel core

    DOEpatents

    Betts, Jr., William S.; Pickering, J. Larry; Black, William E.

    1987-01-01

    A thermal barrier/core support for the fuel core of a nuclear reactor having a metallic cylinder secured to the reactor vessel liner and surrounded by fibrous insulation material. A top cap is secured to the upper end of the metallic cylinder that locates and orients a cover block and post seat. Under normal operating conditions, the metallic cylinder supports the entire load exerted by its associated fuel core post. Disposed within the metallic cylinder is a column of ceramic material, the height of which is less than that of the metallic cylinder, and thus is not normally load bearing. In the event of a temperature excursion beyond the design limits of the metallic cylinder and resulting in deformation of the cylinder, the ceramic column will abut the top cap to support the fuel core post.

  5. Off-Center Collisions between Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Ricker, P. M.

    1998-03-01

    We present numerical simulations of off-center collisions between galaxy clusters made using a new hydrodynamical code based on the piecewise-parabolic method (PPM) and an isolated multigrid potential solver. The current simulations follow only the intracluster gas. We have performed three high-resolution (256 × 1282) simulations of collisions between equal-mass clusters using a nonuniform grid with different values of the impact parameter (0, 5, and 10 times the cluster core radius). Using these simulations, we have studied the variation in equilibration time, luminosity enhancement during the collision, and structure of the merger remnant with varying impact parameter. We find that in off-center collisions the cluster cores (the inner regions where the pressure exceeds the ram pressure) behave quite differently from the clusters' outer regions. A strong, roughly ellipsoidal shock front, similar to that noted in previous simulations of head-on collisions, enables the cores to become bound to each other by dissipating their kinetic energy as heat in the surrounding gas. These cores survive well into the collision, dissipating their orbital angular momentum via spiral bow shocks. After the ellipsoidal shock has passed well outside the interaction region, the material left in its wake falls back onto the merger remnant formed through the inspiral of the cluster cores, creating a roughly spherical accretion shock. For less than one-half of a sound crossing time after the cores first interact, the total X-ray luminosity increases by a large factor; the magnitude of this increase depends sensitively on the size of the impact parameter. Observational evidence of the ongoing collision, in the form of bimodality and distortion in projected X-ray surface brightness and temperature maps, is present for one to two sound crossing times after the collision but only for special viewing angles. The remnant actually requires at least five crossing times to reach virial equilibrium. Since the sound crossing time can be as large as 1-2 Gyr, the equilibration time can thus be a substantial fraction of the age of the universe. The final merger remnant is very similar for impact parameters of 0 and 5 core radii. It possesses a roughly isothermal core with central density and temperature twice the initial values for the colliding clusters. Outside the core, the temperature drops as r-1, and the density roughly as r-3.8. The core radius shows a small increase due to shock heating during the merger. For an impact parameter of 10 core radii, the core of the remnant possesses a more flattened density profile with a steeper drop-off outside the core. In both off-center cases, the merger remnant rotates, but only for the 10 core-radius case does this appear to have an effect on the structure of the remnant.

  6. Advances In High Temperature (Viscoelastoplastic) Material Modeling for Thermal Structural Analysis

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Saleeb, Atef F.

    2005-01-01

    Typical High Temperature Applications High Temperature Applications Demand High Performance Materials: 1) Complex Thermomechanical Loading; 2) Complex Material response requires Time-Dependent/Hereditary Models: Viscoelastic/Viscoplastic; and 3) Comprehensive Characterization (Tensile, Creep, Relaxation) for a variety of material systems.

  7. Biaxial order parameter in the homologous series of orthogonal bent-core smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sreenilayam, S.; Panarin, Y. P.; Vij, J. K.; Osipov, M.; Lehmann, A.; Tschierske, C.

    2013-07-01

    The fundamental parameter of the uniaxial liquid crystalline state that governs nearly all of its physical properties is the primary orientational order parameter (S) for the long axes of molecules with respect to the director. The biaxial liquid crystals (LCs) possess biaxial order parameters depending on the phase symmetry of the system. In this paper we show that in the first approximation a biaxial orthogonal smectic phase can be described by two primary order parameters: S for the long axes and C for the ordering of the short axes of molecules. The temperature dependencies of S and C are obtained by the Haller's extrapolation technique through measurements of the optical birefringence and biaxiality on a nontilted polar antiferroelectric (Sm-APA) phase of a homologous series of LCs built from the bent-core achiral molecules. For such a biaxial smectic phase both S and C, particularly the temperature dependency of the latter, are being experimentally determined. Results show that S in the orthogonal smectic phase composed of bent cores is higher than in Sm-A calamatic LCs and C is also significantly large.

  8. Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity

    NASA Astrophysics Data System (ADS)

    Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso

    2014-08-01

    The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature ( T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures ( T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.

  9. Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity.

    PubMed

    Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso

    2014-08-01

    The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature (T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures (T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.

  10. Multi-Dimensional, Non-Pyrolyzing Ablation Test Problems

    NASA Technical Reports Server (NTRS)

    Risch, Tim; Kostyk, Chris

    2016-01-01

    Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be collected, summarized, and presented at a later conference.

  11. The effects of the β1 antagonist, metoprolol, on methamphetamine-induced changes in core temperature in the rat.

    PubMed

    Harrell, Ricki; Speaker, H Anton; Mitchell, Scott L; Sabol, Karen E

    2015-11-16

    Methamphetamine (METH) results in hyperthermia or hypothermia depending on environmental conditions. Here we studied the role of the β1 adrenergic receptor in mediating METH's temperature effects. Core temperature measurements were made telemetrically over a 7.5h session, two days/week, in test chambers regulated at either 18°C, 24°C, or 30°C ambient temperature. Rats were treated with the β1 antagonist metoprolol (5.0, 10.0, and 15.0mg/kg) alone (Experiment 1), or in combination with 5.0mg/kg METH (Experiment 2). In experiment 3, we combined a lower dose range of metoprolol (0.75, 1.5, and 3.0mg/kg) with 5.0mg/kg METH at 18°C and 30°C. Confirming prior findings, METH alone resulted in hyperthermia in warm (30°) and hypothermia in cool environments (18°C). Metoprolol alone induced small but significant increases in core temperature. In combination, however, metoprolol reduced METH-induced changes in core temperature. Specifically, at 30°C, 3.0, 5.0, 10.0, and 15.0mg/kg metoprolol decreased METH-induced hyperthermia; at 18°C, all six doses of metoprolol enhanced METH-induced hypothermia. Our metoprolol findings suggest that one component of METH's temperature effects involves increasing core temperature at all ambient conditions via β1 receptors. Since β receptors are involved in brown adipose tissue (BAT)-mediated thermogenesis, skeletal muscle-mediated thermogenesis, heart rate, and the metabolism of glucose and lipids, we discuss each of these as possible mechanisms for metoprolol's effects on METH-induced changes in core temperature. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Long-term reliability study and failure analysis of quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Xie, Feng; Nguyen, Hong-Ky; Leblanc, Herve; Hughes, Larry; Wang, Jie; Miller, Dean J.; Lascola, Kevin

    2017-02-01

    Here we present lifetime test results of 4 groups of quantum cascade lasers (QCL) under various aging conditions including an accelerated life test. The total accumulated life time exceeds 1.5 million device·hours, which is the largest QCL reliability study ever reported. The longest single device aging time was 46.5 thousand hours (without failure) in the room temperature test. Four failures were found in a group of 19 devices subjected to the accelerated life test with a heat-sink temperature of 60 °C and a continuous-wave current of 1 A. Visual inspection of the laser facets of failed devices revealed an astonishing phenomenon, which has never been reported before, which manifested as a dark belt of an unknown substance appearing on facets. Although initially assumed to be contamination from the environment, failure analysis revealed that the dark substance is a thermally induced oxide of InP in the buried heterostructure semiinsulating layer. When the oxidized material starts to cover the core and blocks the light emission, it begins to cause the failure of QCLs in the accelerated test. An activation energy of 1.2 eV is derived from the dependence of the failure rate on laser core temperature. With the activation energy, the mean time to failure of the quantum cascade lasers operating at a current density of 5 kA/cm2 and heat-sink temperature of 25°C is expected to be 809 thousand hours.

  13. Comparison of Microchip Transponder and Noncontact Infrared Thermometry with Rectal Thermometry in Domestic Swine (Sus scrofa domestica)

    PubMed Central

    Jara, Amanda L; Hanson, Jarod M; Gabbard, Jon D; Johnson, Scott K; Register, Emery T; He, Biao

    2016-01-01

    During disease outbreaks, core temperature is a useful health metric in swine, due to the presence of pyrexia especially during the acute phase of infection. Despite technologic advances in other facets of swine production and health management, rectal thermometry continues to be the ‘gold standard’ for measuring core body temperature. However, for various reasons, collecting rectal temperatures can be difficult and unsafe depending on the housing modality. In addition, the delay between insertion of the rectal thermometer and obtaining a reading can affect measurement accuracy, especially when the pig requires physical restraint. Clearly safer, faster, and more accurate and precise temperature acquisition methods that necessitate minimal or no handling of swine are needed. We therefore compared rectal thermometers, subcutaneous microchips, and an inexpensive handheld infrared thermometer by measuring the core body temperature of 24 male castrated piglets at random intervals over a 5-wk period. The core body temperature (mean ± 1 SD) was 39.3 ± 0.5 °C by rectal thermometry, 39.0 ± 0.7 °C by microchip transponder, and 34.3 ± 1.0 °C by infrared thermometry; these 3 values differed significantly. Although the readings obtain by using infrared thermometry were numerically lower than those from the other methods, it is arguably the safest method for assessing the core temperature of swine and showed strong relative correlation with rectal temperature. PMID:27657715

  14. Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding.

    PubMed

    Rong, Qiangzhou; Qiao, Xueguang; Guo, Tuan; Bao, Weijia; Su, Dan; Yang, Hangzhou

    2014-12-01

    An orientation-sensitive fiber-optic accelerometer based on grating inscription over fiber cladding has been demonstrated. The sensor probe comprises a compact structure in which a short section of thin-core fiber (TCF) stub containing a "cladding" fiber Bragg grating (FBG) is spliced to another single-mode fiber (SMF) without any lateral offset. A femtosecond laser side-illumination technique was utilized to ensure that the grating inscription remains close to the core-cladding interface of the TCF. The core mode and the cladding mode of the TCF are coupled at the core-mismatch junction, and two well-defined resonances in reflection appear from the downstream FBG, in which the cladding resonance exhibits a strong polarization and bending dependence due to the asymmetrical distribution of the cladding FBG along the fiber cross section. Strong orientation dependence of the vibration (acceleration) measurement has been achieved by power detection of the cladding resonance. Meanwhile, the unwanted power fluctuations and temperature perturbations can be referenced out by monitoring the fundamental core resonance.

  15. Core-shell microstructured nanocomposites for synergistic adjustment of environmental temperature and humidity

    PubMed Central

    Zhang, Haiquan; Yuan, Yanping; Zhang, Nan; Sun, Qingrong; Cao, Xiaoling

    2016-01-01

    The adjustment of temperature and humidity is of great importance in a variety of fields. Composites that can perform both functions are prepared by mixing phase change materials (PCMs) with hygroscopic materials. However, the contact area between the adsorbent and humid air is inevitably decreased in such structures, which reduces the number of mass transfer channels for water vapor. An approach entailing the increase in the mass ratio of the adsorbent is presented here to improve the adsorption capacity. A core-shell CuSO4/polyethylene glycol (PEG) nanomaterial was developed to satisfy the conflicting requirements of temperature control and dehumidification. The results show that the equilibrium adsorption capacity of the PEG coating layer was enhanced by a factor of 188 compared with that of the pure PEG powder. The coating layer easily concentrates vapor, providing better adsorption properties for the composite. Furthermore, the volume modification of the CuSO4 matrix was reduced by 80% by the PEG coated layer, a factor that increases the stability of the composite. For the phase change process, the crystallization temperature of the coating layer was adjusted between 37.2 and 46.3 °C by interfacial tension. The core-shell CuSO4/PEG composite reported here provides a new general approach for the simultaneous control of temperature and humidity. PMID:27845371

  16. Understanding the high-temperature deformation

    NASA Astrophysics Data System (ADS)

    Gyurko, Angela M.; Vignoul, Gregory E.; Tien, John K.; Sanchez, Juan M.

    1992-11-01

    Engineering, University of Texas at Austin, Austin, TX 78712 While much of the high-temperature intermetallics research has centered around Ni3Al and other aluminum-based systems, the present study focuses on the Engel-Brewer Ll2 intermetallic Ir3Zr, which has a melting temperature approaching that of ceramics (2280 °C). Due to limited material availability, the technique of microindentation was used to study both the temperature and time dependence of strength. Because of the widely held belief that certain mechanical properties of intermetallics scale roughly with temperature, Ir3Zr was expected to exhibit high strength. The microhardness was observed to vary from 225 MPa at room temperature to 75 MPa at 1400 °C, which is significantly lower than the behavior of Ni3Al. The activation energy for creep was determined to be 467 kJ/mole, and the stress exponent was found to be 18.2. The ordering energy of this system was calculated to be 0.114 eV. If it can be assumed that high ordering energy correlates to a high antiphase boundary (APB) energy, then the behavior of this system is consistent with a model that predicts highly glissile dislocation cores.

  17. Ab initio simulations of iron-nickel alloys at Earth's core conditions

    NASA Astrophysics Data System (ADS)

    Côté, Alexander S.; Vočadlo, Lidunka; Brodholt, John P.

    2012-09-01

    We report ab initio density functional theory calculations on iron-nickel (FeNi) alloys at conditions representative of the Earth's inner core. We test different concentrations of Ni, up to ∼39 wt% using ab initio lattice dynamics, and investigate the thermodynamic and vibrational stability of the three candidate crystal structures (bcc, hcp and fcc). First of all, at inner core pressures, we find that pure Fe transforms from the hcp to the fcc phase at around 6000 K. Secondly, in agreement with low pressure experiments on Fe-Ni alloys, we find the fcc structure is stabilised by the incorporation of Ni under core pressures and temperatures. Our results show that the fcc structure may, therefore, be stable under core conditions depending on the temperature in the inner core and the Ni content. Lastly, we find that within the quasi-harmonic approximation, there is no stability field for FeNi alloys in the bcc structure under core conditions.

  18. Determination of temperature dependence of full matrix material constants of PZT-8 piezoceramics using only one sample.

    PubMed

    Zhang, Yang; Tang, Liguo; Tian, Hua; Wang, Jiyang; Cao, Wenwu; Zhang, Zhongwu

    2017-08-15

    Resonant ultrasound spectroscopy (RUS) was used to determine the temperature dependence of full matrix material constants of PZT-8 piezoceramics from room temperature to 100 °C. Property variations from sample to samples can be eliminated by using only one sample, so that data self-consistency can be guaranteed. The RUS measurement system error was estimated to be lower than 2.35%. The obtained full matrix material constants at different temperatures all have excellent self-consistency, which can help accurately predict device performance at high temperatures using finite element simulations.

  19. Study on micro-bend light transmission performance of novel liquid-core optical fiber

    NASA Astrophysics Data System (ADS)

    Ma, Junyan; Zhao, Zhimin; Wang, Kaisheng; Guo, Linfeng

    2007-01-01

    With the increasing development of material technology and electronic integration technology, optical fiber and its using in smart structure have become hot in the field of material research. And liquid-core optical fiber is a special kind of optical fiber, which is made using liquid material as core and polymer material as optical layer and protective covering, and it has the characteristics of large core diameter, high numerical aperture, large-scope and efficient spectrum transmission and long life for using. So the liquid-core optical fiber is very suitable for spectrum cure, ultraviolet solidification, fluorescence detection, criminal investigation and evidence obtainment, etc, and especially as light transfer element in some new structures for the measurement of some signals, such as concentration, voltage, temperature, light intensity and so on. In this paper, the novel liquid-core optical fiber is self-made, and then through the test of its light transmission performance in free state, the relation between axial micro-bend and light-intensity loss are presented. When the liquid-core optical fiber is micro-bent axially, along with the axial displacement's increase, output power of light is reducing increasingly, and approximately has linear relation to micro-displacement in a range. According to the results liquid-core fiber-optic micro-bend sensor can be designed to measure micro-displacement of the tested objects. Experimental data and analysis provide experimental basis for further application of liquid-core optical fiber.

  20. Fracture toughness evaluation of select advanced replacement alloys for LWR core internals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Chen, Xiang

    Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to develop and test degradation resistant alloys from current commercial alloy specifications bymore » 2021 to a new advanced alloy with superior degradation resistance in light water reactor (LWR)-relevant environments by 2024. Fracture toughness is one of the key engineering properties required for core internal materials. Together with other properties, which are being examined such as high-temperature steam oxidation resistance, radiation hardening, and irradiation-assisted stress corrosion cracking resistance, the alloys will be down-selected for neutron irradiation study and comprehensive post-irradiation examinations. According to the candidate alloys selected under the ARRM program, ductile fracture toughness of eight alloys was evaluated at room temperature and the LWR-relevant temperatures. The tested alloys include two ferritic alloys (Grade 92 and an oxide-dispersion-strengthened alloy 14YWT), two austenitic stainless steels (316L and 310), four Ni-base superalloys (718A, 725, 690, and X750). Alloy 316L and X750 are included as reference alloys for low- and high-strength alloys, respectively. Compact tension specimens in 0.25T and 0.2T were machined from the alloys in the T-L and R-L orientations according to the product forms of the alloys. This report summarizes the final results of the specimens tested and analyzed per ASTM Standard E1820. Unlike the ferritic alloys showing slight decreases (Grade 92) or significant decreases (14YWT) in fracture toughness at elevated temperatures, the fracture toughness of the austenitic stainless steels and Ni-base superalloys were not strongly dependent upon the test temperatures. The fracture toughness of the alloys at the LWR-relevant temperatures was estimated by averaging the toughness values within 250– 350°C, which suggested the fracture toughness of the alloys in a descending order as 316L (752±98 MPa√m), 310 (513±66 MPa√m), 718A (313±43 MPa√m), 690 (267±48 MPa√m), 725 (218±55 MPa√m), X750 (145±16 MPa√m), Grade 92 (112±12 MPa√m), and 14YWT (63±3 MPa√m). Tearing modulus of the alloys was analyzed in the meantime, which were not strongly dependent upon the test temperatures. The high-strength alloys 718A, 725, X750, and 14YWT had the lowest tearing modulus, ranging from ~45 to ~7. Alloy 690 exhibited the highest tearing modulus on the order of 450, followed by 316L and 310 on the order of 260. Grade 92 had a noticeably lower tearing modulus on the order of 70.« less

  1. Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors.

    PubMed

    Bazant, Zdenĕk P; Pang, Sze-Dai

    2006-06-20

    In mechanical design as well as protection from various natural hazards, one must ensure an extremely low failure probability such as 10(-6). How to achieve that goal is adequately understood only for the limiting cases of brittle or ductile structures. Here we present a theory to do that for the transitional class of quasibrittle structures, having brittle constituents and characterized by nonnegligible size of material inhomogeneities. We show that the probability distribution of strength of the representative volume element of material is governed by the Maxwell-Boltzmann distribution of atomic energies and the stress dependence of activation energy barriers; that it is statistically modeled by a hierarchy of series and parallel couplings; and that it consists of a broad Gaussian core having a grafted far-left power-law tail with zero threshold and amplitude depending on temperature and load duration. With increasing structure size, the Gaussian core shrinks and Weibull tail expands according to the weakest-link model for a finite chain of representative volume elements. The model captures experimentally observed deviations of the strength distribution from Weibull distribution and of the mean strength scaling law from a power law. These deviations can be exploited for verification and calibration. The proposed theory will increase the safety of concrete structures, composite parts of aircraft or ships, microelectronic components, microelectromechanical systems, prosthetic devices, etc. It also will improve protection against hazards such as landslides, avalanches, ice breaks, and rock or soil failures.

  2. Influence of smooth temperature variation on hotspot ignition

    NASA Astrophysics Data System (ADS)

    Reinbacher, Fynn; Regele, Jonathan David

    2018-01-01

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H2-air reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. However, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.

  3. Compensation of Verdet Constant Temperature Dependence by Crystal Core Temperature Measurement

    PubMed Central

    Petricevic, Slobodan J.; Mihailovic, Pedja M.

    2016-01-01

    Compensation of the temperature dependence of the Verdet constant in a polarimetric extrinsic Faraday sensor is of major importance for applying the magneto-optical effect to AC current measurements and magnetic field sensing. This paper presents a method for compensating the temperature effect on the Faraday rotation in a Bi12GeO20 crystal by sensing its optical activity effect on the polarization of a light beam. The method measures the temperature of the same volume of crystal that effects the beam polarization in a magnetic field or current sensing process. This eliminates the effect of temperature difference found in other indirect temperature compensation methods, thus allowing more accurate temperature compensation for the temperature dependence of the Verdet constant. The method does not require additional changes to an existing Δ/Σ configuration and is thus applicable for improving the performance of existing sensing devices. PMID:27706043

  4. Post impact behavior of mobile reactor core containment systems

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.; Parker, W. G.; Vanbibber, L. E.

    1972-01-01

    The reactor core containment vessel temperatures after impact, and the design variables that affect the post impact survival of the system are analyzed. The heat transfer analysis includes conduction, radiation, and convection in addition to the core material heats of fusion and vaporization under partially burial conditions. Also, included is the fact that fission products vaporize and transport radially outward and condense outward and condense on cooler surfaces, resulting in a moving heat source. A computer program entitled Executive Subroutines for Afterheat Temperature Analysis (ESATA) was written to consider this complex heat transfer analysis. Seven cases were calculated of a reactor power system capable of delivering up to 300 MW of thermal power to a nuclear airplane.

  5. Harmful Cyanobacterial Material Production in the North Han River (South Korea): Genetic Potential and Temperature-Dependent Properties.

    PubMed

    Kim, Keonhee; Park, Chaehong; Yoon, Youngdae; Hwang, Soon-Jin

    2018-03-03

    Cyanobacteria synthesize various harmful materials, including off-flavor substances and toxins, that are regarded as potential socio-economic and environmental hazards in freshwater systems, however, their production is still not well understood. In this study, we investigated the potential and properties of harmful materials produced by cyanobacteria, depending on temperature, and undertook a phylogenetic analysis of cyanobacteria present in the North Han River (South Korea). Production potentials were evaluated using gene-specific probes, and the harmful material production properties of strains showing positive potentials were further characterized at different temperatures in the range 15 to 30 °C. We identified six cyanobacterial strains based on 16S rDNA analysis: two morphological types (coiled and straight type) of Dolichospermum circinale, Aphanizomenon flos-aquae, Oscillatoria limosa, Planktothricoides raciborskii, Pseudanabaena mucicola , and Microcystis aeruginosa . We confirmed that cyanobacterial strains showing harmful material production potential produced the corresponding harmful material, and their production properties varied with temperature. Total harmful material production was maximal at 20~25 °C, a temperature range optimal for cell growth. However, harmful material productivity was highest at 15 °C. These results indicate that the expression of genes related to synthesis of harmful materials can vary depending on environmental conditions, resulting in variable harmful material production, even within the same cyanobacterial strains.

  6. Fe-FeO and Fe-Fe3C melting relations at Earth's core-mantle boundary conditions: Implications for a volatile-rich or oxygen-rich core

    NASA Astrophysics Data System (ADS)

    Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Cervera, S.; Clark, A.; Lord, O. T.; Siebert, J.; Svitlyk, V.; Garbarino, G.; Mezouar, M.

    2017-09-01

    Eutectic melting temperatures in the Fe-FeO and Fe-Fe3C systems have been determined up to 150 GPa. Melting criteria include observation of a diffuse scattering signal by in situ X-Ray diffraction, and textural characterisation of recovered samples. In addition, compositions of eutectic liquids have been established by combining in situ Rietveld analyses with ex situ chemical analyses. Gathering these new results together with previous reports on Fe-S and Fe-Si systems allow us to discuss the specific effect of each light element (Si, S, O, C) on the melting properties of the outer core. Crystallization temperatures of Si-rich core compositional models are too high to be compatible with the absence of extensive mantle melting at the core-mantle boundary (CMB) and significant amounts of volatile elements such as S and/or C (>5 at%, corresponding to >2 wt%), or a large amount of O (>15 at% corresponding to ∼5 wt%) are required to reduce the crystallisation temperature of the core material below that of a peridotitic lower mantle.

  7. The Pressure Dependence of Thermal Expansion of Core-Forming Alloys: A Key Parameter in Determining the Convective Style of Planetary Cores

    NASA Astrophysics Data System (ADS)

    Williams, Q. C.; Manghnani, M. H.

    2017-12-01

    The convective style of planetary cores is critically dependent on the thermal properties of iron alloys. In particular, the relation between the adiabatic gradient and the melting curve governs whether planetary cores solidify from their top down (when the adiabat is steeper than the melting curve) or the bottom up (the converse). Molten iron alloys, in general, have large, ambient pressure thermal expansions: values in excess of 1.2 x 10^-4/K are dictated by data derived from levitated and sessile drop techniques. These high values of the thermal expansion imply that the adiabatic gradients within early planetesimals and present day moons that have comparatively low-pressure, iron-rich cores are steep (typically greater than 35 K/GPa at low pressures): values, at low pressures, that are greater than the slope of the melting curve, and hence show that the cores of small solar system objects probably crystallize from the top-down. Here, we deploy a different manifestation of these large values of thermal expansion to determine the pressure dependence of thermal expansion in iron-rich liquids: a difficult parameter to experimentally measure, and critical for determining the size range of cores in which top-down core solidification predominates. In particular, the difference between the adiabatic and isothermal bulk moduli of iron liquids is in the 20-30% range at the melting temperature, and scales as the product of the thermal expansion, the Grüneisen parameter, and the temperature. Hence, ultrasonic (and adiabatic) moduli of iron alloy liquids, when coupled with isothermal sink-float measurements, can yield quantitative constraints on the pressure dependence of thermal expansion. For liquid iron alloys containing 17 wt% Si, we find that the thermal expansion is reduced by 50% over the first 8 GPa of compression. This "squeezing out" of the anomalously high low-pressure thermal expansion of iron-rich alloys at relatively modest conditions likely limits the size range over which top-down crystallizing cores are anticipated within planetary bodies.

  8. Properties of arc-sprayed coatings from Fe-based cored wires for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Korobov, Yu. S.; Nevezhin, S. V.; Filiрpov, M. A.; Makarov, A. V.; Malygina, I. Yu.; Fantozzi, D.; Milanti, A.; Koivuluoto, H.; Vuoristo, P.

    2017-12-01

    Equipment of a thermal power plant is subjected to high temperature oxidation and wear. This raises operating costs through frequent repair of worn parts and high metal consumption. The paper proposes a possible solution to this problem through arc spraying of protective coatings. Cored wires of the Fe-Cr-C basic alloying system are used as a feedstock. Additional alloying by Al, B, Si, Ti and Y allows one to create wear- and heat-resistant coatings, which are an attractive substitute of more expensive Co- and Ni-based materials.

  9. Johnson Noise Thermometry for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton Jr, Charles L; Roberts, Michael; Bull, Nora D

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor s physical condition. In and near core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small, Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of this project is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less

  10. A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and Gas Cooled Space Power and Propulsion Reactors

    NASA Technical Reports Server (NTRS)

    Anghaie, S.; Chen, G.

    1996-01-01

    A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high efficiency in the gas core reactors. The model is also used to predict the convective and radiation heat fluxes for the gas core reactors. The maximum value of heat flux occurs at the exit of the reactor core. Radiation heat flux increases with higher wall temperature. This behavior is due to the fact that the radiative heat flux is strongly dependent on wall temperature. This study also found that at temperature close to 3500 K the radiative heat flux is comparable with the convective heat flux in a uranium fluoride failed gas core reactor.

  11. Advances in first-principles calculations of thermodynamic properties of planetary materials (Invited)

    NASA Astrophysics Data System (ADS)

    Wilson, H. F.

    2013-12-01

    First-principles atomistic simulation is a vital tool for understanding the properties of materials at the high-pressure high-temperature conditions prevalent in giant planet interiors, but properties such as solubility and phase boundaries are dependent on entropy, a quantity not directly accessible in simulation. Determining entropic properties from atomistic simulations is a difficult problem typically requiring a time-consuming integration over molecular dynamics trajectories. Here I will describe recent advances in first-principles thermodynamic calculations which substantially increase the simplicity and efficiency of thermodynamic integration and make entropic properties more readily accessible. I will also describe the use of first-principles thermodynamic calculations for understanding problems including core solubility in gas giants and superionic phase changes in ice giants, as well as future prospects for combining first-principles thermodynamics with planetary-scale models to help us understand the origin and consequences of compositional inhomogeneity in giant planet interiors.

  12. Atomistic calculations of dislocation core energy in aluminium

    DOE PAGES

    Zhou, X. W.; Sills, R. B.; Ward, D. K.; ...

    2017-02-16

    A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin 2β + B·cos 2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less

  13. Atomistic calculations of dislocation core energy in aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X. W.; Sills, R. B.; Ward, D. K.

    A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin 2β + B·cos 2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less

  14. Temperature- and field-dependent characterization of a conductor on round core cable

    NASA Astrophysics Data System (ADS)

    Barth, C.; van der Laan, D. C.; Bagrets, N.; Bayer, C. M.; Weiss, K.-P.; Lange, C.

    2015-06-01

    The conductor on round core (CORC) cable is one of the major high temperature superconductor cable concepts combining scalability, flexibility, mechanical strength, ease of fabrication and high current density; making it a possible candidate as conductor for large, high field magnets. To simulate the boundary conditions of such magnets as well as the temperature dependence of CORC cables a 1.16 m long sample consisting of 15, 4 mm wide SuperPower REBCO tapes was characterized using the ‘FBI’ (force—field—current) superconductor test facility of the Institute for Technical Physics of the Karlsruhe Institute of Technology. In a five step investigation, the CORC cable’s performance was determined at different transverse mechanical loads, magnetic background fields and temperatures as well as its response to swift current changes. In the first step, the sample’s 77 K, self-field current was measured in a liquid nitrogen bath. In the second step, the temperature dependence was measured at self-field condition and compared with extrapolated single tape data. In the third step, the magnetic background field was repeatedly cycled while measuring the current carrying capabilities to determine the impact of transverse Lorentz forces on the CORC cable sample’s performance. In the fourth step, the sample’s current carrying capabilities were measured at different background fields (2-12 T) and surface temperatures (4.2-51.5 K). Through finite element method simulations, the surface temperatures are converted into average sample temperatures and the gained field- and temperature dependence is compared with extrapolated single tape data. In the fifth step, the response of the CORC cable sample to rapid current changes (8.3 kA s-1) was observed with a fast data acquisition system. During these tests, the sample performance remains constant, no degradation is observed. The sample’s measured current carrying capabilities correlate to those of single tapes assuming field- and temperature dependence as published by the manufacturer.

  15. Characterization of temperature-dependent optical material properties of polymer powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laumer, Tobias; SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen; CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystallinemore » thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.« less

  16. Possible Role of Hydrogen in the Earth Core

    NASA Astrophysics Data System (ADS)

    Takahashi, E.; Imai, T.

    2011-12-01

    Possible role of hydrogen in the Earth core has been discussed by Stevenson (1977) and demonstrated experimentally by Fukai (1984), Okuchi (1997) and others. Planetary theory proposes a possibility of hydrogen incorporation in Earth's magma ocean from ambient solar nebula gas (Ikoma & Genda 2005, Genda & Ikoma 2008). More recently, migration of snow line during planet formation was examined (Min et al., 2010; Oka et al, 2011) and it was proposed that the Earth building material originally contained abundant water as ice and hydrous minerals. Therefore, it is very important to investigate the fate of water in the planet building process and clarify the role of hydrogen in the planetary core. Using SPring-8 synchrotron (NaCl capsule, LiAlH4 as hydrogen source), we determined the melting curve of FeH up to 20 GPa under hydrogen saturated conditions (Sakamaki, Takahashi et al, 2009). Observed melting point is below 1300C and has a very small dT/dP slope. By extrapolating the melting curve using Lindeman's law, we proposed that hydrogen could lower the melting temperature of the Earth core by more than 1500K than current estimate. Here we report our new experiments using SPring-8 synchrotron (single crystal diamond capsule, water as hydrogen source). Hydrogen concentration and melting temperature of FeHx that coexists with hydrous mantle minerals were determined at 15-20GPa and 1000-1600C. We show that 1) hydrogen concentration in FeHx at 1000C, coexisting with hydrous-B and ringwoodite is approximately X=0.6. 2) Upon heating, hydrous-B decomposes and hydrogen strongly partitions into FeHx (X=0.8~1.0) than ringwoodite. 3) FeHx that coexists with ringwoodite melts between ~1300C (solidus) and ~1600C (liquidus). Combined our new experiments with those by Sakamaki et al (2009) and Shibazaki et al (2009), partitioning of hydrogen between proto-core and primitive mantle is discussed. We propose that >90% of water in the source material may have entered the Earth core. Given large hydrogen concentration in the Earth core, temperature of the outermost core could be as low as that of lower mantle adiabat. Presence of the light element-rich layer at the top 300km layer of the outer core (Helffrich & Kaneshima, 2010) may be easily understood if there is no temperature gap between the core and the lower mantle.

  17. New constant-temperature operating mode for graphite calorimeter at LNE-LNHB.

    PubMed

    Daures, J; Ostrowsky, A

    2005-09-07

    The realization of the unit of absorbed dose at LNE-LNHB is based on calorimetry with the present GR8 graphite calorimeter. For this reason the calorimetric technique must be maintained, developed and improved in the laboratory. The usual quasi-adiabatic operating mode at LNHB is based on the thermal feedback between the core (sensitive element) and the jacket (adjacent body). When a core-jacket temperature difference is detected, a commercially available analogue PID (Proportional, Integral, Derivative) controller sends to the jacket an amount of electrical power to reduce this difference. Nevertheless, the core and jacket temperatures increase with irradiations and electrical calibrations whereas the surrounding is maintained at a fixed temperature to shield against the room temperature variations. At radiotherapy dose rates, fewer than ten measurements, or electrical calibrations, per day can be performed. This paper describes the new constant-temperature operating mode which has been implemented recently to improve flexibility in use and, to some extent, accuracy. The core and the jacket temperatures are maintained at fixed temperatures. A steady state is achieved without irradiation. Then, under irradiation, the electrical power needed to maintain the assigned temperature in the core is reduced by the amount of heat generated by ionizing radiation. The difference between these electrical powers, without and with irradiation, gives the mean absorbed dose rate to the core. The quality of this electrical power substitution measurement is strongly dependent upon the quality of the core and jacket thermal control. The core temperature is maintained at the set value using a digital PID regulator developed at the laboratory with LabView software on PC for this purpose. This regulator is versatile and particularly well suited for calorimetry purposes. Measurements in a cobalt-60 beam have shown no significant difference (<0.09%) between the two operating modes, with an equivalent reproducibility (1sigma < 0.06%). These results corroborate the negligible difference of heat transfer between steady and irradiation periods when working in quasi-adiabatic mode with thermal feedback between the core and the jacket. The new constant-temperature mode allows numerous and fully automated measurements. The electrical calibration is an integral part of the measurement; no extra runs are needed. It also allows faster thermal equilibrium before starting runs. Moreover the quality of vacuum within the gaps between the bodies is less important.

  18. Fabrication and Benchmarking of a Stratix V FPGA with Monolithic Integrated Microfluidic Cooling

    DTIC Science & Technology

    2017-03-01

    run. The output from all cores were monitored through the Altera Signaltap tool in order to detect glitches which occurred in the output...dependence on temperature, and static/ leakage power, which comes from several components, such as subthreshold leakage , gate leakage , and reverse bias 220...junction current. Subthreshold leakage current tends to be the most significant temperature dependent component of the power [6,7] and is given by

  19. Temperature-dependent liquid metal flowrate control device

    DOEpatents

    Carlson, Roger D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced.

  20. Advances in Understanding of Swift Heavy-Ion Tracks in Complex Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Maik; Devanathan, Ram; Toulemonde, Marcel

    2015-02-01

    Tracks produced by swift heavy ions in ceramics are of interest for fundamental science as well as for applications covering different fields such as nanotechnology or fission-track dating of minerals. In the case of pyrochlores with general formula A2B2O7, the track structure and radiation sensitivity shows a clear dependence on the composition. Ion irradiated Gd2Zr2O7, e.g., retains its crystallinity while amorphous tracks are produced in Gd2Ti2O7. Tracks in Ti-containing compositions have a complex morphology consisting of an amorphous core surrounded by a shell of a disordered, defect-fluorite phase. The size of the amorphous core decreases with decreasing energy loss andmore » with increasing Zr content, while the shell thickness seems to be similar over a wide range of energy loss values. The large data set and the complex track structure has made pyrochlore an interesting model system for a general theoretical description of track formation including thermal spike calculations (providing the spatial and temporal evolution of temperature around the ion trajectory) and molecular dynamics (MD) simulations (describing the response of the atomic system).Recent MD advances consider the sudden temperature increase by inserting data from the thermal spike. The combination allows the reproduction of the core-shell track characteristic and sheds light on the early stages of track formation including recrystallization of the molten material produced by the thermal spike.« less

  1. PCS optical fibers for an automobile data bus

    NASA Astrophysics Data System (ADS)

    Clarkin, James P.; Timmerman, Richard J.; Stolte, Gary W.; Klein, Karl-Friedrich

    2005-02-01

    Optical fibers have been used for data communications in automobiles for several years. The fiber of choice thus far has been a plastic core/plastic clad optical fiber (POF) consisting of the plastic polymethylmethacrylate (PMMA). The POF fiber provides a low cost fiber with relatively easy termination. However, increasing demands regarding temperature performance, transmission losses and bandwidth have pushed the current limits of the POF fiber, and the automotive industry is now moving towards an optical fiber with a silica glass core/plastic clad (PCS). PCS optical fibers have been used successfully in industrial, medical, sensor, military and data communications systems for over two decades. The PCS fiber is now being adapted specifically for automotive use. In the following, the design criteria and design alternatives for the PCS as well as optical, thermal, and mechanical testing results for key automotive parameters are described. The fiber design tested was 200&mum synthetic silica core/230&mum fluoropolymer cladding/1510&mum nylon buffer. Key attributes such as 700 - 900 nm spectral attenuation, 125°C thermal soak, -40 to 125°C thermal cycling, bending losses, mechanical strength, termination capability, and cost are discussed and compared. Overall, a specifically designed PCS fiber is expected to be acceptable for the use in an automotive data bus, and will show improvement in optical transmission, temperature range and bandwidth. However, the final selection of buffer and jacket materials and properties will be most dependent on the selection of a reliable and economical termination method.

  2. Coatings influencing thermal stress in photonic crystal fiber laser

    NASA Astrophysics Data System (ADS)

    Pang, Dongqing; Li, Yan; Li, Yao; Hu, Minglie

    2018-06-01

    We studied how coating materials influence the thermal stress in the fiber core for three holding methods by simulating the temperature distribution and the thermal stress distribution in the photonic-crystal fiber laser. The results show that coating materials strongly influence both the thermal stress in the fiber core and the stress differences caused by holding methods. On the basis of the results, a two-coating PCF was designed. This design reduces the stress differences caused by variant holding conditions to zero, then the stability of laser operations can be improved.

  3. Thermochromic microcapsules with highly transparent shells obtained through in-situ polymerization of urea formaldehyde around thermochromic cores for smart wood coatings.

    PubMed

    Zhu, Xiaodong; Liu, Yu; Li, Zhao; Wang, Weicong

    2018-03-05

    In this paper, thermochromic microcapsules were synthesized in situ polymerization with urea formaldehyde as shell material and thermochromic compounds as core material. The effects of emulsifying agent and conditions on surface morphology and particle size of microcapsules were studied. It was found that the size and surface morphology of microcapsules were strongly depending on stirring rate and the ratio of core to shell. The stable and small size spherical microcapsules with excellent transparency can be obtained at an emulsifying agent to core to shell ratio as 1:5:7.5 under mechanical stirring at 12 krpm for 15 min. Finally, the thermochromic property was discussed by loading microcapsules in wood and wood coatings. Results indicate that microcapsules can realize the thermochromic property while incorporated with wood and coatings, and could have high potential in smart material fabrication.

  4. Investigation of cross-linking characteristics of novel hole-transporting materials for solution-processed phosphorescent OLEDs

    NASA Astrophysics Data System (ADS)

    Lee, Jaemin; Ameen, Shahid; Lee, Changjin

    2016-04-01

    After the success of commercialization of the vacuum-evaporated organic light-emitting diodes (OLEDs), solutionprocessing or printing of OLEDs are currently attracting much research interests. However, contrary to various kinds of readily available vacuum-evaporable OLED materials, the solution-processable OLED materials are still relatively rare. Hole-transporting layer (HTL) materials for solution-processed OLEDs are especially limited, because they need additional characteristics such as cross-linking to realize multilayer structures in solution-processed OLEDs, as well as their own electrically hole-transporting characteristics. The presence of such cross-linking characteristics of solutionprocessable HTL materials therefore makes them more challenging in the development stage, and also makes them essence of solution-processable OLED materials. In this work, the structure-property relationships of thermally crosslinkable HTL materials were systematically investigated by changing styrene-based cross-linking functionalities and modifying the carbazole-based hole-transporting core structures. The temperature dependency of the cross-linking characteristics of the HTL materials was systematically investigated by the UV-vis. absorption spectroscopy. The new HTL materials were also applied to green phosphorescent OLEDs, and their device characteristics were also investigated based on the chemical structures of the HTL materials. The device configuration was [ITO / PEDOT:PSS / HTL / EML / ETL / CsF / Al]. We found out that the chemical structures of the cross-linking functionalities greatly affect not only the cross-linking characteristics of the resultant HTL materials, but also the resultant OLED device characteristics. The increase of the maximum luminance and efficiency of OLEDs was evident as the cross-linking temperature decreases from higher than 200°C to at around 150°C.

  5. Solid He: Progress, Status, and Outlook for Mass Flux Measurements

    NASA Astrophysics Data System (ADS)

    Hallock, R. B.

    2015-07-01

    After a brief introduction, what is provided there is brief summary of work with solid He done at the University of Massachusetts Amherst and an outlook for future work. What is presented here is based on a presentation made at the Quantum Gases Fluids and Solids Workshop in Sao Paulo, Brazil in August of 2014. Our work with solid He is aimed at the question: Can a sample cell filled with solid He support a mass flux through the cell? The answer, as will be shown here, is yes. Evidence for this from several types of experiments will be reviewed. There will be an emphasis on more recent work, work that explores how the flux observed depends on temperature and on the He impurity level. The behavior observed suggests that solid He may be an example of a material that demonstrates Bosonic Luttinger liquid behavior. The normalized He flux has a universal temperature dependence. The presence of He at different impurity levels shows that the He blocks the flux at a characteristic temperature. The behavior appears to be consistent with the cores of dislocations as the entity that carries the flux, but it is clear that more work needs to be done to fully understand solid He.

  6. The influence of temperature on a nutty-cake structural material: LiMn1-xFexPO4 composite with LiFePO4 core and carbon outer layer for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Huo, Zhen-Qing; Cui, Yu-Ting; Wang, Dan; Dong, Yue; Chen, Li

    2014-01-01

    The extremely low electronic conductivity, slow ion diffusion kinetics, and the Jahn-Teller effect of LiMnPO4 limit its electrochemical performance. In this work, a nutty-cake structural C-LiMn1-xFexPO4-LiFePO4 cathode material is synthesized by hydrothermal method and further calcined at different temperatures. The influence of calcination temperature on the electrochemical behavior is investigated by X-ray diffractometer, scanning electron microscope, field-emission high-resolution transmission electron microscope, energy-dispersive X-ray spectroscopy, electrochemical impedance spectroscopy and charge-discharge tests. And the performance of C-LiMn1-xFexPO4-LiFePO4 materials has a relationship with its crystal structure. The well-crystallized Sample-600 calcined at 600 °C shows the smallest charge transfer resistance, the largest lithium ion diffusion coefficient (DLi) and the best cycling stability. The discharge capacity of Sample-600 holds around 112 mAh g-1 after the 3rd cycle at 0.1 C rate. The performances improvement of C-LiMn1-xFexPO4-LiFePO4 material can be mainly attributed to the iron diffusion from the LiFePO4 core to the outer LiMnPO4 layer under appropriate calcination temperature.

  7. Patterns of activity and body temperature of Aldabra giant tortoises in relation to environmental temperature.

    PubMed

    Falcón, Wilfredo; Baxter, Rich P; Furrer, Samuel; Bauert, Martin; Hatt, Jean-Michel; Schaepman-Strub, Gabriela; Ozgul, Arpat; Bunbury, Nancy; Clauss, Marcus; Hansen, Dennis M

    2018-02-01

    We studied the temperature relations of wild and zoo Aldabra giant tortoises ( Aldabrachelys gigantea ) focusing on (1) the relationship between environmental temperature and tortoise activity patterns ( n  = 8 wild individuals) and (2) on tortoise body temperature fluctuations, including how their core and external body temperatures vary in relation to different environmental temperature ranges (seasons; n  = 4 wild and n  = 5 zoo individuals). In addition, we surveyed the literature to review the effect of body mass on core body temperature range in relation to environmental temperature in the Testudinidae. Diurnal activity of tortoises was bimodally distributed and influenced by environmental temperature and season. The mean air temperature at which activity is maximized was 27.9°C, with a range of 25.8-31.7°C. Furthermore, air temperature explained changes in the core body temperature better than did mass, and only during the coldest trial, did tortoises with higher mass show more stable temperatures. Our results, together with the overall Testudinidae overview, suggest that, once variation in environmental temperature has been taken into account, there is little effect of mass on the temperature stability of tortoises. Moreover, the presence of thermal inertia in an individual tortoise depends on the environmental temperatures, and we found no evidence for inertial homeothermy. Finally, patterns of core and external body temperatures in comparison with environmental temperatures suggest that Aldabra giant tortoises act as mixed conformer-regulators. Our study provides a baseline to manage the thermal environment of wild and rewilded populations of an important island ecosystem engineer species in an era of climate change.

  8. LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window

    NASA Astrophysics Data System (ADS)

    Ximendes, Erving Clayton; Rocha, Uéslen; Kumar, Kagola Upendra; Jacinto, Carlos; Jaque, Daniel

    2016-06-01

    We report on Ytterbium and Neodymium codoped LaF3 core/shell nanoparticles capable of simultaneous heating and thermal sensing under single beam infrared laser excitation. Efficient light-to-heat conversion is produced at the Neodymium highly doped shell due to non-radiative de-excitations. Thermal sensing is provided by the temperature dependent Nd3+ → Yb3+ energy transfer processes taking place at the core/shell interface. The potential application of these core/shell multifunctional nanoparticles for controlled photothermal subcutaneous treatments is also demonstrated.

  9. Method and apparatus for optical temperature measurements

    DOEpatents

    Angel, S.M.; Hirschfeld, T.B.

    1986-04-22

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illiminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature. 3 figs.

  10. Method and apparatus for optical temperature measurements

    DOEpatents

    Angel, S. Michael; Hirschfeld, Tomas B.

    1988-01-01

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illuminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature.

  11. Design of Aerosol Particle Coating: Thickness, Texture and Efficiency

    PubMed Central

    Buesser, B.; Pratsinis, S.E.

    2013-01-01

    Core-shell particles preserve the performance (e.g. magnetic, plasmonic or opacifying) of a core material while modifying its surface with a shell that facilitates (e.g. by blocking its reactivity) their incorporation into a host liquid or polymer matrix. Here coating of titania (core) aerosol particles with thin silica shells (films or layers) is investigated at non-isothermal conditions by a trimodal aerosol dynamics model, accounting for SiO2 generation by gas phase and surface oxidation of hexamethyldisiloxane (HMDSO) vapor, coagulation and sintering. After TiO2 particles have reached their final primary particle size (e.g. upon completion of sintering during their flame synthesis), coating starts by uniformly mixing them with HMDSO vapor that is oxidized either in the gas phase or on the particles’ surface resulting in SiO2 aerosols or deposits, respectively. Sintering of SiO2 deposited onto the core TiO2 particles takes place transforming rough into smooth coating shells depending on process conditions. The core-shell characteristics (thickness, texture and efficiency) are calculated for two limiting cases of coating shells: perfectly smooth (e.g. hermetic) and fractal-like. At constant TiO2 core particle production rate, the influence of coating weight fraction, surface oxidation and core particle size on coating shell characteristics is investigated and compared to pertinent experimental data through coating diagrams. With an optimal temperature profile for complete precursor conversion, the TiO2 aerosol and SiO2-precursor (HMDSO) vapor concentrations have the strongest influence on product coating shell characteristics. PMID:23729833

  12. Electrical breakdown and nanogap formation of indium oxide core/shell heterostructure nanowires.

    PubMed

    Jung, Minkyung; Song, Woon; Sung Lee, Joon; Kim, Nam; Kim, Jinhee; Park, Jeunghee; Lee, Hyoyoung; Hirakawa, Kazuhiko

    2008-12-10

    We report the electrical breakdown behavior and subsequent nanogap formation of In(2)O(3)/InO(x) core/shell heterostructure nanowires with substrate-supported and suspended structures. The radial heterostructure nanowires, composed of crystalline In(2)O(3) cores and amorphous In-rich shells, are grown by chemical vapor deposition. As the nanowires broke down, they exhibited two distinct current drops in the current-voltage characteristics. The tips of the broken nanowires were found to have a cone or a volcano shape depending on the width of the nanowire. The shape, the size, and the position of the nanogap depend strongly on the device structure and the nanowire dimensions. The substrate-supported and the suspended devices exhibit distinct breakdown behavior which can be explained by the diffusive thermal transport model. The breakdown temperature of the nanowire is estimated to be about 450 K, close to the melting temperature of indium. We demonstrated the usefulness of this technique by successful fabrication of working pentacene field-effect transistors.

  13. Calculation of Distribution Dynamics of Inhomogeneous Temperature Field in Range of Fuel Elements by Using FreeFem++

    NASA Astrophysics Data System (ADS)

    Amosova, E. V.; Shishkin, A. V.

    2017-11-01

    This article introduces the result of studying the heat exchange in the fuel element of the nuclear reactor fuel magazine. Fuel assemblies are completed as a bundle of cylindrical fuel elements located at the tops of a regular triangle. Uneven distribution of fuel rods in a nuclear reactor’s core forms the inhomogeneity of temperature fields. This article describes the developed method for heat exchange calculation with the account for impact of an inhomogeneous temperature field on the thermal-physical properties of materials and unsteady effects. The acquired calculation results are used for evaluating the tolerable temperature levels in protective case materials.

  14. Complexity of nearshore strontium-to-calcium ratio variability in a core sample of the massive coral Siderastrea siderea obtained in Coral Bay, St. John, U.S. Virgin Islands

    USGS Publications Warehouse

    Reich, Christopher D.; Kuffner, Ilsa B.; Hickey, T. Don; Morrison, Jennifer M.; Flannery, Jennifer A.

    2013-01-01

    Strontium-to-calcium ratios (Sr/Ca) were measured on the skeletal matrix of a core sample from a colony of the massive coral Siderastrea siderea collected in Coral Bay, St. John, U.S. Virgin Islands. Strontium and calcium are incorporated into the coral skeleton during the precipitation of aragonite by the coral polyps and their ratio is highly temperature dependent. The robustness of this temperature dependence makes Sr/Ca a reliable proxy for sea surface temperature (SST). Details presented from the St. John S. siderea core indicate that terrestrial inputs of sediment and freshwater can disrupt the chemical balance and subsequently complicate the utility of Sr/Ca in reconstructing historical SST. An approximately 44-year-long record of Sr/Ca shows that an annual SST signal is recorded but with an increasing Sr/Ca trend from 1980 to present, which is likely the result of runoff from the mountainous terrain of St. John. The overwhelming influence of the terrestrial fingerprint on local seawater chemistry makes utilizing Sr/Ca as a SST proxy in nearshore environments very difficult.

  15. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, Norman B.

    1998-01-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  16. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, N.B.

    1998-09-08

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

  17. Comparison of denitrification activity measurements in groundwater using cores and natural-gradient tracer tests

    USGS Publications Warehouse

    Smith, R.L.; Garabedian, S.P.; Brooks, M.H.

    1996-01-01

    The transport of many solutes in groundwater is dependent upon the relative rates of physical flow and microbial metabolism. Quantifying rates of microbial processes under subsurface conditions is difficult and is most commonly approximated using laboratory studies with aquifer materials. In this study, we measured in situ rates of denitrification in a nitrate- contaminated aquifer using small-scale, natural-gradient tracer tests and compared the results with rates obtained from laboratory incubations with aquifer core material. Activity was measured using the acetylene block technique. For the tracer tests, co-injection of acetylene and bromide into the aquifer produced a 30 ??M increase in nitrous oxide after 10 m of transport (23-30 days). An advection-dispersion transport model was modified to include an acetylene-dependent nitrous oxide production term and used to simulate the tracer breakthrough curves. The model required a 4-day lag period and a relatively low sensitivity to acetylene to match the narrow nitrous oxide breakthrough curves. Estimates of in situ denitrification rates were 0.60 and 1.51 nmol of N2O produced cm-3 aquifer day-1 for two successive tests. Aquifer core material collected from the tracer test site and incubated as mixed slurries in flasks and as intact cores yielded rates that were 1.2-26 times higher than the tracer test rate estimates. Results with the coring-dependent techniques were variable and subject to the small- scale heterogeneity within the aquifer, while the tracer tests integrated the heterogeneity along a flow path, giving a rate estimate that is more applicable to transport at the scale of the aquifer.

  18. Si and O partitioning between core metal and lower mantle minerals during core formation

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Frost, D. J.; Rubie, D. C.

    2010-12-01

    In addition to Fe and Ni, the Earth’s core contains light alloying elements (e.g., H, C, O, Si, and/or S) in order to explain the 10% core density deficit (e.g., Birch, 1964, JGR). Experimental data on the partitioning behavior of siderophile elements such as Ni and Co between liquid Fe and mantle minerals indicate that equilibration between core-forming metal and a silicate magma ocean likely occurred at lower-mantle pressures (e.g., Li and Agee, 1996 Nature). If core-mantle differentiation has occurred under such conditions, significant quantities of O or Si could have entered the core. At these conditions the nature of the dominant light element in the core will depend strongly on the oxygen fugacity at which equilibration occurred. High pressure experiments were carried out at 25 GPa and 2400-2950 K using a Kawai-type multi-anvil apparatus in order to investigate the partitioning of Si and O between liquid Fe and (Mg,Fe)SiO3 perovskite (Pv), silicate melt, and (Mg,Fe)O ferropericlace (Fp). Starting materials consisting of metallic Fe (+-Si) and olivine (Fo70-95) were contained in single-crystal MgO capsules. Over the oxygen fugacity range IW-0.5 to -3, the Si molar partition coefficient D* (= [Si]metal /[Si]silicate) between metal and Pv increases linearly with decreasing oxygen fugacity at a fixed given temperature. The partition coefficient between metal and silicate melt is of a similar magnitude but is less dependent on the oxygen fugacity. The obtained oxygen distribution coefficient Kd (= [Fe]metal[O]metal /[FeO]Fp) is in agreement with that determined in the Fe-Fp binary system (Asahara et al., 2007 EPSL) below the silicate liquidus temperature. In contrast, a correlation between the O partitioning and Si concentration in Fe is observed above 2700 K where liquid metal coexists with silicate melt + Fp. With an increasing concentration of Si in the liquid metal, O partitioning into Fp is strongly enhanced. Five atomic% Si in the metal reduces the metal-silicate O partition coefficient by about 1 order magnitude. Near the base of a deep magma ocean where pressures exceed 20 GPa, liquid metal could have coexisted with silicate melt, Pv, and Fp. Our results show that Si would readily partitioned into core-forming metal from both perovskite and silicate liquid at a relevant oxygen fugacity (e.g., IW-2). Simultaneously, the Si solubility would hinder the dissolution of O in the liquid metal. This implies that the presence of Si in liquid metal must be included in models of O partitioning.

  19. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. <10 GPa, and in two cases at or near 20 GPa. According to those data, the stronger influences on the distribution coefficient of W are temperature, composition, and oxygen fugacity with a relatively slight influence in pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  20. Antiferromagnetic exchange coupling measurements on single Co clusters

    NASA Astrophysics Data System (ADS)

    Wernsdorfer, W.; Leroy, D.; Portemont, C.; Brenac, A.; Morel, R.; Notin, L.; Mailly, D.

    2009-03-01

    We report on single-cluster measurements of the angular dependence of the low-temperature ferromagnetic core magnetization switching field in exchange-coupled Co/CoO core-shell clusters (4 nm) using a micro-bridge DC superconducting quantum interference device (μ-SQUID). It is observed that the coupling with the antiferromagnetic shell induces modification in the switching field for clusters with intrinsic uniaxial anisotropy depending on the direction of the magnetic field applied during the cooling. Using a modified Stoner-Wohlfarth model, it is shown that the core interacts with two weakly coupled and asymmetrical antiferromagnetic sublattices. Ref.: C. Portemont, R. Morel, W. Wernsdorfer, D. Mailly, A. Brenac, and L. Notin, Phys. Rev. B 78, 144415 (2008)

  1. Brain calcium - Role in temperature regulation.

    NASA Technical Reports Server (NTRS)

    Hanegan, J. L.; Williams, B. A.

    1973-01-01

    Perfusion of the preoptic-anterior hypothalamus with excess calcium ion in ground squirrels produces a drop in core temperature. The magnitude of the drop is directly dependent on ambient temperature. Respiration, heart rate, and oxygen consumption are also reduced during perfusion of calcium ion. It is concluded that the depression of body temperature during calcium ion perfusion is due to generalized depression of the neurons of the preoptic-anterior hypothalamus.

  2. Thermal behavior of cylindrical buckling restrained braces at elevated temperatures.

    PubMed

    Talebi, Elnaz; Tahir, Mahmood Md; Zahmatkesh, Farshad; Yasreen, Airil; Mirza, Jahangir

    2014-01-01

    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.

  3. Brittle Materials Design, High Temperature Gas Turbine

    DTIC Science & Technology

    1981-03-01

    slides and core pins which formed the outer diameter and the hollow struts. Inner inserts were used to form the inside surface of the nose cone...ceramic component development. Figure 1 illustrates this by showing, in turn, ready removal in the test cell of a ceramic regenerator core , combusior...objective. This Executive Summary briefly reviews the highlights of the program. VII ■■■ *»W*w»«»^il»^.3«£*a;-^ -,Al^».t, „ . Regenerator Core Removal

  4. Optical properties of core-shell and multi-shell nanorods

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  5. Core body temperature as adjunct to endpoint determination in murine median lethal dose testing of rattlesnake venom.

    PubMed

    Cates, Charles C; McCabe, James G; Lawson, Gregory W; Couto, Marcelo A

    2014-12-01

    Median lethal dose (LD50) testing in mice is the 'gold standard' for evaluating the lethality of snake venoms and the effectiveness of interventions. As part of a study to determine the murine LD50 of the venom of 3 species of rattlesnake, temperature data were collected in an attempt to more precisely define humane endpoints. We used an 'up-and-down' methodology of estimating the LD50 that involved serial intraperitoneal injection of predetermined concentrations of venom. By using a rectal thermistor probe, body temperature was taken once before administration and at various times after venom exposure. All but one mouse showed a marked, immediate, dose-dependent drop in temperature of approximately 2 to 6°C at 15 to 45 min after administration. The lowest temperature sustained by any surviving mouse was 33.2°C. Surviving mice generally returned to near-baseline temperatures within 2 h after venom administration, whereas mice that did not survive continued to show a gradual decline in temperature until death or euthanasia. Logistic regression modeling controlling for the effects of baseline core body temperature and venom type showed that core body temperature was a significant predictor of survival. Linear regression of the interaction of time and survival was used to estimate temperatures predictive of death at the earliest time point and demonstrated that venom type had a significant influence on temperature values. Overall, our data suggest that core body temperature is a useful adjunct to monitoring for endpoints in LD50 studies and may be a valuable predictor of survival in venom studies.

  6. Preparation of hollow mesoporous carbon spheres and their performances for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Ariyanto, T.; Zhang, G. R.; Kern, A.; Etzold, B. J. M.

    2018-03-01

    Hollow carbon materials have received intensive attention for energy storage/conversion applications due to their attractive properties of high conductivity, high surface area, large void and short diffusion pathway. In this work, a novel hollow mesoporous material based on carbide-derived carbon (CDC) is presented. CDC is a new class of carbon material synthesized by the selective extraction of metals from metal carbides. With a two-stage extraction procedure of carbides with chlorine, firstly hybrid core-shell carbon particles were synthesized, i.e. mesoporous/graphitic carbon shells covering microporous/amorphous carbon cores. The amorphous cores were then selectively removed from particles by a careful oxidative treatment utilizing its low thermal characters while the more stable carbon shells remained, thus resulting hollow particles. The characterization methods (e.g. N2 sorption, Raman spectroscopy, temperature-programmed oxidation and SEM) proved the successful synthesis of the aspired material. In electric double-layer capacitor (EDLC) testing, this novel hollow core material showed a remarkable enhancement of EDLC’s rate handling ability (75% at a high scan rate) with respect to an entirely solid-mesoporous material. Furthermore, as a fuel cell catalyst support the material showed higher Pt mass activity (a factor of 1.8) compared to a conventional carbon support for methanol oxidation without noticeably decreasing activity in a long-term testing. Therefore, this carbon nanostructure shows great promises as efficient electrode materials for energy storage and conversion systems.

  7. Critical Fracture Toughness Measurements of an Antarctic Ice Core

    NASA Astrophysics Data System (ADS)

    Christmann, Julia; Müller, Ralf; Webber, Kyle; Isaia, Daniel; Schader, Florian; Kippstuhl, Sepp; Freitag, Johannes; Humbert, Angelika

    2014-05-01

    Fracture toughness is a material parameter describing the resistance of a pre-existing defect in a body to further crack extension. The fracture toughness of glacial ice as a function of density is important for modeling efforts aspire to predict calving behavior. In the presented experiments this fracture toughness is measured using an ice core from Kohnen Station, Dronning Maud Land, Antarctica. The samples were sawed in an ice lab at the Alfred Wegener Institute in Bremerhaven at -20°C and had the dimensions of standard test samples with thickness 14 mm, width 28 mm and length 126 mm. The samples originate from a depth of 94.6 m to 96 m. The grain size of the samples was also identified. The grain size was found to be rather uniform. The critical fracture toughness is determined in a four-point bending approach using single edge V-notch beam samples. The initial notch length was around 2.5 mm and was prepared using a drilling machine. The experimental setup was designed at the Institute of Materials Science at Darmstadt. In this setup the force increases linearly, until the maximum force is reached, where the specific sample fractures. This procedure was done in an ice lab with a temperature of -15°C. The equations to calculate the fracture toughness for pure bending are derived from an elastic stress analysis and are given as a standard test method to detect the fracture toughness. An X-ray computer tomography (CT scanner) was used to determine the ice core densities. The tests cover densities from 843 kg m-3 to 871 kg m-3. Thereby the influence of the fracture toughness on the density was analyzed and compared to previous investigations of this material parameter. Finally the dependence of the measured toughness on thickness, width, and position in the core cross-section was investigated.

  8. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice

    PubMed Central

    Knight, Elysse M.; Brown, Timothy M.; Gümüsgöz, Sarah; Smith, Jennifer C. M.; Waters, Elizabeth J.; Allan, Stuart M.; Lawrence, Catherine B.

    2013-01-01

    SUMMARY Alzheimer’s disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4–10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD. PMID:22864021

  9. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer's disease (3xTgAD) mice.

    PubMed

    Knight, Elysse M; Brown, Timothy M; Gümüsgöz, Sarah; Smith, Jennifer C M; Waters, Elizabeth J; Allan, Stuart M; Lawrence, Catherine B

    2013-01-01

    Alzheimer's disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4-10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.

  10. Polymer-cement interactions towards improved wellbore cement fracture sealants

    NASA Astrophysics Data System (ADS)

    Beckingham, B. S.; Iloejesi, C.; Minkler, M. J.; Schindler, A. K.; Beckingham, L. E.

    2017-12-01

    Carbon capture, utilization, and storage (CCUS) in deep geologic formations is a promising means of reducing point source emissions of CO2. In these systems, CO2 is captured at the source and then injected to be utilized (eg. in enhanced oil recovery or as a working fluid in enhanced geothermal energy plants) or stored in geologic formations such as depleted oil and gas reservoirs or saline aquifers. While CCUS in subsurface systems could aid in reducing atmospheric CO2 emissions, the potential for CO2 leakage from these systems to overlying formations remains a major limitation and poses a significant risk to the security of injected CO2. Thus, improved materials for both initial wellbore isolation and repairing leakage pathways that develop over time are sought. One approach for the repair of cement fractures in wellbore (and other) systems is the injection of polymer materials into the fracture with a subsequent environmentally dependent (temperature, pressure, pH, etc.) densification or solidification. Here, we aim to investigate novel polymer materials for use to repair leaking wellbores in the context of CCUS. We synthesize and fully characterize a series of novel polymer materials and utilize a suite of analysis techniques to examine polymer-cement interactions at a range of conditions (namely temperature, pressure and pH). Initial findings will be leveraged to design novel polymer materials for further evaluation in polymer-cement composite cores, cement fracture healing, and the aging behavior of healed cements.

  11. Compact, Lightweight, Ceramic Matrix Composite (CMC) Based Acoustic Liners for Reducing Subsonic Jet Aircraft Engine Noise

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Grady, Joseph E.; Miller, Christopher J.; Hultgren, Lennart S.; Jones, Michael G.

    2016-01-01

    Recent developments have reduced fan and jet noise contributions to overall subsonic aircraft jet-engine noise. Now, aircraft designers are turning their attention toward reducing engine core noise. The NASA Glenn Research Center and NASA Langley Research Center have teamed to investigate the development of a compact, lightweight acoustic liner based on oxide/oxide ceramic matrix composite (CMC) materials. The NASA team has built upon an existing oxide/oxide CMC sandwich structure concept that provides monotonal noise reduction. Oxide/oxide composites have good high temperature strength and oxidation resistance, which could allow them to perform as core liners at temperatures up to 1000C (1832F), and even higher depending on the selection of the composite constituents. NASA has initiated the evaluation of CMC-based liners that use cells of different lengths (variable-depth channels) or effective lengths to achieve broadband noise reduction. Reducing the overall liner thickness is also a major goal, to minimize the volume occupied by the liner. As a first step toward demonstrating the feasibility of our concepts, an oxide/oxide CMC acoustic testing article with different channel lengths was tested. Our approach, summary of test results, current status, and goals for the future are reported.

  12. Influence of smooth temperature variation on hotspot ignition

    DOE PAGES

    Reinbacher, Fynn; Regele, Jonathan David

    2017-10-06

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less

  13. Influence of smooth temperature variation on hotspot ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinbacher, Fynn; Regele, Jonathan David

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less

  14. Plasma-Based Synthesis of Nanostructured Materials and their Characterization

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.

    The aim of this thesis is to explore the novel cost-effective synthesis technique to develop nanostructured materials and investigate their structural and magnetic properties. Nanomaterials were synthesized by a plasma discharge between desired metal electrodes in the cavitation field of an organic solvent. Multifunctional core-shell magnetic nanoparticles of 3d transition elements (Fe, Ni) and bimetallic (FeNi) were synthesized by varying experimental conditions. The phase, crystallinity and the magnetic properties of the materials synthesized were found to be dependent on experimental reaction parameters such as different solvents, electrodes, the spacing between electrodes, applied voltage, experiment time and high-temperature annealing. Fe and Gd-based nanoparticles were developed for high-performance magnetic resonance imaging (MRI) contrast enhancement. Biocompatible hybrid composite of Fe core - C shell nanoparticles evaluated as negative MRI contrast agents display remarkably high transverse relaxivity (r2) of 70 mM-1S-1 at 7T. In addition to 3d transition magnetic materials, magnetism of multilayer graphene nanosheets with only s and p electrons was investigated to understand and explain the intrinsic origin of ferromagnetism in carbon-based material. Apart from magnetic materials, noble metal Pd nanoparticles were developed using one-step process for hydrogen storage. The role of hydrogen on the dilation of Pd lattice was investigated using the experiment and density functional theory (DFT) studies. This method demonstrates that plasma discharge method using appropriate electrodes and solvents can be used to synthesize desired nanoparticles. This potential emphasizes the importance of adopting this methodology, which offers advantages that include a rapid reaction rate and ability to form very small nanoparticles with narrow size distribution.

  15. Experimental study of thermal conductivity of pyrolysised materials by means of a flat layer

    NASA Astrophysics Data System (ADS)

    Vaniushkin, V. D.; Popov, S. K.; Sidenkov, D. V.

    2017-11-01

    Recycling of tires is currently a very important task. One of the areas of recycling tires is their low-temperature pyrolysis to produce marketable products - liquid fraction and a solid coke residue. For the development of the pyrolysis installation it is important to know the thermal conductivity of the coke residue at different temperatures of pyrolysis of initial material. As a property of matter, thermal conductivity depends in general on temperature and pressure. For materials with some structure, such as porous materials, the thermal conductivity depends on the characteristics of the structure. The thermal conductivity of the porous coke residue at pyrolysis temperatures of 300 0C, 400 0C, 500 0C and atmospheric pressure was studied experimentally at the laboratory unit of the department of “Theoretical basis of heat engineering” using the method of the flat layer in the temperature range 5…100 0C. Experimentally proved temperature dependencies of the coefficient of thermal conductivity of the coke residue are built to improve the accuracy of calculations of constructive and regime parameters of the pyrolysis installation.

  16. Dynamics of core accretion

    DOE PAGES

    Nelson, Andrew F.; Ruffert, Maximilian

    2012-12-21

    In this paper, we perform three-dimensional hydrodynamic simulations of gas flowing around a planetary core of mass M pl = 10M ⊕ embedded in a near Keplerian background flow, using a modified shearing box approximation. We assume an ideal gas behaviour following an equation of state with a fixed ratio of the specific heats, γ = 1.42, consistent with the conditions of a moderate-temperature background disc with solar composition. No radiative heating or cooling is included in the models. We employ a nested grid hydrodynamic code implementing the ‘Piecewise Parabolic Method’ with as many as six fixed nested grids, providingmore » spatial resolution on the finest grid comparable to the present-day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disc. It is sensitive to the thermodynamic treatment of the gas, as modelled by prescribed equations of state (either ‘locally isothermal’ or ‘locally isentropic’) and the temperature of the background disc material. The activity is also sensitive to the shape and depth of the core's gravitational potential, through its mass and gravitational softening coefficient. Each of these factors influences the magnitude and character of hydrodynamic feedback of the small-scale flow on the background, and we conclude that accurate modelling of such feedback is critical to a complete understanding of the core accretion process. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. No net mass accretion into the envelope is observed over the course of the simulation and none is expected, due to our neglect of cooling. Except in cases of very rapid cooling however, as defined by locally isothermal or isentropic treatments, any cooling that does affect the envelope material will have limited consequences for the dynamics, since the flow quickly carries cooled material out of the core's environment entirely. The angular momentum of material in the envelope, relative to the core, varies both in magnitude and in sign on time-scales of days to months near the core and on time-scales a few years at distances comparable to the Hill radius. The dynamical activity contrasts with the largely static behaviour typically assumed within the framework of the core accretion model for Jovian planet formation. We show that material entering the dynamically active environment may suffer intense heating and cooling events the durations of which are as short as a few hours to a few days. Shorter durations are not observable in our work due to the limits of our resolution. Peak temperatures in these events range from T ~ 1000 K to as high as T ~ 3–4000 K, with densities ρ ~ 10 -9 to 10 -8 gcm -3. These time-scales, densities and temperatures span a range consistent with those required for chondrule formation in the nebular shock model. Finally, we therefore propose that dynamical activity in the Jovian planet formation environment could be responsible for the production of chondrules and other annealed silicates in the solar nebula.« less

  17. Dynamics of core accretion

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew F.; Ruffert, Maximilian

    2013-02-01

    We perform three-dimensional hydrodynamic simulations of gas flowing around a planetary core of mass Mpl = 10M⊕ embedded in a near Keplerian background flow, using a modified shearing box approximation. We assume an ideal gas behaviour following an equation of state with a fixed ratio of the specific heats, γ = 1.42, consistent with the conditions of a moderate-temperature background disc with solar composition. No radiative heating or cooling is included in the models. We employ a nested grid hydrodynamic code implementing the `Piecewise Parabolic Method' with as many as six fixed nested grids, providing spatial resolution on the finest grid comparable to the present-day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disc. It is sensitive to the thermodynamic treatment of the gas, as modelled by prescribed equations of state (either `locally isothermal' or `locally isentropic') and the temperature of the background disc material. The activity is also sensitive to the shape and depth of the core's gravitational potential, through its mass and gravitational softening coefficient. Each of these factors influences the magnitude and character of hydrodynamic feedback of the small-scale flow on the background, and we conclude that accurate modelling of such feedback is critical to a complete understanding of the core accretion process. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. No net mass accretion into the envelope is observed over the course of the simulation and none is expected, due to our neglect of cooling. Except in cases of very rapid cooling however, as defined by locally isothermal or isentropic treatments, any cooling that does affect the envelope material will have limited consequences for the dynamics, since the flow quickly carries cooled material out of the core's environment entirely. The angular momentum of material in the envelope, relative to the core, varies both in magnitude and in sign on time-scales of days to months near the core and on time-scales a few years at distances comparable to the Hill radius. The dynamical activity contrasts with the largely static behaviour typically assumed within the framework of the core accretion model for Jovian planet formation. We show that material entering the dynamically active environment may suffer intense heating and cooling events the durations of which are as short as a few hours to a few days. Shorter durations are not observable in our work due to the limits of our resolution. Peak temperatures in these events range from T ˜ 1000 K to as high as T ˜ 3-4000 K, with densities ρ ˜ 10-9 to 10-8 g cm-3. These time-scales, densities and temperatures span a range consistent with those required for chondrule formation in the nebular shock model. We therefore propose that dynamical activity in the Jovian planet formation environment could be responsible for the production of chondrules and other annealed silicates in the solar nebula.

  18. Warm Forming of Aluminum Alloys using a Coupled Thermo-Mechanical Anisotropic Material Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedrabbo, Nader; Pourboghrat, Farhang; Carsley, John E.

    Temperature-dependant anisotropic material models for two types of automotive aluminum alloys (5754-O and 5182-O) were developed and implemented in LS-Dyna as a user material subroutine (UMAT) for coupled thermo-mechanical finite element analysis (FEA) of warm forming of aluminum alloys. The anisotropy coefficients of the Barlat YLD2000 plane stress yield function for both materials were calculated for the range of temperatures 25 deg. C-260 deg. C. Curve fitting was used to calculate the anisotropy coefficients of YLD2000 and the flow stress as a function of temperature. This temperature-dependent material model was successfully applied to the coupled thermo-mechanical analysis of stretching ofmore » aluminum sheets and results were compared with experiments.« less

  19. The effect of loading time on flexible pavement dynamic response: a finite element analysis

    NASA Astrophysics Data System (ADS)

    Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley

    2007-12-01

    Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.

  20. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  1. A User Guide to PARET/ANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, A. P.; Dionne, B.; Marin-Lafleche, A.

    2015-01-01

    PARET was originally created in 1969 at what is now Idaho National Laboratory (INL), to analyze reactivity insertion events in research and test reactor cores cooled by light or heavy water, with fuel composed of either plates or pins. The use of PARET is also appropriate for fuel assemblies with curved fuel plates when their radii of curvatures are large with respect to the fuel plate thickness. The PARET/ANL version of the code has been developed at Argonne National Laboratory (ANL) under the sponsorship of the U.S. Department of Energy/NNSA, and has been used by the Reactor Conversion Program tomore » determine the expected transient behavior of a large number of reactors. PARET/ANL models the various fueled regions of a reactor core as channels. Each of these channels consists of a single flat fuel plate/pin (including cladding and, optionally, a gap) with water coolant on each side. In slab geometry the coolant channels for a given fuel plate are of identical dimensions (mirror symmetry), but they can be of different thickness in each channel. There can be many channels, but each channel is independent and coupled only through reactivity feedback effects to the whole core. The time-dependent differential equations that represent the system are replaced by an equivalent set of finite-difference equations in space and time, which are integrated numerically. PARET/ANL uses fundamentally the same numerical scheme as RELAP5 for the time-integration of the point-kinetics equations. The one-dimensional thermal-hydraulic model includes temperature-dependent thermal properties of the solid materials, such as heat capacity and thermal conductivity, as well as the transient heat production and heat transfer from the fuel meat to the coolant. Temperature- and pressure-dependent thermal properties of the coolant such as enthalpy, density, thermal conductivity, and viscosity are also used in determining parameters such as friction factors and heat transfer coefficients. The code first determines the steady-state solution for the initial state. Then the solution of the transient is obtained by integration in time and space. Multiple heat transfer, DNB and flow instability correlations are available. The code was originally developed to model reactors cooled by an open loop, which was adequate for rapid transients in pool-type cores. An external loop model appropriate for Miniature Neutron Source Reactors (MNSR’s) was also added to PARET/ANL to model natural circulation within the vessel, heat transfer from the vessel to pool and heat loss by evaporation from the pool. PARET/ANL also contains models for decay heat after shutdown, control rod reactivity versus time or position, time-dependent pump flow, and loss-of-flow event with flow reversal as well as logic for trips on period, power, and flow. Feedback reactivity effects from coolant density changes and temperature changes are represented by tables. Feedback reactivity from fuel heat-up (Doppler Effect) is represented by a four-term polynomial in powers of fuel temperature. Photo-neutrons produced in beryllium or in heavy water may be included in the point-kinetics equations by using additional delayed neutron groups.« less

  2. Multiaxial Temperature- and Time-Dependent Failure Model

    NASA Technical Reports Server (NTRS)

    Richardson, David; McLennan, Michael; Anderson, Gregory; Macon, David; Batista-Rodriquez, Alicia

    2003-01-01

    A temperature- and time-dependent mathematical model predicts the conditions for failure of a material subjected to multiaxial stress. The model was initially applied to a filled epoxy below its glass-transition temperature, and is expected to be applicable to other materials, at least below their glass-transition temperatures. The model is justified simply by the fact that it closely approximates the experimentally observed failure behavior of this material: The multiaxiality of the model has been confirmed (see figure) and the model has been shown to be applicable at temperatures from -20 to 115 F (-29 to 46 C) and to predict tensile failures of constant-load and constant-load-rate specimens with failure times ranging from minutes to months..

  3. Gold-Based Nanostructures for Ultrafast Dynamic Nanothermometer

    NASA Astrophysics Data System (ADS)

    Sun, Hongtao

    Nano-scale temperature measurements are of significance for fundamental understanding of functional applications and nanosystems, requiring ultimate miniaturization of thermometers with reduced size, maintained sensitivity, simplicity and accuracy of temperature reading. Particularly, grand challenges exist for scenarios of combustion or thermal shock where materials may be subjected to drastic temperature variations and extreme thermal flux, and dynamic thermal sensors with an ultrafast response (seconds to milliseconds) are yet to be developed. Targeting the developments of advanced nano-scale thermal sensors with a fast time response and rapid readout, this thesis reports innovative designs of high surface-to-volume ratio gold nanostructures including ultrathin gold island films on transparent quartz substrates and silica-gold core-shell (SiO2 Au) nanospheres as potential dynamic thermal sensors for accurate temperature determination. The sensing mechanism is based on strong temperature dependences of the thermally-dewetting-induced morphological self-reorganization and characteristic surface plasmon (SP) absorption of the gold nanostructures. The irreversible thermally-induced morphological and optical signatures behave as characteristic "fingerprints" for temperature recording, allowing the retrieval of thermal history ex-situ. The fundamental studies of thermal-induced dewetting process and its corresponding unique optical properties were extensively investigated by high resolution scanning electron microscopy (HR-SEM), atomic force microscopy (AFM), and UV-vis-NIR spectroscopy, which illustrate temperature and time dependent variations. As compared with current nanothermometer technologies such as metal-filled nanotubes, our thermo-sensor offers positively synergistic advantages of ultrafast time response, permanent recording and fast readout of thermal history, and ex-situ capability for effective temperature measurements. In addition, SiO2 Au nanospheres display simultaneously enhanced near bandgap edge (NBE) emissions and suppress defect level emission (DLE) of poly(vinyl alcohol) (PVA) zinc oxide nanoparticles (ZnO NPs), significantly improving the UV emission of the ZnO. Maximum emission enhancement by nearly 4 times was observed using SiO2 Au nanospheres with SP band at 554 nm. The enhanced UV emission is ascribed to the transfer of the energetic electrons excited by SP from gold nanoshells to the conduction band of ZnO. As a result of their superior tunability of surface plasmon resonance (SPR), the SiO2 Au core/shell nanospheres may be very useful in tuning the photoluminescence for a wide range of optoelectronic applications.

  4. Electrical resistivity of substitutionally disordered hcp Fe-Si and Fe-Ni alloys: Chemically-induced resistivity saturation in the Earth's core

    NASA Astrophysics Data System (ADS)

    Gomi, Hitoshi; Hirose, Kei; Akai, Hisazumi; Fei, Yingwei

    2016-10-01

    The thermal conductivity of the Earth's core can be estimated from its electrical resistivity via the Wiedemann-Franz law. However, previously reported resistivity values are rather scattered, mainly due to the lack of knowledge with regard to resistivity saturation (violations of the Bloch-Grüneisen law and the Matthiessen's rule). Here we conducted high-pressure experiments and first-principles calculations in order to clarify the relationship between the resistivity saturation and the impurity resistivity of substitutional silicon in hexagonal-close-packed (hcp) iron. We measured the electrical resistivity of Fe-Si alloys (iron with 1, 2, 4, 6.5, and 9 wt.% silicon) using four-terminal method in a diamond-anvil cell up to 90 GPa at 300 K. We also computed the electronic band structure of substitutionally disordered hcp Fe-Si and Fe-Ni alloy systems by means of Korringa-Kohn-Rostoker method with coherent potential approximation (KKR-CPA). The electrical resistivity was then calculated from the Kubo-Greenwood formula. These experimental and theoretical results show excellent agreement with each other, and the first principles results show the saturation behavior at high silicon concentration. We further calculated the resistivity of Fe-Ni-Si ternary alloys and found the violation of the Matthiessen's rule as a consequence of the resistivity saturation. Such resistivity saturation has important implications for core dynamics. The saturation effect places the upper limit of the resistivity, resulting in that the total resistivity value has almost no temperature dependence. As a consequence, the core thermal conductivity has a lower bound and exhibits a linear temperature dependence. We predict the electrical resistivity at the top of the Earth's core to be 1.12 ×10-6 Ωm, which corresponds to the thermal conductivity of 87.1 W/m/K. Such high thermal conductivity suggests high isentropic heat flow, leading to young inner core age (<0.85 Gyr old) and high initial core temperature. It also strongly suppresses thermal convection in the core, which results in no convective motion in inner core and possibly thermally stratified layer in the outer core.

  5. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  6. Toroidal transformer design program with application to inverter circuitry

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.

    1972-01-01

    Estimates of temperature, weight, efficiency, regulation, and final dimensions are included in the output of the computer program for the design of transformers for use in the basic parallel inverter. The program, written in FORTRAN 4, selects a tape wound toroidal magnetic core and, taking temperature, materials, core geometry, skin depth, and ohmic losses into account, chooses the appropriate wire sizes and number of turns for the center tapped primary and single secondary coils. Using the program, 2- and 4-kilovolt-ampere transformers are designed for frequencies from 200 to 3200 Hz and the efficiency of a basic transistor inverter is estimated.

  7. Fabrication and photoluminescence properties of graphite fiber/ZnO nanorod core-shell structures.

    PubMed

    Liu, Xianbin; Du, Hejun; Liu, Bo; Wang, Jianxiong; Sun, Xiao Wei; Sun, Handong

    2011-08-01

    Graphite fiber/ZnO nanorod core-shell structures were synthesized by thermal evaporation process. The core-shell hybrid architectures were comprised of ZnO nanorods grown on the surface of graphite fiber. In addition, Hollow ZnO hierarchical structure can be obtained by oxidizing the graphite fiber. Room temperature photoluminescence (PL) of the as-made graphite fiber/ZnO nanorod structures shows two UV peaks at around 3.274 eV and 3.181 eV. The temperature-dependent photoluminescence spectra demonstrate the two UV emissions are attributed to the intrinsic optical transitions and extrinsic defect-related emissions in ZnO. These hybrid structures may be used as the building block for fabrication of nanodevices.

  8. Blue phase liquid crystal phase transition for cyano compound chiral nematic liquid crystal mixtures with three two-ring core structures and chiral dopant concentrations

    NASA Astrophysics Data System (ADS)

    Shin, Jaesun; Kim, Beomjong; Jung, Wansu; Fahad, Mateen; Park, SangJin; Hong, Sung-Kyu

    2017-05-01

    Blue phase (BP) temperature range of a chiral nematic liquid crystal (LC) mixture is dependent upon the host nematic LC chemical structure and chiral dopant concentration. In this study, we investigated BP phase transition behaviour and helical twisting power (HTP) using three chiral dopant concentrations of cyano compound chiral nematic LC mixtures incorporating three two-ring core structures in the host nematic LCs. The effect of the host nematic LC core structure, HTP and chiral dopant concentrations were considered on BP temperature ranges, for two types of complete BPI and BPII without isotropic phase (Iso) and two types of coexistence state of BPI+Iso and BPII+Iso.

  9. ICP-MS analysis of fission product diffusion in graphite for High-Temperature Gas-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Carter, Lukas M.

    Release of radioactive fission products from nuclear fuel during normal reactor operation or in accident scenarios is a fundamental safety concern. Of paramount importance are the understanding and elucidation of mechanisms of chemical interaction, nuclear interaction, and transport phenomena involving fission products. Worldwide efforts to reduce fossil fuel dependence coupled with an increasing overall energy demand have generated renewed enthusiasm toward nuclear power technologies, and as such, these mechanisms continue to be the subjects of vigorous research. High-Temperature Gas-Cooled Reactors (HTGRs or VHTRs) remain one of the most promising candidates for the next generation of nuclear power reactors. An extant knowledge gap specific to HTGR technology derives from an incomplete understanding of fission product transport in major core materials under HTGR operational conditions. Our specific interest in the current work is diffusion in reactor graphite. Development of methods for analysis of diffusion of multiple fission products is key to providing accurate models for fission product release from HTGR core components and the reactor as a whole. In the present work, a specialized diffusion cell has been developed and constructed to facilitate real-time diffusion measurements via ICP-MS. The cell utilizes a helium gas-jet system which transports diffusing fission products to the mass spectrometer using carbon nanoparticles. The setup was designed to replicate conditions present in a functioning HTGR, and can be configured for real-time release or permeation measurements of single or multiple fission products from graphite or other core materials. In the present work, we have analyzed release rates of cesium in graphite grades IG-110, NBG-18, and a commercial grade of graphite, as well as release of iodine in IG-110. Additionally we have investigated infusion of graphite samples with Cs, I, Sr, Ag, and other surrogate fission products for use in release or profile measurements of diffusion coefficients.

  10. Computer enhancement of ESR spectra of magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Dobosz, B.; Krzyminiewski, R.; Koralewski, M.; Hałupka-Bryl, M.

    2016-06-01

    We present ESR measurements of non-interacting magnetic nanoparticle systems. Temperature and orientational dependence of ESR spectra were measured for Fe3O4 nanoparticle coated by dextran or oleic acid, frozen in different magnetic field. Several parameters describing magnetic properties such as g-factor, line width, the anisotropy constant were calculated and discussed. The ESR spectra of investigated nanoparticles were also subjected to Computer Resolution Enhancement Method (CREM). This procedure allows to separate a narrow line on the background of the broad line, which presence in this type of materials was recognized in the recent literature and have been further discussed in the paper. CREM is a valuable tool for monitoring of changes on the surface of magnetic core of nanoparticles.

  11. Photophysical Properties of II-VI Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Gong, Ke

    As it is well known, semiconductor nanocrystals (also called quantum dots, QDs) are being actively pursued for use in many different types of luminescent optical materials. These materials include the active media for luminescence downconversion in artificial lighting, lasers, luminescent solar concentrators and many other applications. Chapter 1 gives general introduction of QDs, which describe the basic physical properties and optical properties. Based on the experimental spectroscopic study, a semiquantitative method-effective mass model is employed to give theoretical prediction and guide. The following chapters will talks about several topics respectively. A predictive understanding of the radiative lifetimes is therefore a starting point for the understanding of the use of QDs for these applications. Absorption intensities and radiative lifetimes are fundamental properties of any luminescent material. Meantime, achievement of high efficiency with high working temperature and heterostructure fabrication with manipulation of lattice strain are not easy and need systematic investigation. To make accurate connections between extinction coefficients and radiative recombination rates, chapter 2 will consider three closely related aspects of the size dependent spectroscopy of II-VI QDs. First, it will consider the existing literature on cadmium selenide (CdSe) QD absorption spectra and extinction coefficients. From these results and fine structure considerations Boltzmann weighted radiative lifetimes are calculated. These lifetimes are compared to values measured on very high quality CdSe and CdSe coated with zinc selenide (ZnSe) shells. Second, analogous literature data are analyzed for cadmium telluride (CdTe) nanocrystals and compared to lifetimes measured for very high quality QDs. Furthermore, studies of the absorption and excitation spectra and measured radiative lifetimes for CdTe/CdSe Type-II core/shell QDs are reported. These results are also analyzed in terms of a Boltzmann population of exciton sublevels and calculated electron and hole wave functions. Much of the absorption data and fine structure calculations are already in the literature. These results are combined with new measurements of radiative lifetimes and electron-hole overlap calculations to produce an integrated picture of the II-VI QD spectroscopic fundamentals. Finally, we adopt recent synthetic advances to make very monodisperse zincblende CdSe/CdS quantum dots having near-unity photoluminescence quantum yields (PLQYs). Due the absence of nonradiative decay pathways, accurate values of the radiative lifetimes can be obtained from time resolved PL measurements. Radiative lifetimes can also be obtained from the Einstein relations, using the static absorption spectra and the relative thermal populations in the angular momentum sublevels. One of the inputs into these calculations is the shell thickness, and it is useful to be able to determine shell thickness from spectroscopic measurements. We use an empirically corrected effective mass model to produce a "map" of exciton wavelength as a function of core size and shell thickness. These calculations use an elastic continuum model and the known lattice and elastic constants to include the effect of lattice strain on the band gap energy. Radiative lifetimes calculated both experimentally and theoretically are checked and the size dependence is compared to previous studied Type-I, II and single component particles. However, it is not enough to just understanding these basic photophysics of absorption and emission. The emission intensities (related to QYs) also change with changes of the temperature. The temperature dependent PLs of II-VI QDs is extensively studied, but most of this work is at low temperatures. Temperatures well above ambient are of interest to lighting applications and in this regime both the reversible and irreversible loss of quantum yield (thermal quenching) are serious impediments to the implementation of QDs in commercial devices. Chapter 3 will elucidate the mechanism of static thermal quenching, in which the reduction of QYs does not affect the PL decay kinetics, on CdSe, CdTe and CdSe/ZnSe QDs as a function of particle sizes/shapes, surface composition and surface ligands. Through systematic experiments, this part of the dissertation discusses several possible mechanisms (e.g. structural, activated excited state, and electronic charging) and examines which the dominant cause for loss of QY at high temperature is. The more practical step is to develop the synthetic method of highly luminescent and stable core/shell QDs with minimum thermal quenching, which greatly enhance the energy efficiency of light emitting and photovoltaic devices. As the nonradiative Auger processed are induced by surface charging described in chapter 3, static and time-resolved fluorescence and high and low power transient absorption results on CdSe/CdS and CdSe/ZnSe core/shell particles are presented in chapter 4. Two CdS shell thicknesses were examined and all of the particles had either octadecylamine (ODA) and tributylphosphine (TBP) or just ODA ligands. The results can be understood in terms of a mechanism in which there is a thermal equilibrium between electrons being in the valence band or in chalcogenide localized surface states. Thermal promotion of a valence band electron to a surface state leaves the particle core positively charged. Photon absorption when the particle is in this state results in a positive trion, which undergoes a fast Auger recombination, making the particle nonluminescent. A lack of TBP ligands results in more empty surface orbitals and therefore shifts the equilibrium toward surface trapped electrons and hence trion formation. Low- and high-power transient absorption measurements give the trion and biexciton lifetimes and the ratio of the trion to biexciton Auger lifetimes are examined and compared to the degeneracies of Auger pathways. We also study the shell thickness and composition dependence of Auger times, which is compared to the scaling factors of effective volume and electron-hole overlap considerations. Core/shell QDs often exhibit much higher luminescence quantum yields (QYs), more stability, and are depicted as having a nearly spherical core and a shell of very nearly uniform thickness, which results in a very simple picture of surface passivation. The uniformity of the shell is crucial in obtaining QDs with well passivated surfaces. However, transmission electron microscope (TEM) images disprove the ideal situation. Defects and thickness inhomogeneity in shell materials are treated qualitatively as an analog to film thickness inhomogeneity in epitaxially grown thin films. More quantitatively, the extent to which the shell thickness of core/shell particles is constant can be determined by time-resolved PL studies that measure the dynamics of hole tunneling to acceptors that are adsorbed on the shell surface due that tunneling rates varies strongly with core-acceptor separation. Careful analysis of the hole transfer kinetics reveals the extent of shell thickness inhomogeneity, however, it may be complicated by the distribution of numbers of adsorbed acceptors. All the considerations can be incorporated into a model we establish in Chapter 5for the distribution of measured hole tunneling rates. From this analysis the distribution of shell thicknesses can be extracted from the luminescence kinetic results. This approach is therefore a sensitive measure of the distribution of tunneling distances. Thus, any defects or structural irregularities that allow the hole acceptors to adsorb closer to the particle core increases the hole tunneling rate and can be detected and quantified. A quantitative treatment of the lattice strain energy in determining the shell morphology of CdSe/CdS core/shell nanoparticles is presented in chapter 5. We use the inhomogeneity in hole tunneling rates through the shell to adsorbed hole acceptors to quantify the extent of shell thickness inhomogeneity. The results can be understood in terms of a model based on elastic continuum calculations, which indicate that the lattice strain energy depends on both core size and shell thickness. This model assumes thermodynamic equilibrium, i.e., that the shell morphology corresponds to a minimum total (lattice strain plus surface) energy. Comparison with the experimental results indicates that CdSe/CdS nanoparticles undergo an abrupt transition from smooth to rough shells when the total lattice strain energy exceeds about 27eV or the strain energy density exceeds 0.59 eV/nm2. The predictions of this model are not followed for CdSe/CdS nanoparticles when the shell is deposited at very low temperature and therefore equilibrium is not established. The effects of lattice strain on the spectroscopy and photoluminescence quantum yields of zincblende CdSe/CdS core/shell quantum dots are examined. The quantum yields are measured as a function of core size and shell thickness. High quantum yields are achieved as long as the lattice strain energy density is below ~0.85 eV/nm2, which is considerably greater than the limiting value of 0.59 eV/nm2 for thermodynamicstability of a smooth, defect free shell, as previously reported in chapter 5. Thus, core/shell quantum dots having strain energy densities between 0.59 and 0.85 eV/nm2 can have very high PL QYs, but are metastable with respect to surface defect formation. Such metastable core/shell QDs can be produced by shell deposition at comparatively low temperatures (< 140 °C). Annealing of these particles causes partial loss of core pressure, and a red shift of the spectrum.

  12. Modeled Seasonal Variations of Firn Density Induced by Steady State Surface Air Temperature Cycle

    NASA Technical Reports Server (NTRS)

    Jun, Li; Zwally, H. Jay; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.

  13. Plasma Hsp72 (HSPA1A) and Hsp27 (HSPB1) expression under heat stress: influence of exercise intensity.

    PubMed

    Périard, Julien D; Ruell, Patricia; Caillaud, Corinne; Thompson, Martin W

    2012-05-01

    Extracellular heat-shock protein 72 (eHsp72) expression during exercise-heat stress is suggested to increase with the level of hyperthermia attained, independent of the rate of heat storage. This study examined the influence of exercise at various intensities to elucidate this relationship, and investigated the association between eHsp72 and eHsp27. Sixteen male subjects cycled to exhaustion at 60% and 75% of maximal oxygen uptake in hot conditions (40°C, 50% RH). Core temperature, heart rate, oxidative stress, and blood lactate and glucose levels were measured to determine the predictor variables associated with eHsp expression. At exhaustion, heart rate exceeded 96% of maximum in both conditions. Core temperature reached 39.7°C in the 60% trial (58.9 min) and 39.0°C in the 75% trial (27.2 min) (P < 0.001). The rate of rise in core temperature was 2.1°C h(-1) greater in the 75% trial than in the 60% trial (P < 0.001). A significant increase and correlation was observed between eHsp72 and eHsp27 concentrations at exhaustion (P < 0.005). eHsp72 was highly correlated with the core temperature attained (60% trial) and the rate of increase in core temperature (75% trial; P < 0.05). However, no common predictor variable was associated with the expression of both eHsps. The similarity in expression of eHsp72 and eHsp27 during moderate- and high-intensity exercise may relate to the duration (i.e., core temperature attained) and intensity (i.e., rate of increase in core temperature) of exercise. Thus, the immuno-inflammatory release of eHsp72 and eHsp27 in response to exercise in the heat may be duration and intensity dependent.

  14. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the modelmore » to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.« less

  15. Time dependent reliability model incorporating continuum damage mechanics for high-temperature ceramics

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Gyekenyesi, John P.

    1989-01-01

    Presently there are many opportunities for the application of ceramic materials at elevated temperatures. In the near future ceramic materials are expected to supplant high temperature metal alloys in a number of applications. It thus becomes essential to develop a capability to predict the time-dependent response of these materials. The creep rupture phenomenon is discussed, and a time-dependent reliability model is outlined that integrates continuum damage mechanics principles and Weibull analysis. Several features of the model are presented in a qualitative fashion, including predictions of both reliability and hazard rate. In addition, a comparison of the continuum and the microstructural kinetic equations highlights a strong resemblance in the two approaches.

  16. Effects of kainic acid on rat body temperature: unmasking by dizocilpine.

    PubMed

    Ahlenius, S; Oprica, M; Eriksson, C; Winblad, B; Schultzberg, M

    2002-07-01

    The effects of intraperitoneal (i.p.) administration of kainic acid (KA) and dizocilpine, alone or in combination, on body temperature of freely moving rats were examined. Injection of saline or dizocilpine (3.0 or 5.0 mg/kg) was followed after an hour by injection of saline or KA (10 mg/kg) and the body temperature was measured at different time points during the first 5 h. KA alone produced an initial short-lasting hypothermia followed by a longer-lasting hyperthermic effect. Administration of dizocilpine alone produced an early increase in core temperature. Pretreatment of KA-injected rats with dizocilpine potentiated the KA-induced hypothermic effect at 30 min and dose-dependently reduced the temperature measured at 1 h after KA-injection without influencing the ensuing hyperthermia.These data suggest that the KA-induced changes in body temperature do not necessarily involve the activation of NMDA-receptors as opposed to KA-induced behavioural changes that are blocked by dizocilpine in a dose-dependent manner. It is unlikely, therefore, that the KA-induced hyperthermia is a result of the KA-induced seizure motor activity. Furthermore, our findings indicate that KA-induced changes in core temperature may be used as a criterion of drug-responsiveness when the behavioural changes are blocked, e.g. with dizocilpine.

  17. Bulk and Thin film Properties of Nanoparticle-based Ionic Materials

    NASA Astrophysics Data System (ADS)

    Fang, Jason

    2008-03-01

    Nanoparticle-based ionic materials (NIMS) offer exciting opportunities for research at the forefront of science and engineering. NIMS are hybrid particles comprised of a charged oligomeric corona attached to hard, inorganic nanoparticle cores. Because of their hybrid nature, physical properties --rheological, optical, electrical, thermal - of NIMS can be tailored over an unusually wide range by varying geometric and chemical characteristics of the core and canopy and thermodynamic variables such as temperature and volume fraction. On one end of the spectrum are materials with a high core content, which display properties similar to crystalline solids, stiff waxes, and gels. At the opposite extreme are systems that spontaneously form particle-based fluids characterized by transport properties remarkably similar to simple liquids. In this poster I will present our efforts to synthesize NIMS and discuss their bulk and surface properties. In particular I will discuss our work on preparing smart surfaces using NIMS.

  18. Strongly luminescent InP/ZnS core-shell nanoparticles.

    PubMed

    Haubold, S; Haase, M; Kornowski, A; Weller, H

    2001-05-18

    The wide-bandgap semiconducting material, zinc sulfide, has been coated on indium phosphide nanoclusters to a 1-2-Å thickness. The resulting InP-ZnS core-shell particle (as shown in the TEM image; scale 1 cm=5 nm) exhibits bright luminescence at room temperature with quantum efficiencies as high as 23 %. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  19. Cooler biologically compatible core body temperatures may prolong longevity and combat neurodegenerative disorders.

    PubMed

    Salerian, Alen J; Saleri, Nansen G

    2006-01-01

    Scientific evidence suggests the critical role of temperature in regulating three mechanisms contributing to cellular damage: Oxidative stress, oxygen demand overload and inflammation. In this article, we propose that the Arrhenius rate law has a profound impact on aging and a variety of neurodegenerative disorders including Alzheimer's disease, and we review the supporting evidence. Published studies suggest empirical correlations between temperature and lifespan of various organisms, bolstering the hypothesis that variations in lifespan may stem from differences in the mitochondrial production rates of radicals - a process also influenced by temperature. Given the exponential temperature dependency of all biochemical factors, cooler body temperatures may promote longevity and combat neurodegenerative disorders. This promises to offer extraordinary yet unexplored weapons against two formidable enemies of the human body: aging and neurodegenerative disorders. Stated in the form of a thesis referred to as Salerian and Saleri Temperature Thesis (SSTT): "Cooler biologically compatible core body temperatures prolong lifespan and are of value to combat illness". Double blind studies of SSTT in therapeutic strategies against amyotrophic lateral sclerosis (ALS) or early-stage Alzheimer's disease may offer a reasonable first stage to validate SSTT. In view of the known rapid progressive neurodegeneration associated with ALS, minute variations in core body temperature may, in fact, demonstrate statistically significant differences in disease progression.

  20. Passive absolute age and temperature history sensor

    DOEpatents

    Robinson, Alex; Vianco, Paul T.

    2015-11-10

    A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.

  1. Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Donghwa; Lee, Youngu

    2015-03-24

    A copper nanowire-graphene (CuNW-G) core-shell nanostructure was successfully synthesized using a low-temperature plasma-enhanced chemical vapor deposition process at temperatures as low as 400 °C for the first time. The CuNW-G core-shell nanostructure was systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy measurements. A transparent conducting electrode (TCE) based on the CuNW-G core-shell nanostructure exhibited excellent optical and electrical properties compared to a conventional indium tin oxide TCE. Moreover, it showed remarkable thermal oxidation and chemical stability because of the tight encapsulation of the CuNW with gas-impermeable graphene shells. The potential suitability of CuNW-G TCE was demonstrated by fabricating bulk heterojunction polymer solar cells. We anticipate that the CuNW-G core-shell nanostructure can be used as an alternative to conventional TCE materials for emerging optoelectronic devices such as flexible solar cells, displays, and touch panels.

  2. Pluto's Polygonal Terrain Places Lower Limit on Planetary Heat Flow

    NASA Astrophysics Data System (ADS)

    Trowbridge, A.; Steckloff, J. K.; Melosh, H., IV; Freed, A. M.

    2015-12-01

    During its recent flyby of Pluto, New Horizons imaged an icy plains region (Sputnik Planum) whose surface is divided into polygonal blocks, ca. 20-30 km across, bordered by what appear to be shallow troughs. The lack of craters within these plains suggests they are relatively young, implying that the underlying material is recently active. The scale of these features argues against an origin by cooling and contraction. Here we investigate the alternative scenario that they are the surface manifestation of shallow convection in a thick layer of nitrogen ice. Typical Rayleigh-Bernard convective cells are approximately three times wider than the depth of the convecting layer, implying a layer depth of ca. 7-10 km. Our convection hypothesis requires that the Rayleigh number exceed a minimum of about 1000 in the nitrogen ice layer. We coupled a parameterized convection model with a temperature dependent rheology of nitrogen ice (Yamashita, 2008), finding a Rayleigh number 1500 to 7500 times critical for a plausible range of heat flows for Pluto's interior. The computed range of heat flow (3.5-5.2 mW/m2) is consistent with the radiogenic heat generated by a carbonaceous chondrite (CC) core implied by Pluto's bulk density. The minimum heat flow at the critical Rayleigh number is 0.13 mW/m2. Our model implies a core temperature of 44 K in the interior of the convecting layer. This is very close to the exothermic β-α phase transition in nitrogen ice at 35.6 K (for pure N2 ice; dissolved CO can increase this, depending on its concentration), suggesting that the warm cores of the rising convective cells may be β phase, whereas the cooler sinking limbs may be α phase. This transition may thus be observable due to the large difference in their spectral signature. Further applying our model to Pluto's putative water ice mantle, the heat flow from CC is consistent with convection in Pluto's mantle and the activity observed on its surface.

  3. Melting in super-earths.

    PubMed

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  4. Core-Cutoff Tool

    NASA Technical Reports Server (NTRS)

    Gheen, Darrell

    2007-01-01

    A tool makes a cut perpendicular to the cylindrical axis of a core hole at a predetermined depth to free the core at that depth. The tool does not damage the surrounding material from which the core was cut, and it operates within the core-hole kerf. Coring usually begins with use of a hole saw or a hollow cylindrical abrasive cutting tool to make an annular hole that leaves the core (sometimes called the plug ) in place. In this approach to coring as practiced heretofore, the core is removed forcibly in a manner chosen to shear the core, preferably at or near the greatest depth of the core hole. Unfortunately, such forcible removal often damages both the core and the surrounding material (see Figure 1). In an alternative prior approach, especially applicable to toxic or fragile material, a core is formed and freed by means of milling operations that generate much material waste. In contrast, the present tool eliminates the damage associated with the hole-saw approach and reduces the extent of milling operations (and, hence, reduces the waste) associated with the milling approach. The present tool (see Figure 2) includes an inner sleeve and an outer sleeve and resembles the hollow cylindrical tool used to cut the core hole. The sleeves are thin enough that this tool fits within the kerf of the core hole. The inner sleeve is attached to a shaft that, in turn, can be attached to a drill motor or handle for turning the tool. This tool also includes a cutting wire attached to the distal ends of both sleeves. The cutting wire is long enough that with sufficient relative rotation of the inner and outer sleeves, the wire can cut all the way to the center of the core. The tool is inserted in the kerf until its distal end is seated at the full depth. The inner sleeve is then turned. During turning, frictional drag on the outer core pulls the cutting wire into contact with the core. The cutting force of the wire against the core increases with the tension in the wire and, hence, with the frictional drag acting on the outer sleeve. As the wire cuts toward the center of the core, the inner sleeve rotates farther with respect to the outer sleeve. Once the wire has cut to the center of the core, the tool and the core can be removed from the hole. The proper choice of cutting wire depends on the properties of the core material. For a sufficiently soft core material, a nonmetallic monofilament can be used. For a rubber-like core material, a metal wire can be used. For a harder core material, it is necessary to use an abrasive wire, and the efficiency of the tool can be increased greatly by vacuuming away the particles generated during cutting. For a core material that can readily be melted or otherwise cut by use of heat, it could be preferable to use an electrically heated cutting wire. In such a case, electric current can be supplied to the cutting wire, from an electrically isolated source, via rotating contact rings mounted on the sleeves.

  5. Temperature oscillations near natural nuclear reactor cores and the potential for prebiotic oligomer synthesis.

    PubMed

    Adam, Zachary R

    2016-06-01

    Geologic settings capable of driving prebiotic oligomer synthesis reactions remain a relatively unexplored aspect of origins of life research. Natural nuclear reactors are an example of Precambrian energy sources that produced unique temperature fluctuations. Heat transfer models indicate that water-moderated, convectively-cooled natural fission reactors in porous host rocks create temperature oscillations that resemble those employed in polymerase chain reaction (PCR) devices to artificially amplify oligonucleotides. This temperature profile is characterized by short-duration pulses up to 70-100 °C, followed by a sustained period of temperatures in the range of 30-70 °C, and finally a period of relaxation to ambient temperatures until the cycle is restarted by a fresh influx of pore water. For a given reactor configuration, temperature maxima and the time required to relax to ambient temperatures depend most strongly on the aggregate effect of host rock permeability in decreasing the thermal expansion and increasing the viscosity and evaporation temperature of the pore fluids. Once formed, fission-fueled reactors can sustain multi-kilowatt-level power production for 10(5)-10(6) years, ensuring microenvironmental longevity and chemical output. The model outputs indicate that organic synthesis on young planetary bodies with a sizeable reservoir of fissile material can involve more sophisticated energy dissipation pathways than modern terrestrial analog settings alone would suggest.

  6. Exposure time-dependent thermal effects of radiofrequency electromagnetic field exposure on the whole body of rats.

    PubMed

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Hattori, Kenji; Kunugita, Naoki; Wang, Jianqing; Ishii, Kazuyuki

    2016-01-01

    We investigated the thermal effects of radiofrequency electromagnetic fields (RF-EMFs) on the variation in core temperature and gene expression of some stress markers in rats. Sprague-Dawley rats were exposed to 2.14 GHz wideband code division multiple access (W-CDMA) RF signals at a whole-body averaged specific absorption rate (WBA-SAR) of 4 W/kg, which causes behavioral disruption in laboratory animals, and 0.4 W/kg, which is the limit for the occupational exposure set by the International Commission on Non-Ionizing Radiation Protection guideline. It is important to understand the possible in vivo effects derived from RF-EMF exposures at these intensities. Because of inadequate data on real-time core temperature analyses using free-moving animal and the association between stress and thermal effects of RF-EMF exposure, we analyzed the core body temperature under nonanesthetic condition during RF-EMF exposure. The results revealed that the core temperature increased by approximately 1.5°C compared with the baseline and reached a plateau till the end of RF-EMF exposure. Furthermore, we analyzed the gene expression of heat-shock proteins (Hsp) and heat-shock transcription factors (Hsf) family after RF-EMF exposure. At WBA-SAR of 4 W/kg, some Hsp and Hsf gene expression levels were significantly upregulated in the cerebral cortex and cerebellum following exposure for 6 hr/day but were not upregulated after exposure for 3 hr/day. On the other hand, there was no significant change in the core temperature and gene expression at WBA-SAR of 0.4 W/kg. Thus, 2.14-GHz RF-EMF exposure at WBA-SAR of 4 W/kg induced increases in the core temperature and upregulation of some stress markers, particularly in the cerebellum.

  7. Constitutive Theory Developed for Monolithic Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.

    1998-01-01

    With the increasing use of advanced ceramic materials in high-temperature structural applications such as advanced heat engine components, the need arises to accurately predict thermomechanical behavior that is inherently time-dependent and that is hereditary in the sense that the current behavior depends not only on current conditions but also on the material's thermomechanical history. Most current analytical life prediction methods for both subcritical crack growth and creep models use elastic stress fields to predict the time-dependent reliability response of components subjected to elevated service temperatures. Inelastic response at high temperatures has been well documented in the materials science literature for these material systems, but this issue has been ignored by the engineering design community. From a design engineer's perspective, it is imperative to emphasize that accurate predictions of time-dependent reliability demand accurate stress field information. Ceramic materials exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation. However, none of these theories allow different behavior in tension and compression. In addition, these theories are somewhat lacking in that they are unable to capture the creep, relaxation, and rate-sensitive phenomena exhibited by ceramic materials at high temperatures. The objective of this effort at the NASA Lewis Research Center has been to formulate a macroscopic continuum theory that captures these time-dependent phenomena. Specifically, the effort has focused on inelastic deformation behavior associated with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.

  8. Phase behavior and dynamics of a micelle-forming triblock copolymer system

    NASA Astrophysics Data System (ADS)

    Mohan, P. Harsha; Bandyopadhyay, Ranjini

    2008-04-01

    Synperonic F-108 (generic name, “pluronic”) is a micelle forming triblock copolymer of type ABA , where A is polyethylene oxide (PEO) and B is polypropylene oxide (PPO). At high temperatures, the hydrophobicity of the PPO chains increase, and the pluronic molecules, when dissolved in an aqueous medium, self-associate into spherical micelles with dense PPO cores and hydrated PEO coronas. At appropriately high concentrations, these micelles arrange in a face centered cubic lattice to show inverse crystallization, with the samples exhibiting high-temperature crystalline and low-temperature fluidlike phases. By studying the evolution of the elastic and viscous moduli as temperature is increased at a fixed rate, we construct the concentration-temperature phase diagram of Synperonic F-108. For a certain range of temperatures and at appropriate sample concentrations, we observe a predominantly elastic response. Oscillatory strain amplitude sweep measurements on these samples show pronounced peaks in the loss moduli, a typical feature of soft solids. The soft solidlike nature of these materials is further demonstrated by measuring their frequency-dependent mechanical moduli. The storage moduli are significantly larger than the loss moduli and are almost independent of the applied angular frequency. Finally, we perform strain rate frequency superposition experiments to measure the slow relaxation dynamics of this soft solid.

  9. Sensitivities of Earth's core and mantle compositions to accretion and differentiation processes

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Campbell, Andrew J.; Ciesla, Fred J.

    2017-01-01

    The Earth and other terrestrial planets formed through the accretion of smaller bodies, with their core and mantle compositions primarily set by metal-silicate interactions during accretion. The conditions of these interactions are poorly understood, but could provide insight into the mechanisms of planetary core formation and the composition of Earth's core. Here we present modeling of Earth's core formation, combining results of 100 N-body accretion simulations with high pressure-temperature metal-silicate partitioning experiments. We explored how various aspects of accretion and core formation influence the resulting core and mantle chemistry: depth of equilibration, amounts of metal and silicate that equilibrate, initial distribution of oxidation states in the disk, temperature distribution in the planet, and target:impactor ratio of equilibrating silicate. Virtually all sets of model parameters that are able to reproduce the Earth's mantle composition result in at least several weight percent of both silicon and oxygen in the core, with more silicon than oxygen. This implies that the core's light element budget may be dominated by these elements, and is consistent with ≤1-2 wt% of other light elements. Reproducing geochemical and geophysical constraints requires that Earth formed from reduced materials that equilibrated at temperatures near or slightly above the mantle liquidus during accretion. The results indicate a strong tradeoff between the compositional effects of the depth of equilibration and the amounts of metal and silicate that equilibrate, so these aspects should be targeted in future studies aiming to better understand core formation conditions. Over the range of allowed parameter space, core and mantle compositions are most sensitive to these factors as well as stochastic variations in what the planet accreted as a function of time, so tighter constraints on these parameters will lead to an improved understanding of Earth's core composition.

  10. The total hemispheric emissivity of painted aluminum honeycomb at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Canavan, E.; DiPirro, M.; Li, X.; Knollenberg, P.

    2014-01-01

    NASA uses high-emissivity surfaces on deep-space radiators and thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and compare the results with predictions from a detailed thermal model of each honeycomb configuration.

  11. The Total Hemispheric Emissivity of Painted Aluminum Honeycomb at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Tuttle, J.; Canavan, E.; DiPirro, M.; Li, X.; Knollenberg, K.

    2013-01-01

    NASA uses high-emissivity surfaces on deep-space radiators or thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and compare the results with predictions from a detailed thermal model of each honeycomb configuration.

  12. A New Approach to Defining Human Touch Temperature Standards

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene; Stroud, Kenneth

    2010-01-01

    Defining touch temperature limits for skin contact with both hot and cold objects is important to prevent pain and skin damage, which may affect task performance or become a safety concern. Pain and skin damage depend on the skin temperature during contact, which depends on the contact thermal conductance, the object's initial temperature, and its material properties. However, previous spacecraft standards have incorrectly defined touch temperature limits in terms of a single object temperature value for all materials, or have provided limited material-specific values which do not cover the gamut of likely designs. A new approach has been developed for updated NASA standards, which defines touch temperature limits in terms of skin temperature at pain onset for bare skin contact with hot and cold objects. The authors have developed an analytical verification method for safe hot and cold object temperatures for contact times from 1 second to infinity.

  13. A New Approach to Defining Human Touch Temperature Standards

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene; Stroud, Kenneth

    2009-01-01

    Defining touch temperature limits for skin contact with both hot and cold objects is important to prevent pain and skin damage, which may affect task performance or become a safety concern. Pain and skin damage depend on the resulting skin temperature during contact, which depends on the object s initial temperature, its material properties and its ability to transfer heat. However, previous spacecraft standards have incorrectly defined touch temperature limits in terms of a single object temperature value for all materials, or have provided limited material-specific values which do not cover the gamut of most designs. A new approach is being used in new NASA standards, which defines touch temperature limits in terms of skin temperature at pain onset for bare skin contact with hot and cold objects. The authors have developed an analytical verification method for safe hot and cold object temperatures for contact times from 1 second to infinity.

  14. An 80-year summer temperature history from the Xiao Dongkemadi ice core in the central Tibetan Plateau and its association with atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Li, Xiangying; Ding, Yongjian; Yu, Zhongbo; Mika, Sillanpää; Liu, Shiyin; Shangguan, Donghui; Lu, Chengyang

    2015-02-01

    The climate significance of oxygen isotopes from the central Tibetan Plateau (cTP) ice cores is a debated issue because of large scale atmospheric circulation. A high-resolution δ18O record was recovered from the Xiao Dongkemadi (XD) ice core, which expanded the spatial coverage of δ18O data in this region. Annual average δ18O correlated significantly with nearby MJJAS air temperatures, suggesting the δ18O can be used as a proxy to reconstruct regional climate change. The reconstructed temperature anomaly is related to the regional and global warming trends, and the greater warming amplitude since 1970s is related to the elevation dependency of the warming signal. The close relationship of the warming to variations in glacier mass balances and discharge reveal that recent warming has led to obvious glacier shrinkage and runoff increase. Correlation analysis suggests that monsoon and westerly moisture substantially influence the cTP ice core records, along with an increase in their level of contribution to the XD core accumulation in recent decades, and confirms a teleconnection of regional climate of the cTP ice cores with climate parameters in the Indian and North Atlantic Oceans.

  15. Fracture-induced flow and liquid metal transport during core formation

    NASA Astrophysics Data System (ADS)

    Jones, V.; Petford, N.; Rushmer, T.; Wertheim, D.

    2008-12-01

    The most important event in the early history of the earth was the separation of its iron-rich core. Core formation induced profound chemical fractionations and extracted into the core most of Earth's iron and siderophile elements (Ni, Co, Au, Pt, W, Re), leaving the silicate crust and mantle with strong depletions of these elements relative to primitive planetary material. Recent measurements of radiogenic 182W anomalies in the silicate Earth, Mars and differentiated meteorites imply that planetesimals segregated metallic cores within a few Myr of the origin of the solar system. Various models have been put forward to explain the physical nature of the segregation mechanism (Fe-diapirs, 'raining' through a magma ocean), and more recently melt flow via fractures. In this contribution we present the initial results of a numerical study into Fe segregation in a deforming silicate matrix that captures the temperature-dependent effect of liquid metal viscosity on the transport rate. Flow is driven by pressure gradients associated with impact deformation in a growing planetesimal and the fracture geometry is constrained by experimental data on naturally deformed H6 chondrite. Early results suggest that under dynamic conditions, fracture-driven melt flow can in principle be extremely rapid, leading to a significant draining of the Fe-liquid metal and siderophile trace element component on a timescale of hours to days. Fluid transport in planetesimals where deformation is the driving force provides an attractive and simple way of segregating Fe from host silicate as both precursor and primary agent of core formation

  16. Luminescent high temperature sensor based on the CdSe/ZnS quantum dot thin film

    NASA Astrophysics Data System (ADS)

    Wang, He-lin; Yang, Ai-jun; Sui, Cheng-hua

    2013-11-01

    A high temperature sensor based on the multi-parameter temperature dependent characteristic of photoluminescence (PL) of quantum dot (QD) thin film is demonstrated by depositing the CdSe/ZnS core/shell QDs on the SiO2 glass substrates. The variations of the intensity, the peak wavelength and the full width at half maximum (FWHM) of PL spectra with temperature are studied experimentally and theoretically. The results indicate that the peak wavelength of the PL spectra changes linearly with temperature, while the PL intensity and FWHM vary exponentially for the temperature range from 30 °C to 180 °C. Using the obtained temperature dependent optical parameters, the resolution of the designed sensor can reach 0.1 nm/°C.

  17. Reflective photoluminescence fiber temperature probe based on the CdSe/ZnS quantum dot thin film

    NASA Astrophysics Data System (ADS)

    Wang, Helin; Yang, Aijun; Chen, Zhongshi; Geng, Yan

    2014-08-01

    A reflective fiber temperature sensor based on the optical temperature dependent characteristics of a quantum dots (QDs) thin film is developed by depositing the CdSe/ZnS core/shell quantum dots on the SiO2 glass substrates. As the temperature is changed from 30 to 200°C, the peak wavelengths of PL spectra from the sensing head increase linearly with the temperature, while the peak intensity and the full width at half maximum (FWHM) of PL spectra vary exponentially according to the specific physical law. Using the obtained temperature-dependent peak-wavelength shift, the average resolution of the designed fiber temperature sensor can reach 0.12 nm/°C, while it reaches 0.056 nm/°C according to the FWHM of PL spectrum.

  18. High temperature x-ray micro-tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDowell, Alastair A., E-mail: aamacdowell@lbl.gov; Barnard, Harold; Parkinson, Dilworth Y.

    2016-07-27

    There is increasing demand for 3D micro-scale time-resolved imaging of samples in realistic - and in many cases extreme environments. The data is used to understand material response, validate and refine computational models which, in turn, can be used to reduce development time for new materials and processes. Here we present the results of high temperature experiments carried out at the x-ray micro-tomography beamline 8.3.2 at the Advanced Light Source. The themes involve material failure and processing at temperatures up to 1750°C. The experimental configurations required to achieve the requisite conditions for imaging are described, with examples of ceramic matrixmore » composites, spacecraft ablative heat shields and nuclear reactor core Gilsocarbon graphite.« less

  19. Investigation on the effects of temperature dependency of material parameters on a thermoelastic loading problem

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Mukhopadhyay, Santwana

    2017-08-01

    The present work is concerned with the investigation of thermoelastic interactions inside a spherical shell with temperature-dependent material parameters. We employ the heat conduction model with a single delay term. The problem is studied by considering three different kinds of time-dependent temperature and stress distributions applied at the inner and outer surfaces of the shell. The problem is formulated by considering that the thermal properties vary as linear function of temperature that yield nonlinear governing equations. The problem is solved by applying Kirchhoff transformation along with integral transform technique. The numerical results of the field variables are shown in the different graphs to study the influence of temperature-dependent thermal parameters in various cases. It has been shown that the temperature-dependent effect is more prominent in case of stress distribution as compared to other fields and also the effect is significant in case of thermal shock applied at the two boundary surfaces of the spherical shell.

  20. Constraints on Thermochemical Convection of the Mantle from Plume-related Observations

    NASA Astrophysics Data System (ADS)

    Zhong, S.

    2005-05-01

    Although geochemical observations have long suggested a layered mantle with more enriched mantle material in the bottom layer to provide a significant amount of heat to the top layer, the nature of such a layering remains unclear. An important observation that has been used to argue against the conventional layered mantle model (i.e., the layering at the 670 km depth) was the plume heat flux [Davies, 1999]. Plume heat flux is estimated as ~ 3.5 TW, or 10% of the surface heat flux [Davies, 1988; Sleep, 1990]. In this study, we demonstrate with 3-D spherical models of mantle convection with depth- and temperature-dependent viscosity that observed plume heat flux, plume excess temperature (<350°C), and upper mantle temperature (~ 1300°C) can pose important constraints on the layered mantle convection. We show that for a purely thermal convection model (i.e., a whole mantle convection), the observations of plume heat flux, plume excess temperature, and upper mantle temperature can be simultaneously explained only when internal heating rate is about 65%. For smaller internal heating rate, plume heat flux and plume excess temperature would be too large, and upper mantle temperature would be too small, compared with the observed. This suggests that for a whole mantle convection the CMB heat flux needs to be > 10 TW. For a core with no significant heat producing elements, such large CMB heat flux may lead to too rapid cooling of the core or a too young inner core. A layered mantle convection may help reduce the CMB heat flux. For layered convection models, we found that the top layer needs to be ~70% internally heated to explain the upper mantle temperature and plume-related observations, and this required internal heating ratio is insensitive to the layer thickness for the bottom layer (we used ~600 km and 1100 km thicknesses). This result suggests that heat generation rate for the bottom layer cannot be significantly larger (< a factor of 2) than that for the top layer. thus challenging the conventional geochemical inference for an significantly enriched bottom layer. However, this is more consistent with recent estimate of the MORB source composition that increases heat producing element concentration by a factor of three compared with the previously proposed.

  1. Density Affects the Nature of the Hexatic-Liquid Transition in Two-Dimensional Melting of Soft-Core Systems

    NASA Astrophysics Data System (ADS)

    Zu, Mengjie; Liu, Jun; Tong, Hua; Xu, Ning

    2016-08-01

    We find that both continuous and discontinuous hexatic-liquid transitions can happen in the melting of two-dimensional solids of soft-core disks. For three typical model systems, Hertzian, harmonic, and Gaussian-core models, we observe the same scenarios. These systems exhibit reentrant crystallization (melting) with a maximum melting temperature Tm happening at a crossover density ρm. The hexatic-liquid transition at a density smaller than ρm is discontinuous. Liquid and hexatic phases coexist in a density interval, which becomes narrower with increasing temperature and tends to vanish approximately at Tm. Above ρm, the transition is continuous, in agreement with the Kosterlitz-Thouless-Halperin-Nelson-Young theory. For these soft-core systems, the nature of the hexatic-liquid transition depends on density (pressure), with the melting at ρm being a plausible transition point from discontinuous to continuous hexatic-liquid transition.

  2. Laser Heating of the Core-Shell Nanowires

    NASA Astrophysics Data System (ADS)

    Astefanoaei, Iordana; Dumitru, Ioan; Stancu, Alexandru

    2016-12-01

    The induced thermal stress in a heating process is an important parameter to be known and controlled in the magnetization process of core-shell nanowires. This paper analyses the stress produced by a laser heating source placed at one end of a core-shell type structure. The thermal field was computed with the non-Fourier heat transport equation using a finite element method (FEM) implemented in Comsol Multiphysics. The internal stresses are essentially due to thermal gradients and different expansion characteristics of core and shell materials. The stress values were computed using the thermo elastic formalism and are depending on the laser beam parameters (spot size, power etc.) and system characteristics (dimensions, thermal characteristics). Stresses in the GPa range were estimated and consequently we find that the magnetic state of the system can be influenced significantly. A shell material as the glass which is a good thermal insulator induces in the magnetic core, the smaller stresses and consequently the smaller magnetoelastic energy. These results lead to a better understanding of the switching process in the magnetic materials.

  3. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    PubMed

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  4. Evaluation of a Variable-Impedance Ceramic Matrix Composite Acoustic Liner

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2014-01-01

    As a result of significant progress in the reduction of fan and jet noise, there is growing concern regarding core noise. One method for achieving core noise reduction is via the use of acoustic liners. However, these liners must be constructed with materials suitable for high temperature environments and should be designed for optimum absorption of the broadband core noise spectrum. This paper presents results of tests conducted in the NASA Langley Liner Technology Facility to evaluate a variable-impedance ceramic matrix composite acoustic liner that offers the potential to achieve each of these goals. One concern is the porosity of the ceramic matrix composite material, and whether this might affect the predictability of liners constructed with this material. Comparisons between two variable-depth liners, one constructed with ceramic matrix composite material and the other constructed via stereolithography, are used to demonstrate this material porosity is not a concern. Also, some interesting observations are noted regarding the orientation of variable-depth liners. Finally, two propagation codes are validated via comparisons of predicted and measured acoustic pressure profiles for a variable-depth liner.

  5. Characterizing the temperature dependence of electronic packaging-material properties

    NASA Astrophysics Data System (ADS)

    Fu, Chia-Yu; Ume, Charles

    1995-06-01

    A computer-controlled, temperature-dependent material characterization system has been developed for thermal deformation analysis in electronic packaging applications, especially for printed wiring assembly warpage study. For fiberglass-reinforced epoxy (FR-4 type) material, the Young's moduli decrease to as low as 20-30% of the room-temperature values, while the shear moduli decrease to as low as 60-70% of the room-temperature values. The electrical resistance strain gage technique was used in this research. The test results produced overestimated values in property measurements, and this was shown in a case study. A noncontact strau]n measurement technique (laser extensometer) is now being used to measure these properties. Discrepancies of finite-element warpage predictions using different property values increase as the temperature increases from the stress-free temperature.

  6. Temperature of surface waters in the conterminous United States

    USGS Publications Warehouse

    Blakey, James F.

    1966-01-01

    Temperature is probably the most important, but least discussed, parameter in determining water quality. The purpose of this report is to present the average or most probable temperatures of surface waters in the conterminous United States and to cite factors that affect and are affected by water temperature. Temperature is related, usually directly, to all the chemical, physical, and biological properties of water. The ability of water to dissolve or precipitate materials is temperature dependent, the ability of water to transport or deposit suspended material is temperature dependent, and the aquatic life of a lake or stream may thrive or die because of the water temperature.Everyone is concerned, though often unknowingly, about water temperature. The amount and type of treatment necessary for a municipal supply are temperature dependent; therefore it affects the consumer cost. Temperature determines the volume of cooling water needed for industrial processes and steampower generation. Conservation and recreation practices are affected by water temperature, and the farmers' irrigation practices and livestock production may be affected by the water temperature.

  7. Identifying deformation mechanisms in the NEEM ice core using EBSD measurements

    NASA Astrophysics Data System (ADS)

    Kuiper, Ernst-Jan; Weikusat, Ilka; Drury, Martyn R.; Pennock, Gill M.; de Winter, Matthijs D. A.

    2015-04-01

    Deformation of ice in continental sized ice sheets determines the flow behavior of ice towards the sea. Basal dislocation glide is assumed to be the dominant deformation mechanism in the creep deformation of natural ice, but non-basal glide is active as well. Knowledge of what types of deformation mechanisms are active in polar ice is critical in predicting the response of ice sheets in future warmer climates and its contribution to sea level rise, because the activity of deformation mechanisms depends critically on deformation conditions (such as temperature) as well as on the material properties (such as grain size). One of the methods to study the deformation mechanisms in natural materials is Electron Backscattered Diffraction (EBSD). We obtained ca. 50 EBSD maps of five different depths from a Greenlandic ice core (NEEM). The step size varied between 8 and 25 micron depending on the size of the deformation features. The size of the maps varied from 2000 to 10000 grid point. Indexing rates were up to 95%, partially by saving and reanalyzing the EBSP patterns. With this method we can characterize subgrain boundaries and determine the lattice rotation configurations of each individual subgrain. Combining these observations with arrangement/geometry of subgrain boundaries the dislocation types can be determined, which form these boundaries. Three main types of subgrain boundaries have been recognized in Antarctic (EDML) ice core¹². Here, we present the first results obtained from EBSD measurements performed on the NEEM ice core samples from the last glacial period, focusing on the relevance of dislocation activity of the possible slip systems. Preliminary results show that all three subgrain types, recognized in the EDML core, occur in the NEEM samples. In addition to the classical boundaries made up of basal dislocations, subgrain boundaries made of non-basal dislocations are also common. ¹Weikusat, I.; de Winter, D. A. M.; Pennock, G. M.; Hayles, M.; Schneijdenberg, C. T. W. M. Drury, M. R. Cryogenic EBSD on ice: preserving a stable surface in a low pressure SEM. J. Microsc., 2010, doi: 10.1111/j.1365-2818.2010.03471.x ²Weikusat, I.; Miyamoto, A.; Faria, S. H.; Kipfstuhl, S.; Azuma, N.; Hondoh. T. Subgrain boundaries in Antarctic ice quantified by X-ray Laue diffraction. J. of Glaciol., 2011, 57, 85-94

  8. Visible-light photochemical activity of heterostructured core-shell materials composed of selected ternary titanates and ferrites coated by tiO2.

    PubMed

    Li, Li; Liu, Xuan; Zhang, Yiling; Nuhfer, Noel T; Barmak, Katayun; Salvador, Paul A; Rohrer, Gregory S

    2013-06-12

    Heterostructured photocatalysts comprised of microcrystalline (mc-) cores and nanostructured (ns-) shells were prepared by the sol-gel method. The ability of titania-coated ATiO3 (A = Fe, Pb) and AFeO3 (A = Bi, La, Y) catalysts to degrade methylene blue in visible light (λ > 420 nm) was compared. The catalysts with the titanate cores had enhanced photocatalytic activities for methylene blue degradation compared to their components alone, whereas the catalysts with ferrite cores did not. The temperature at which the ns-titania shell is crystallized influences the photocatalytic dye degradation. mc-FeTiO3/ns-TiO2 annealed at 500 °C shows the highest reaction rate. Fe-doped TiO2, which absorbs visible light, did not show enhanced photocatalytic activity for methylene blue degradation. This result indicates that iron contamination is not a decisive factor in the reduced reactivity of the titania coated ferrite catalysts. The higher reactivity of materials with the titanate cores suggests that photogenerated charge carriers are more easily transported across the titanate-titanate interface than the ferrite-titanate interface and this provides guidance for materials selection in composite catalyst design.

  9. Core Body Temperature as Adjunct to Endpoint Determination in Murine Median Lethal Dose Testing of Rattlesnake Venom

    PubMed Central

    Cates, Charles C; McCabe, James G; Lawson, Gregory W; Couto, Marcelo A

    2014-01-01

    Median lethal dose (LD50) testing in mice is the ‘gold standard’ for evaluating the lethality of snake venoms and the effectiveness of interventions. As part of a study to determine the murine LD50 of the venom of 3 species of rattlesnake, temperature data were collected in an attempt to more precisely define humane endpoints. We used an ‘up-and-down’ methodology of estimating the LD50 that involved serial intraperitoneal injection of predetermined concentrations of venom. By using a rectal thermistor probe, body temperature was taken once before administration and at various times after venom exposure. All but one mouse showed a marked, immediate, dose-dependent drop in temperature of approximately 2 to 6 °C at 15 to 45 min after administration. The lowest temperature sustained by any surviving mouse was 33.2 °C. Surviving mice generally returned to near-baseline temperatures within 2 h after venom administration, whereas mice that did not survive continued to show a gradual decline in temperature until death or euthanasia. Logistic regression modeling controlling for the effects of baseline core body temperature and venom type showed that core body temperature was a significant predictor of survival. Linear regression of the interaction of time and survival was used to estimate temperatures predictive of death at the earliest time point and demonstrated that venom type had a significant influence on temperature values. Overall, our data suggest that core body temperature is a useful adjunct to monitoring for endpoints in LD50 studies and may be a valuable predictor of survival in venom studies. PMID:25527024

  10. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Helen; Di Francesco, James; Friesen, Rachel K.

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests thatmore » most of the dense cores are pressure-confined.« less

  11. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    NASA Astrophysics Data System (ADS)

    Kirk, Helen; Friesen, Rachel K.; Pineda, Jaime E.; Rosolowsky, Erik; Offner, Stella S. R.; Matzner, Christopher D.; Myers, Philip C.; Di Francesco, James; Caselli, Paola; Alves, Felipe O.; Chacón-Tanarro, Ana; Chen, How-Huan; Chun-Yuan Chen, Michael; Keown, Jared; Punanova, Anna; Seo, Young Min; Shirley, Yancy; Ginsburg, Adam; Hall, Christine; Singh, Ayushi; Arce, Héctor G.; Goodman, Alyssa A.; Martin, Peter; Redaelli, Elena

    2017-09-01

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure-confined.

  12. Chemical evolution of the Earth: Equilibrium or disequilibrium process?

    NASA Technical Reports Server (NTRS)

    Sato, M.

    1985-01-01

    To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.

  13. Reduced Order Models for Dynamic Behavior of Elastomer Damping Devices

    NASA Astrophysics Data System (ADS)

    Morin, B.; Legay, A.; Deü, J.-F.

    2016-09-01

    In the context of passive damping, various mechanical systems from the space industry use elastomer components (shock absorbers, silent blocks, flexible joints...). The material of these devices has frequency, temperature and amplitude dependent characteristics. The associated numerical models, using viscoelastic and hyperelastic constitutive behaviour, may become computationally too expensive during a design process. The aim of this work is to propose efficient reduced viscoelastic models of rubber devices. The first step is to choose an accurate material model that represent the viscoelasticity. The second step is to reduce the rubber device finite element model to a super-element that keeps the frequency dependence. This reduced model is first built by taking into account the fact that the device's interfaces are much more rigid than the rubber core. To make use of this difference, kinematical constraints enforce the rigid body motion of these interfaces reducing the rubber device model to twelve dofs only on the interfaces (three rotations and three translations per face). Then, the superelement is built by using a component mode synthesis method. As an application, the dynamic behavior of a structure supported by four hourglass shaped rubber devices under harmonic loads is analysed to show the efficiency of the proposed approach.

  14. Diffusion in Zinc at High Pressure and Rheology of the Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Keshav, S.; van Orman, J. A.

    2004-12-01

    An attempt has been made here to estimate the viscosity of the Earth's inner core, and also to identify the primary mechanism by which the inner core deforms. Estimation of the viscosity and identification of the deformation mechanism(s) of the inner core require measurements of diffusion in the hcp (hexagonal close-packed, or epsilon) phase of iron, suggested to be stable at the Earth's inner-core pressure conditions. However, owing largely to experimental and analytical challenges, actual measurements on the diffusivity in this phase are non-existent. To overcome this problem, we have focused on the divalent transition metal, zinc (Zn), which has the hcp structure over a wide range of pressures. Hcp metals are known to have similar diffusivities at the same homologous temperature. A primary goal of this work was to explore the effect of increasing pressure on diffusion in zinc. Zinc has high compressibility, allowing diffusion measurements to be made on normalized pressures (P/K, pressure/bulk modulus) approaching those of Earth's core. We focused on diffusion of gold (Au), which has been extensively studied at atmospheric pressure. We find that with increasing pressure from 10 to 25 GPa, the diffusion coefficient of Au in Zn decreases, and the data at high pressures are in good agreement with that at 1 atm. However, in a plot of log D versus homologous temperature (Tm/T, where Tm is the melting point), the slope besides being slightly shallower, the high-pressure diffusivity values retrieved are higher than predicted from extrapolation of the 1 atm data. This trend is more prominent in plot of log D versus pressure, where instead of being linear, the diffusion coefficient shows a slight parabolic dependence, indicating that the activation volume decreases with pressure. High-pressure diffusivity values are higher than predicted either from homologous temperature scaling, or those retrieved assuming constant activation volume from one atmosphere data. To a good approximation, the inner core is in hydrostatic equilibrium with the surrounding fluid. The shear stress on the inner core is thought to be low, and grain sizes are larger than in the lower mantle. Temperature and pressure both influence the effective viscosity, and their role is often included in rheological models by referring the temperature to the melting temperature, Tm; the pressure dependence enters implicitly through its influence on Tm. Calculated values of viscosity of the Earth's inner core using the experimental philosophy outlined above are at least 8-9 orders of magnitude lower than estimated so far. These low viscosities have important consequences for the origin of seismic anisotropy and diffusion in the inner core. On the basis of these measurements, it appears that the inner core can quickly erase memory of deformation that occurred early in its history. Thus, search for alternative explanations of the anisotropy is required. Unraveling the clues left behind by the growth of the inner core offers the hope of new insights into the evolution of the Earth's deep interior.

  15. Understanding the Thermal Stability of Palladium-Platinum Core-Shell Nanocrystals by In Situ Transmission Electron Microscopy and Density Functional Theory.

    PubMed

    Vara, Madeline; Roling, Luke T; Wang, Xue; Elnabawy, Ahmed O; Hood, Zachary D; Chi, Miaofang; Mavrikakis, Manos; Xia, Younan

    2017-05-23

    Core-shell nanocrystals offer many advantages for heterogeneous catalysis, including precise control over both the surface structure and composition, as well as reduction in loading for rare and costly metals. Although many catalytic processes are operated at elevated temperatures, the adverse impacts of heating on the shape and structure of core-shell nanocrystals are yet to be understood. In this work, we used ex situ heating experiments to demonstrate that Pd@Pt 4L core-shell nanoscale cubes and octahedra are promising for catalytic applications at temperatures up to 400 °C. We also used in situ transmission electron microscopy to monitor the thermal stability of the core-shell nanocrystals in real time. Our results demonstrate a facet dependence for the thermal stability in terms of shape and composition. Specifically, the cubes enclosed by {100} facets readily deform shape at a temperature 300 °C lower than that of the octahedral counterparts enclosed by {111} facets. A reversed trend is observed for composition, as alloying between the Pd core and the Pt shell of an octahedron occurs at a temperature 200 °C lower than that for the cubic counterpart. Density functional theory calculations provide atomic-level explanations for the experimentally observed behaviors, demonstrating that the barriers for edge reconstruction determine the relative ease of shape deformation for cubes compared to octahedra. The opposite trend for alloying of the core-shell structure can be attributed to a higher propensity for subsurface Pt vacancy formation in octahedra than in cubes.

  16. Mechanisms of Drying of Skin Forming Materials

    NASA Astrophysics Data System (ADS)

    Hassan, Haydar Mahmood

    Available from UMI in association with The British Library. The literature relating to evaporation from single droplets of pure liquids, and to the drying of droplets containing solids and of droplet sprays has been reviewed. The heat and mass transfer rates for a single droplet suspended from a nozzle were studied within a 42mm I.D. horizontal wind tunnel designed to supply hot dry air, to simulate conditions encountered in practical spray dryer. A novel rotating glass nozzle was developed to facilitate direct measurements of droplet weight and core temperature. This design minimised heat conduction through the nozzle. Revised correlations were obtained for heat and mass transfer coefficients, for evaporation from pure water droplets suspended from a rotating nozzle. (UNFORMATTED TABLE OR EQUATION FOLLOWS)eqalign {rm Nu&= rm 2.0 + 0.27 ({1over B})^{0.18}Re^{0.5}Pr ^{0.33}crrm Sh&= rm 2.0 + 0.575({Ta-Ts over Tamb})^{ -0.04}Re^{0.5}Sc^{0.33 }cr}(TABLE/EQUATION ENDS)Experimental drying studies were carried out on single droplets of different types of skin-forming materials, namely, custard, starch, gelatin, skim milk and fructose at air temperatures ranging from 19^circC to 198 ^circC. Dried crusts were recovered and examined by Scanning Electron Microscopy. Skin-forming materials were classified into three types according to the mechanisms of skin formation. In the first type (typified by droplets of custard and starch) skin formed due to gelatinisation at high temperatures. Increasing the drying temperature resulted in increased crust resistance to mass transfer due to increased granule swelling and the crust resistance was completely transferred to a skin resistance at drying temperatures >150 ^circC. In the second type e.g. gelatin droplets the skin formed immediately drying had taken place at any drying temperature. At drying temperature >60^circC a more resistant skin was formed. In the third type (typified by droplets of skim milk and fructose) the skin appeared on the droplet at a certain stage of the drying process under any drying conditions. As the drying temperature was increased the resistance of the skin to mass transfer increased. The drying rate history of any material depended upon the nature of the skin formed which, in turn, depended upon the drying conditions. A mathematical model was proposed for the drying of the first type of skin-forming material. This was based on the assumption that, once all the granules gelatinised at the gelatinisation temperature, a skin appeared instantaneously on the droplet surface. The experimentally-observed times at which the skin appeared on the droplets surfaces were in excellent agreement with those predicted from the model. The work should assist in understanding the fundamentals of particulate drying processes, particularly when skin -formation occurs and may be a crucial factor in volatiles retention.

  17. Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS 2 by Raman Thermometry

    DOE PAGES

    Yalon, Eilam; Aslan, Ozgur Burak; Smithe, Kirby K. H.; ...

    2017-10-20

    The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS 2 with AlN and SiO 2, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MW m –2 K –1 near room temperature, increasing as ~ T 0.65 in the range 300–600 K. The similar TBC of MoS 2 with themore » two substrates indicates that MoS 2 is the “softer” material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. As a result, our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.« less

  18. Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS 2 by Raman Thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalon, Eilam; Aslan, Ozgur Burak; Smithe, Kirby K. H.

    The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS 2 with AlN and SiO 2, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MW m –2 K –1 near room temperature, increasing as ~ T 0.65 in the range 300–600 K. The similar TBC of MoS 2 with themore » two substrates indicates that MoS 2 is the “softer” material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. As a result, our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.« less

  19. Growth and characterization of dilute nitride GaN{sub x}P{sub 1−x} nanowires and GaN{sub x}P{sub 1−x}/GaN{sub y}P{sub 1−y} core/shell nanowires on Si (111) by gas source molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukrittanon, S.; Kuang, Y. J.; Dobrovolsky, A.

    2014-08-18

    We have demonstrated self-catalyzed GaN{sub x}P{sub 1−x} and GaN{sub x}P{sub 1−x}/GaN{sub y}P{sub 1−y} core/shell nanowire growth by gas-source molecular beam epitaxy. The growth window for GaN{sub x}P{sub 1−x} nanowires was observed to be comparable to that of GaP nanowires (∼585 °C to ∼615 °C). Transmission electron microscopy showed a mixture of cubic zincblende phase and hexagonal wurtzite phase along the [111] growth direction in GaN{sub x}P{sub 1−x} nanowires. A temperature-dependent photoluminescence (PL) study performed on GaN{sub x}P{sub 1−x}/GaN{sub y}P{sub 1−y} core/shell nanowires exhibited an S-shape dependence of the PL peaks. This suggests that at low temperature, the emission stems from N-related localizedmore » states below the conduction band edge in the shell, while at high temperature, the emission stems from band-to-band transition in the shell as well as recombination in the GaN{sub x}P{sub 1−x} core.« less

  20. Thermoregulatory disorders and illness related to heat and cold stress.

    PubMed

    Cheshire, William P

    2016-04-01

    Thermoregulation is a vital function of the autonomic nervous system in response to cold and heat stress. Thermoregulatory physiology sustains health by keeping body core temperature within a degree or two of 37°C, which enables normal cellular function. Heat production and dissipation are dependent on a coordinated set of autonomic responses. The clinical detection of thermoregulatory impairment provides important diagnostic and localizing information in the evaluation of disorders that impair thermoregulatory pathways, including autonomic neuropathies and ganglionopathies. Failure of neural thermoregulatory mechanisms or exposure to extreme or sustained temperatures that overwhelm the body's thermoregulatory capacity can also result in potentially life-threatening departures from normothermia. Hypothermia, defined as a core temperature of <35.0°C, may present with shivering, respiratory depression, cardiac dysrhythmias, impaired mental function, mydriasis, hypotension, and muscle dysfunction, which can progress to cardiac arrest or coma. Management includes warming measures, hydration, and cardiovascular support. Deaths from hypothermia are twice as frequent as deaths from hyperthermia. Hyperthermia, defined as a core temperature of >40.5°C, may present with sweating, flushing, tachycardia, fatigue, lightheadedness, headache, and paresthesia, progressing to weakness, muscle cramps, oliguria, nausea, agitation, hypotension, syncope, confusion, delirium, seizures, and coma. Mental status changes and core temperature distinguish potentially fatal heat stroke from heat exhaustion. Management requires the immediate reduction of core temperature. Ice water immersion has been shown to be superior to alternative cooling measures. Avoidance of thermal risk and early recognition of cold or heat stress are the cornerstones of preventive therapy. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.

  1. Phonon Confinement Effect in TiO2 Nanoparticles as Thermosensor Materials

    DTIC Science & Technology

    2018-01-24

    TiO2 or ZnO nanoparticles (NPs) have a very strong finite-size dependency in their Raman spectra or photoluminescence (PL) spectra due to the phonon...spectrometers were used to establish the particle size versus the Raman/PL peak position master curves. Systematic isothermal and temperature- dependent heat...Thermosensor Materials", Workshop on Time- Dependent Temperature Measurements in Energy Release Processes, Chicago, IL, 2012. 11 3) Ashish Kumar Mishra

  2. A volatile-rich Earth's core inferred from melting temperature of core materials

    NASA Astrophysics Data System (ADS)

    Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Clark, A. N.; Lord, O. T.; Cervera, S.; Siebert, J.; Garbarino, G.; Svitlyk, V.; Mezouar, M.

    2016-12-01

    Planetary cores are mainly constituted of iron and nickel, alloyed with lighter elements (Si, O, C, S or H). Understanding how these elements affect the physical and chemical properties of solid and liquid iron provides stringent constraints on the composition of the Earth's core. In particular, melting curves of iron alloys are key parameter to establish the temperature profile in the Earth's core, and to asses the potential occurrence of partial melting at the Core-Mantle Boundary. Core formation models based on metal-silicate equilibration suggest that Si and O are the major light element components1-4, while the abundance of other elements such as S, C and H is constrained by arguments based on their volatility during planetary accretion5,6. Each compositional model implies a specific thermal state for the core, due to the different effect that light elements have on the melting behaviour of Fe. We recently measured melting temperatures in Fe-C and Fe-O systems at high pressures, which complete the data sets available both for pure Fe7 and other binary alloys8. Compositional models with an O- and Si-rich outer core are suggested to be compatible with seismological constraints on density and sound velocity9. However, their crystallization temperatures of 3650-4050 K at the CMB pressure of 136 GPa are very close to, if not higher than the melting temperature of the silicate mantle and yet mantle melting above the CMB is not a ubiquitous feature. This observation requires significant amounts of volatile elements (S, C or H) in the outer core to further reduce the crystallisation temperature of the core alloy below that of the lower mantle. References 1. Wood, B. J., et al Nature 441, 825-833 (2006). 2. Siebert, J., et al Science 339, 1194-7 (2013). 3. Corgne, A., et al Earth Planet. Sc. Lett. 288, 108-114 (2009). 4. Fischer, R. a. et al. Geochim. Cosmochim. Acta 167, 177-194 (2015). 5. Dreibus, G. & Palme, H. Geochim. Cosmochim. Acta 60, 1125-1130 (1995). 6. McDonough, W. F. Treatise in Geochemistry 2, 547-568 (2003). 7. Anzellini, S., et al Science 340, 464-6 (2013). 8. Morard, G. et al. Phys. Chem. Miner. 38, 767-776 (2011). 9. Badro, J., et al Proc. Natl. Acad. Sci. U. S. A. 111, 7542-5 (2014).

  3. Melting phase relations in the Fe-S and Fe-S-O systems at core conditions in small terrestrial bodies

    NASA Astrophysics Data System (ADS)

    Pommier, Anne; Laurenz, Vera; Davies, Christopher J.; Frost, Daniel J.

    2018-05-01

    We report an experimental investigation of phase equilibria in the Fe-S and Fe-S-O systems. Experiments were performed at high temperatures (1400-1850 °C) and high pressures (14 and 20 GPa) using a multi-anvil apparatus. The results of this study are used to understand the effect of sulfur and oxygen on core dynamics in small terrestrial bodies. We observe that the formation of solid FeO grains occurs at the Fe-S liquid - Fe solid interface at high temperature ( > 1400 °C at 20 GPa). Oxygen fugacities calculated for each O-bearing sample show that redox conditions vary from ΔIW = -0.65 to 0. Considering the relative density of each phase and existing evolutionary models of terrestrial cores, we apply our experimental results to the cores of Mars and Ganymede. We suggest that the presence of FeO in small terrestrial bodies tends to contribute to outer-core compositional stratification. Depending on the redox and thermal history of the planet, FeO may also help form a transitional redox zone at the core-mantle boundary.

  4. Thermal and Electrical Transport Study on Thermoelectric Materials Through Nanostructuring and Magnetic Field

    NASA Astrophysics Data System (ADS)

    Yao, Mengliang

    Thermoelectric (TE) materials are of great interest to contemporary scientists because of their ability to directly convert temperature differences into electricity, and are regarded as a promising mode of alternative energy. The TE conversion efficiency is determined by the Carnot efficiency, eta C and is relevant to a commonly used figure of merit ZT of a material. Improving the value of ZT is presently a core mission within the TE field. In order to advance our understanding of thermoelectric materials and improve their efficiency, this dissertation investigates the low-temperature behavior of the p-type thermoelectric Cu 2Se through chemical doping and nanostructuring. It demonstrates a method to separate the electronic and lattice thermal conductivities in single crystal Bi2Te3, Cu, Al, Zn, and probes the electrical transport of quasi 2D bismuth textured thin films. Cu2Se is a good high temperature TE material due to its phonon-liquid electron-crystal (PLEC) properties. It shows a discontinuity in transport coefficients and ZT around a structural transition. The present work on Cu2Se at low temperatures shows that it is a promising p-type TE material in the low temperature regime and investigates the Peierls transition and charge-density wave (CDW) response to doping [1]. After entering the CDW ground state, an oscillation (wave-like fluctuation) was observed in the dc I-V curve near 50 K; this exhibits a periodic negative differential resistivity in an applied electric field due to the current. An investigation into the doping effect of Zn, Ni, and Te on the CDW ground state shows that Zn and Ni-doped Cu2Se produces an increased semiconducting energy gap and electron-phonon coupling constant, while the Te doping suppresses the Peierls transition. A similar fluctuating wave-like dc I-V curve was observed in Cu1.98Zn 0.02Se near 40 K. This oscillatory behavior in the dc I-V curve was found to be insensitive to magnetic field but temperature dependent [2]. Understanding reducing thermal conductivity in TE materials is an important facet of increasing TE efficiency and potential applications. In this dissertation, a magnetothermal (MTR) resistance method is used to measure the lattice thermal conductivity, kappaph of single crystal Bi2Te 3 from 5 to 60 K. A large transverse magnetic field is applied to suppress the electronic thermal conduction while measuring thermal conductivity and electrical resistivity. The lattice thermal conductivity is then calculated by extrapolating the thermal conductivity versus electrical conductivity curve to a zero electrical conductivity value. The results show that the measured phonon thermal conductivity follows the eDeltamin/T temperature dependence and the Lorenz ratio corresponds to the modified Sommerfeld value in the intermediate temperature range. These low-temperature experimental data and analysis on Bi2Te3 are important compliments to previous measurements and theoretical calculations at higher temperatures, 100 - 300 K. The MTR method on Bi2Te3 provides data necessary for first-principles calculations [4]. A parallel study on single crystal Cu, Al and Zn shows the applicability of the MTR method for separating kappae and kappaph in metals and indicates a significant deviation of the Lorenz ratio between 5 K and 60 K [3]. Elemental bismuth is a component of many TE compounds and in this dissertation magnetoresistance measurements are used investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Textured and non-textured bismuth thin films are examined by measuring their angle-dependent magnetoresistance at different temperatures (3 - 300 K) and applied magnetic fields (0 - 90 kOe). Experimental evidence shows that the anisotropic conduction is due to the large mass anisotropy of bismuth and is confirmed by a parallel study on an antimony thin film [5].

  5. Temperature Dependence of Field-Effect Mobility in Organic Thin-Film Transistors: Similarity to Inorganic Transistors.

    PubMed

    Okada, Jun; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-04-01

    Carrier transport in solution-processed organic thin-film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8-BTBT) has been investigated in a wide temperature range from 296 to 10 K. The field-effect mobility shows thermally activated behavior whose activation energy becomes smaller with decreasing temperature. The temperature dependence of field-effect mobility found in C8-BTBT is similar to that of others materials: organic semiconducting polymers, amorphous oxide semiconductors and hydrogenated amorphous silicon. These results indicate that hopping transport between isoenergetic localized states becomes dominated in a low temperature regime in these materials.

  6. Thermal Behavior of Cylindrical Buckling Restrained Braces at Elevated Temperatures

    PubMed Central

    Talebi, Elnaz; Tahir, Mahmood Md.; Yasreen, Airil

    2014-01-01

    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system. PMID:24526915

  7. Release rate of diazinon from microcapsule based on melamine formaldehyde

    NASA Astrophysics Data System (ADS)

    Noviana Utami C., S.; Rochmadi

    2018-04-01

    The microcapsule containing diazinon as the core material and melamine formaldehyde as the membrane material have been synthesized by in situ polymerization method. The microcapsule membrane in this research is melamine formaldehyde (MF). This research aims to study the effect of pH and temperature on the release rate of diazinon from microcapsule based on melamine formaldehyde in aqueous medium. The results showed that pH and temperature has little effect on the release rate of diazinon from microcapsule based on melamine formaldehyde. This is due to the diffusion through the microcapsule membrane is not influenced by the pH and temperature of the solution outside of microcapsule.

  8. Temperature dependence of quantized states in an In0.86Ga0.14As0.3P0.7/InP quantum well heterostructure

    NASA Astrophysics Data System (ADS)

    Li, C. F.; Lin, D. Y.; Huang, Y. S.; Chen, Y. F.; Tiong, K. K.

    1997-01-01

    Piezoreflectance (PzR) and contactless electroreflectance (CER) measurements of an In0.86Ga0.14As0.3P0.7/InP quantum well heterostructure as a function of temperature in the range of 20-300 K have been carried out. A careful analysis of the PzR and CER spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state and the nth heavy (light)-hole band state. The parameters that describe the temperature dependence of EmnH(L) are evaluated. A detailed study of the temperature variation of excitonic transition energies indicates that the main influence of temperature on quantized transitions is through the temperature dependence of the band gap of the constituent material in the well. The temperature dependence of the linewidth of 11H exciton is evaluated and compared with that of the bulk material.

  9. Temperature dependence of quantized states in strained-layer In0.21Ga0.79As/GaAs single quantum well

    NASA Astrophysics Data System (ADS)

    Chi, Wuh-Sheng; Huang, Ying-Sheng; Qiang, Hao; Pollak, Fred H.; Pettit, David G.; Woodall, Jerry M.

    1994-02-01

    The piezoreflectance (PzR) and photoreflectance (PR) measurements of a strained-layer (001) In0.21Ga0.79As/GaAs single quantum well as a function of temperature in the range of 20 to 300 K have been carried out. A careful analysis of the PzR and PR spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state to the nth heavy (light)-hole band state. The parameters that describe the temperature dependence of E(sub mnH(L)) are evaluated. The detailed study of the temperature variation of excitonic transition energies indicates that the main influence of temperature on quantized transitions is through the temperature dependence of the band gap of the constituent material in the well. The temperature dependence of the linewidth of the 11H exciton is evaluated and compared with that of the bulk material.

  10. Temperature Dependence of Quantized States in Strained-Layer In0.21Ga0.79As/GaAs Single Quantum Well

    NASA Astrophysics Data System (ADS)

    Chi, Wuh-Sheng; Huang, Ying-Sheng; Qiang, Hao; Pollak, Fred; Pettit, David; Woodall, Jerry

    1994-02-01

    The piezoreflectance (PzR) and photoreflectance (PR) measurements of a strained-layer (001) In0.21Ga0.79As/GaAs single quantum well as a function of temperature in the range of 20 to 300 K have been carried out. A careful analysis of the PzR and PR spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state to the nth heavy (light)-hole band state. The parameters that describe the temperature dependence of E mnH(L) are evaluated. The detailed study of the temperature variation of excitonic transition energies indicates that the main influence of temperature on quantized transitions is through the temperature dependence of the band gap of the constituent material in the well. The temperature dependence of the linewidth of the 11H exciton is evaluated and compared with that of the bulk material.

  11. Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR

    PubMed Central

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Villafranca, Toni; Sharp, Janelle; Xu, Wei; Lipton, Andrew S.; Hoatson, Gina L.; Vold, Robert L.

    2016-01-01

    We conducted a detailed investigation of the dynamics of two phenylalanine side chains in the hydrophobic core of the villin headpiece subdomain protein (HP36) in the hydrated powder state over the 298–80 K temperature range. Our main tools were static deuteron NMR measurements of longitudinal relaxation and line shapes supplemented with computational modeling. The temperature dependence of the relaxation times reveals the presence of two main mechanisms that can be attributed to the ring-flips, dominating at high temperatures, and small-angle fluctuations, dominating at low temperatures. The relaxation is non-exponential at all temperatures with the extent of non-exponentiality increasing from higher to lower temperatures. This behavior suggests a distribution of conformers with unique values of activation energies. The central values of the activation energies for the ring-flipping motions are among the smallest reported for aromatic residues in peptides and proteins and point to a very mobile hydrophobic core. The analysis of the widths of the distributions, in combination with the earlier results on the dynamics of flanking methyl groups (Vugmeyster et al., J. Phys. Chem. B 2013, 117, 6129–6137), suggests that the hydrophobic core undergoes slow concerted fluctuations. There is a pronounced effect of dehydration on the ring-flipping motions, which shifts the distribution toward more rigid conformers. The cross-over temperature between the regions of dominance of the small-angle fluctuations and ring-flips shifts from 195 K in the hydrated protein to 278 K in the dry one. This result points to the role of solvent in softening the core and highlights aromatic residues as markers of the protein dynamical transitions. PMID:26529128

  12. Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Villafranca, Toni

    We conducted a detailed investigation of the dynamics of two phenylalanine side chains in the hydrophobic core of the villin headpiece subdomain protein (HP36) in the hydrated powder state over the 298–80 K temperature range. We utilized static deuteron NMR measurements of longitudinal relaxation and line shapes supplemented with computational modeling. The temperature dependence of the relaxation times reveals the presence of two main mechanisms that can be attributed to the ring-flips, dominating at high temperatures, and small-angle fluctuations, dominating at low temperatures. The relaxation is non- exponential at all temperatures with the extent of non-exponentiality increasing from higher tomore » lower temperatures. This behavior suggests a distribution of conformers with unique values of activation energies. The central values of the activation energies for the ring-flipping motions are among the smallest reported for aromatic residues in peptides and proteins and point to a very mobile hydrophobic core. The analysis of the widths of the distributions, in combination with the earlier results on the dynamics of flanking methyl groups (Vugmeyster et al., J. Phys. Chem. 2013, 117, 6129–6137), suggests that the hydrophobic core undergoes concerted fluctuations. There is a pronounced effect of dehydration on the ring-flipping motions, which shifts the distribution toward more rigid conformers. The cross-over temperature between the regions of dominance of the small-angle fluctuations and ring-flips shifts from 195 K in the hydrated protein to 278 K in the dry one. This result points to the role of solvent in the onset of the concerted fluctuations of the core and highlights aromatic residues as markers of the protein dynamical transitions.« less

  13. Temperature dependence of thermal boundary resistances between multiwalled carbon nanotubes and some typical counterpart materials.

    PubMed

    Zhang, Guang; Liu, Changhong; Fan, Shoushan

    2012-04-24

    We directly measured the temperature dependence of thermal boundary resistances (TBRs) between multiwalled carbon nanotubes (MWCNTs) and different materials at elevated temperatures. Using the steady-state heat flow and the noncontacted measurement method, we could conveniently obtain the TBR-temperature relations. Our results indicate that the TBR-temperature relations vary distinctively with different contact materials when heating temperatures change from about 300 to 450 K; that is, the CNT-metal TBRs increase with increasing temperatures, whereas the CNT-insulator TBRs decrease. As a comparison, the TBRs between superaligned MWCNTs were measured and we found that the CNT-CNT TBRs remain basically unchanged as temperatures increase. We also found that the magnitude of TBRs between MWCNTs and different materials could differ from each other significantly. These results suggest that the choice of the right electrode may have an obvious influence on the thermal properties and other properties of the CNT-based devices. From another perspective, in view of some existing theoretical models about TBRs, our results support the validity of the molecular dynamics (MD) simulations in the calculation of CNT-solid TBRs at elevated temperatures.

  14. Thermal stresses in composite tubes using complementary virtual work

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Cooper, D. E.

    1988-01-01

    This paper addresses the computation of thermally induced stresses in layered, fiber-reinforced composite tubes subjected to a circumferential gradient. The paper focuses on using the principle of complementary virtual work, in conjunction with a Ritz approximation to the stress field, to study the influence on the predicted stresses of including temperature-dependent material properties. Results indicate that the computed values of stress are sensitive to the temperature dependence of the matrix-direction compliance and matrix-direction thermal expansion in the plane of the lamina. There is less sensitivity to the temperature dependence of the other material properties.

  15. Influence of Thickness and Interface on the Low-Temperature Enhancement of the Spin Seebeck Effect in YIG Films

    DOE PAGES

    Guo, Er-Jia; Cramer, Joel; Kehlberger, Andreas; ...

    2016-07-27

    The temperature-dependent longitudinal spin Seebeck effect (LSSE) in heavy metal (HM)/Y 3Fe 5O 12 (YIG) hybrid structures is investigated as a function of YIG film thickness, magnetic field strength, and different HM detection materials. The LSSE signal shows a large enhancement with reductions in temperature, leading to a pronounced peak at low temperatures. Here we find that the LSSE peak temperature strongly depends on the film thickness as well as on the magnetic field. Our result can be well explained in the framework of magnon-driven LSSE by taking into account the temperature-dependent effective propagation length of thermally excited magnons inmore » the bulk of the material. We further demonstrate that the LSSE peak is significantly shifted by changing the interface coupling to an adjacent detection layer, revealing a more complex behavior beyond the currently discussed bulk effect. By direct microscopic imaging of the interface, we correlate the observed temperature dependence with the interface structure between the YIG and the adjacent metal layer. Finally, our results highlight the role of interface effects on the temperature-dependent LSSE in HM/YIG system, suggesting that the temperature-dependent spin current transparency strikingly relies on the interface conditions.« less

  16. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

    1994-09-20

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

  17. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, Patrick E.; Livingston, Ronald R.; Prather, William S.

    1994-01-01

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.

  18. A study of the relationship between microstructure and oxidation effects in nuclear graphite at very high temperatures

    NASA Astrophysics Data System (ADS)

    Lo, I.-Hsuan; Tzelepi, Athanasia; Patterson, Eann A.; Yeh, Tsung-Kuang

    2018-04-01

    Graphite is used in the cores of gas-cooled reactors as both the neutron moderator and a structural material, and traditional and novel graphite materials are being studied worldwide for applications in Generation IV reactors. In this study, the oxidation characteristics of petroleum-based IG-110 and pitch-based IG-430 graphite pellets in helium and air environments at temperatures ranging from 700 to 1600 °C were investigated. The oxidation rates and activation energies were determined based on mass loss measurements in a series of oxidation tests. The surface morphology was characterized by scanning electron microscopy. Although the thermal oxidation mechanism was previously considered to be the same for all temperatures higher than 1000 °C, the significant increases in oxidation rate observed at very high temperatures suggest that the oxidation behavior of the selected graphite materials at temperatures higher than 1200 °C is different. This work demonstrates that changes in surface morphology and in oxidation rate of the filler particles in the graphite materials are more prominent at temperatures above 1200 °C. Furthermore, possible intrinsic factors contributing to the oxidation of the two graphite materials at different temperature ranges are discussed taking account of the dominant role played by temperature.

  19. Coercivity and Exchange Bias Study of Polycrystalline Hollow Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bah, Mohamed Alpha

    Magnetic nanoparticles (NPs) have the potential to be useful in a variety of applications such as biomedical instruments, catalysis, sensing, recording information, etc. These nanoparticles exhibit remarkably different properties compared to their bulk counter parts. Synthesis of magnetic NPs with the right morphology, phase, size and surface functionality, as well as their usage for specific applications are challenging in terms of efficiency and safety. Morphology wise, there have been numerous reports on magnetic nanoparticles where morphologies such as core/shell, hollow, solid, etc., have been explored. It has been shown that morphology affects the magnetic response. Achieving the right crystal structure with required morphology and the magnetic behavior of the nanoparticle phases determines the magnetic response of the structure. For example, in the case of core/shell NPs various ferromagnetic (FM), ferrimagnetic (FiM), and antiferromagnetic (AFM) core and shell combinations have been reported. In these cases, interesting and strikingly different features, such as unusually high spin glass transition temperature, large exchange bias, finite size effects, magnetic proximity effects, unusual trend of blocking temperature as function of average crystal size, etc., have been reported. More specifically, the morphology of core/shell nanoparticles provides added degrees of freedom compared to conventional solid magnetic nanoparticles, including variations in the size, phase and material of the core and shell of the particle, etc. which helps enhance their magnetic properties. Similar to traditional core/shell nanoparticles, inverted core/shell having a FiM or FM order above the Curie temperature (TC) of the shell has been reported where the Neel temperature (TN) is comparable with the bulk value and there is nonmonotonic dependence of the coercive field (HC) and exchange bias (HEB) on the core diameter. In addition to the core/shell morphology, nanoparticles with hollow morphology are also of interest to the scientific community. For such cases, surface spin glass transition enhancements have been reported due to the presence of the additional inner surface. CoFe2O4, NiFe 2O4 and gamma-Fe2O3 hollow nanoparticles exhibit strikingly contrasting magnetic behavior compared to bulk and conventional solid particles; similar behavior was also observed in core/shell nanoparticles. Structurally, hollow polycrystalline nanoparticles are composed of multiple crystallographic domains. This random orientation of the crystallographic domains also causes randomization of the local anisotropy axes. Hence the overall effect of this morphology on the magnetic properties is exhibited through the high coercivity, relatively high temperature magnetic irreversibility, lack of magnetic saturation, high blocking temperature, etc. Over the years, extensive work on core/shell nanoparticles have been carried out to understand their exchange bias phenomenon and the effect on coercivity. Recently, focus has been given to hollow polycrystalline nanoparticles for the reason mentioned above. This thesis investigates the root cause for the above-mentioned effects on the coercivity and exchange bias. Since hollow nanoparticles with polycrystalline structure have shown to exhibit different and improved magnetic behavior compared to bulk and other conventional solid particles, they will be the focus of our investigation. First, extensive field and temperature dependent magnetic study on polycrystalline hollow nickel ferrite (NiFe2O4) have revealed the effect of the presence of inner surface in a single oxide nanoparticle. Second, the effect of having multiple oxides with different magnetic properties (i.e. FM and AFM) in a single nanoparticle, while maintaining a hollow morphology was investigated by studying polycrystalline hollow gamma-Mn2O3 and MnO nanoparticles. Studies on various conventional solid manganese oxide nanoparticles have already been reported. Therefore, focus was only made on the fabrication and magnetic study of hollow polycrystalline manganese oxide, with a comparison of the results to those from solid nanoparticles already available in literature. A conclusion was drawn to the importance of the coupling of different magnetic phases (i.e. FM and AFM, FiM and AFM, or SG and AFM), in contrast to just having one single oxide in the hollow nanoparticles. Finally, the importance of this coupling as compared to the increase of surface-to-volume ratio was evaluated in CoO/Co3O4/CoFe2O4 polycrystalline hollow nanoparticles by varying the AFM phase (CoO/Co 3O4) in the nanoparticles and observing how the magnetic properties varied. This system helped address the effect of the coupling between different magnetic phases, super-exchange interaction, and proximity effect.

  20. Heterothermy in growing king penguins.

    PubMed

    Eichhorn, Götz; Groscolas, René; Le Glaunec, Gaële; Parisel, Camille; Arnold, Laurent; Medina, Patrice; Handrich, Yves

    2011-08-16

    A drop in body temperature allows significant energy savings in endotherms, but facultative heterothermy is usually restricted to small animals. Here we report that king penguin chicks (Aptenodytes patagonicus), which are able to fast for up to 5 months in winter, undergo marked seasonal heterothermy during this period of general food scarcity and slow-down of growth. They also experience short-term heterothermy below 20 °C in the lower abdomen during the intense (re)feeding period in spring, induced by cold meals and adverse weather. The heterothermic response involves reductions in peripheral temperature, reductions in thermal core volume and temporal abandonment of high core temperature. Among climate variables, air temperature and wind speed show the strongest effect on body temperature, but their effect size depends on physiological state. The observed heterothermy is remarkable for such a large bird (10 kg before fasting), which may account for its unrivalled fasting capacity among birds.

  1. Thermonuclear runaways in nova outbursts. 2: Effect of strong, instantaneous, local fluctuations

    NASA Technical Reports Server (NTRS)

    Shankar, Anurag; Arnett, David

    1994-01-01

    In an attempt to understand the manner in which nova outbursts are initiated on the surface of a white dwarf, we investigate the effects fluctuations have on the evolution of a thermonuclear runaway. Fluctuations in temperature density, or the composition of material in the burning shell may arise due to the chaotic flow field generated by convection when it occurs, or by the accretion process itself. With the aid of two-dimensional reactive flow calculations, we consider cases where a strong fluctutation in temperature arises during the early, quiescent accretion phase or during the later, more dynamic, explosion phase. In all cases we find that an instantaneous, local temperature fluctuation causes the affected material to become Rayleigh-Taylor unstable. The rapid rise and subsequent expansion of matter immediately cools the hot blob, which prevents the lateral propagation of burning. This suggests that local temperature fluctuations do not play a significant role in directly initiating the runaway, especially during the early stages. However, they may provide an efficient mechanism of mixing core material into the envelope (thereby pre-enriching the fuel for subsequent episodes of explosive hydrogen burning) and of mixing substantial amounts of the radioactive nucleus N-13 into the surface layers, making novae potential gamma-ray sources. This suggests that it is the global not the local, evolution of the core-envelope interface to high temperatures which dominates the development of the runaway. We also present a possible new scenario for the initiation of nova outbursts based on our results.

  2. Liquidus Phases of the Richardson H5 Chondrite at High Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Channon, M.; Garber, J.; Danielson, L. R.; Righter, K.

    2007-01-01

    Part of early mantle evolution may include a magma ocean, where core formation began before the proto-Earth reached half of its present radius. Temperatures were high and bombardment and accretion were still occurring, suggesting that the proto-Earth consisted of a core and an at least partially liquid mantle, the magma ocean. As the Earth accreted, pressure near the core increased and the magma ocean decreased in volume and became shallower as it began to cool and solidify. As crystals settled, or floated, the composition of the magma ocean could change significantly and begin to crystallize different minerals from the residual liquid. Therefore, the mantle may be stratified following the P-T phase diagram for the bulk silicate Earth. To understand mantle evolution, it is necessary to know liquidus phase relations at high pressures and temperatures. In order to model the evolution of the magma ocean, high pressure and temperature experiments have been conducted to simulate the crystallization process using a range of materials that most likely resemble the bulk composition of the early Earth.

  3. Fabrication, characterization and comparison of composite magnetic materials for high efficiency integrated voltage regulators with embedded magnetic core micro-inductors

    NASA Astrophysics Data System (ADS)

    Bellaredj, Mohamed L. F.; Mueller, Sebastian; Davis, Anto K.; Mano, Yasuhiko; Kohl, Paul A.; Swaminathan, Madhavan

    2017-11-01

    High-efficiency integrated voltage regulators (IVRs) require the integration of power inductors, which have low loss and reduced size at very high frequency. The use of a magnetic material core can reduce significantly the inductor area and simultaneously increase the inductance. This paper focuses on the fabrication, characterization and modeling of nickel zinc (NiZn) ferrite and carbonyl iron powder (CIP)-epoxy magnetic composite materials, which are used as the magnetic core materials of embedded inductors in a printed wiring board (PWB) for a system in package (SIP) based buck type IVR. The fabricated composite materials and process are fully compatible with FR4 epoxy resin prepreg and laminate. For 85% weight loading of the magnetic powder (around 100 MHz at room temperature), the composite materials show a relative permeability of 7.5-8.1 for the NiZn ferrite composite and 5.2-5.6 for the CIP composite and a loss tangent value of 0.24-0.28 for the NiZn ferrite composite and 0.09-0.1 for the CIP-composite. The room temperature saturation flux density values are 0.1351 T and 0.5280 T for the NiZn ferrite and the CIP composites, respectively. The frequency dispersion parameters of the magnetic composites are modeled using a simplified Lorentz and Landau-Lifshitz-Gilbert equation for a Debye type relaxation. Embedded magnetic core solenoid inductors were designed based on the composite materials for the output filter of a high-efficiency SIP based buck type IVR. Evaluation of a SIP based buck type IVR with the designed inductors shows that it can reach peak efficiencies of 91.7% at 11 MHz for the NiZn ferrite-composite, 91.6% at 14 MHz for CIP-composite and 87.5% (NiZn ferrite-composite) and 87.3% (CIP-composite) efficiency at 100 MHz for a 1.7 V:1.05 V conversion. For a direct 5 V:1 V conversion using a stacked topology, a peak efficiency of 82% at 10 MHz and 72% efficiency at 100 MHz can be achieved for both materials.

  4. The Presence of Dense Material in the Deep Mantle: Implications for Plate Motion

    NASA Astrophysics Data System (ADS)

    Stein, C.; Hansen, U.

    2017-12-01

    The dense material in the deep mantle strongly interacts with the convective flow in the mantle. On the one hand, it has a restoring effect on rising plumes. On the other hand, the dense material is swept about by the flow forming dense piles. Consequently this affects the plate motion and, in particular, the onset time and the style of plate tectonics varies considerably for different model scenarios. In this study we apply a thermochemical mantle convection model combined with a rheological model (temperature- and stress-dependent viscosity) that allows for plate formation according to the convective flow. The model's starting condition is the post-magma ocean period. We analyse a large number of model scenarios ranging from variations in thickness, density and depth of a layer of dense material to different initial temperatures.Furthermore, we present a mechanism in which the dense layer at the core-mantle boundary forms without prescribing the thickness or the density contrast. Due to advection-assisted diffusion, long-lived piles can be established that act on the style of convection and therefore on plate motion. We distinguish between the subduction-triggered regime with early plate tectonics and the plume-triggered regime with a late onset of plate tectonics. The formation of piles by advection-assisted diffusion is a typical phenomenon that appears not only at the lower boundary, but also at internal boundaries that form in the layering phase during the evolution of the system.

  5. Two-Dimensional SiO2/VO2 Photonic Crystals with Statically Visible and Dynamically Infrared Modulated for Smart Window Deployment.

    PubMed

    Ke, Yujie; Balin, Igal; Wang, Ning; Lu, Qi; Tok, Alfred Iing Yoong; White, Timothy J; Magdassi, Shlomo; Abdulhalim, Ibrahim; Long, Yi

    2016-12-07

    Two-dimensional (2D) photonic structures, widely used for generating photonic band gaps (PBG) in a variety of materials, are for the first time integrated with the temperature-dependent phase change of vanadium dioxide (VO 2 ). VO 2 possesses thermochromic properties, whose potential remains unrealized due to an undesirable yellow-brown color. Here, a SiO 2 /VO 2 core/shell 2D photonic crystal is demonstrated to exhibit static visible light tunability and dynamic near-infrared (NIR) modulation. Three-dimensional (3D) finite difference time domain (FDTD) simulations predict that the transmittance can be tuned across the visible spectrum, while maintaining good solar regulation efficiency (ΔT sol = 11.0%) and high solar transmittance (T lum = 49.6%). Experiments show that the color changes of VO 2 films are accompanied by NIR modulation. This work presents a novel way to manipulate VO 2 photonic structures to modulate light transmission as a function of wavelength at different temperatures.

  6. Development of advanced material composites for use as internal insulation for LH2 tanks (gas layer concept)

    NASA Technical Reports Server (NTRS)

    Gille, J. P.

    1972-01-01

    A program is described that was conducted to develop an internal insulation system for potential application to the liquid hydrogen tanks of a reusable booster, where the tanks would be subjected to repeated high temperatures. The design of the internal insulation is based on a unique gas layer concept, in which capillary or surface tension effects are used to maintain a stable gas layer, within a cellular core structure, between the tank wall and the contained liquid hydrogen. Specific objectives were to select materials for insulation systems that would be compatible with wall temperatures of 350 F and 650 F during reentry into the earth's atmosphere, and to fabricate and test insulation systems under conditions simulating the operating environment. A materials test program was conducted to evaluate the properties of candidate materials at elevated temperatures and at the temperature of liquid hydrogen, and to determine the compatibility of the materials with a hydrogen atmosphere at the appropriate elevated temperature. The materials that were finally selected included Kapton polyimide films, silicone adhesives, fiber glass batting, and in the case of the 350 F system, Teflon film.

  7. Strain distribution of confined Ge/GeO2 core/shell nanoparticles engineered by growth environments

    NASA Astrophysics Data System (ADS)

    Wei, Wenyan; Yuan, Cailei; Luo, Xingfang; Yu, Ting; Wang, Gongping

    2016-02-01

    The strain distributions of Ge/GeO2 core/shell nanoparticles confined in different host matrix grown by surface oxidation are investigated. The simulated results by finite element method demonstrated that the strains of the Ge core and the GeO2 shell strongly depend on the growth environments of the nanoparticles. Moreover, it can be found that there is a transformation of the strain on Ge core from tensile to compressive strain during the growth of Ge/GeO2 core/shell nanoparticles. And, the transformation of the strain is closely related with the Young's modulus of surrounding materials of Ge/GeO2 core/shell nanoparticles.

  8. Deep Subsurface Microbial Communities Shaped by the Chicxulub Impactor

    NASA Astrophysics Data System (ADS)

    Cockell, C. S.; Coolen, M.; Schaefer, B.; Grice, K.; Gulick, S. P. S.; Morgan, J. V.; Kring, D. A.; Osinski, G.

    2017-12-01

    Fresh core material was obtained by drilling of the Chicxulub impact crater during IODP-ICDP Expedition 364 to assess the present-day biosphere in the crater structure. Cell enumerations through the core show that beneath the post-impact sedimentary rock there is a region of enhanced cell abundance that corresponds to the upper impact suevite layer (Units 1G/2A). We also observed a peak in cell numbers in samples at the bottom of suevite Unit 2C and between the suevitic and grainitoid interface (Unit 3/4). These patterns may reflect preferential movement of fluid and/or availability of nutrients and energy at interfaces. 16S rDNA analysis allows us to rule out contamination of the suevite material since no taxa associated with the drilling mud were observed. Two hundred and fifty microbial enrichments were established using diverse culture media for heterotrophs, autotrophs and chemolithotrophs at temperatures consistent with measured core temperatures. Six yielded growth in the breccia, lower breccia and upper granitoid layer and they affiliated with Acidiphilium, Thermoanaerobacteracea and Desulfohalbiaceae. The latter exhibited visible microbial sulfate-reduction. By contrast, the granitoid material exhibited low cell abundances, most samples were below direct cell detection. DNA extraction revealed pervasive low level contamination by drilling mud taxa, consistent with the highly fractured, high porosity of the impact-shocked granitoids. Few taxa can be attributed to an indigenous biota and no enrichments (at 60 and 70°C) yielded growth. These data show that even with a porosity approximately an order of magnitude greater than most unshocked granites, the uplifted granites have not experienced sufficient fluid flow to establish a significant deep biosphere. Paleosterilisation of the material during impact may have re-set colonisation and the material may have originally been below the depth at which temperatures exceeded the upper temperature limit for life. These data show that the deep biosphere can preserve the imprint of catastrophe long after these events. In this case, the distribution of deep subsurface microbial communities reflects the lithological sequence established during the substantial impact-induced geological rearrangements that occurred in the first hours of the Cenozoic.

  9. Optimal Damping Behavior of a Composite Sandwich Beam Reinforced with Coated Fibers

    NASA Astrophysics Data System (ADS)

    Lurie, S.; Solyaev, Y.; Ustenko, A.

    2018-04-01

    In the present paper, the effective damping properties of a symmetric foam-core sandwich beam with composite face plates reinforced with coated fibers is studied. A glass fiber-epoxy composite with additional rubber-toughened epoxy coatings on the fibers is considered as the material of the face plates. A micromechanical analysis of the effective properties of the unidirectional lamina is conducted based on the generalized self-consistent method and the viscoelastic correspondence principle. The effective complex moduli of composite face plates with a symmetric angle-ply structure are evaluated based on classical lamination theory. A modified Mead-Markus model is utilized to evaluate the fundamental modal loss factor of a simply supported sandwich beam with a polyurethane core. The viscoelastic frequency-dependent behaviors of the core and face plate materials are both considered. The properties of the face plates are evaluated based on a micromechanical analysis and found to implicitly depend on frequency; thus, an iterative procedure is applied to find the natural frequencies of the lateral vibrations of the beam. The optimal values of the coating thickness, lamination angle and core thickness for the best multi-scale damping behavior of the beam are found.

  10. Energy loss due to eddy current in linear transformer driver cores

    NASA Astrophysics Data System (ADS)

    Kim, A. A.; Mazarakis, M. G.; Manylov, V. I.; Vizir, V. A.; Stygar, W. A.

    2010-07-01

    In linear transformer drivers [Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402; Phys. Rev. ST Accel. Beams 12, 050401 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050401] as well as any other linear induction accelerator cavities, ferromagnetic cores are used to prevent the current from flowing along the induction cavity walls which are in parallel with the load. But if the core is made of conductive material, the applied voltage pulse generates the eddy current in the core itself which heats the core and therefore also reduces the overall linear transformer driver (LTD) efficiency. The energy loss due to generation of the eddy current in the cores depends on the specific resistivity of the core material, the design of the core, as well as on the distribution of the eddy current in the core tape during the remagnetizing process. In this paper we investigate how the eddy current is distributed in a core tape with an arbitrary shape hysteresis loop. Our model is based on the textbook knowledge related to the eddy current generation in ferromagnetics with rectangular hysteresis loop, and in usual conductors. For the reader’s convenience, we reproduce some most important details of this knowledge in our paper. The model predicts that the same core would behave differently depending on how fast the applied voltage pulse is: in the high frequency limit, the equivalent resistance of the core reduces during the pulse whereas in the low frequency limit it is constant. An important inference is that the energy loss due to the eddy current generation can be reduced by increasing the cross section of the core over the minimum value which is required to avoid its saturation. The conclusions of the model are confirmed with experimental observations presented at the end of the paper.

  11. Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers.

    PubMed

    McCann, Jesse T; Marquez, Manuel; Xia, Younan

    2006-12-01

    We have developed a method based on melt coaxial electrospinning for fabricating phase change nanofibers consisting of long-chain hydrocarbon cores and composite sheaths. This method combines melt electrospinning with a coaxial spinneret and allows for nonpolar solids such as paraffins to be electrospun and encapsulated in one step. Shape-stabilized, phase change nanofibers have many potential applications as they are able to absorb, hold, and release large amounts of thermal energy over a certain temperature range by taking advantage of the large heat of fusion of long-chain hydrocarbons. We have focused on compounds with melting points near room temperature (octadecane) and body temperature (eicosane) as these temperature ranges are most valuable in practice. We have produced thermally stable, phase change materials up to 45 wt % octadecane, as measured by differential scanning calorimetry. In addition, the resultant fibers display novel segmented morphologies for the cores due to the rapid solidification of the hydrocarbons driven by evaporative cooling of the carrier solution. Aside from the fabrication of phase change nanofibers, the melt coaxial method is promising for applications related to microencapsulation and controlled release of drugs.

  12. A high-temperature superconducting transformer with localized magnetic field

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Dzhafarov, E. A.

    2013-12-01

    This paper describes a high-temperature superconducting transformer with a bar-type magnetic core and concentric windings with alternating layers, with single-channel and multi-channel arrangements. There is given the design concept of high-temperature superconducting windings of the transformer, made in the form of newly developed first-generation high-temperature superconducting ribbon wires, with localized magnetic field intended for producing maximum transport currents in the windings, as well as for reducing the consumption of a high-temperature superconducting material, cooling agent, and energy losses in these windings.

  13. High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1979-01-01

    An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.

  14. Coaxial metal-silicide Ni2Si/C54-TiSi2 nanowires.

    PubMed

    Chen, Chih-Yen; Lin, Yu-Kai; Hsu, Chia-Wei; Wang, Chiu-Yen; Chueh, Yu-Lun; Chen, Lih-Juann; Lo, Shen-Chuan; Chou, Li-Jen

    2012-05-09

    One-dimensional metal silicide nanowires are excellent candidates for interconnect and contact materials in future integrated circuits devices. Novel core-shell Ni(2)Si/C54-TiSi(2) nanowires, 2 μm in length, were grown controllably via a solid-liquid-solid growth mechanism. Their interesting ferromagnetic behaviors and excellent electrical properties have been studied in detail. The coercivities (Hcs) of the core-shell Ni(2)Si/C54-TiSi(2) nanowires was determined to be 200 and 50 Oe at 4 and 300 K, respectively, and the resistivity was measured to be as low as 31 μΩ-cm. The shift of the hysteresis loop with the temperature in zero field cooled (ZFC) and field cooled (FC) studies was found. ZFC and FC curves converge near room temperature at 314 K. The favorable ferromagnetic and electrical properties indicate that the unique core-shell nanowires can be used in penetrative ferromagnetic devices at room temperature simultaneously as a future interconnection in integrated circuits.

  15. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals

    PubMed Central

    Li, Dehui; Wang, Gongming; Cheng, Hung-Chieh; Chen, Chih-Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2016-01-01

    Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials. PMID:27098114

  16. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals

    DOE PAGES

    Li, Dehui; Wang, Gongming; Cheng, Hung -Chieh; ...

    2016-04-21

    Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirmmore » that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Lastly, our findings offer significant fundamental insight on the temperature-and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.« less

  17. Self-Organized Mantle Layering After the Magma-Ocean Period

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Dude, S.

    2017-12-01

    The thermal history of the Earth, it's chemical differentiation and also the reaction of the interior with the atmosphere is largely determined by convective processes within the Earth's mantle. A simple physical model, resembling the situation, shortly after core formation, consists of a compositionally stable stratified mantle, as resulting from fractional crystallization of the magma ocean. The early mantle is subject to heating from below by the Earth's core and cooling from the top through the atmosphere. Additionally internal heat sources will serve to power the mantle dynamics. Under such circumstances double diffusive convection will eventually lead to self -organized layer formation, even without the preexisting jumps is material properties. We have conducted 2D and 3D numerical experiments in Cartesian and spherical geometry, taking into account mantle realistic values, especially a strong temperature dependent viscosity and a pressure dependent thermal expansivity . The experiments show that in a wide parameter range. distinct convective layers evolve in this scenario. The layering strongly controls the heat loss from the core and decouples the dynamics in the lower mantle from the upper part. With time, individual layers grow on the expense of others and merging of layers does occur. We observe several events of intermittent breakdown of individual layers. Altogether an evolution emerges, characterized by continuous but also spontaneous changes in the mantle structure, ranging from multiple to single layer flow. Such an evolutionary path of mantle convection allows to interpret phenomena ranging from stagnation of slabs at various depth to variations in the chemical signature of mantle upwellings in a new framework.

  18. Influence of Temperature on the Colloidal Stability of Polymer-Coated Gold Nanoparticles in Cell Culture Media.

    PubMed

    Zyuzin, Mikhail V; Honold, Tobias; Carregal-Romero, Susana; Kantner, Karsten; Karg, Matthias; Parak, Wolfgang J

    2016-04-06

    The temperature-dependence of the hydrodynamic diameter and colloidal stability of gold-polymer core-shell particles with temperature-sensitive (poly(N-isopropylacrylamide)) and temperature-insensitive shells (polyallylaminine hydrochloride/polystyrensulfonate, poly(isobutylene-alt-maleic anhydride)-graft-dodecyl) are investigated in various aqueous media. The data demonstrate that for all nanoparticle agglomeration, i.e., increase in effective nanoparticle size, the presence of salts or proteins in the dispersion media has to be taken into account. Poly(N-isopropylacrylamide) coated nanoparticles show a reversible temperature-dependent increase in size above the volume phase transition of the polymer shell when they are dispersed in phosphate buffered saline or in media containing protein. In contrast, the nanoparticles coated with temperature-insensitive polymers show a time-dependent increase in size in phosphate buffered saline or in medium containing protein. This is due to time-dependent agglomeration, which is particularly strong in phosphate buffered saline, and induces a time-dependent, irreversible increase in the hydrodynamic diameter of the nanoparticles. This demonstrates that one has to distinguish between temperature- and time-induced agglomerations. Since the size of nanoparticles regulates their uptake by cells, temperature-dependent uptake of thermosensitive and non-thermosensitive nanoparticles by cells lines is compared. No temperature-specific difference between both types of nanoparticles could be observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The total hemispheric emissivity of painted aluminum honeycomb at cryogenic temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuttle, J.; Canavan, E.; DiPirro, M.

    NASA uses high-emissivity surfaces on deep-space radiators and thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and comparemore » the results with predictions from a detailed thermal model of each honeycomb configuration.« less

  20. Tailoring the response of Autonomous Reactivity Control (ARC) systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qvist, Staffan A.; Hellesen, Carl; Gradecka, Malwina

    The Autonomous Reactivity Control (ARC) system was developed to ensure inherent safety of Generation IV reactors while having a minimal impact on reactor performance and economic viability. In this study we present the transient response of fast reactor cores to postulated accident scenarios with and without ARC systems installed. Using a combination of analytical methods and numerical simulation, the principles of ARC system design that assure stability and avoids oscillatory behavior have been identified. A comprehensive transient analysis study for ARC-equipped cores, including a series of Unprotected Loss of Flow (ULOF) and Unprotected Loss of Heat Sink (ULOHS) simulations, weremore » performed for Argonne National Laboratory (ANL) Advanced Burner Reactor (ABR) designs. With carefully designed ARC-systems installed in the fuel assemblies, the cores exhibit a smooth non-oscillatory transition to stabilization at acceptable temperatures following all postulated transients. To avoid oscillations in power and temperature, the reactivity introduced per degree of temperature change in the ARC system needs to be kept below a certain threshold the value of which is system dependent, the temperature span of actuation needs to be as large as possible.« less

  1. Alternative Splicing of Barley Clock Genes in Response to Low Temperature

    PubMed Central

    Calixto, Cristiane P. G.; Simpson, Craig G.; Waugh, Robbie; Brown, John W. S.

    2016-01-01

    Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement. PMID:27959947

  2. The growth history of the Lago Della Vacca (Southern Adamello Massive, Italy) intrusion from field observations, thermal and rheological modelling

    NASA Astrophysics Data System (ADS)

    Rust, A.; Annen, C.; Blundy, J. D.; Caricchi, L.

    2010-12-01

    The Lago Della Vacca granitoid is an intrusive body emplaced at about 4-6 km in up to 1 My. The core of the body is characterised by the presence of dyke-like structures, enclave-swarms and randomly distributed enclaves, which appear undeformed. Enclaves become oblate with the short axis perpendicular to the foliation, which, in turn follows the margin of the plutonic body (John and Blundy, 1993). Geothermometry and experimental data have been used to constrain the temperature of injection of the mafic component (1273-1323 K), the temperature of the host granitic magma (1173-1223), and to characterise the evolution of crystallinity with temperature for both magmas (Blundy and Sparks, 1992). Based on these data thermal and rheological modelling have been combined to interpret the growth and deformation history of the Lago della Vacca intrusive body. The pluton was modeled as a series of incrementally emplaced nested cylinders with 1D-cylindrical conductive heat transfer. The evolution of temperature and melt fraction distribution in the pluton and country rock were determined and used as input parameters for the rheological modelling. The rheology of each magma depends on the viscosity of the melt and, more importantly, on crystallinity. Field observations suggest that the mafic magma was injected as dykes. Their partial or total disaggregation produced mafic enclaves. The presence of randomly distributed enclaves in the core of Lago Della Vacca body indicates that convection was active in this portion of the intrusion. The undeformed nature of the enclaves in this region also implies that the contrast in temperature between host magma and mafic material produced a sudden (hours) rheological inversion with the mafic magma becoming more viscous than the felsic end-member. In these conditions, the enclaves would be transported passively by the felsic-host without suffering any substantial deformation. Thermal modelling indicates that to maintain the core of the pluton above solidus temperature between injections requires either fast emplacement or high initial temperatures of the country rocks. The latter is unlikely for emplacement depths of 4-6 km and as a consequence we infer duration of emplacement up to few hundred thousand years. The wider range of zircon ages may reflect combined intrusion and thermal relaxation times. The extremely flattened enclaves at the rim of the pluton are the result of deformation at lower temperature as the core inflates. As magmas cool the crystallinity of host become as high as the enclaves, resulting in a small viscosity contrast between them, which can be seen as a Window of Mutual Deformability (WMD). Further straining results in a homogeneous deformation and flattening of the enclaves parallel to the margins.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Dong; N. Paterson; S.G. Kazarian

    A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained amore » small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.« less

  4. Bandgap Engineering of InP QDs Through Shell Thickness and Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Allison M.; Mangum, Benjamin D.; Piryatinski, Andrei

    2012-06-21

    Fields as diverse as biological imaging and telecommunications utilize the unique photophysical and electronic properties of nanocrystal quantum dots (NQDs). The development of new NQD compositions promises material properties optimized for specific applications, while addressing material toxicity. Indium phosphide (InP) offers a 'green' alternative to the traditional cadmium-based NQDs, but suffers from extreme susceptibility to oxidation. Coating InP cores with more stable shell materials significantly improves nanocrystal resistance to oxidation and photostability. We have investigated several new InP-based core-shell compositions, correlating our results with theoretical predictions of their optical and electronic properties. Specifically, we can tailor the InP core-shell QDsmore » to a type-I, quasi-type-II, or type-II bandgap structure with emission wavelengths ranging from 500-1300 nm depending on the shell material used (ZnS, ZnSe, CdS, or CdSe) and the thickness of the shell. Single molecule microscopy assessments of photobleaching and blinking are used to correlate NQD properties with shell thickness.« less

  5. Analysis of Material Sample Heated by Impinging Hot Hydrogen Jet in a Non-Nuclear Tester

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Foote, John; Litchford, Ron

    2006-01-01

    A computational conjugate heat transfer methodology was developed and anchored with data obtained from a hot-hydrogen jet heated, non-nuclear materials tester, as a first step towards developing an efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective and thermal radiative, and conjugate heat transfers. Predicted hot hydrogen jet and material surface temperatures were compared with those of measurement. Predicted solid temperatures were compared with those obtained with a standard heat transfer code. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.

  6. Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites

    PubMed Central

    Patzke, Greta R.; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David

    2012-01-01

    Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H2O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP–Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics. PMID:28809296

  7. Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites.

    PubMed

    Patzke, Greta R; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David

    2012-12-27

    Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H₂O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP-Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics.

  8. The Evolution of Gas Giant Entropy During Formation by Runaway Accretion

    NASA Astrophysics Data System (ADS)

    Berardo, David; Cumming, Andrew; Marleau, Gabriel-Dominique

    2017-01-01

    We calculate the evolution of gas giant planets during the runaway gas accretion phase of formation, to understand how the luminosity of young giant planets depends on the accretion conditions. We construct steady-state envelope models, and run time-dependent simulations of accreting planets with the code Modules for Experiments in Stellar Astrophysics. We show that the evolution of the internal entropy depends on the contrast between the internal adiabat and the entropy of the accreted material, parametrized by the shock temperature T 0 and pressure P 0. At low temperatures ({T}0≲ 300-1000 {{K}}, depending on model parameters), the accreted material has a lower entropy than the interior. The convection zone extends to the surface and can drive a high luminosity, leading to rapid cooling and cold starts. For higher temperatures, the accreted material has a higher entropy than the interior, giving a radiative zone that stalls cooling. For {T}0≳ 2000 {{K}}, the surface-interior entropy contrast cannot be accommodated by the radiative envelope, and the accreted matter accumulates with high entropy, forming a hot start. The final state of the planet depends on the shock temperature, accretion rate, and starting entropy at the onset of runaway accretion. Cold starts with L≲ 5× {10}-6 {L}⊙ require low accretion rates and starting entropy, and the temperature of the accreting material needs to be maintained close to the nebula temperature. If instead the temperature is near the value required to radiate the accretion luminosity, 4π {R}2σ {T}04˜ ({GM}\\dot{M}/R), as suggested by previous work on radiative shocks in the context of star formation, gas giant planets form in a hot start with L˜ {10}-4 {L}⊙ .

  9. Fatigue Characterization of Fire Resistant Syntactic Foam Core Material

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Mynul

    Eco-Core is a fire resistant material for sandwich structural application; it was developed at NC A&T State University. The Eco-Core is made of very small amount of phenolic resin and large volume of flyash by a syntactic process. The process development, static mechanical and fracture, fire and toxicity safety and water absorption properties and the design of sandwich structural panels with Eco-Core material was established and published in the literature. One of the important properties that is needed for application in transportation vehicles is the fatigue performance under different stress states. Fatigue data are not available even for general syntactic foams. The objective of this research is to investigate the fatigue performance of Eco-Core under three types of stress states, namely, cyclic compression, shear and flexure, then document failure modes, and develop empherical equations for predicting fatigue life of Eco-Core under three stress states. Compression-Compression fatigue was performed directly on Eco-Core cylindrical specimen, whereas shear and flexure fatigue tests were performed using sandwich beam made of E glass-Vinyl Ester face sheet and Eco-Core material. Compression-compression fatigue test study was conducted at two values of stress ratios (R=10 and 5), for the maximum compression stress (sigmamin) range of 60% to 90% of compression strength (sigmac = 19.6 +/- 0.25 MPa) for R=10 and 95% to 80% of compression strength for R=5. The failure modes were characterized by the material compliance change: On-set (2% compliance change), propagation (5%) and ultimate failure (7%). The number of load cycles correspond to each of these three damages were characterized as on-set, propagation and total lives. A similar approach was used in shear and flexure fatigue tests with stress ratio of R=0.1. The fatigue stress-number of load cycles data followed the standard power law equation for all three stress states. The constant of the equation were established for the three stress states and three types of the failure modes. This equation was used to estimate endurance limit (106 cycles) of the material. Like metallic materials, the compression fatigue life of Eco-Core was found to be dependent on the stress range instead of maximum or mean cyclic stress. Furthermore shear and flexural ultimate failure of the core material was found to be due to a combination of shear and tensile stress.

  10. Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xuedan; Diroll, Benjamin T.; Cho, Wooje

    Quasi-two-dimensional nanoplatelets (NPLs) possess fundamentally different excitonic properties from zero-dimensional quantum dots. We study lateral size-dependent photon emission statistics and carrier dynamics of individual NPLs using second-order photon correlation (g( 2)(τ)) spectroscopy and photoluminescence (PL) intensity-dependent lifetime analysis. Room-temperature radiative lifetimes of NPLs can be derived from maximum PL intensity periods in PL time traces. It first decreases with NPL lateral size and then stays constant, deviating from the electric dipole approximation. Analysis of the PL time traces further reveals that the single exciton quantum yield in NPLs decreases with NPL lateral size and increases with protecting shell thickness, indicatingmore » the importance of surface passivation on NPL emission quality. Second-order photon correlation (g( 2)(τ)) studies of single NPLs show that the biexciton quantum yield is strongly dependent on the lateral size and single exciton quantum yield of the NPLs. In large NPLs with unity single exciton quantum yield, the corresponding biexciton quantum yield can reach unity. In conclusion, these findings reveal that by careful growth control and core–shell material engineering, NPLs can be of great potential for light amplification and integrated quantum photonic applications.« less

  11. Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets

    DOE PAGES

    Ma, Xuedan; Diroll, Benjamin T.; Cho, Wooje; ...

    2017-08-08

    Quasi-two-dimensional nanoplatelets (NPLs) possess fundamentally different excitonic properties from zero-dimensional quantum dots. We study lateral size-dependent photon emission statistics and carrier dynamics of individual NPLs using second-order photon correlation (g( 2)(τ)) spectroscopy and photoluminescence (PL) intensity-dependent lifetime analysis. Room-temperature radiative lifetimes of NPLs can be derived from maximum PL intensity periods in PL time traces. It first decreases with NPL lateral size and then stays constant, deviating from the electric dipole approximation. Analysis of the PL time traces further reveals that the single exciton quantum yield in NPLs decreases with NPL lateral size and increases with protecting shell thickness, indicatingmore » the importance of surface passivation on NPL emission quality. Second-order photon correlation (g( 2)(τ)) studies of single NPLs show that the biexciton quantum yield is strongly dependent on the lateral size and single exciton quantum yield of the NPLs. In large NPLs with unity single exciton quantum yield, the corresponding biexciton quantum yield can reach unity. In conclusion, these findings reveal that by careful growth control and core–shell material engineering, NPLs can be of great potential for light amplification and integrated quantum photonic applications.« less

  12. Barriers to applying advanced high-temperature materials

    NASA Astrophysics Data System (ADS)

    Premkumar, M. K.

    1993-01-01

    During the past 25 years, aerospace engineers and material scientists have made significant technical progress toward developing next-generation aircraft. However, while advanced high-temperature materials continue to be developed, the outlook for their future application is uncertain and will depend on the ability of these materials to satisfy a more diverse market.

  13. Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography.

    PubMed

    Verheijen, Marcel A; Algra, Rienk E; Borgström, Magnus T; Immink, George; Sourty, Erwan; Enckevort, Willem J P van; Vlieg, Elias; Bakkers, Erik P A M

    2007-10-01

    We have investigated the morphology of heterostructured GaP-GaAs nanowires grown by metal-organic vapor-phase epitaxy as a function of growth temperature and V/III precursor ratio. The study of heterostructured nanowires with transmission electron microscopy tomography allowed the three-dimensional morphology to be resolved, and discrimination between the effect of axial (core) and radial (shell) growth on the morphology. A temperature- and precursor-dependent structure diagram for the GaP nanowire core morphology and the evolution of the different types of side facets during GaAs and GaP shell growth were constituted.

  14. Low-temperature behavior of core-softened models: water and silica behavior.

    PubMed

    Jagla, E A

    2001-06-01

    A core-softened model of a glass forming fluid is numerically studied in the limit of very low temperatures. The model shows two qualitatively different behaviors depending on the strength of the attraction between particles. For no or low attraction, the changes of density as a function of pressure are smooth, although hysteretic due to mechanical metastabilities. For larger attraction, sudden changes of density upon compressing and decompressing occur. This global mechanical instability is correlated to the existence of a thermodynamic first-order amorphous-amorphous transition. The two different behaviors obtained correspond qualitatively to the different phenomenology observed in silica and water.

  15. Johnson Noise Thermometry for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less

  16. An MR/MRI compatible core holder with the RF probe immersed in the confining fluid.

    PubMed

    Shakerian, M; Balcom, B J

    2018-01-01

    An open frame RF probe for high pressure and high temperature MR/MRI measurements was designed, fabricated, and tested. The open frame RF probe was installed inside an MR/MRI compatible metallic core holder, withstanding a maximum pressure and temperature of 5000 psi and 80 °C. The open frame RF probe was tunable for both 1 H and 19 F resonance frequencies with a 0.2 T static magnetic field. The open frame structure was based on simple pillars of PEEK polymer upon which the RF probe was wound. The RF probe was immersed in the high pressure confining fluid during operation. The open frame structure simplified fabrication of the RF probe and significantly reduced the amount of polymeric materials in the core holder. This minimized the MR background signal detected. Phase encoding MRI methods were employed to map the spin density of a sulfur hexafluoride gas saturating a Berea core plug in the core holder. The SF 6 was imaged as a high pressure gas and as a supercritical fluid. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. An MR/MRI compatible core holder with the RF probe immersed in the confining fluid

    NASA Astrophysics Data System (ADS)

    Shakerian, M.; Balcom, B. J.

    2018-01-01

    An open frame RF probe for high pressure and high temperature MR/MRI measurements was designed, fabricated, and tested. The open frame RF probe was installed inside an MR/MRI compatible metallic core holder, withstanding a maximum pressure and temperature of 5000 psi and 80 °C. The open frame RF probe was tunable for both 1H and 19F resonance frequencies with a 0.2 T static magnetic field. The open frame structure was based on simple pillars of PEEK polymer upon which the RF probe was wound. The RF probe was immersed in the high pressure confining fluid during operation. The open frame structure simplified fabrication of the RF probe and significantly reduced the amount of polymeric materials in the core holder. This minimized the MR background signal detected. Phase encoding MRI methods were employed to map the spin density of a sulfur hexafluoride gas saturating a Berea core plug in the core holder. The SF6 was imaged as a high pressure gas and as a supercritical fluid.

  18. Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange

    PubMed Central

    2013-01-01

    For three types of colloidal magnetic nanocrystals, we demonstrate that postsynthetic cation exchange enables tuning of the nanocrystal’s magnetic properties and achieving characteristics not obtainable by conventional synthetic routes. While the cation exchange procedure, performed in solution phase approach, was restricted so far to chalcogenide based semiconductor nanocrystals, here ferrite-based nanocrystals were subjected to a Fe2+ to Co2+ cation exchange procedure. This allows tracing of the compositional modifications by systematic and detailed magnetic characterization. In homogeneous magnetite nanocrystals and in gold/magnetite core shell nanocrystals the cation exchange increases the coercivity field, the remanence magnetization, as well as the superparamagnetic blocking temperature. For core/shell nanoheterostructures a selective doping of either the shell or predominantly of the core with Co2+ is demonstrated. By applying the cation exchange to FeO/CoFe2O4 core/shell nanocrystals the Neél temperature of the core material is increased and exchange-bias effects are enhanced so that vertical shifts of the hysteresis loops are obtained which are superior to those in any other system. PMID:23362940

  19. Ultraviolet Laser-induced ignition of RDX single crystal

    PubMed Central

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-01-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique. PMID:26847854

  20. An in-vitro investigation of skin tissue soldering using gold nanoshells and diode laser.

    PubMed

    Nourbakhsh, Mohammad S; Khosroshahi, Mohammad E

    2011-01-01

    Gold-coated silica core nanoparticles have an optical response dictated by the plasmon resonance (PR). The wavelength at which the resonance occurs depends on the core and shell size, allowing nanoshells to be tailored for particular applications. The purpose of this study is to synthesize and use different concentrations of gold nanoshells as exogenous material for in-vitro skin tissue soldering and also to examine the effect of laser-soldering parameters on the properties of repaired skin. Two mixtures of albumin solder and different concentrations of gold nanoshells were prepared. A full-thickness incision of 2 × 20 mm(2) was made on the surface and after addition of mixtures it was irradiated by an 810-nm diode laser at different power densities. The changes of tensile strength σ(t) due to temperature rise, number of scan (N(s)), and scan velocity (V(s)) were investigated. The results showed at constant laser power density (I), σ(t) of repaired incisions increases by increasing the concentration of gold nanoshells, N(s) and decreasing V(s). It is therefore important to consider the trade-off between the scan velocity and the skin temperature for achieving an optimum operating condition. In our case, this corresponds to σ(t) = 1,610 g/cm(2) at I ∼ 60 Wcm(-2), T ∼ 65°C, Ns = 10 and Vs = 0.2 mms(-1).

  1. High-Temperature Smart Structures for Engine Noise Reduction and Performance Enhancement

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; McKillip, Robert M., Jr.

    2011-01-01

    One of key NASA goals is to develop and integrate noise reduction technology to enable unrestricted air transportation service to all communities. One of the technical priorities of this activity has been to account for and reduce noise via propulsion/airframe interactions, identifying advanced concepts to be integrated with the airframe to mitigate these noise-producing mechanisms. An adaptive geometry chevron using embedded smart structures technology offers the possibility of maximizing engine performance while retaining and possibly enhancing the favorable noise characteristics of current designs. New high-temperature shape memory alloy (HTSMA) materials technology enables the devices to operate in both low-temperature (fan) and high-temperature (core) exhaust flows. Chevron-equipped engines have demonstrated reduced noise in testing and operational use. It is desirable to have the noise benefits of chevrons in takeoff/landing conditions, but have them deployed into a minimum drag position for cruise flight. The central feature of the innovation was building on rapidly maturing HTSMA technology to implement a next-generation aircraft noise mitigation system centered on adaptive chevron flow control surfaces. In general, SMA-actuated devices have the potential to enhance the demonstrated noise reduction effectiveness of chevron systems while eliminating the associated performance penalty. The use of structurally integrated smart devices will minimize the mechanical and subsystem complexity of this implementation. The central innovations of the effort entail the modification of prior chevron designs to include a small cut that relaxes structural stiffness without compromising the desired flow characteristics over the surface; the reorientation of SMA actuation devices to apply forces to deflect the chevron tip, exploiting this relaxed stiffness; and the use of high-temperature SMA (HTSMA) materials to enable operation in the demanding core chevron environment. The overall conclusion of these design studies was that the cut chevron concept is a critical enabling step in bringing the variable geometry core chevron within reach. The presence of the cut may be aerodynamically undesirable in some respects, but it is present only when the chevron is not immersed in the core jet exhaust. When deployed, the gap closes as the chevron tip enters the high-speed, high-temperature core stream. Aeroacoustic testing and flow visualization support the contention that this cut is inconsequential to chevron performance.

  2. High performance shape memory polymer networks based on rigid nanoparticle cores

    PubMed Central

    Song, Jie

    2010-01-01

    Smart materials that can respond to external stimuli are of widespread interest in biomedical science. Thermal-responsive shape memory polymers, a class of intelligent materials that can be fixed at a temporary shape below their transition temperature (Ttrans) and thermally triggered to resume their original shapes on demand, hold great potential as minimally invasive self-fitting tissue scaffolds or implants. The intrinsic mechanism for shape memory behavior of polymers is the freezing and activation of the long-range motion of polymer chain segments below and above Ttrans, respectively. Both Ttrans and the extent of polymer chain participation in effective elastic deformation and recovery are determined by the network composition and structure, which are also defining factors for their mechanical properties, degradability, and bioactivities. Such complexity has made it extremely challenging to achieve the ideal combination of a Ttrans slightly above physiological temperature, rapid and complete recovery, and suitable mechanical and biological properties for clinical applications. Here we report a shape memory polymer network constructed from a polyhedral oligomeric silsesquioxane nanoparticle core functionalized with eight polyester arms. The cross-linked networks comprising this macromer possessed a gigapascal-storage modulus at body temperature and a Ttrans between 42 and 48 °C. The materials could stably hold their temporary shapes for > 1 year at room temperature and achieve full shape recovery ≤ 51 °C in a matter of seconds. Their versatile structures allowed for tunable biodegradability and biofunctionalizability. These materials have tremendous promise for tissue engineering applications. PMID:20375285

  3. A continuum deformation theory for metal-matrix composites at high temperature

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.

    1987-01-01

    A continuum theory is presented for representing the high temperature, time dependent, hereditary deformation behavior of metallic composites that can be idealized as pseudohomogeneous continua with locally definable directional characteristics. Homogenization of textured materials (molecular, granular, fibrous) and applicability of continuum mechanics in structural applications depends on characteristic body dimensions, the severity of gradients (stress, temperature, etc.) in the structure and the relative size of the internal structure (cell size) of the material. The point of view taken here is that the composite is a material in its own right, with its own properties that can be measured and specified for the composite as a whole.

  4. Metal-Organic Frameworks-Derived Hierarchical Co3O4 Structures as Efficient Sensing Materials for Acetone Detection.

    PubMed

    Zhang, Rui; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-03-21

    Highly sensitive and stable gas sensors have attracted much attention because they are the key to innovations in the fields of environment, health, energy savings and security, etc. Sensing materials, which influence the practical sensing performance, are the crucial parts for gas sensors. Metal-organic frameworks (MOFs) are considered as alluring sensing materials for gas sensors because of the possession of high specific surface area, unique morphology, abundant metal sites, and functional linkers. Herein, four kinds of porous hierarchical Co 3 O 4 structures have been selectively controlled by optimizing the thermal decomposition (temperature, rate, and atmosphere) using ZIF-67 as precursor that was obtained from coprecipitation method with the co-assistance of cobalt salt and 2-methylimidazole in the solution of methanol. These hierarchical Co 3 O 4 structures, with controllable cross-linked channels, meso-/micropores, and adjustable surface area, are efficient catalytic materials for gas sensing. Benefits from structural advantages, core-shell, and porous core-shell Co 3 O 4 exhibit enhanced sensing performance compared to those of porous popcorn and nanoparticle Co 3 O 4 to acetone gas. These novel MOF-templated Co 3 O 4 hierarchical structures are so fantastic that they can be expected to be efficient sensing materials for development of low-temperature operating gas sensors.

  5. A versatile phenomenological model for the S-shaped temperature dependence of photoluminescence energy for an accurate determination of the exciton localization energy in bulk and quantum well structures

    NASA Astrophysics Data System (ADS)

    Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.

    2014-02-01

    Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.

  6. Cryo-Infrared Optical Characterization at NASA GSFC

    NASA Technical Reports Server (NTRS)

    Boucarut, Ray; Quijada, Manuel A.; Henry, Ross M.

    2004-01-01

    The development of large space infrared optical systems, such as the Next Generation Space Telescope (NGST), has increased requirements for measurement accuracy in the optical properties of materials. Many materials used as optical components in infrared optical systems, have strong temperature dependence in their optical properties. Unfortunately, data on the temperature dependence of most of these materials is sparse. In this paper, we provide a description of the capabilities existing in the Optics Branch at the Goddard Space Flight Center that enable the characterization of the refractive index and absorption coefficient changes and other optical properties in infrared materials at cryogenic temperatures. Details of the experimental apparatus, which include continuous flow liquid helium optical cryostat, and a Fourier Transform Infrared (FTIR) spectrometer are discussed.

  7. Influence of Surrounding Dielectrics on the Data Retention Time of Doped Sb2Te Phase Change Material

    NASA Astrophysics Data System (ADS)

    Jedema, Friso; in `t Zandt, Micha; Wolters, Rob; Gravesteijn, Dirk

    2011-02-01

    The crystallization properties of as-deposited and laser written amorphous marks of doped Sb2Te phase change material are found to be only dependent on the top dielectric layer. A ZnS:SiO2 top dielectric layer yields a higher crystallization temperature and a larger crystal growth activation energy as compared to a SiO2 top dielectric layer, leading to superior data retention times at ambient temperatures. The observed correlation between the larger crystallization temperatures and larger crystal growth activation energies indicates that the viscosity of the phase change material in the amorphous state is dependent on the interfacial energy between the phase change material and the top dielectric layer.

  8. The influence of anisotropy on the core structure of Shockley partial dislocations within FCC materials

    NASA Astrophysics Data System (ADS)

    Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.

    2018-01-01

    Both theoretical and numerical models of dislocations often necessitate the assumption of elastic isotropy to retain analytical tractability in addition to reducing computational load. As dislocation based models evolve towards physically realistic material descriptions, the assumption of elastic isotropy becomes increasingly worthy of examination. We present an analytical dislocation model for calculating the full dissociated core structure of dislocations within anisotropic face centered cubic (FCC) crystals as a function of the degree of material elastic anisotropy, two misfit energy densities on the γ-surface ({γ }{{isf}}, {γ }{{usf}}) and the remaining elastic constants. Our solution is independent of any additional features of the γ-surface. Towards this pursuit, we first demonstrate that the dependence of the anisotropic elasticity tensor on the orientation of the dislocation line within the FCC crystalline lattice is small and may be reasonably neglected for typical materials. With this approximation, explicit analytic solutions for the anisotropic elasticity tensor {B} for both nominally edge and screw dislocations within an FCC crystalline lattice are devised, and employed towards defining a set of effective isotropic elastic constants which reproduce fully anisotropic results, however do not retain the bulk modulus. Conversely, Hill averaged elastic constants which both retain the bulk modulus and reasonably approximate the dislocation core structure are employed within subsequent numerical calculations. We examine a wide range of materials within this study, and the features of each partial dislocation core are sufficiently localized that application of discrete linear elasticity accurately describes the separation of each partial dislocation core. In addition, the local features (the partial dislocation core distribution) are well described by a Peierls-Nabarro dislocation model. We develop a model for the displacement profile which depends upon two disparate dislocation length scales which describe the core structure; (i) the equilibrium stacking fault width between two Shockley partial dislocations, R eq and (ii) the maximum slip gradient, χ, of each Shockley partial dislocation. We demonstrate excellent agreement between our own analytic predictions, numerical calculations, and R eq computed directly by both ab-initio and molecular statics methods found elsewhere within the literature. The results suggest that understanding of various plastic mechanisms, e.g., cross-slip and nucleation may be augmented with the inclusion of elastic anisotropy.

  9. Near-field fluorescence thermometry using highly efficient triple-tapered near-field optical fiber probe.

    PubMed

    Fujii, T; Taguchi, Y; Saiki, T; Nagasaka, Y

    2012-12-01

    A novel local temperature measurement method using fluorescence near-field optics thermal nanoscopy (Fluor-NOTN) has been developed. Fluor-NOTN enables nanoscale temperature measurement in situ by detecting the temperature-dependent fluorescence lifetime of CdSe quantum dots (QDs). In this paper, we report a novel triple-tapered near-field optical fiber probe that can increase the temperature measurement sensitivity of Fluor-NOTN. The performance of the proposed probe was numerically evaluated by the finite difference time domain method. Due to improvements in both the throughput and collection efficiency of near-field light, the sensitivity of the proposed probe was 1.9 times greater than that of typical double-tapered probe. The proposed shape of the triple-tapered core was successfully fabricated utilizing a geometrical model. The detected signal intensity of dried layers of QDs was greater by more than two orders than that of auto-fluorescence from the fiber core. In addition, the near-field fluorescence lifetime of the QDs and its temperature dependence were successfully measured by the fabricated triple-tapered near-field optical fiber probe. These measurement results verified the capability of the proposed triple-tapered near-field optical fiber probe to improve the collection efficiency of near-field fluorescence.

  10. Investigation of the deformation mechanisms of core-shell rubber-modified epoxy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Brown, Hayley Rebecca

    The industrial demand for high strength-to-weight ratio materials is increasing due to the need for high performance components. Epoxy polymers, although often used in fiber-reinforced polymeric composites, have an inherent low toughness that further decreases with decreasing temperatures. Second-phase additives have been effective in increasing the toughness of epoxies at room temperature; however, the mechanisms at low temperatures are still not understood. In this study, the deformation mechanisms of a DGEBA epoxy modified with MX960 core-shell rubber (CSR) particles were investigated under quasi-static tensile and impact loads at room temperature (RT) and liquid nitrogen (LN 2) temperature. Overall, the CSR had little effect on the tensile properties at RT and LN2 temperature. The impact strength decreased from neat to 3 wt% but increased from neat to 5 wt% at RT and LN2 temperature, with a higher impact strength at RT at all CSR loadings. The CSR particles debonded in front of the crack tip, inducing voids into the matrix. It was found that an increase in shear deformation and void growth likely accounted for the higher impact strength at 5 wt% CSR loading at RT while the thermal stress fields due to the coefficient of thermal expansion mismatch between rubber and epoxy and an increase in secondary cracking is likely responsible for the higher impact strength at 5 wt% tested at LN2 temperature. While a large toughening effect was not seen in this study, the mechanisms analyzed herein will likely be of use for further material investigations at cryogenic temperatures.

  11. Experiments on the rheology of vesicle-bearing magmas

    NASA Astrophysics Data System (ADS)

    Vona, Alessandro; Ryan, Amy G.; Russell, James K.; Romano, Claudia

    2016-04-01

    We present a series of high temperature uniaxial deformation experiments designed to investigate the effect of bubbles on the magma bulk viscosity. Starting materials having variable vesicularity (φ = 0 - 66%) were synthesized by high-temperature foaming (T = 900 - 1050 ° C and P = 1 bar) of cores of natural rhyolitic obsidian from Hrafntinnuhryggur, Krafla, Iceland. These cores were subsequently deformed using a high-temperature uniaxial press at dry atmospheric conditions. Each experiment involved deforming vesicle-bearing cores isothermally (T = 750 ° C), at constant displacement rates (strain rates between 0.5-1 x 10-4 s-1), and to total strains (ɛ) of 10-40%. The viscosity of the bubble-free melt (η0) was measured by micropenetration and parallel plate methods and establishes a baseline for comparing data derived from experiments on vesicle rich cores. At the experimental conditions, the presence of vesicles has a major impact on the rheological response, producing a marked decrease of bulk viscosity (maximum decrease of 2 log units Pa s) that is best described by a two-parameter empirical equation: log ηBulk = log η0 - 1.47 * [φ/(1-φ)]0.48. Our model provides a means to compare the diverse behaviour of vesicle-bearing melts reported in the literature and reflecting material properties (e.g., analogue vs. natural), geometry and distribution of pores (e.g. foamed/natural vs. unconsolidated/sintered materials), and flow regime. Lastly, we apply principles of Maxwell relaxation theory, combined with our parameterization of bubble-melt rheology, to map the potential onset of non-Newtonian behaviour (strain localization) in vesiculated magmas and lavas as a function of melt viscosity, vesicularity, strain rate, and geological condition. Increasing vesicularity in magmas can initiate non-Newtonian behaviour at constant strain rates. Lower melt viscosity sustains homogeneous Newtonian flow in vesiculated magmas even at relatively high strain rates.

  12. AGC-2 Irradiation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas; Windes, William; Swank, W. David

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a completemore » properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the components longer useful lifetimes within the core. Determining the irradiation creep rates of nuclear grade graphites is critical for determining the useful lifetime of graphite components and is a major component of the Advanced Graphite Creep (AGC) experiment.« less

  13. Nonpolar InGaN/GaN Core-Shell Single Nanowire Lasers.

    PubMed

    Li, Changyi; Wright, Jeremy B; Liu, Sheng; Lu, Ping; Figiel, Jeffrey J; Leung, Benjamin; Chow, Weng W; Brener, Igal; Koleske, Daniel D; Luk, Ting-Shan; Feezell, Daniel F; Brueck, S R J; Wang, George T

    2017-02-08

    We report lasing from nonpolar p-i-n InGaN/GaN multi-quantum well core-shell single-nanowire lasers by optical pumping at room temperature. The nanowire lasers were fabricated using a hybrid approach consisting of a top-down two-step etch process followed by a bottom-up regrowth process, enabling precise geometrical control and high material gain and optical confinement. The modal gain spectra and the gain curves of the core-shell nanowire lasers were measured using micro-photoluminescence and analyzed using the Hakki-Paoli method. Significantly lower lasing thresholds due to high optical gain were measured compared to previously reported semipolar InGaN/GaN core-shell nanowires, despite significantly shorter cavity lengths and reduced active region volume. Mode simulations show that due to the core-shell architecture, annular-shaped modes have higher optical confinement than solid transverse modes. The results show the viability of this p-i-n nonpolar core-shell nanowire architecture, previously investigated for next-generation light-emitting diodes, as low-threshold, coherent UV-visible nanoscale light emitters, and open a route toward monolithic, integrable, electrically injected single-nanowire lasers operating at room temperature.

  14. Powder Processing of High Temperature Cermets and Carbides at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Salvail, Pat; Panda, Binayak; Hickman, Robert R.

    2007-01-01

    The Materials and Processing Laboratory at NASA Marshall Space Flight Center is developing Powder Metallurgy (PM) processing techniques for high temperature cermet and carbide material consolidation. These new group of materials would be utilized in the nuclear core for Nuclear Thermal Rockets (NTR). Cermet materials offer several advantages for NTR such as retention of fission products and fuels, better thermal shock resistance, hydrogen compatibility, high thermal conductivity, and high strength. Carbide materials offer the highest operating temperatures but are sensitive to thermal stresses and are difficult to process. To support the effort, a new facility has been setup to process refractory metal, ceramic, carbides and depleted uranium-based powders. The facility inciudes inert atmosphere glove boxes for the handling of reactive powders, a high temperature furnace, and powder processing equipment used for blending, milling, and sieving. The effort is focused on basic research to identify the most promising compositions and processing techniques. Several PM processing methods including Cold and Hot Isostatic Pressing are being evaluated to fabricate samples for characterization and hot hydrogen testing.

  15. A convergent approach to biocompatible polyglycerol "click" dendrons for the synthesis of modular core-shell architectures and their transport behavior.

    PubMed

    Wyszogrodzka, Monika; Haag, Rainer

    2008-01-01

    Dendrimers are an important class of polymeric materials for a broad range of applications in which monodispersity and multivalency are of interest. Here we report on a highly efficient synthetic route towards bifunctional polyglycerol dendrons on a multigram scale. Commercially available triglycerol (1), which is highly biocompatible, was used as starting material. By applying Williamson ether synthesis followed by an ozonolysis/reduction procedure, glycerol-based dendrons up to the fourth generation were prepared. The obtained products have a reactive core, which was further functionalized to the corresponding monoazido derivatives. By applying copper(I)-catalyzed 1,3-dipolar cycloaddition, so-called "click" coupling, a library of core-shell architectures was prepared. After removal of the 1,2-diol protecting groups, water-soluble core-shell architectures 24-27 of different generations were obtained in high yields. In the structure-transport relationship with Nile red we observe a clear dependence on core size and generation of the polyglycerol dendrons.

  16. Behavior of composite sandwich panels with several core designs at different impact velocities

    NASA Astrophysics Data System (ADS)

    Jiga, Gabriel; Stamin, Ştefan; Dinu, Gabriela

    2018-02-01

    A sandwich composite represents a special class of composite materials that is manufactured by bonding two thin but stiff faces to a low density and low strength but thick core. The distance between the skins given by the core increases the flexural modulus of the panel with a low mass increase, producing an efficient structure able to resist at flexural and buckling loads. The strength of sandwich panels depends on the size of the panel, skins material and number or density of the cells within it. Sandwich composites are used widely in several industries, such as aerospace, automotive, medical and leisure industries. The behavior of composite sandwich panels with different core designs under different impact velocities are analyzed in this paper by numerical simulations performed on sandwich panels. The modeling was done in ANSYS and the analysis was performed through LS-DYNA.

  17. Physical properties of molten core materials: Zr-Ni and Zr-Cr alloys measured by electrostatic levitation

    NASA Astrophysics Data System (ADS)

    Ohishi, Yuji; Kondo, Toshiki; Ishikawa, Takehiko; Okada, Junpei T.; Watanabe, Yuki; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2017-03-01

    It is important to understand the behaviors of molten core materials to investigate the progression of a core meltdown accident. In the early stages of bundle degradation, low-melting-temperature liquid phases are expected to form via the eutectic reaction between Zircaloy and stainless steel. The main component of Zircaloy is Zr and those of stainless steel are Fe, Ni, and Cr. Our group has previously reported physical property data such as viscosity, density, and surface tension for Zr-Fe liquid alloys using an electrostatic levitation technique. In this study, we report the viscosity, density, and surface tension of Zr-Ni and Zr-Cr liquid alloys (Zr1-xNix (x = 0.12 and 0.24) and Zr0.77Cr0.23) using the electrostatic levitation technique.

  18. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; ...

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 -3 s -1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords« less

  19. Time-dependent heat transfer in the spherical Earth: Implications on the power and thermal evolution of the core

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.; Criss, R. E.

    2015-12-01

    We quantitatively investigate the time-dependence of heat conduction for a post-core, spherical Earth that is not convecting, due to compositional layering, based on hundreds of measurements of thermal diffusivity (D) for insulators and metals. Consistency of our solutions for widely ranging input parameters indicates how additional heat transfer mechanisms (mantle magmatism and convection) affect thermal evolution of the core. We consider 1) interior starting temperatures (T) of 273-5000 K, which represent variations in primordial heat, 2) different distributions and decay of long-lived radioactive isotopes, 3) additional heat sources in the core (primordial or latent heat), and 4) variable depth-T dependence of D. Our new analytical solution for cooling of a constant D sphere validates our numerical results. The bottom line is that the thermally insulating nature of minerals, combined with constraints of spherical geometry, limits steep thermal gradients to the upper mantle, consistent with the short length scale (x ~700 km) of cooling over t = 4.5 Ga indicated by dimensional analysis [x2 ~ 4Dt], and with plate tectonics. Consequently, interior temperatures vary little so the core has remained hot and is possibly warming. Findings include: 1) Constant vs. variable D affects thermal profiles only in detail, with D for the metallic core being inconsequential. 2) The hottest zone in Earth may lie in the uppermost lower mantle; 3) Most radiogenic heat is released in Earth's outermost 1000 km thereby driving an active outer shell; 4) Earth's core is essentially isothermal and is thus best described by the liquid-solid phase boundary; 5) Deeply sequestered radioactivity or other heat will melt the core rather than by run the dynamo (note that the heat needed to have melted the outer core is 10% of radiogenic heat generated over Earth's history); 6) Inefficient cooling of an Earth-sized mass means that heat essentially remains where it is generated, until it is removed by magmatism; 7) Importantly, the observed plate velocities are consistent with a Nusselt number of 1, i.e. the present day cooling is essentially conductive. Conductive cooling plus magmatism largely governs Earth's thermal structure and dynamics, below a unicellular upper mantle. Core dynamics and magnetism are likely driven by rotational effects.

  20. Metglas 2714A for Low Temperature Transformer Core and EMI Filter

    NASA Technical Reports Server (NTRS)

    Quach, Hung; Chui, Talso

    2003-01-01

    We have measured the real and imaginary parts of the relative permeability of Metglas 2714A. The magnetization noise density of a toroid made of this material is also measured with a SQUID magnetometer. This noise density is found to agree very well with the fluctuation dissipation theorem, implying that superconducting transformers with predictable noise characteristic can be designed. We also find that the relative permeability is larger than 10,000 at liquid helium temperature and at frequencies from DC to 100 kHz, making it suitable to be used as EMI filter material. Its usage should be similar to that of ferrites, with the exception that it is also effective at low temperatures.

  1. Measuring air core characteristics of a pressure-swirl atomizer via a transparent acrylic nozzle at various Reynolds numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eun J.; Oh, Sang Youp; Kim, Ho Y.

    2010-11-15

    Because of thermal fluid-property dependence, atomization stability (or flow regime) can change even at fixed operating conditions when subject to temperature change. Particularly at low temperatures, fuel's high viscosity can prevent a pressure-swirl (or simplex) atomizer from sustaining a centrifugal-driven air core within the fuel injector. During disruption of the air core inside an injector, spray characteristics outside the nozzle reflect a highly unstable, nonlinear mode where air core length, Sauter mean diameter (SMD), cone angle, and discharge coefficient variability. To better understand injector performance, these characteristics of the pressure-swirl atomizer were experimentally investigated and data were correlated to Reynoldsmore » numbers (Re). Using a transparent acrylic nozzle, the air core length, SMD, cone angle, and discharge coefficient are observed as a function of Re. The critical Reynolds numbers that distinguish the transition from unstable mode to transitional mode and eventually to a stable mode are reported. The working fluids are diesel and a kerosene-based fuel, referred to as bunker-A. (author)« less

  2. Monte Carlo simulation of dynamic phase transitions and frequency dispersions of hysteresis curves in core/shell ferrimagnetic cubic nanoparticle

    NASA Astrophysics Data System (ADS)

    Vatansever, Erol

    2017-05-01

    By means of Monte Carlo simulation method with Metropolis algorithm, we elucidate the thermal and magnetic phase transition behaviors of a ferrimagnetic core/shell nanocubic system driven by a time dependent magnetic field. The particle core is composed of ferromagnetic spins, and it is surrounded by an antiferromagnetic shell. At the interface of the core/shell particle, we use antiferromagnetic spin-spin coupling. We simulate the nanoparticle using classical Heisenberg spins. After a detailed analysis, our Monte Carlo simulation results suggest that present system exhibits unusual and interesting magnetic behaviors. For example, at the relatively lower temperature regions, an increment in the amplitude of the external field destroys the antiferromagnetism in the shell part of the nanoparticle, leading to a ground state with ferromagnetic character. Moreover, particular attention has been dedicated to the hysteresis behaviors of the system. For the first time, we show that frequency dispersions can be categorized into three groups for a fixed temperature for finite core/shell systems, as in the case of the conventional bulk systems under the influence of an oscillating magnetic field.

  3. Zigzag-Elongated Fused π-Electronic Core: A Molecular Design Strategy to Maximize Charge-Carrier Mobility.

    PubMed

    Yamamoto, Akito; Murata, Yoshinori; Mitsui, Chikahiko; Ishii, Hiroyuki; Yamagishi, Masakazu; Yano, Masafumi; Sato, Hiroyasu; Yamano, Akihito; Takeya, Jun; Okamoto, Toshihiro

    2018-01-01

    Printed and flexible electronics requires solution-processable organic semiconductors with a carrier mobility (μ) of ≈10 cm 2 V -1 s -1 as well as high chemical and thermal durability. In this study, chryseno[2,1- b :8,7- b ']dithiophene (ChDT) and its derivatives, which have a zigzag-elongated fused π-electronic core (π-core) and a peculiar highest occupied molecular orbital (HOMO) configuration, are reported as materials with conceptually new semiconducting π-cores. ChDT and its derivatives are prepared by a versatile synthetic procedure. A comprehensive investigation reveals that the ChDT π-core exhibits increasing structural stability in the bulk crystal phase, and that it is unaffected by a variation of the transfer integral, induced by the perpetual molecular motion of organic materials owing to the combination of its molecular shape and its particular HOMO configuration. Notably, ChDT derivatives exhibit excellent chemical and thermal stability, high charge-carrier mobility under ambient conditions (μ ≤ 10 cm 2 V -1 s -1 ), and a crystal phase that is highly stable, even at temperatures above 250 °C.

  4. Design and intestinal mucus penetration mechanism of core-shell nanocomplex.

    PubMed

    Zhang, Xin; Cheng, Hongbo; Dong, Wei; Zhang, Meixia; Liu, Qiaoyu; Wang, Xiuhua; Guan, Jian; Wu, Haiyang; Mao, Shirui

    2018-02-28

    The objective of this study was to design intestinal mucus-penetrating core-shell nanocomplex by functionally mimicking the surface of virus, which can be used as the carrier for peroral delivery of macromolecules, and further understand the influence of nanocomplex surface properties on the mucosal permeation capacity. Taking insulin as a model drug, the core was formed by the self-assembly among positively charged chitosan, insulin and negatively charged sodium tripolyphosphate, different types of alginates were used as the shell forming material. The nanocomplex was characterized by dynamic light scattering (DLS), atomic force microscopy (AFM) and FTIR. Nanocomplex movement in mucus was recorded using multiple particle tracking (MPT) method. Permeation and uptake of different nanocomplex were studied in rat intestine. It was demonstrated that alginate coating layer was successfully formed on the core and the core-shell nanocomplex showed a good physical stability and improved enzymatic degradation protection. The mucus penetration and MPT study showed that the mucus penetration capacity of the nanocomplex was surface charge and coating polymer structure dependent, nanocomplex with negative alginate coating had 1.6-2.5 times higher mucus penetration ability than that of positively charged chitosan-insulin nanocomplex. Moreover, the mucus penetration ability of the core-shell nanocomplex was alginate structure dependent, whereas alginate with lower G content and lower molecular weight showed the best permeation enhancing ability. The improvement of intestine permeation and intestinal villi uptake of the core-shell nanocomplex were further confirmed in rat intestine and multiple uptake mechanisms were involved in the transport process. In conclusion, core-shell nanocomplex composed of oppositely charged materials could provide a strategy to overcome the mucus barrier and enhance the mucosal permeability. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Enhanced superconductivity in aluminum-based hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Smolyaninova, Vera; Jensen, Christopher; Zimmerman, William; Prestigiacomo, Joseph; Osofsky, Michael; Kim, Heungsoo; Bassim, Nabil; Xing, Zhen; Qazilbash, Mumtaz; Smolyaninov, Igor

    One of the most important goals of condensed matter physics is materials by design, i.e. the ability to reliably predict and design materials with a set of desired properties. A striking example is the deterministic enhancement of the superconducting properties of materials. Recent experiments have demonstrated that the metamaterial approach is capable of achieving this goal, such as tripling the critical temperature Tc in Al-Al2O3 epsilon near zero (ENZ) core-shell metamaterial superconductors. Here, we demonstrate that an Al/Al2O3 hyperbolic metamaterial geometry is capable of a similar Tc enhancement, while having superior transport and magnetic properties compared to the core-shell metamaterial superconductors. This work was supported in part by NSF Grant DMR-1104676 and the School of Emerging Technologies at Towson University.

  6. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet

    2018-05-01

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  7. Iron-Nickel alloy in the Earth's core

    NASA Astrophysics Data System (ADS)

    Lin, Jung-Fu; Heinz, Dion L.; Campbell, Andrew J.; Devine, James M.; Mao, Wendy L.; Shen, Guoyin

    2002-05-01

    The phase relations of an Fe10wt%Ni alloy were investigated in a diamond anvil cell up to 86 GPa and 2382 K. Adding nickel into iron stabilizes the fcc phase to higher pressures and lower temperatures compared to pure iron, and a region of two-phase coexistence between fcc and hcp phases is observed. Iron with up to 10 wt% nickel is likely to be in the hcp structure under inner core conditions. The axial ratio (c/a) of hcp-Fe10wt%Ni has a weak pressure dependence, but it increases substantially with increasing temperature. The extrapolated c/a ratio at ~5700 K and ~86 GPa is approximately 1.64, lower than a theoretically predicted value of nearly 1.7 for hcp-Fe at 5700 K and inner-core pressure. A lower c/a ratio should have an effect on the longitudinal anisotropy of the hcp phase, and hence, may influence the interpretation of the seismic wave anisotropy of the inner core.

  8. Two-proton capture on the 68Se nucleus with a new self-consistent cluster model

    NASA Astrophysics Data System (ADS)

    Hove, D.; Garrido, E.; Jensen, A. S.; Sarriguren, P.; Fynbo, H. O. U.; Fedorov, D. V.; Zinner, N. T.

    2018-07-01

    We investigate the two-proton capture reaction of the prominent rapid proton capture waiting point nucleus, 68Se, that produces the borromean nucleus 70Kr (68Se + p + p). We apply a recently formulated general model where the core nucleus, 68Se, is treated in the mean-field approximation and the three-body problem of the two valence protons and the core is solved exactly. We compare using two popular Skyrme interactions, SLy4 and SkM*. We calculate E2 electromagnetic two-proton dissociation and capture cross sections, and derive the temperature dependent capture rates. We vary the unknown 2+ resonance energy without changing any of the structures computed self-consistently for both core and valence particles. We find rates increasing quickly with temperature below 2-4 GK after which we find rates varying by about a factor of two independent of 2+ resonance energy. The capture mechanism is sequential through the f5/2 proton-core resonance, but the continuum background contributes significantly.

  9. Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications

    NASA Astrophysics Data System (ADS)

    Farag, Mohammed; Sweity, Haitham; Fleckenstein, Matthias; Habibi, Saeid

    2017-08-01

    Real-time prediction of the battery's core temperature and terminal voltage is very crucial for an accurate battery management system. In this paper, a combined electrochemical, heat generation, and thermal model is developed for large prismatic cells. The proposed model consists of three sub-models, an electrochemical model, heat generation model, and thermal model which are coupled together in an iterative fashion through physicochemical temperature dependent parameters. The proposed parameterization cycles identify the sub-models' parameters separately by exciting the battery under isothermal and non-isothermal operating conditions. The proposed combined model structure shows accurate terminal voltage and core temperature prediction at various operating conditions while maintaining a simple mathematical structure, making it ideal for real-time BMS applications. Finally, the model is validated against both isothermal and non-isothermal drive cycles, covering a broad range of C-rates, and temperature ranges [-25 °C to 45 °C].

  10. Predicting Young’s Modulus of Glass/Ceramic Sealant for Solid Oxide Fuel Cell Considering the Combined Effects of Aging, Micro-Voids and Self-Healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    We study the temperature dependent Young’s modulus for the glass/ceramic seal material used in Solid Oxide Fuel Cells (SOFCs). With longer heat treatment or aging time during operation, further devitrification may reduce the residual glass content in the seal material while boosting the ceramic crystalline content. In the meantime, micro-voids induced by the cooling process from the high operating temperature to room temperature can potentially degrade the mechanical properties of the glass/ceramic sealant. Upon reheating to the SOFC operating temperature, possible self-healing phenomenon may occur in the glass/ceramic sealant which can potentially restore some of its mechanical properties. A phenomenologicalmore » model is developed to model the temperature dependent Young’s modulus of glass/ceramic seal considering the combined effects of aging, micro-voids, and possible self-healing. An aging-time-dependent crystalline content model is first developed to describe the increase of the crystalline content due to the continuing devitrification under high operating temperature. A continuum damage mechanics (CDM) model is then adapted to model the effects of both cooling induced micro-voids and reheating induced self-healing. This model is applied to model the glass-ceramic G18, a candidate SOFC seal material previously developed at PNNL. Experimentally determined temperature dependent Young’s modulus is used to validate the model predictions« less

  11. Research on high-temperature sensing characteristics based on modular interference of single-mode multimode single-mode fiber

    NASA Astrophysics Data System (ADS)

    Peng, Zhaozhuang; Wang, Li; Yan, Huanhuan

    2016-11-01

    Application of high temperature fiber sensing system is very extensive. It can be mainly used in high temperature test aerospace, such as, materials, chemicals, and energy. In recent years, various on-line optical fiber interferometric sensors based on modular interference of single-mode-multimode-single-mode(SMS) fiber have been largely explored in high temperature fiber sensor. In this paper we use the special fiber of a polyimide coating, its sensor head is composed of a section of multimode fiber spliced in the middle of Single-mode fiber. When the light is launched into the multimode fiber(MMF) through the lead-in single-mode fiber(SMF), the core mode and cladding modes are excited and propagate in the MMF respectively. Then, at the MMF-SMF spliced point, the excited cladding modes coupled back into the core of lead-out SMF interfere with SMF core mode. And the wavelength of the interference dip would shift differently with the variation of the temperature. By this mean, we can achieve the measurement of temperature. The experimental results also show that the fiber sensor based on SMS structure has a highly temperature sensitivity. From 30° to 300°, with the temperature increasing, the interference dip slightly shifts toward longer wavelength and the temperature sensitivity coefficient is 0.0115nm/°. With high sensitivity, simple structure, immunity to electromagnetic interferences and a good linearity of the experimental results, the structure has an excellent application prospect in engineering field.

  12. Athermal Photonic Devices and Circuits on a Silicon Platform

    NASA Astrophysics Data System (ADS)

    Raghunathan, Vivek

    In recent years, silicon based optical interconnects has been pursued as an effective solution that can offer cost, energy, distance and bandwidth density improvements over copper. Monolithic integration of optics and electronics has been enabled by silicon photonic devices that can be fabricated using CMOS technology. However, high levels of device integration result in significant local and global temperature fluctuations that prove problematic for silicon based photonic devices. In particular, high temperature dependence of Si refractive index (thermo-optic (TO) coefficient) shifts the filter response of resonant devices that limit wavelength resolution in various applications. Active thermal compensation using heaters and thermo-electric coolers are the legacy solution for low density integration. However, the required electrical power, device foot print and number of input/output (I/O) lines limit the integration density. We present a passive approach to an athermal design that involves compensation of positive TO effects from a silicon core by negative TO effects of the polymer cladding. In addition, the design rule involves engineering the waveguide core geometry depending on the resonance wavelength under consideration to ensure desired amount of light in the polymer. We develop exact design requirements for a TO peak stability of 0 pm/K and present prototype performance of 0.5 pm/K. We explore the material design space through initiated chemical vapor deposition (iCVD) of 2 polymer cladding choices. We study the effect of cross-linking on the optical properties of a polymer and establish the superior performance of the co-polymer cladding compared to the homo-polymer. Integration of polymer clad devices in an electronic-photonic architecture requires the possibility of multi-layer stacking capability. We use a low temperature, high density plasma chemical vapor deposition of SiO2/SiN x to hermetically seal the athermal. Further, we employ visible light for post-fabrication trimming of athermal rings by sandwiching a thin photosensitive layer of As2S3 in between amorphous Si core and polymer top cladding. System design of an add-drop filter requires an optimum combination of channel counts performance and power handling capacity for maximum aggregate bandwidth. We establish the superior performance of athermal add-drop filter compared to a standard filter treating bandwidth as the figure-of-merit. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  13. High temperature electrical conductivity of rigid polyurethane foam

    NASA Astrophysics Data System (ADS)

    Johnson, R. T., Jr.

    1984-03-01

    The temperature dependence of the electrical conductivity of three rigid polyurethane foams prepared using different formulations was measured to approx. 320 C. The materials exhibit similar conductivity characteristics, showing a pronounced increase in conductivity with increasing temperature. The insulating characteristics to approx. 200 C are better than that for phenolic materials (glass fabric reinforced), and are similar to those for silicone materials (glass microsphere reinforced). At higher temperatures (500 to 600 C), the phenolics and silicones are better insulators.

  14. ELECTRON-CAPTURE AND β-DECAY RATES FOR sd-SHELL NUCLEI IN STELLAR ENVIRONMENTS RELEVANT TO HIGH-DENSITY O–NE–MG CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Toshio; Toki, Hiroshi; Nomoto, Ken’ichi, E-mail: suzuki@phys.chs.nihon-u.ac.jp

    Electron-capture and β-decay rates for nuclear pairs in the sd-shell are evaluated at high densities and high temperatures relevant to the final evolution of electron-degenerate O–Ne–Mg cores of stars with initial masses of 8–10 M{sub ⊙}. Electron capture induces a rapid contraction of the electron-degenerate O–Ne–Mg core. The outcome of rapid contraction depends on the evolutionary changes in the central density and temperature, which are determined by the competing processes of contraction, cooling, and heating. The fate of the stars is determined by these competitions, whether they end up with electron-capture supernovae or Fe core-collapse supernovae. Since the competing processes aremore » induced by electron capture and β-decay, the accurate weak rates are crucially important. The rates are obtained for pairs with A = 20, 23, 24, 25, and 27 by shell-model calculations in the sd-shell with the USDB Hamiltonian. Effects of Coulomb corrections on the rates are evaluated. The rates for pairs with A = 23 and 25 are important for nuclear Urca processes that determine the cooling rate of the O–Ne–Mg core, while those for pairs with A = 20 and 24 are important for the core contraction and heat generation rates in the core. We provide these nuclear rates at stellar environments in tables with fine enough meshes at various densities and temperatures for studies of astrophysical processes sensitive to the rates. In particular, the accurate rate tables are crucially important for the final fates of not only O–Ne–Mg cores but also a wider range of stars, such as C–O cores of lower-mass stars.« less

  15. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures

    NASA Astrophysics Data System (ADS)

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-01

    Silver-doped LaFeO3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  16. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures.

    PubMed

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-06

    Silver-doped LaFeO 3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  17. The influence of multiple firing on thermal contraction of ceramic materials used for the fabrication of layered all-ceramic dental restorations.

    PubMed

    Isgrò, Giuseppe; Kleverlaan, Cornelis J; Wang, Hang; Feilzer, Albert J

    2005-06-01

    During the production of layered all-ceramic restorations transient and/or residual thermal stresses may be formed which may affect a restoration's longevity. The aim of this study was to evaluate the influence of multiple firings on the thermal behavior of veneering porcelains and a ceramic core. The materials tested were: Empress 2 Core, Empress 2 Veneer and Eris glass-ceramics, Carrara Vincent and an experimental leucite-based veneering porcelain, Vitadur-Alpha aluminous porcelain, and two porcelains designed for titanium (i.e. Duceratin Dentine and Enamel). The thermal contraction coefficient of the materials was measured by means of dilatometery. The thermal contraction coefficient was measured during cooling and calculated over the temperature range of 450-20 degrees C by linear regression. One and two-way analysis of variance together with Tukey post-hoc tests were used as statistical analysis. Repeated firing affects the thermal contraction coefficients of Empress 2 Veneer, Carrara Vincent porcelain and the experimental porcelain. The thermal contraction coefficients of Empress 2 Core were significantly different from Vitadur-Alpha, Carrara Vincent, experimental porcelain, and Duceratin porcelains. The contraction coefficients of Empress 2 Veneer and Eris were closest to that of Empress 2 Core. The Empress 2 Core and Eris glass-ceramics, the aluminous porcelain and Duceratin porcelains showed better thermal stability after repeated firing than leucite porcelains. It can be concluded that due to the thermal stability of glass-ceramic materials, layered all-ceramic restorations of these materials may perform better.

  18. Triple-Stimuli-Responsive Ferrocene-Containing PEGs in Water and on the Surface.

    PubMed

    Alkan, Arda; Steinmetz, Christian; Landfester, Katharina; Wurm, Frederik R

    2015-12-02

    Triple-stimuli-responsive PEG-based materials are prepared by living anionic ring-opening copolymerization of ethylene oxide and vinyl ferrocenyl glycidyl ether and subsequent thiol-ene postpolymerization modification with cysteamine. The hydrophilicity of these materials can be tuned by three stimuli: (i) temperature (depending on the comonomer ratio), (ii) oxidation state of iron centers in the ferrocene moieties, and (iii) pH-value (through amino groups), both in aqueous solution and at the interface after covalent attachment to a glass surface. In such materials, the cloud point temperatures are adjustable in solution by changing oxidation state and/or pH. On the surface, the contact angle increases with increasing pH and temperature and after oxidation, making these smart surfaces interesting for catalytic applications. Also, their redox response can be switched by temperature and pH, making this material useful for catalysis and electrochemistry applications. Exemplarily, the temperature-dependent catalysis of the chemiluminescence of luminol (a typical blood analysis tool in forensics) was investigated with these polymers.

  19. Photothermal heating as a methodology for post processing of polymeric nanofibers

    NASA Astrophysics Data System (ADS)

    Gorga, Russell; Clarke, Laura; Bochinski, Jason; Viswanath, Vidya; Maity, Somsubhra; Dong, Ju; Firestone, Gabriel

    2015-03-01

    Metal nanoparticles embedded within polymeric systems can be made to act as localized heat sources thereby aiding in-situ polymer processing. This is made possible by the surface plasmon resonance (SPR) mediated photothermal effect of metal (in this case gold) nanoparticles, wherein incident light absorbed by the nanoparticle generates a non-equilibrium electron distribution which subsequently transfers this energy into the surrounding medium, resulting in a temperature increase in the immediate region around the particle. Here we demonstrate this effect in polymer nanocomposite systems, specifically electrospun polyethylene oxide nanofibrous mats, which have been annealed at temperatures above the glass transition. A non-contact temperature measurement technique utilizing embedded fluorophores (perylene) has been used to monitor the average temperature within samples. The effect of annealing methods (conventional and photothermal) and annealing conditions (temperature and time) on the fiber morphology, overall crystallinity, and mechanical properties is discussed. This methodology is further utilized in core-sheath nanofibers to crosslink the core material, which is a pre-cured epoxy thermoset. NSF Grant CMMI-1069108.

  20. Size-controlled, magnetic, and core-shell nanoparticles synthesized by inert-gas condensation

    NASA Astrophysics Data System (ADS)

    Koten, Mark A.

    Interest in nanoparticles (2 to 100 nm in diameter) and clusters of atoms (0.5 to 2 nm in diameter) has heightened over the past two and a half decades on both fundamental and functional levels. Nanoparticles and clusters of atoms are an exciting branch of materials science because they do not behave like normal bulk matter, nor do they act like molecules. They can have shockingly different physical, chemical, optical, or magnetic properties from the same material at a larger scale. In the case of nanoparticles, the surface-to-volume ratio can change fundamental properties like melting temperature, binding energy, or electron affinity. The definitions of markers used to distinguish between metallic, semiconducting, and insulating bulk condensed matter, such as the band gap and polarizability, can even be blurred or confused on the nanoscale. Similarly, clusters of atoms can form in structures that are only stable at finite sizes, and do not translate to bulk condensed matter. Thermodynamics of finite systems changes dramatically in nanovolumes such as wires, rods, cubes, and spheres, which can lead to complex core-shell and onion-like nanostructures. Consequently, these changes in properties and structure have led to many new possibilities in the field of materials engineering. Inert-gas condensation (IGC) is a well-established method of producing nanoparticles that condense from the gas phase. Its first use dates back to the early 1990s, and it has been used to fabricate nanoparticles both commercially and in research and development for applications in magnetism, biomedicine, and catalysts. In this dissertation, IGC was used to produce a wide variety of nanoparticles. First, control over the size distributions of Cu nanoparticles and how it relates to the plasma properties inside the nucleation chamber was investigated. Next, the formation of phase pure WFe2 nanoparticles revealed that this Laves phase is ferromagnetic instead of non-magnetic. Finally, core-shell nanoparticles were produced using three thermodynamically different systems, which showed that IGC could be used to produce a wide variety of core-shell particles. These three projects are presented in the context of size-dependent structural and magnetic properties.

  1. Temperature-Robust Neural Function from Activity-Dependent Ion Channel Regulation.

    PubMed

    O'Leary, Timothy; Marder, Eve

    2016-11-07

    Many species of cold-blooded animals experience substantial and rapid fluctuations in body temperature. Because biological processes are differentially temperature dependent, it is difficult to understand how physiological processes in such animals can be temperature robust [1-8]. Experiments have shown that core neural circuits, such as the pyloric circuit of the crab stomatogastric ganglion (STG), exhibit robust neural activity in spite of large (20°C) temperature fluctuations [3, 5, 7, 8]. This robustness is surprising because (1) each neuron has many different kinds of ion channels with different temperature dependencies (Q 10 s) that interact in a highly nonlinear way to produce firing patterns and (2) across animals there is substantial variability in conductance densities that nonetheless produce almost identical firing properties. The high variability in conductance densities in these neurons [9, 10] appears to contradict the possibility that robustness is achieved through precise tuning of key temperature-dependent processes. In this paper, we develop a theoretical explanation for how temperature robustness can emerge from a simple regulatory control mechanism that is compatible with highly variable conductance densities [11-13]. The resulting model suggests a general mechanism for how nervous systems and excitable tissues can exploit degenerate relationships among temperature-sensitive processes to achieve robust function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Temperature dependent absorption measurement of various transition metal doped laser materials

    NASA Astrophysics Data System (ADS)

    Horackova, Lucie; Šulc, Jan; Jelinkova, Helena; Jambunathan, Venkatesan; Lucianetti, Antonio; Mocek, Tomás.

    2015-05-01

    In recent years, there has been a vast development of high energy class lasers of the order of 100 J to kJ level which have potential applications in the field of science and technology. Many such systems use the gain media cooled at cryogenic temperatures which will help in enhancing the spectroscopic and thermo-optical properties. Nevertheless, parasitic effects like amplified spontaneous emission enhance and affect the overall efficiency. The best way to suppress this effect is to use cladding element attached to the gain material. Based on these facts, this work was focused on the systematic investigation of temperature dependent absorption of several materials doped with transition metals, which can be used as cladding, as laser gain material, or as passive Q-switching element. The Ti:sapphire, Cr:YAG, V:YAG, and Co:MALO samples were measured in temperature range from 80 K to 330 K by step of 50 K. Using Beer-Lambert law we estimated the absorption coefficient of these materials.

  3. Direct correlations of structural and optical properties of three-dimensional GaN/InGaN core/shell micro-light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas

    2016-05-01

    Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).

  4. Towards magnetic sounding of the Earth's core by an adjoint method

    NASA Astrophysics Data System (ADS)

    Li, K.; Jackson, A.; Livermore, P. W.

    2013-12-01

    Earth's magnetic field is generated and sustained by the so called geodynamo system in the core. Measurements of the geomagnetic field taken at the surface, downwards continued through the electrically insulating mantle to the core-mantle boundary (CMB), provide important constraints on the time evolution of the velocity, magnetic field and temperature anomaly in the fluid outer core. The aim of any study in data assimilation applied to the Earth's core is to produce a time-dependent model consistent with these observations [1]. Snapshots of these ``tuned" models provide a window through which the inner workings of the Earth's core, usually hidden from view, can be probed. We apply a variational data assimilation framework to an inertia-free magnetohydrodynamic system (MHD) [2]. Such a model is close to magnetostrophic balance [3], to which we have added viscosity to the dominant forces of Coriolis, pressure, Lorentz and buoyancy, believed to be a good approximation of the Earth's dynamo in the convective time scale. We chose to study the MHD system driven by a static temperature anomaly to mimic the actual inner working of Earth's dynamo system, avoiding at this stage the further complication of solving for the time dependent temperature field. At the heart of the models is a time-dependent magnetic field to which the core-flow is enslaved. In previous work we laid the foundation of the adjoint methodology, applied to a subset of the full equations [4]. As an intermediate step towards our ultimate vision of applying the techniques to a fully dynamic mode of the Earth's core tuned to geomagnetic observations, we present the intermediate step of applying the adjoint technique to the inertia-free Navier-Stokes equation in continuous form. We use synthetic observations derived from evolving a geophysically-reasonable magnetic field profile as the initial condition of our MHD system. Based on our study, we also propose several different strategies for accurately determining the entire trajectory of Earth's geodynamo system. [1] A. Fournier, G. Hulot, D. Jault, W. Kuang, A. Tangborn, N. Gillet, E. Canet, J. Aubert, and F. Lhuillier. An introduction to data assimilation and predictability in geomagnetism. Space. Sci. Rev., 155:247-291, 2010. [2] G. A. Glatzmaier and P. H. Roberts. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Inter., 91:63-75, 1995. [3] J. B. Taylor. The magneto-hydrodynamics of a rotating fluid and the earth's dynamo problem. Proc. R. Soc. Lond. A, 274(1357):274-283, 1963. [4] K. Li, A. Jackson, and P. W. Livermore. Variational data assimilation for the initial value dynamo problem. Phys. Rev. E, 84:056321, 2011.

  5. Molecular dynamics study of thermodynamic scaling of the glass-transition dynamics in ionic liquids over wide temperature and pressure ranges.

    PubMed

    Habasaki, J; Casalini, R; Ngai, K L

    2010-03-25

    Experimentally, superpositioning of dynamic properties such as viscosity, relaxation times, or diffusion coefficients under different conditions of temperature T, pressure P, and volume V by the scaling variable TV(gamma) (where gamma is a material constant) has been reported as a general feature of many kinds of glass-forming materials. In the present work, molecular dynamics (MD) simulations have been performed to study the scaling of dynamics near the glass-transition regime of ionic liquids. Scaling in the simulated 1-ethyl-3-methylimidazolium nitrate (EMIM-NO(3)) system has been tested over wide ranges of temperatures and pressures. TV(gamma) scaling of the dynamics is well described by master curves with gamma = 4.0 +/- 0.2 and 3.8 +/- 0.2 for cation and anion, respectively. Structures and Coulombic terms of the corresponding states are found to be quite similar. The temperature and pressure dependence of the pair correlation function show similar trends and therefore can be superpositioned onto the master curve. Although the behaviors with gamma = 4 might be expected from the relation, gamma = n/3, for the dynamics with the soft-core-type potential U = epsilon(sigma/r)(n), with n = 12, pair potentials used in the MD simulation have a more complex form, and not all the repulsive terms can play their roles in the heterogeneous structures determined by ion-ion interactions. Scaling is related to the common part of effective potentials related to the pair correlation functions, including the many-body effect in real space.

  6. Fiber optic strain measurements using an optically-active polymer

    NASA Astrophysics Data System (ADS)

    Buckley, Leonard J.; Neumeister, Gary C.

    1992-03-01

    A study encompassing the use of an optically-active polymer as the strain-sensing medium in an organic matrix composite was performed. Several compounds were synthesized for use as the inner cladding material for silica fiber-optic cores. These materials include a diacetylene containing polyamide. It is possible to dynamically modify the optical properties of these materials through changes in applied strain or temperature. By doing so the characteristic absorption in the visible is reversibly shifted to a higher energy state. The polymer-coated fiber-optic cores were initially studied in epoxy resin. Additionally, one of the polyamide/diacetylene polymers was studied in a spin-fiber form consisting of 15 micron filaments assembled in multifilament tows. The most promising configuration and materials were then investigated further by embedding in graphite/epoxy composite laminates. In each case the shift in the visible absorption peak was monitored as a function of applied mechanical strain.

  7. From the molecular structure to spectroscopic and material properties: computational investigation of a bent-core nematic liquid crystal.

    PubMed

    Greco, Cristina; Marini, Alberto; Frezza, Elisa; Ferrarini, Alberta

    2014-05-19

    We present a computational investigation of the nematic phase of the bent-core liquid crystal A131. We use an integrated approach that bridges density functional theory calculations of molecular geometry and torsional potentials to elastic properties through the molecular conformational and orientational distribution function. This unique capability to simultaneously access different length scales enables us to consistently describe molecular and material properties. We can reassign (13)C NMR chemical shifts and analyze the dependence of phase properties on molecular shape. Focusing on the elastic constants we can draw some general conclusions on the unconventional behavior of bent-core nematics and highlight the crucial role of a properly-bent shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Single-wall nanohorn structure and distribution of incorporated materials

    NASA Astrophysics Data System (ADS)

    Maigne, Alan; Gloter, Alexandre; Ajima, Kumiko; Colliex, Christian; Iijima, Sumio

    2005-03-01

    Single-wall carbon nanohorns (SWNHs) are unique spherical-aggregates of single-wall carbon quasi-nanotubes. So far, the observable area has been limited to the aggregate surfaces. We studied core-region structure with TEM using thickness measurement method, EELS, and EDS, and found that carbon density was uniform over the whole aggregate. This result allows to modelize the core-region and to clarify previous models of SWNHs. We used same tools to investigate the incorporation of materials such as fullerenes or platinium compounds. We found that particles can even be incorporated in the core-region and that their distribution in the aggregate depends on their concentration. The information available with these models should be useful in the study of SWNH applications to, for example, drug delivery system.

  9. High temperature electrical resistivity and Seebeck coefficient of Ge2Sb2Te5 thin films

    NASA Astrophysics Data System (ADS)

    Adnane, L.; Dirisaglik, F.; Cywar, A.; Cil, K.; Zhu, Y.; Lam, C.; Anwar, A. F. M.; Gokirmak, A.; Silva, H.

    2017-09-01

    High-temperature characterization of the thermoelectric properties of chalcogenide Ge2Sb2Te5 (GST) is critical for phase change memory devices, which utilize self-heating to quickly switch between amorphous and crystalline states and experience significant thermoelectric effects. In this work, the electrical resistivity and Seebeck coefficient are measured simultaneously as a function of temperature, from room temperature to 600 °C, on 50 nm and 200 nm GST thin films deposited on silicon dioxide. Multiple heating and cooling cycles with increasingly maximum temperature allow temperature-dependent characterization of the material at each crystalline state; this is in contrast to continuous measurements which return the combined effects of the temperature dependence and changes in the material. The results show p-type conduction (S > 0), linear S(T), and a positive Thomson coefficient (dS/dT) up to melting temperature. The results also reveal an interesting linearity between dS/dT and the conduction activation energy for mixed amorphous-fcc GST, which can be used to estimate one parameter from the other. A percolation model, together with effective medium theory, is adopted to correlate the conductivity of the material with average grain sizes obtained from XRD measurements. XRD diffraction measurements show plane-dependent thermal expansion for the cubic and hexagonal phases.

  10. Screening and transport in 2D semiconductor systems at low temperatures

    PubMed Central

    Das Sarma, S.; Hwang, E. H.

    2015-01-01

    Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738

  11. Partitioning of Oxygen During Core Formation on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Rubie, D. C.; Gessmann, C. K.; Frost, D. J.

    2003-12-01

    Core formation on Earth and Mars involved the physical separation of Fe-Ni metal alloy from silicate, most likely in deep magma oceans. Although core-formation models explain many aspects of mantle geochemistry, they do not account for large differences between the compositions of the mantles of Earth ( ˜8 wt% FeO) and Mars ( ˜18 wt% FeO) or the much smaller mass fraction of the Martian core. Here we explain these differences using new experimental results on the solubility of oxygen in liquid Fe-Ni alloy, which we have determined at 5-23 GPa, 2100-2700 K and variable oxygen fugacities using a multianvil apparatus. Oxygen solubility increases with increasing temperature and oxygen fugacity and decreases with increasing pressure. Thus, along a high temperature adiabat (e.g. after formation of a deep magma ocean on Earth), oxygen solubility is high at depths up to about 2000 km but decreases strongly at greater depths where the effect of high pressure dominates. For modeling oxygen partitioning during core formation, we assume that Earth and Mars both accreted from oxidized chondritic material with a silicate fraction initially containing around 18 wt% FeO. In a terrestrial magma ocean, 1200-2000 km deep, high temperatures resulted in the extraction of FeO from the silicate magma ocean, due to the high solubility of oxygen in the segregating metal, leaving the mantle with its present FeO content of ˜8 wt%. Lower temperatures of a Martian magma ocean resulted in little or no extraction of FeO from the mantle, which thus remained unchanged at about 18 wt%. The mass fractions of segregated metal are consistent with the mass fraction of the Martian core being small relative to that of the Earth. FeO extracted from the Earth's magma ocean by segregating core-forming liquid may have contributed to chemical heterogeneities in the lowermost mantle, a FeO-rich D'' layer and the light element budget of the core.

  12. Temperature-dependent elasticity of Pb [(Mg0.33Nb0.67 ) 1 -xT ix ] O3

    NASA Astrophysics Data System (ADS)

    Tennakoon, Sumudu; Gladden, Joseph; Mookherjee, Mainak; Besara, Tiglet; Siegrist, Theo

    2017-10-01

    Relaxor ferroelectric materials, such as Pb [(Mg0.33Nb0.67 ) 1 -xT ix ] O3 (PMN-PT) with generic stoichiometry, undergo a ferroelectric-to-paraelectric phase transition as a function of temperature. The exact transition characterized by Curie temperature (Tc) varies as a function of chemistry (x ), i.e., the concentration of Ti. In this study, we investigated the structural phase transition by exploring the temperature dependence of the single-crystal elastic properties of Pb [(Mg0.33Nb0.67 ) 0.7T i0.3 ] O3 , i.e., x ≈0.3 . We used resonant ultrasound spectroscopy to determine the elasticity at elevated temperatures, from which Tc=398 ±5 K for PMN-PT (x ≈0.3 ) was determined. We report the full elastic constant tensor (Ci j={ C11,C12,C44 }), acoustic attenuation (Q-1), longitudinal (VP) and shear (VS) sound velocities, and elastic anisotropy of PMN-PT as a function of temperature for 400 Tc the material first stiffens and reaches maxima in the vicinity of the Burns temperature (Tb˜673 K ), followed by a more typical gradual softening of the elastic constants. Similar temperature-dependent anomalies are also observed with anisotropy and Q-1, with minima in the vicinity of Tb. We used the temperature dependence of Ci j, Q-1, VP,VS , and anisotropy to infer the evolution of polar nanoregions as the material evolved from T >Tc .

  13. The temperature dependence of ponded infiltration under isothermal conditions

    USGS Publications Warehouse

    Constantz, J.; Murphy, F.

    1991-01-01

    A simple temperature-sensitive modification to the Green and Ampt infiltration equation is described; this assumes that the temperature dependence of the hydraulic conductivity is reciprocally equal to the temperature dependence of the viscosity of liquid water, and that both the transmission zone saturation and the wetting front matric potential gradient are independent of temperature. This modified Green and Ampt equation is compared with ponded, isothermal infiltration experiments run on repacked columns of Olympic Sand and Aiken Loam at 5, 25, and 60??C. Experimental results showed increases in infiltration rates of at least 300% between 5 and 60??C for both soil materials, with subsequent increases in cumulative infiltration of even greater magnitudes for the loam. There is good agreement between measured and predicted initial infiltration rates at 25??C for both soil materials, yet at 60??C, the predicted results overestimate initial infiltration rates for the sand and underestimate initial rates for the loam. Measurements of the wetting depth vs. cumulative infiltration indicate that the transmission zone saturation increased with increasing temperature for both soil materials. In spite of this increased saturation with temperature, the final infiltration rates at both 25 and 60??C were predicted accurately using the modified Green and Ampt equation. This suggests that increased saturation occurred primarily in dead-end pore spaces, so that transmission zone hydraulic conductivities were unaffected by these temperature-induced changes in saturation. In conclusion, except for initial infiltration rates at 60??C, the measured influence of temperature on infiltration rates was fully accounted for by the temperature dependence of the viscosity of liquid water. ?? 1991.

  14. A History of Warming Sea Surface Temperature and Ocean Acidification Recorded by Planktonic Foraminifera Geochemistry from the Santa Barbara Basin, California

    NASA Astrophysics Data System (ADS)

    Osborne, E.; Thunell, R.; Bizimis, M.; Buckley, W. P., Jr.; benitez-Nelson, C. R.; Chartier, C. J.

    2015-12-01

    The geochemistry of foraminiferal shells has been widely used to reconstruct past conditions of the ocean and climate. Since the onset of the Industrial Revolution, anthropogenically produced CO2 has resulted in an increase in global temperatures and a decline in the mean pH of the world's oceans. The California Current System is a particularly susceptible region to ocean acidification due to natural upwelling processes that also cause a reduction in seawater pH. The trace element concentration of magnesium and boron in planktonic foraminiferal shells are used here as proxies for temperature and carbonate ion concentration ([CO32-]), respectively. Newly developed calibrations relating Mg/Ca ratios to temperature (R2 0.91) and B/Ca ratios to [CO32-] (R2 0.84) for the surface-mixed layer species Globogerina bulloides were generated using material collected in the Santa Barbara Basin sediment trap time-series. Using these empirical relationships, temperature and [CO32-] are reconstructed using a 0.5 meter long multi-core collected within the basin. 210Pb activities were used to determine a sedimentation rate for the core to estimate ages for core samples (sedimentation rate: 0.341 cm/yr). A spike in 137Cs activity is used as a tie-point to the year 1965 coinciding with the peak of nuclear bomb testing. Our down-core record extends through the mid-19th century to create a history of rising sea surface temperatures and declining [CO32-] as a result of anthropogenic CO2 emissions.

  15. 3-D Modeling of Directional Solidification of a Non-Dilute Alloy with Temperature and Concentration Fields Coupling via Materials Properties Dependence and via Double Diffusive Convection

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1998-01-01

    Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.

  16. Crustal Cooling in the Neutron Star Low-Mass X-Ray Binary KS 1731-260

    NASA Astrophysics Data System (ADS)

    Merritt, Rachael L.

    Neutron stars in binary systems can undergo periods of accretion (outburst), where in- falling material heats the crust of the star out of thermal equilibrium with the core. When accretion stops (quiescence), we can directly observe the thermal relaxation of the crust. Crustal cooling of accretion-heated neutron stars provides insight into the stellar interior of neutron stars. The neutron star X-ray transient, KS 1731-260, was in outburst for 12.5 years before returning to quiescence in 2001. Here, we present a 150 ks Chandra observation of KS 1731-260 taken in August 2015, about 14.5 years into quiescence. We find that the neutron star surface temperature is consistent with the previous observation, suggesting the crust has reached thermal equilibrium with the core. Using a theoretical thermal evolution code, we fit the observed cooling curves and constrain the core temperature, composition, and the required level of extra shallow heating.

  17. To Demonstrate an Integrated Solution for Plasma-Material Interfaces Compatible with an Optimized Core Plasma

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Brooks, Jeffrey; Hubbard, Amanda; Leonard, Anthony; Lipschultz, Bruce; Maingi, Rajesh; Ulrickson, Michael; Whyte, Dennis

    2009-11-01

    The plasma facing components in a Demo reactor will face much more extreme boundary plasma conditions and operating requirements than any present or planned experiment. These include 1) Power density a factor of four or more greater than in ITER, 2) Continuous operation resulting in annual energy and particle throughput 100-200 times larger than ITER, 3) Elevated surface operating temperature for efficient electricity production, 4) Tritium fuel cycle control for safety and breeding requirements, and 5) Steady state plasma confinement and control. Consistent with ReNeW Thrust 12, design options are being explored for a new moderate-scale facility to assess core-edge interaction issues and solutions. Key desired features include high power density, sufficient pulse length and duty cycle, elevated wall temperature, steady-state control of an optimized core plasma, and flexibility in changing boundary components as well as access for comprehensive measurements.

  18. Temperature-dependent dynamical transitions of different classes of amino acid residue in a globular protein.

    PubMed

    Miao, Yinglong; Yi, Zheng; Glass, Dennis C; Hong, Liang; Tyagi, Madhusudan; Baudry, Jerome; Jain, Nitin; Smith, Jeremy C

    2012-12-05

    The temperature dependences of the nanosecond dynamics of different chemical classes of amino acid residue have been analyzed by combining elastic incoherent neutron scattering experiments with molecular dynamics simulations on cytochrome P450cam. At T = 100-160 K, anharmonic motion in hydrophobic and aromatic residues is activated, whereas hydrophilic residue motions are suppressed because of hydrogen-bonding interactions. In contrast, at T = 180-220 K, water-activated jumps of hydrophilic side chains, which are strongly coupled to the relaxation rates of the hydrogen bonds they form with hydration water, become apparent. Thus, with increasing temperature, first the hydrophobic core awakens, followed by the hydrophilic surface.

  19. Advanced Concepts for Pressure-Channel Reactors: Modularity, Performance and Safety

    NASA Astrophysics Data System (ADS)

    Duffey, Romney B.; Pioro, Igor L.; Kuran, Sermet

    Based on an analysis of the development of advanced concepts for pressure-tube reactor technology, we adapt and adopt the pressure-tube reactor advantage of modularity, so that the subdivided core has the potential for optimization of the core, safety, fuel cycle and thermal performance independently, while retaining passive safety features. In addition, by adopting supercritical water-cooling, the logical developments from existing supercritical turbine technology and “steam” systems can be utilized. Supercritical and ultra-supercritical boilers and turbines have been operating for some time in coal-fired power plants. Using coolant outlet temperatures of about 625°C achieves operating plant thermal efficiencies in the order of 45-48%, using a direct turbine cycle. In addition, by using reheat channels, the plant has the potential to produce low-cost process heat, in amounts that are customer and market dependent. The use of reheat systems further increases the overall thermal efficiency to 55% and beyond. With the flexibility of a range of plant sizes suitable for both small (400 MWe) and large (1400 MWe) electric grids, and the ability for co-generation of electric power, process heat, and hydrogen, the concept is competitive. The choice of core power, reheat channel number and exit temperature are all set by customer and materials requirements. The pressure channel is a key technology that is needed to make use of supercritical water (SCW) in CANDU®1 reactors feasible. By optimizing the fuel bundle and fuel channel, convection and conduction assure heat removal using passive-moderator cooling. Potential for severe core damage can be almost eliminated, even without the necessity of activating the emergency-cooling systems. The small size of containment structure lends itself to a small footprint, impacts economics and building techniques. Design features related to Canadian concepts are discussed in this paper. The main conclusion is that development of SCW pressure-channel nuclear reactors is feasible and significant benefits can be expected over other thermal-energy systems.

  20. Spacecraft Charging in Low Temperature Environments

    NASA Technical Reports Server (NTRS)

    Parker, Linda N.

    2007-01-01

    Spacecraft charging in plasma and radiation environments is a temperature dependent phenomenon due to the reduction of electrical conductivity in dielectric materials at low temperatures. Charging time constants are proportional to l/conductivity may become very large (on the order of days to years) at low temperatures and accumulation of charge densities in insulators in charging environments traditionally considered benign at ambient temperatures may be sufficient to produce charge densities and electric fields of concern in insulators at low temperatures. Low temperature charging is of interest because a number of spacecraft-primarily infrared astronomy and microwave cosmology observatories-are currently being design, built, and or operated at very cold temperatures on the order of 40K to 100K. This paper reviews the temperature dependence of spacecraft charging processes and material parameters important to charging as a function of temperature with an emphasis on low temperatures regimes.

  1. Development of lightweight graphite/polyimide sandwich panels.

    NASA Technical Reports Server (NTRS)

    Poesch, J. G.

    1972-01-01

    Lightweight graphite/polyimide composite honeycomb core and sandwich panels were fabricated and tested. Honeycomb cores of 1/4-in. and 3/8-in. cell sizes of hexagonal configuration were produced from thin plus or minus 45 deg cross plied sheets of prepreg producing core weights between 1.8 and 3.6 lb/cu ft. Thin gauge prepreg using Hercules graphite tow and Monsanto Skybond 710 polyimide resin were manufactured to produce cured ply thicknesses of 0.001 to 0.002 in. Graphite core properties measured at temperatures from -150 to 600 F are reported. Core properties which are superior to available materials were obtained. Sandwich panels weighing less than 0.5 lb/sq ft were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.

  2. Emission Characteristics of InGaN/GaN Core-Shell Nanorods Embedded in a 3D Light-Emitting Diode.

    PubMed

    Jung, Byung Oh; Bae, Si-Young; Lee, Seunga; Kim, Sang Yun; Lee, Jeong Yong; Honda, Yoshio; Amano, Hiroshi

    2016-12-01

    We report the selective-area growth of a gallium nitride (GaN)-nanorod-based InGaN/GaN multiple-quantum-well (MQW) core-shell structure embedded in a three-dimensional (3D) light-emitting diode (LED) grown by metalorganic chemical vapor deposition (MOCVD) and its optical analysis. High-resolution transmission electron microscopy (HR-TEM) observation revealed the high quality of the GaN nanorods and the position dependence of the structural properties of the InGaN/GaN MQWs on multiple facets. The excitation and temperature dependences of photoluminescence (PL) revealed the m-plane emission behaviors of the InGaN/GaN core-shell nanorods. The electroluminescence (EL) of the InGaN/GaN core-shell-nanorod-embedded 3D LED changed color from green to blue with increasing injection current. This phenomenon was mainly due to the energy gradient and deep localization of the indium in the selectively grown InGaN/GaN core-shell MQWs on the 3D architecture.

  3. [Shock absorption of mouthguard materials--influence of temperature conditions and shore hardness on shock absorption].

    PubMed

    Tomita, Takashi; Tsukimura, Naoki; Ohno, Shigeru; Umekawa, Yoshitada; Sawano, Muneyuki; Fujimoto, Toshiki; Takamura, Masaaki; Majima, Aiko; Katakura, Yuusuke; Kurata, Akemi; Ohyama, Tetsuo; Ishigami, Tomohiko

    2006-04-01

    To consider changes in the physical properties of mouthguard materials with the change of temperature, shock-absorbing examination and Shore hardness measurement of existing MG materials and other elastic materials were carried out. Both examinations were done under two temperature conditions: at room temperature (25 degrees C) and simulated intraoral temperature (37 degrees C). In addition, a comparative study of the relation between Shore hardness and shock absorption of the materials was made. A self-made drop impact machine was used for the shock-absorbing examination. The thickness of a sample was assumed to be 3 mm. The loading was applied by dropping 3 kinds of steel ball, phi 10 mm (4.0 g), phi 15 mm (13.7 g), and phi 20 mm (32.6 g) from a height of 60 cm. The shock absorption of all materials was compared by the maximum impact force. Shore hardness was measured based on the JIS standard. The shock absorption of each material showed a different tendency depending on the loading condition. Furthermore, the shock absorption of the same material showed different results depending on the temperature condition. Shore hardness measurements tended to show low values with the condition of 37 degrees C for all materials. From the relation between shock absorption and Shore hardness, it was confirmed that there is a correlation between hardness and the maximum impact force in the materials that showed shock absorption by elastic deformation. Some materials showed high shock absorption compared with existing MG materials.

  4. Eutectic melting temperature of the lowermost Earth's mantle

    NASA Astrophysics Data System (ADS)

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.

    2009-12-01

    Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings, and changes in the relation between sample-temperature and laser-power. In this work, we show that temperatures higher than 4000 K are necessary for melting mean mantle at the 135 GPa pressure found at the core mantle boundary (CMB). Such temperature is much higher than that from estimated actual geotherms. Therefore, melting at the CMB can only occur if (i) pyrolitic mantle resides for a very long time in contact with the outer core, (ii) the mantle composition is severely affected by additional elements depressing the solidus such as water or (iii) the temperature gradient in the D" region is amazingly steep. Other implications for the temperature state and the lower mantle properties will be presented. References (1) Ito et al., Phys. Earth Planet. Int., 143-144, 397-406, 2004 (2) Ohtani et al., Phys. Earth Planet. Int., 100, 97-114, 1997 (3) Zerr et al., Science, 281, 243-246, 1998 (4) Holland and Ahrens, Science, 275, 1623-1625, 1997 (5) Schultz et al., High Press. Res., 25, 1, 71-83, 2005.

  5. Design and testing of a self-actuated shut down system for the protection of liquid metal fast breeder reactors (LMFBRs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, J.; Sowa, E.S.

    1977-04-01

    The design and testing of a simple and reliable Self-Actuated Shutdown System (SASS) for the protection of Liquid Metal Fast Breeder Reactors (LMFBRs) is described. A ferromagnetic Curie temperature permanent magnet holding device has been selected for the design of the Self-Actuated Shutdown System in order to enhance the safety of liquid metal cooled fast reactors (LMFBRs). The self-actuated, self-contained device operates such that accident conditions, resulting in increased coolant temperature or neutron flux reduce the magnetic holding force suspending a neutron absorber above the core by raising the temperature of the trigger mechanism above the Curie point. Neutron absorbermore » material is then inserted into the core, under gravity, terminating the accident. Two possible design variations of the selected concept are presented.« less

  6. Isotope heat source simulator for testing of space power systems

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Smith, R. B.

    1973-01-01

    A reliable isotope heat source simulator was designed for use in a Brayton power system. This simulator is composed of an electrically heated tungsten wire which is wound around a boron nitride core and enclosed in a graphite jacket. Simulator testing was performed at the expected operating temperature of the Brayton power system. Endurance testing for 5012 hours was followed by cycling the simulator temperature. The integrity of this simulator was maintained throughout testing. Alumina beads served as a diffusion barrier to prevent interaction between the tungsten heater and boron nitride core. The simulator was designed to maintain a surface temperature of 1311 to 1366 K (1900 to 2000 F) with a power input of approximately 400 watts. The design concept and the materials used in the simulator make possible man different geometries. This flexibility increases its potential use.

  7. Broadband-Emitting 2 D Hybrid Organic-Inorganic Perovskite Based on Cyclohexane-bis(methylamonium) Cation.

    PubMed

    Neogi, Ishita; Bruno, Annalisa; Bahulayan, Damodaran; Goh, Teck Wee; Ghosh, Biplab; Ganguly, Rakesh; Cortecchia, Daniele; Sum, Tze Chien; Soci, Cesare; Mathews, Nripan; Mhaisalkar, Subodh Gautam

    2017-10-09

    A new broadband-emitting 2 D hybrid organic-inorganic perovskite (CyBMA)PbBr 4 based on highly flexible cis-1,3-bis(methylaminohydrobromide)cyclohexane (CyBMABr) core has been designed, synthesized, and investigated, highlighting the effects of stereoisomerism of the templating cation on the formation and properties of the resulting perovskite. The new 2 D material has high exciton binding energy of 340 meV and a broad emission spanning from 380 to 750 nm, incorporating a prominent excitonic band and a less intense broad peak at room temperature. Significant changes in the photoluminescence (PL) spectrum were observed at lower temperatures, showing remarkable enhancement in the intensity of the broadband at the cost of excitonic emission. Temperature-dependent PL mapping indicates the effective role of only a narrow band of excitonic absorption in the generation of the active channel for emission. Based on the evidences obtained from the photophysical investigations, we attributed the evolution of the broad B-band of (CyBMA)PbBr 4 to excitonic self-trapped states. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  9. Thermodynamics of anisotropic antiferromagnetic Heisenberg chain in the presence of longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2018-07-01

    We have addressed the specific heat and magnetization of one dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain at finite magnetic field. We have investigated the thermodynamic properties by means of excitation spectrum in terms of a hard core Bosonic representation. The effect of in-plane anisotropy thermodynamic properties has also been studied via the Bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the specific heat and longitudinal magnetization in the gapped field induced spin-polarized phase for various magnetic fields and anisotropy parameters. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various anisotropy parameters. Our results show temperature dependence of specific heat includes a peak so that its temperature position goes to higher temperature with increase of magnetic field. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various magnetic fields due to increase of energy gap in the excitation spectrum. Also we have studied the temperature dependence of magnetization for different magnetic fields and various anisotropy parameters.

  10. HEATING 7. 1 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1991-07-01

    HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which maymore » be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  11. A new criterion for predicting rolling-element fatigue lives of through-hardened steels

    NASA Technical Reports Server (NTRS)

    Chevalier, J. L.; Zaretsky, E. V.; Parker, R. J.

    1972-01-01

    A carbide factor was derived based upon a statistical analysis which related rolling-element fatigue life to the total number of residual carbide particles per unit area, median residual carbide size, and percent residual carbide area. An equation was experimentally determined which predicts material hardness as a function of temperature. The limiting temperatures of all of the materials studied were dependent on initial room temperature hardness and tempering temperature. An equation was derived combining the effects of material hardness, carbide factor, and bearing temperature to predict rolling-element bearing life.

  12. Black GE based on crystalline/amorphous core/shell nanoneedle arrays

    DOEpatents

    Javey, Ali; Chueh, Yu-Lun; Fan, Zhiyong

    2014-03-04

    Direct growth of black Ge on low-temperature substrates, including plastics and rubber is reported. The material is based on highly dense, crystalline/amorphous core/shell Ge nanoneedle arrays with ultrasharp tips (.about.4 nm) enabled by the Ni catalyzed vapor-solid-solid growth process. Ge nanoneedle arrays exhibit remarkable optical properties. Specifically, minimal optical reflectance (<1%) is observed, even for high angles of incidence (.about.75.degree.) and for relatively short nanoneedle lengths (.about.1 .mu.m). Furthermore, the material exhibits high optical absorption efficiency with an effective band gap of .about.1 eV. The reported black Ge can have important practical implications for efficient photovoltaic and photodetector applications on nonconventional substrates.

  13. Bonding and Sealing Evaluations for Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1997-01-01

    Several different cryogenic tank concepts are being considered for reusable launch vehicles (RLV'S) . Though different tank concepts are being considered, many will require that the cryogenic insulation be evacuated and be bonded to a structure. In this work, an attempt was made to evaluate the effectiveness of maintaining a vacuum on a specimen where foam or honeycomb core was encased within Gr/Ep. In addition to these tests, flatwise adhesion pull off tests were performed at room temperature with PR 1664, EA 9394, FM-300, Crest 3170, and HT 435 adhesives. The materials bonded included Gr/Ep, Gr/BMI, Al, and stainless steel facesheets, and Ti honeycomb, Hexcel honeycomb, and Rohacell foam core materials.

  14. Effective surface Debye temperature for NiMnSb(100) epitaxial films

    NASA Astrophysics Data System (ADS)

    Borca, C. N.; Komesu, Takashi; Jeong, Hae-kyung; Dowben, P. A.; Ristoiu, D.; Hordequin, Ch.; Pierre, J.; Nozières, J. P.

    2000-07-01

    The surface Debye temperature of the NiMnSb (100) epitaxial films has been obtained using low energy electron diffraction, inverse photoemission, and core-level photoemission. The normal dynamic motion of the (100) surface results in a value for the effective surface Debye temperature of 145±13 K. This is far smaller than the bulk Debye temperature of 312±5 K obtained from wave vector dependent inelastic neutron scattering. The large difference between these measures of surface and bulk dynamic motion indicates a soft and compositionally different (100) surface.

  15. Core and shell size dependences on strain in core@shell Prussian blue analogue (PBA) nanoparticles and the effect on photomagnetism.

    NASA Astrophysics Data System (ADS)

    Cain, J. M.; Ferreira, C. F.; Felts, A. C.; Locicero, S. A.; Liang, J.; Talham, D. R.; Meisel, M. W.

    RbxCo[Fe(CN)6]y@Ka Ni[Cr(CN)6]b core@shell heterostructures have been shown to exhibit a photoinduced decrease in magnetization that persists up to the Tc = 70 K of the KNiCr-PBA component, which is not photoactive as a single-phase material. A magnetomechanical effect can explain how the strain in the shell evolves from thermal and photoinduced changes in the volume of the core. Moreover, a simple model has been used to estimate the depth of the strained region of the shell, but only one size of core (347 +/- 35 nm) has been studied. Since the strain depth in the shell is expected to be dependent on the size of the core, three distinct RbCoFe-PBA core sizes were synthesized, and on each, three different KNiCr-PBA shell thicknesses were grown. The magnetization of each core-shell combination was measured before and after irradiation with white light. Our results suggest the strain depth, as expected, increases from 56 nm in heterostructures with a core size of 328 +/- 29 nm to more than 90 nm in heterostructures with a core size of 575 +/- 113 nm. The data from the smallest core size also shows features indicating the model may be too simple. Supported by NSF DMR-1405439 (DRT) and DMR-1202033 (MWM).

  16. Using HT and DT gamma rays to diagnose mix in Omega capsule implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, M. J.; Herrmann, H. W.; Kim, Y. H.

    Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. Here, we propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method usesmore » a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT "clean" and DT "mix" gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. Furthermore, we observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λ ii~T 2/Z 2ρ at the gas/shell interface. Finally, since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.« less

  17. Using HT and DT gamma rays to diagnose mix in Omega capsule implosions

    DOE PAGES

    Schmitt, M. J.; Herrmann, H. W.; Kim, Y. H.; ...

    2016-05-26

    Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. Here, we propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method usesmore » a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT "clean" and DT "mix" gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. Furthermore, we observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λ ii~T 2/Z 2ρ at the gas/shell interface. Finally, since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.« less

  18. Using HT and DT gamma rays to diagnose mix in Omega capsule implosions

    NASA Astrophysics Data System (ADS)

    Schmitt, M. J.; Herrmann, H. W.; Kim, Y. H.; McEvoy, A. M.; Zylstra, A.; Hammel, B. A.; Sepke, S. M.; Leatherland, A.; Gales, S.

    2016-05-01

    Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. We propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method uses a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT “clean” and DT “mix” gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. An experiment to observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λii∼T2/Z2ρ at the gas/shell interface. Since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.

  19. Fabrication and ferromagnetism of Si-SiGe/MnGe core-shell nanopillars.

    PubMed

    Wang, Liming; Liu, Tao; Wang, Shuguang; Zhong, Zhenyang; Jia, Quanjie; Jiang, Zuimin

    2016-10-07

    Si-Si0.5Ge0.5/Mn0.08Ge0.92 core-shell nanopillar samples were fabricated on ordered Si nanopillar patterned substrates by molecular beam epitaxy at low temperatures. The magnetic properties of the samples are found to depend heavily on the growth temperature of the MnGe layer. The sample grown at a moderate temperature of 300 °C has the highest Curie temperature of 240 K as well as the strongest ferromagnetic signals. On the basis of the microstructural results, the ferromagnetic properties of the samples are believed to come from the intrinsic Mn-doped amorphous or crystalline Ge ferromagnetic phase rather than any intermetallic ferromagnetic compounds of Mn and Ge. After being annealed at a temperature of 500 °C, all the samples exhibit the same Curie temperature of 220 K, which is in sharp contrast to the different Curie temperature for the as-grown samples, and the ferromagnetism for the annealed samples comes from Mn5GeSi2 compounds which are formed during the annealing.

  20. Fabrication of fiber Bragg gratings in embedded-core hollow optical fiber

    NASA Astrophysics Data System (ADS)

    Mao, Guopei; Sun, Bo; Yuan, Tingting; Zhong, Xing; Shi, Jinhui; Guan, Chunying; Yuan, Libo

    2015-07-01

    A novel Bragg fiber grating (FBG) in an embedded-core hollow optical fiber (ECHOF) has been proposed and experimentally demonstrated. The high-quality FBG fabricated with phase-mask technique by using 248 nm ultraviolet laser, has a resonant wavelength of ~943.1 nm and a dip of ~24.2 dB. Subsequently, the dependences of the resonant peak on the temperature and the axial strain were studied. Experimental results show that the temperature and axial stain sensitivity are 6.5 pm/°С and 1.1 pm/μɛ, respectively. In addition, a 0.03 nm shift of the transmission dip can be obtained when the polarization state changes from X polarization to Y polarization.

Top