High temperature coercive field behavior of Fe-Zr powder
NASA Astrophysics Data System (ADS)
Mishra, Debabrata; Perumal, A.; Srinivasan, A.
2009-04-01
We report the investigation of high temperature coercive field behavior of Fe80Zr20 nanocrystalline alloy powder having two-phase microstructure prepared by mechanical alloying process. Thermomagnetization measurement shows the presence of two different magnetic phase transitions corresponding to the amorphous matrix and nonequilibrium Fe(Zr) solid solution. Temperature dependent coercivity exhibits a sharp increase in its value close to the Curie temperature of the amorphous matrix. This feature is attributed to the loss of intergranular ferromagnetic exchange coupling between the nanocrystallites due to the paramagnetic nature of the amorphous matrix. The temperature dependent coercive field behavior is ascribed to the variations in both the effective anisotropy and the exchange stiffness constant with temperature.
NASA Astrophysics Data System (ADS)
Xu, Xiao; Nagasako, Makoto; Kataoka, Mitsuo; Umetsu, Rie Y.; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke
2015-03-01
Electronic, magnetic, and thermodynamic properties of Co2Cr(Ga,Si) -based shape-memory alloys, which exhibit reentrant martensitic transformation (RMT) behavior, were studied experimentally. For electric resistivity (ER), an inverse (semiconductor-like) temperature dependence in the parent phase was found, along with anomalous behavior below its Curie temperature. A pseudobinary phase diagram was determined, which gives a "martensite loop" clearly showing the reentrant behavior. Differential scanning calorimetry and specific-heat measurements were used to derive the entropy change Δ S between martensite and parent phases. The temperature dependence of the derived Δ S was analyzed thermodynamically to confirm the appearances of both the RMT and normal martensitic transformation. Detailed studies on the specific heat in martensite and parent phases at low temperatures were also conducted.
Velocity-dependent quantum phase slips in 1D atomic superfluids.
Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara
2016-05-18
Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.
NASA Astrophysics Data System (ADS)
Pontes, F. M.; Pontes, D. S. L.; Leite, E. R.; Longo, E.; Chiquito, A. J.; Pizani, P. S.; Varela, J. A.
2003-12-01
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. On the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV.
Controlling block copolymer phase behavior using ionic surfactant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, D.; Aswal, V. K.
2016-05-23
The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle–surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at highermore » temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.« less
NASA Astrophysics Data System (ADS)
Natsui, Shungo; Nashimoto, Ryota; Takai, Hifumi; Kumagai, Takehiko; Kikuchi, Tatsuya; Suzuki, Ryosuke O.
2016-06-01
The behavior of the interface between molten Sn and the LiCl-KCl eutectic melt system was observed directly. We found that the transient behavior of the interface exhibits considerable temperature dependence through a change in its physical properties. The "metal film" generated in the upper molten salt phase significantly influences the shape of the interface. Although the lifetime of the metal film depends on the gas flow rate, it is not affected by the buoyancy if the interfacial tension is dominant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.
Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP 2O 7 family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV 2O 7 and HfV 2O 7 were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV 2O 7 and HfV 2O 7 exhibited a very strong dependence on pressure (~700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV 2O 7 was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively).« less
Phase behavior of thermotropic chiral liquid crystal with wide blue phase
NASA Astrophysics Data System (ADS)
Jessy, P. J.; Radha, S.; Nainesh, Patel
2018-04-01
We modified the phase transitions of a thermotropic chiral nematic liquid crystal system with various concentrations of chiral component and investigated their phase behavior and optical properties. The study shows that coupling between chirality and nematicity of liquid crystals lead to changes in phase morphology with extended temperature window of blue phase including human body temperatures and enhanced thermochromism performance. The temperature dependent refractive index analysis in the visible spectral region reveals that the optical modulation due to pitch variation of helical pattern results in the creation of new mesophases and more pronounced chirality in mixtures leading to blue phase which can be controlled by the chiral concentration. The appearance of extended blue phases with primary colors will pave way for the development of new photonic devices.
NASA Astrophysics Data System (ADS)
Zhang, Zhang; Chen, Jianwei; Xu, Jialin; Li, Xiaobing; Luo, Haosu
2017-12-01
The temperature and electric-field induced phase transition behavior and dielectric, piezoelectric, and ferroelectric properties of [001]-oriented 0.23Pb(In1/2Nb1/2)O3-0.47Pb(Mg1/3Nb2/3)O3-0.3PbTiO3-Mn (PIMNT-Mn) single crystals were investigated. Dielectric performance analysis and temperature-dependent Raman spectra show three apparent ferroelectric phase transition temperatures around 120 °C(TR-M),145 °C(TM-T), and 170 °C(TT-C), respectively. In addition, the temperature dependence of the relative Raman intensities of Lorentzian peaks indicates the poled PIMNT-Mn single crystals exhibit rhombohedral(R) → monoclinic(M) → tetragonal(T) → cubic(C) phase transition path. The electrical properties of the PIMNT-Mn single crystals such as the longitudinal electrostrictive coefficient (Q), the converse piezoelectric constant (d33), and the maximum strain value (Smax%) have changed abnormally around the phase transition temperatures (TR-M and TM-T).
Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-01-01
For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.
Effects of temperature and electric field on order parameters in ferroelectric hexagonal manganites
NASA Astrophysics Data System (ADS)
Zhang, C. X.; Yang, K. L.; Jia, P.; Lin, H. L.; Li, C. F.; Lin, L.; Yan, Z. B.; Liu, J.-M.
2018-03-01
In Landau-Devonshire phase transition theory, the order parameter represents a unique property for a disorder-order transition at the critical temperature. Nevertheless, for a phase transition with more than one order parameter, such behaviors can be quite different and system-dependent in many cases. In this work, we investigate the temperature (T) and electric field (E) dependence of the two order parameters in improper ferroelectric hexagonal manganites, addressing the phase transition from the high-symmetry P63/mmc structure to the polar P63cm structure. It is revealed that the trimerization as the primary order parameter with two components: the trimerization amplitude Q and phase Φ, and the spontaneous polarization P emerging as the secondary order parameter exhibit quite different stability behaviors against various T and E. The critical exponents for the two parameters Q and P are 1/2 and 3/2, respectively. As temperature increases, the window for the electric field E enduring the trimerization state will shrink. An electric field will break the Z2 part of the Z2×Z3 symmetry. The present work may shed light on the complexity of the vortex-antivortex domain structure evolution near the phase transition temperature.
NASA Astrophysics Data System (ADS)
Musabirov, I. I.; Safarov, I. M.; Sharipov, I. Z.; Nagimov, M. I.; Koledov, V. V.; Khovailo, V. V.; Mulyukov, R. R.
2017-08-01
The plastic behavior during deformation by upsetting and its effect on the microstructure in the polycrystalline Ni2.19Fe0.04Mn0.77Ga alloy are studied. The temperatures of martensitic and magnetic phase transformations were determined by the method for analyzing the temperature dependence of the specific magnetization as M F = 320 K, A S = 360 K, and T C = 380 K. Using differential scanning calorimetry, it is shown that the phase transition from the ordered phase L21 to the disordered phase B2 is observed in the alloy during sample heating in the temperature range of 930-1070 K. The melting temperature is 1426 K. An analysis of the load curves constructed for sample deposition at temperatures of 773, 873, and 973 K shows that the behavior of the stress-strain curve at a temperature of 773 K is inherent to cold deformation. The behavior of the dependences for 873 and 973 K is typical of hot deformation. After deforming the alloy, its microstructure is studied using backscattered scanning electron microscopy. Plastic deformation of the alloy at study temperatures results in grain structure fragmentation in the localized deformation region. At all temperatures, a recrystallized grain structure is observed. It is found that the structure is heterogeneously recrystallized after upsetting at 973 K due to the process intensity at such a high temperature. The alloy microstructure after plastic deformation at a temperature of 873 K is most homogeneous in terms of the average grain size.
Chen, Jyun-Hong; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong
2018-06-01
Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS 2 of 2D materials also contains 2DEG in an atomic layer as a field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS 2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in the FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not been previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS 2 .
NASA Astrophysics Data System (ADS)
Chen, Jyun-Hong; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong
2018-06-01
Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as a field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in the FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not been previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.
NASA Astrophysics Data System (ADS)
Liu, Xing; Fang, Bijun; Deng, Ji; Yan, Hong; Deng, Hao; Yue, Qingwen; Ding, Jianning; Zhao, Xiangyong; Luo, Haosu
2016-01-01
In this work, the temperature-dependent Raman spectra and electrical properties of the [001]-oriented 0.5 mol. % Mn-doped 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3-Mn (PIMNT-Mn) single crystals were investigated. All the unpoled and poled PIMNT-Mn single crystals experience a ferroelectric tetragonal phase to paraelectric cubic phase transition (FET-PC) around 183 °C (TC), which exhibits a second-order transition behavior. Whereas, the poled PIMNT-Mn single crystals exhibit another two dielectric anomalies around 130 °C (TRM) and 148 °C (TMT), in which the ferroelectric rhombohedral phase to ferroelectric monoclinic phase (FER-FEM) and the ferroelectric monoclinic phase to ferroelectric tetragonal phase (FEM-FET) transitions take place, respectively. Both the two ferroelectric phase transitions exhibit a first-order transition behavior. The discontinuous change of the phase degree (θ) and frequencies (fr and fa) around TRM suggest the occurrence of the FER-FEM phase transition in the poled PIMNT-Mn single crystals. The narrowing of the 510 cm-1 and 582 cm-1 Raman modes around the TRM, TMT, and TC temperatures shown in the temperature-dependent Raman spectra suggests their increased ordering of the local structure. The intensity ratio of I272 cm-1/I801 cm-1 increases obviously around the phase transition temperatures (TRM, TMT, and TC), indicating the reduction of the long-range order. The anomalous broadening of the 272 cm-1 Raman mode around the TRM, TMT, and TC temperatures indicates the occurrence of the successive ferroelectric phase transitions (FER-FEM, FEM-FET, and FET-PC) with increasing temperature in the poled PIMNT-Mn single crystals.
Molecular Dynamics Modeling of Thermal Properties of Aluminum Near Melting Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karavaev, A. V.; Dremov, V. V.; Sapozhnikov, F. A.
2006-08-03
In this work we present results of calculations of thermal properties of solid and liquid phases of aluminum at different densities and temperatures using classical molecular dynamics with EAM potential function. Dependencies of heat capacity CV on temperature and density have been analyzed. It was shown that when temperature increases, heat capacity CV behavior deviates from that by Dulong-Petit law. It may be explained by influence of anharmonicity of crystal lattice vibrations. Comparison of heat capacity CV of liquid phase with Grover's model has been performed. Dependency of aluminum melting temperature on pressure has been acquired.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.
Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP{sub 2}O{sub 7} family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} exhibited a very strong dependence on pressure (∼700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV{sub 2}O{sub 7} was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively). - Graphical abstract: The temperature at which ZrV{sub 2}O{sub 7} transforms to a phase displaying negative thermal expansion is strongly pressure dependent. The high temperature form of ZrV{sub 2}O{sub 7} is elastically stiffer than the low temperature form. - Highlights: • The order-disorder phase transition temperatures in ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} are strongly pressure dependent (∼700 K.GPa). • The high temperature (disordered) phase of ZrV{sub 2}O{sub 7} is much stiffer than the ambient temperature (ordered) phase. • Compression reduces the magnitude of the negative thermal expansion in the high temperature phase of ZrV{sub 2}O{sub 7}.« less
Wang, Fang; Yeung, David; Han, Jun; Semin, David; McElvain, James S; Cheetham, Janet
2008-03-01
We report the application of column temperature programs as a tool to examine unusual temperature-induced behaviors of polysaccharide chiral stationary phases (CSPs). Using dihydropyrimidinone (DHP) compounds as probes we observed the heating (10-50 degrees C) and cooling (50-10 degrees C) van't Hoff plots of retention factors and/or selectivities of DHP compounds were not superimposable on AD, IA, and AS-H columns solvated with ethanol (EtOH)/n-hexane (n-Hex) mobile phases. The plots were not superimposable on AD, IB, and AS-H columns solvated with 2-propanol (2-PrOH)/n-Hex mobile phases. The thermally induced path-dependant behaviors were caused by slow equilibration as evidenced by the disappearance of the hysteresis in the second heating to cooling cycle and in a cooling to heating cycle. From the step-temperature program (10-50-10 degrees C), only EtOH solvated AD and AS-H phases showed the change of retention factors and/or selectivities with time while only 2-PrOH solvated AS-H phase showed similar behaviors.
Sign reversal of transformation entropy change in Co{sub 2}Cr(Ga,Si) shape memory alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiao, E-mail: xu@material.tohoku.ac.jp; Omori, Toshihiro; Kainuma, Ryosuke
2015-11-02
In situ X-ray diffraction (XRD) measurements and compression tests were performed on Co{sub 2}Cr(Ga,Si) shape memory alloys. The reentrant martensitic transformation behavior was directly observed during the in situ XRD measurements. The high-temperature parent phase and low-temperature reentrant parent phase were found to have a continuous temperature dependence of lattice parameter, therefore suggesting that they are the same phase in nature. Moreover, compression tests were performed on a parent-phase single crystal sample; an evolution from normal to inverse temperature dependence of critical stress for martensitic transformation was directly observed. Based on the Clausius-Clapeyron analysis, a sign reversal of entropy changemore » can be expected on the same alloy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp; Hanis Azhan, Nurul; Hajiri, Tetsuya
Structural and electronic phase transitions behavior of two polycrystalline VO{sub 2} films, one with pure M1 phase and the other with pure M2 phase at room temperature, were investigated by temperature-controlled Raman spectroscopy and ultraviolet photoelectron spectroscopy (UPS). We observed characteristic transient dynamics in which the Raman modes at 195 cm{sup −1} (V-V vibration) and 616 cm{sup −1} (V-O vibration) showed remarkable hardening along the temperature in M1 phase film, indicating the rearrangements of V-V pairs and VO{sub 6} octahedra. It was also shown that the M1 Raman mode frequency approached those of invariant M2 peaks before entering rutile phase. In UPSmore » spectra with high energy resolution of 0.03 eV for the M2 phase film, narrower V{sub 3d} band was observed together with smaller gap compared to those of M1 phase film, supporting the nature of Mott insulator of M2 phase even in the polycrystalline film. Cooperative behavior of lattice rearrangements and electronic phase transition was suggested for M1 phase film.« less
NASA Astrophysics Data System (ADS)
Yasin, Sk. Mohammad; Srinivas, V.; Kasiviswanathan, S.; Vagadia, Megha; Nigam, A. K.
2018-04-01
In the present study magnetic and electrical transport properties of transition metal substituted Co-Ga alloys (near critical cobalt concentration) have been investigated. Analysis of temperature and field dependence of dc magnetization and ac susceptibility (ACS) data suggests an evidence of reentrant spin glass (RSG) phase in Co55.5TM3Ga41.5 (TM = Co, Cr, Fe, Cu). The magnetic transition temperatures (TC and Tf) are found to depend on the nature of TM element substitution with the exchange coupling strength Co-Fe > Co-Co > Co-Cu > Co-Cr. From magnetization dynamics precise transition temperatures for the glassy phases are estimated. It is found that characteristic relaxation times are higher than that of spin glasses with minimal spin-cluster formation. The RSG behavior has been further supported by the temperature dependence of magnetotransport studies. From the magnetic field and substitution effects it has been established that the magnetic and electrical transport properties are correlated in this system.
Magnetoresistance behavior in nanobulk assembled Bi2Se3 topological insulator
NASA Astrophysics Data System (ADS)
Bera, Sumit; Behera, P.; Mishra, A. K.; Krishnan, M.; Patidar, Manju Mishra; Singh, Durgesh; Venkatesh, R.; Phase, D. M.; Ganesan, V.
2018-05-01
Temperature and magnetic field dependent magnetoresistance (MR) including structural, morphological studies of Bi2Se3 nanoflower like structure synthesized by microwave assisted solvothermal method has been investigated. Powder X-ray diffraction (XRD) has confirmed the formation of single phase. Morphology of the material shows nanoflower kind of structures with edge to edge size of around 4 µm and such occurrences are quite high. The temperature dependent resistance invokes a metallic behavior up to a certain lower temperature, below which it follows -ln(T) behavior that has been elucidated in literature using electron-electron interaction and weak anti-localization effects. High temperature magnetoresistance is consistent with parabolic field dependence indicating a classical magnetoresistance in metals as a result of Lorenz force. In low temperature regime magnetoresistance as a function of magnetic field at different temperatures obeys power law near low field which indicates a three dimensional weak-antilocalization. A linear magnetoresistance at low temperature and high magnetic field shows the domination of surface state conduction.
Yu, Dunji; An, Ke; Chen, Xu; ...
2015-10-09
Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less
In situ neutron scattering study of nanoscale phase evolution in PbTe-PbS thermoelectric material
Ren, Fei; Schmidt, Robert; Keum, Jong K.; ...
2016-08-24
Introducing nanostructural second phases has been proved to be an effective approach to reduce the lattice thermal conductivity and thus enhance the figure of merit for many thermoelectric materials. Furthermore studies of the formation and evolution of these second phases are central to understanding temperature dependent material behavior, improving thermal stabilities, as well as designing new materials. We examined powder samples of PbTe-PbS thermoelectric material using in situ neutron diffraction and small angle neutron scattering (SANS) techniques from room temperature to elevated temperature up to 663 K, to explore quantitative information on the structure, weight fraction, and size of themore » second phase. Neutron diffraction data showed the as-milled powder was primarily solid solution before heat treatment. During heating, PbS second phase precipitated out of the PbTe matrix around 480 K, while re-dissolution started around 570 K. The second phase remained separated from the matrix upon cooling. Furthermore, SANS data indicated there are two populations of nanostructures. The size of the smaller nanostructure increased from initially 5 nm to approximately 25 nm after annealing at 650 K, while the size of the larger nanostructure remained unchanged. Our study demonstrated that in situ neutron techniques are effective means to obtain quantitative information to study temperature dependent nanostructural behavior of thermoelectrics and likely other high-temperature materials.« less
NASA Astrophysics Data System (ADS)
Abberton, Brendan C.; Liu, Wing Kam; Keten, Sinan
2013-12-01
Thermally actuated shape-memory polymers (SMPs) are capable of being programmed into a temporary shape and then recovering their permanent reference shape upon exposure to heat, which facilitates a phase transition that allows dramatic increase in molecular mobility. Experimental, analytical, and computational studies have established empirical relations of the thermomechanical behavior of SMPs that have been instrumental in device design. However, the underlying mechanisms of the recovery behavior and dependence on polymer microstructure remain to be fully understood for copolymer systems. This presents an opportunity for bottom-up studies through molecular modeling; however, the limited time-scales of atomistic simulations prohibit the study of key performance metrics pertaining to recovery. In order to elucidate the effects of phase fraction, recovery temperature, and deformation temperature on shape recovery, here we investigate the shape-memory behavior in a copolymer model with coarse-grained potentials using a two-phase molecular model that reproduces physical crosslinking. Our simulation protocol allows observation of upwards of 90% strain recovery in some cases, at time-scales that are on the order of the timescale of the relevant relaxation mechanism (stress relaxation in the unentangled soft-phase). Partial disintegration of the glassy phase during mechanical deformation is found to contribute to irrecoverable strain. Temperature dependence of the recovery indicates nearly full elastic recovery above the trigger temperature, which is near the glass-transition temperature of the rubbery switching matrix. We find that the trigger temperature is also directly correlated with the deformation temperature, indicating that deformation temperature influences the recovery temperatures required to obtain a given amount of shape recovery, until the plateau regions overlap above the transition region. Increasing the fraction of glassy phase results in higher strain recovery at low to intermediate temperatures, a widening of the transition region, and an eventual crossover at high temperatures. Our results corroborate experimental findings on shape-memory behavior and provide new insight into factors governing deformation recovery that can be leveraged in biomaterials design. The established computational methodology can be extended in straightforward ways to investigate the effects of monomer chemistry, low-molecular-weight solvents, physical and chemical crosslinking, different phase-separation morphologies, and more complicated mechanical deformation toward predictive modeling capabilities for stimuli-responsive polymers.
Cooling induces phase separation in membranes derived from isolated CNS myelin
Pusterla, Julio M.; Schneck, Emanuel; Funari, Sérgio S.; Démé, Bruno; Tanaka, Motomu
2017-01-01
Purified myelin membranes (PMMs) are the starting material for biochemical analyses such as the isolation of detergent-insoluble glycosphingolipid-rich domains (DIGs), which are believed to be representatives of functional lipid rafts. The normal DIGs isolation protocol involves the extraction of lipids under moderate cooling. Here, we thus address the influence of cooling on the structure of PMMs and its sub-fractions. Thermodynamic and structural aspects of periodic, multilamellar PMMs are examined between 4°C and 45°C and in various biologically relevant aqueous solutions. The phase behavior is investigated by small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC). Complementary neutron diffraction (ND) experiments with solid-supported myelin multilayers confirm that the phase behavior is unaffected by planar confinement. SAXS and ND consistently show that multilamellar PMMs in pure water become heterogeneous when cooled by more than 10–15°C below physiological temperature, as during the DIGs isolation procedure. The heterogeneous state of PMMs is stabilized in physiological solution, where phase coexistence persists up to near the physiological temperature. This result supports the general view that membranes under physiological conditions are close to critical points for phase separation. In presence of elevated Ca2+ concentrations (> 10 mM), phase coexistence is found even far above physiological temperatures. The relative fractions of the two phases, and thus presumably also their compositions, are found to vary with temperature. Depending on the conditions, an “expanded” phase with larger lamellar period or a “compacted” phase with smaller lamellar period coexists with the native phase. Both expanded and compacted periods are also observed in DIGs under the respective conditions. The observed subtle temperature-dependence of the phase behavior of PMMs suggests that the composition of DIGs is sensitive to the details of the isolation protocol. PMID:28915267
Pressure-induced metal-insulator transitions in chalcogenide NiS2-xSex
NASA Astrophysics Data System (ADS)
Hussain, Tayyaba; Oh, Myeong-jun; Nauman, Muhammad; Jo, Younjung; Han, Garam; Kim, Changyoung; Kang, Woun
2018-05-01
We report the temperature-dependent resistivity ρ(T) of chalcogenide NiS2-xSex (x = 0.1) using hydrostatic pressure as a control parameter in the temperature range of 4-300 K. The insulating behavior of ρ(T) survives at low temperatures in the pressure regime below 7.5 kbar, whereas a clear insulator-to-metallic transition is observed above 7.5 kbar. Two types of magnetic transitions, from the paramagnetic (PM) to the antiferromagnetic (AFM) state and from the AFM state to the weak ferromagnetic (WF) state, were evaluated and confirmed by magnetization measurement. According to the temperature-pressure phase diagram, the WF phase survives up to 7.5 kbar, and the transition temperature of the WF transition decreases as the pressure increases, whereas the metal-insulator transition temperature increases up to 9.4 kbar. We analyzed the metallic behavior and proposed Fermi-liquid behavior of NiS1.9Se0.1.
Infralimbic cortex controls core body temperature in a histamine dependent manner.
Riveros, M E; Perdomo, G; Torrealba, F
2014-04-10
An increase in body temperature accelerates biochemical reactions and behavioral and physiological responses. A mechanism to actively increase body temperature would be beneficial during motivated behaviors. The prefrontal cortex is implicated in organizing motivated behavior; the infralimbic cortex, a subregion of the medial prefrontal cortex, has the necessary connectivity to serve the role of initiating such thermogenic mechanism at the beginning of the appetitive phase of motivated behavior; further, this cortex is active during motivated behavior and its disinhibition produces a marked behavioral and vegetative arousal increase, together with increases in histamine levels. We wanted to explore if this arousal was related to histaminergic activation after pharmacological infralimbic disinhibition and during the appetitive phase of motivated behavior. We measured core temperature and motor activity in response to picrotoxin injection in the infralimbic cortex, as well as during food-related appetitive behavior, evoked by enticing hungry rats with food. Pretreatment with the H1 receptor antagonist pyrilamine decreased thermal response to picrotoxin and enticement and completely blunted motor response to enticement. Motor and temperature responses to enticement were also completely abolished by infralimbic cortex inhibition with muscimol. To assess if this histamine dependent temperature increase was produced by an active sympathetic mediated thermogenic mechanism or was just a consequence of increased locomotor activity, we injected propranolol (i.p.), a β adrenergic receptor blocker, before picrotoxin injection into the infralimbic cortex. Propranolol reduced the temperature increase without affecting locomotor activity. Altogether, these results suggest that infralimbic activation is necessary for appetitive behavior by inducing a motor and a vegetative arousal increase mediated by central histamine. Copyright © 2014 Elsevier Inc. All rights reserved.
Origin of thickness dependence of structural phase transition temperatures in BiFeO 3 thin films
Yang, Yongsoo; Beekman, Christianne; Siemons, Wolter; ...
2016-03-28
In this study, two structural phase transitions are investigated in highly strained BiFeO 3 thin films grown on LaAlO 3 substrates, as a function of film thickness and temperature via synchrotron x-ray diffraction. Both transition temperatures (upon heating: monoclinic MC to monoclinic MA, and MA to tetragonal) decrease as the film becomes thinner. The existence of an interface layer at the film-substrate interface, deduced from half-order peak intensities, contributes to this behavior only for the thinnest samples; at larger thicknesses (above a few nanometers) the temperature dependence can be understood in terms of electrostatic considerations akin to size effects inmore » ferroelectric phase transitions, but observed here for structural phase transitions within the ferroelectric phase and related to the rearrangement rather than the formation of domains. For ultra-thin films, the tetragonal structure is stable at all investigated temperatures (down to 30 K).« less
Phase dependent fracture and damage evolution of polytetrafluoroethylene (PTFE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, E. N.; Rae, P.; Orler, E. B.
2004-01-01
Compared with other polymers, polytetrafluoroethylene (PTFE) presents several advantages for load-bearing structural components including higher strength at elevated temperatures and higher toughness at lowered temperatures. Failure sensitive applications of PTFE include surgical implants, aerospace components, and chemical barriers. Polytetrafluoroethylene is semicrystalline in nature with their linear chains forming complicated phases near room temperature and ambient pressure. The presence of three unique phases near room temperature implies that failure during standard operating conditions may be strongly dependent on the phase. This paper presents a comprehensive and systematic study of fracture and damage evolution in PTFE to elicit the effects of temperature-inducedmore » phase on fracture mechanisms. The fracture behavior of PTFE is observed to undergo transitions from brittle-fracture below 19 C to ductile-fracture with crazing and some stable crack growth to plastic flow aver 30 C. The bulk failure properties are correlated to failure mechanisms through fractography and analysis of the crystalline structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furukawa, Yuji; Roy, Beas; Ran, Sheng
2014-03-20
The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magneticmore » susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.« less
Monte Carlo modeling the phase diagram of magnets with the Dzyaloshinskii - Moriya interaction
NASA Astrophysics Data System (ADS)
Belemuk, A. M.; Stishov, S. M.
2017-11-01
We use classical Monte Carlo calculations to model the high-pressure behavior of the phase transition in the helical magnets. We vary values of the exchange interaction constant J and the Dzyaloshinskii-Moriya interaction constant D, which is equivalent to changing spin-spin distances, as occurs in real systems under pressure. The system under study is self-similar at D / J = constant , and its properties are defined by the single variable J / T , where T is temperature. The existence of the first order phase transition critically depends on the ratio D / J . A variation of J strongly affects the phase transition temperature and width of the fluctuation region (the ;hump;) as follows from the system self-similarity. The high-pressure behavior of the spin system depends on the evolution of the interaction constants J and D on compression. Our calculations are relevant to the high pressure phase diagrams of helical magnets MnSi and Cu2OSeO3.
Effect of zinc oxide nanoparticles on dielectric behavior of nematic liquid crystal
NASA Astrophysics Data System (ADS)
Sharma, Amit; Kumar, Pankaj; Malik, Praveen
2018-05-01
In this work, phase transition and dielectric behavior of nematic liquid crystal (NLC), E7 and zinc oxide (ZnO) nanoparticles (NPs) doped nematic liquid crystals are investigated. Effect of nano-particles dispersion is analyzed and compared with the dielectric behavior of E7 and E7-ZnO. Frequency dependent dielectric permittivity at various temperatures in nematic phase for E7 and E7-ZnO sample is also studied.
Optical study of phase transitions in single-crystalline RuP
NASA Astrophysics Data System (ADS)
Chen, R. Y.; Shi, Y. G.; Zheng, P.; Wang, L.; Dong, T.; Wang, N. L.
2015-03-01
RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.
Magnetic characteristics of polymorphic single crystal compounds DyIr2Si2
NASA Astrophysics Data System (ADS)
Uchima, Kiyoharu; Shigeoka, Toru; Uwatoko, Yoshiya
2018-05-01
We have confirmed that the tetragonal ternary compound DyIr2Si2 shows polymorphism; the ThCr2Si2-type structure as a low temperature phase (I-phase) and the CaBe2Ge2-type one as a high temperature phase (P-phase) exist. A comparative study on magnetic characteristics of the morphs was performed on the I- and P-phase single crystals in order to elucidate how magnetic properties are influenced by crystallographic symmetry. The magnetic behavior changes drastically depending on the structure. The DyIr2Si2(I) shows an antiferromagnetic ordering below TN = 30 K, additional magnetic transitions of T1 = 17 K and T2 = 10 K, and a strong uniaxial magnetic anisotropy with the easy [001] direction. The [001] magnetization shows four metamagnetic transitions at low temperatures. On the other hand, the DyIr2Si2(P) has comparatively low ordering temperature of TN1 = 9.4 K and an additional transition temperature of TN2 = 3.0 K, and exhibits an easy-plane magnetic anisotropy with the easy [110] direction. Two metamagnetic transitions appear in the basal plane magnetization processes. In both the morphs, the χ-T behavior suggests the existence of component-separated magnetic transitions. The ab-component of magnetic moments orders at the higher transition temperature TN1 for the P-phase compound, which is contrast to the I-phase behavior; the c-component orders firstly at TN. The crystalline electric field (CEF) analysis was made, and the difference in magnetic behaviors between both the morphs is explained by the CEF effects.
Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo; ...
2016-08-16
Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo
Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less
Effect of smectic A temperature width on the soft mode in ferroelectric liquid crystals
NASA Astrophysics Data System (ADS)
Choudhary, A.; Kaur, S.; Prakash, J.; Sreenivas, K.; Bawa, S. S.; Biradar, A. M.
2008-08-01
The behavior of soft mode range with respect to the temperature width of smectic A (Sm A) phase has been studied in four different ferroelectric liquid crystal (FLC) materials in the frequency range 10Hz-10MHz. The studies have been carried out in a planarly well aligned cells at different temperatures and different bias fields in Sm C* and Sm A phases. Dielectric studies of these FLCs near Sm C*-Sm A phase transition show that the temperature range of soft mode relaxation frequency phenomenon varies with the temperature width of Sm A phase. The dependence of tilt angle on temperature shows the nature of the order of transition at Sm C*-Sm A phase. The coupling between order parameters of Sm C* and Sm A phase influences the soft mode and phase transition in Sm C* and Sm A phases.
Anomalous Phase Change in [(GeTe)2/(Sb2Te3)]20 Superlattice Observed by Coherent Phonon Spectroscopy
NASA Astrophysics Data System (ADS)
Makino, K.; Saito, Y.; Mitrofanov, K.; Tominaga, J.; Kolobov, A. V.; Nakano, T.; Fons, P.; Hase, M.
The temperature-dependent ultrafast coherent phonon dynamics of topological (GeTe)2/(Sb2Te3) super lattice phase change memory material was investigated. By comparing with Ge-Sb-Te alloy, a clear contrast suggesting the unique phase change behavior was found.
In situ neutron scattering study of nanoscale phase evolution in PbTe-PbS thermoelectric material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Fei, E-mail: renfei@temple.edu, E-mail: kean@ornl.gov; Qian, Bosen; Schmidt, Robert
2016-08-22
Introducing nanostructural second phases has proved to be an effective approach to reduce the lattice thermal conductivity and thus enhances the figure of merit for many thermoelectric materials. Studies of the formation and evolution of these second phases are essential to understanding material temperature dependent behaviors, improving thermal stabilities, as well as designing new materials. In this study, powder samples of the PbTe-PbS thermoelectric material were examined using in situ neutron diffraction and small angle neutron scattering (SANS) techniques between room temperature and elevated temperature up to 663 K, to explore quantitative information on the structure, weight fraction, and size ofmore » the second phase. Neutron diffraction data showed that the as-milled powder was primarily a solid solution prior to heat treatment. During heating, a PbS second phase precipitated out of the PbTe matrix around 500 K, while re-dissolution started around 600 K. The second phase remained separated from the matrix upon cooling. Furthermore, SANS data indicated that there are two populations of nanostructures. The size of the smaller nanostructure increased from initially 5 nm to approximately 25 nm after annealing at 650 K, while the size of the larger one remained unchanged. This study demonstrated that in situ neutron techniques are effective means to obtain quantitative information on temperature-dependent nanostructural behavior of thermoelectrics and likely other high-temperature materials.« less
Addendum to the lattice dynamics of. gamma. -Ce
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stassis, C.; Loong, C.; McMasters, O.D.
1982-05-15
Inelastic neutron scattering techniques have been used to study the temperature dependence of the dispersion curves of ..gamma..-Ce. We find that the frequencies of all but the T (111), branches exhibit normal temperature dependence. Close to the zone boundary the frequencies of the T(111) branch, on the other hand, decrease with decreasing temperature, and at room temperature this branch exhibits a dip at the zone boundary. This anomalous behavior may be related to the fcc..-->..dhcp phase transition.
Scaling of the Stress and Temperature Dependence of the Optical Anisotropy in Ba(Fe 1-x Co x ) 2As 2
Mirri, C.; Dusza, A.; Bastelberger, S.; ...
2016-09-15
We revisit our recent investigations of the optical properties in the underdoped regime of the title compounds with respect to their anisotropic behavior as a function of both temperature and uniaxial stress across the ferro-elastic tetragonal-to-orthorhombic transition. By exploiting a dedicated pressure device, we can tune and control uniaxial stress in situ thus changing the degree of detwinning of the samples in the orthorhombic SDW state as well as pressure-inducing an orthorhombicity in the paramagnetic tetragonal phase. Here we discover a hysteretic behavior of the optical anisotropy; its stress versus temperature dependence across the structural transition bears testimony to themore » analogy with the magnetic-field versus temperature dependence of the magnetization in a ferromagnet when crossing the Curie temperature. In this context, we find furthermore an intriguing scaling of the stress and temperature dependence of the optical anisotropy in Ba(Fe 1-xCo x) 2As 2.« less
A study of low-dimensional quaternary mixed-transition metal chalcogenides
NASA Astrophysics Data System (ADS)
Oledzka, Magdalena Agata
New quaternary alkali metal mixed-transition metal sulfides: ACuMSsb2 (A = K, Rb, Cs; M = Mn, Fe, Co) and KCosb{2-x}Cusb{x}Ssb2 (0.5 ≤ x ≤ 1.5) were prepared by CSsb2/Nsb2 sulfurization of a mixture of oxide or sulfide and carbonate precursors of the corresponding metals. All of the phases form in the tetragonal ThCrsb2Sisb2-type structure in space group I4/mmm. The ACoCuSsb2 phases are semiconducting, with room temperature resistivities rhosbRT˜ 10sp{-2}Omega {*}cm;\\ KCosb{0.5}CUsb{1.5}Ssb2 is metallic with a metal-to-nonmetal transition at ˜120 K. Seebeck measurements indicate that the majority of charge carriers are holes. The temperature dependence of magnetic susceptibility shows an anomalous transition to the ferromagnetic state in the ACoCuSsb2 phases. The electrical and magnetic properties of the new quaternary phases are compared to those of ternary ACosb2Ssb2 (A = K, Rb, Cs). The quaternary sulfides ACuFeSsb2 show semiconducting behavior. Magnetic susceptibility data indicate the presence of localized magnetic moment arising from the di- and trivalent iron ions. The semiconducting properties observed in this system are in contrast to the metallic behavior predicted by theoretical calculations. Investigations of the electrical properties of the sulfides ACuMnSsb2 revealed semiconducting behavior with a broad anomaly at ≈70 K. In the temperature range 100-300 K, the molar magnetic susceptibility of all the samples shows a weak maximum consistent with localized antiferromagnetic exchange of isolated two-dimensional manganese cluster nets. The divergence of the FC and ZFC molar susceptibilities at low temperatures, for all the samples, suggests spin-glass-type behavior with a well defined freezing temperature of ≈35 K. Single phase polycrystalline quaternary selenides ACuMnSesb2 (A = K, Rb, Cs) were prepared for the first time by the reduction of the mixture containing corresponding alkali metal carbonates, copper oxide, manganese and selenium powders. p-Type semiconducting behavior was observed for the samples with rhosbRT of {˜}10sp{-1}Omega{*}cm, and Esba˜ 0.1 eV. The relatively high values of magnetic susceptibility and the weak maximum in the temperature dependence of the magnetic susceptibility above 100 K was attributed to short-range antiferromagnetic interactions. New quaternary layered sulfides: NaCuMSsb2 (M = Mn, Fe, Co, Zn) crystallize in the trigonal CaAlsb2Sisb2-type structure in space group P{bar 3}m1. All the new phases are semiconducting, with rhosb{RT} varying from 6.2× 10sp{-1} to 5× 10sp{-2}Omega{*}cm, depending upon the transition metal M. Magnetic susceptibility measurements indicate the presence of localized Mnsp{2+} ions in NaCuMnSsb2. The NaCuMSsb2 (M = Fe, Co) phases display temperature independent paramagnetism whereas the NaCuZnSsb2 phase is diamagnetic, as expected. In addition, detailed low-temperature magnetic studies of the NaCuFeSsb2 phase revealed spin-glass-type behavior with the freezing temperature Tsbf˜ 50 K.
Analysis of thermomechanical fatigue of unidirectional titanium metal matrix composites
NASA Technical Reports Server (NTRS)
Mirdamadi, M.; Johnson, W. S.; Bahei-El-din, Y. A.; Castelli, M. G.
1991-01-01
Thermomechanical fatigue (TMF) data was generated for a Ti-15V-3Cr-3Al-3Sn (Ti-15-3) material reinforced with SCS-6 silicon carbide fibers for both in-phase and out-of-phase thermomechanical cycling. Significant differences in failure mechanisms and fatigue life were noted for in-phase and out-of-phase testing. The purpose of the research is to apply a micromechanical model to the analysis of the data. The analysis predicts the stresses in the fiber and the matrix during the thermal and mechanical cycling by calculating both the thermal and mechanical stresses and their rate-dependent behavior. The rate-dependent behavior of the matrix was characterized and was used to calculate the constituent stresses in the composite. The predicted 0 degree fiber stress range was used to explain the composite failure. It was found that for a given condition, temperature, loading frequency, and time at temperature, the 0 degree fiber stress range may control the fatigue life of the unidirectional composite.
Effect of Sequence Blockiness on the Morphologies of Surface-grafted Elastin-like Polypeptides
NASA Astrophysics Data System (ADS)
Albert, Julie; Sintavanon, Kornkanok; Mays, Robin; MacEwan, Sarah; Chilkoti, Ashutosh; Genzer, Jan
2014-03-01
The inter- and intra- molecular interactions among monomeric units of copolymers and polypeptides depend strongly on monomer sequence distribution and dictate the phase behavior of these species both in solution and on surfaces. To study the relationship between sequence and phase behavior, we have designed a series of elastin-like polypeptides (ELPs) with controlled monomer sequences that mimic copolymers with various co-monomer sequence distributions and attached them covalently to silicon substrates from buffer solutions at temperatures below and above the bulk ELPs' lower critical solution temperatures (LCSTs). The dependence of ELP grafting density on solution temperature was examined by ellipsometry and the resultant surface morphologies were examined in air and under water with atomic force microscopy. Depositions performed above the LCST resulted in higher grafting densities and greater surface roughness of ELPs relative to depositions carried out below the LCST. In addition, we are using gradient substrates to examine the effect of ELP grafting density on temperature responsiveness.
Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers.
Sazegari, Vahid; Milani, Mohammad Reza Jafari; Jafari, Ahmad Khayat
2010-12-20
We employ a Monte Carlo ray-tracing code along with the ANSYS package to predict the optical and structural behavior in end-pumped CW Yb:YAG disk lasers. The presence of inhomogeneous temperature, stress, and strain distributions is responsible for many deleterious effects for laser action through disk fracture, strain-induced birefringence, and thermal lensing. The thermal lensing, in turn, results in the optical phase distortion in solid-state lasers. Furthermore, the dependence of optical phase distortion on variables such as the heat transfer coefficient, the cooling fluid temperature, and crystal thickness is discussed.
Thermodynamics of the relativistic Fermi gas in D dimensions
NASA Astrophysics Data System (ADS)
Sevilla, Francisco J.; Piña, Omar
2017-09-01
The influence of spatial dimensionality and particle-antiparticle pair production on the thermodynamic properties of the relativistic Fermi gas, at finite chemical potential, is studied. Resembling a "phase transition", qualitatively different behaviors of the thermodynamic susceptibilities, namely the isothermal compressibility and the specific heat, are markedly observed at different temperature regimes as function of the system dimensionality and of the rest mass of the particles. A minimum in the temperature dependence of the isothermal compressibility marks a characteristic temperature, in the range of tenths of the Fermi temperature, at which the system transit from a "normal" phase, to a phase where the gas compressibility grows as a power law of the temperature.
Fracture and damage evolution of fluorinated polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, E. N.; Rae, P.; Orler, E. B.
2004-01-01
Fluoropolymers are often semi-crystalline in nature, with their linear chains forming complicated phases near room temperature and ambient pressure. The most widely used fluorocarbon polymer for engineering applications is polytetrafluoroethylene (PTFE), due to its extremely low coefficient of friction, outstanding resistance to corrosion, and excellent electrical properties. The phase structure of PTFE is complex with four well-characterized crystalline phases (three observed at atmospheric pressure) and substantial molecular motion well below the melting point. The first-order transition at 19 C between phases II and IV is an unraveling in the helical conformation. Further rotational disordering and untwisting of the helices occursmore » above 30 C giving way to phase I. The mechanical behavior, including fracture and damage evolution, of PTFE depends on the chain and segment motions dictated by crystalline phase microstructure. The presence of three unique phases at ambient pressure near room temperature implies that failure during standard operating conditions may be strongly dependent on the phase. This paper presents a preliminary study of fracture and damage evolution in PTFE with the effects of temperature-induced phase on fracture mechanisms. The quasi-static fracture of PTFE in the atmospheric pressure regime, over a range of temperatures, was found to be strongly phase dependent: phase II exhibits brittle-fracture, phase IV displays ductile-fracture with crazing and some stable crack growth, and plastic flow dominates phase 1. The bulk failure properties are correlated to failure mechanisms through fractography of the fracture surfaces (optical microscopy and scanning electron microscopy (SEM)).« less
McMullen, T P; Lewis, R N; McElhaney, R N
2000-01-01
We have examined the effects of cholesterol on the thermotropic phase behavior and organization of aqueous dispersions of a homologous series of linear disaturated phosphatidylserines by high-sensitivity differential scanning calorimetry and Fourier transform infrared spectroscopy. We find that the incorporation of increasing quantities of cholesterol progressively reduces the temperature, enthalpy, and cooperativity of the gel-to-liquid-crystalline phase transition of the host phosphatidylserine bilayer, such that a cooperative chain-melting phase transition is completely or almost completely abolished at 50 mol % cholesterol, in contrast to the results of previous studies. We are also unable to detect the presence of a separate anhydrous cholesterol or cholesterol monohydrate phase in our binary mixtures, again in contrast to previous reports. We further show that the magnitude of the reduction in the phase transition temperature induced by cholesterol addition is independent of the hydrocarbon chain length of the phosphatidylserine studied. This result contrasts with our previous results with phosphatidylcholine bilayers, where we found that cholesterol increases or decreases the phase transition temperature in a chain length-dependent manner (1993. Biochemistry, 32:516-522), but is in agreement with our previous results for phosphatidylethanolamine bilayers, where no hydrocarbon chain length-dependent effects were observed (1999. Biochim. Biophys. Acta, 1416:119-234). However, the reduction in the phase transition temperature by cholesterol is of greater magnitude in phosphatidylethanolamine as compared to phosphatidylserine bilayers. We also show that the addition of cholesterol facilitates the formation of the lamellar crystalline phase in phosphatidylserine bilayers, as it does in phosphatidylethanolamine bilayers, whereas the formation of such phases in phosphatidylcholine bilayers is inhibited by the presence of cholesterol. We ascribe the limited miscibility of cholesterol in phosphatidylserine bilayers reported previously to a fractional crystallization of the cholesterol and phospholipid phases during the removal of organic solvent from the binary mixture before the hydration of the sample. In general, the results of our studies to date indicate that the magnitude of the effect of cholesterol on the thermotropic phase behavior of the host phospholipid bilayer, and its miscibility in phospholipid dispersions generally, depend on the strength of the attractive interactions between the polar headgroups and the hydrocarbon chains of the phospholipid molecule, and not on the charge of the polar headgroups per se. PMID:11023909
NASA Astrophysics Data System (ADS)
Sharma, N.; Yu, D. H.; Zhu, Y.; Wu, Y.; Peterson, V. K.
2017-02-01
In operando NPD data of electrodes in lithium-ion batteries reveal unusual LiFePO4 phase evolution after the application of a thermal step and at high current. At low current under ambient conditions the LiFePO4 to FePO4 two-phase reaction occurs during the charge process, however, following a thermal step and at higher current this reaction appears at the end of charge and continues into the next electrochemical step. The same behavior is observed for the FePO4 to LiFePO4 transition, occurring at the end of discharge and continuing into the following electrochemical step. This suggests that the bulk (or the majority of the) electrode transformation is dependent on the battery's history, current, or temperature. Such information concerning the non-equilibrium evolution of an electrode allows a direct link between the electrode's functional mechanism that underpins lithium-ion battery behavior and the real-life operating conditions of the battery, such as variable temperature and current, to be made.
Novel behaviors of anomalous Hall effect in TbFeCo ferrimagnetic thin films
NASA Astrophysics Data System (ADS)
Ando, Ryo; Komine, Takashi; Sato, Shiori; Kaneta, Shingo; Hara, Yoshiaki
2018-05-01
We investigate the temperature dependence and the thickness dependence of anomalous Hall effect (AHE) of TbFeCo ultra-thin films under high magnetic field. The sign change on temperature dependence of AHE in 20nm-thick TbFeCo film with rare-earth (RE) rich composition was observed. The AHE sign at low temperature is negative while it gradually becomes positive as the temperature increases. Moreover, the AHE sign for 5nm-thick TbFeCo film remains positive while that for 50nm-thick TbFeCo film remains negative at temperature in the range from 5 K to 400 K. The similar thickness dependence of AHE in TM-rich samples was also observed. From the mean-field approximation, the sign change temperature in AHE is related to the compensation temperature and the existence of interfacial region, which has the TM-rich composition and the weak anisotropy. Therefore, We clarified that the novel behavior of AHE sign changes in TbFeCo thin films with different thickness can be explained by the interfacial layer with weak anisotropy and two phase model.
USDA-ARS?s Scientific Manuscript database
Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...
Holographic entanglement entropy of a 1 + 1 dimensional p-wave superconductor
NASA Astrophysics Data System (ADS)
Das, Sumit R.; Fujita, Mitsutoshi; Kim, Bom Soo
2017-09-01
We examine the behavior of entanglement entropy S A EE of a subsystem A in a fully backreacted holographic model of a 1 + 1 dimensional p wave superconductor across the phase transition. For a given temperature, the system goes to a superconducting phase beyond a critical value of the charge density. The entanglement entropy, considered as a function of the charge density at a given temperature, has a cusp at the critical point. In addition, we find that there are three different behaviors in the condensed phase, depending on the subsystem size. For a subsystem size l smaller than a critical size l c1, S A EE continues to increase as a function of the charge density as we cross the phase transition. When l lies between l c1 and another critical size l c2 the entanglement entropy displays a non-monotonic behavior, while for l > l c2 it decreases monotonically. At large charge densities S A EE appears to saturate. The non-monotonic behavior leads to a novel phase diagram for this system.
Universal Behavior of Quantum Spin Liquid and Optical Conductivity in the Insulator Herbertsmithite
NASA Astrophysics Data System (ADS)
Shaginyan, V. R.; Msezane, A. Z.; Stephanovich, V. A.; Popov, K. G.; Japaridze, G. S.
2018-04-01
We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to expose the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field. We consider an experimental manifestation (optical conductivity) of a new state of matter (so-called fermion condensate) realized in quantum spin liquids, for, in many ways, they exhibit typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite produce important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of a strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to reveal the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field.
Synthesis and electrical properties of (Pb,Co)Sr2(Y,Ca)Cu2Oz
NASA Astrophysics Data System (ADS)
Tashiro, T.; Maeda, T.; Abe, R.; Takechi, S.; Takahashi, T.; Haruta, M.; Horii, S.
One of related materials to high-temperature superconductors (HTSC's) with nominal compositions of (Pb0.5Co0.5)Sr2(Y1xCax)Cu2Oz (x=0∼0.6) is synthesized and characterized. All samples are nearly single-phase, and its crystal structure is likely to be so-called "1-2-1-2" type which is one of typical structures of HTSC's. Electrical resistivity is decreased as x increases. While superconductivity is not observed at temperatures between room-temperature and 20 K for all samples, temperature dependence of the resistivity exhibits metallic behavior down to 150 K for x=0.5. Phase formation and transport behavior are discussed focusing on mixed valence-state of Co2+ and Co3+.
NASA Astrophysics Data System (ADS)
Mohanta, S. K.; Mishra, S. N.; Davane, S. M.; Layek, S.; Hossain, Z.
2013-12-01
In this paper, we report the time differential perturbed angular distribution measurements of 54Fe on a polycrystalline EuFe2As2 and Eu0.5K0.5Fe2As2. The hyperfine field and nuclear spin-relaxation rate are strongly temperature dependent in the paramagnetic state suggesting strong spin fluctuation in the parent compound. The local susceptibility show Curie-Weiss-like temperature dependence and Korringa-like relaxation in the tetragonal phase indicating the presence of local moment. In the orthorhombic phase, the hyperfine field behavior suggesting quasi two-dimensional magnetic ordering. The experimental results are in a good agreement with first-principle calculations based on density functional theory.
Zhang, Yanhua; Regmi, Rajesh; Liu, Yi; Lawes, Gavin; Brock, Stephanie L
2014-07-22
Small changes in the synthesis of MnAs nanoparticles lead to materials with distinct behavior. Samples prepared by slow heating to 523 K (type-A) exhibit the characteristic magnetostructural transition from the ferromagnetic hexagonal (α) to the paramagnetic orthorhombic (β) phase of bulk MnAs at Tp = 312 K, whereas those prepared by rapid nucleation at 603 K (type-B) adopt the β structure at room temperature and exhibit anomalous magnetic properties. The behavior of type-B nanoparticles is due to P-incorporation (up to 3%), attributed to reaction of the solvent (trioctylphosphine oxide). P-incorporation results in a decrease in the unit cell volume (∼1%) and shifts Tp below room temperature. Temperature-dependent X-ray diffraction reveals a large region of phase-coexistence, up to 90 K, which may reflect small differences in Tp from particle-to-particle within the nearly monodisperse sample. The large coexistence range coupled to the thermal hysteresis results in process-dependent phase mixtures. As-prepared type-B samples exhibiting the β structure at room temperature convert to a mixture of α and β after the sample has been cooled to 77 K and rewarmed to room temperature. This change is reflected in the magnetic response, which shows an increased moment and a shift in the temperature hysteresis loop after cooling. The proportion of α present at room temperature can also be augmented by application of an external magnetic field. Both doped (type-B) and undoped (type-A) MnAs nanoparticles show significant thermal hysteresis narrowing relative to their bulk phases, suggesting that formation of nanoparticles may be an effective method to reduce thermal losses in magnetic refrigeration applications.
Large tensile superelasticity from intermartensitic transformations in Ni49Mn28Ga23 single crystal
NASA Astrophysics Data System (ADS)
Chernenko, V. A.; Villa, E.; Salazar, D.; Barandiaran, J. M.
2016-02-01
A multistep superelastic behavior, with up to a 12% strain, is reported in a <001>P-oriented Ni49Mn28Ga23 single crystal. The observed behavior is produced by intermartensitic transformations during the tensile stress-strain measurements at temperatures between -140 °C and +60 °C. The tensile stress-temperature phase diagram and the stress dependence of the intermartensitic transformation entropies have been obtained. These results provide important input for theoretical modeling of the phase transformations in these alloys and show promising mechanical properties of the classical Ni-Mn-Ga ferromagnetic shape memory alloys.
Phase transformation of GaAs at high pressures and temperatures
NASA Astrophysics Data System (ADS)
Ono, Shigeaki; Kikegawa, Takumi
2018-02-01
The high-pressure behavior of gallium arsenide, GaAs, has been investigated using an in-situ X-ray powder diffraction technique in a diamond anvil cell combined with a resistance heating method, at pressures and temperatures up to 25 GPa and 1000 K respectively. The pressure-induced phase transition from a zincblende to an orthorhombic (Cmcm) structure was observed. This transition occurred at 17.3 GPa and at room temperature, where a negative temperature dependence for this transition was confirmed. The transition boundary was determined to be P (GPa) = 18.0 - 0.0025 × T (K).
Phase Behavior of Patchy Spheroidal Fluids.
NASA Astrophysics Data System (ADS)
Carpency, Thienbao
We employ Gibbs-ensemble Monte Carlo computer simulation to assess the impact of shape anisotropy and particle interaction anisotropy on the phase behavior of a colloidal (or, by extension, protein) fluid comprising patchy ellipsoidal particles, with an emphasis on critical behavior. More specifically, we obtain the fluid-fluid equilibrium phase diagram of hard prolate ellipsoids having Kern-Frenkel surface patches under a variety of conditions and study the critical behavior of these fluids as a function of particle shape parameters. It is found that the dependence of the critical temperature on aspect ratio for particles having the same volume can be described approximately in terms of patch solid angles. In addition, ordering in the fluid that is associated with particle elongation is also found to be an important factor in dictating phase behavior. The G. Harold & Leila Y. Mathers Foundation.
Yurkiv, Vitaliy; Costa, Rémi; Schiller, Günter; Friedrich, K. Andreas
2016-01-01
Abstract The focus of this study is the measurement and understanding of the sulfur poisoning phenomena of Ni/gadolinium‐doped ceria (CGO) based solid oxide fuel cells (SOFC). Cells with Ni/CGO10 and NiCu5/CGO40 anodes were characterized by using impedance spectroscopy at different temperatures and H2/H2O fuel ratios. The short‐term sulfur poisoning behavior was investigated systematically at temperatures of 800–950 °C, current densities of 0–0.75 A cm−2, and H2S concentrations of 1–20 ppm. A sulfur poisoning mitigation effect was observed at high current loads and temperatures. The poisoning behavior was reversible for short exposure times. It was observed that the sulfur‐affected processes exhibited significantly different relaxation times that depend on the Gd content in the CGO phase. Moreover, it was demonstrated that the capacitance of Ni/CGO10 anodes is strongly dependent on the temperature and gas‐phase composition, which reflects a changing Ce3+/Ce4+ ratio. PMID:27863123
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashraf, Arman R.; Ryan, Justin J.; Satkowski, Michael M.
Block copolymers have been extensively studied due to their ability to spontaneously self-organize into a wide variety of morphologies that are valuable in energy-, medical- and conservation-related (nano)technologies. While the phase behavior of bicomponent diblock and triblock copolymers is conventionally governed by temperature and individual block masses, we demonstrate that their phase behavior can alternatively be controlled through the use of blocks with random monomer sequencing. Block random copolymers (BRCs), i.e., diblock copolymers wherein one or both blocks is a random copolymer comprised of A and B repeat units, have been synthesized, and their phase behavior, expressed in terms ofmore » the order-disorder transition (ODT), has been investigated. Our results establish that, depending on the block composition contrast and molecular weight, BRCs can microphase-separate. We also report that the predicted ODT can be generated at relatively constant molecular weight and temperature with these new soft materials. This sequence-controlled synthetic strategy is extended to thermoplastic elastomeric triblock copolymers differing in chemistry and possessing a random-copolymer midblock.« less
Microstructural Evolution of Thor™ 115 Creep-Strength Enhanced Ferritic Steel
NASA Astrophysics Data System (ADS)
Ortolani, Matteo; D'Incau, Mirco; Ciancio, Regina; Scardi, Paolo
2017-12-01
A new ferritic steel branded as Thor™ 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy, cast to different product forms such as plates and tubes, was extensively tested to assess the high-temperature time-dependent mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide and nitride phases. Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term property stability, was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray Powder Diffraction on specimens aged up to 50,000 hours. A thermodynamic modeling supports presentation and evaluation of the experimental results. The evolution of precipitates in the new alloy confirms the retention of the strengthening by secondary phases, even after long-term exposure at high temperature. The deleterious conversion of nitrides into Z phase is shown to be in line with, or even slower than that of the comparable ASME grade 91 steel.
Size dependent anomalous dielectric behavior in nanoparticle Gd2 O 3 : SiO2 glass composite system
NASA Astrophysics Data System (ADS)
Mukherjee, Sudip; Lin, Yu-Hsing; Kao, Ting-Hui; Chou, C. C.; Yang, H. D.
2011-03-01
Gd 2 O3 (0.5 mol%) nanoparticles have been synthesized in a silica glass matrix by the sol-gel method at calcination temperatures of 700& circ; C and above. Compared with the parent material Si O2 , this nano-glass composite system shows enhancement of dielectric constant and diffuse phase transition along with magnetodielectric effect around room temperature. Observed conduction mechanism is found to be closely related to the thermally activated oxygen vacancies. Magnetodielectric behavior is strongly associated with magnetoresistance changes, depending on the nanoparticle size and separation. Such a material might be treated as a potential candidate for device miniaturization.
A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces
NASA Astrophysics Data System (ADS)
Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.
2001-11-01
We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.
Anomalous interfacial tension temperature dependence of condensed phase drops in magnetic fluids
NASA Astrophysics Data System (ADS)
Ivanov, Aleksey S.
2018-05-01
Interfacial tension temperature dependence σ(T) of the condensed phase (drop-like aggregates) in magnetic fluids undergoing field induced phase transition of the "gas-liquid" type was studied experimentally. Numerical analysis of the experimental data has revealed the anomalous (if compared to ordinary one-component fluids) behavior of the σ(T) function for all tested magnetic colloid samples: the condensed phase drops at high T ≈ 75 C exhibit higher σ(T) than the drops condensed at low T ≈ 20 C. The σ(T) behavior is explained by the polydispersity of magnetic colloids: at high T, only the largest colloidal particles are able to take part in the field induced condensation; thus, the increase of T causes the growth of the average particle diameters inside the drop-like aggregates, what in its turn results in the growth of σ(T). The result is confirmed by qualitative theoretical estimations and qualitative experimental observation of the condensed phase "evaporation" process after the applied magnetic field is removed: the drops that are formed due to capillary instability of the drop-like aggregates retract by one order of magnitude faster at high T, and the evaporation of the drops slows down at high T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.
This chapter first describes tests to investigate the temporal evolution of the volume fraction of ceramic phases, the evolution of micro-damage, and the self-healing behavior of the glass ceramic sealant used in SOFCs, then a phenomenological model based on mechanical analogs is developed to describe the temperature dependent Young’s modulus of glass ceramic seal materials. It was found that after the initial sintering process, further crystallization of the glass ceramic sealant does not stop, but slows down and reduces the residual glass content while boosting the ceramic crystalline content. Under the long-term operating environment, distinct fibrous and needle-like crystals inmore » the amorphous phase disappeared, and smeared/diffused phase boundaries between the glass phase and ceramic phase were observed. Meanwhile, the micro-damage was induced by the cooling-down process from the operating temperature to the room temperature, which can potentially degrade the mechanical properties of the glass/ceramic sealant. The glass/ceramic sealant self-healed upon reheating to the SOFC operating temperature, which can restore the mechanical performance of the glass/ceramic sealant. The phenomenological model developed here includes the effects of continuing aging and devitrification on the ceramic phase volume fraction and the resulted mechanical properties of glass ceramic seal material are considered. The effects of micro-voids and self-healing are also considered using a continuum damage mechanics (CDM) model. The formulation is for glass/ceramic seal in general, and it can be further developed to account for effects of various processing parameters. This model was applied to G18, and the temperature-dependent experimental measurements were used to calibrate the modeling parameters and to validate the model prediction.« less
Ma, Jian; Dasgupta, Purnendu K; Yang, Bingcheng
2011-02-01
Gas-liquid solubility equilibria (Henry's Law behavior) are of basic interest to many different areas. Temperature-dependent aqueous solubilities of various organic compounds are of fundamental importance in many branches of environmental science. In a number of situations, the gas/dissolved solute of interest has characteristic spectroscopic absorption that is distinct from that of the solvent. For such cases, we report facile nondestructive rapid measurement of the temperature-dependent Henry's law constant (K(H)) in a static sealed spectrometric cell. Combined with a special cell design, multiwavelength measurement permits a large range of K(H) to be spanned. It is possible to derive the K(H) values from the absorbance measured in the gas phase only, the liquid phase only (preferred), and both phases. Underlying principles are developed, and all three approaches are illustrated for a solute like acetone in water. A thermostatic spectrophotometer cell compartment, widely used and available, facilitates rapid temperature changes and allows rapid temperature-dependent equilibrium measurements. Applicability is shown for both acetone and methyl isobutyl ketone. Very little sample is required for the measurement; the K(H) for 4-hydroxynonenal, a marker for oxidative stress, is measured to be 56.9 ± 2.6 M/atm (n = 3) at 37.4 °C with 1 mg of the material available.
NASA Astrophysics Data System (ADS)
Ochoa, Diego Alejandro; García, Jose Eduardo
2016-04-01
The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL-NTS properties soften around its orthorhombic to tetragonal phase transition.
NASA Astrophysics Data System (ADS)
Kantar, Ersin
2016-08-01
In this paper, within the framework of the effective-field theory with correlation, mixed spin-1/2 and spin-3/2 bilayer system on a square lattice is studied. The characteristic behaviors for the magnetic hysteresis, compensation types and phase diagrams depending on effect of the surface and interface exchange parameters as well as crystal field are investigated. From the behavior of total magnetization as a function of the magnetic field and temperature, we obtain the single, double and triple hysteresis loops and the L-, Q-, P-, S-, and N-type compensation behaviors in the system. Moreover, we detect the more effective the J1 and crystal field parameters on the bilayer Ising model according to the behaviors of the phase diagrams.
Magnetic field dependence of Griffith phase and magnetocaloric effect in Ca0.85Dy0.15MnO3
NASA Astrophysics Data System (ADS)
Nag, Ripan; Sarkar, Bidyut; Pal, Sudipta
2018-03-01
Temperature and Magnetic field dependent magnetization properties of electron doped polycrystalline sample Ca0.85Dy0.15MnO3 (CDMO) prepared by solid state reaction method have been studied. The sample undergoes ferromagnetic to paramagnetic phase transition at about 111k. From the study of magnetic properties in terms of Arrot plots it is observed that the phase transition is of 2nd order. The Griffith phase behavior of the sample is suppressed with the increase of the applied magnetic field strength H. We have estimated the magnetic entropy change from experimental magnetization and temperature data. For a magnetic field change of 8000 Oe, the maximum value of magnetic entropy change arrives at a value of 1.126 J-kg-1 k-1 in this magnetocaloric material.
Synthesis, microstructure and dielectric properties of zirconium doped barium titanate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rohtash; School of Physical Sciences, Jawaharlal Nehru University, New Delhi; Asokan, K.
2016-05-23
We report on synthesis, microstructural and relaxor ferroelectric properties of Zirconium(Zr) doped Barium Titanate (BT) samples with general formula Ba(Ti{sub 1-x}Zr{sub x})O{sub 3} (x=0.20, 0.35). These lead-free ceramics were prepared by solid state reaction route. The phase transition behavior and temperature dependent dielectric properties and composition dependent ferroelectric properties were investigated. XRD analysis at room temperature confirms phase purity of the samples. SEM observations revealed retarded grain growth with increasing Zr mole fraction. Dielectric properties of BZT ceramics is influenced significantly by small addition of Zr mole fraction. With increasing Zr mole fraction, dielectric constant decreases while FWHM and frequencymore » dispersion increases. Polarization vs electric field hysteresis measurements reveal ferroelectric relaxor phase at room temperature. The advantages of such substitution maneuvering towards optimizing ferroelectric properties of BaTiO{sub 3} are discussed.« less
Temperature dependent elastic properties of γ-phase U – 8 wt% Mo
Steiner, M. A.; Garlea, E.; Creasy, J.; ...
2017-12-28
Polycrystalline elastic moduli and stiffness tensor components of γ-phase U – 8 wt% Mo have been determined by resonant ultrasound spectroscopy in the temperature range of 25-650°C. The ambient temperature elastic properties are compared to results measured via other experimental methods and show reasonable agreement, though there is considerable variation of these properties within the literature at both the U – 8 wt% Mo composition and as a function of Mo concentration. The Young’s modulus of U – 8 wt% Mo measured in this study decreases steadily with temperature at a rate that is slower than trends previously observed atmore » similar Mo concentrations, though the difference is not statistically significant. This first measurement of the temperature dependent elastic stiffness tensor of a polycrystalline U-Mo alloy clarifies that the behavior of the Young’s modulus is due to a strongly weakening C 11 polycrystalline stiffness tensor component, along with milder decreases in C 12 and C 44. The unique partially auxetic properties recently predicted for singlecrystalline U-Mo are discussed in regard to their possible impact on the polycrystalline behavior of the alloy.« less
Temperature dependent elastic properties of γ-phase U – 8 wt% Mo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, M. A.; Garlea, E.; Creasy, J.
Polycrystalline elastic moduli and stiffness tensor components of γ-phase U – 8 wt% Mo have been determined by resonant ultrasound spectroscopy in the temperature range of 25-650°C. The ambient temperature elastic properties are compared to results measured via other experimental methods and show reasonable agreement, though there is considerable variation of these properties within the literature at both the U – 8 wt% Mo composition and as a function of Mo concentration. The Young’s modulus of U – 8 wt% Mo measured in this study decreases steadily with temperature at a rate that is slower than trends previously observed atmore » similar Mo concentrations, though the difference is not statistically significant. This first measurement of the temperature dependent elastic stiffness tensor of a polycrystalline U-Mo alloy clarifies that the behavior of the Young’s modulus is due to a strongly weakening C 11 polycrystalline stiffness tensor component, along with milder decreases in C 12 and C 44. The unique partially auxetic properties recently predicted for singlecrystalline U-Mo are discussed in regard to their possible impact on the polycrystalline behavior of the alloy.« less
Quantum percolation phase transition and magnetoelectric dipole glass in hexagonal ferrites
NASA Astrophysics Data System (ADS)
Rowley, S. E.; Vojta, T.; Jones, A. T.; Guo, W.; Oliveira, J.; Morrison, F. D.; Lindfield, N.; Baggio Saitovitch, E.; Watts, B. E.; Scott, J. F.
2017-07-01
Hexagonal ferrites not only have enormous commercial impact (£2 billion/year in sales) due to applications that include ultrahigh-density memories, credit-card stripes, magnetic bar codes, small motors, and low-loss microwave devices, they also have fascinating magnetic and ferroelectric quantum properties at low temperatures. Here we report the results of tuning the magnetic ordering temperature in PbF e12 -xG axO19 to zero by chemical substitution x . The phase transition boundary is found to vary as TN˜(1-x /xc ) 2 /3 with xc very close to the calculated spin percolation threshold, which we determine by Monte Carlo simulations, indicating that the zero-temperature phase transition is geometrically driven. We find that this produces a form of compositionally tuned, insulating, ferrimagnetic quantum criticality. Close to the zero-temperature phase transition, we observe the emergence of an electric dipole glass induced by magnetoelectric coupling. The strong frequency behavior of the glass freezing temperature Tm has a Vogel-Fulcher dependence with Tm finite, or suppressed below zero in the zero-frequency limit, depending on composition x . These quantum-mechanical properties, along with the multiplicity of low-lying modes near the zero-temperature phase transition, are likely to greatly extend applications of hexaferrites into the realm of quantum and cryogenic technologies.
Temperature and field dependent magnetization studies on nano-crystalline ZnFe2O4 thin films
NASA Astrophysics Data System (ADS)
Sahu, B. N.; Suresh, K. G.; Venkataramani, N.; Prasad, Shiva; Krishnan, R.
2018-05-01
Single phase nano-crystalline zinc ferrite (ZnFe2O4) thin films were deposited on fused quartz substrate using the pulsed laser deposition technique. The films were deposited at different substrate temperatures. The field dependence of magnetization at 10 K shows hysteresis loops for all the samples. Temperature dependence of the field cooled (FC) and zero field cooled (ZFC) magnetization indicated irreversible behavior between the FC and ZFC data, and the irreversibility depends on the measuring magnetic field. The thermo-magnetic irreversibility in the magnetization data is correlated with the magnitude of the applied field and the coercivity (HC) obtained from the M-H loops.
NASA Astrophysics Data System (ADS)
Nagoe, Atsushi; Iwaki, Shinji; Oguni, Masaharu; Tôzaki, Ken-ichi
2014-09-01
Phase transition behaviors of confined pure water and confined water doped with a small amount of hydroxylamine (HA) with a mole fraction of xHA = 0.03 were examined by high-pressure differential thermal analyses at 0.1, 50, 100, and 150 MPa; the average diameters of silica pores used were 2.0 and 2.5 nm. A liquid-liquid phase transition (LLPT) of the confined HA-doped water was clearly observed and its pressurization effect could be evaluated, unlike in the experiments on undoped water. It was found that pressurization causes the transition temperature (Ttrs) to linearly decrease, indicating that the low-temperature phase has a lower density than the high-temperature one. Transition enthalpy (ΔtrsH) decreased steeply with increasing pressure. Considering the linear decrease in Ttrs with increasing pressure, the steep decrease in ΔtrsH indicates that the LLPT effect of the HA-doped water attenuates with pressure. We present a new scenario of the phase behavior concerning the LLPT of pure water based on the analogy from the behavior of slightly HA-doped water, where a liquid-liquid critical point (LLCP) and a coexistence line are located in a negative-pressure regime but not in a positive-pressure one. It is reasonably understood that doping a small amount of HA into water results in negative chemical pressurization and causes the LLPT to occur even at ambient pressure.
Temperature anomalies of shock and isentropic waves of quark-hadron phase transition
NASA Astrophysics Data System (ADS)
Konyukhov, A. V.; Iosilevskiy, I. L.; Levashov, P. R.; Likhachev, A. P.
2018-01-01
In this work, we consider a phenomenological equation of state, which combinesstatistical description for hadron gas and a bag-model-based approach for the quark-gluon plasma. The equation of state is based on the excluded volume method in its thermodynamically consistent variant from Satarov et al [2009 Phys. At. Nucl. 72 1390]. The characteristic shape of the Taub adiabats and isentropes in the phase diagram is affected by the anomalous pressure-temperature dependence along the curve of phase equilibrium. The adiabats have kink points at the boundary of the two-phase region, inside which the temperature decreases with compression. Thermodynamic properties of matter observed in the quark-hadron phase transition region lead to hydrodynamic anomalies (in particular, to the appearance of composite compression and rarefaction waves). On the basis of relativistic hydrodynamics equations we investigate and discuss the structure and anomalous temperature behavior in these waves.
Polymorphism, mesomorphism, and metastability of monoelaidin in excess water.
Chung, H; Caffrey, M
1995-11-01
The polymorphic and metastable phase behavior of monoelaidin dry and in excess water was studied by using high-sensitivity differential scanning calorimetry and time-resolved x-ray diffraction in the temperature range of 4 degrees C to 60 degrees C. To overcome problems associated with a pronounced thermal history-dependent phase behavior, simultaneous calorimetry and time-resolved x-ray diffraction measurements were performed on individual samples. Monoelaidin/water samples were prepared at room temperature and stored at 4 degrees C for up to 1 week before measurement. The initial heating scan from 4 degrees C to 60 degrees C showed complex phase behavior with the sample in the lamellar crystalline (Lc0) and cubic (Im3m, Q229) phases at low and high temperatures, respectively. The Lc0 phase transforms to the lamellar liquid crystalline (L alpha) phase at 38 degrees C. At 45 degrees C, multiple unresolved lines appeared that coexisted with those from the L alpha phase in the low-angle region of the diffraction pattern that have been assigned previously to the so-called X phase (Caffrey, 1987, 1989). With further heating the X phase converts to the Im3m cubic phase. Regardless of previous thermal history, cooling calorimetric scans revealed a single exotherm at 22 degrees C, which was assigned to an L alpha+cubic (Im3m, Q229)-to-lamellar gel (L beta) phase transition. The response of the sample to a cooling followed by a reheating or isothermal protocol depended on the length of time the sample was incubated at 4 degrees C. A model is proposed that reconciles the complex polymorphic, mesomorphic, and metastability interrelationships observed with this lipid/water system. Dry monoelaidin exists in the lamellar crystalline (beta) phase in the 4 degrees C to 45 degrees C range. The beta phase transforms to a second lamellar crystalline polymorph identified as beta* at 45 degrees C that subsequently melts at 57 degrees C. The beta phase observed with dry monoelaidin is identical to the LcO phase formed by monoelaidin that was dispersed in excess water and that had not been previously heated.
Polymorphism, mesomorphism, and metastability of monoelaidin in excess water.
Chung, H; Caffrey, M
1995-01-01
The polymorphic and metastable phase behavior of monoelaidin dry and in excess water was studied by using high-sensitivity differential scanning calorimetry and time-resolved x-ray diffraction in the temperature range of 4 degrees C to 60 degrees C. To overcome problems associated with a pronounced thermal history-dependent phase behavior, simultaneous calorimetry and time-resolved x-ray diffraction measurements were performed on individual samples. Monoelaidin/water samples were prepared at room temperature and stored at 4 degrees C for up to 1 week before measurement. The initial heating scan from 4 degrees C to 60 degrees C showed complex phase behavior with the sample in the lamellar crystalline (Lc0) and cubic (Im3m, Q229) phases at low and high temperatures, respectively. The Lc0 phase transforms to the lamellar liquid crystalline (L alpha) phase at 38 degrees C. At 45 degrees C, multiple unresolved lines appeared that coexisted with those from the L alpha phase in the low-angle region of the diffraction pattern that have been assigned previously to the so-called X phase (Caffrey, 1987, 1989). With further heating the X phase converts to the Im3m cubic phase. Regardless of previous thermal history, cooling calorimetric scans revealed a single exotherm at 22 degrees C, which was assigned to an L alpha+cubic (Im3m, Q229)-to-lamellar gel (L beta) phase transition. The response of the sample to a cooling followed by a reheating or isothermal protocol depended on the length of time the sample was incubated at 4 degrees C. A model is proposed that reconciles the complex polymorphic, mesomorphic, and metastability interrelationships observed with this lipid/water system. Dry monoelaidin exists in the lamellar crystalline (beta) phase in the 4 degrees C to 45 degrees C range. The beta phase transforms to a second lamellar crystalline polymorph identified as beta* at 45 degrees C that subsequently melts at 57 degrees C. The beta phase observed with dry monoelaidin is identical to the LcO phase formed by monoelaidin that was dispersed in excess water and that had not been previously heated. Images FIGURE 3 PMID:8580338
NASA Astrophysics Data System (ADS)
Vazhenin, V. A.; Guseva, V. B.; Fokin, A. V.; Potapov, A. P.; Artyomov, M. Yu.
2011-04-01
Abrupt changes in resonance positions, hysteretic temperature behavior, and coexistence of phases, which indicate a first-order phase transition, have been revealed from measurements of temperature dependences of the EPR spectra of Gd3+ and Mn4+ centers in the vicinity of the structural transition of lanthanum gallate. The transformation of monoclinic Gd3+ centers into trigonal Gd3+ centers upon the phase transition has been used to estimate the adequacy of two approximations of the superposition model for parameters of the zero-field splitting of the ground state.
NASA Astrophysics Data System (ADS)
Arian Zad, Hamid; Ananikian, Nerses
2018-04-01
The mixed spin-(1,1/2) Ising–Heisenberg double sawtooth ladder containing a mixture of both spin-1 and spin-1/2 nodal atoms, and the spin-1/2 interstitial dimers are approximately solved by the transfer-matrix method. Here, we study in detail the ground-state phase diagrams, also influences of the bilinear exchange coupling on the rungs and cyclic four-spin exchange interaction in square plaquette of each block on the magnetization and magnetic susceptibility of the suggested ladder at low temperature. Such a double sawtooth ladder may be found in a Shastry-Sutherland lattice-type. In spite of the spin ordering of odd and even blocks being different from each other, due to the commutation relation between all different block Hamiltonians, phase diagrams, magnetization behavior and thermodynamic properties of the model are the same for odd and even blocks. We show that at low temperature, both exchange couplings can change the quality and quantity of the magnetization plateaus versus the magnetic field changes. Specially, we find a new magnetization plateau M/Ms= 5/6 for this model. Besides, we examine the magnetic susceptibility and specific heat of the model in detail. It is proven that behaviors of the magnetization and the magnetic susceptibility coincide at low temperature. The specific heat displays diverse temperature dependencies, which include a Schottky-type peak at a special temperature interval. We observe that with increase of the bilinear exchange coupling on the rungs, second peak temperature dependence grows.
NASA Astrophysics Data System (ADS)
Chia, Elbert E. M.; La-O-Vorakiat, Chan; Kadro, Jeannette; Salim, Teddy; Zhao, Daming; Ahmed, Towfiq; Lam, Yeng Ming; Zhu, Jian-Xin; Marcus, Rudolph; Michel-Beyerle, Maria-Elisabeth
Using terahertz time-domain spectroscopy (THz-TDS), we study the temperature-dependent phonon modes of the organometallic lead iodide perovskite CH3NH3PbI3 thin film across the terahertz (0.5-3 THz) and temperature (20-300 K) ranges. These modes are related to the vibration of the Pb-I bonds. We found that two phonon modes in the tetragonal phase at room temperature split into four modes in the low-temperature orthorhombic phase. By use of the Lorentz model fitting, we analyze the critical behavior of this phase transition. King Mongkut's University of Technology Thonburi (Grant No. SCI58-003), Singapore MOE Tier 1 (RG13/12, RG123/14), ONR, ARO, NTU Biophysics Center, LANL LDRD, LANL CINT.
Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains
NASA Astrophysics Data System (ADS)
Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.
2016-10-01
We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.
Unusual electro-optical behavior in a wide-temperature BPIII cell.
Chen, Hui-Yu; Lu, Sheng-Feng; Hsieh, Yi-Chun
2013-04-22
A low driving voltage and fast response blue phase III (BPIII) liquid-crystal device with very low dielectric anisotropy is demonstrated. To stabilize BPIII in a wide temperature range (> 15°C), a chiral molecule with good solubility was chosen. By studying field-dependent polarization state of the transmitting light, it was found that the field-induced birefringence becomes saturated in the high field. However, the transmitting intensity exhibits a tendency to increase as the electric field increases. This indicates that the electro-optical behavior in BPIII device may be from the flexoelectric effect, which induces tilted optical axis and then induces birefringence. Because the phase transition from BPIII to chiral nematic phase does not happen, the device shows no hysteresis effect and no residual birefringence, exhibits fast response, and can be a candidate for fast photonic application.
Kesler, Michael S.; Goyel, Sonalika; Ebrahimi, Fereshteh; ...
2016-11-15
The mechanical properties of novel alloys with two-phase γ-TiAl + σ-Nb 2Al microstructures were evaluated under compression at room temperature. Microstructures of varying scales were developed through solutionizing and aging heat treatments and the volume fraction of phases were varied with changes in composition. Ultra-fine, aged γ+σ microstructures were achieved for the alloys which affectively retained high volume fractions of the parent β-phase upon quenching from the solutionizing temperature. The yield strength and compressive strain to failure of these alloys show a strong dependence on the relative scale and volume fraction of phases. Surprisingly, the hard brittle σ-phase particles weremore » not found to control fracture in the refined microstructures.« less
Effect of Starch on Sintering Behavior for Fabricating Porous Cordierite Ceramic
NASA Astrophysics Data System (ADS)
Li, Ye; Cao, Wei; Gong, Lunlun; Zhang, Ruifang; Cheng, Xudong
2016-10-01
Porous cordierite ceramics were prepared with starch as pore-forming agent by solid-state method. The green bodies were sintered at 1,100-1,400 °C for 2 h. The characterization was focused on thermal analysis, phase evolution, sintering behavior, porosity and micro-structural changes. The results show that cordierite becomes the main crystallization phase at 1,200 °C. The shrinkage behavior shows the most obvious dependence on the sintering temperature and starch content, and it can be divided into three stages. Moreover, the open porosity increases with the increase of starch content, but the pore-forming effectivity decreases. Nevertheless, compared with the open porosity curves, the bulk density curves are more in line with the linear rule. The microphotographs show the densification process with the sintering temperature and the variation of pore connectivity with the starch content.
NASA Astrophysics Data System (ADS)
Ning, Guo
1995-06-01
The solid-phase behavior of [n-C9H19NH3]2CuCl4 was investigated by infrared spectroscopy. The nature of the three solid phases (phase I, phase II, and phase III) is discussed. A temperature-dependent study of infrared spectra provides evidence for the occurrence of structural phase transitions related to the dynamics of the alkyl chains and -NH3 polar heads. The phase transition at Tc1 (22°C) arises from variation in the interaction and packing structure of the chain. The phase transition at Tc2 (34°C) is related to variation in partial conformational order-disorder at the intramolecular level. The GTG or GTG‧ and small concentration of TG structures near the CH3 group are generated in phase III (above 38°C).
NASA Astrophysics Data System (ADS)
Thomaz, M. T.; Corrêa Silva, E. V.
2016-03-01
We derive the exact Helmholtz free energy (HFE) of the standard and staggered one-dimensional Blume-Emery-Griffiths (BEG) model in the presence of an external longitudinal magnetic field. We discuss in detail the thermodynamic behavior of the ferromagnetic version of the model, which exhibits magnetic field-dependent plateaux in the z-component of its magnetization at low temperatures. We also study the behavior of its specific heat and entropy, both per site, at finite temperature. The degeneracy of the ground state, at T=0, along the lines that separate distinct phases in the phase diagram of the ferromagnetic BEG model is calculated, extending the study of the phase diagram of the spin-1 antiferromagnetic (AF) Ising model in S.M. de Souza and M.T. Thomaz, J. Magn. and Magn. Mater. 354 (2014) 205 [5]. We explore the implications of the equality of phase diagrams, at T=0, of the ferromagnetic BEG model with K/|J| = - 2 and of the spin-1 AF Ising model for D/|J| > 1/2.
Properties and Potential of Two (ni,pt)ti Alloys for Use as High-temperature Actuator Materials
NASA Technical Reports Server (NTRS)
Noebe, Ronald; Gaydosh, Darrell; Padula, Santo, II.; Garg, Anita; Biles, Tiffany; Nathal, Michael
2005-01-01
The microstructure, transformation temperatures, basic tensile properties, shape memory behavior, and work output for two (Ni,Ti)Pt high-temperature shape memory alloys have been characterized. One was a Ni30Pt20Ti50 alloy (referred to as 20Pt) with transformation temperatures above 230 C and the other was a Ni20Pt30Ti50 alloy (30Pt) with transformation temperatures about 530 C. Both materials displayed shape memory behavior and were capable of 100% (no-load) strain recovery for strain levels up to their fracture limit (3-4%) when deformed at room temperature. For the 20Pt alloy, the tensile strength, modulus, and ductility dramatically increased when the material was tested just about the austenite finish (A(sub f)) temperature. For the 30Pt alloy, a similar change in yield behavior at temperatures above the A(sub f) was not observed. In this case the strength of the austentite phase was at best comparable and generally much weaker than the martensite phase. A ductility minimum was also observed just below the A(sub s) temperature in this alloy. As a result of these differences in tensile behavior, the two alloys performed completely different when thermally cycled under constant load. The 20Pt alloy behaved similar to conventional binary NiTi alloys with work output due to the martensite-to-austenite transformation initially increasing with applied stress. The maximum work output measured in the 20Pt alloy was nearly 9 J/cu cm and was limited by the tensile ductility of the material. In contrast, the martensite-to-austenite transformation in the 30Pt alloy was not capable of performing work against any bias load. The reason for this behavior was traced back to its basic mechanical properties, where the yield strength of the austenite phase was similar to or lower than that of the martensite phase, depending on temperature. Hence, the recovery or transformation strain for the 30Pt alloy under load was essentially zero, resulting in zero work output.
NASA Astrophysics Data System (ADS)
Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.
2018-05-01
High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.
NASA Astrophysics Data System (ADS)
Young, Nicholas Philip
The design of environmentally-benign polymer processing techniques is an area of growing interest, motivated by the desire to reduce the emission of volatile organic compounds. Recently, supercritical carbon dioxide (scCO 2) has gained traction as a viable candidate to process polymers both as a solvent and diluent. The focus of this work was to elucidate the nature of the interactions between scCO2 and polymers in order to provide rational insight into the molecular interactions which result in the unexpected mixing thermodynamics in one such system. The work also provides insight into the nature of pairwise thermodynamic interactions in multicomponent polymer-polymer-diluent blends, and the effect of these interactions on the phase behavior of the mixture. In order to quantify the strength of interactions in the multicomponent system, the binary mixtures were characterized individually in addition to the ternary blend. Quantitative analysis of was made tractable through the use of a model miscible polymer blend containing styrene-acrylonitrile copolymer (SAN) and poly(methyl methacrylate) (dPMMA), a mixture which has been considered for a variety of practical applications. In the case of both individual polymers, scCO2 is known to behave as a diluent, wherein the extent of polymer swelling depends on both temperature and pressure. The solubility of scCO 2 in each polymer as a function of temperature and pressure was characterized elsewhere. The SAN-dPMMA blend clearly exhibited lower critical solution temperature behavior, forming homogeneous mixtures at low temperatures and phase separating at elevated temperature. These measurements allowed the determination of the Flory-Huggins interaction parameter chi23 for SAN (species 2) and dPMMA (species 3) as a function of temperature at ambient pressure, in the absence of scCO2 (species 1). Characterization of the phase behavior of the multicomponent (ternary) mixture was also carried out by SANS. An in situ SANS environment was developed to allow measurement of blend miscibility in the presence of scCO2. The pressure-temperature phase behavior of the system could be mapped by approaching the point of phase separation by spinodal decomposition through pressure increases at constant temperature. For a roughly symmetric mixture of SAN and dPMMA, the temperature at which phase separation occurred could be decreased by over 125 °C. The extent to which the phase behavior of the multicomponent system could be tuned motivated further investigation into the interactions present within the homogeneous mixtures. Analysis of the SANS results for homogeneous mixtures was undertaken using a new multicomponent formalism of the random phase approximation theory. The scattering profiles obtained from the scCO2-SAN-dPMMA system could be predicted with reasonable success. The success of the theoretical predictions was facilitated by directly employing the interactions found in the binary experiments. Exploitation of the condition of homogeneity with respect to chemical potential allowed determination of interaction parameters for scCO2-SAN and 2-dPMMA within the multicomponent mixture (chi12 and chi13, respectively). Studying this system over a large range of the supercritical regime yielded insight on the nature of interactions in the system. Near the critical point of scCO 2, chi12 and chi13 increase monotonically as a function of pressure. Conversely, at elevated temperature away from the critical point, the interaction parameters are found to go through a minimum as a pressure increases. Analysis of the critical phenomenon associated with scCO2 suggests that the observed dependence of chi12 and chi13 on pressure are related to the magnitude of scCO 2 density fluctuations and the proximity of the system to the so-called density fluctuation ridge. By tuning the system parameters of the multicomponent mixture, the phase behavior can be altered through the balance of pairwise interactions been the constituent species. The presence of scCO2 in the mixtures appears to eliminate the existence of the metastable state that epitomizes most polymer-polymer mixtures. Thus it is shown that knowledge of the individual pairwise interactions in such multicomponent mixtures can greatly influence the resulting phase behavior, and provide insight into the design of improved functional materials with decreased environmental impacts.
NASA Astrophysics Data System (ADS)
Shekaari, Ashkan; Abolhassani, Mohammad Reza
2017-06-01
First-principles molecular dynamics has been applied to inquire into the melting behaviors of n-atom (n = 6, 10) graphene quantum dots (GQD6 and zigzag GQD10) within the temperature range of T = 0-500 K. The temperature dependence of the geometry of each quantum dot is thoroughly evaluated via calculating the related shape deformation parameters and the eigenvalues of the quadrupole tensors. Examining the variations of some phase-transition indicators such as root-mean-square bond length fluctuations and mean square displacements broadly proposes the value of Tm = 70 K for the melting point of GQD6 while a continuous, two-stage phase transition has been concluded for zigzag GQD10.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Donglin, E-mail: han.donglin.8n@kyoto-u.ac.jp; Majima, Masatoshi; Uda, Tetsuya, E-mail: materials_process@aqua.mtl.kyoto-u.ac.jp
2013-09-15
High temperature X-ray diffraction measurements were performed under dry and wet atmospheres to investigate phase behavior of BaCe{sub 0.8}Y{sub 0.2}O{sub 3−δ} (BCY20). In the temperature range of 30–400 °C, BCY20 was identified to be rhombohedral and monoclinic structures in dry and wet atmospheres, respectively. Larger lattice volumes were obtained in a wet atmosphere due to a chemical expansion induced by water incorporation. A gradual change in diffraction peak shape due to a phase transformation from rhombohedral to monoclinic was observed at 300 °C when moisture was introduced into the atmosphere. These results indicated clearly the dependence of phase behavior ofmore » BCY20 on partial pressure of water vapor in atmosphere. - Graphical abstract: A BaCe{sub 0.8}Y{sub 0.2}O{sub 3−δ} rhombohedral phase transited to a monoclinic phase at 300 °C when moisture was introduced into the atmosphere. Display Omitted - Highlights: • Different structures for hydrated and dehydrated BaCe{sub 0.8}Y{sub 0.2}O{sub 3−δ} (BCY20). • Slow phase transition from rhombohedral to monoclinic at 300 °C in wet atmosphere. • Chemical expansion of BCY20 in wet atmosphere. • Importance of considering moisture when discussing phase behavior of BCY20.« less
Superconductivity-related insulating behavior.
Sambandamurthy, G; Engel, L W; Johansson, A; Shahar, D
2004-03-12
We present the results of an experimental study of superconducting, disordered, thin films of amorphous indium oxide. These films can be driven from the superconducting phase to a reentrant insulating state by the application of a perpendicular magnetic field (B). We find that the high-B insulator exhibits activated transport with a characteristic temperature, TI. TI has a maximum value (TpI) that is close to the superconducting transition temperature (Tc) at B=0, suggesting a possible relation between the conduction mechanisms in the superconducting and insulating phases. Tp(I) and Tc display opposite dependences on the disorder strength.
Gamma-radiation and isotopic effect on the critical behavior in triglycine selenate crystals
NASA Astrophysics Data System (ADS)
Kassem, M. E.; Hamed, A. E.; Abulnasr, L.; Abboudy, S.
1994-11-01
Isotopic effects in pure and γ-irradiated triglycine selenate crystals were investigated using the specific heat ( Cp) technique. The obtained results showed an interesting dependence of the critical behavior of Cp on the deuterium content. With increasing content of deuterium, the character of the phase transition changed from a second order (γ-type) to a first order transition. After γ-irradiation, the behavior of Cp around the phase transition region was essentially affected. The transition temperature, Tc, decreased and Δ Cp depressed, and the transition became broad. It was noted that the effect of γ-irradiation is opposite to the isotopic effect.
Modeling the thickness dependence of the magnetic phase transition temperature in thin FeRh films
NASA Astrophysics Data System (ADS)
Ostler, Thomas Andrew; Barton, Craig; Thomson, Thomas; Hrkac, Gino
2017-02-01
FeRh and its first-order phase transition can open new routes for magnetic hybrid materials and devices under the assumption that it can be exploited in ultra-thin-film structures. Motivated by experimental measurements showing an unexpected increase in the phase transition temperature with decreasing thickness of FeRh on top of MgO, we develop a computational model to investigate strain effects of FeRh in such magnetic structures. Our theoretical results show that the presence of the MgO interface results in a strain that changes the magnetic configuration which drives the anomalous behavior.
NASA Astrophysics Data System (ADS)
Alécio, Raphael Cavalcante; Strečka, Jozef; Lyra, Marcelo L.
2018-04-01
The thermodynamic behavior of an Ising-Heisenberg triangular tube with Heisenberg intra-rung and Ising inter-rung interactions is exactly obtained in an external magnetic field within the framework of the transfer-matrix method. We report rigorous results for the temperature dependence of the magnetization, entropy, pair correlations and specific heat, as well as typical iso-entropic curves. The discontinuous field-driven ground-state phase transitions are reflected in some anomalous thermodynamic behavior as for instance a striking low-temperature peak of the specific heat and an enhanced magnetocaloric effect. It is demonstrated that the intermediate magnetization plateaus shrink in and the relevant sharp edges associated with the magnetization jump round off upon increasing temperature.
NASA Astrophysics Data System (ADS)
Deng, J.; Lee, K. K. M.; Du, Z.; Benedetti, L. R.
2016-12-01
In situ temperature measurements in the laser-heated diamond-anvil cell (LHDAC) are among the most fundamental experiments undertaken in high-pressure science. Despite its importance, few efforts have been made to examine the alteration of thermal radiation spectra of hot samples by wavelength-dependent absorption of the sample itself together with temperature gradients within samples while laser heating and their influence on temperature measurement. For example, iron-bearing minerals show strong wavelength dependent absorption in the wavelength range used to determine temperature, which, together with temperature gradients can account for largely aliased apparent temperatures (e.g., 1200 K deviation for a 4000 K melting temperature) in some experiments obtained by fitting of detected thermal radiation intensities. As such, conclusions of melting temperatures, phase diagrams and partitioning behavior, may be grossly incorrect for these materials. In general, wavelength-dependent absorption and temperature gradients of samples are two key factors to consider in order to rigorously constrain temperatures, which have been largely ignored in previous LHDAC studies. A reevaluation of temperatures measured in recent high-profile papers will be reviewed.
NASA Astrophysics Data System (ADS)
Han, Dan-Dan; Lu, Da-Yong; Meng, Fan-Ling; Yu, Xin-Yu
2018-03-01
Temperature-dependent electron paramagnetic resonance (EPR) study was employed to detect oxygen vacancy defects in the tetragonal Ba(Ti1-xCrx)O3 (x = 5%) ceramic for the first time. In the rhombohedral phase below -150 °C, an EPR signal at g = 1.955 appeared in the insulating Ba(Ti1-xCrx)O3 (x = 5%) ceramic with an electrical resistivity of 108 Ω cm and was assigned to ionized oxygen vacancy defects. Ba(Ti1-xCrx)O3 ceramics exhibited a tetragonal structure except Ba(Ti1-xCrx)O3 (x = 10%) with a tetragonal-hexagonal mixed phase and a first-order phase transition dielectric behavior (ε‧m > 11,000). Mixed valence Cr ions could coexist in ceramics, form CrTi‧-VOrad rad or CrTirad-TiTi‧ defect complexes and make no contribution to a dielectric peak shift towards low temperature.
Terahertz vibrational modes of the rigid crystal phase of succinonitrile.
Nickel, Daniel V; Delaney, Sean P; Bian, Hongtao; Zheng, Junrong; Korter, Timothy M; Mittleman, Daniel M
2014-04-03
Succinonitrile (N ≡ C-CH2-CH2-C ≡ N), an orientationally disordered molecular plastic crystal at room temperature, exhibits rich phase behavior including a solid-solid phase transition at 238 K. In cooling through this phase transition, the high-temperature rotational disorder of the plastic crystal phase is frozen out, forming a rigid crystal that is both spatially and orientationally ordered. Using temperature-dependent terahertz time-domain spectroscopy, we characterize the vibrational modes of this low-temperature crystalline phase for frequencies from 0.3 to 2.7 THz and temperatures ranging from 20 to 220 K. Vibrational modes are observed at 1.122 and 2.33 THz at 90 K. These modes are assigned by solid-state density functional theory simulations, corresponding respectively to the translation and rotation of the molecules along and about their crystallographic c-axis. In addition, we observe a suppression of the phonon modes as the concentration of dopants, in this case a lithium salt (LiTFSI), increases, indicating the importance of doping-induced disorder in these ionic conductors.
Phase Behavior in Blends of Asymmetrical Polyolefins
NASA Astrophysics Data System (ADS)
Nedoma, Alisyn Jenise
This dissertation presents the most comprehensive study of chi to date for a single pair of homopolymers. Polyisobutylene (component B) and deuterated polybutadiene with 63 % 1,2 addition (component C) were selected for this study because they exhibit a large window of miscibility and may be tailored to cross the spinodal at experimentally accessible temperatures. Binary blends were designed across a range of values for NB/ NC and the composition of the blend, φB, to study the effect of these parameters on the measured value, chi sc. In addition to the strict temperature dependence presumed for chi, this study documented a composition and molecular weight dependence. The empirical expression for chisc, measured using small angle neutron scattering, was three times more dependent on composition then the expression for chi used to predict thermodynamic behavior. Despite this three-fold diminished dependence on φB, the composition-dependent chi profoundly affected the phase behavior of binary blends. A range of values was studied for NB/ NC ≤ 1, and in all cases φB,cirt was found to be < 0.5, in stark contrast to the expectation of Flory-Huggins Theory that φB,crit ≥ 0.5. This effect was shown to result from the combined effects of a composition-dependent chi and N B/NC removed from values of 1. Remarkable agreement was obtained between the predicted phase diagrams and measured phase transitions, over a range of values for NB/ NC and φB, by accounting for the composition and molecular weight dependence of chi. The miscibility of binary B/C blends was used as the basis for designing a diblock copolymer (component A-C) to order immiscible binary blends of polyisobutylene and deuterated polybutadiene with 89 % 1,2 addition (component A). The copolymer comprised one block chemically identical to component C (miscible in component B) and one block chemically identical to component A. This is in contrast to the majority of ternary blend studies which comprise A/B/A-B polymer systems with neutral interactions between each homopolymer and the corresponding block of the diblock copolymer. Ternary A/B/A-C blends exhibit a favorable interaction between the B homopolymer and C block, demonstrated by the miscibility of B/C blends. The A-C diblock copolymer surfactant can produce microstructures when added to A/B blends at much lower concentrations of copolymer than for an analagous A-B copolymer. This dissertation introduces the use of lamellar structure factor that fits scattering profiles unsuitable for the microemulsion fit. In addition, the lamellar fits include as adjustable parameters the size of each microdomain and corresponding interfacial width. These fit values agree quantitatively with independently generated predictions using self-consistent field theory, indicating a broad understanding of the physical parameters that affect thermodynamic behavior in the A/B/A-C system studied. This dissertation presents a study for which the concentration of diblock copolymer was fixed and the composition of the A and B homopolymers was systematically varied across a range of compositions including φA,crit. The experiment corresponded to tracing the copolymer isopleth on a ternary phase prism. Theoretical groups have predicted a rich phase behavior along the isopleth for similar ternary systems, however, the observed phase behavior was quantitatively identical for all blends studied. Self-consistent field theory predictions agreed with fit values of the domain spacing and microdomain widths. There was no discernible correlation between φA and phase behavior. This finding, and that of the study with critical A/B/A-C blends, together suggest that NA/NB correlates strongly with the phase behavior of a blend, while φ A does not. This relationship, captured by mean-field theory, provides a simple method for tuning the phase behavior of polymer nanocomposites without using additional surfactant. (Abstract shortened by UMI.)
Unusual strain glassy phase in Fe doped Ni2Mn1.5In0.5
NASA Astrophysics Data System (ADS)
Nevgi, R.; Priolkar, K. R.
2018-01-01
Fe doped Ni2Mn1.5In0.5, particularly, Ni2Mn1.4Fe0.1In0.5, despite having an incommensurate, modulated 7M martensitic structure at room temperature exhibits frequency dependent behavior of storage modulus and loss which obeys the Vogel-Fulcher law as well as shows ergodicity breaking between zero field cooled and field cooled strain measurements just above the transition temperature. Both frequency dependence and ergodicity breaking are characteristics of a strain glassy phase and occur due to the presence of strain domains which are large enough to present signatures of long range martensitic order in diffraction but are non-interacting with other strain domains due to the presence of Fe impurities.
Tang, Yun-Zhi; Wang, Bin; Zhou, Hai-Tao; Chen, Shao-Peng; Tan, Yu-Hui; Wang, Chang-Feng; Yang, Chang-Shan; Wen, He-Rui
2018-02-05
Dielectric relaxations have widely applied on high permittivity capacitors, dielectric switches, ferroelectrics, pyroelectrics, and electrical insulating materials. However, few investigations of large dielectric relaxation behaviors on organic-inorganic hybrid materials have been documented before. Here we present a novel two-dimensional succinimide lithium(I) hybrid compound, [Li(PDD) 2 ClO 4 ] n , 1, (PDD = 2,5-pyrrolidinedione = succinimide) which shows reversible phase transition behavior in the vicinity of 228 K accompanied by an unusual symmetry breaking from I4 1 /amd to C2/c. X-ray single crystal diffractions analysis indicates the twist motion of pyrrolidine heterocycles, and order-disorder motion of ClO 4 - anions triggered the reversible phase transition. By means of an intuitive crystallographic model (rattling ion model), we further illustrated the mechanism of the interesting reversible phase transition. Particularly, 1 shows ultralarge dielectric relaxation behavior in the vicinity of the phase transition by its dielectric constant dependence on temperatures and frequencies as well as its Cole-Cole relation.
Transient electronic anisotropy in overdoped NaF e1 -xC oxAs superconductors
NASA Astrophysics Data System (ADS)
Liu, Shenghua; Zhang, Chunfeng; Deng, Qiang; Wen, Hai-hu; Li, Jian-xin; Chia, Elbert E. M.; Wang, Xiaoyong; Xiao, Min
2018-01-01
By combining polarized pump-probe spectroscopic and Laue x-ray diffraction measurements, we have observed nonequivalent transient optical responses with the probe beam polarized along the x and y axes in overdoped NaF e1 -xC oxAs superconductors. Such transient anisotropic behavior has been uncovered in the tetragonal phase with the doping level and temperature range far from the borders of static nematic phases. The measured transient anisotropy can be well explained as a result of nematic fluctuation driven by an orbital order with energy splitting of the dx z- and dy z-dominant bands. In addition, the doping level dependence and the pressure effect of the crossover temperature show significant differences between the transient nematic fluctuation and static nematic phase, implying spin and orbital orders may play different roles in static and transient nematic behaviors.
Cui, J.; Roy, B.; Tanatar, M. A.; ...
2015-11-06
We report 75As nuclear magnetic resonance (NMR) measurements of single-crystalline Ca(Fe 1–xCo x) 2As 2 (x=0.023, 0.028, 0.033, and 0.059) annealed at 350°C for 7 days. From the observation of a characteristic shape of 75As NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of x=0 (T N=170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in x=0.023 (T N=106 K) and x=0.028 (T N=53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1/T 1), although stripe-type AFM spin fluctuationsmore » are realized in the paramagnetic state as in the case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature T* that was nearly independent of Co-substitution concentration, and it is attributed to a pseudogaplike behavior in the spin excitation spectra of these systems. The T* feature finds correlation with features in the temperature-dependent interplane resistivity, ρc(T), but not with the in-plane resistivity ρa(T). The temperature evolution of anisotropic stripe-type AFM spin fluctuations is tracked in the paramagnetic and pseudogap phases by the 1/T 1 data measured under magnetic fields parallel and perpendicular to the c axis. As a result, based on our NMR data, we have added a pseudogaplike phase to the magnetic and electronic phase diagram of Ca(Fe 1–xCo x) 2As 2.« less
NASA Astrophysics Data System (ADS)
Somwan, Siripong; Funsueb, Narit; Limpichaipanit, Apichart; Ngamjarurojana, Athipong
2018-05-01
In this work, Pb0.91La0.09(Zr1-xTix)0.9775O3 ceramics where x = 0.3, 0.35 and 0.4 (the composition near MPB) were prepared by solid solution method. After fabrication process, electrical property was measured by LCR meter. Polarization and induced strain behavior of the samples were investigated by using interferometry technique modified with Sawyer-Tower circuit at various temperatures. The results of dielectric, polarization and induced strain properties were due to the Zr/Ti ratios, which changed their behavior when temperature was varied (30-70 °C). The normal to macro-micro domains to relaxor and paraelectric phase transition was demonstrated which is related to linear or nonlinear increase of polarization and induced strain as a function of applied subswitching electric field.
Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; ...
2014-10-03
We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 -3 s -1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords« less
Sierra, M B; Pedroni, V I; Buffo, F E; Disalvo, E A; Morini, M A
2016-06-01
Temperature dependence of the zeta potential (ZP) is proposed as a tool to analyze the thermotropic behavior of unilamellar liposomes prepared from binary mixtures of phosphatidylcholines in the absence or presence of ions in aqueous suspensions. Since the lipid phase transition influences the surface potential of the liposome reflecting a sharp change in the ZP during the transition, it is proposed as a screening method for transition temperatures in complex systems, given its high sensitivity and small amount of sample required, that is, 70% less than that required in the use of conventional calorimeters. The sensitivity is also reflected in the pre-transition detection in the presence of ions. Plots of phase boundaries for these mixed-lipid vesicles were constructed by plotting the delimiting temperatures of both main phase transition and pre-transition vs. the lipid composition of the vesicle. Differential scanning calorimetry (DSC) studies, although subject to uncertainties in interpretation due to broad bands in lipid mixtures, allowed the validation of the temperature dependence of the ZP method for determining the phase transition and pre-transition temperatures. The system chosen was dipalmitoylphosphatidylcholine/dimyristoyl phosphatidylcholine (DMPC/DPPC), the most common combination in biological membranes. This work may be considered as a starting point for further research into more complex lipid mixtures with functional biological importance. Copyright © 2016 Elsevier B.V. All rights reserved.
Pressure effects in the itinerant antiferromagnetic metal TiAu
Wolowiec, C. T.; Fang, Y.; McElroy, C. A.; ...
2017-06-07
Here, we report the pressure dependence of the Néel temperature T N up to P ≈ 27 GPa for the recently discovered itinerant antiferromagnet (IAFM) TiAu. The T N(P) phase boundary exhibits unconventional behavior in which the Néel temperature is enhanced from T N ≈ 33 K at ambient pressure to a maximum of T N ≈ 35 K occurring at P ≈ 5.5 GPa. Upon a further increase in pressure, T N is monotonically suppressed to ~22 K at P ≈ 27 GPa. We also find a crossover in the temperature dependence of the electrical resistivity ρ in themore » antiferromagnetic (AFM) phase that is coincident with the peak in T N(P), such that the temperature dependence of ρ = ρ 0 + A nT n changes from n≈3 during the enhancement of T N to n ≈ 2 during the suppression of T N. Based on an extrapolation of the T N(P) data to a possible pressure-induced quantum critical point, we estimate the critical pressure to be P c ≈ 45 GPa.« less
Sreenilayam, S P; Agra-Kooijman, D M; Panov, V P; Swaminathan, V; Vij, J K; Panarin, Yu P; Kocot, A; Panov, A; Rodriguez-Lojo, D; Stevenson, P J; Fisch, Michael R; Kumar, Satyendra
2017-03-01
A heptamethyltrisiloxane liquid crystal (LC) exhibiting I-SmA^{*}-SmC^{*} phases has been characterized by calorimetry, polarizing microscopy, x-ray diffraction, electro-optics, and dielectric spectroscopy. Observations of a large electroclinic effect, a large increase in the birefringence (Δn) with electric field, a low shrinkage in the layer thickness (∼1.75%) at 20 °C below the SmA^{*}-SmC^{*} transition, and low values of the reduction factor (∼0.40) suggest that the SmA^{*} phase in this material is of the de Vries type. The reduction factor is a measure of the layer shrinkage in the SmC^{*} phase and it should be zero for an ideal de Vries. Moreover, a decrease in the magnitude of Δn with decreasing temperature indicates the presence of the temperature-dependent tilt angle in the SmA^{*} phase. The electro-optic behavior is explained by the generalized Langevin-Debye model as given by Shen et al. [Y. Shen et al., Phys. Rev. E 88, 062504 (2013)10.1103/PhysRevE.88.062504]. The soft-mode dielectric relaxation strength shows a critical behavior when the system goes from the SmA^{*} to the SmC^{*} phase.
NASA Astrophysics Data System (ADS)
Sreenilayam, S. P.; Agra-Kooijman, D. M.; Panov, V. P.; Swaminathan, V.; Vij, J. K.; Panarin, Yu. P.; Kocot, A.; Panov, A.; Rodriguez-Lojo, D.; Stevenson, P. J.; Fisch, Michael R.; Kumar, Satyendra
2017-03-01
A heptamethyltrisiloxane liquid crystal (LC) exhibiting I -Sm A*-Sm C* phases has been characterized by calorimetry, polarizing microscopy, x-ray diffraction, electro-optics, and dielectric spectroscopy. Observations of a large electroclinic effect, a large increase in the birefringence (Δ n ) with electric field, a low shrinkage in the layer thickness (˜1.75%) at 20 °C below the Sm A*-Sm C* transition, and low values of the reduction factor (˜0.40) suggest that the Sm A* phase in this material is of the de Vries type. The reduction factor is a measure of the layer shrinkage in the Sm C* phase and it should be zero for an ideal de Vries. Moreover, a decrease in the magnitude of Δ n with decreasing temperature indicates the presence of the temperature-dependent tilt angle in the Sm A* phase. The electro-optic behavior is explained by the generalized Langevin-Debye model as given by Shen et al. [Y. Shen et al., Phys. Rev. E 88, 062504 (2013), 10.1103/PhysRevE.88.062504]. The soft-mode dielectric relaxation strength shows a critical behavior when the system goes from the Sm A* to the Sm C* phase.
Electronic transport in smectic liquid crystals
NASA Astrophysics Data System (ADS)
Shiyanovskaya, I.; Singer, K. D.; Twieg, R. J.; Sukhomlinova, L.; Gettwert, V.
2002-04-01
Time-of-flight measurements of transient photoconductivity have revealed bipolar electronic transport in phenylnaphthalene and biphenyl liquid crystals (LC), which exhibit several smectic mesophases. In the phenylnaphthalene LC, the hole mobility is significantly higher than the electron mobility and exhibits different temperature and phase behavior. Electron mobility in the range ~10-5 cm2/V s is temperature activated and remains continuous at the phase transitions. However, hole mobility is nearly temperature independent within the smectic phases, but is very sensitive to smectic order, 10-3 cm2/V s in the smectic-B (Sm-B) and 10-4 cm2/V s in the smectic-A (Sm-A) mesophases. The different behavior for holes and electron transport is due to differing transport mechanisms. The electron mobility is apparently controlled by rate-limiting multiple shallow trapping by impurities, but hole mobility is not. To explain the lack of temperature dependence for hole mobility within the smectic phases we consider two possible polaron transport mechanisms. The first mechanism is based on the hopping of Holstein small polarons in the nonadiabatic limit. The polaron binding energy and transfer integral values, obtained from the model fit, turned out to be sensitive to the molecular order in smectic mesophases. A second possible scenario for temperature-independent hole mobility involves the competion between two different polaron mechanisms involving so-called nearly small molecular polarons and small lattice polarons. Although the extracted transfer integrals and binding energies are reasonable and consistent with the model assumptions, the limited temperature range of the various phases makes it difficult to distinguish between any of the models. In the biphenyl LCs both electron and hole mobilities exhibit temperature activated behavior in the range of 10-5 cm2/V s without sensitivity to the molecular order. The dominating transport mechanism is considered as multiple trapping in the impurity sites. Temperature-activated mobility was treated within the disorder formalism, and activation energy and width of density of states have been calculated.
Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen
2016-01-21
The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.
Negative Magnetoresistance in Amorphous Indium Oxide Wires
Mitra, Sreemanta; Tewari, Girish C; Mahalu, Diana; Shahar, Dan
2016-01-01
We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions. PMID:27876859
NASA Astrophysics Data System (ADS)
Basu, Raktima; Dhara, Sandip
2018-04-01
Vanadium is a transition metal with multiple oxidation states and V2O5 is the most stable form among them. Besides catalysis, chemical sensing, and photo-chromatic applications, V2O5 is also reported to exhibit a semiconductor to metal transition (SMT) at a temperature range of 530-560 K. Even though there are debates in using the term "SMT" for V2O5, the metallic behavior above the transition temperature and its origin are of great interest in the scientific community. In this study, V2O5 nanostructures were deposited on a SiO2/Si substrate by the vapour transport method using Au as a catalyst. Temperature dependent electrical measurement confirms the SMT in V2O5 without any structural change. Temperature dependent photoluminescence analysis proves the appearance of oxygen vacancy related peaks due to reduction of V2O5 above the transition temperature, as also inferred from temperature dependent Raman spectroscopic studies. The newly evolved defect levels in the V2O5 electronic structure with increasing temperature are also understood from the downward shift of the bottom most split-off conduction bands due to breakdown of pdπ bonds leading to metallic behavior in V2O5 above the transition temperature.
PARTITIONING OF PERFLUOROOCTANOATE INTO PHOSPHATIDYLCHOLINE BILAYERS IS CHAIN LENGTH-INDEPENDENT
Xie, Wei; Bothun, Geoffrey D.; Lehmler, Hans-Joachim
2010-01-01
The chain length dependence of the interaction of PFOA, a persistent environmental contaminant, with dimyristoyl- (DMPC), dipalmitoyl- (DPPC) and distearoylphosphatidylcholine (DSPC) was investigated using steady-state fluorescence anisotropy spectroscopy, differential scanning calorimetry (DSC) and dynamic light scattering (DLS). PFOA caused a linear depression of the main phase transition temperature Tm while increasing the width of the phase transition of all three phosphatidylcholines. Although PFOA’s effect on the on Tm and the transition width decreased in the order DMPC > DPPC > DSPC, its relative effect on the phase behavior was largely independent of the phosphatidylcholine. PFOA caused swelling of DMPC but not DPPC and DSPC liposomes at 37°C in the DLS experiments, which suggests that PFOA partitions more readily into bilayers in the fluid phase. These findings suggest that PFOA’s effect on the phase behavior of phosphatidylcholines depends on the cooperativity and state (i.e., gel versus liquid phase) of the membrane. DLS experiments are also consistent with partial liposome solubilization at PFOA/lipid molar ratios > 1, which suggests the formation of mixed PFOA-lipid micelles. PMID:20096277
Phonon thermodynamics of iron and cementite
NASA Astrophysics Data System (ADS)
Mauger, Lisa Mary
The vibrational properties of materials are essential to understanding material stability and thermodynamics. In this thesis I outline vibrational thermodynamic models and the experimental tools that provide evidence on phonon behavior. The introductory section discusses the history of metallurgy and thermodynamic theory, with an emphasis on the role of iron and cementite, two important components of steels. The thermodynamic framework for understanding vibrational material behavior is provided alongside the growing body of experimental and computational tools that provide physical insight on vibrational properties. The high temperature vibrational behavior of iron and cementite are explored within this context in the final chapters. Body-centered-cubic iron exhibits decreasing phonon energies at elevated temperatures. The observed energy change in not uniform across phonon modes in iron, and specific phonon modes show significant decreases in energy that are not explained by simple vibrational models. This anomalously energy decrease is linked to the second-nearest-neighbor interactions in the bcc structure, through examination of fitted interatomic force constants. The large changes in phonon energy result in a significant increase in the vibrational entropy, called the nonharmonic vibrational entropy, which emulates the temperature behavior of the magnetic entropy across the Curie temperature. The nonharmonic vibrational entropy is attributed to interactions between the vibrations and state of magnetic disorder in the material, which persists above the magnetic transitions and extends the stability region of the bcc phase. Orthorombic cementite, Fe3C, exhibits anisotropic magneto-volume behavior in the ferromagnetic phase including regions very low thermal expansion. The phonon modes of cementite show anomalous temperature dependence, with low energy phonon modes increasing their energy at elevated temperatures in the ferromagnetic phase. This behavior is reversed after the magnetic transition and these same phonon modes lower their energies with temperature, consistent with observed thermal expansion. This atypical phonon behavior lowers the vibrational entropy of cementite up to the Curie temperature. The experimentally observed increase in low energy acoustic phonons affects the elastic behavior of Fe3C, increasing the isotropy of elastic response. First principles calculations link the observed phonon energy increases to specific vibrational modes that are polarized along the b-axis, which aligns with the closest Fe-Fe bonding direction. The nonharmonic behavior of the vibrational modes are discussed in the context of other observations of anomalous anisotropic magneto-volume behavior in Fe3C.
Evidence for phase change memory behavior in In2(SexTe1-x)3 thin films
NASA Astrophysics Data System (ADS)
Matheswaran, P.; Sathyamoorthy, R.; Asokan, K.
2012-08-01
Crystalline In2(Se0.5Te0.5)3 thin films are prepared by thermal evaporation and subsequently annealed at 300°C in Ar atmosphere. SEM image of the crystalline sample shows spherical nature of constituents, distributed uniformly throughout the surface. Island structure of the surface is clearly visible after switching. Elemental composition of the sample remains unchanged even after switching. Temperature dependent I-V analysis shows stoichiometric phase change at 80°C [from In2(Se0.5Te0.5)3 to In2Te3 and In2Se3 phase], where current switches three orders of magnitude higher than that in lower temperature. Further rise in temperature results increase in current only after switching, where threshold voltage remains constant.
Infrared reflectivity investigation of the phase transition sequence in Pr0.5Ca0.5MnO3
NASA Astrophysics Data System (ADS)
Ribeiro, J. L.; Vieira, L. G.; Gomes, I. T.; Araújo, J. P.; Tavares, P.; Almeida, B. G.
2016-06-01
This work reports an infrared reflectivity study of the phase transition sequence observed in Pr0.5Ca0.5MnO3. The need to measure over an extended spectral range in order to properly take into account the effects of the high frequency polaronic absorption is circumvented by adopting a simple approximate method, based on the asymmetry present in the Kramers Kronig inversion of the phonon spectrum. The temperature dependence of the phonon optical conductivity is then investigated by monitoring the behavior of three relevant spectral moments of the optical conductivity. This combined methodology allows us to disclose subtle effects of the orbital, charge and magnetic orders on the lattice dynamics of the compound. The characteristic transition temperatures inferred from the spectroscopic measurements are compared and correlated with those obtained from the temperature dependence of the induced magnetization and electrical resistivity.
Static and dynamic properties of two-dimensional Coulomb clusters.
Ash, Biswarup; Chakrabarti, J; Ghosal, Amit
2017-10-01
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaowang; Heo, Tae Wook; Wood, Brandon C.
Solid-state hydrogen storage materials undergo complex phase transformations whose kinetics is often limited by hydrogen diffusion. Among metal hydrides, palladium hydride undergoes a diffusional phase transformation upon hydrogen uptake, during which the hydrogen diffusivity varies with hydrogen composition and temperature. Here we perform robust statistically-averaged molecular dynamics simulations to obtain a well-converged analytical expression for hydrogen diffusivity in bulk palladium that is valid throughout all stages of the reaction. Our studies confirm significant dependence of the diffusivity on composition and temperature that elucidate key trends in the available experimental measurements. Whereas at low hydrogen compositions, a single process dominates, atmore » high hydrogen compositions, diffusion is found to exhibit behavior consistent with multiple hopping barriers. Further analysis, supported by nudged elastic band computations, suggests that the multi-barrier diffusion can be interpreted as two distinct mechanisms corresponding to hydrogen-rich and hydrogen-poor local environments.« less
Zhou, Xiaowang; Heo, Tae Wook; Wood, Brandon C.; ...
2018-03-09
Solid-state hydrogen storage materials undergo complex phase transformations whose kinetics is often limited by hydrogen diffusion. Among metal hydrides, palladium hydride undergoes a diffusional phase transformation upon hydrogen uptake, during which the hydrogen diffusivity varies with hydrogen composition and temperature. Here we perform robust statistically-averaged molecular dynamics simulations to obtain a well-converged analytical expression for hydrogen diffusivity in bulk palladium that is valid throughout all stages of the reaction. Our studies confirm significant dependence of the diffusivity on composition and temperature that elucidate key trends in the available experimental measurements. Whereas at low hydrogen compositions, a single process dominates, atmore » high hydrogen compositions, diffusion is found to exhibit behavior consistent with multiple hopping barriers. Further analysis, supported by nudged elastic band computations, suggests that the multi-barrier diffusion can be interpreted as two distinct mechanisms corresponding to hydrogen-rich and hydrogen-poor local environments.« less
Anomalous eutectic formation in the solidification of undercooled Co-Sn alloys
NASA Astrophysics Data System (ADS)
Liu, L.; Wei, X. X.; Huang, Q. S.; Li, J. F.; Cheng, X. H.; Zhou, Y. H.
2012-11-01
Three Co-Sn alloys with compositions around the eutectic point were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by monitoring the temperature recalescence and examing the solidification structure. It is revealed that the primary phase during rapid solidification changes complexly with the increasing undercooling in the off-eutectic alloys, while coupled eutectic growth takes place at all undercoolings in the eutectic alloy. Two types of anomalous eutectics form in the alloys: one evolving from coupled eutectics and the other from single phase dendrites or seaweeds. The crystallographic orientation of eutectic phases in the anomalous eutectic is dependent on which type their precursors belong to.
Lipid diffusion in alcoholic environment.
Rifici, Simona; Corsaro, Carmelo; Crupi, Cristina; Nibali, Valeria Conti; Branca, Caterina; D'Angelo, Giovanna; Wanderlingh, Ulderico
2014-08-07
We have studied the effects of a high concentration of butanol and octanol on the phase behavior and on the lateral mobility of 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) by means of differential scanning calorimetry and pulsed-gradient stimulated-echo (PGSTE) NMR spectroscopy. A lowering of the lipid transition from the gel to the liquid-crystalline state for the membrane-alcohol systems has been observed. NMR measurements reveal three distinct diffusions in the DPPC-alcohol systems, characterized by a high, intermediate, and slow diffusivity, ascribed to the water, the alcohol, and the lipid, respectively. The lipid diffusion process is promoted in the liquid phase while it is hindered in the interdigitated phase due to the presence of alcohols. Furthermore, in the interdigitated phase, lipid lateral diffusion coefficients show a slight temperature dependence. To the best of our knowledge, this is the first time that lateral diffusion coefficients on alcohol with so a long chain, and at low temperatures, are reported. By the Arrhenius plots of the temperature dependence of the diffusion coefficients, we have evaluated the apparent activation energy in both the liquid and in the interdigitated phase. The presence of alcohol increases this value in both phases. An explanation in terms of a free volume model that takes into account also for energy factors is proposed.
Thermal expansion coefficients of obliquely deposited MgF2 thin films and their intrinsic stress.
Jaing, Cheng-Chung
2011-03-20
This study elucidates the effects of columnar angles and deposition angles on the thermal expansion coefficients and intrinsic stress behaviors of MgF2 films with columnar microstructures. The behaviors associated with temperature-dependent stresses in the MgF2 films are measured using a phase-shifting Twyman-Green interferometer with a heating stage and the application of a phase reduction algorithm. The thermal expansion coefficients of MgF2 films at various columnar angles were larger than those of glass substrates. The intrinsic stress in the MgF2 films with columnar microstructures was compressive, while the thermal stress was tensile. The thermal expansion coefficients of MgF2 films with columnar microstructures and their intrinsic stress evidently depended on the deposition angle and the columnar angle.
High-temperature magnetostructural transition in van der Waals-layered α - MoCl 3
McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; ...
2017-11-07
Here, the crystallographic and magnetic properties of the cleavable 4d 3 transition metal compound α–MoCl 3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagneticmore » at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.« less
High-temperature magnetostructural transition in van der Waals-layered α -MoCl3
NASA Astrophysics Data System (ADS)
McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; May, Andrew F.; Cooper, Valentino R.; Lindsay, Lucas; Puretzky, Alexander; Liang, Liangbo; KC, Santosh; Cakmak, Ercan; Calder, Stuart; Sales, Brian C.
2017-11-01
The crystallographic and magnetic properties of the cleavable 4 d3 transition metal compound α -MoCl3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagnetic at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.
Equilibrium polymerization models of re-entrant self-assembly
NASA Astrophysics Data System (ADS)
Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.
2009-04-01
As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Yang, Mengjin; Li, Zhen
2016-07-08
Researchers have debated whether methylammonium lead iodide (MAPbI3), with a perovskite crystal structure, is ferroelectric and therefore contributes to the current--voltage hysteresis commonly observed in hybrid perovskite solar cells (PSCs). We thoroughly investigated temperature-dependent polarization, dielectric, and impedance spectroscopies, and we found no evidence of ferroelectric effect in a MAPbI3 thin film at normal operating conditions. Therefore, the effect does not contribute to the hysteresis in PSCs, whereas the large component of ionic migration observed may play a critical role. Our temperature-based polarization and dielectric studies find that MAPbI3 exhibits different electrical behaviors below and above ca. 45 degrees C,more » suggesting a phase transition around this temperature. In particular, we report the activation energies of ionic migration for the two phases and temperature-dependent permittivity of MAPbI3. This study contributes to the understanding of the material properties and device performance of hybrid perovskites.« less
The α-γ-ɛ triple point and phase boundaries of iron under shock compression
NASA Astrophysics Data System (ADS)
Li, Jun; Wu, Qiang; Xue, Tao; Geng, Huayun; Yu, Jidong; Jin, Ke; Li, Jiabo; Tan, Ye; Xi, Feng
2017-07-01
The phase transition of iron under shock compression has attracted much attention in recent decades because of its importance in fields such as condensed matter physics, geophysics, and metallurgy. At room temperature, the transition of iron from the α-phase (bcc) to the ɛ-phase (hpc) occurs at a stress of 13 GPa. At high temperature, a triple point followed by transformation to the γ-phase (fcc) is expected. However, the details of the high-temperature phase transitions of iron are still under debate. Here, we investigate the phase-transition behavior of polycrystalline iron under compression from room temperature to 820 K. The results show that the shock-induced phase transition is determined unequivocally from the measured three-wave-structure profiles, which clearly consist of an elastic wave, a plastic wave, and a phase-transition wave. The phase transition is temperature-dependent, with an average rate Δσtr/ΔT of -6.91 MPa/K below 700 K and -34.7 MPa/K at higher temperatures. The shock α-ɛ and α-γ phase boundaries intersect at 10.6 ± 0.53 GPa and 763 K, which agrees with the α-ɛ-γ triple point from early shock wave experiments and recent laser-heated diamond-anvil cell resistivity and in situ X-ray diffraction data but disagrees with the shock pressure-temperature phase diagram reported in 2009 by Zaretsky [J. Appl. Phys. 106, 023510 (2009)].
NASA Astrophysics Data System (ADS)
Yamaguchi, Hironori; Tamekuni, Yusuke; Iwasaki, Yoshiki; Otsuka, Rei; Hosokoshi, Yuko; Kida, Takanori; Hagiwara, Masayuki
2017-06-01
We successfully synthesize single crystals of the verdazyl radical α -2 ,3 ,5 -Cl3 -V. Ab initio molecular orbital calculations indicate that the two dominant antiferromagnetic interactions, J1 and J2 (α =J2/J1≃0.56 ), form an S =1 /2 distorted square lattice. We explain the magnetic properties based on the S =1 /2 square lattice Heisenberg antiferromagnet using the quantum Monte Carlo method, and examine the effects of the lattice distortion and the interplane interaction contribution. In the low-temperature regions below 6.4 K, we observe anisotropic magnetic behavior accompanied by a phase transition to a magnetically ordered state. The electron spin resonance signals exhibit anisotropic behavior in the temperature dependence of the resonance field and the linewidth. We explain the frequency dependence of the resonance fields in the ordered phase using a mean-field approximation with out-of-plane easy-axis anisotropy, which causes a spin-flop phase transition at approximately 0.4 T for the field perpendicular to the plane. Furthermore, the anisotropic dipole field provides supporting information regarding the presence of the easy-axis anisotropy. These results demonstrate that the lattice distortion, anisotropy, and interplane interaction of this model are sufficiently small that they do not affect the intrinsic behavior of the S =1 /2 square lattice Heisenberg antiferromagnet.
NASA Astrophysics Data System (ADS)
Jha, Pardeep K.; Jha, Priyanka A.; Singh, Vikash; Kumar, Pawan; Asokan, K.; Dwivedi, R. K.
2015-01-01
Investigations on the solid solutions (1-x) BiFeO3 - (x) Ba Zr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) in the temperature range 300-750 K show colossal permittivity behavior and the occurrence of diffuse phase ferroelectric transition along with frequency dependent anomaly which disappears at temperature ˜450 K. For x = 0.3, these anomalies have been verified through differential scanning calorimetry and dielectric/impedance/conductivity measurements. The occurrence of peak in pyrocurrent (dPs/dT) vs. T plots also supports phase transition. With the increasing x, transition temperature decreases and diffusivity increases. This anomaly is absent at high frequencies (>100 kHz) in conductivity plots, indicating Polomska like surface phase transition, which is supported by modulus study.
NASA Astrophysics Data System (ADS)
Halder, Saswata; Dutta, Alo; Sinha, T. P.
2017-03-01
The AC electrical properties of polycrystalline double perovskite oxides A2HoSbO6 (A=Ba, Sr, Ca; AHS) synthesized by solid state reaction technique has been explored by using impedance spectroscopic studies. The Rietveld refinement of the room temperature X-ray diffraction data show that Ba2HoSbO6 (BHS) has cubic phase and Sr2HoSbO6 (SHS) and Ca2HoSbO6 (CHS) crystallize in monoclinic phase. The samples show significant frequency dispersion in their dielectric properties. The polydispersive nature of the relaxation mechanism is explained by the modified Cole-Cole model. The scaling behavior of dielectric loss indicate the temperature independence of the relaxation mechanism. The magnitude of the activation energy indicates that the hopping mechanism is responsible for carrier transport in AHS. The frequency dependent conductivity spectra follow the double power law. Impedance spectroscopic data presented in the Nyquist plot (Z" versus Z‧) are used to identify an equivalent circuit along with to know the grain, grain boundary and interface contributions. The constant phase element (CPE) is used to analyze the experimental response of BHS, SHS and CHS comprehending the contribution of different microstructural features to the conduction process. The temperature dependent electrical conductivity shows a semiconducting behavior.
Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition
NASA Astrophysics Data System (ADS)
Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.
2006-03-01
As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.
NASA Astrophysics Data System (ADS)
Chang, Sung-Jin; Park, Jong Bae; Lee, Gaehang; Kim, Hae Jin; Lee, Jin-Bae; Bae, Tae-Sung; Han, Young-Kyu; Park, Tae Jung; Huh, Yun Suk; Hong, Woong-Ki
2014-06-01
We demonstrate an experimental in situ observation of the temperature-dependent evolution of doping- and stress-mediated structural phase transitions in an individual single-crystalline VO2 nanobeam on a Au-coated substrate under exposure to hydrogen gas using spatially resolved Raman spectroscopy. The nucleation temperature of the rutile R structural phase in the VO2 nanobeam upon heating under hydrogen gas was lower than that under air. The spatial structural phase evolution behavior along the length of the VO2 nanobeam under hydrogen gas upon heating was much more inhomogeneous than that along the length of the same nanobeam under air. The triclinic T phase of the VO2 nanobeam upon heating under hydrogen gas transformed to the R phase and this R phase was stabilized even at room temperature in air after sample cooling. In particular, after the VO2 nanobeam with the R phase was annealed at approximately 250 °C in air, it exhibited the monoclinic M1 phase (not the T phase) at room temperature during heating and cooling cycles. These results were attributed to the interplay between hydrogen doping and stress associated with nanobeam-substrate interactions. Our study has important implications for engineering metal-insulator transition properties and developing functional devices based on VO2 nanostructures through doping and stress.We demonstrate an experimental in situ observation of the temperature-dependent evolution of doping- and stress-mediated structural phase transitions in an individual single-crystalline VO2 nanobeam on a Au-coated substrate under exposure to hydrogen gas using spatially resolved Raman spectroscopy. The nucleation temperature of the rutile R structural phase in the VO2 nanobeam upon heating under hydrogen gas was lower than that under air. The spatial structural phase evolution behavior along the length of the VO2 nanobeam under hydrogen gas upon heating was much more inhomogeneous than that along the length of the same nanobeam under air. The triclinic T phase of the VO2 nanobeam upon heating under hydrogen gas transformed to the R phase and this R phase was stabilized even at room temperature in air after sample cooling. In particular, after the VO2 nanobeam with the R phase was annealed at approximately 250 °C in air, it exhibited the monoclinic M1 phase (not the T phase) at room temperature during heating and cooling cycles. These results were attributed to the interplay between hydrogen doping and stress associated with nanobeam-substrate interactions. Our study has important implications for engineering metal-insulator transition properties and developing functional devices based on VO2 nanostructures through doping and stress. Electronic supplementary information (ESI) available: Illustration, photograph, Raman data, and EDX spectra. See DOI: 10.1039/c4nr01118j
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.
2015-06-28
Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops weremore » open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.« less
NASA Astrophysics Data System (ADS)
Zieliński, P.; More, M.; Cochon, E.; Lefebvre, J.
1996-03-01
The molecule of benzil (diphenylethanedione, C14H10O2) has been approximated by a system of rigid segments to model the lowest-frequency part of its vibrational spectrum. The interactions of internal degrees of freedom have been described with the use of phenomenological force constants. The structure of the trigonal (P3121) phase has then been modelled by means of a temperature-dependent atom-atom potential based on thermal motions of atoms. The potential gives the correct account of the softening of an E-symmetry, zone-center mode which underlies the phase transition to the low-temperature monoclinic phase (P21). The low-frequency modes at the zone center, supposed until now to be difference overtones, have been shown to result from a coupling between internal and external degrees of freedom. A low-frequency soft mode at the point M of the zone border has been found, which explains the behavior of observed peaks in diffuse x-ray scattering experiments. The values and the temperature evolution of the effective elastic constants calculated within the model are in a very good agreement with the results of ultrasonic and Brillouin scattering data. The model has been shown insufficient in the description of dielectric and piezoelectric properties of benzil.
Examination of the temperature dependent electronic behavior of GeTe for switching applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Champlain, James G.; Ruppalt, Laura B.; Guyette, Andrew C.
2016-06-28
The DC and RF electronic behaviors of GeTe-based phase change material switches as a function of temperature, from 25 K to 375 K, have been examined. In its polycrystalline (ON) state, GeTe behaved as a degenerate p-type semiconductor, exhibiting metal-like temperature dependence in the DC regime. This was consistent with the polycrystalline (ON) state RF performance of the switch, which exhibited low resistance S-parameter characteristics. In its amorphous (OFF) state, the GeTe presented significantly greater DC resistance that varied considerably with bias and temperature. At low biases (<1 V) and temperatures (<200 K), the amorphous GeTe low-field resistance dramatically increased, resulting in exceptionally highmore » amorphous-polycrystalline (OFF-ON) resistance ratios, exceeding 10{sup 9} at cryogenic temperatures. At higher biases and temperatures, the amorphous GeTe exhibited nonlinear current-voltage characteristics that were best fit by a space-charge limited conduction model that incorporates the effect of a defect band. The observed conduction behavior suggests the presence of two regions of localized traps within the bandgap of the amorphous GeTe, located at approximately 0.26–0.27 eV and 0.56–0.57 eV from the valence band. Unlike the polycrystalline state, the high resistance DC behavior of amorphous GeTe does not translate to the RF switch performance; instead, a parasitic capacitance associated with the RF switch geometry dominates OFF state RF transmission.« less
Structure of phospholipid-cholesterol membranes: an x-ray diffraction study.
Karmakar, Sanat; Raghunathan, V A
2005-06-01
We have studied the phase behavior of mixtures of cholesterol with dipalmitoyl phosphatidylcholine (DPPC), dimyristoyl phosphatidylcholine (DMPC), and dilauroyl phosphatidylethanolamine (DLPE), using x-ray diffraction techniques. Phosphatidylcholine (PC)-cholesterol mixtures are found to exhibit a modulated phase for cholesterol concentrations around 15 mol % at temperatures below the chain melting transition. Lowering the relative humidity from 98% to 75% increases the temperature range over which it exists. An electron density map of this phase in DPPC-cholesterol mixtures, calculated from the x-ray diffraction data, shows bilayers with a periodic height modulation, as in the ripple phase observed in many PCs in between the main- and pretransitions. However, these two phases differ in many aspects, such as the dependence of the modulation wavelength on the cholesterol content and thermodynamic stability at reduced humidities. This modulated phase is found to be absent in DLPE-cholesterol mixtures. At higher cholesterol contents the gel phase does not occur in any of these three systems, and the fluid lamellar phase is observed down to the lowest temperature studied (5 degrees C).
Transformation temperatures of martensite in beta phase nickel aluminide
NASA Technical Reports Server (NTRS)
Smialek, J. L.; Hehemann, R. F.
1972-01-01
Resistivity and thermal arrest measurements determined that the compositional dependence of Ms (martensite state) temperatures for NiAl martensite was linear between 60 and 69 atomic percent nickel, with Ms = 124 Ni - 7410 K. Resistivity and surface relief experiments indicated the presence of thermoelastic martensite for selected alloys. Some aspects of the transformation were studied by hot stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.
Transformation temperatures of martensite in beta-phase nickel aluminide.
NASA Technical Reports Server (NTRS)
Smialek, J. L.; Hehemann, R. F.
1973-01-01
Resistivity and thermal arrest measurements determined that the compositional dependence of M sub s temperatures for NiAl martensite was linear between 60 and 69 at. % Ni, with M sub s = (124 Ni - 7410)K. Resistivity and surface relief experiments for selected alloys indicated the presence of thermoelastic martensite. Some aspects of the transformation were studied by hot-stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.
Superparamagnetic and ferrimagnetic behavior of nanocrystalline ZnO(MnO)
NASA Astrophysics Data System (ADS)
Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Arciszewska, M.; Romčević, N.; Romčević, M.; Hadžić, B.; Sibera, D.; Narkiewicz, U.
2018-04-01
We have studied the magnetic properties of nanocrystals of ZnO:MnO prepared by traditional wet chemistry method. The detailed structural and morphological characterization was performed. The results of systematic measurements of AC magnetic susceptibility as a function of temperature and frequency as well as DC magnetization are reported. We observed two different types of magnetic behavior depending on the concentration doping. For samples with low nominal content (up to 30 wt% of MnO), superparamagnetic behavior was observed. We attribute the observed superparamagnetism to the presence of nanosized ZnMnO3 phase. For nanocrystals doped above nominal 60 wt% of MnO ferrimagnetism was detected with TC at around 42 K. This magnetic behavior we assign to the presence of nanosized Mn3O4 phase.
NASA Astrophysics Data System (ADS)
Scott, Spencer M.; Yao, Tiankai; Lu, Fengyuan; Xin, Guoqing; Zhu, Weiguang; Lian, Jie
2017-03-01
High-energy ball milling was used to synthesize Th1-xLaxO2-0.5x (x = 0.09, 0.23) solid solutions, as well as improve the sinterability of ThO2 powders. Dense La-doped ThO2 pellets with theoretical density above 94% were consolidated by spark plasma sintering at temperatures above 1400 °C for 20 min, and the densification behavior and the non-equilibrium effects on phase and structure were investigated. A lattice contraction of the SPS-densified pellets occurred with increasing ball milling duration, and a secondary phase with increased La-content was observed in La-doped pellets. A dependence on the La-content and sintering duration for the onset of localized phase segregation has been proposed. The effects of high-energy ball milling, La-content, and phase formation on the thermal diffusivity were also studied for La-doped ThO2 pellets by laser flash measurement. Increasing La-content and high energy ball milling time decreases thermal diffusivity; while the sintering peak temperature and holding time beyond 1600 °C dramatically altered the temperature dependence of the thermal diffusivity beyond 600 °C.
Chemical potential dependence of particle ratios within a unified thermal approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashir, I., E-mail: inamhep@gmail.com; Nanda, H.; Uddin, S.
2016-06-15
A unified statistical thermal freeze-out model (USTFM) is used to study the chemical potential dependence of identified particle ratios at mid-rapidity in heavy-ion collisions. We successfully reproduce the experimental data ranging from SPS energies to LHC energies, suggesting the statistical nature of the particle production in these collisions and hence the validity of our approach. The behavior of the freeze-out temperature is studied with respect to chemical potential. The freeze-out temperature is found to be universal at the RHIC and LHC and is close to the QCD predicted phase transition temperature, suggesting that the chemical freeze-out occurs soon after themore » hadronization takes place.« less
Transformation behavior of Ni-Mn-Ga in the low-temperature limit.
Pérez-Landazábal, J I; Recarte, V; Sánchez-Alarcos, V; Chernenko, V A; Barandiarán, J M; Lázpita, P; Rodriguez Fernández, J; Righi, L
2012-07-11
The magnetic, magnetocaloric and thermal characteristics have been studied in a Ni(50.3)Mn(20.8)Ga(27.6)V(1.3) ferromagnetic shape memory alloy (FSMA) transforming martensitically at around 40 K. The alloy shows first a transformation from austenite to an intermediate phase and then a partial transformation to an orthorhombic martensite, all the phases being ferromagnetically ordered. The thermomagnetization dependences enabled observation of the magnetocaloric effect in the vicinity of the martensitic transformation (MT). The Debye temperature and the density of states at the Fermi level are equal to θ(D) = (276 ± 4) K and 1.3 states/atom eV , respectively, and scarcely dependent on the magnetic field. The MT exhibited by Ni-Mn-Ga FSMAs at very low temperatures is distinctive in the sense that it is accompanied by a hardly detectable entropy change as a sign of a small driving force. The enhanced stability of the cubic phase and the low driving force of the MT stem from the reduced density of states near the Fermi level.
Li, Wen-Long; Huo, Chun-Yan; Liu, Li-Yan; Song, Wei-Wei; Zhang, Zi-Feng; Ma, Wan-Li; Qiao, Li-Na; Li, Yi-Fan
2016-11-15
The occurrence and temporal trends of polybrominated diphenyl ethers (PBDEs) and non-PBDE brominated flame retardants (NBFRs) were investigated in an urban atmosphere of Northeast China in consecutive six years (2008-2013). Among all chemicals, BDE-209, l,2,5,6,9,10-hexabromocyclododecane (HBCD), and decabromodiphenylethane (DBDPE) were the three most dominant compounds. During the period, the levels of pentabromodiphenyl ethers in the gas-phase and octabromodiphenyl ethers in the particle-phase significantly decreased, while the levels of BDE-209 and NBFRs increased in either the gas-phase or particle-phase. Ambient temperature was the most significant variable that influenced the gas-phase and particle-phase concentrations of BFRs, followed by wind speed and relative humidity. A stronger temperature dependence of the atmospheric concentrations was found for lower mass BFRs. Gas-particle partitioning studies suggested PBDEs in the urban atmosphere of Northeast China were at steady-state. Steady-state equation can also well describe the partitioning behavior for NBFRs, suggesting that the atmospheric partitioning behaviors of NBFRs were similar to those of PBDEs. Copyright © 2016 Elsevier B.V. All rights reserved.
Bhatti, Kanwal Preet; El-Khatib, S.; Srivastava, Vijay; ...
2012-04-27
The Heusler-derived multiferroic alloy Ni 50–xCo xMn₄₀Sn₁₀ has recently been shown to exhibit, at just above room temperature, a highly reversible martensitic phase transformation with an unusually large magnetization change. In this work the nature of the magnetic ordering above and below this transformation has been studied in detail in the critical composition range x = 6–8 via temperature-dependent (5–600 K) magnetometry and small-angle neutron scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions on cooling to 420–430 K, with the expected critical spin fluctuations, followed by first-order martensitic phase transformations to a nonferromagnetic state below 360–390more » K. The static magnetization reveals complex magnetism in this low-temperature nonferromagnetic phase, including a Langevin-like field dependence, distinct spin freezing near 60 K, and significant exchange bias effects, consistent with superparamagnetic blocking of ferromagnetic clusters of nanoscopic dimensions. We demonstrate that these spin clusters, whose existence has been hypothesized in a variety of martensitic alloys exhibiting competition between ferromagnetic and antiferromagnetic exchange interactions, can be directly observed by SANS. The scattering data are consistent with a liquidlike spatial distribution of interacting magnetic clusters with a mean center-to-center spacing of 12 nm. Considering the behavior of the superparmagnetism, cooling-field and temperature-dependent exchange bias, and magnetic SANS, we discuss in detail the physical form and origin of these spin clusters, their intercluster interactions, the nature of the ground-state magnetic ordering in the martensitic phase, and the implications for our understanding of such alloy systems.« less
Phase Transition in all-trans-β-Carotene Crystal: Temperature-Dependent Raman Spectra.
da Silva, Kleber J R; Paschoal, Waldomiro; Belo, Ezequiel A; Moreira, Sanclayton G C
2015-09-24
In this study, we studied the stability of an all-trans-β-carotene single crystal using Raman spectroscopy with line excitation at 632.8 nm, in the temperature range 20–300 K. The Raman spectra exhibit clear modifications in the spectral range of the lattice and internal vibrational modes. The temperature dependence of the most intense vibrational modes ν1 (1511 cm(–1)) and ν2 (1156 cm(–1)) that are related to the C═C and C—C stretching vibrations of the polyene chain, respectively, shows an upward shift on the Raman modes. This behavior is similar to that stated in the theoretical work of Wei-Long Liu et al. We conclude that the all-trans-β-carotene crystal undergoes a temperature-induced phase transition at approximately 219 K. This transition is interpreted as a rotation experienced by β-ring groups at each end of the all-trans-β-carotene molecule around the dihedral angle. At low temperatures, the new molecular configuration affects the sliding plane of the space group C2h(5)(P2(1)/n), and the phase transition leads to an unchanged monoclinic structure; however, the original space group is possibly lowered to the space group C2. In the temperature range 200–220 K, the spectral ratio (S) of the integrated intensities of the spectral modes around the symmetric and asymmetric stretching wavenumbers of the methyl group (CH3) changes as a function of temperature in agreement with the phase transition. Furthermore, according to phase transition undergone by the all-trans-β-carotene, the thermal results obtained by differential scanning calorimetry show an exothermic process that occurs near the transition temperature assigned by the Raman spectra.
NASA Astrophysics Data System (ADS)
Itasaka, Hiroki; Mimura, Ken-ichi; Nishi, Masayuki; Kato, Kazumi
2018-05-01
We investigated the influence of heat treatment on the crystallographic structure and ferroelectric phase transition behavior of barium titanate (BaTiO3, BT) nanocubes assembled into highly ordered monolayers, using tip-enhanced Raman spectroscopy (TERS), temperature-dependent micro-Raman spectroscopy, and scanning transmission electron microscopy (STEM). TER spectra from individual BT nanocubes with the size of about 20 nm were obtained with a side-illumination optical setup, and revealed that heat treatment enhances their tetragonality. The result of temperature-dependent micro-Raman spectroscopy showed that the ferroelectric phase transition behavior of the monolayers becomes similar to that of bulk BT through heat treatment in spite of their thickness. STEM observation for the cross-section of the heated BT nanocube monolayer showed that amorphous layers exist at the interface between BT nanocubes in face-to-face contact. These results indicate that the tetragonal crystal structure of BT nanocubes is stabilized by heat treatment and the formation of the interfacial amorphous layer during heat treatment may be a key to this phenomenon.
Chemical thermodynamic representations of and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besmann, T.M.; Lindemer, T.B.
1984-01-01
All available oxygen potential-temperature-composition data for the calcium fluorite-structure phase were retrieved from the literature and utilized in the development of a binary solid solution representation of the phase. The data and phase relations are found to be best described by a solution of (Pu/sub 4/3/O/sub 2/) and (PuO/sub 2/) with a temperature dependent interaction energy. The fluorite-structure is assumed to be represented by a combination of the binaries and , and thus treated as a solution of (Pu/sub 4/3/O/sub 2/), (PuO/sub 2/), (UO/sub 2/), and either (U/sub 2/O/sub 4/./sub 5/) or (U/sub 3/O/sub 7/). The resulting equations wellmore » reproduce the large amount of oxygen potential-temperature-composition data for the mixed oxide system, all of which were also retrieved from the literature. These models are the first that appear to display the appropriate oxygen potential-temperature-composition and phase relation behavior over the entire range of existence for the phases. 39 refs., 10 figs., 3 tabs.« less
La-o-vorakiat, Chan; Xia, Huanxin; Kadro, Jeannette; ...
2015-12-03
Here, we study the temperature-dependent phonon modes of the organometallic lead iodide perovskite CH 3NH 3PbI 3 thin film across the terahertz (0.5–3 THz) and temperature (20–300 K) ranges. These modes are related to the vibration of the Pb–I bonds. We found that two phonon modes in the tetragonal phase at room temperature split into four modes in the low-temperature orthorhombic phase. By use of the Lorentz model fitting, we also analyze the critical behavior of this phase transition. The carrier mobility values calculated from the low-temperature phonon mode frequencies, via two theoretical approaches, are found to agree reasonably withmore » the experimental value (~2000 cm 2 V –1 s –1) from a previous time-resolved THz spectroscopy work. Thus, we have established a possible link between terahertz phonon modes and the transport properties of perovskite-based solar cells.« less
Zhou, Yong; Plowman, Sarah J.; Lichtenberger, Lenard M.; Hancock, John F.
2010-01-01
The nonsteroidal anti-inflammatory drug indomethacin exhibits diverse biological effects, many of which have no clear molecular mechanism. Membrane-bound receptors and enzymes are sensitive to their phospholipid microenvironment. Amphipathic indomethacin could therefore potentially modulate cell signaling by changing membrane properties. Here we examined the effect of indomethacin on membrane lateral heterogeneity. Fluorescence lifetime imaging of cells expressing lipid-anchored probes revealed that treatment of BHK cells with therapeutic levels of indomethacin enhances cholesterol-dependent nanoclustering, but not cholesterol-independent nanoclustering. Immuno-electron microscopy and quantitative spatial mapping of intact plasma membrane sheets similarly showed a selective effect of indomethacin on promoting cholesterol-dependent, but not cholesterol-independent, nanoclustering. To further evaluate the biophysical effects of indomethacin, we measured fluorescence polarization of the phase-sensitive probe Laurdan and FRET between phase-partitioning probes in model bilayers. Therapeutic levels of indomethacin enhanced phase seperation in DPPC/DOPC/Chol (1:1:1) and DPPC/Chol membranes in a temperature-dependent manner, but had minimal effect on the phase behavior of pure DOPC at any temperature. Taken together, the imaging results on intact epithelial cells and the biophysical assays of model membranes suggest that indomethacin can enhance phase separation and stabilize cholesterol-dependent nanoclusters in biological membranes. These effects on membrane lateral heterogeneity may have significant consequences for cell signaling cascades that are assembled on the plasma membrane. PMID:20826816
Strange metal transport realized by gauge/gravity duality.
Faulkner, Thomas; Iqbal, Nabil; Liu, Hong; McGreevy, John; Vegh, David
2010-08-27
Fermi liquid theory explains the thermodynamic and transport properties of most metals. The so-called non-Fermi liquids deviate from these expectations and include exotic systems such as the strange metal phase of cuprate superconductors and heavy fermion materials near a quantum phase transition. We used the anti-de-Sitter/conformal field theory correspondence to identify a class of non-Fermi liquids; their low-energy behavior is found to be governed by a nontrivial infrared fixed point, which exhibits nonanalytic scaling behavior only in the time direction. For some representatives of this class, the resistivity has a linear temperature dependence, as is the case for strange metals.
NASA Astrophysics Data System (ADS)
Ertaş, Mehmet; Keskin, Mustafa
2015-03-01
By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume-Emery-Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.
Naffakh, Mohammed; Marco, Carlos; Ellis, Gary
2012-02-16
The isothermal crystallization and subsequent melting behavior of isotactic polypropylene (iPP) nucleated with different nucleating agents (NAs) are investigated. Tungsten disulfide (IF-WS(2)) and N,N'-dicyclohexyl-2,6-naphthalene (NJ) and dual-additive mixtures are introduced into an iPP matrix to generate new materials that exhibit variable α- and β-polymorphism. As shown in previous work, small amounts of IF-WS(2) or NJ have a nucleating effect during the crystallization of iPP. However, the isothermal crystallization and melting behavior of iPP nucleated by dual α(IF-WS(2))/β(NJ) additive systems are dependent on both the NA composition balance and the crystallization temperature. In particular, our results demonstrate that it is possible to obtain any α-phase to β-phase content ratio by controlling the composition of NAs under appropriate isothermal crystallization conditions. The nucleating behavior of the additives can be illustrated by competitive nucleation, and the correlation between crystallization and melting temperatures and relative α- and β-crystals content in iPP in the nanocomposites is discussed.
Saini, Camille; Morf, Jörg; Stratmann, Markus; Gos, Pascal; Schibler, Ueli
2012-03-15
The circadian pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus maintains phase coherence in peripheral cells through metabolic, neuronal, and humoral signaling pathways. Here, we investigated the role of daily body temperature fluctuations as possible systemic cues in the resetting of peripheral oscillators. Using precise temperature devices in conjunction with real-time monitoring of the bioluminescence produced by circadian luciferase reporter genes, we showed that simulated body temperature cycles of mice and even humans, with daily temperature differences of only 3°C and 1°C, respectively, could gradually synchronize circadian gene expression in cultured fibroblasts. The time required for establishing the new steady-state phase depended on the reporter gene, but after a few days, the expression of each gene oscillated with a precise phase relative to that of the temperature cycles. Smooth temperature oscillations with a very small amplitude could synchronize fibroblast clocks over a wide temperature range, and such temperature rhythms were also capable of entraining gene expression cycles to periods significantly longer or shorter than 24 h. As revealed by genetic loss-of-function experiments, heat-shock factor 1 (HSF1), but not HSF2, was required for the efficient synchronization of fibroblast oscillators to simulated body temperature cycles.
Saini, Camille; Morf, Jörg; Stratmann, Markus; Gos, Pascal; Schibler, Ueli
2012-01-01
The circadian pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus maintains phase coherence in peripheral cells through metabolic, neuronal, and humoral signaling pathways. Here, we investigated the role of daily body temperature fluctuations as possible systemic cues in the resetting of peripheral oscillators. Using precise temperature devices in conjunction with real-time monitoring of the bioluminescence produced by circadian luciferase reporter genes, we showed that simulated body temperature cycles of mice and even humans, with daily temperature differences of only 3°C and 1°C, respectively, could gradually synchronize circadian gene expression in cultured fibroblasts. The time required for establishing the new steady-state phase depended on the reporter gene, but after a few days, the expression of each gene oscillated with a precise phase relative to that of the temperature cycles. Smooth temperature oscillations with a very small amplitude could synchronize fibroblast clocks over a wide temperature range, and such temperature rhythms were also capable of entraining gene expression cycles to periods significantly longer or shorter than 24 h. As revealed by genetic loss-of-function experiments, heat-shock factor 1 (HSF1), but not HSF2, was required for the efficient synchronization of fibroblast oscillators to simulated body temperature cycles. PMID:22379191
Temperature dependent effective potential method for accurate free energy calculations of solids
NASA Astrophysics Data System (ADS)
Hellman, Olle; Steneteg, Peter; Abrikosov, I. A.; Simak, S. I.
2013-03-01
We have developed a thorough and accurate method of determining anharmonic free energies, the temperature dependent effective potential technique (TDEP). It is based on ab initio molecular dynamics followed by a mapping onto a model Hamiltonian that describes the lattice dynamics. The formalism and the numerical aspects of the technique are described in detail. A number of practical examples are given, and results are presented, which confirm the usefulness of TDEP within ab initio and classical molecular dynamics frameworks. In particular, we examine from first principles the behavior of force constants upon the dynamical stabilization of the body centered phase of Zr, and show that they become more localized. We also calculate the phase diagram for 4He modeled with the Aziz potential and obtain results which are in favorable agreement both with respect to experiment and established techniques.
González, F R; Pérez-Parajón, J; García-Domínguez, J A
2002-04-12
Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.
NASA Astrophysics Data System (ADS)
Kumar, Arun; Kaushik, S. D.; Siruguri, V.; Pandey, Dhananjai
2018-03-01
For disordered Heisenberg systems with small single ion anisotropy (D ), two spin-glass (SG) transitions below the long-range ordered (LRO) phase transition temperature (Tc) have been predicted theoretically for compositions close to the percolation threshold. Experimental verification of these predictions is still controversial for conventional spin glasses. We show that multiferroic spin-glass systems can provide a unique platform for verifying these theoretical predictions via a study of change in magnetoelastic and magnetoelectric couplings, obtained from an analysis of diffraction data, at the spin-glass transition temperatures (TSG). Results of macroscopic (dc M (H , T ), M(t ), ac susceptibility [χ (ω, T )], and specific heat (Cp)) and microscopic (x-ray and neutron scattering) measurements are presented on disordered BiFe O3 , a canonical Heisenberg system with small single ion anisotropy, which reveal appearance of two spin-glass phases, SG1 and SG2, in coexistence with the LRO phase below the Almeida-Thouless (A-T) and Gabey-Toulouse (G-T) lines. It is shown that the temperature dependence of the integrated intensity of the antiferromagnetic (AFM) peak shows dips with respect to the Brillouin function behavior around the SG1 and SG2 transition temperatures. The temperature dependence of the unit cell volume departs from the Debye-Grüneisen behavior below the SG1 transition and the magnitude of departure increases significantly with decreasing temperature up to the electromagnon driven transition temperature below which a small change of slope occurs followed by another similar change of slope at the SG2 transition temperature. The ferroelectric polarization also changes significantly at the two spin-glass transition temperatures. These results, obtained using microscopic techniques, clearly demonstrate that the SG1 and SG2 transitions occur on the same magnetic sublattice and are intrinsic to the system. We also construct a phase diagram showing all the magnetic phases in the BF-x BT system. While our results on the two spin-glass transitions support the theoretical predictions, they also raise several open questions, which need to be addressed by revisiting the existing theories of spin-glass transitions after taking into account the effect of magnetoelastic and magnetoelectric couplings as well as electromagnons.
Shape memory behavior of single and polycrystalline nickel rich nickel titanium alloys
NASA Astrophysics Data System (ADS)
Kaya, Irfan
NiTi is the most commonly used shape memory alloy (SMA) and has been widely used for bio-medical, electrical and mechanical applications. Nickel rich NiTi shape memory alloys are coming into prominence due to their distinct superelasticity and shape memory properties as compared to near equi-atomic NiTi shape memory alloys. Besides, their lower density and higher work output than steels makes these alloys an excellent candidate for aerospace and automotive industry. Shape memory properties and phase transformation behavior of high Ni-rich Ni54Ti46 (at.%) polycrystals and Ni-rich Ni 51Ti49 (at.%) single-crystals are determined. Their properties are sensitive to heat treatments that affect the phase transformation behavior of these alloys. Phase transformation properties and microstructure were investigated in aged Ni54Ti46 alloys with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) to reveal the precipitation characteristics and R-phase formation. It was found that Ni54Ti46 has the ability to exhibit perfect superelasticity under high stress levels (~2 GPa) with 4% total strain after 550°C-3h aging. Stress independent R-phase transformation was found to be responsible for the change in shape memory behavior with stress. The shape memory responses of [001], [011] and [111] oriented Ni 51Ti49 single-crystals alloy were reported under compression to reveal the orientation dependence of their shape memory behavior. It has been found that transformation strain, temperatures and hysteresis, Classius-Clapeyron slopes, critical stress for plastic deformation are highly orientation dependent. The effects of precipitation formation and compressive loading at selected temperatures on the two-way shape memory effect (TWSME) properties of a [111]- oriented Ni51Ti49 shape memory alloy were revealed. Additionally, aligned Ni4Ti3 precipitates were formed in a single crystal of Ni51Ti49 alloy by aging under applied compression stress along the [111] direction. Formation of a single family of Ni4Ti3 precipitates were exhibited significant TWSME without any training or deformation. When the homogenized and aged specimens were loaded in martensite, positive TWSME was observed. After loading at high temperature in austenite, the homogenized specimen did not show TWSME while the aged specimen revealed negative TWSME.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Chandan K.; Singh, Jayant K., E-mail: jayantks@iitk.ac.in
The solid-liquid coexistence of a Lennard-Jones fluid confined in slit pores of variable pore size, H, is studied using molecular dynamics simulations. Three-stage pseudo-supercritical transformation path of Grochola [J. Chem. Phys. 120(5), 2122 (2004)] and multiple histogram reweighting are employed for the confined system, for various pore sizes ranging from 20 to 5 molecular diameters, to compute the solid-liquid coexistence. The Gibbs free energy difference is evaluated using thermodynamic integration method by connecting solid-liquid phases under confinement via one or more intermediate states without any first order phase transition among them. Thermodynamic melting temperature is found to oscillate with wallmore » separation, which is in agreement with the behavior seen for kinetic melting temperature evaluated in an earlier study. However, thermodynamic melting temperature for almost all wall separations is higher than the bulk case, which is contrary to the behavior seen for the kinetic melting temperature. The oscillation founds to decay at around H = 12, and beyond that pore size dependency of the shift in melting point is well represented by the Gibbs-Thompson equation.« less
NASA Astrophysics Data System (ADS)
Figueroa, C. A.; Alvarez, F.; Zhang, Z.; Collins, G. A.; Short, K. T.
2005-07-01
In this work we report a study of the structural modifications and corrosion behavior of martensitic stainless steels (MSS) nitrided by plasma immersion ion implantation (PI3). The samples were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, photoemission electron spectroscopy, and potentiodynamic electrochemical measurements. Depending on the PI3 treatment temperature, three different material property trends are observed. At lower implantation temperatures (e.g., 360 °C), the material corrosion resistance is improved and a compact phase of ɛ-(Fe,Cr)3N, without changes in the crystal morphology, is obtained. At intermediate temperatures (e.g., 430 °C), CrN precipitates form principally at grain boundaries, leading to a degradation in the corrosion resistance compared to the original MSS material. At higher temperatures (e.g., 500 °C), the relatively great mobility of the nitrogen and chromium in the matrix induced random precipitates of CrN, transforming the original martensitic phase into α-Fe (ferrite), and causing a further degradation in the corrosion resistance.
Prospects and applications near ferroelectric quantum phase transitions: a key issues review.
Chandra, P; Lonzarich, G G; Rowley, S E; Scott, J F
2017-11-01
The emergence of complex and fascinating states of quantum matter in the neighborhood of zero temperature phase transitions suggests that such quantum phenomena should be studied in a variety of settings. Advanced technologies of the future may be fabricated from materials where the cooperative behavior of charge, spin and current can be manipulated at cryogenic temperatures. The progagating lattice dynamics of displacive ferroelectrics make them appealing for the study of quantum critical phenomena that is characterized by both space- and time-dependent quantities. In this key issues article we aim to provide a self-contained overview of ferroelectrics near quantum phase transitions. Unlike most magnetic cases, the ferroelectric quantum critical point can be tuned experimentally to reside at, above or below its upper critical dimension; this feature allows for detailed interplay between experiment and theory using both scaling and self-consistent field models. Empirically the sensitivity of the ferroelectric T c 's to external and to chemical pressure gives practical access to a broad range of temperature behavior over several hundreds of Kelvin. Additional degrees of freedom like charge and spin can be added and characterized systematically. Satellite memories, electrocaloric cooling and low-loss phased-array radar are among possible applications of low-temperature ferroelectrics. We end with open questions for future research that include textured polarization states and unusual forms of superconductivity that remain to be understood theoretically.
Prospects and applications near ferroelectric quantum phase transitions: a key issues review
NASA Astrophysics Data System (ADS)
Chandra, P.; Lonzarich, G. G.; Rowley, S. E.; Scott, J. F.
2017-11-01
The emergence of complex and fascinating states of quantum matter in the neighborhood of zero temperature phase transitions suggests that such quantum phenomena should be studied in a variety of settings. Advanced technologies of the future may be fabricated from materials where the cooperative behavior of charge, spin and current can be manipulated at cryogenic temperatures. The progagating lattice dynamics of displacive ferroelectrics make them appealing for the study of quantum critical phenomena that is characterized by both space- and time-dependent quantities. In this key issues article we aim to provide a self-contained overview of ferroelectrics near quantum phase transitions. Unlike most magnetic cases, the ferroelectric quantum critical point can be tuned experimentally to reside at, above or below its upper critical dimension; this feature allows for detailed interplay between experiment and theory using both scaling and self-consistent field models. Empirically the sensitivity of the ferroelectric T c’s to external and to chemical pressure gives practical access to a broad range of temperature behavior over several hundreds of Kelvin. Additional degrees of freedom like charge and spin can be added and characterized systematically. Satellite memories, electrocaloric cooling and low-loss phased-array radar are among possible applications of low-temperature ferroelectrics. We end with open questions for future research that include textured polarization states and unusual forms of superconductivity that remain to be understood theoretically.
Bottomonium above deconfinement in lattice nonrelativistic QCD.
Aarts, G; Kim, S; Lombardo, M P; Oktay, M B; Ryan, S M; Sinclair, D K; Skullerud, J-I
2011-02-11
We study the temperature dependence of bottomonium for temperatures in the range 0.4T(c) < T < 2.1T(c), using nonrelativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for Nf = 2 light flavors on a highly anisotropic lattice. We find that the Υ is insensitive to the temperature in this range, while the χb propagators show a crossover from the exponential decay characterizing the hadronic phase to a power-law behavior consistent with nearly free dynamics at T ≃ 2T(c).
NASA Astrophysics Data System (ADS)
Ling, Chris D.; Rowda, Budwy; Avdeev, Maxim; Pullar, Robert
2009-03-01
We present a complete temperature-composition phase diagram for Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba, along with their electrical behavior as a function of B. These compounds have long been recognized as 6H-type perovskites, but (with the exception of B=Mg) their exact structures and properties were unknown due to their low symmetries, temperature-dependent phase transitions, and difficulties in synthesizing pure samples. The full range of possible space group symmetries is observed, from ideal hexagonal P6 3/ mmc to monoclinic C2/ c to triclinic P1¯. Direct second-order transitions between these phases are plausible according to group theory, and no evidence was seen for any further intermediate phases. The phase diagram with respect to temperature and the effective ionic radius of B is remarkably symmetrical for B=Mg, Ca, and Sr. For B=Ba, a first-order phase transition to a locally distorted phase allows a metastable hexagonal phase to persist to lower temperatures than expected before decomposing around 600 K. Electrical measurements revealed that dielectric permittivity corrected for porosity does not change significantly as a function of B and is in a good agreement with the values predicted by the Clausius-Mossotti equation.
Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys
Jin, Ke; Mu, Sai; An, Ke; ...
2016-12-27
For this research temperature dependent thermophysical properties, including specific heat capacity, lattice thermal expansion, thermal diffusivity and conductivity, have been systematically studied in Ni and eight Ni-containing single-phase face-centered-cubic concentrated solid solution alloys, at elevated temperatures up to 1273 K. The alloys have similar specific heat values of 0.4–0.5 J·g -1·K -1 at room temperature, but their temperature dependence varies greatly due to Curie and K-state transitions. The lattice, electronic, and magnetic contributions to the specific heat have been separated based on first-principles methods in NiCo, NiFe, Ni-20Cr and NiCoFeCr. The alloys have similar thermal expansion behavior, with the exceptionmore » that NiFe and NiCoFe have much lower thermal expansion coefficient in their ferromagnetic state due to magnetostriction effects. Calculations based on the quasi-harmonic approximation accurately predict the temperature dependent lattice parameter of NiCo and NiFe with < 0.2% error, but underestimated that of Ni-20Cr by 1%, compared to the values determined from neutron diffraction. In addition, all the alloys containing Cr have very similar thermal conductivity, which is much lower than that of Ni and the alloys without Cr, due to the large magnetic disorder.« less
NASA Astrophysics Data System (ADS)
Wehrenfennig, Christian; Liu, Mingzhen; Snaith, Henry J.; Johnston, Michael B.; Herz, Laura M.
2014-08-01
The optoelectronic properties of the mixed hybrid lead halide perovskite CH3NH3PbI3-xClx have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL) emission of vapor-deposited CH3NH3PbI3-xClx exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CH3NH3PbI3. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion.
Transport in 2D Systems in the So-Called Metallic Phase
NASA Astrophysics Data System (ADS)
Das Sarma, Sankar
2001-03-01
I will discuss electronic transport in 2D semiconductor systems at low temperatures and densities. In particular, I will consider effects of screening,electron-impurity and electron-phonon interactions, and an external parallel magnetic field on the 2D temperature and density dependent conductivity. I will show that a theory [1] recently developed by Euyheon Hwang and myself may qualitatively account for much of the observed temperature, density, and field dependence of the 2D "metallic" conductivity for electrons in Si MOSFETs and n-GaAs heterostructures, and for holes in Si-Ge heterostructures and p-GaAs systems. I will provide a critique, based on the available experimental data and exact numerical simulations [2] of the Anderson-Hubbard-Mott model, of whether the 2D M-I-T phenomenon is likely to be the high temperature behavior of a T=0 quantum phase transition or the low temperature manifestation of a high-temperature semiclassical transition. Work supported by the US-ONR and the US-ARO. [1] S.Das Sarma and E.H.Hwang,PRL83,164(1999);84,5596(2000); Phys. Rev. B61, R7838(2000). [2] R. Kotlyar and S. Das Sarma, cond-mat/0002304.
Temperature dependence of lower critical field of YBCO superconductor
NASA Astrophysics Data System (ADS)
Rani, Poonam; Hafiz, A. K.; Awana, V. P. S.
2018-05-01
We report the detailed study of the temperature dependence of the lower critical field (Hc1) of the YBa2Cu3O7 superconductor by magnetization measurements. The curve shows the multiband gap behavior of the sample. It is found that the sample is not a single BCS type superconductor. Hc1 is measured as the point at which the curve deviates from a Meissner-like linear M(H) curve to a nonlinear path. The Hc1 for YBCO at different temperatures from 10K to 85K has been determined by magnetization measurements M(H) with applied field parallel to the c-axis. The sample phase purity has been confirmed by Rietveld fitted X-ray diffraction data. The amplitude (1-17Oe) dependent AC susceptibility confirms the granular nature of superconducting compound. Using Bean model we calculated the temperature dependency of inter-grain critical current density and Jc(0) is found as 699.14kAcm-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrada Rodas, Ernesto A.; Neu, Richard W.
A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less
Estrada Rodas, Ernesto A.; Neu, Richard W.
2017-09-11
A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less
Finite-temperature phase transitions of third and higher order in gauge theories at large N
Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.
2018-02-15
We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less
Finite-temperature phase transitions of third and higher order in gauge theories at large N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.
We study phase transitions in SU(∞) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia (GWW). Depending upon the detailed form of the matrix model,more » the eigenvalue density and the behavior of the specific heat near the transition differ drastically. Here, we speculate that in the pure gauge theory, that although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infnite N.« less
NASA Technical Reports Server (NTRS)
Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.
1988-01-01
The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.
Understanding the multiferroicity in TmMn2O5 by a magnetically induced ferrielectric model
Yang, L.; Li, X.; Liu, M. F.; Li, P. L.; Yan, Z. B.; Zeng, M.; Qin, M. H.; Gao, X. S.; Liu, J.-M.
2016-01-01
The magnetically induced electric polarization behaviors in multiferroic TmMn2O5 in response to varying temperature and magnetic field are carefully investigated by means of a series of characterizations including the high precision pyroelectric current technique. Here polycrystalline rather than single crystal samples are used for avoiding the strong electrically self-polarized effect in single crystals, and various parallel experiments on excluding the thermally excited current contributions are performed. The temperature-dependent electric polarization flop as a major character is identified for different measuring paths. The magneto-current measurements indicate that the electric polarization in the low temperature magnetic phase region has different origin from that in the high temperature magnetic phase. It is suggested that the electric polarization does have multiple components which align along different orientations, including the Mn3+-Mn4+-Mn3+ exchange striction induced polarization PMM, the Tm3+-Mn4+-Tm3+ exchange striction induced polarization PTM, and the low temperature polarization PLT probably associated with the Tm3+ commensurate phase. The observed electric polarization flop can be reasonably explained by the ferrielectric model proposed earlier for DyMn2O5, where PMM and PTM are the two antiparallel components both along the b-axis and PLT may align along the a-axis. Finally, several issues on the unusual temperature dependence of ferroelectric polarizations are discussed. PMID:27713482
Phase behavior of CO/sub 2/ - Appalachian oil systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monger, T.G.; Khakoo, A.
1981-01-01
The phase behavior of carbon dioxide with two Appalachian crude oils was examined at temperatures below and above the CO/sub 2/ critical temperature. Overall the observed phase equilibria emulate that reported for Western crude oil systems at low reservoir temperatures, but several contrasts in phase behavior are also apparent. Phase behavior of differences are interpreted in light of carbon-13 nuclear magnetic resonance spectroscopy measurements which show that the Appalachian crudes have significantly higher paraffinic and lower aromatic contents than those typically observed for Western crudes. Data analyses suggest that CO/sub 2/ preferentially condenses into a high paraffin oil, whereas hydrocarbonmore » extraction by a CO/sub 2/ -rich phase is the predominant mechanism for crude oils with significant aromatic content. 24 refs.« less
In Situ Neutron Scattering Study of Nanostructured PbTe-PbS Bulk Thermoelectric Material
NASA Astrophysics Data System (ADS)
Ren, Fei; Schmidt, Robert; Case, Eldon D.; An, Ke
2017-05-01
Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570-600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.
NASA Astrophysics Data System (ADS)
Ander Arregi, Jon; Horký, Michal; Fabianová, Kateřina; Tolley, Robert; Fullerton, Eric E.; Uhlíř, Vojtěch
2018-03-01
The effects of mesoscale confinement on the metamagnetic behavior of lithographically patterned FeRh structures are investigated via Kerr microscopy. Combining the temperature- and field-dependent magnetization reversal of individual sub-micron FeRh structures provides specific phase-transition characteristics of single mesoscale objects. Relaxation of the epitaxial strain caused by patterning lowers the metamagnetic phase transition temperature by more than 15 K upon confining FeRh films below 500 nm in one lateral dimension. We also observe that the phase transition becomes highly asymmetric when comparing the cooling and heating cycles for 300 nm-wide FeRh structures. The investigation of FeRh under lateral confinement provides an interesting platform to explore emergent metamagnetic phenomena arising from the interplay of the structural, magnetic and electronic degrees of freedom at the mesoscopic length scale.
Fuereder, Markus; Majeed, Imthiyas N; Panke, Sven; Bechtold, Matthias
2014-06-13
Teicoplanin aglycone columns allow efficient separation of amino acid enantiomers in aqueous mobile phases and enable robust and predictable simulated moving bed (SMB) separation of racemic methionine despite a dependency of the adsorption behavior on the column history (memory effect). In this work we systematically investigated the influence of the mobile phase (methanol content) and temperature on SMB performance using a model-based optimization approach that accounts for methionine solubility, adsorption behavior and back pressure. Adsorption isotherms became more favorable with increasing methanol content but methionine solubility was decreased and back pressure increased. Numerical optimization suggested a moderate methanol content (25-35%) for most efficient operation. Higher temperature had a positive effect on specific productivity and desorbent requirement due to higher methionine solubility, lower back pressure and virtually invariant selectivity at high loadings of racemic methionine. However, process robustness (defined as a difference in flow rate ratios) decreased strongly with increasing temperature to the extent that any significant increase in temperature over 32°C will likely result in operating points that cannot be realized technically even with the lab-scale piston pump SMB system employed in this study. Copyright © 2014. Published by Elsevier B.V.
Elastic, thermodynamic and optical behavior of V2AC (A = Al, Ga) MAX phases
NASA Astrophysics Data System (ADS)
Khatun, M. R.; Ali, M. A.; Parvin, F.; Islam, A. K. M. A.
This article reports the first-principles calculations of yet unexplored Mulliken bond population, Vickers hardness, thermodynamic and optical properties of MAX phases V2AC (A = Al, Ga). We have also revisited the structural and elastic properties of these phases in order to assess the reliability of our calculations. The temperature and pressure dependence of bulk modulus, Debye temperature, specific heats, and thermal expansion coefficient have been successfully estimated through the quasi-harmonic Debye model in the temperature range from 0 to 1000 K and the pressure range from 0 to 50 GPa. The optical properties such as the dielectric function, refractive index, photoconductivity, absorption coefficients, reflectivity and loss function are also evaluated for the first time. The reflectivity is found to be high which indicates that V2AC (A = Al, Ga) having the same characteristics could be good candidate materials to reduce solar heating up to ∼15 eV.
A computational study of diffusion in a glass-forming metallic liquid
Wang, T.; Zhang, F.; Yang, L.; ...
2015-06-09
In this study, liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associated composition and temperature dependencies. In our computational study, we examine atomic diffusion in Al-Sm liquids using ab initio molecular dynamics (AIMD) and determine the diffusivities of Al and Sm for selected alloy compositions. Non-Arrhenius diffusion behavior is observed in the undercooled liquids with an enhanced local structural ordering. Through assessment of our AIMD result, we construct a generalmore » formulation for Al-Sm liquid, involving a diffusion mobility database that includes composition and temperature dependence. A Volmer-Fulcher-Tammann (VFT) equation is adopted for describing the non-Arrhenius behavior observed in the undercooled liquid. Furthermore, the composition dependence of diffusivity is found quite strong, even for the Al-rich region contrary to the sole previous report on this binary system. The model is used in combination with the available thermodynamic database to predict specific diffusivities and compares well with reported experimental data for 0.6 at.% and 5.6 at.% Sm in Al-Sm alloys.« less
A-site deficiency effects on the critical behavior of La0.6Ca0.15·0.05Ba0.2MnO3
NASA Astrophysics Data System (ADS)
Debbebi, I. Sfifir; Omrani, H.; Cheikhrouhou-Koubaa, W.; Cheikhrouhou, A.
2018-02-01
The aim of the present work is to study the critical behavior of calcium deficient La0.6Ca0.15·0.05Ba0.2MnO3 (LCBMO), synthetized by the conventional solid-state reaction method, around the paramagnetic (PM)-ferromagnetic (FM) phase transition. X-ray diffraction revealed that these manganites crystallized in the orthorhombic structure with Pbnm space group. Then, the magnetic properties of this compound are discussed in detail, building on the magnetization and the susceptibility. The temperature dependence of magnetic susceptibility at higher temperature confirms the presence of the Griffiths phase above the Curie temperature which proves the existence of ferromagnetic clusters in the paramagnetic domain. Experimental results revealed that our sample exhibit a second-order magnetic phase transition. The estimated critical exponents derived from the magnetic data were estimated using various techniques such as modified Arrott plot, Kouvel-Fisher method, and critical magnetization isotherms M(TC, H). The obtained values are very close to those representative of the mean-field model (β = 0.547, γ = 1.23, and δ = 3.092 at an average TC = 201.74 K).
Entropic Anomaly Observed in Lipid Polymorphisms Induced by Surfactant Peptide SP-B(1-25).
Tran, Nhi; Kurian, Justin; Bhatt, Avni; McKenna, Robert; Long, Joanna R
2017-10-05
The N-terminal 25 amino-acid residues of pulmonary surfactant protein B (SP-B 1-25 ) induces unusual lipid polymorphisms in a model lipid system, 4:1 DPPC/POPG, mirroring the lipid composition of native pulmonary surfactant. It is widely suggested that SP-B 1-25 -induced lipid polymorphisms within the alveolar aqueous subphase provide a structural platform for rapid lipid adsorption to the air-water interface. Here, we characterize in detail the phase behavior of DPPC and POPG in hydrated lipid assemblies containing therapeutic levels of SP-B 1-25 using 2 H and 31 P solid state NMR spectroscopy. The appearance of a previously observed isotropic lipid phase is found to be highly dependent on the thermal cycling of the samples. Slow heating of frozen samples leads to phase separation of DPPC into a lamellar phase whereas POPG lipids interact with the peptide to form an isotropic phase at physiologic temperature. Rapid heating of frozen samples to room temperature leads to strongly isotropic phase behavior for both DPPC and POPG lipids, with DPPC in exchange between isotropic and interdigitated phases. 31 P T 2 relaxation times confirm the isotropic phase to be consistent with a lipid cubic phase. The observed phases exhibit thermal stability up to physiologic temperature (37 °C) and are consistent with the formation of a ripple phase containing a large number of peptide-induced membrane structural defects enabling rapid transit of lipids between lipid lamellae. The coexistance of a lipid cubic phase with interdigitated lipids suggests a specific role for the highly conserved N-terminus of SP-B in stabilizing this unusual lipid polymorphism.
NASA Astrophysics Data System (ADS)
Wang, Wei; Liu, Ying; Gao, Zhong-yue; Zhao, Xue-ru; Yang, Yi; Yang, Sen
2018-07-01
Compensation temperature Tcomp and transition temperature TC have significant applications for the experimental realization of magnetic nanotube structure in the field of thermal magnetic recording. In this work, we use the Monte Carlo simulation to investigate the phase diagrams, magnetizations, susceptibilities, internal energies, specific heats and hysteresis behaviors of a cylindrical ferrimagnetic nanotube with core-shell structure. The effects of the single-ion anisotropies (DC, DS) and the exchange couplings (Jint, JS) on the magnetic and thermodynamic properties of the system are examined. A number of characteristic behaviors are discovered in the thermal variations, depending on different physical parameters. In particular, the triple hysteresis loops behavior has been found for appropriate physical parameters. These findings are qualitatively in good agreement with related experimental and the other theoretical results.
Ding, L J; Yao, K L; Fu, H H
2011-01-07
The zero- and low-temperature behaviors of a quasi-one-dimensional organic polymer proposed as a symmetrical periodic Anderson-like chain model, in which the localized f orbitals hybridize with the conduction orbitals at even sites, are investigated by means of many-body Green's function theory. In the absence of magnetic field, the ground state of the system turns out to be ferrimagnetic. The temperature-induced phase diagrams have been explored, where the competition between the Hubbard repulsion U on the localized f orbital and the hybridization strength V makes an important impact on the transition temperature. In a magnetic field, it is found that a 1/3 magnetization plateau appears and two critical fields indicating the insulator-metal transitions at zero temperature emerge, which are closely related to the energy bands. Furthermore, the single-site entanglement entropy is a good indicator of quantum phase transitions. The temperature-field-induced phase diagram has also been attained, wherein the magnetization plateau state, the gapless phase and the spin polarized state are revealed. The temperature dependence of thermodynamic quantities such as the magnetization, susceptibility and specific heat are calculated to characterize the corresponding phases. It is also found that the up-spin and down-spin hole excitations are responsible for the thermodynamic properties.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Meenakshi, Mahto, Rabindra Nath
2018-04-01
We have investigated magnetization properties of the sol-gel prepared SrCo0.95Mn0.05O3 (SCMO) sample with respect to change in structural symmetry. The X-ray diffraction patterns show the crystal structure changes from nH-hexagonal, showing trigonal symmetry (SCMO1), to 2H-hexagonal phase (SCMO2). The trigonal crystal symmetry was obtained at lower annealing temperature (less than 1100 °C), however, the 2H-hexagonal symmetry was obtained at higher annealing temperature. The crystallite size calculated using Debye Scherer formula is found to be ˜ 46 nm and ˜ 33 nm for SCMO1 and SCMO2 samples respectively. The temperature dependence zero field cooled (MZFC) and field cooled (MFC) magnetization curves measured under the applied magnetic field of 500 Oe show magnetic reversibility for the SCMO1 sample. However, MZFC and MFC curves in hexagonal phase show magnetic irreversibility with onset temperature, Tirr ˜ 150 K, exhibits weak ferromagnetic ordering. The temperature variation of magnetization in paramagnetic region was analyzed by following Curie-Weiss law fitting. The χ-1(T) curve shows complete linear behavior with single slope for SCMO1 sample, whereas, the SCMO2 curve exhibit the linear behavior with two distinct slopes. Interestingly the sample in hexagonal phase shows small hysteresis loop at 2 K and 100 K respectively.
Formation of structural steady states in lamellar/sponge phase-separating fluids under shear flow
NASA Astrophysics Data System (ADS)
Panizza, P.; Courbin, L.; Cristobal, G.; Rouch, J.; Narayanan, T.
2003-05-01
We investigate the effect of shear flow on a lamellar-sponge phase-separating fluid when subjected to shear flow. We show the existence of two different steady states (droplets and ribbons structures) whose nature does not depend on the way to reach the two-phase unstable region of the phase diagram (temperature quench or stirring). The transition between ribbons and droplets is shear thickening and its nature strongly depends on what dynamical variable is imposed. If the stress is fixed, flow visualization shows the existence of shear bands at the transition, characteristic of coexistence in the cell between ribbons and droplets. In this shear-banding region, the viscosity oscillates. When the shear rate is fixed, no shear bands are observed. Instead, the transition exhibits a hysteretic behavior leading to a structural bi-stability of the phase-separating fluid under flow.
Non-linear temperature-dependent curvature of a phase change composite bimorph beam
NASA Astrophysics Data System (ADS)
Blonder, Greg
2017-06-01
Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.
The effect of phase change materials on the frontal polymerization of a triacrylate
NASA Astrophysics Data System (ADS)
Viner, Veronika G.; Pojman, John A.; Golovaty, Dmitry
2010-06-01
The production of smoke and fumes is a major obstacle to the practical use of thermal frontal polymerization. The front temperature and the amount of smoking can be reduced by adding inert fillers, such as clay and silica, to the reactive mixture. Here we investigate the possibility of incorporating inert materials that melt (so-called phase change materials) to the mixture. By performing both experiments and mathematical modeling, we demonstrate that, in addition to the standard parameters of frontal polymerization, the front temperature and velocity depend on the melting point and heat of fusion of the phase change material. We use the method of matched asymptotic expansions to develop an explicit expression for the velocity of the reaction front. The expression demonstrates that the behavior of the front is determined by the difference between the reaction temperature and the melting temperature, with the front being slower and cooler if melting occurs farther ahead of the reaction front. The theoretical trends are hard to confirm directly because different characteristics of the phase change material cannot be varied separately.
Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals
Li, Dehui; Wang, Gongming; Cheng, Hung-Chieh; Chen, Chih-Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng
2016-01-01
Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials. PMID:27098114
Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals
Li, Dehui; Wang, Gongming; Cheng, Hung -Chieh; ...
2016-04-21
Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirmmore » that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Lastly, our findings offer significant fundamental insight on the temperature-and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.« less
NASA Astrophysics Data System (ADS)
Phanindra, V. Eswara; Agarwal, Piyush; Rana, D. S.
2018-01-01
The intertwined and competing energy scales of various interactions in rare-earth nickelates R Ni O3 (R =La to Lu) hold potential for a wide range of exotic ground states realized upon structural modulation. Using terahertz (THz) spectroscopy, the low-energy dynamics of a novel non-Fermi liquid (NFL) metallic phase induced in compressive PrNi O3 thin film was studied by evaluating the quasiparticle scattering rate in the light of two distinct models over a wide temperature range. First, evaluating THz conductivity in the framework of extended Drude model, the frequency-dependent scattering rate is found to deviate from the Landau Fermi liquid (LFL) behavior, thus, suggesting NFL-like phase at THz frequencies. Second, fitting THz conductivity to the multiband Drude-Lorentz model reveals the band-dependent scattering rates and provides microscopic interpretation of the carriers contributing to the Drude modes. This is first evidence of NFL-like behavior in nickelates at THz frequencies consistent with dc conductivity, which also suggests that THz technology is indispensable in understanding emerging electronic phases and associated phenomena. We further demonstrate that the metal-insulator transition in nickelates has the potential to design efficient THz modulators.
Breakdown of single spin-fluid model in the heavily hole-doped superconductor CsFe2As2
NASA Astrophysics Data System (ADS)
Zhao, D.; Li, S. J.; Wang, N. Z.; Li, J.; Song, D. W.; Zheng, L. X.; Nie, L. P.; Luo, X. G.; Wu, T.; Chen, X. H.
2018-01-01
Although Fe-based superconductors are correlated electronic systems with multiorbital, previous nuclear magnetic resonance (NMR) measurement suggests that a single spin-fluid model is sufficient to describe its spin behavior. Here, we first observed the breakdown of single spin-fluid model in a heavily hole-doped Fe-based superconductor CsFe2As2 by site-selective NMR measurement. At high-temperature regime, both Knight shift and nuclear spin-lattice relaxation at 133Cs and 75As nuclei exhibit distinct temperature-dependent behavior, suggesting the breakdown of the single spin-fluid model in CsFe2As2 . This is ascribed to the coexistence of both localized and itinerant spin degree of freedom at 3 d orbitals, which is consistent with the orbital-selective Mott phase. With decreasing temperature, the single spin-fluid behavior is recovered below T*˜75 K due to a coherent state among 3 d orbitals. The Kondo liquid scenario is proposed to understand the low-temperature coherent state.
Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells
NASA Astrophysics Data System (ADS)
Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu
2016-01-01
In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.
Local Magnetic Measurements of Trapped Flux Through a Permanent Current Path in Graphite
NASA Astrophysics Data System (ADS)
Stiller, Markus; Esquinazi, Pablo D.; Quiquia, José Barzola; Precker, Christian E.
2018-04-01
Temperature- and field-dependent measurements of the electrical resistance of different natural graphite samples suggest the existence of superconductivity at room temperature in some regions of the samples. To verify whether dissipationless electrical currents are responsible for the trapped magnetic flux inferred from electrical resistance measurements, we localized them using magnetic force microscopy on a natural graphite sample in remanent state after applying a magnetic field. The obtained evidence indicates that at room temperature a permanent current flows at the border of the trapped flux region. The current path vanishes at the same transition temperature T_c≈ 370 K as the one obtained from electrical resistance measurements on the same sample. This sudden decrease in the phase is different from what is expected for a ferromagnetic material. Time-dependent measurements of the signal show the typical behavior of flux creep of a permanent current flowing in a superconductor. The overall results support the existence of room-temperature superconductivity at certain regions in the graphite structure and indicate that magnetic force microscopy is suitable to localize them. Magnetic coupling is excluded as origin of the observed phase signal.
NASA Astrophysics Data System (ADS)
Rozilah, R.; Ibrahim, N.; Mohamed, Z.; Yahya, A. K.; Khan, Nawazish A.; Khan, M. Nasir
2017-09-01
Polycrystalline Pr0.75Na0.25-xKxMnO3 (x = 0, 0.05, 0.10, 0.15 and 0.20) ceramics were prepared using conventional solid-state method and their structural, magnetic and electrical transport properties were investigated. Magnetization versus temperature measurements showed un-substituted sample exhibited paramagnetic behavior with charge-ordered temperature, TCO around 218 K followed by antiferromagnetic behavior at transition temperature, TN ∼ 170 K. K+-substitution initially weakened CO state for x = 0.05-0.10 then successfully suppressed the CO state for x = 0.15-0.20 and inducing ferromagnetic-paramagnetic transition with Curie temperature, TC increased with x. In addition, deviation of the temperature dependence of inverse magnetic susceptibility curves from the Curie-Weiss law suggests the existence of Griffiths phase-like increased with x. Magnetization versus magnetic field curves show existence of hysteresis loops at T < 260 K (x = 0) and T < 180 K (x = 0.05-0.10), which related to metamagnetic transition occurring at critical field. Electrical resistivity measurements showed an insulating behavior for x = 0 sample while for x = 0.05-0.20 samples showed metal-insulator transition and transition temperature, TMI increased with x. The increased in TC and TMI are attributed to the increase in tolerance factor which indicates reduction in MnO6 octahedral distortion consequently enhanced double exchange interaction.
Anomalous dielectric behavior in nanoparticle Eu2O3 : SiO2 glass composite system
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Chen, C. H.; Chou, C. C.; Yang, H. D.
2010-12-01
Eu2O3 (0.5 mol%) nanoparticles have been synthesized in a silica glass matrix by the sol-gel method at calcination temperatures of 700 °C and above. Compared with the parent material SiO2, this nano-glass composite system shows enhancement of dielectric constant and diffuse phase transition along with magnetodielectric effect around room temperature (~270 K). The observed conduction mechanism is found to be closely related to the thermally activated oxygen vacancies. Magnetodielectric behavior is strongly associated with magnetoresistance changes, depending on the nanoparticle size and separation. Such a material might be treated as a potential candidate for device miniaturization.
Dependence of the critical temperature in overdoped copper oxides on superfluid density
Božović, I.; He, X.; Wu, J.; ...
2016-08-17
The physics of underdoped copper-oxide superconductors, including the pseudogap, spin and charge ordering, and their relation to superconductivity 1-3, is intensely debated. The overdoped side is perceived as simpler, with strongly-correlated fermion physics evolving smoothly into the conventional Bardeen-Cooper-Schrieffer (BCS) behavior. Pioneering studies on a few overdoped samples 4-11 indicated that the superfluid density was much smaller than expected, but this was attributed to pair-breaking, disorder, and phase separation. Here, we test this conjecture by studying how the magnetic penetration depth λ and the phase stiffness ρs depend on temperature and doping, scanning densely the entire overdoped side of themore » La 2-xSr xCuO 4 (LSCO) phase diagram. We have measured the absolute values of λ and ρs to the accuracy of ±1% in thousands of cuprate samples; the large statistics reveals clear trends and intrinsic properties. The films are quite homogeneous; variations in the critical temperature (T c) within a film are very small (< 1 K). At every doping, ρs(T) decreases linearly with temperature. The T c(ρ s0) dependence is linear but with an offset, (T c - T 0) ∝ ρs0 where T0 ≈ 7 K, except very close to the origin where Tc ∝ √ρ s0. This scaling law defies the standard BCS description, posing a challenge to theory.« less
Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T
2015-03-26
Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.
NASA Astrophysics Data System (ADS)
Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy
2018-04-01
Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.
NASA Astrophysics Data System (ADS)
Kornegay, Suzanne M.
This research focuses on exploring the influence of Zr additions in Ni-rich Nitinol alloys on the phase stability, transformation temperatures, and thermo-mechanical behavior using various microanalysis techniques. The dissertation is divided into three major bodies of work: (1) The microstructural and thermo-mechanical characterization of a 50.3Ni-32.2Ti-17.5Zr (at.%) Zr alloy; (2) The characterization and mechanical behavior of 50.3Ni-48.7Ti-1Zr and 50.3Ni-48.7Ti-1Hf alloys to determine how dilute additions alter the phases, transformation temperatures, and thermo-mechanical properties; and (3) The microstructural evolution and transformation behavior comparison of microstructure and transformation temperature for 50.3Ni-(49.7-X)Ti-XZr alloys, where X is 1,7, or 17.5% Zr aged at either 400°C and 550°C. The major findings of this work include the following: (1) In the dilute limit of 1% Zr, at 400°C aging, a spherical precipitate, denoted as the S-phase, was observed. This is the first report of this phase. Further aging resulted in the secondary precipitation event of the H-phase. Increasing the aging temperature to 550°C, resulted in no evident precipitation of the S- and H-phase precipitates suggestive this temperature is above the solvus boundary for these compositions. (2) For the 7% and 17.5% Zr alloys, aging at 400°C and 550°C resulted in the precipitation of the H-phase. For the lower temperature anneal, this phase required annealing up to 300 hours of aging to be observed for the 17.5% Zr alloy. Upon increasing the aging temperature, the H-phase precipitation was present in both alloys. The transformation behavior and thermo-mechanical properties are linked to the precipitation behavior.
Crystallization of D-mannitol in binary mixtures with NaCl: phase diagram and polymorphism.
Telang, Chitra; Suryanarayanan, Raj; Yu, Lian
2003-12-01
To study the crystallization, polymorphism, and phase behavior of D-mannitol in binary mixtures with NaCl to better understand their interactions in frozen aqueous solutions. Differential scanning calorimetry, hot-stage microscopy, Raman microscopy, and variable-temperature X-ray diffractometry were used to characterize D-mannitol-NaCl mixtures. NaCl and D-mannitol exhibited significant melt miscibility (up to 7.5% w/w or 0.20 mole fraction of NaCl) and a eutectic phase diagram (eutectic composition 7.5% w/w NaCl; eutectic temperature 150 degrees C for the alpha and beta polymorphs of D-mannitol and 139 degrees C for the delta). The presence of NaCl did not prevent mannitol from crystallizing but, depending on sample size, affected the polymorph crystallized: below 10 mg, delta was obtained; above 100 mg, alpha was obtained. Pure mannitol crystallized under the same conditions first as the delta polymorph and then as the a polymorph, with the latter nucleating on the former. KCl showed similar eutectic points and melt miscibility with D-mannitol as NaCl. LiCl yielded lower eutectic melting points, inhibited the crystallization of D-mannitol during cooling, and enabled the observation of its glass transition. Despite their structural dissimilarity, significant melt miscibility exists between D-mannitol and NaCl. Their phase diagram has been determined and features polymorph-dependent eutectic points. NaCl influences the polymorphic behavior of mannitol, and the effect is linked to the crystallization of mannitol in two polymorphic stages.
Temperature-Dependent Friction and Wear Behavior of PTFE and MoS 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babuska, T. F.; Pitenis, A. A.; Jones, M. R.
2016-06-16
We present an investigation of the temperature-dependent friction behavior of PTFE, MoS 2, and PTFE-on- MoS 2. Friction behavior was measured while continuously varying contact temperature in the range -150 to 175°C while sliding in dry nitrogen, as well as for self-mated PTFE immersed in liquid nitrogen. These results contrast with previous reports of monotonic inverse temperature dependent friction behavior, as well as reported high-friction transitions and plateaus at temperatures below about -20°C that were not observed, providing new insights about the molecular mechanisms of macro-scale friction. The temperature-dependent friction behavior characteristic of self-mated PTFE was found also on themore » PTFE-on-MoS 2 sliding contact, suggesting that PTFE friction was defined by sub-surface deformation mechanisms and internal friction even when sliding against a lamellar lubricant with extremely low friction coefficient (μ ~ 0.02). The various relaxation temperatures of PTFE were found in the temperature-dependent friction behavior, showing excellent agreement with reported values acquired using torsional techniques measuring internal friction. Additionally, hysteresis in friction behavior suggests an increase in near-surface crystallinity at upon exceeding the high temperature relaxation, T α~ 116°C.« less
Zhou, S. H.; Liu, C.; Yao, Y. X.; ...
2016-04-29
BiMn-α is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single BiMn-α phase. The objective of this study is to assess driving force for crystalline phase pathways under far-from-equilibrium conditions. First-principles calculations with Hubbard U correction are performed to provide a robust description of the thermodynamic behavior. The energetics associated with various degrees of the chemical partitioning are quantified to predict temperature, magnetic field, and time dependence of the phase selection. By assessing the phase transformation under the influence of the chemical partitioning, temperatures, and cooling rate from our calculations, we suggestmore » that it is possible to synthesize the magnetic BiMn-α compound in a congruent manner by rapid solidification. The external magnetic field enhances the stability of the BiMn-α phase. In conclusion, the compositions of the initial compounds from these highly driven liquids can be far from equilibrium.« less
NASA Astrophysics Data System (ADS)
Rezania, H.
2018-07-01
We have addressed the specific heat and magnetization of one dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain at finite magnetic field. We have investigated the thermodynamic properties by means of excitation spectrum in terms of a hard core Bosonic representation. The effect of in-plane anisotropy thermodynamic properties has also been studied via the Bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the specific heat and longitudinal magnetization in the gapped field induced spin-polarized phase for various magnetic fields and anisotropy parameters. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various anisotropy parameters. Our results show temperature dependence of specific heat includes a peak so that its temperature position goes to higher temperature with increase of magnetic field. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various magnetic fields due to increase of energy gap in the excitation spectrum. Also we have studied the temperature dependence of magnetization for different magnetic fields and various anisotropy parameters.
NASA Astrophysics Data System (ADS)
Tillmann, Wolfgang; Kokalj, David; Stangier, Dominic; Paulus, Michael; Sternemann, Christian; Tolan, Metin
2018-01-01
Friction minimization is an important topic which is pursued in research and industry. In addition to the use of lubricants, friction-reducing oxide phases can be utilized which occur during. These oxides are called Magnéli phases and especially vanadium oxides exhibit good friction reducing properties. Thereby, the lubrication effect can be traced back to oxygen deficiencies. AlCrN thin films are being used as coatings for tools which have to withstand high temperatures. A further improvement of AlCrN thin films concerning their friction properties is possible by incorporation of vanadium. This study analyzes the temperature dependent oxidation behavior of magnetron sputtered AlCrVN thin films with different vanadium contents up to 13.5 at.-% by means of X-ray diffraction and X-ray absorption near-edge spectroscopy. Up to 400 °C the coatings show no oxidation. A higher temperature of 700 °C leads to an oxidation and formation of Magnéli phases of the coatings with vanadium contents above 10.7 at.-%. Friction coefficients, measured by ball-on-disk test are correlated with the oxide formation in order to figure out the effect of vanadium oxides. At 700 °C a decrease of the friction coefficient with increasing vanadium content can be observed, due to the formation of VO2, V2O3 and the Magnéli phase V4O7.
NASA Astrophysics Data System (ADS)
Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.
2016-01-01
Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ˜25 % on cooling from room temperature to ˜100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.
Finite-size behaviour of generalized susceptibilities in the whole phase plane of the Potts model
NASA Astrophysics Data System (ADS)
Pan, Xue; Zhang, Yanhua; Chen, Lizhu; Xu, Mingmei; Wu, Yuanfang
2018-01-01
We study the sign distribution of generalized magnetic susceptibilities in the temperature-external magnetic field plane using the three-dimensional three-state Potts model. We find that the sign of odd-order susceptibility is opposite in the symmetric (disorder) and broken (order) phases, but that of the even-order one remains positive when it is far away from the phase boundary. When the critical point is approached from the crossover side, negative fourth-order magnetic susceptibility is observable. It is also demonstrated that non-monotonic behavior occurs in the temperature dependence of the generalized susceptibilities of the energy. The finite-size scaling behavior of the specific heat in this model is mainly controlled by the critical exponent of the magnetic susceptibility in the three-dimensional Ising universality class. Supported by Fund Project of National Natural Science Foundation of China (11647093, 11405088, 11521064), Fund Project of Sichuan Provincial Department of Education (16ZB0339), Fund Project of Chengdu Technological University (2016RC004) and the Major State Basic Research Development Program of China (2014CB845402)
Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators
Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle
2017-07-27
Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less
Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle
Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less
NASA Astrophysics Data System (ADS)
Yezli, M.; Bekhechi, S.; Hontinfinde, F.; EZ-Zahraouy, H.
2016-04-01
Two nonperturbative methods such as Monte-Carlo simulation (MC) and Transfer-Matrix Finite-Size-Scaling calculations (TMFSS) have been used to study the phase transition of the spin- 3 / 2 Blume-Emery-Griffiths model (BEG) with quadrupolar and antiferromagnetic next-nearest-neighbor exchange interactions. Ground state and finite temperature phase diagrams are obtained by means of these two methods. New degenerate phases are found and only second order phase transitions occur for all values of the parameter interactions. No sign of the intermediate phase is found from both methods. Critical exponents are also obtained from TMFSS calculations. Ising criticality and nonuniversal behaviors are observed depending on the strength of the second neighbor interaction.
Crossover in growth laws for phase-separating binary fluids: molecular dynamics simulations.
Ahmad, Shaista; Das, Subir K; Puri, Sanjay
2012-03-01
Pattern and dynamics during phase separation in a symmetrical binary (A+B) Lennard-Jones fluid are studied via molecular dynamics simulations after quenching homogeneously mixed critical (50:50) systems to temperatures below the critical one. The morphology of the domains, rich in A or B particles, is observed to be bicontinuous. The early-time growth of the average domain size is found to be consistent with the Lifshitz-Slyozov law for diffusive domain coarsening. After a characteristic time, dependent on the temperature, we find a clear crossover to an extended viscous hydrodynamic regime where the domains grow linearly with time. Pattern formation in the present system is compared with that in solid binary mixtures, as a function of temperature. Important results for the finite-size and temperature effects on the small-wave-vector behavior of the scattering function are also presented.
NASA Astrophysics Data System (ADS)
Vatansever, Erol
2017-05-01
By means of Monte Carlo simulation method with Metropolis algorithm, we elucidate the thermal and magnetic phase transition behaviors of a ferrimagnetic core/shell nanocubic system driven by a time dependent magnetic field. The particle core is composed of ferromagnetic spins, and it is surrounded by an antiferromagnetic shell. At the interface of the core/shell particle, we use antiferromagnetic spin-spin coupling. We simulate the nanoparticle using classical Heisenberg spins. After a detailed analysis, our Monte Carlo simulation results suggest that present system exhibits unusual and interesting magnetic behaviors. For example, at the relatively lower temperature regions, an increment in the amplitude of the external field destroys the antiferromagnetism in the shell part of the nanoparticle, leading to a ground state with ferromagnetic character. Moreover, particular attention has been dedicated to the hysteresis behaviors of the system. For the first time, we show that frequency dispersions can be categorized into three groups for a fixed temperature for finite core/shell systems, as in the case of the conventional bulk systems under the influence of an oscillating magnetic field.
Cho, Sun-Hee; Kim, Ahreum; Shin, Woojung; Heo, Min Beom; Noh, Hyun Jong; Hong, Kwan Soo; Cho, Jee-Hyun; Lim, Yong Taik
2017-01-01
Injectable and stimuli-responsive hydrogels have attracted attention in molecular imaging and drug delivery because encapsulated diagnostic or therapeutic components in the hydrogel can be used to image or change the microenvironment of the injection site by controlling various stimuli such as enzymes, temperature, pH, and photonic energy. In this study, we developed a novel injectable and photoresponsive composite hydrogel composed of anticancer drugs, imaging contrast agents, bio-derived collagen, and multifaceted anionic polypeptide, poly (γ-glutamic acid) (γ-PGA). By the introduction of γ-PGA, the intrinsic temperature-dependent phase transition behavior of collagen was modified to a low viscous sol state at room temperature and nonflowing gel state around body temperature. The modified temperature-dependent phase transition behavior of collagen/γ-PGA hydrogels was also evaluated after loading of near-infrared (NIR) fluorophore, indocyanine green (ICG), which could transform absorbed NIR photonic energy into thermal energy. By taking advantage of the abundant carboxylate groups in γ-PGA, cationic-charged doxorubicin (Dox) and hydrophobic MnFe 2 O 4 magnetic nanoparticles were also incorporated successfully into the collagen/γ-PGA hydrogels. By illumination of NIR light on the collagen/γ-PGA/Dox/ICG/MnFe 2 O 4 hydrogels, the release kinetics of Dox and magnetic relaxation of MnFe 2 O 4 nanoparticles could be modulated. The experimental results suggest that the novel injectable and NIR-responsive collagen/γ-PGA hydrogels developed in this study can be used as a theranostic platform after loading of various molecular imaging probes and therapeutic components.
NASA Astrophysics Data System (ADS)
Ochoa, D. A.; Levit, R.; Fancher, C. M.; Esteves, G.; Jones, J. L.; E García, J.
2017-05-01
Ordinary ferroelectrics exhibit a second order phase transition that is characterized by a sharp peak in the dielectric permittivity at a frequency-independent temperature. Furthermore, these materials show a low temperature dielectric relaxation that appears to be a common behavior of perovskite systems. Tetragonal lead zirconate titanate is used here as a model system in order to explore the origin of such an anomaly, since there is no consensus about the physical phenomenon involved in it. Crystallographic and domain structure studies are performed from temperature dependent synchrotron x-ray diffraction measurement. Results indicate that the dielectric relaxation cannot be associated with crystallographic or domain configuration changes. The relaxation process is then parameterized by using the Vogel-Fulcher-Tammann phenomenological equation. Results allow us to hypothesize that the observed phenomenon is due to changes in the dynamic behavior of the ferroelectric domains related to the fluctuation of the local polarization.
Thermopower of CexR1-xB6 (R=La, Pr and Nd)
NASA Astrophysics Data System (ADS)
Kim, Moo‑Sung; Nakai, Yuki; Tou, Hideki; Sera, Masafumi; Iga, Fumitoshi; Takabatake, Toshiro; Kunii, Satoru
2006-06-01
The thermopower, S, of CexR1-xB6 (R=La, Pr, Nd) was investigated. S with a positive sign shows a typical behavior observed in the Ce Kondo system, an increase with decreasing temperature at high temperatures and a maximum at low temperatures. The S values of all the systems at high temperatures are roughly linearly dependent on the Ce concentration, indicating the conservation of the single-impurity character of the Kondo effect in a wide x range. However, the maximum value of S, Smax, and the temperature, Tmax, at which Smax is observed exhibit different x dependences between CexLa1-xB6 and CexR1-xB6 (R=Pr, Nd). In CexLa1-xB6, Tmax, which is ˜8 K in CeB6, decreases with decreasing x and converges to ˜1 K in a very dilute alloy and Smax shows an increase below x ˜ 0.1 after decreasing with decreasing x. In CexR1-xB6 (R=Pr, Nd), Tmax shows a weak x dependence but Smax shows a roughly linear decrease in x. These results are discussed from the standpoint of the chemical pressure effect and the Ce-Ce interaction. S in the long-range ordered phase shows very different behaviors between CexPr1-xB6 and CexNd1-xB6.
Enhanced thermoelectric figure-of-merit in environmentally benign BaxSr2-xTiCoO6 double perovskites
NASA Astrophysics Data System (ADS)
Saxena, Mandvi; Roy, Pinku; Acharya, Megha; Bose, Imon; Tanwar, Khagesh; Maiti, Tanmoy
2016-12-01
Environmental friendly, non-toxic double perovskite BaxSr2-xTiCoO6 compositions with 0 ≤ x ≤ 0.2 were synthesized using solid-state reaction route for high temperature thermoelectric (TE) applications. XRD and SEM studies confirmed the presence of single-phase solid solution with highly dense microstructure for all the oxide compositions. Temperature dependent electrical conductivity measurement showed semiconductor to metal (M-S) transition in these double perovskites. Incorporation of barium in Sr2TiCoO6 pushed M-S transition to higher temperature making it a potential candidate for high temperature TE applications. Conductivity behaviors of these oxides were explained by small polaron model. Furthermore, these oxides exhibit a glass like behavior resulting in low thermal conductivity. Low temperature dielectric measurement revealed relaxor ferroelectric behavior in these oxides below room temperature. Transition of these relaxors into a glassy state beyond Burns temperature (TD) was found responsible for having low thermal conductivity in these oxides. Maximum dimensionless TE figure-of-merit ZT = 0.29 at 1223 K was achieved for BaxSr2-xTiCoO6 composition with x = 0.2.
NASA Astrophysics Data System (ADS)
Mukherjee, Sudip; Rajak, Atanu; Chakrabarti, Bikas K.
2018-02-01
We explore the behavior of the order parameter distribution of the quantum Sherrington-Kirkpatrick model in the spin glass phase using Monte Carlo technique for the effective Suzuki-Trotter Hamiltonian at finite temperatures and that at zero temperature obtained using the exact diagonalization method. Our numerical results indicate the existence of a low- but finite-temperature quantum-fluctuation-dominated ergodic region along with the classical fluctuation-dominated high-temperature nonergodic region in the spin glass phase of the model. In the ergodic region, the order parameter distribution gets narrower around the most probable value of the order parameter as the system size increases. In the other region, the Parisi order distribution function has nonvanishing value everywhere in the thermodynamic limit, indicating nonergodicity. We also show that the average annealing time for convergence (to a low-energy level of the model, within a small error range) becomes system size independent for annealing down through the (quantum-fluctuation-dominated) ergodic region. It becomes strongly system size dependent for annealing through the nonergodic region. Possible finite-size scaling-type behavior for the extent of the ergodic region is also addressed.
Thermal Hall conductivity in the spin-triplet superconductor with broken time-reversal symmetry
NASA Astrophysics Data System (ADS)
Imai, Yoshiki; Wakabayashi, Katsunori; Sigrist, Manfred
2017-01-01
Motivated by the spin-triplet superconductor Sr2RuO4 , the thermal Hall conductivity is investigated for several pairing symmetries with broken time-reversal symmetry. In the chiral p -wave phase with a fully opened quasiparticle excitation gap, the temperature dependence of the thermal Hall conductivity has a temperature linear term associated with the topological property directly and an exponential term, which shows a drastic change around the Lifshitz transition. Examining f -wave states as alternative candidates with d =Δ0z ̂(kx2-ky2) (kx±i ky) and Δ0z ̂kxky(kx±i ky) with gapless quasiparticle excitations, we study the temperature dependence of the thermal Hall conductivity, where for the former state the thermal Hall conductivity has a quadratic dependence on temperature, originating from the linear dispersions, in addition to linear and exponential behavior. The obtained result may enable us to distinguish between the chiral p -wave and f -wave states in Sr2RuO4 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.
Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. Themore » phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.« less
Magnetocaloric effect and magnetic properties in SmFe1-xMnxO3 perovskite: Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Erchidi Elyacoubi, A. S.; Masrour, R.; Jabar, A.
2018-03-01
We have used Monte Carlo simulation to study the magnetocaloric effect on SmFe1-xMnxO3 perovskite. The temperature-dependent magnetization shows that the Néel temperature of the weak-ferromagnetic SmFeO3 decreases as Fe ions are substituted by Mn ions. A paramagnetic-to-weak-antiferromagnetic transition with decreasing the temperature is observed and the corresponding Néel temperature essentially decreases as the Mn content increases. The magnetocaloric effect shows two peaks related to magnetic behavior changes, at paramagnetic-like behavior TK(K) and at Néel temperature TN(K) of SmFe1-xMnxO3. The second phase transition is established. The magnetic entropy change is given for a several magnetic fields. We have also determined the relative cooling power for dilution x = 0.5 and for a several external magnetic fields. Finally, the magnetic hysteresis cycles have been obtained with different dilutions x and temperatures values.
Temperature dependence of the multistability of lactose utilization network of Escherichia coli
NASA Astrophysics Data System (ADS)
Nepal, Sudip; Kumar, Pradeep
Biological systems are capable of producing multiple states out of a single set of inputs. Multistability acts like a biological switch that allows organisms to respond differently to different environmental conditions and hence plays an important role in adaptation to changing environment. One of the widely studied gene regulatory networks underlying the metabolism of bacteria is the lactose utilization network, which exhibits a multistable behavior as a function of lactose concentration. We have studied the effect of temperature on multistability of the lactose utilization network at various concentrations of thio-methylgalactoside (TMG), a synthetic lactose. We find that while the lactose utilization network exhibits a bistable behavior for temperature T >20° C , a graded response arises for temperature T <=20° C. Furthermore, we construct a phase diagram of the graded and bistable response of lactose utilization network as a function of temperature and TMG concentration. Our results suggest that environmental conditions, in this case temperature, can alter the nature of cellular regulation of metabolism.
Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules
NASA Astrophysics Data System (ADS)
Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan
2016-06-01
This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport.This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09043a
Independent active and thermodynamic processes govern the nucleolus assembly in vivo
Falahati, Hanieh; Wieschaus, Eric
2017-01-01
Membraneless organelles play a central role in the organization of protoplasm by concentrating macromolecules, which allows efficient cellular processes. Recent studies have shown that, in vitro, certain components in such organelles can assemble through phase separation. Inside the cell, however, such organelles are multicomponent, with numerous intermolecular interactions that can potentially affect the demixing properties of individual components. In addition, the organelles themselves are inherently active, and it is not clear how the active, energy-consuming processes that occur constantly within such organelles affect the phase separation behavior of the constituent macromolecules. Here, we examine the phase separation model for the formation of membraneless organelles in vivo by assessing the two features that collectively distinguish it from active assembly, namely temperature dependence and reversibility. We use a microfluidic device that allows accurate and rapid manipulation of temperature and examine the quantitative dynamics by which six different nucleolar proteins assemble into the nucleoli of Drosophila melanogaster embryos. Our results indicate that, although phase separation is the main mode of recruitment for four of the studied proteins, the assembly of the other two is irreversible and enhanced at higher temperatures, behaviors indicative of active recruitment to the nucleolus. These two subsets of components differ in their requirements for ribosomal DNA; the two actively assembling components fail to assemble in the absence of ribosomal DNA, whereas the thermodynamically driven components assemble but lose temporal and spatial precision. PMID:28115706
NASA Astrophysics Data System (ADS)
Cho, Junhan
2014-03-01
Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahms, Rainer N.
2014-12-31
The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phasemore » components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of previous temperature-dependent expressions, remains well-defined at supercritical temperatures, and is fully suitable for calculations of general multi-component two-phase interfaces.« less
Kang, Chang-Jong; Choi, Hong Chul; Kim, Kyoo; Min, B I
2015-04-24
We have investigated temperature-dependent behaviors of electronic structure and resistivity in a mixed-valent golden phase of SmS, based on the dynamical mean-field-theory band-structure calculations. Upon cooling, the coherent Sm 4f bands are formed to produce the hybridization-induced pseudogap near the Fermi level, and accordingly the topology of the Fermi surface is changed to exhibit a Lifshitz-like transition. The surface states emerging in the bulk gap region are found to be not topologically protected states but just typical Rashba spin-polarized states, indicating that SmS is not a topological Kondo semimetal. From the analysis of anomalous resistivity behavior in SmS, we have identified universal energy scales, which characterize the Kondo-mixed-valent semimetallic systems.
Citadini, Jessyca Michele; Navas, Carlos Arturo
2013-07-01
Although many studies assessed the influence of temperature on the behavior of ectotermic vertebrates, little attention has been given to interindividual variation in the defensive responses of reptiles. In the present study we investigated the defensive behavior of the snake Tomodon dorsatus, in order to test the hypotheses that (1) individuals differ in their antipredator behavior consistently with the concept of behavioral syndromes, (2) temperature influences the defensive behavior, and (3) these two factors interact with each other. There was significant interindividual variation in defensive behavior, as well as consistently aggressive, passive or evasive behaviors. Temperature influenced aggressiveness, which was slightly higher when body temperature was lower, but this trend was only evident in animals with aggressive disposition. Our results corroborate the hypothesis of interaction between individuality of behavior and temperature-dependent defensive behavior in T. dorsatus. These results, together with results from previous studies, suggest that the evolution of temperature-dependent defensive behavior differs among lineages of ectothermic tetrapods. This article is part of a Special Issue entitled: insert SI title. Copyright © 2013 Elsevier B.V. All rights reserved.
Classical mutual information in mean-field spin glass models
NASA Astrophysics Data System (ADS)
Alba, Vincenzo; Inglis, Stephen; Pollet, Lode
2016-03-01
We investigate the classical Rényi entropy Sn and the associated mutual information In in the Sherrington-Kirkpatrick (S-K) model, which is the paradigm model of mean-field spin glasses. Using classical Monte Carlo simulations and analytical tools we investigate the S-K model in the n -sheet booklet. This is achieved by gluing together n independent copies of the model, and it is the main ingredient for constructing the Rényi entanglement-related quantities. We find a glassy phase at low temperatures, whereas at high temperatures the model exhibits paramagnetic behavior, consistent with the regular S-K model. The temperature of the paramagnetic-glassy transition depends nontrivially on the geometry of the booklet. At high temperatures we provide the exact solution of the model by exploiting the replica symmetry. This is the permutation symmetry among the fictitious replicas that are used to perform disorder averages (via the replica trick). In the glassy phase the replica symmetry has to be broken. Using a generalization of the Parisi solution, we provide analytical results for Sn and In and for standard thermodynamic quantities. Both Sn and In exhibit a volume law in the whole phase diagram. We characterize the behavior of the corresponding densities, Sn/N and In/N , in the thermodynamic limit. Interestingly, at the critical point the mutual information does not exhibit any crossing for different system sizes, in contrast with local spin models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, J.; Roy, B.; Tanatar, M. A.
We report 75As nuclear magnetic resonance (NMR) measurements of single-crystalline Ca(Fe 1–xCo x) 2As 2 (x=0.023, 0.028, 0.033, and 0.059) annealed at 350°C for 7 days. From the observation of a characteristic shape of 75As NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of x=0 (T N=170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in x=0.023 (T N=106 K) and x=0.028 (T N=53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1/T 1), although stripe-type AFM spin fluctuationsmore » are realized in the paramagnetic state as in the case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature T* that was nearly independent of Co-substitution concentration, and it is attributed to a pseudogaplike behavior in the spin excitation spectra of these systems. The T* feature finds correlation with features in the temperature-dependent interplane resistivity, ρc(T), but not with the in-plane resistivity ρa(T). The temperature evolution of anisotropic stripe-type AFM spin fluctuations is tracked in the paramagnetic and pseudogap phases by the 1/T 1 data measured under magnetic fields parallel and perpendicular to the c axis. As a result, based on our NMR data, we have added a pseudogaplike phase to the magnetic and electronic phase diagram of Ca(Fe 1–xCo x) 2As 2.« less
NASA Astrophysics Data System (ADS)
Frey Huls, N. A.; Bingham, N. S.; Phan, M. H.; Srikanth, H.; Stauffer, D. D.; Leighton, C.
2011-01-01
Half-doped Pr1-xSrxCoO3 (x=0.5) displays anomalous magnetism, most notably manifest in the field-cooled magnetization versus temperature curves under different applied cooling fields. Recently, an explanation was advanced that a magnetocrystalline anisotropy transition driven by a structural transition at 120 K is the origin of this behavior. In this paper, we further elucidate the nature of the magnetic anisotropy across the low-temperature phase transition in this material by means of transverse susceptibility (TS) measurements performed using a self-resonant tunnel diode oscillator. TS probes magnetic materials by means of a small radio frequency oriented transverse to a dc field that sweeps from positive to negative saturation. TS scans as a function of field clearly reveal peaks associated with the anisotropy (HK) and switching fields (HS). When peak position is examined as a function of temperature, ˜120 K the signature of a ferromagnetic-to-ferromagnetic phase transition is evident as a sharp feature in HK and a corresponding cusp in HS. A third TS peak (not previously observed in other classes of magnetic oxides such as manganites and spinel ferrites) is found to be correlated with the crossover field (Hcr) in the unconventional magnetization versus temperature [M(T)] behavior. We observe a strong temperature dependence of Hcr at ˜120 K using this technique, which suggests the magnetic-field-influenced magnetocrystalline anisotropy transition. We show the switching between the high-field magnetization state and the low-field magnetization state associated with the magnetocrystalline anisotropy transition is irreversible when the magnetic field is recycled. Finally, we demonstrate that the TS peak magnitude indicates easy axis switching associated with this phase transition, even in these polycrystalline samples. Our results further confirm that TS provides new insights into the magnetic behavior of complex oxides.
NASA Astrophysics Data System (ADS)
Choi, Jong Han; Lee, Sangmook; Lee, Jae Wook
2017-02-01
The rheological properties of polymer composites highly filled with different filler materials were examined using a stress-controlled rheometer with a parallel-plate configuration, for particle characterization of the filler materials in plastic (polymer) bonded explosive (PBX). Ethylene vinyl acetate (EVA) with dioctyl adipate (DOA) was used as the matrix phase, which was shown to exhibit Newtonian-like behavior. The dispersed phase consisted of one of two energetic materials, i.e., explosive cyclotrimethylene trinitramine (RDX) or cyclotetramethylene tetranitramine (HMX), or a simulant (Dechlorane) in a bimodal size distribution. Before the test, preshearing was conducted to identify the initial condition of each sample. All examined filled polymer specimens exhibited yield stress and shear-thinning behavior over the investigated frequency range. The complex viscosity dependence on the dynamic oscillation frequency was also fitted using an appropriate rheological model, suggesting the model parameters. Furthermore, the temperature dependency of the different filler particle types was determined for different filler volume fractions. These comparative studies revealed the influence of the particle characteristics on the rheological properties of the filled polymer.
Orientational order and rotational relaxation in the plastic crystal phase of tetrahedral molecules.
Rey, Rossend
2008-01-17
A methodology recently introduced to describe orientational order in liquid carbon tetrachloride is extended to the plastic crystal phase of XY4 molecules. The notion that liquid and plastic crystal phases are germane regarding orientational order is confirmed for short intermolecular distances but is seen to fail beyond, as long range orientational correlations are found for the simulated solid phase. It is argued that, if real, such a phenomenon may not to be accessible with direct (diffraction) methods due to the high molecular symmetry. This behavior is linked to the existence of preferential orientation with respect to the fcc crystalline network defined by the centers of mass. It is found that the dominant class accounts, at most, for one-third of all configurations, with a feeble dependence on temperature. Finally, the issue of rotational relaxation is also addressed, with an excellent agreement with experimental measures. It is shown that relaxation is nonhomogeneous in the picosecond range, with a slight dispersion of decay times depending on the initial orientational class. The results reported mainly correspond to neopentane over a wide temperature range, although results for carbon tetrachloride are included, as well.
Volk, Gayle M; Crane, Jennifer; Caspersen, Ann M; Hill, Lisa M; Gardner, Candice; Walters, Christina
2006-11-01
The transition from anhydrobiotic to hydrated state occurs during early imbibition of seeds and is lethal if lipid reserves in seeds are crystalline. Low temperatures crystallize lipids during seed storage. We examine the nature of cellular damage observed in seeds of Cuphea wrightii and C. lanceolata that differ in triacylglycerol composition and phase behavior. Intracellular structure, observed using transmission electron microscopy, is profoundly and irreversibly perturbed if seeds with crystalline triacylglycerols are imbibed briefly. A brief heat treatment that melts triacylglycerols before imbibition prevents the loss of cell integrity; however, residual effects of cold treatments in C. wrightii cells are reflected by the apparent coalescence of protein and oil bodies. The timing and temperature dependence of cellular changes suggest that damage arises via a physical mechanism, perhaps as a result of shifts in hydrophobic and hydrophilic interactions when triacylglycerols undergo phase changes. Stabilizers of oil body structure such as oleosins that rely on a balance of physical forces may become ineffective when triacylglycerols crystallize. Recent observations linking poor oil body stability and poor seed storage behavior are potentially explained by the phase behavior of the storage lipids. These findings directly impact the feasibility of preserving genetic resources from some tropical and subtropical species.
Insulating phase in Sr2IrO4: An investigation using critical analysis and magnetocaloric effect
NASA Astrophysics Data System (ADS)
Bhatti, Imtiaz Noor; Pramanik, A. K.
2017-01-01
The nature of insulating phase in 5d based Sr2IrO4 is quite debated as the theoretical as well as experimental investigations have put forward evidences in favor of both magnetically driven Slater-type and interaction driven Mott-type insulator. To understand this insulating behavior, we have investigated the nature of magnetic state in Sr2IrO4 through studying critical exponents, low temperature thermal demagnetization and magnetocaloric effect. The estimated critical exponents do not exactly match with any universality class, however, the values obey the scaling behavior. The exponent values suggest that spin interaction in present material is close to mean-field model. The analysis of low temperature thermal demagnetization data, however, shows dual presence of localized- and itinerant-type of magnetic interaction. Moreover, field dependent change in magnetic entropy indicates magnetic interaction is close to mean-field type. While this material shows an insulating behavior across the magnetic transition, yet a distinct change in slope in resistivity is observed around Tc. We infer that though the insulating phase in Sr2IrO4 is more close to be Slater-type but the simultaneous presence of both Slater- and Mott-type is the likely scenario for this material.
NASA Astrophysics Data System (ADS)
Puchkovska, G. O.; Danchuk, V. D.; Makarenko, S. P.; Kravchuk, A. P.; Kotelnikova, E. N.; Filatov, S. K.
2004-12-01
In the present paper, we report temperature dependent FTIR spectra studies of Davydov splitting value for CH 2 rocking vibrations of pure crystalline n-paraffins C nH 2 n+2 ( n is the number of carbon atoms) and some isomorphically substituted binary mixtures of n-paraffins C 22H 46:C 24H 50. Temperature dependencies of Davydov splitting value have been shown to be characterized by the amount of irregularities (sharp decreasing), which corresponds to the phase transitions into the high-temperature (hexagonal) state for pure n-paraffins or different rotator crystalline states for the mixtures. Statistic and dynamic models have been proposed, which provides an adequate description of the observed effect. In the framework of these models, two different mechanisms are responsible for the temperature behavior of the vibrational mode splitting value. Besides the thermal expansion of crystals at heating, the quenching of vibrational excitons on the orientational defects of different nature takes place, accompanied with the breakage of the crystal lattice translational symmetry. The creation of such defects is resulted from the excitation of librational and rotational molecular degrees of freedom at the crystal polymorphic transitions into different rotary crystalline states. The manifestation of the resonance dynamical intermolecular interaction in the spectra of intramolecular vibrations in these crystals has been theoretically analyzed in terms of stochastic equations, taking into consideration the above mentioned phase transition. We have obtained the explicit expression for the theoretically predicted dependence of Davydov splitting value on temperature. The absorption bands, corresponding to Davydov splitting components, have been shown to approach rapidly each other at the transition to the high-temperature (hexagonal) phase. Computer simulation of such dependence has been performed for some aliphatic compounds. Good agreement between the experimental and computer simulation results has been obtained. The theoretical approach developed in the present paper for the resonance dynamical intermolecular interaction near such transitions from the three-dimensional to one-dimensional phase of crystalline n-paraffins has a general character and can be applied to the description of some specific features observed in the vibrational spectra of rotary crystals.
NASA Astrophysics Data System (ADS)
Mortensen, K.; Almdal, K.; Schwahn, D.; Frielinghaus, H.
1997-03-01
Studies of the phase behavior of polymer systems has proven that the sensitivity to fluctuations is much more distinct than originally anticipated based on theoretical arguments. In blends of homo-polymers, studies have revealed that fluctuations give rise to significant re-normalized critical behavior. It has been argued that the free volume causes an entropic contribution to the Flory-Huggins interaction parameter, \\chi, and is thereby responsible for the re-normalized behavior. In block copolymers fluctuations have even more pronounced effects, as it changes the second order critical point at f=0.5 to first order and additional complex phases are stabilized. Measurements of the structure factor S(q) of PEP-PDMS diblock copolymers have revealed unique character in the phase-diagram with re-entrant ordered structure. Moreover, an unexpected singularity in the conformational compressibility, as identified from the peak-position, q, is observed. In contrary to binary polymer blends, pressure does not affect the Ginzburg number.
Thermal Conductivity and Thermopower near the 2D Metal-Insulator transition, Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarachik, Myriam P.
2015-02-20
STUDIES OF STRONGLY-INTERACTING 2D ELECTRON SYSTEMS – There is a great deal of current interest in the properties of systems in which the interaction between electrons (their potential energy) is large compared to their kinetic energy. We have investigated an apparent, unexpected metal-insulator transition inferred from the behavior of the temperature-dependence of the resistivity; moreover, detailed analysis of the behavior of the magnetoresistance suggests that the electrons’ effective mass diverges, supporting this scenario. Whether this is a true phase transition or crossover behavior has been strenuously debated over the past 20 years. Our measurements have now shown that the thermoelectricmore » power of these 2D materials diverges at a finite density, providing clear evidence that this is, in fact, a phase transition to a new low-density phase which may be a precursor or a direct transition to the long sought-after electronic crystal predicted by Eugene Wigner in 1934.« less
Magnetic, Electrical and Dielectric Properties of LaMnO3+η Perovskite Manganite.
NASA Astrophysics Data System (ADS)
v, Punith Kumar; Dayal, Vijaylakshmi
The high pure polycrystalline LaMnO3+η perovskite manganite has been synthesized using conventional solid state reaction method. The studied sample crystallizes into orthorhombic O', phase indexed with Pbnm space group. The magnetization measurement exhibits that the studied sample shows paramagnetic (PM) to ferromagnetic (FM) phase transition at TC = 191.6K followed with a frustration due to antiferromagnetic (AFM) kind of spin ordering at low temperature, Tf = 85.8K. The electrical resistivity measurements carried out at 0 tesla and 8 tesla magnetic field exhibits insulating kind of behavior throughout the measured temperature range. The resistivity at 0 tesla exhibits low temperature FM insulator to high temperature PM insulator type phase transition at TC = 191.6K similarly as observed from magnetization measurement. The application of the magnetic field (8 tesla) shifts TC to higher temperature side and the charge transport follows Shklovskii Efros variable range hopping (SE VRH) mechanism. The temperature and frequency dependent dielectric permittivity studied for the sample exhibits relaxation process explained based on Debye +Maxwell-Wagner relaxation mechanism. Department of Atomic Energy-Board of Research in Nuclear Sciences, Government of INDIA.
How fragility makes phase-change data storage robust: insights from ab initio simulations
Zhang, Wei; Ronneberger, Ider; Zalden, Peter; Xu, Ming; Salinga, Martin; Wuttig, Matthias; Mazzarello, Riccardo
2014-01-01
Phase-change materials are technologically important due to their manifold applications in data storage. Here we report on ab initio molecular dynamics simulations of crystallization of the phase change material Ag4In3Sb67Te26 (AIST). We show that, at high temperature, the observed crystal growth mechanisms and crystallization speed are in good agreement with experimental data. We provide an in-depth understanding of the crystallization mechanisms at the atomic level. At temperatures below 550 K, the computed growth velocities are much higher than those obtained from time-resolved reflectivity measurements, due to large deviations in the diffusion coefficients. As a consequence of the high fragility of AIST, experimental diffusivities display a dramatic increase in activation energies and prefactors at temperatures below 550 K. This property is essential to ensure fast crystallization at high temperature and a stable amorphous state at low temperature. On the other hand, no such change in the temperature dependence of the diffusivity is observed in our simulations, down to 450 K. We also attribute this different behavior to the fragility of the system, in combination with the very fast quenching times employed in the simulations. PMID:25284316
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan
Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe 2As 2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ~25% on cooling from room temperature to ~100 K in the tetragonal phase and is only weakly temperature dependent atmore » low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe 2As 2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Furthermore, based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.« less
Experimental evidence for stochastic switching of supercooled phases in NdNiO3 nanostructures
NASA Astrophysics Data System (ADS)
Kumar, Devendra; Rajeev, K. P.; Alonso, J. A.
2018-03-01
A first-order phase transition is a dynamic phenomenon. In a multi-domain system, the presence of multiple domains of coexisting phases averages out the dynamical effects, making it nearly impossible to predict the exact nature of phase transition dynamics. Here, we report the metal-insulator transition in samples of sub-micrometer size NdNiO3 where the effect of averaging is minimized by restricting the number of domains under study. We observe the presence of supercooled metallic phases with supercooling of 40 K or more. The transformation from the supercooled metallic to the insulating state is a stochastic process that happens at different temperatures and times in different experimental runs. The experimental results are understood without incorporating material specific properties, suggesting that the behavior is of universal nature. The size of the sample needed to observe individual switching of supercooled domains, the degree of supercooling, and the time-temperature window of switching are expected to depend on the parameters such as quenched disorder, strain, and magnetic field.
Yang, Hongpeng; Chen, Li; Zhou, Cunshan; Yu, Xiaojie; Yagoub, Abu ElGasim A; Ma, Haile
2018-04-15
Polyethylene glycol (PEG) is widely used in the polymer-salt systems. However, the low polarity of the PEG-rich phase limits the application of aqueous biphasic systems (ABS). To overcome this disadvantage, a small quantity of ionic liquid (IL) was used as an adjuvant in ABS to enlarge the polarity range. Therefore, an innovative study involving addition of 4wt% imidazolium-based ILs to the PEG 600/NaH 2 PO 4 ABS, aiming at controlling the phase behavior and extraction ability, was carried out. The phase diagrams, the tie-lines and the partitioning behavior of l-phenylalanine and ILs were studied in these systems. The results reveal that l-phenylalanine preferentially partitions for the PEG-rich phase. The addition of 4wt% IL to ABS controls the partitioning behavior of l-phenylalanine, which depends on the type of IL employed. Moreover, it is verified that increasing temperature lead to a decrease in the partition coefficient of l-phenylalanine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kondo necklace model in approximants of Fibonacci chains
NASA Astrophysics Data System (ADS)
Reyes, Daniel; Tarazona, H.; Cuba-Supanta, G.; Landauro, C. V.; Espinoza, R.; Quispe-Marcatoma, J.
2017-11-01
The low energy behavior of the one dimensional Kondo necklace model with structural aperiodicity is studied using a representation for the localized and conduction electron spins, in terms of local Kondo singlet and triplet operators at zero temperature. A decoupling scheme on the double time Green's functions is used to find the dispersion relation for the excitations of the system. We determine the dependence between the structural aperiodicity modulation and the spin gap in a Fibonacci approximant chain at zero temperature and in the paramagnetic side of the phase diagram.
Molecular dynamics simulation study of hydrogen bonding in aqueous poly(ethylene oxide) solutions.
Smith, G D; Bedrov, D; Borodin, O
2000-12-25
A molecular dynamics simulation study of hydrogen bonding in poly(ethylene oxide) (PEO)/water solutions was performed. PEO-water and water-water hydrogen bonding manifested complex dependence on both composition and temperature. Strong water clustering in concentrated solutions was seen. Saturation of hydrogen bonding at w(p) approximately equal to 0.5 and a dramatic decrease in PEO-water hydrogen bonding with increasing temperature, consistent with experimentally observed closed-loop phase behavior, were observed. Little tendency toward intermolecular bridging of PEO chains by water molecules was seen.
NASA Astrophysics Data System (ADS)
Biswas, Sounak; Damle, Kedar
2018-02-01
A transverse magnetic field Γ is known to induce antiferromagnetic three-sublattice order of the Ising spins σz in the triangular lattice Ising antiferromagnet at low enough temperature. This low-temperature order is known to melt on heating in a two-step manner, with a power-law ordered intermediate temperature phase characterized by power-law correlations at the three-sublattice wave vector Q : <σz(R ⃗) σz(0 ) > ˜cos(Q .R ⃗) /|R⃗| η (T ) with the temperature-dependent power-law exponent η (T )∈(1 /9 ,1 /4 ) . Here, we use a quantum cluster algorithm to study the ferromagnetic easy-axis susceptibility χu(L ) of an L ×L sample in this power-law ordered phase. Our numerical results are consistent with a recent prediction of a singular L dependence χu(L ) ˜L2 -9 η when η (T ) is in the range (1 /9 ,2 /9 ) . This finite-size result implies, via standard scaling arguments, that the ferromagnetic susceptibility χu(B ) to a uniform field B along the easy axis is singular at intermediate temperatures in the small B limit, χu(B ) ˜|B| -4/-18 η 4 -9 η for η (T )∈(1 /9 ,2 /9 ) , although there is no ferromagnetic long-range order in the low temperature state. Additionally we establish similar two-step melting behavior (via a study of the order parameter susceptibility χQ) in the case of the ferrimagnetic three-sublattice ordered phase which is stabilized by ferromagnetic next-neighbor couplings (J2) and confirm that the ferromagnetic susceptibility obeys the predicted singular form in the associated power-law ordered phase.
Weiyu, Cao; Tashiro, Kohji; Hanesaka, Makoto; Takeda, Shinichi; Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki
2009-02-26
The phase transition behaviors of low-molecular-weight polyethylene-poly(ethylene oxide) (PE-b-PEO) diblock copolymers with the monomeric units of PE/PEO = 17/40 and 39/86 have been successfully investigated through the temperature-dependent measurements of wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), infrared and Raman spectra, as well as thermal analysis. These diblock copolymers had been believed to show only order-to-disorder transition of lamellar morphology in a wide temperature region, but it has been found here for the first time that this copolymer clearly exhibits the three stages of transitions among lamella, gyroid, cylinder, and spherical phases in the heating and cooling processes. The WAXD and IR/Raman spectral measurements allowed us to relate these morphological changes to the microscopic changes in the aggregation states of PEO and PE segments. In the low-temperature region the PEO segments form the monoclinic crystal of (7/2) helical chain conformation and the PE segments of planar-zigzag form take the orthorhombic crystalline phase. These crystalline lamellae of PEO and PE segments are alternately stacked with the long period of 165 Angstroms. In a higher temperature region, where the PEO crystalline parts are on the way of melting but the PE parts are still in the orthorhombic phase, the gyroid morphology is detected in the SAXS data. By heating further, the gyroid morphology changes to the hexagonally packed cylindrical morphology, where the orthorhombic phase of PE segments is gradually disordered because of thermally activated molecular motion and finally transforms to the pseudohexagonal or rotator phase. Once the PE segments are perfectly melted, the higher-order structure changes from the cylinder to the spherical morphology. These morphological transitions might relate to the thermally activated motions of two short chain segments of the diblock copolymer, although the details of the transition mechanism are unclear at the present stage.
Thermal expansion in FeCrCoNiGa high-entropy alloy from theory and experiment
NASA Astrophysics Data System (ADS)
Huang, Shuo; Vida, Ádám; Li, Wei; Molnár, Dávid; Kyun Kwon, Se; Holmström, Erik; Varga, Béla; Károly Varga, Lajos; Vitos, Levente
2017-06-01
First-principle alloy theory and key experimental techniques are applied to determine the thermal expansion of FeCrCoNiGa high-entropy alloy. The magnetic transition, observed at 649 K, is accompanied by a significant increase in the thermal expansion coefficient. The phase stability is analyzed as a function of temperature via the calculated free energies accounting for the structural, magnetic, electronic, vibrational and configurational contributions. The single- and polycrystal elastic modulus for the ferro- and paramagnetic states of the face-centered and body-centered cubic phases are presented. By combining the measured and theoretically predicted temperature-dependent lattice parameters, we reveal the structural and magnetic origin of the observed anomalous thermal expansion behavior.
Liquid-solid phase transition of hydrogen and deuterium in silica aerogel
NASA Astrophysics Data System (ADS)
Van Cleve, E.; Worsley, M. A.; Kucheyev, S. O.
2014-10-01
Behavior of hydrogen isotopes confined in disordered low-density nanoporous solids remains essentially unknown. Here, we use relaxation calorimetry to study freezing and melting of H2 and D2 in an ˜85%-porous base-catalyzed silica aerogel. We find that liquid-solid transition temperatures of both isotopes inside the aerogel are depressed. The phase transition takes place over a wide temperature range of ˜4 K and non-trivially depends on the liquid filling fraction, reflecting the broad pore size distribution in the aerogel. Undercooling is observed for both H2 and D2 confined inside the aerogel monolith. Results for H2 and D2 are extrapolated to tritium-containing hydrogens with the quantum law of corresponding states.
Experimental studies on hybrid superconductor-topological insulator nanoribbon Josephson devices
NASA Astrophysics Data System (ADS)
Kayyalha, Morteza; Jauregui, Luis; Kazakov, Aleksander; Miotkowski, Ireneusz; Rokhinson, Leonid; Chen, Yong
The spin-helical topological surface states (TSS) of topological insulators in proximity with an s-wave superconductor are predicted to demonstrate signatures of topological superconductivity and host Majorana fermions. Here, we report on the observation of gate-tunable proximity-induced superconductivity in an intrinsic BiSbTeSe2 topological insulator nanoribbon (TINR) based Josephson junction (JJ) with Nb contacts. We observe a gate-tunable critical current (IC) with an anomalous behavior in the temperature (T) dependence of IC. We discuss various possible scenarios that could be relevant to this anomalous behavior, such as (i) the different temperature dependence of supercurrent generated by in-gap, where phase slip plays an important role, and out-of-gap Andreev bound states or (ii) the different critical temperatures associated with the top and bottom topological surface states. Our modeling of IC vs. T suggests the possible existence of one pair of in-gap Andreev bound states in our TINR. We have also studied the effects of magnetic fields on the critical current in our TINR Josephson junctions.
Phase transitions and magnetoelectric coupling in BiFe1-xZnxO3 multiferroics
NASA Astrophysics Data System (ADS)
Amirov, Abdulkarim A.; Chaudhari, Yogesh A.; Bendre, Subhash T.; Chichay, Ksenia A.; Rodionova, Valeria V.; Yusupov, Dibir M.; Omarov, Zairbek M.
2018-04-01
Multiferroic BiFe1-xZnxO3 ceramics were prepared by solution combustion method. Their structure, magnetoelectric, dielectric, magnetic, thermal characteristics were studied. The magnetic M(T) and heat capacity Cp(T) measurements demonstrate an antiferromagnetic to paramagnetic phase transition (TN) around 635 K. The anomaly on the temperature dependence of the dielectric constant near TN was observed, which could be induced by the magnetoelectric coupling between electric and magnetic ordering. The magnetoelectric behavior was also confirmed by the linear relation between Δɛ and M2, which is in the agreement of the Ginzburg-Landau theory for the second-order phase transition.
NASA Astrophysics Data System (ADS)
He, Feng
The phase equilibrium, viscosity of melt-quenched glasses, and processing of sol-gel glasses of the alumina-silica-lanthanum phosphate system were studied. These investigations were directed towards serving the objective of synthesizing nano-structured ceramic-matrix-composites via controlled crystallization of glass precursors. The thermal stability, phase equilibrium, and liquidus temperatures of the alumina- and mullite-lanthanum phosphate systems are determined. An iridium wire heater was constructed to anneal samples up to 2200°C. Phosphorus evaporation losses were significant at high temperatures, especially over 1800°C. The tentative phase diagrams of the two quasi-binary systems were presented. The viscosity of the melt-quenched mullite-lanthanum phosphate glasses was measured by three different methods, including viscous sintering of glass powder compacts, neck formation between two Frenkel glass beads, and thermal analysis of the glass transition. Improved methodologies were developed for applying the interpretative mathematical models to the results of the sintered powder and thermal analytical experiments. Good agreement was found between all three methods for both absolute values and temperature dependence. A sol-gel process was developed as a low temperature route to producing glasses. A unique, single phase mullite gel capable of low temperature (575°C) mullitization was made from tetraethoxysilane and aluminum isopropoxide at room temperature in three days. Low temperature crystallization was attributed to the avoidance of phase segregation during gel formation and annealing. This was greatly enhanced by a combination of low temperature preheating in the amorphous state, a high heating rate during crystallization and low water content. The Al2O3 content in mullite (61-68 mol%) depended on the highest annealing temperature. Two mullite-lanthanum phosphate gels were made based upon modifying the chemical procedures used for the homogeneous single phase and heterogeneous diphasic mullite gels from same starting chemicals. Amorphous powders were obtained after optimized calcinations. Their different crystallization routes and sintering behavior were investigated and correlated with the different homogeneities of precursor gels. Structurally stable open, porous ceramics (up to 80% porosity) were produced from the single-phase gel derived powder, where gases exsolved during calcination caused foaming coincident with sintering. Translucent, dense glass ceramic was made from the calcined diphasic gel by hot-pressing.
NASA Astrophysics Data System (ADS)
Fernandez, Ruben; Jodoin, Bertrand
2017-08-01
Nickel chromium-chromium carbide coatings provide good corrosion and wear resistance at high temperatures, making them ideal for applications where a harsh environment and high temperatures are expected. Thermal spray processes are preferred as deposition technique of cermets, but the high process temperatures can lead to decarburization and reduction of the coatings properties. Cold spray uses lower temperatures preventing decarburization. Since the metallic phase remains solid, the feedstock powder morphology becomes crucial on the deposition behavior. Six commercially available powders were studied, varying in morphology and metal/ceramic ratios. The powders were categorized into 4 groups depending on their morphology. Spherical powders lead to substrate erosion due to their limited overall ductility. Porous agglomerated and sintered powders lead to severely cracked coatings. For dense agglomerated and sintered powders, the outcome depended on the initial metal/ceramic ratio: powders with 25 wt.% NiCr led to substrate erosion while 35 wt.% NiCr powders led to dense coatings. Finally, blended ceramic-metal mixtures also lead to dense coatings. All coatings obtained had lower ceramic content than the initial feedstock powders. Interrupted spray tests, combined with FEA, helped drawing conclusions on the deposition behavior to explain the obtained results.
NASA Astrophysics Data System (ADS)
Sorokin, N. I.; Sobolev, B. P.; Krivandina, E. A.; Zhmurova, Z. I.
2015-01-01
Single crystals of fluorine-conducting solid electrolytes R 1 - y Sr y F3 - y and R 1 - y Ba y F3 - y ( R = La-Lu, Y) with a tysonite-type structure (LaF3) have been optimized for room-temperature conductivity σ293 K. The optimization is based on high-temperature measurements of σ( T) in two-component nonstoichiometric phases R 1 - y M y F3 - y ( M = Sr, Ba) as a function of the MF2 content. Optimization for thermal stability is based on studying the phase diagrams of MF2- RF3 systems ( M = Sr, Ba) and the behavior of nonstoichiometric crystals upon heating when measuring temperature dependences σ( T). Single crystals of many studied R 1 - y Sr y F3 - y and R 1 - y Ba y F3 - y phases have σ293 K values large enough to use these materials in solid-state electrochemical devices (chemical sensors, fluorine-ion batteries, accumulators, etc.) operating at room temperature.
Temperature dependence of the enhanced inverse spin Hall voltage in Pt/Antiferromagnetic/ Y3Fe5O12
NASA Astrophysics Data System (ADS)
Brangham, J. T.; Lee, A. J.; Cheng, Y.; Yu, S. S.; Dunsiger, S. R.; Page, M. R.; Hammel, P. C.; Yang, F. Y.
The generation, propagation, and detection of spin currents are of intense interest in the field of spintronics. Spin current generation by FMR spin pumping using Y3Fe5O12 (YIG) and spin current detection by the inverse spin Hall effect (ISHE) in metals such as Pt have been well studied. This is due to YIG's exceptionally low damping and insulating behavior and the large spin Hall angle of Pt. Previously, our group showed that the ISHE voltages are significantly enhanced by adding a thin intermediate layer of an antiferromagnet (AFM) between Pt and YIG at room temperature. Recent theoretical work predicts a mechanism for this enhancement as well as the temperature dependence of the ISHE voltages of metal/AFM/YIG trilayers. The predictions show a maximum in the ISHE voltages for these systems near the magnetic phase transition temperature of the AFM. Here we present experimental results showing the temperature dependence for Pt/AFM/YIG structures with various AFMs. DOE Grant No. DE-SC0001304.
Magnetic properties of Fe-doped NiO nanoparticles
NASA Astrophysics Data System (ADS)
Kurokawa, A.; Sakai, N.; Zhu, L.; Takeuchi, H.; Yano, S.; Yanoh, T.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Ichiyanagi, Y.
2013-08-01
Ni1- x Fe x O ( x = 0, 0.05, 0.1) nanoparticles with several nanometers encapsulated with amorphous SiO2 were prepared by our novel preparation method. A NiO single phase structure was confirmed using the X-ray diffraction measurements. It is considered that Ni ions are replaced by Fe ions because it is observed that the lattice constant decreases. The temperature dependence behavior of the magnetization revealed that the blocking temperature, T B , shifted from 17 to 57 K as the amount of Fe ions increased, and that below T B , ferromagnetic behaviors were exhibited. The coercive force, H C , increased from 0.8 to 1.5 kOe as the amount of Fe ions increased.
Xiao, Xin; Zhang, Peng; Meng, Zhao-Nan; Li, Ming
2015-04-01
Nitrates and eutectic nitrate mixtures are considered as potential phase change materials (PCMs) for the middle-temperature-range solar energy storage applications. But the extensive utilization is restricted by the poor thermal conductivity and thermal stability. In the present study, sodium nitrate-potassium nitrate eutectic mixture was used as the base PCM, and expanded graphite (EG) was added to the mixture so as to improve the thermal conductivities. The elaboration method consists of a physically mixing of salt powders with or without EG, and the composite PCMs were cold-compressed to form shape-stabilized PCMs at room temperature. The thermal conductivities of the composite PCMs fabricated by cold-compression were investigated at different temperatures by the steady state method. The results showed that the addition of EG significantly enhanced the thermal conductivities. The thermal conductivities of pure nitrates and nitrates/EG composite PCMs in solid state showed the behavior of temperature dependant, and they slightly decreased with the increase of the temperature.
The coexistence temperature of hydrogen clathrates: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Luis, D. P.; Romero-Ramirez, I. E.; González-Calderón, A.; López-Lemus, J.
2018-03-01
Extensive molecular dynamics simulations in the equilibrium isobaric-isothermal (NPT) ensemble were developed to determine the coexistence temperatures of the water hydrogen mixture using the direct coexistence method. The water molecules were modeled using the four-site TIP4P/Ice analytical potential, and the hydrogen molecules were described using a three-site potential. The simulations were performed at different pressures (p = 900, 1500, 3000, and 4000 bars). At each pressure, a series of simulations were developed at different temperatures (from 230 to 270 K). Our results followed a line parallel to the experimental coexistence temperatures and underestimated these temperatures by approximately 25 K in the investigated range. The final configurations could or could not contain a fluid phase depending on the pressure, in accordance with the phase diagram. In addition, we explored the dynamics of the H2 molecules through clathrate hydrate cages and observed different behaviors of the H2 molecules in the small cages and the large cages of the sII structure.
Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration
NASA Astrophysics Data System (ADS)
Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki
2018-04-01
The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.
NASA Astrophysics Data System (ADS)
Cheng, Limin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Peng, Cheng; Yao, Dongning; Liu, Bo; Xu, Ling
2013-01-01
The phase-change behavior and microstructure changes of N-doped Ge3Sb2Te5 [N-GST(3/2/5)] and Ge2Sb2Te5 [GST(2/2/5)] films during the phase transition from an amorphous to a crystalline phase were studied using in situ temperature-dependent sheet resistance measurements, X-ray diffraction, and transmission electron microscopy. The optical band gaps of N-GST(3/2/5) films are higher than that of GST(2/2/5) film in both the amorphous and face-centered-cubic (fcc) phases. Ge nitride formation by X-ray photoelectron spectroscopy analysis increased the optical band gap and suppressed crystalline grain growth, resulting in an increase in the crystallization temperature and resistance in the fcc phase. As a result, the Ge- and N-doped GST(2/2/5) composite films can be considered as a promising material for phase-change memory application because of improved thermal stability and reduced power consumption.
Time-Temperature-Precipitation Behavior in Al-Li Alloy 2195
NASA Technical Reports Server (NTRS)
Chen, P. S.; Bhat, B. N.
2002-01-01
Transmission electron microscopy was used to study time-temperature-precipitation (TTP) behavior in aluminum-lithium (Al-Li) 2195 alloy. Al-Li 2195 (nominally Al + 4 percent Cu + 1 percent Li + 0.3 percent Ag + 0.3 percent Mg + 0.1 percent Zr) was initially solutionized for 1 hr at 950 F and then stretched 3 percent. Heat treatments were conducted for up to 100 hr at temperatures ranging from 200 to 1,000 F. TTP diagrams were determined for both matrix and subgrain boundaries. Depending upon heat treatment conditions, precipitate phases (such as GP zone, theta'', theta', theta, delta', T1, TB, and T2) were found in the alloy. The TTP diagrams were applied as a guide to avoid T1 precipitation at subgrain boundaries, as part of an effort to improve the alloy's cryogenic fracture toughness (CFT). New understanding of TTP behavior was instrumental in the development of a two-step artificial aging treatment that significantly enhanced CFT in Al-Li 2195.
Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals
Liu, Minglu; Wang, Robert Y.
2015-01-01
Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of colloidal nanocrystals. We measure the melting temperature, melting enthalpy, and melting entropy of colloidal nanocrystals with diameters of approximately 10 to 20 nm. All of these properties decrease as nanocrystal size decreases, although the depression rate for melting temperature is comparatively slower than that of melting enthalpy and melting entropy. We also observe an elevated melting temperature during the initial melt-freeze cycle that we attribute to surface stabilization from the organic ligands on the nanocrystal surface. Broad endothermic melting valleys and very large supercoolings in our calorimetry data suggest that colloidal nanocrystals exhibit a significant amount of surface pre-melting and low heterogeneous nucleation probabilities during freezing. PMID:26573146
NASA Astrophysics Data System (ADS)
Padam, Gursharan K.; Ekbote, Shrikant N.; Sharma, Mukul; Tripathy, Malay R.; Srivastava, Ganesh P.; Das, Bijoy K.
2006-01-01
Variation of non-resonant microwave absorption (NRMA) signal amplitude in single-phase Bi-2212 (5 wt % Ag) sintered pellets (Tc\\circ ˜ 96 K) while increasing temperature from 15 to 105 K has been investigated and discussed. These studies show an undulatory behavior of an initial fall in the amplitude (15-71.8 K) with a subsequent narrow weak temperature independent region (71.8-75.6 K) and then a rise peaking at ˜82.5 K followed by a final exponential fall (82.5-105 K). A detailed discussion on earlier reported data has suggested that this undulatory behavior cannot be understood in terms of existing approaches involving effect of Josephson interactions (JI) alone among vortices. In our opinion, the entire undulatory behavior observed in the present samples can be explained with the inclusion of electromagnetic interaction (EMI) along with JI.
Salomir, Rares; Rata, Mihaela; Cadis, Daniela; Petrusca, Lorena; Auboiroux, Vincent; Cotton, François
2009-10-01
Endocavitary high intensity contact ultrasound (HICU) may offer interesting therapeutic potential for fighting localized cancer in esophageal or rectal wall. On-line MR guidance of the thermotherapy permits both excellent targeting of the pathological volume and accurate preoperatory monitoring of the temperature elevation. In this article, the authors address the issue of the automatic temperature control for endocavitary phased-array HICU and propose a tailor-made thermal model for this specific application. The convergence and stability of the feedback loop were investigated against tuning errors in the controller's parameters and against input noise, through ex vivo experimental studies and through numerical simulations in which nonlinear response of tissue was considered as expected in vivo. An MR-compatible, 64-element, cooled-tip, endorectal cylindrical phased-array applicator of contact ultrasound was integrated with fast MR thermometry to provide automatic feedback control of the temperature evolution. An appropriate phase law was applied per set of eight adjacent transducers to generate a quasiplanar wave, or a slightly convergent one (over the circular dimension). A 2D physical model, compatible with on-line numerical implementation, took into account (1) the ultrasound-mediated energy deposition, (2) the heat diffusion in tissue, and (3) the heat sink effect in the tissue adjacent to the tip-cooling balloon. This linear model was coupled to a PID compensation algorithm to obtain a multi-input single-output static-tuning temperature controller. Either the temperature at one static point in space (situated on the symmetry axis of the beam) or the maximum temperature in a user-defined ROI was tracked according to a predefined target curve. The convergence domain in the space of controller's parameters was experimentally explored ex vivo. The behavior of the static-tuning PID controller was numerically simulated based on a discrete-time iterative solution of the bioheat transfer equation in 3D and considering temperature-dependent ultrasound absorption and blood perfusion. The intrinsic accuracy of the implemented controller was approximately 1% in ex vivo trials when providing correct estimates for energy deposition and heat diffusivity. Moreover, the feedback loop demonstrated excellent convergence and stability over a wide range of the controller's parameters, deliberately set to erroneous values. In the extreme case of strong underestimation of the ultrasound energy deposition in tissue, the temperature tracking curve alone, at the initial stage of the MR-controlled HICU treatment, was not a sufficient indicator for a globally stable behavior of the feedback loop. Our simulations predicted that the controller would be able to compensate for tissue perfusion and for temperature-dependent ultrasound absorption, although these effects were not included in the controller's equation. The explicit pattern of acoustic field was not required as input information for the controller, avoiding time-consuming numerical operations. The study demonstrated the potential advantages of PID-based automatic temperature control adapted to phased-array MR-guided HICU therapy. Further studies will address the integration of this ultrasound device with a miniature RF coil for high resolution MRI and, subsequently, the experimental behavior of the controller in vivo.
Assessing the Validity of the Simplified Potential Energy Clock Model for Modeling Glass-Ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamison, Ryan Dale; Grillet, Anne M.; Stavig, Mark E.
Glass-ceramic seals may be the future of hermetic connectors at Sandia National Laboratories. They have been shown capable of surviving higher temperatures and pressures than amorphous glass seals. More advanced finite-element material models are required to enable model-based design and provide evidence that the hermetic connectors can meet design requirements. Glass-ceramics are composite materials with both crystalline and amorphous phases. The latter gives rise to (non-linearly) viscoelastic behavior. Given their complex microstructures, glass-ceramics may be thermorheologically complex, a behavior outside the scope of currently implemented constitutive models at Sandia. However, it was desired to assess if the Simplified Potential Energymore » Clock (SPEC) model is capable of capturing the material response. Available data for SL 16.8 glass-ceramic was used to calibrate the SPEC model. Model accuracy was assessed by comparing model predictions with shear moduli temperature dependence and high temperature 3-point bend creep data. It is shown that the model can predict the temperature dependence of the shear moduli and 3- point bend creep data. Analysis of the results is presented. Suggestions for future experiments and model development are presented. Though further calibration is likely necessary, SPEC has been shown capable of modeling glass-ceramic behavior in the glass transition region but requires further analysis below the transition region.« less
Ontiveros, Jesús F; Pierlot, Christel; Catté, Marianne; Molinier, Valérie; Pizzino, Aldo; Salager, Jean-Louis; Aubry, Jean-Marie
2013-08-01
The phase behavior of well-defined C10E4/ester oil/water systems versus temperature was investigated. Fifteen ester oils were studied and their Equivalent Alkane Carbon Numbers (EACNs) were determined from the so-called fish-tail temperature T* of the fish diagrams obtained with an equal weight amount of oil and water (f(w)=0.5). The influence of the chemical structure of linear monoester on EACN was quantitatively rationalized in terms of ester bonds position and total carbon number, and explained by the influence of these polar oils on the "effective" packing parameter of the interfacial surfactant, which takes into account its entire physicochemical environment. In order to compare the behaviors of typical mono-, di-, and triester oils, three fish diagrams were entirely plotted with isopropyl myristate, bis (2-ethylhexyl) adipate, and glycerol trioctanoate. When the number of ester bonds increases, a more pronounced asymmetry of the three-phase body of the fish diagram with respect to T* is observed. In this case, T* is much closer to the upper limit temperature Tu than to the lower limit temperature Tl of the three-phase zone. This asymmetry is suggested to be linked to an increased solubility of the surfactant in the oil phase, which decreases the surfactant availability for the interfacial pseudo-phase. As a consequence, the asymmetry depends on the water-oil ratio, and a method is proposed to determine the fw value at which T* is located at the mean value of Tu and Tl. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelaiz-Barranco, A., E-mail: pelaiz@fisica.uh.cu; Guerra, J.D.S.
2010-09-15
The dielectric relaxation phenomenon has been studied in lanthanum modified lead zirconate titanate ceramics in the high temperature paraelectric phase. The high temperature dielectric response revealed an anomalous behavior, which is characterized by an increase of the real component of the dielectric permittivity with the increase of the temperature. At the same time, a similar behavior, with very high values, has been observed in the imaginary component of the dielectric permittivity, which can be associated with conduction effects related to the conductivity losses. The frequency and temperature behavior of the complex dielectric permittivity has been analyzed considering the semi-empirical complexmore » Cole-Cole equation. The activation energy value, obtained from the Arrhenius' dependence for the relaxation time, was found to decreases with the increase of the lanthanum concentration and has been associated with single-ionized oxygen vacancies. The short-range hopping of oxygen vacancies is discussed as the main cause of the dielectric relaxation.« less
Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals.
Porter, Daniel; Savage, John R; Cohen, Itai; Spicer, Patrick; Caggioni, Marco
2012-04-01
Droplet breakup of many Newtonian fluids is well described by current experiments, theory, and simulations. Breakup in complex fluids where interactions between mesoscopic structural features can affect the flows remains poorly understood and a burgeoning area of research. Here, we report on our investigations of droplet breakup in thermotropic liquid crystals. We investigate breakup in the smectic, nematic, and isotropic phases of 4-cyano 4-octylbiphenyl (8CB) and the nematic and isotropic phases of 4-cyano 4-pentylbiphenyl (5CB). The experiment consists of varying the ambient temperature to control liquid crystalline phase and imaging breakup using a fast video camera at up to 110000 frames/s. We expand on previous work [John R. Savage et al., Soft Matter 6, 892 (2010)] that shows breakup in the smectic phase is symmetric, producing no satellite droplets, and is well described by a similarity solution for a shear-thinning power-law fluid. We show that in the nematic phase the breakup occurs in two stages. In the first stage, the breakup is symmetric and the power-law exponent for the minimum radius dependence on the time left to breakup is 1.2
Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel
2016-01-14
In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current inmore » doped Ge{sub 2}Sb{sub 2}Te{sub 5} nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.« less
NASA Astrophysics Data System (ADS)
Zhabina, A. A.; Krasnykh, E. L.
2017-12-01
Gas chromatography is used to study the sorption characteristics and retention of a series of mono-, di-, and triethylene glycol ethers on nonpolar phase DB-1 in the temperature range of 70-180°C. Temperature dependences of the retention indices of the compounds are obtained and their linear character in the investigated range of temperatures is demonstrated. The enthalpies of sorption of the investigated compounds are calculated and analyzed, based on the temperature dependences of the retention factors.
Metallic behavior of lanthanum disilicide
NASA Technical Reports Server (NTRS)
Long, Robert G.; Bost, M. C.; Mahan, John E.
1988-01-01
Polycrystalline thin films of LaSi2 were prepared by reaction of sputter-deposited lanthanum layers with silicon wafers. Samples of the low-temperature tetragonal and the high-temperature orthorhombic phases were separately obtained. The room-temperature intrinsic resistivities were 24 and 57 microohm cm for the low- and high-temperature structures, respectively. Although lanthanum disilicide had been previously reported to be a semiconductor, classical metallic behavior was found for both phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sehgal, Ray M.; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu, E-mail: ford@ecs.umass.edu; Ford, David M., E-mail: maroudas@ecs.umass.edu, E-mail: ford@ecs.umass.edu
We have developed a coarse-grained description of the phase behavior of the isolated 38-atom Lennard-Jones cluster (LJ{sub 38}). The model captures both the solid-solid polymorphic transitions at low temperatures and the complex cluster breakup and melting transitions at higher temperatures. For this coarse model development, we employ the manifold learning technique of diffusion mapping. The outcome of the diffusion mapping analysis over a broad temperature range indicates that two order parameters are sufficient to describe the cluster's phase behavior; we have chosen two such appropriate order parameters that are metrics of condensation and overall crystallinity. In this well-justified coarse-variable space,more » we calculate the cluster's free energy landscape (FEL) as a function of temperature, employing Monte Carlo umbrella sampling. These FELs are used to quantify the phase behavior and onsets of phase transitions of the LJ{sub 38} cluster.« less
On the composition dependence of faceting behaviour of primary phases during solidification
NASA Astrophysics Data System (ADS)
Saroch, Mamta; Dubey, K. S.; Ramachandrarao, P.
1993-02-01
The entropy of solution of the primary aluminium-rich phase in the aluminium-tin melts has been evaluated as a function of temperature using available thermodynamic and phase equilibria data with a view to understand the faceting behaviour of this phase. It was noticed that the range of compositions in which alloys of aluminium and tin yield a faceted primary phase is correlated with the domain of compositions over which the entropy of solution shows a strong temperature dependence. It is demonstrated that both a high value of the entropy of solution and a strong temperature dependence of it are essential for providing faceting. A strong temperature dependence of the entropy of solution is in turn a consequence of negligible liquidus slope and existence of retrograde solubility. The AgBi and AgPb systems have similar features.
Microscopic Description of Thermodynamics of Lipid Membrane at Liquid-Gel Phase Transition
NASA Astrophysics Data System (ADS)
Kheyfets, B.; Galimzyanov, T.; Mukhin, S.
2018-05-01
A microscopic model of the lipid membrane is constructed that provides analytically tractable description of the physical mechanism of the first order liquid-gel phase transition. We demonstrate that liquid-gel phase transition is cooperative effect of the three major interactions: inter-lipid van der Waals attraction, steric repulsion and hydrophobic tension. The model explicitly shows that temperature-dependent inter-lipid steric repulsion switches the system from liquid to gel phase when the temperature decreases. The switching manifests itself in the increase of lateral compressibility of the lipids as the temperature decreases, making phase with smaller area more preferable below the transition temperature. The model gives qualitatively correct picture of abrupt change at transition temperature of the area per lipid, membrane thickness and volume per hydrocarbon group in the lipid chains. The calculated dependence of phase transition temperature on lipid chain length is in quantitative agreement with experimental data. Steric repulsion between the lipid molecules is shown to be the only driver of the phase transition, as van der Waals attraction and hydrophobic tension are weakly temperature dependent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muramatsu, Takaki; Gasparov, Lev V.; Berger, Helmuth
2016-04-07
We measured the pressure dependence of electrical resistance of single-crystal magnetite (Fe 3O 4) under quasi-hydrostatic conditions to 100 GPa using low-temperature, megabar diamond-anvil cell techniques in order to gain insight into the anomalous behavior of this material that has been reported over the years in different high-pressure experiments. The measurements under nearly hydrostatic pressure conditions allowed us to detect the clear Verwey transition and the high-pressure structural phase. Furthermore, the appearance of a metallic ground state after the suppression of the Verwey transition around 20 GPa and the concomitant enhancement of electrical resistance caused by the structural transformation tomore » the high-pressure phase form reentrant semiconducting-metallic-semiconducting behavior, though the appearance of the metallic phase is highly sensitive to stress conditions and details of the measurement technique.« less
Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites
NASA Astrophysics Data System (ADS)
Boumedienne, N.; Faska, Y.; Maaroufi, A.; Pinto, G.; Vicente, L.; Benavente, R.
2017-05-01
This paper reports on the elaboration and characterization of epoxy resin filled with metallic particles powder (aluminum, tin and zinc) composites. The scanning electron microscopy (SEM) pictures, density measurements and x-ray diffraction analysis (DRX) showed a homogeneous phase of obtained composites. The differential scanning calorimetry revealed a good adherence at matrix-filler interfaces, confirming the SEM observations. The measured glass transition temperatures depend on composites fillers' nature. Afterwards, the electrical conductivity of composites versus their fillers' contents has been investigated. The obtained results depict a nonlinear behavior, indicating an insulator to conductor phase transition at a conduction threshold; with high contrast of ten decades. Hence, the elaborated materials give a possibility to obtain dielectric or electrically conducting phases, which can to be interesting in the choice of desired applications. Finally, the obtained results have been successfully simulated on the basis of different percolation models approach combined with structural characterization inferences.
Irreversible opinion spreading on scale-free networks
NASA Astrophysics Data System (ADS)
Candia, Julián
2007-02-01
We study the dynamical and critical behavior of a model for irreversible opinion spreading on Barabási-Albert (BA) scale-free networks by performing extensive Monte Carlo simulations. The opinion spreading within an inhomogeneous society is investigated by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. The deposition dynamics, which is studied as a function of the degree of the occupied sites, shows evidence for the leading role played by hubs in the growth process. Systems of finite size grow either ordered or disordered, depending on the temperature. By means of standard finite-size scaling procedures, the effective order-disorder phase transitions are found to persist in the thermodynamic limit. This critical behavior, however, is absent in related equilibrium spin systems such as the Ising model on BA scale-free networks, which in the thermodynamic limit only displays a ferromagnetic phase. The dependence of these results on the degree exponent is also discussed for the case of uncorrelated scale-free networks.
Phases transitions and interfaces in temperature-sensitive colloidal systems
NASA Astrophysics Data System (ADS)
Nguyen, Duc; Schall, Peter
2013-03-01
Colloids are widely used because of their exceptional properties. Beside their own applications in food, petrol, cosmetics and drug industries, photonic, optical filters and chemical sensor, they are also known as powerful model systems to study molecular phase behavior. Here, we examine both aspects of colloids using temperature-sensitive colloidal systems to fully investigate colloidal phase behavior and colloidal assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Zhen-Hua; Wei, Kaya; Lewis, Hutton
A hydrothermal approach was employed to efficiently synthesize SnSe nanorods. The nanorods were consolidated into polycrystalline SnSe by spark plasma sintering for low temperature electrical and thermal properties characterization. The low temperature transport properties indicate semiconducting behavior with a typical dielectric temperature dependence of the thermal conductivity. The transport properties are discussed in light of the recent interest in this material for thermoelectric applications. The nanorod growth mechanism is also discussed in detail. - Graphical abstract: SnSe nanorods were synthesized by a simple hydrothermal method through a bottom-up approach. Micron sized flower-like crystals changed to nanorods with increasing hydrothermal temperature.more » Low temperature transport properties of polycrystalline SnSe, after SPS densification, were reported for the first time. This bottom-up synthetic approach can be used to produce phase-pure dense polycrystalline materials for thermoelectrics applications. - Highlights: • SnSe nanorods were synthesized by a simple and efficient hydrothermal approach. • The role of temperature, time and NaOH content was investigated. • SPS densification allowed for low temperature transport properties measurements. • Transport measurements indicate semiconducting behavior.« less
Lyotropic Phase Behavior of Polybutadiene-Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simone, Peter M.; Lodge, Timothy P.
2008-08-26
The lyotropic phase behavior of three poly(1,2-butadiene-b-ethylene oxide) diblock copolymers (PB-PEO) with different monomer volume fractions has been studied in two different ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF{sub 6}]), across the complete concentration range. The ordered microstructures present in the solutions were characterized via small-angle X-ray scattering (SAXS). The phase diagrams for the PB-PEO/ionic liquid solutions include regions corresponding to the classical copolymer microstructures: body-centered-cubic lattices of spheres, hexagonally ordered cylinders, and lamellae. Additionally, the phase diagrams also include wide regions of coexisting microstructures and regions apparently corresponding to a disordered network microstructure. The phase behavior ofmore » the PB-PEO copolymers in both ionic liquids was comparable to their previously reported aqueous solution behavior. The temperature dependence of the phase diagrams was very modest, indicative of a highly segregated system. The level of solvent selectivity was also investigated via cryogenic transmission electron microscopy (cryo-TEM) on dilute solutions. On the basis of the morphology of the dilute solution copolymer aggregate structures in the ionic liquid solvents, and on the structural length scales of the concentrated solutions, it was concluded that for PB-PEO [BMI][PF{sub 6}] behaves as a more selective solvent than [EMI][TFSI].« less
Roshan Deen, G; Oliveira, Cristiano L P; Pedersen, Jan Skov
2009-05-21
The phase behavior and phase separation kinetics of a model ternary nonionic microemulsion system composed of pentaethylene glycol dodecyl ether (C12E5), water, and 1-chlorotetradecane were studied. With increasing temperature, the microemulsion exhibits the following rich phase behavior: oil-in-water phase (L1+O), droplet microemulsion phase (L1), lamellar liquid crystalline phase (Lproportional), and sponge-like (liquid) phase (L3). The microemulsion with a fixed surfactant-to-oil volume fraction ratio (Phis/Phio) of 0.81 and droplet volume fraction of 0.087 was perturbed from equilibrium by a temperature quench from the L1 region (24 degrees C) to an unstable region L1+O (13 degrees C), where the excess oil phase is in equilibrium with the microemulsion droplets. The process of phase separation in the unstable region was followed by time-resolved small-angle X-ray scattering (TR-SAXS) and time-resolved turbidity methods. Due to the large range of scattering vector (q=0.004-0.22 A(-1)) that is possible to access with the TR-SAXS method, the growth of the oil droplets and shrinking of the microemulsion droplets as a result of phase separation could be studied simultaneously. By using an advanced polydisperse ellipsoidal hard-sphere model, the experimental curves have been quantitatively analyzed. The microemulsion droplets were modeled as polydisperse core-shell ellipsoidal particles, using molecular constraints, and the oil droplets are modeled as polydisperse spheres. The radius of gyration (Rg) of the growing oil droplets, volume fraction of oil in the microemulsion droplets, and polydispersity were obtained from the fit parameters. The volume equivalent radius at the neutral plane between the surfactant head and tail of the microemulsion droplet decreased from 76 to 51 A, while the radius of oil drop increased to 217 A within the 160 min of the experiment. After about 48 min from the temperature quench, the system reaches a steady state and continues to coarsen at a constant fraction of the oil of 0.51 in the oil phase by Ostwald ripening with the power law dependence of Roil proportional, variant t1/3. The size of the oil droplets determined by the time-resolved turbidity method is in good agreement with that of the TR-SAXS, highlighting the usefulness of the method in the size determination of oil-in-water microemulsions on an absolute scale.
High temperature dielectric studies of indium-substituted NiCuZn nanoferrites
NASA Astrophysics Data System (ADS)
Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.
2018-01-01
In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.
Low-temperature behavior of the quark-meson model
NASA Astrophysics Data System (ADS)
Tripolt, Ralf-Arno; Schaefer, Bernd-Jochen; von Smekal, Lorenz; Wambach, Jochen
2018-02-01
We revisit the phase diagram of strong-interaction matter for the two-flavor quark-meson model using the functional renormalization group. In contrast to standard mean-field calculations, an unusual phase structure is encountered at low temperatures and large quark chemical potentials. In particular, we identify a regime where the pressure decreases with increasing temperature and discuss possible reasons for this unphysical behavior.
Protonic Conduction of BaCe0.85YO. 1503 Doped with SrTiO3
NASA Technical Reports Server (NTRS)
Dynys, Frederick W.; Sayir, Ali
2005-01-01
Reformers based on ceramic membrane technology potentially offer hydrogen production that is comparable to the cost of fossil fuels. Protonic conducting ceramic with the chemical formula AB03 offers the promise of highly selective hydrogen separation at intermediate temperature (400-800 C). Among different perovskite-type oxides, BaCe03 and SrCe03 based compositions show high protonic conductivities but strong resistance to densification. X-ray diffraction studies on sintered specimens of BaCe0.85Y0.1503-6 show multi-phase formation which was found to show dependence upon powder synthesis method. Doping with SrTiO3 suppresses multi-phase formation and enhances grain growth. Conductivity measurements in temperature range of 200 to 1000 C were performed by ac impedance spectroscopy under dry and wet conditions. Sintering behavior, phase formation and conductivity results will be reported.
Symmetry breaking by heating in a continuous opinion model
NASA Astrophysics Data System (ADS)
Anteneodo, Celia; Crokidakis, Nuno
2017-04-01
We study the critical behavior of a continuous opinion model, driven by kinetic exchanges in a fully connected population. Opinions range in the real interval [-1 ,1 ] , representing the different shades of opinions against and for an issue under debate. Individuals' opinions evolve through pairwise interactions, with couplings that are typically positive, but a fraction p of negative ones is allowed. Moreover, a social temperature parameter T controls the tendency of the individual responses toward neutrality. Depending on p and T , different collective states emerge: symmetry broken (one side wins), symmetric (tie of opposite sides), and absorbing neutral (indecision wins). We find the critical points and exponents that characterize the phase transitions between them. The symmetry breaking transition belongs to the usual Ising mean-field universality class, but the absorbing-phase transitions, with β =0.5 , are out of the paradigmatic directed percolation class. Moreover, ordered phases can emerge by increasing social temperature.
NASA Astrophysics Data System (ADS)
Stakhira, Y. M.; Tovstyuk, N. K.; Fomenko, V. L.; Grigorchak, I. I.; Borysyuk, A. K.; Seredyuk, B. A.
2012-01-01
A solid-phase mechanochemical technology of production of polycrystalline InSе intercalated with Ni up to 1.25 at. % has been developed. The x-ray and phase analyses of the produced NixInSe samples confirm their homogeneity and demonstrate a nonmonotonic Ni-content dependence of the lattice constant along the axis normal to the layers. Analysis of the low-temperature (77 K) impedance response within the frequency region 10-3-106 Hz shows a good correlation between the change in interlayer distance and in the band conductivity observed with increasing Ni concentration. However, the Ni concentration dependence of specific magnetization demonstrates an irregular increase at x ˜ 1 and does not coincide with the former. Such behavior is explained by the proposed theoretical model, which at the same time unveiled the mechanism behind the increasing contribution of free carrier concentration to conductivity - hybridization of electron orbitals of guest nickel and the lattice layers.
Magnetic and low temperature phonon studies of CoCr2O4 powders doped with Fe(III) and Ni(II) ions
NASA Astrophysics Data System (ADS)
Ptak, M.; Mączka, M.; Pikul, A.; Tomaszewski, P. E.; Hanuza, J.
2014-04-01
Extensive temperature-dependent phonon studies and low-temperature magnetic measurements of CoCr2-xFexO4 (for x=0.5, 1 and 2) and Co0.9Ni0.1Cr2O4 polycrystalline powders are presented. The main aim of these studies was to obtain information on phonon and structural properties of these compounds as well as strength of spin-phonon coupling in the magnetically ordered phases. IR and Raman spectra show that doping of CoCr2O4 with Fe(III) ions leads to broadening of bands and appearance of new bands due to the formation of inverted spinel structure. In contrast to this behavior, doping with 10 mol% of Ni(II) ions leads to weak increase of band width only. Magnetization measured as a function of temperature and external magnetic field showed that magnetic properties of Co0.9Ni0.1Cr2O4 sample are similar to those reported for pure CoCr2O4, i.e., partial substitution of Ni(II) for Co(II) leads to slight shift of the ferrimagnetic phase transition at TC and spiral spin order transition at TS towards lower values. The change of crystallization preference induced by incorporation of increasing concentration of Fe(III) ions in the spinel lattice causes significant increase of TC and decrease of TS. The latter transition disappears completely for higher concentrations of Fe(III). The performed temperature-dependent IR studies revealed interesting anomalous behavior of phonons below TC for CoCr1.5Fe0.5O4 and Co0.9Ni0.1Cr2O4, which was attributed to spin-phonon coupling.
Sarang, Som; Ishihara, Hidetaka; Chen, Yen-Chang; Lin, Oliver; Gopinathan, Ajay; Tung, Vincent C; Ghosh, Sayantani
2016-10-19
We have developed a framework for using temperature dependent static and dynamic photoluminescence (PL) of hybrid organic-inorganic perovskites (PVSKs) to characterize lattice defects in thin films, based on the presence of nanodomains at low temperature. Our high-stability PVSK films are fabricated using a novel continuous liquid interface propagation technique, and in the tetragonal phase (T > 120 K), they exhibit bi-exponential recombination from free charge carriers with an average PL lifetime of ∼200 ns. Below 120 K, the emergence of the orthorhombic phase is accompanied by a reduction in lifetimes by an order of magnitude, which we establish to be the result of a crossover from free carrier to exciton-dominated radiative recombination. Analysis of the PL as a function of excitation power at different temperatures provides direct evidence that the exciton binding energy is different in the two phases, and using these results, we present a theoretical approach to estimate this variable binding energy. Our findings explain this anomalous low temperature behavior for the first time, attributing it to an inherent fundamental property of the hybrid PVSKs that can be used as an effective probe of thin film quality.
NASA Technical Reports Server (NTRS)
Ristau, R.; Nagel, U.; Iglseder, H.; Koenig, J.; Rath, H. J.; Normura, H.; Kono, M.; Tanabe, M.; Sato, J.
1993-01-01
The evaporation of fuel droplets under high ambient pressure and temperature in normal gravity and microgravity has been investigated experimentally. For subcritical ambient conditions, droplet evaporation after a heat-up period follows the d(exp 2)-law. For all data the evaporation constant increases as the ambient temperature increases. At identical ambient conditions the evaporation constant under microgravity is smaller compared to normal gravity. This effect can first be observed at 1 bar and increases with ambient pressure. Preliminary experiments on ignition delay for self-igniting fuel droplets have been performed. Above a 1 s delay time, at identical ambient conditions, significant differences in the results of the normal and microgravity data are observed. Self-ignition occurs within different temperature ranges due to the influence of gravity. The time dependent behavior of the droplet is examined theoretically. In the calculations two different approaches for the gas phase are applied. In the first approach the conditions at the interface are given using a quasi steady theory approximation. The second approach uses a set of time dependent governing equations for the gas phase which are then evaluated. In comparison, the second model shows a better agreement with the drop tower experiments. In both cases a time dependent gasification rate is observed.
Temperature-driven topological transition in 1T'-MoTe2
NASA Astrophysics Data System (ADS)
Berger, Ayelet Notis; Andrade, Erick; Kerelsky, Alexander; Edelberg, Drew; Li, Jian; Wang, Zhijun; Zhang, Lunyong; Kim, Jaewook; Zaki, Nader; Avila, Jose; Chen, Chaoyu; Asensio, Maria C.; Cheong, Sang-Wook; Bernevig, Bogdan A.; Pasupathy, Abhay N.
2018-01-01
The topology of Weyl semimetals requires the existence of unique surface states. Surface states have been visualized in spectroscopy measurements, but their connection to the topological character of the material remains largely unexplored. 1T'-MoTe2, presents a unique opportunity to study this connection. This material undergoes a phase transition at 240 K that changes the structure from orthorhombic (putative Weyl semimetal) to monoclinic (trivial metal), while largely maintaining its bulk electronic structure. Here, we show from temperature-dependent quasiparticle interference measurements that this structural transition also acts as a topological switch for surface states in 1T'-MoTe2. At low temperature, we observe strong quasiparticle scattering, consistent with theoretical predictions and photoemission measurements for the surface states in this material. In contrast, measurements performed at room temperature show the complete absence of the scattering wavevectors associated with the trivial surface states. These distinct quasiparticle scattering behaviors show that 1T'-MoTe2 is ideal for separating topological and trivial electronic phenomena via temperature-dependent measurements.
NASA Astrophysics Data System (ADS)
Kadoi, Kota; Shinozaki, Kenji
2017-12-01
The influence of the chemical composition, especially the niobium content, chromium equivalent Creq, and nickel equivalent Nieq, on the weld solidification cracking susceptibility in the austenite single-phase region in the Schaeffler diagram was investigated. Specimens were fabricated using the hot-wire laser welding process with widely different compositions of Creq, Nieq, and niobium in the region. The distributions of the susceptibility, such as the crack length and brittle temperature range (BTR), in the Schaeffler diagram revealed a region with high susceptibility to solidification cracking. Addition of niobium enhanced the susceptibility and changed the distribution of the susceptibility in the diagram. The BTR distribution was in good agreement with the distribution of the temperature range of solidification (Δ T) calculated by solidification simulation based on Scheil model. Δ T increased with increasing content of alloying elements such as niobium. The distribution of Δ T was dependent on the type of alloying element owing to the change of the partitioning behavior. Thus, the solidification cracking susceptibility in the austenite single-phase region depends on whether the alloy contains elements. The distribution of the susceptibility in the region is controlled by the change in Δ T and the segregation behavior of niobium with the chemical composition.
NASA Technical Reports Server (NTRS)
Howson, T. E.; Tien, J. K.; Mervyn, D. A.
1980-01-01
The creep and stress rupture behavior of a mechanically alloyed oxide dispersion strengthened (ODS) and gamma-prime precipitation strengthened nickel-base alloy (alloy MA 6000E) was studied at intermediate and elevated temperatures. At 760 C, MA 6000E exhibits the high creep strength characteristic of nickel-base superalloys and at 1093 C the creep strength is superior to other ODS nickel-base alloys. The stress dependence of the creep rate is very sharp at both test temperatures and the apparent creep activation energy measured around 760 C is high, much larger in magnitude than the self-diffusion energy. Stress rupture in this large grain size material is transgranular and crystallographic cracking is observed. The rupture ductility is dependent on creep strain rate, but usually is low. These and accompanying microstructural results are discussed with respect to other ODS alloys and superalloys and the creep behavior is rationalized by invoking a recently-developed resisting stress model of creep in materials strengthened by second phase particles.
Phases of cannibal dark matter
NASA Astrophysics Data System (ADS)
Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele
2016-12-01
A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.
Phases of cannibal dark matter
Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.; ...
2016-12-13
A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector ismore » cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.« less
Infrared spectroscopic study of thermotropic phase behavior of newly developed synthetic biopolymers
NASA Astrophysics Data System (ADS)
Bista, Rajan K.; Bruch, Reinhard F.; Covington, Aaron M.
2011-10-01
The thermotropic phase behavior of a suite of newly developed self-forming synthetic biopolymers has been investigated by variable-temperature Fourier transform infrared (FT-IR) absorption spectroscopy. The temperature-induced infrared spectra of these artificial biopolymers (lipids) composed of 1,2-dimyristoyl- rac-glycerol-3-dodecaethylene glycol (GDM-12), 1,2-dioleoyl- rac-glycerol-3-dodecaethylene glycol (GDO-12) and 1,2-distearoyl- rac-glycerol-3-triicosaethylene glycol (GDS-23) in the spectral range of 4000-500 cm -1 have been acquired by using a thin layered FT-IR spectrometer in conjunction with a custom built temperature-controlled demountable liquid cell having a pathlength of ˜15 μm. The lipids under consideration have long hydrophobic acyl chains and contain various units of hydrophilic polyethylene glycol (PEG) headgroups. In contrast to conventional phospholipids, this new kind of lipids forms liposomes or nanovesicles spontaneously upon hydration, without requiring external activation energy. We have found that the thermal stability of the PEGylated lipids differs greatly depending upon the acyl chain-lengths as well as the nature of the associated bonds and the number of PEG headgroup units. In particular, GDM-12 (saturated 14 hydrocarbon chains with 12 units of PEG headgroup) exhibits one sharp order-disorder phase transition over a temperature range increasing from 3 °C to 5 °C. Similarly, GDS-23 (saturated 18 hydrocarbon chains with 23 units of PEG headgroup) displays comparatively broad order-disorder phase transition profiles between temperature 17 °C and 22 °C. In contrast, GDO-12 (monounsaturated 18 hydrocarbon chains with 12 units of PEG headgroup) does not reveal any order-disorder transition phenomena demonstrating a highly disordered behavior for the entire temperature range. To confirm these observations, differential scanning calorimetry (DSC) was applied to the samples and revealed good agreement with the infrared spectroscopy results. Finally, the investigation of thermal properties of lipids is extremely critical for numerous purposes and the result obtained in this work may find application in various studies including the development of PEGylated lipid based novel drug and substances delivery vehicles.
Preparation and characterization of triple shape memory composite foams.
Nejad, Hossein Birjandi; Baker, Richard M; Mather, Patrick T
2014-10-28
Foams prepared from shape memory polymers (SMPs) offer the potential for low density materials that can be triggered to deploy with a large volume change, unlike their solid counterparts that do so at near-constant volume. While examples of shape memory foams have been reported in the past, they have been limited to dual SMPs: those polymers featuring one switching transition between an arbitrarily programmed shape and a single permanent shape established by constituent crosslinks. Meanwhile, advances by SMP researchers have led to several approaches toward triple- or multi-shape polymers that feature more than one switching phase and thus a multitude of temporary shapes allowing for a complex sequence of shape deployments. Here, we report the design, preparation, and characterization of a triple shape memory polymeric foam that is open cell in nature and features a two phase, crosslinked SMP with a glass transition temperature of one phase at a temperature lower than a melting transition of the second phase. The soft materials were observed to feature high fidelity, repeatable triple shape behavior, characterized in compression and demonstrated for complex deployment by fixing a combination of foam compression and bending. We further explored the wettability of the foams, revealing composition-dependent behavior favorable for future work in biomedical investigations.
Surface effects and discontinuity behavior in nano-systems composed of Prussian blue analogues
NASA Astrophysics Data System (ADS)
Drissi, L. B.; Zriouel, S.; Bahmad, L.
2018-04-01
Magnetic properties and hysteresis loops of a nano-ferrimagnetic surface-bulk Prussian blue analogues (PBA) have been studied by means of Monte Carlo simulations. We have reported the effects of the magnetic and the crystal fields, as well as the intermediate and the bulk couplings, the temperature and the size on the phase diagram, the magnetization, the susceptibility, the hysteresis loops, the critical and the discontinuity temperatures of the model. The thermal dependence of the coercivity and the remanent magnetization are also discussed. This study shows a number of characteristic behaviors, such as the discontinuities in the magnetizations, the existence of Q- and N-types behaviors in the Néel classification nomenclature and the occurrence of single and triple hysteresis loops with high number of step-like plateaus. The obtained results make ferrimagnetic surface-bulk PBA useful for technological applications such as thermo-optical recording.
Multivariate Analysis of Mixed Lipid Aggregate Phase Transitions Monitored Using Raman Spectroscopy.
Neal, Sharon L
2018-01-01
The phase behavior of aqueous 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) mixtures between 8.0 ℃ and 41.0 ℃ were monitored using Raman spectroscopy. Temperature-dependent Raman matrices were assembled from series of spectra and subjected to multivariate analysis. The consensus of pseudo-rank estimation results is that seven to eight components account for the temperature-dependent changes observed in the spectra. The spectra and temperature response profiles of the mixture components were resolved by applying a variant of the non-negative matrix factorization (NMF) algorithm described by Lee and Seung (1999). The rotational ambiguity of the data matrix was reduced by augmenting the original temperature-dependent spectral matrix with its cumulative counterpart, i.e., the matrix formed by successive integration of the spectra across the temperature index (columns). Successive rounds of constrained NMF were used to isolate component spectra from a significant fluorescence background. Five major components exhibiting varying degrees of gel and liquid crystalline lipid character were resolved. Hydrogen-bonded water networks exhibiting varying degrees of organization are associated with the lipid components. Spectral parameters were computed to compare the chain conformation, packing, and hydration indicated by the resolved spectra. Based on spectral features and relative amounts of the components observed, four components reflect long chain lipid response. The fifth component could reflect the response of the short chain lipid, DHPC, but there were no definitive spectral features confirming this assignment. A minor component of uncertain assignment that exhibits a striking response to the DMPC pre-transition and chain melting transition also was recovered. While none of the spectra resolved exhibit features unequivocally attributable to a specific aggregate morphology or step in the gelation process, the results are consistent with the evolution of mixed phase bicelles (nanodisks) and small amounts of worm-like DMPC/DHPC aggregates, and perhaps DHPC micelles, at low temperature to suspensions of branched and entangled worm-like aggregates above the DMPC gel phase transition and perforated multi-lamellar aggregates at high temperature.
Solitary Wave in One-dimensional Buckyball System at Nanoscale
Xu, Jun; Zheng, Bowen; Liu, Yilun
2016-01-01
We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale. PMID:26891624
The phase diagram of ammonium nitrate.
Chellappa, Raja S; Dattelbaum, Dana M; Velisavljevic, Nenad; Sheffield, Stephen
2012-08-14
The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH(4)NO(3)] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.
The phase diagram of ammonium nitrate
NASA Astrophysics Data System (ADS)
Chellappa, Raja S.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Sheffield, Stephen
2012-08-01
The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH4NO3] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.
Phase transitions of sodium niobate powder and ceramics, prepared by solid state synthesis
NASA Astrophysics Data System (ADS)
Koruza, J.; Tellier, J.; Malič, B.; Bobnar, V.; Kosec, M.
2010-12-01
Phase transitions of sodium niobate, prepared by the solid state synthesis method, were examined using dielectric measurements, differential scanning calorimetry, and high temperature x-ray diffraction, in order to contribute to the clarification of its structural behavior below 400 °C. Four phase transitions were detected in the ceramic sample using dielectric measurements and differential scanning calorimetry and the obtained temperatures were in a good agreement with previous reports for the transitions of the P polymorph. The anomaly observed by dielectric measurements in the vicinity of 150 °C was frequency dependent and could be related to the dynamics of the ferroelectric nanoregions. The phase transitions of the as-synthesized NaNbO3 powder were investigated using differential scanning calorimetry and high temperature x-ray diffraction. The results show the existence of the Q polymorph at room temperature, not previously reported for the powder, which undergoes a transition to the R polymorph upon heating through a temperature region between 265 and 326.5 °C. This transition is mainly related to the displacement of Na into a more symmetric position and a minor change in the tilting system. The structures at room temperature, 250, 300, and 420 °C were refined by the Rietveld method and the evolution of the tilting system of the octahedral network and cationic displacement are reported.
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhu, Chun-li; Qin, Liu-lei; Zheng, Xiao-yuan; Liu, Zun-qi
2018-07-01
The organic-inorganic hybrid phase-transition material, (4-nitroanilinium+) (18-crown-6) (H2PO4-) (H3PO4)2 (1), was successfully synthesized. The organic (4-nitroanilinium) (18-crown-6)+ supramolecular cation layer and inorganic phosphate anion layer were arranged alternately. Differential scanning calorimetry (DSC), temperature-dependent dielectric measurements, and variable-temperature single-crystal X-ray diffraction analysis confirmed the reversible isostructural phase transition of 1 with the same space group Pbca at 225 K, wherein the synergistic effect between the pendulum-like motion of organic cations and the proton transfer in the Osbnd H⋯O hydrogen bonding of inorganic anions was mainly responsible for the phase-transition behavior of 1. The most striking dielectric property was the remarkable anisotropy along various crystallographic axes. A potential-energy calculation further supported the possibility of dynamic motion of cations in the crystal.
NASA Astrophysics Data System (ADS)
Nagasaka, Y.; Brimacombe, J. K.; Hawbolt, E. B.; Samarasekera, I. V.; Hernandez-Morales, B.; Chidiac, S. E.
1993-04-01
A mathematical model, based on the finite-element technique and incorporating thermo-elasto-plastic behavior during the water spray quenching of steel, has been developed. In the model, the kinetics of diffusion-dependent phase transformation and martensitic transformation have been coupled with the transient heat flow to predict the microstructural evolution of the steel. Furthermore, an elasto-plastic constitutive relation has been applied to calculate internal stresses resulting from phase changes as well as temperature variation. The computer code has been verified for internal consistency with previously published results for pure iron bars. The model has been applied to the water spray quenching of two grades of steel bars, 1035 carbon and nickel-chromium alloyed steel; the calculated temperature, hardness, distortion, and residual stresses in the bars agreed well with experimental measurements. The results show that the phase changes occurring during this process affect the internal stresses significantly and must be included in the thermomechanical model.
Zhou, S. H.; Kramer, M. J.; Meng, F. Q.; ...
2015-11-14
Co 5Pr-D2 d is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single Co 5Pr-D2 d phase. The object of our study is to assess thermodynamic pathways for crystalline phases under far-from-equilibrium conditions by combining first-principles calculations and experimental measurements into a robust description of the thermodynamic behavior. The energetic calculations, temperature and time dependent phase selections are predicted under varying degrees of chemical partitioning. Our calculation to assess the chemical partitioning-temperatures indicates that the major magnetic compounds: Co 17Pr 2-α, Co 5Pr-D2 d, Co 19Pr 5-β, and Co 7Pr 2-χ formmore » from a congruent manner to eutectic reactions with decreasing cooling rate. The compositions of the compounds from these highly driven liquids can be far from equilibrium.« less
Investigation of Hot Deformation Behavior of Duplex Stainless Steel Grade 2507
NASA Astrophysics Data System (ADS)
Kingklang, Saranya; Uthaisangsuk, Vitoon
2017-01-01
Recently, duplex stainless steels (DSSs) are being increasingly employed in chemical, petro-chemical, nuclear, and energy industries due to the excellent combination of high strength and corrosion resistance. Better understanding of deformation behavior and microstructure evolution of the material under hot working process is significant for achieving desired mechanical properties. In this work, plastic flow curves and microstructure development of the DSS grade 2507 were investigated. Cylindrical specimens were subjected to hot compression tests for different elevated temperatures and strain rates by a deformation dilatometer. It was found that stress-strain responses of the examined steel strongly depended on the forming rate and temperature. The flow stresses increased with higher strain rates and lower temperatures. Subsequently, predictions of the obtained stress-strain curves were done according to the Zener-Hollomon equation. Determination of material parameters for the constitutive model was presented. It was shown that the calculated flow curves agreed well with the experimental results. Additionally, metallographic examinations of hot compressed samples were performed by optical microscope using color tint etching. Area based phase fractions of the existing phases were determined for each forming condition. Hardness of the specimens was measured and discussed with the resulted microstructures. The proposed flow stress model can be used to design and optimize manufacturing process at elevated temperatures for the DSS.
NASA Astrophysics Data System (ADS)
Wang, Zhe; Le, Peisi; Ito, Kanae; Leão, Juscelino B.; Tyagi, Madhusudan; Chen, Sow-Hsin
2015-09-01
With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhe; Le, Peisi; Ito, Kanae
With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from manymore » other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.« less
Nanosized copper ferrite materials: Mechanochemical synthesis and characterization
NASA Astrophysics Data System (ADS)
Manova, Elina; Tsoncheva, Tanya; Paneva, Daniela; Popova, Margarita; Velinov, Nikolay; Kunev, Boris; Tenchev, Krassimir; Mitov, Ivan
2011-05-01
Nanodimensional powders of cubic copper ferrite are synthesized by two-steps procedure of co-precipitation of copper and iron hydroxide carbonates, followed by mechanochemical treatment. X-ray powder diffraction, Mössbauer spectroscopy and temperature-programmed reduction are used for the characterization of the obtained materials. Their catalytic behavior is tested in methanol decomposition to hydrogen and CO and total oxidation of toluene. Formation of nanosized ferrite material is registered even after one hour of milling time. It is established that the prolonging of treatment procedure decreases the dispersion of the obtained product with the appearance of Fe 2O 3. It is demonstrated that the catalytic behavior of the samples depends not only on their initial phase composition, but on the concomitant ferrite phase transformations by the influence of the reaction medium.
NASA Astrophysics Data System (ADS)
Medved', Igor; Trník, Anton
2018-07-01
Phase-change materials (PCMs) can store/release thermal energy within a small temperature range. This is of interest in various industrial applications, for example, in civil engineering (heating/cooling of buildings) or cold storage applications. Another application may be the moderation of temperature increases in concrete encasements of radionuclides during their decay. The phase-change behavior of a material is determined by its heat capacity and the peak it exhibits near a phase change. We analyze the behavior of such peaks for a selected PCM at heating rates varying between 0.1°C\\cdot min^{-1} and 1°C\\cdot min^{-1}, corresponding in real situations to different decay rates of radionuclides. We show that experimentally measured peaks can be plausibly described by an equilibrium theory that enables us to calculate the latent heat and phase-change temperature from experimental data.
PMN-PT based quaternary piezoceramics with enhanced piezoelectricity and temperature stability
NASA Astrophysics Data System (ADS)
Luo, Nengneng; Zhang, Shujun; Li, Qiang; Yan, Qingfeng; He, Wenhui; Zhang, Yiling; Shrout, Thomas R.
2014-05-01
The phase structure, piezoelectric, dielectric, and ferroelectric properties of (0.80 - x)PMN-0.10PFN-0.10PZ-xPT were investigated systematically. The morphotropic phase boundary (MPB) was confirmed to be 0.30 < x < 0.34. Both MPB compositions of x = 0.32 and x = 0.33 exhibit high piezoelectric coefficients d33 = 640 pC/N and 580 pC/N, electromechanical couplings kp of 0.53 and 0.52, respectively. Of particular importance is that the composition with x = 0.33 was found to process high field-induced piezoelectric strain coefficient d33* of 680 pm/V, exhibiting a minimal temperature-dependent behavior, being less than 8% in the temperature range of 25-165 °C, which can be further confirmed by d31, with a variation of less than 9%. The temperature-insensitive d33* values can be explained by the counterbalance of the ascending dielectric permittivity and descending polarization with increasing temperature. These features make the PMN-PT based quaternary MPB compositions promising for actuator applications demanding high temperature stability.
Solvent coarsening around colloids driven by temperature gradients
NASA Astrophysics Data System (ADS)
Roy, Sutapa; Dietrich, Siegfried; Maciolek, Anna
2018-04-01
Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature Tc of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.
NASA Astrophysics Data System (ADS)
Meenakshi; Kumar, Amit; Mahato, Rabindra Nath
2018-02-01
Structural, magnetic and magnetocaloric properties of the nanocrystalline La0.7Te0.3Mn0.7Co0.3O3 perovskite manganite were investigated. X-ray diffraction pattern indicated that the nanocrystalline sample crystallized in orthorhombic crystal structure with Pbnm space group. The average particle size was calculated using scanning electron microscope and it was found to be ∼150 nm. Temperature dependence magnetization measurements revealed ferromagnetic-paramagnetic phase transition and the Curie temperature (TC) was found to be ∼201 K. Field dependence magnetization showed the hysteresis at low temperature with a coercive field of ∼0.34 T and linear dependence at high temperature corresponds to paramagnetic region. Based on the magnetic field dependence magnetization data, the maximum entropy change and relative cooling power (RCP) were estimated and the values were 1.002 J kg-1 K-1 and 90 J kg-1 for a field change of 5 T respectively. Temperature dependent resistivity ρ(T) data exhibited semiconducting-like behavior at high temperature and the electrical transport was well explained by Mott's variable-range hopping (VRH) conduction mechanism in the temperature range of 250 K-300 K. Using the VRH fit, the calculated hoping distance (Rh) at 300 K was 54.4 Å and density of states N(EF) at room temperature was 7.04 × 1018 eV-1 cm-3. These values were comparable to other semiconducting oxides.
NASA Astrophysics Data System (ADS)
Ramazanov, M. K.; Murtazaev, A. K.; Magomedov, M. A.; Badiev, M. K.
2018-06-01
We study phase transitions and thermodynamic properties in the two-dimensional antiferromagnetic Ising model with next-nearest-neighbor interaction on a Kagomé lattice by Monte Carlo simulations. A histogram data analysis shows that a second-order transition occurs in the model. From the analysis of obtained data, we can assume that next-nearest-neighbor ferromagnetic interactions in two-dimensional antiferromagnetic Ising model on a Kagomé lattice excite the occurrence of a second-order transition and unusual behavior of thermodynamic properties on the temperature dependence.
NASA Astrophysics Data System (ADS)
Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.
2014-02-01
Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi5Ti3FeO15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200-873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.
Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes.
Lee, Joon Ha; Dillman, Adler R; Hallem, Elissa A
2016-05-06
Entomopathogenic nematodes (EPNs) are lethal parasites of insects that are of interest as biocontrol agents for insect pests and disease vectors. Although EPNs have been successfully commercialized for pest control, their efficacy in the field is often inconsistent for reasons that remain elusive. EPN infective juveniles (IJs) actively search for hosts to infect using a diverse array of host-emitted odorants. Here we investigate whether their host-seeking behavior is subject to context-dependent modulation. We find that EPN IJs exhibit extreme plasticity of olfactory behavior as a function of cultivation temperature. Many odorants that are attractive for IJs grown at lower temperatures are repulsive for IJs grown at higher temperatures and vice versa. Temperature-induced changes in olfactory preferences occur gradually over the course of days to weeks and are reversible. Similar changes in olfactory behavior occur in some EPNs as a function of IJ age. EPNs also show temperature-dependent changes in their host-seeking strategy: IJs cultured at lower temperatures appear to more actively cruise for hosts than IJs cultured at higher temperatures. Furthermore, we find that the skin-penetrating rat parasite Strongyloides ratti also shows temperature-dependent changes in olfactory behavior, demonstrating that such changes occur in mammalian-parasitic nematodes. IJs are developmentally arrested and long-lived, often surviving in the environment through multiple seasonal temperature changes. Temperature-dependent modulation of behavior may enable IJs to optimize host seeking in response to changing environmental conditions, and may play a previously unrecognized role in shaping the interactions of both beneficial and harmful parasitic nematodes with their hosts.
Liquid–solid phase transition of hydrogen and deuterium in silica aerogel
Van Cleve, E.; Worsley, M. A.; Kucheyev, S. O.
2014-10-30
Behavior of hydrogen isotopes confined in disordered low-density nanoporous solids remains essentially unknown. Here, we use relaxation calorimetry to study freezing and melting of H 2 and D 2 in an ~85%-porous base-catalyzed silica aerogel. In this work, we find that liquid–solid transition temperatures of both isotopes inside the aerogel are depressed. The phase transition takes place over a wide temperature range of ~4 K and non-trivially depends on the liquid filling fraction, reflecting the broad pore size distribution in the aerogel. Undercooling is observed for both H 2 and D 2 confined inside the aerogel monolith. Lastly, results formore » H 2 and D 2 are extrapolated to tritium-containing hydrogens with the quantum law of corresponding states.« less
X-ray Diffraction Study of Order-Disorder Phase Transition in CuMPt6 (M=3d Elements) Alloys
NASA Astrophysics Data System (ADS)
Ahmed, Ejaz; Takahashi, Miwako; Iwasaki, Hiroshi; Ohshima, Ken-ichi
2009-01-01
We investigated the ordering behavior of ternary CuMPt6 alloys with M=Ti, V, Cr, Mn, Fe, Co, and Ni by high-temperature polycrystalline X-ray diffraction. The alloys undergo a phase transition from the fcc disordered state to the Cu3Au-type ordered state, except for the alloy with M=Ni, in which only short-range order forms. The transition temperature Tc is highest (1593 K) for M=Ti and decreases almost monotonically with increasing atomic number to 1153 K for M=Co. The observed dependence of ordering tendency on the atomic number of M is discussed in the light of the theory of ordering in transition-metal alloys and its significance for the study of ordering in ternary alloys.
Badran, R I; Umar, Ahmad
2017-01-01
Herein, we report the growth and characterizations of well-crystalline n-ZnO nanowires assembled in micro flower-shaped morphologies. The nanowires are grown on p-Silicon substrate and characterized in terms of their structural, morphological and electrical properties. Temperature dependent transport characteristics of the fabricated n-ZnO/p-Si heterojunction diode were examined. The morphological studies revealed that the nanowires are grown in high-density and arrange in special micro flower shaped morphology. The structural characterizations confirmed that the nanowires are well-crystalline and possessing wurtzite hexagonal phase. The electrical properties were evaluated by examining the I–V characteristics of the fabricated n-ZnO/p-Si heterojunction diode. The I–V characteristics were studied at temperature <300 K and ≥300 K in the forward and reverse bias conditions. The detailed temperature dependent electrical properties revealed that the fabricated heterojunction assembly shows a diode-like behavior with a turn-on voltage of 5 V at almost all temperatures and the delivered current changes between ˜1 to ˜5 μA when temperature changes from 77 K to 425 K. The rectifying behavior of the fabricated heterojunction diode, at 5 V, was demonstrated by rectifying ratio of ˜4 at 77 K which decreases to ˜1.5 at 425 K. This analysis also showed that the mean potential barrier of the fabricated heterojunction (˜1.2 eV) is larger than the energy difference (0.72 eV) of the work functions between Si and ZnO.
NASA Astrophysics Data System (ADS)
Mahajan, Dhiraj S.; Deshpande, Tushar; Bari, Mahendra L.; Patil, Ujwal D.; Narkhede, Jitendra S.
2018-04-01
In the present study, we prepared zinc borates using aqueous phase synthesis under moderate pressures (MP) (<150 psi) with ethanol as a co-solvent in the presence of a quaternary ammonium surfactant-Cetyltrimethylammonium bromide (CTAB). 3D morphologies of self-assembled zinc borate (Zn(H2O)B2O4 · 0.12 H2O, Zn3B6O12 · 3.5H2O, ZnB2O4) resembling flower-like structures were obtained by varying temperature under moderate pressure conditions. Synthesized zinc borates’ florets were morphologically characterized by Field Emission Scanning Electron Microscopy. The x-ray diffractions of borate species reveal rhombohydra, monoclinic and cubic phases of zinc borate crystals as a function of process temperature. Additionally, thermal analysis confirms excellent dehydration/degradation behavior for the zinc borate crystals synthesized at moderate pressures and elevated temperatures and could be utilized as potential flame retardant fillers in the polymer matrices.
Roshanghias, Ali; Vrestal, Jan; Yakymovych, Andriy; Richter, Klaus W.; Ipser, Herbert
2015-01-01
Melting temperatures of Sn–Ag–Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn–Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner. PMID:26082567
Spin-Hall effect and emergent antiferromagnetic phase transition in n-Si
NASA Astrophysics Data System (ADS)
Lou, Paul C.; Kumar, Sandeep
2018-04-01
Spin current experiences minimal dephasing and scattering in Si due to small spin-orbit coupling and spin-lattice interactions is the primary source of spin relaxation. We hypothesize that if the specimen dimension is of the same order as the spin diffusion length then spin polarization will lead to non-equilibrium spin accumulation and emergent phase transition. In n-Si, spin diffusion length has been reported up to 6 μm. The spin accumulation in Si will modify the thermal transport behavior of Si, which can be detected with thermal characterization. In this study, we report observation of spin-Hall effect and emergent antiferromagnetic phase transition behavior using magneto-electro-thermal transport characterization. The freestanding Pd (1 nm)/Ni80Fe20 (75 nm)/MgO (1 nm)/n-Si (2 μm) thin film specimen exhibits a magnetic field dependent thermal transport and spin-Hall magnetoresistance behavior attributed to Rashba effect. An emergent phase transition is discovered using self-heating 3ω method, which shows a diverging behavior at 270 K as a function of temperature similar to a second order phase transition. We propose that spin-Hall effect leads to the spin accumulation and resulting emergent antiferromagnetic phase transition. We propose that the length scale for Rashba effect can be equal to the spin diffusion length and two-dimensional electron gas is not essential for it. The emergent antiferromagnetic phase transition is attributed to the site inversion asymmetry in diamond cubic Si lattice.
Improved Optical-Fiber Temperature Sensors
NASA Technical Reports Server (NTRS)
Rogowski, Robert S.; Egalon, Claudio O.
1993-01-01
In optical-fiber temperature sensors of proposed type, phosphorescence and/or fluorescence in temperature-dependent coating layers coupled to photodetectors. Phosphorescent and/or fluorescent behavior(s) of coating material(s) depend on temperature; coating material or mixture of materials selected so one can deduce temperature from known temperature dependence of phosphorescence and/or fluorescence spectrum, and/or characteristic decay of fluorescence. Basic optical configuration same as that of optical-fiber chemical detectors described in "Making Optical-Fiber Chemical Detectors More Sensitive" (LAR-14525).
Coarse-grained theory of a realistic tetrahedral liquid model
NASA Astrophysics Data System (ADS)
Procaccia, I.; Regev, I.
2012-02-01
Tetrahedral liquids such as water and silica-melt show unusual thermodynamic behavior such as a density maximum and an increase in specific heat when cooled to low temperatures. Previous work had shown that Monte Carlo and mean-field solutions of a lattice model can exhibit these anomalous properties with or without a phase transition, depending on the values of the different terms in the Hamiltonian. Here we use a somewhat different approach, where we start from a very popular empirical model of tetrahedral liquids —the Stillinger-Weber model— and construct a coarse-grained theory which directly quantifies the local structure of the liquid as a function of volume and temperature. We compare the theory to molecular-dynamics simulations and show that the theory can rationalize the simulation results and the anomalous behavior.
Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials.
Skelton, Jonathan M; Loke, Desmond; Lee, Taehoon; Elliott, Stephen R
2015-07-08
We present an in silico study of the neuromorphic-computing behavior of the prototypical phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise changes in structural order in response to temperature pulses of varying length and duration are observed, and a good reproduction of the spike-timing-dependent plasticity observed in nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss of structural and chemical order, followed by delayed partial recovery upon structural relaxation. We also investigate the link between structural order and electrical and optical properties. These results pave the way toward a first-principles understanding of phase-change physics beyond binary switching.
Phase Behavior of Three PBX Elastomers in High-Pressure Chlorodifluoromethane
NASA Astrophysics Data System (ADS)
Lee, Byung-Chul
2017-10-01
The phase equilibrium behavior data are presented for three kinds of commercial polymer-bonded explosive (PBX) elastomers in chlorodifluoromethane (HCFC22). Levapren^{{registered }} ethylene- co-vinyl acetate (LP-EVA), HyTemp^{{registered }} alkyl acrylate copolymer (HT-ACM), and Viton^{{registered }} fluoroelastomer (VT-FE) were used as the PBX elastomers. For each elastomer + HCFC22 system, the cloud point (CP) and/or bubble point (BP) pressures were measured while varying the temperature and elastomer composition using a phase equilibrium apparatus fitted with a variable-volume view cell. The elastomers examined in this study indicated a lower critical solution temperature phase behavior in the HCFC22 solvent. LP-EVA showed the CPs at temperatures of 323 K to 343 K and at pressures of 3 MPa to 10 MPa, whereas HT-ACM showed the CPs at conditions between 338 K and 363 K and between 4 MPa and 12 MPa. For the LP-EVA and HT-ACM elastomers, the BP behavior was observed at temperatures below about 323 K. For the VT-FE + HCFC22 system, only the CP behavior was observed at temperatures between 323 K and 353 K and at pressures between 6 MPa and 21 MPa. As the elastomer composition increased, the CP pressure increased, reached a maximum value at a specific elastomer composition, and then remained almost constant.
Ochoa, D. A.; Levit, R.; Fancher, C. M.; ...
2017-04-05
We report that ordinary ferroelectrics exhibit a second order phase transition that is characterized by a sharp peak in the dielectric permittivity at a frequency-independent temperature. Furthermore, these materials show a low temperature dielectric relaxation that appears to be a common behavior of perovskite systems. Tetragonal lead zirconate titanate is used here as a model system in order to explore the origin of such an anomaly, since there is no consensus about the physical phenomenon involved in it. Crystallographic and domain structure studies are performed from temperature dependent synchrotron x-ray diffraction measurement. Results indicate that the dielectric relaxation cannot bemore » associated with crystallographic or domain configuration changes. The relaxation process is then parameterized by using the Vogel–Fulcher–Tammann phenomenological equation. Finally, results allow us to hypothesize that the observed phenomenon is due to changes in the dynamic behavior of the ferroelectric domains related to the fluctuation of the local polarization.« less
Selective Sulfidation of Lead Smelter Slag with Pyrite and Flotation Behavior of Synthetic ZnS
NASA Astrophysics Data System (ADS)
Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Zhang, Tianfu; Qin, Wenqing
2016-08-01
The selective sulfidation of lead smelter slag with pyrite in the presence of carbon and Na salts, and the flotation behavior of synthetic ZnS were studied. The effects of temperature, time, pyrite dosage, Na salts, and carbon additions were investigated based on thermodynamic calculation, and correspondingly, the growth mechanism of ZnS particles was studied at high temperatures. The results indicated that the zinc in lead smelter slag was selectively converted into zinc sulfides by sulfidation roasting. The sulfidation degree of zinc was increased until the temperature, time, pyrite, and carbon dosages reached their optimum values, under which it was more than 95 pct. The growth of ZnS particles largely depended upon roasting temperature, and the ZnS grains were significantly increased above 1373 K (1100 °C) due to the formation of a liquid phase. After the roasting, the zinc sulfides generated had a good floatability, and 88.34 pct of zinc was recovered by conventional flotation.
Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite
Tang, Rujun; Jiang, Chen; Qian, Wenhu; Jian, Jie; Zhang, Xin; Wang, Haiyan; Yang, Hao
2015-01-01
The dielectric properties of Z-type hexaferrite Sr3Co2Fe24O41 (SCFO) have been investigated as a function of temperature from 153 to 503 K between 1 and 2 GHz. The dielectric responses of SCFO are found to be frequency dependent and thermally activated. The relaxation-type dielectric behavior is observed to be dominating in the low frequency region and resonance-type dielectric behavior is found to be dominating above 108 Hz. This frequency dependence of dielectric behavior is explained by the damped harmonic oscillator model with temperature dependent coefficients. The imaginary part of impedance (Z″) and modulus (M″) spectra show that there is a distribution of relaxation times. The scaling behaviors of Z″ and M″ spectra further suggest that the distribution of relaxation times is temperature independent at low frequencies. The dielectric loss spectra at different temperatures have not shown a scaling behavior above 108 Hz. A comparison between the Z″ and the M″ spectra indicates that the short-range charges motion dominates at low temperatures and the long-range charges motion dominates at high temperatures. The above results indicate that the dielectric dispersion mechanism in SCFO is temperature independent at low frequencies and temperature dependent at high frequencies due to the domination of resonance behavior. PMID:26314913
Pressure-temperature phase behavior of mixtures of natural sphingomyelin and ceramide extracts.
Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Seddon, John M; Law, Robert V; Brooks, Nicholas J
2015-03-31
Ceramides are a group of sphingolipids that act as highly important signaling molecules in a variety of cellular processes including differentiation and apoptosis. The predominant in vivo synthetic pathway for ceramide formation is via sphingomyelinase catalyzed hydrolysis of sphingomyelin. The biochemistry of this essential pathway has been studied in detail; however, there is currently a lack of information on the structural behavior of sphingomyelin- and ceramide-rich model membrane systems, which is essential for developing a bottom-up understanding of ceramide signaling and platform formation. We have studied the lyotropic phase behavior of sphingomyelin-ceramide mixtures in excess water as a function of temperature (30-70 °C) and pressure (1-200 MPa) by small- and wide-angle X-ray scattering. At low ceramide concentrations the mixtures form the ripple gel phase (P(β)') below the gel transition temperature for sphingomyelin, and this observation has been confirmed by atomic force microscopy. Formation of the ripple gel phase can also be induced at higher temperatures via the application of hydrostatic pressure. At high ceramide concentration an inverse hexagonal phase (HII) is formed coexisting with a cubic phase.
NASA Astrophysics Data System (ADS)
Zad, Hamid Arian; Movahhedian, Hossein
2016-08-01
Heat capacity of a mixed-three-spin (1/2,1,1/2) antiferromagnetic XXX Heisenberg chain is precisely investigated by use of the partition function of the system for which, spins (1,1/2) have coupling constant J1 and spins (1/2,1/2) have coupling constant J2. We verify tripartite entanglement for the model by means of the convex roof extended negativity (CREN) and concurrence as functions of temperature T, homogeneous magnetic field B and the coupling constants J1 and J2. As shown in our previous work, [H. A. Zad, Chin. Phys. B 25 (2016) 030303.] the temperature, the magnetic field and the coupling constants dependences of the heat capacity for such spin system have different behaviors for the entangled and separable states, hence, we did some useful comparisons between this quantity and negativities of its organized bipartite (sub)systems at entangled and separable states. Here, we compare the heat capacity of the mixed-three-spin (1/2,1,1/2) system with the CREN and the tripartite concurrence (as measures of the tripartite entanglement) at low temperature. Ground state phase transitions, and also, transition from ground state to some excited states are explained in detail for this system at zero temperature. Finally, we investigate the heat capacity behavior around those critical points in which these quantum phase transitions occur.
Phase behavior and dynamics of a micelle-forming triblock copolymer system
NASA Astrophysics Data System (ADS)
Mohan, P. Harsha; Bandyopadhyay, Ranjini
2008-04-01
Synperonic F-108 (generic name, “pluronic”) is a micelle forming triblock copolymer of type ABA , where A is polyethylene oxide (PEO) and B is polypropylene oxide (PPO). At high temperatures, the hydrophobicity of the PPO chains increase, and the pluronic molecules, when dissolved in an aqueous medium, self-associate into spherical micelles with dense PPO cores and hydrated PEO coronas. At appropriately high concentrations, these micelles arrange in a face centered cubic lattice to show inverse crystallization, with the samples exhibiting high-temperature crystalline and low-temperature fluidlike phases. By studying the evolution of the elastic and viscous moduli as temperature is increased at a fixed rate, we construct the concentration-temperature phase diagram of Synperonic F-108. For a certain range of temperatures and at appropriate sample concentrations, we observe a predominantly elastic response. Oscillatory strain amplitude sweep measurements on these samples show pronounced peaks in the loss moduli, a typical feature of soft solids. The soft solidlike nature of these materials is further demonstrated by measuring their frequency-dependent mechanical moduli. The storage moduli are significantly larger than the loss moduli and are almost independent of the applied angular frequency. Finally, we perform strain rate frequency superposition experiments to measure the slow relaxation dynamics of this soft solid.
Critical Behavior and Macroscopic Phase Diagram of the Monoaxial Chiral Helimagnet Cr 1/3NbS 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clements, Eleanor M.; Das, Raja; Li, Ling
2017-07-26
Cr 1/3NbS 2 is a unique example of a hexagonal chiral helimagnet with high crystalline anisotropy, and has generated growing interest for a possible magnetic field control of the incommensurate spin spiral. Here, we construct a comprehensive phase diagram based on detailed magnetization measurements of a high quality single crystal of Cr 1/3NbS 2 over three magnetic field regions. An analysis of the critical properties in the forced ferromagnetic region yields 3D Heisenberg exponents β = 0.3460 ± 0.040, γ = 1.344 ± 0.002, and T C = 130.78 K ± 0.044, which are consistent with the localized nature themore » of Cr 3+ moments and suggest short-range ferromagnetic interactions. We exploit the temperature and magnetic field dependence of magnetic entropy change (ΔS M) to accurately map the nonlinear crossover to the chiral soliton lattice regime from the chiral helimagnetic phase. Our observations in the low field region are consistent with the existence of chiral ordering in a temperature range above the Curie temperature, T C < T < T*, where a first-order transition has been previously predicted. An analysis of the universal behavior of ΔS M(T,H) experimentally demonstrates for the first time the first-order nature of the onset of chiral ordering.« less
Boulton, C.; Toy, V. G.; Townend, J.; Sutherland, R.
2016-01-01
Abstract The Alpine Fault, New Zealand, is a major plate‐bounding fault that accommodates 65–75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples were retrieved from relatively shallow depths during phase 1 of the Deep Fault Drilling Project (DFDP‐1) at Gaunt Creek. Simulated fault gouges were sheared at temperatures of 25, 150, 300, 450, and 600°C in order to determine the friction coefficient as well as the velocity dependence of friction. Friction remains more or less constant with changes in temperature, but a transition from velocity‐strengthening behavior to velocity‐weakening behavior occurs at a temperature of T = 150°C. The transition depends on the absolute value of sliding velocity as well as temperature, with the velocity‐weakening region restricted to higher velocity for higher temperatures. Friction was substantially lower for low‐velocity shearing (V < 0.3 µm/s) at 600°C, but no transition to normal stress independence was observed. In the framework of rate‐and‐state friction, earthquake nucleation is most likely at an intermediate temperature of T = 300°C. The velocity‐strengthening nature of the Alpine Fault rocks at higher temperatures may pose a barrier for rupture propagation to deeper levels, limiting the possible depth extent of large earthquakes. Our results highlight the importance of strain rate in controlling frictional behavior under conditions spanning the classical brittle‐plastic transition for quartzofeldspathic compositions. PMID:27610290
Ohno, Hiroyuki; Fukumoto, Kenta
2007-11-01
The preparation of ionic liquids derived from amino acids, and their properties, are outlined. Since amino acids have both a carboxylic acid residue and an amino group in a single molecule, they can be used as either anions or cations. These groups are also useful in their ability to introduce functional group(s). Twenty different natural amino acids were used as anions, to couple with the 1-ethyl-3-methylimidazolium cation. The salts obtained were all liquid at room temperature. The properties of the resulting ionic liquids (AAILs) depend on the side groups of the amino acids involved. These AAILs, composed of an amino acid with some functional groups such as a hydrogen bonding group, a charged group, or an aromatic ring, had an increased glass transition (or melting) temperature and/or higher viscosity as a result of additional interactions among the ions. Viscosity is reduced and the decomposition temperature of imidazolium-type salts is improved by using the tetrabutylphosphonium cation. The chirality of AAILs was maintained even upon heating to 150 degrees C after acetylation of the free amino group. The amino group was also modified to introduce a strong acid group so as to form hydrophobic and chiral ionic liquids. Unique phase behavior of the resulting hydrophobic ionic liquids and water mixture is found; the mixture is clearly phase separated at room temperature, but the solubility of water in this IL increases upon cooling, to give a homogeneous solution. This phase change is reversible, and separation occurs again by raising the temperature a few degrees. It is extraordinary for an IL/water mixture to display such behavior with a lower critical solution temperature. Some likely applications are proposed for these amino acid derived ionic liquids.
Thermoelectric properties of Ge 1-xSn xTe crystals grown by vertical Bridgman method
NASA Astrophysics Data System (ADS)
Wu, C. C.; Ferng, N. J.; Gau, H. J.
2007-06-01
Single crystals of Ge 1-xSn xTe compounds with x=0, 0.8, 0.9 and 1.0 were grown by vertical Bridgman method. The crystalline phase and stochiometry for these crystals were investigated by X-ray diffraction, metallographic microscope as well as electron-probe microanalysis (EPMA). Electrical property of the as-grown samples was characterized using room temperature resistivity and Hall measurements. The thermoelectric behaviors for the Ge 1-xSn xTe crystals were studied by means of thermal and carrier transport measurements. Temperature dependences of resistivity, Seebeck coefficient and thermal conductivity for the various compositions of Ge 1-xSn xTe were analyzed. A two-valence band model was proposed to describe the temperature dependence of thermoelectric property of the Ge 1-xSn xTe crystals. The dimensionless thermoelectric figure of merit ZT for the alloys was evaluated and discussed.
Melting and Freezing of Metal Clusters
NASA Astrophysics Data System (ADS)
Aguado, Andrés; Jarrold, Martin F.
2011-05-01
Recent developments allow heat capacities to be measured for size-selected clusters isolated in the gas phase. For clusters with tens to hundreds of atoms, the heat capacities determined as a function of temperature usually have a single peak attributed to a melting transition. The melting temperatures and latent heats show large size-dependent fluctuations. In some cases, the melting temperatures change by hundreds of degrees with the addition of a single atom. Theory has played a critical role in understanding the origin of the size-dependent fluctuations, and in understanding the properties of the liquid-like and solid-like states. In some cases, the heat capacities have extra features (an additional peak or a dip) that reveal a more complex behavior than simple melting. In this article we provide a description of the methods used to measure the heat capacities and provide an overview of the experimental and theoretical results obtained for sodium and aluminum clusters.
Magnetic characterization of mixed phases in FeVO4sbnd Co3V2O8 system
NASA Astrophysics Data System (ADS)
Guskos, N.; Zolnierkiewicz, G.; Pilarska, M.; Typek, J.; Berczynski, P.; Blonska-Tabero, A.; Aidinis, K.
2018-04-01
Dynamic and static magnetic properties of four nFeVO4/(1-n)Co3V2O8 composites obtained in reactions between nFeVO4 and (1-n)Co3V2O8 (n = 0.82, 0.80, 0.78 and 0.76) have been investigated by dc magnetometry and electron paramagnetic resonance (EPR). All samples were diphase containing both the howardevansite-type and the lyonsite-type phases in different proportions. Dc magnetic susceptibility study showed the Curie-Weiss paramagnetic behavior with strong antiferromagnetic (AFM) interaction in the high-temperature range and the phase transition to the AFM state at low temperatures. The calculated effective magnetic moment could be justified by the presence of high spin Fe3+ and Co2+ ions. The appearance of hysteresis loop in isothermal magnetisation at low temperature indicates the existence of the ferromagnetic component in all four samples, but only 0.5% of all magnetic ions are involved in this phase. EPR spectra recorded in high-temperature range (T > 90 K) consisted of a single broad line centred at ∼3.2 kG. The fitting of observed spectra with two Gaussian lineshape functions allowed to study the temperature dependence of EPR parameters (resonance field, linewidth, integrated intensity). This analysis suggests that EPR signal arises from two spin subsystems: paramagnetic Fe3+ ions subjected to AFM interaction and AFM spin pairs/clusters of iron/cobalt visible only at high temperatures. At low temperatures two transitions to AFM states, due to the mixture of two structural phases, are registered in magnetic susceptibility measurements.
Dynamics of polymerization induced phase separation in reactive polymer blends
NASA Astrophysics Data System (ADS)
Lee, Jaehyung
Mechanisms and dynamics of phase decomposition following polymerization induced phase separation (PIPS) of reactive polymer blends have been investigated experimentally and theoretically. The phenomenon of PIPS is a non-equilibrium and non-linear dynamic process. The mechanism of PIPS has been thought to be a nucleation and growth (NG) type originally, however, newer results indicate spinodal decomposition (SD). In PIPS, the coexistence curve generally passes through the reaction temperature at off-critical compositions, thus phase separation has to be initiated first in the metastable region where nucleation occurs. When the system farther drifts from the metastable to unstable region, the NG structure transforms to the SD bicontinuous morphology. The crossover behavior of PIPS may be called nucleation initiated spinodal decomposition (NISD). The formation of newer domains between the existing ones is responsible for the early stage of PIPS. Since PIPS is non- equilibrium kinetic process, it would not be surprising to discern either or both structures. The phase separation dynamics of DGEBA/CTBN mixtures having various kinds of curing agents from low reactivity to high reactivity and various amount of curing agents were examined at various reaction temperatures. The phase separation behavior was monitored by a quantity of scattered light intensity experimentally and by a quantity of collective structure factor numerically. Prior to the study of phase separation dynamics, a preliminary investigation on the isothermal cure behavior of the mixtures were executed in order to determine reaction kinetics parameters. The cure behavior followed the overall second order reaction kinetics. Next, based on the knowledge obtained from the phase separation dynamics study of DGEBA/CTBN mixtures, the phase separation dynamics of various composition of DGEBA/R45EPI mixtures having MDA as a curing agent were investigated. The phase separation behavior was quite dependent upon the composition variation. R45EPI itself can react with itself or with DGEBA without curing, therefore three-component system was considered in this mixture. For the numerical studies of this three- component mixture, a system that is composed of a reactive component-1 that is miscible with its growing molecules and another reactive component-2 that is not miscible with its growing molecules was considered with crosslinking reaction kinetics of the each component.
A novel model for smectic liquid crystals: Elastic anisotropy and response to a steady-state flow.
Püschel-Schlotthauer, Sergej; Meiwes Turrión, Victor; Stieger, Tillmann; Grotjahn, Robin; Hall, Carol K; Mazza, Marco G; Schoen, Martin
2016-10-28
By means of a combination of equilibrium Monte Carlo and molecular dynamics simulations and nonequilibrium molecular dynamics we investigate the ordered, uniaxial phases (i.e., nematic and smectic A) of a model liquid crystal. We characterize equilibrium behavior through their diffusive behavior and elastic properties. As one approaches the equilibrium isotropic-nematic phase transition, diffusion becomes anisotropic in that self-diffusion D ⊥ in the direction orthogonal to a molecule's long axis is more hindered than self-diffusion D ∥ in the direction parallel to that axis. Close to nematic-smectic A phase transition the opposite is true, D ∥ < D ⊥ . The Frank elastic constants K 1 , K 2 , and K 3 for the respective splay, twist, and bend deformations of the director field n̂ are no longer equal and exhibit a temperature dependence observed experimentally for cyanobiphenyls. Under nonequilibrium conditions, a pressure gradient applied to the smectic A phase generates Poiseuille-like or plug flow depending on whether the convective velocity is parallel or orthogonal to the plane of smectic layers. We find that in Poiseuille-like flow the viscosity of the smectic A phase is higher than in plug flow. This can be rationalized via the velocity-field component in the direction of the flow. In a sufficiently strong flow these smectic layers are not destroyed but significantly bent.
Critical temperature of metallic hydrogen sulfide at 225-GPa pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A., E-mail: EAMazur@mephi.ru
2017-01-15
The Eliashberg theory generalized for electron—phonon systems with a nonconstant density of electron states and with allowance made for the frequency behavior of the electron mass and chemical potential renormalizations is used to study T{sub c} in the SH{sub 3} phase of hydrogen sulfide under pressure. The phonon contribution to the anomalous electron Green’s function is considered. The pairing within the total width of the electron band and not only in a narrow layer near the Fermi surface is taken into account. The frequency and temperature dependences of the complex mass renormalization ReZ(ω), the density of states N(ε) renormalized bymore » the electron—phonon interactions, and the electron—phonon spectral function obtained computationally are used to calculate the anomalous electron Green’s function. A generalized Eliashberg equation with a variable density of electron states has been solved. The frequency dependence of the real and imaginary parts of the order parameter in the SH{sub 3} phase has been obtained. The value of T{sub c} ≈ 177 K in the SH{sub 3} phase of hydrogen sulfide at pressure P = 225 GPa has been determined by solving the system of Eliashberg equations.« less
The role of H2O in controlling the eruptive behavior observed during 2008 Chaitén eruption
NASA Astrophysics Data System (ADS)
Forte, Pablo; Castro, Jonathan
2016-04-01
Although highly explosive and with the capacity of producing impacts in a world-wide scale, the underlying mechanisms driving rhyolitic eruptions are not yet fully understood. The lower frequency of these events in comparison to intermediate composition and mafic magmatic eruptions has hampered observation-based studies of rhyolite activity in last century. But in 2008, the eruption of Chaitén volcano (Southern Chile), gave us the first view of a rhyolitic eruptive cycle, start to finish. After an initial explosive phase that lasted for 10 days, the vigour of the eruption decreased and gave way to an effusive phase that was characterized by the emplacement of a dome complex. Surprisingly, a transitional phase between them was identified, with the simultaneous occurrence of explosive and effusive activity (Pallister et al. 2013). During the eruption, vast amounts of glassy rhyolite bombs with H2O contents ranging from 0.1 to 1.58 wt. % H2O were produced (Castro et al. 2012). It is already well known that H2O is one of the main players involved in the evolution of rhyolitic systems and in the occurrence of explosive volcanic eruptions (eg. Zhang et al. 2007). In this study, we conducted 90 high-temperature, 1 atm experiments in order to constrain degassing systematics and resultant foaming/fragmentation behavior of magma residing in the last hundred meters of Chaitén's volcanic conduit. By using cylindrical cores (4 x 10 mm) drilled from obsidian bombs and lava dome samples, isothermal experiments were performed at temperatures between 740° and 1030°C among the whole range of H2O contents measured in the deposits. Due to the experimental design developed, the complete evolution of the experiments was possible to monitor through a sapphire window with high-speed and conventional video cameras. Post-experiment video analysis has revealed 3 types of behaviors of the samples: a) expansion followed by equilibrium (constant volume), b) expansion followed by shrinking and c) expansion followed by explosive fragmentation. This last behavior was identified exclusively in samples with H2O ≥ 1.2 wt.%, and at temperatures higher than 880°C. For samples with H2O < 1.2 wt.%, no fragmentation was observed, even at higher temperatures (up to 1030°C), well above the estimated pre-eruptive temperature (~825°C) of the 2008 Chaitén rhyolite (see Castro and Dingwell, 2009). In samples that did not experience fragmentation, porosities of up to 85% were measured. Experimental results show that foaming and fragmentation behaviors reflect the efficiency of degassing of the system and this in turn depends on H2O content and temperature. We show that diverse vesiculation and fragmentation behaviors are the result of a complex interplay between H2O exsolution, diffusion rates and consequent changes in viscosity. Ultimately foaming versus fragmentation behavior depends on variations in the Peclet number, which balances viscous and diffusion-controlled bubble-growth regimes.
NASA Astrophysics Data System (ADS)
Cai, Danyun; Mo, Yunjie; Feng, Xiaofang; He, Yingyou; Jiang, Shaoji
2017-06-01
In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.
Rotation-induced grain growth and stagnation in phase-field crystal models.
Bjerre, Mathias; Tarp, Jens M; Angheluta, Luiza; Mathiesen, Joachim
2013-08-01
We consider grain growth and stagnation in polycrystalline microstructures. From the phase-field crystal modeling of the coarsening dynamics, we identify a transition from a grain-growth stagnation upon deep quenching below the melting temperature T(m) to a continuous coarsening at shallower quenching near T(m). The grain evolution is mediated by local grain rotations. In the deep quenching regime, the grain assembly typically reaches a metastable state where the kinetic barrier for recrystallization across boundaries is too large and grain rotation with subsequent coalescence or boundary motion is infeasible. For quenching near T(m), we find that the grain growth depends on the average rate of grain rotation, and follows a power-law behavior with time, with a scaling exponent that depends on the quenching depth.
NASA Astrophysics Data System (ADS)
Harter, J. W.; Kennes, D. M.; Chu, H.; de la Torre, A.; Zhao, Z. Y.; Yan, J.-Q.; Mandrus, D. G.; Millis, A. J.; Hsieh, D.
2018-01-01
We have used a combination of ultrafast coherent phonon spectroscopy, ultrafast thermometry, and time-dependent Landau theory to study the inversion symmetry breaking phase transition at Tc=200 K in the strongly spin-orbit coupled correlated metal Cd2 Re2 O7 . We establish that the structural distortion at Tc is a secondary effect through the absence of any softening of its associated phonon mode, which supports a purely electronically driven mechanism. However, the phonon lifetime exhibits an anomalously strong temperature dependence that decreases linearly to zero near Tc. We show that this behavior naturally explains the spurious appearance of phonon softening in previous Raman spectroscopy experiments and should be a prevalent feature of correlated electron systems with linearly coupled order parameters.
Fabrication and magnetic properties of Fe and Co co-doped ZrO2
NASA Astrophysics Data System (ADS)
Okabayashi, J.; Kono, S.; Yamada, Y.; Nomura, K.
2011-12-01
We investigate the effects of Fe and Co co-doping on the magnetic and electronic properties of ZrO2 ceramics prepared by a sol-gel method, and study their dependence on the annealing temperature. Dilute Fe and Co co-doping into ZrO2 exhibits ferromagnetic behavior at room temperature for annealing temperatures above 900 °C, accompanying the phase transition from tetragonal to monoclinic structure in ZrO2. The electronic structures are studied by x-ray absorption spectroscopy and Mössbauer spectroscopy, which suggest that the Fe3+ and Co2+/Co3+ mixing states are dominant in Fe and Co co-doped ZrO2.
What is strange about high-temperature superconductivity in cuprates?
NASA Astrophysics Data System (ADS)
Božović, I.; He, X.; Wu, J.; Bollinger, A. T.
2017-10-01
Cuprate superconductors exhibit many features, but the ultimate question is why the critical temperature (Tc) is so high. The fundamental dichotomy is between the weak-pairing, Bardeen-Cooper-Schrieffer (BCS) scenario, and Bose-Einstein condensation (BEC) of strongly-bound pairs. While for underdoped cuprates it is hotly debated which of these pictures is appropriate, it is commonly believed that on the overdoped side strongly-correlated fermion physics evolves smoothly into the conventional BCS behavior. Here, we test this dogma by studying the dependence of key superconducting parameters on doping, temperature, and external fields, in thousands of cuprate samples. The findings do not conform to BCS predictions anywhere in the phase diagram.
Scaling behavior of nonisothermal phase separation.
Rüllmann, Max; Alig, Ingo
2004-04-22
The phase separation process in a critical mixture of polydimethylsiloxane and polyethylmethylsiloxane (PDMS/PEMS, a system with an upper critical solution temperature) was investigated by time-resolved light scattering during continuous quenches from the one-phase into the two-phase region. Continuous quenches were realized by cooling ramps with different cooling rates kappa. Phase separation kinetics is studied by means of the temporal evolution of the scattering vector qm and the intensity Im at the scattering peak. The curves qm(t) for different cooling rates can be shifted onto a single mastercurve. The curves Im(t) show similar behavior. As shift factors, a characteristic length Lc and a characteristic time tc are introduced. Both characteristic quantities depend on the cooling rate through power laws: Lc approximately kappa(-delta) and tc approximately kappa(-rho). Scaling behavior in isothermal critical demixing is well known. There the temporal evolutions of qm and Im for different quench depths DeltaT can be scaled with the correlation length xi and the interdiffusion coefficient D, both depending on DeltaT through critical power laws. We show in this paper that the cooling rate scaling in nonisothermal demixing is a consequence of the quench depth scaling in the isothermal case. The exponents delta and rho are related to the critical exponents nu and nu* of xi and D, respectively. The structure growth during nonisothermal demixing can be described with a semiempirical model based on the hydrodynamic coarsening mechanism well known in the isothermal case. In very late stages of nonisothermal phase separation a secondary scattering maximum appears. This is due to secondary demixing. We explain the onset of secondary demixing by a competition between interdiffusion and coarsening. (c) 2004 American Institute of Physics
Kamlekar, Ravi Kanth; Satyanarayana, S.; Marsh, Derek; Swamy, Musti J.
2007-01-01
The miscibility and phase behavior of hydrated binary mixtures of two N-acylethanolamines (NAEs), N-myristoylethanolamine (NMEA), and N-palmitoylethanolamine (NPEA), with the corresponding diacyl phosphatidylethanolamines (PEs), dimyristoylphosphatidylethanolamine (DMPE), and dipalmitoylphosphatidylethanolamine (DPPE), respectively, have been investigated by differential scanning calorimetry (DSC), spin-label electron spin resonance (ESR), and 31P-NMR spectroscopy. Temperature-composition phase diagrams for both NMEA/DMPE and NPEA/DPPE binary systems were established from high sensitivity DSC. The structures of the phases involved were determined by 31P-NMR spectroscopy. For both systems, complete miscibility in the fluid and gel phases is indicated by DSC and ESR, up to 35 mol % of NMEA in DMPE and 40 mol % of NPEA in DPPE. At higher contents of the NAEs, extensive solid-fluid phase separation and solid-solid immiscibility occur depending on the temperature. Characterization of the structures of the mixtures formed with 31P-NMR spectroscopy shows that up to 75 mol % of NAE, both DMPE and DPPE form lamellar structures in the gel phase as well as up to at least 65°C in the fluid phase. ESR spectra of phosphatidylcholine spin labeled at the C-5 position in the sn-2 acyl chain present at a probe concentration of 1 mol % exhibit strong spin-spin broadening in the low-temperature region for both systems, suggesting that the acyl chains pack very tightly and exclude the spin label. However, spectra recorded in the fluid phase do not exhibit any spin-spin broadening and indicate complete miscibility of the two components. The miscibility of NAE and diacyl PE of matched chainlengths is significantly less than that found earlier for NPEA and dipalmitoylphosphatidylcholine, an observation that is consistent with the notion that the NAEs are most likely stored as their precursor lipids (N-acyl PEs) and are generated only when the system is subjected to membrane stress. PMID:17369415
Han, Bumsoo; Bischof, John C
2004-04-01
Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (< or = -40 degrees C). Moreover, in these applications, chemicals are often added to improve their outcome, which can result in significant variation in the phase change behavior and thermal properties from those of the original biomaterials. These chemical additives include cryoprotective agents (CPAs), antifreeze protein (AFP), or cryosurgical adjuvants like sodium chloride (NaCl). In the present study, phase change behavior and thermal properties of saline solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30 degrees C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present study are discussed in the context of the implications for cryobiology applications.
Zhang, Luoying; Lear, Bridget C; Seluzicki, Adam; Allada, Ravi
2009-12-15
Circadian clocks in the brain are organized as coupled oscillators that integrate seasonal cues such as light and temperature to time daily behaviors. In Drosophila, the PIGMENT DISPERSING FACTOR (PDF) neuropeptide-expressing morning (M) and non-PDF evening (E) cells are coupled cell groups important for morning and evening behavior, respectively. Depending on day length, either M cells (short days) or E cells (long days) dictate both the morning and the evening phase, a phenomenon that we term network hierarchy. To examine the role of PDF in light-dark conditions, we examined flies lacking both the PDF receptor (PDFR) and the circadian photoreceptor CRYPTOCHROME (CRY). We found that subsets of E cells exhibit molecular oscillations antiphase to those of wild-type flies, single cry mutants, or single Pdfr mutants, demonstrating a potent role for PDF in light-mediated entrainment, specifically in the absence of CRY. Moreover, we find that the evening behavioral phase is more strongly reset by PDF(+) M cells in the absence of CRY. On the basis of our findings, we propose that CRY can gate PDF signaling to determine behavioral phase and network hierarchy.
NASA Astrophysics Data System (ADS)
Okada, Aoi; Nishio, Johji; Iijima, Ryosuke; Ota, Chiharu; Goryu, Akihiro; Miyazato, Masaki; Ryo, Mina; Shinohe, Takashi; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Okumura, Hajime
2018-06-01
To investigate the mechanism of contraction/expansion behavior of Shockley stacking faults (SSFs) in 4H-SiC p–i–n diodes, the dependences of the SSF behavior on temperature and injection current density were investigated by electroluminescence image observation. We investigated the dependences of both triangle- and bar-shaped SSFs on the injection current density at four temperature levels. All SSFs in this study show similar temperature and injection current density dependences. We found that the expansion of SSFs at a high current density was converted to contraction at a certain value as the current decreased and that the value is temperature-dependent. It has been confirmed that SSF behavior, which was considered complex or peculiar, might be explained mainly by the energy change caused by SSFs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.
A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector ismore » cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.« less
NASA Astrophysics Data System (ADS)
Yamada, S.; Sagayama, H.; Sugimoto, K.; Arima, T.
2018-03-01
We have succeeded in growing large high-quality single crystals of double-perovskite NdBaMn2O6 with c-axis aligned. Curie-Weiss paramagnetism and metallic conduction are observed above 290 K (TMI ). The magnetic susceptibility suddenly drops at TMI accompanied by a metal-insulator transition. Pervious studies using polycrystalline samples proposed that this material undergoes a ferromagnetic phase transition near 300K, and that the magnetic anomaly at TMI should be ascribed to layered antiferromagnetic phase transition. However, single-crystalline samples do not show any anomaly that indicates the ferromagnetic phase transition above TMI . We assign the onset of magnetic anisotropy at 235 K as antiferromagnetic transition temperature TN . Though the magnetization just above TMI shows the ferromagnetic-like magnetic-field dependence, the magnetization does not saturate under 70kOe at 300K. The magnetization behavior implies ferromagnetic fluctuation in the paramagnetic phase. The ferromagnetic fluctuation are also observed just below TMI . Because a metamagnetic transition is observed at a higher magnetic field, the ferromagnetic fluctuation competes with antiferromagnetic fluctuation in this temperature range.
Xiao, Ruiyang; Zammit, Ian; Wei, Zongsu; Hu, Wei-Ping; MacLeod, Matthew; Spinney, Richard
2015-11-17
The ubiquitous presence of cyclic volatile methylsiloxanes (cVMS) in the global atmosphere has recently raised environmental concern. In order to assess the persistence and long-range transport potential of cVMS, their second-order rate constants (k) for reactions with hydroxyl radical ((•)OH) in the gas phase are needed. We experimentally and theoretically investigated the kinetics and mechanism of (•)OH oxidation of a series of cVMS, hexamethylcyclotrisiloxane (D3), octamethycyclotetrasiloxane (D4), and decamethycyclopentasiloxane (D5). Experimentally, we measured k values for D3, D4, and D5 with (•)OH in a gas-phase reaction chamber. The Arrhenius activation energies for these reactions in the temperature range from 313 to 353 K were small (-2.92 to 0.79 kcal·mol(-1)), indicating a weak temperature dependence. We also calculated the thermodynamic and kinetic behaviors for reactions at the M06-2X/6-311++G**//M06-2X/6-31+G** level of theory over a wider temperature range of 238-358 K that encompasses temperatures in the troposphere. The calculated Arrhenius activation energies range from -2.71 to -1.64 kcal·mol(-1), also exhibiting weak temperature dependence. The measured k values were approximately an order of magnitude higher than the theoretical values but have the same trend with increasing size of the siloxane ring. The calculated energy barriers for H-atom abstraction at different positions were similar, which provides theoretical support for extrapolating k for other cyclic siloxanes from the number of abstractable hydrogens.
NASA Astrophysics Data System (ADS)
Zriouel, S.; Taychour, B.; Yahyaoui, F. El; Drissi, L. B.
2017-07-01
Zigzag FeO2 nanoribbon defected by the removal of oxygen atoms is simulated using Monte Carlo simulations. All possible arrangements of positions and number of oxygen vacancy are investigated. Temperature dependence of polarization, dielectric susceptibility, internal energy, specific heat and dielectric hysteresis loops are all studied. Results show the presence of second order phase transition and Q - type behavior. Dielectric properties dependence on ribbon's edge, positions and number of oxygen vacancy are discussed in detail. Moreover, single and square hysteresis loops are observed whatever the number of oxygen vacancy in the system.
Popova, V A; Surovtsev, N V
2014-09-01
The temperature dependences of α relaxation time τ(α)(T) of three glass-forming liquids (salol, o-terphenyl, and α-picoline) were investigated by a depolarized light scattering technique. A detailed description of τ(α)(T) near T(A), the temperature of the transition from the Arrhenius law at high temperatures to a non-Arrhenius behavior of τ(α)(T) at lower temperatures, was done. It was found that this transition is quite sharp. If the transition is described as switching from the Arrhenius law to the Vogel-Fulcher-Tammann law, it occurs within the temperature range of about 15 K or less. Most of the known expressions for τ(α)(T) cannot describe this sharp transition. Our analysis revealed that this transition can be described either as a discontinuous transition in the spirit of the frustration-limited domain theory [D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996)], implying a phase transition, or by a phenomenological expression recently suggested [B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012)], where the activation energy includes the term depending exponentially on temperature.
Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism
Seifitokaldani, Ali; Gheribi, Aïmen E.; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël
2016-01-01
A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures. PMID:27604551
Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism
NASA Astrophysics Data System (ADS)
Seifitokaldani, Ali; Gheribi, Aïmen E.; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël
2016-09-01
A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures.
Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism.
Seifitokaldani, Ali; Gheribi, Aïmen E; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël
2016-09-08
A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures.
Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates
Miao, H.; Ishikawa, D.; Heid, R.; ...
2018-01-18
While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wave vectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here, we investigate the temperature dependence of the low-energy phonons in the canonical CDW-ordered cuprate La 1.875Ba 0.125CuO 4. We discover that the phonon softening wave vector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wave vector of 0.238 reciprocal lattice units (r.l.u.) below the ordering transition temperature to 0.3 r.l.u. at 300 K. This high-temperature behavior also shows that “214”-type cupratesmore » can host CDW correlations at a similar wave vector to previously reported CDW correlations in non-214-type cuprates such as YBa 2Cu 3O 6+δ. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low-temperature ordering wave vectors.« less
Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, H.; Ishikawa, D.; Heid, R.
While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wave vectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here, we investigate the temperature dependence of the low-energy phonons in the canonical CDW-ordered cuprate La 1.875Ba 0.125CuO 4. We discover that the phonon softening wave vector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wave vector of 0.238 reciprocal lattice units (r.l.u.) below the ordering transition temperature to 0.3 r.l.u. at 300 K. This high-temperature behavior also shows that “214”-type cupratesmore » can host CDW correlations at a similar wave vector to previously reported CDW correlations in non-214-type cuprates such as YBa 2Cu 3O 6+δ. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low-temperature ordering wave vectors.« less
Magnetostructural phase transitions and magnetocaloric effect in (Gd 5-xSc x)Si 1.8Ge 2.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudolph, Kirk; Pathak, Arjun K.; Mudryk, Yaroslav
Future advancements in magnetocaloric refrigeration/heat pumping technologies depend on the discovery of new materials that demonstrate large, tunable magnetocaloric effects (MCEs) in the vicinity of coupled magnetic and structural phase transitions that occur reversibly with minimum hysteresis. Here, with this in mind, we investigate phase transitions, microstructure, magnetic, thermal, magnetocaloric, and transport properties of (Gd 5-xSc x)Si 1.8Ge 2.2 compounds. Replacement of magnetic Gd with non-magnetic Sc in Gd 5-xSc xSi 1.8Ge 2.2 increases the ferromagnetic to paramagnetic first order phase transition temperature, T C, with only a minor reduction in MCE when x ≤ 0.2. We also demonstrate thatmore » hydrostatic pressure further increases T C and reduces the hysteresis of the first order phase transition in Gd 4.8Sc 0.2Si 1.8Ge 2.2 from 7 to 4 K. Temperature-dependent x-ray powder diffraction study of Gd 4.8Sc 0.2Si 1.8Ge 2.2 confirms the monoclinic ↔ orthorhombic structural transformation at T C, in agreement with magnetic, calorimetric, and electrical transport measurements. In addition to the substantial magnetocaloric effect, a large magnetoresistance of ~20% is also observed in Gd 4.8Sc 0.2Si 1.8Ge 2.2 for ΔH = 50 kOe in the vicinity of the magnetostructural transition. Finally, in a drastic reversal of the initial doping behavior further additions of Sc (x > 0.2) suppress formation of the monoclinic phase, change the nature of the transition from first-to second-order, and reduce both the transition temperature and magnetocaloric effect.« less
NASA Astrophysics Data System (ADS)
Murali, Dhanya S.; Aryasomayajula, Subrahmanyam
2018-03-01
Among the three oxides of copper (CuO, Cu2O, and Cu4O3), Cu4O3 phase (paramelaconite is a natural, and very scarce mineral) is very difficult to synthesize. It contains copper in both + 1 and + 2 valence states, with an average composition Cu2 1+Cu2 2+O3. We have successfully synthesized Cu4O3 phase at room temperature (300 K) by reactive DC magnetron sputtering by controlling the oxygen flow rate (Murali and Subrahmanyam in J Phys D Appl Phys 49:375102, 2016). In the present communication, Cu4O3 thin films are converted to CuO phases by annealing in the air at 680 K and to Cu2O phase when annealed in argon at 720 K; these phase changes are confirmed by temperature-dependent Raman spectroscopy studies. Probably, this is the first report of the conversion of Cu4O3-CuO and Cu2O by thermal annealing. The temperature-dependent (300-200 K) electrical transport properties of Cu4O3 thin films show that the charge transport above 190 K follows Arrhenius-type behavior with activation energy of 0.14 eV. From photo-electron spectroscopy and electrical transport measurements of Cu4O3 thin films, a downward band bending is observed at the surface of the thin film, which shows its p-type semiconducting nature. The successful preparation of phase pure p-type semiconducting Cu4O3 could provide opportunities to further explore its potential applications.
Magnetostructural phase transitions and magnetocaloric effect in (Gd 5-xSc x)Si 1.8Ge 2.2
Rudolph, Kirk; Pathak, Arjun K.; Mudryk, Yaroslav; ...
2017-12-21
Future advancements in magnetocaloric refrigeration/heat pumping technologies depend on the discovery of new materials that demonstrate large, tunable magnetocaloric effects (MCEs) in the vicinity of coupled magnetic and structural phase transitions that occur reversibly with minimum hysteresis. Here, with this in mind, we investigate phase transitions, microstructure, magnetic, thermal, magnetocaloric, and transport properties of (Gd 5-xSc x)Si 1.8Ge 2.2 compounds. Replacement of magnetic Gd with non-magnetic Sc in Gd 5-xSc xSi 1.8Ge 2.2 increases the ferromagnetic to paramagnetic first order phase transition temperature, T C, with only a minor reduction in MCE when x ≤ 0.2. We also demonstrate thatmore » hydrostatic pressure further increases T C and reduces the hysteresis of the first order phase transition in Gd 4.8Sc 0.2Si 1.8Ge 2.2 from 7 to 4 K. Temperature-dependent x-ray powder diffraction study of Gd 4.8Sc 0.2Si 1.8Ge 2.2 confirms the monoclinic ↔ orthorhombic structural transformation at T C, in agreement with magnetic, calorimetric, and electrical transport measurements. In addition to the substantial magnetocaloric effect, a large magnetoresistance of ~20% is also observed in Gd 4.8Sc 0.2Si 1.8Ge 2.2 for ΔH = 50 kOe in the vicinity of the magnetostructural transition. Finally, in a drastic reversal of the initial doping behavior further additions of Sc (x > 0.2) suppress formation of the monoclinic phase, change the nature of the transition from first-to second-order, and reduce both the transition temperature and magnetocaloric effect.« less
Lewis, R N; McElhaney, R N
2000-01-01
The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase. Our results also suggest that shorter chain homologues form L(c) phases that are structurally related to, but more ordered than, those formed by the longer chain homologues, but that these L(c) phases are less ordered than those formed by other phospholipids. These studies also suggest that polar/apolar interfaces of the phosphatidylserine bilayers are more hydrated than those of other glycerolipid bilayers, possibly because of interactions between the polar headgroup and carbonyl groups of the fatty acyl chains. PMID:11023908
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Shipeng; Yan, Liqin; Chai, Yisheng
2014-01-20
Low magnetic field reversal of electric polarization has been demonstrated in the multiferroic Y-type hexaferrite Ba{sub 1.3}Sr{sub 0.7}Co{sub 0.9}Zn{sub 1.1}Fe{sub 10.8}Al{sub 1.2}O{sub 22} single crystal. The maximum magnetoelectric coefficient at 200 K reaches 1065 ps/m near zero magnetic field. By a systematic investigation of magnetic field dependence of magnetic and dielectric responses at various temperatures, we obtained the magnetoelectric phase diagram describing the detailed evolution of the spin-induced ferroelectric phases with temperature and magnetic field. Below 225 K, the transverse spin cone can be stabilized at zero magnetic field, which is responsible for the reversal behavior of electric polarization. Our study reveals howmore » to eventually achieve magnetic field reversal of electric polarization in hexaferrites at room temperature.« less
NASA Astrophysics Data System (ADS)
Krichene, A.; Boujelben, W.; Mukherjee, S.; Shah, N. A.; Solanki, P. S.
2018-03-01
We have investigated the effect of charge ordering and phase separation on the electrical and magnetotransport properties of La0.4Eu0.1Ca0.5MnO3 polycrystalline sample. Temperature dependence of resistivity shows a metal-insulator transition at transition temperature Tρ. A hysteretic behavior is observed for zero field resistivity curves with Tρ = 128 K on cooling process and Tρ = 136 K on warming process. Zero field resistivity curves follow Zener polynomial law in the metallic phase with unusual n exponent value ∼9. Presence of resistivity minimum at low temperatures has been ascribed to the coulombic electron-electron scattering process. Resistivity modification due to the magnetic field cycling testifies the presence of the training effect. Magnetization and resistivity appear to be highly correlated. Magnetoresistive study reveals colossal values of negative magnetoresistance reaching about 75% at 132 K under only 2T applied field. Colossal values of magnetoresistance suggest the possibility of using this sample for magnetic field sensing and spintronic applications.
Steenbergen, Krista G; Gaston, Nicola
2016-01-13
Melting in finite-sized materials differs in two ways from the solid-liquid phase transition in bulk systems. First, there is an inherent scaling of the melting temperature below that of the bulk, known as melting point depression. Second, at small sizes changes in melting temperature become nonmonotonic and show a size-dependence that is sensitive to the structure of the particle. Melting temperatures that exceed those of the bulk material have been shown to occur for a very limited range of nanoclusters, including gallium, but have still never been ascribed a convincing physical explanation. Here, we analyze the structure of the liquid phase in gallium clusters based on molecular dynamics simulations that reproduce the greater-than-bulk melting behavior observed in experiments. We observe persistent nonspherical shape distortion indicating a stabilization of the surface, which invalidates the paradigm of melting point depression. This shape distortion suggests that the surface acts as a constraint on the liquid state that lowers its entropy relative to that of the bulk liquid and thus raises the melting temperature.
NASA Astrophysics Data System (ADS)
Chen, Weijin; Peng, Yuyi; Li, Xu'an; Chen, Kelang; Ma, Jun; Wei, Lingfeng; Wang, Biao; Zheng, Yue
2017-10-01
In this work, a phase-field model is established to capture the void migration behavior under a temperature gradient within a crystal matrix, with an appropriate consideration of the surface diffusion mechanism and the vapor transport mechanism. The interfacial energy and the coupling between the vacancy concentration field and the crystal order parameter field are carefully modeled. Simulations are performed on UO2. The result shows that for small voids (with an area ≤ πμm2), the well-known characteristics of void migration, in consistence with the analytical model, can be recovered. The migration is manifested by a constant velocity and a minor change of the void shape. In contrast, for large voids (with an area of ˜10 μm2) initially in circular shapes, significant deformation of the void from a circular to cashew-like shape is observed. After long-time migration, the deformed void would split into smaller voids. The size-dependent behavior of void migration is due to the combined effect of the interfacial energy (which tends to keep the void in circular shape) and the surface diffusion flow (which tends to deform the void due to the nonuniform diffusion along the surface). Moreover, the initial shape of the void modifies the migration velocity and the time point when splitting occurs (for large voids) at the beginning of migration due to the shape relaxation of the void. However, it has a minor effect on the long-time migration. Our work reveals novel void migration behaviors in conditions where the surface-diffusion mechanism is dominant over the vapor transport mechanism; meanwhile, the size of the void lies at a mediate size range.
Dependence of the critical temperature in overdoped copper oxides on superfluid density
NASA Astrophysics Data System (ADS)
Božović, I.; He, X.; Wu, J.; Bollinger, A. T.
2016-08-01
The physics of underdoped copper oxide superconductors, including the pseudogap, spin and charge ordering and their relation to superconductivity, is intensely debated. The overdoped copper oxides are perceived as simpler, with strongly correlated fermion physics evolving smoothly into the conventional Bardeen-Cooper-Schrieffer behaviour. Pioneering studies on a few overdoped samples indicated that the superfluid density was much lower than expected, but this was attributed to pair-breaking, disorder and phase separation. Here we report the way in which the magnetic penetration depth and the phase stiffness depend on temperature and doping by investigating the entire overdoped side of the La2-xSrxCuO4 phase diagram. We measured the absolute values of the magnetic penetration depth and the phase stiffness to an accuracy of one per cent in thousands of samples; the large statistics reveal clear trends and intrinsic properties. The films are homogeneous; variations in the critical superconducting temperature within a film are very small (less than one kelvin). At every level of doping the phase stiffness decreases linearly with temperature. The dependence of the zero-temperature phase stiffness on the critical superconducting temperature is generally linear, but with an offset; however, close to the origin this dependence becomes parabolic. This scaling law is incompatible with the standard Bardeen-Cooper-Schrieffer description.
Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime
2015-07-01
Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kroeger, D. M.; Koch, C. C.; Scarbrough, J. O.; McKamey, C. G.
1984-02-01
Measurements of the low-temperature specific heat Cp of liquid-quenched Zr-Ni glasses for a large number of compositions in the range from 55 to 74 at.% Zr revealed an unusual composition dependence of the density of states at the Fermi level, N(EF). Furthermore, for some compositions the variation of Cp near the superconducting transition temperature Tc indicated the presence of two superconducting phases, i.e., two superconducting transitions were detected. Comparison of the individual Tc's in phase-separated samples to the composition dependence of Tc for all of the samples suggests that amorphous phases with compositions near 60 and 66.7 at.% Zr occur. We discuss these results in terms of an "association model" for liquid alloys (due to Sommer), in which associations of unlike atoms with definite stoichiometries are assumed to exist in equilibrium with unassociated atoms. We conclude that in the composition range studied, associate clusters with the compositions Zr3Ni2 and Zr2Ni occur. In only a few cases are the clusters sufficiently large, compared with the superconducting coherence length, for separate superconducting transitions to be observed. The variation of N(EF) with composition is discussed, as well as the effects of this chemical short-range ordering on the crystallization behavior and glass-forming tendency.
NASA Astrophysics Data System (ADS)
Belmeguenai, M.; Gabor, M. S.; Zighem, F.; Roussigné, Y.; Faurie, D.; Tiusan, C.
2016-09-01
Co2FeAl (CFA) thin films, of various thicknesses (3 nm≤t ≤50 nm ), have been grown by sputtering on (001) MgO single-crystal substrates and annealed at different temperatures (RT≤Ta≤600 ∘C , where RT is the room temperature). The influence of the CFA thickness (t ), as well as ex situ annealing temperature (Ta), on the magnetic and structural properties has been investigated by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed an epitaxial growth of the films with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B 2 phase to the A 2 phase when decreasing t or Ta. The deduced lattice parameters showed an in-plane tetragonal distortion and in-plane and out-plane strains that increase with Ta and 1 /t . For all Ta values, the variation of the effective magnetization, deduced from the fit of MS-FMR measurements, shows two different regimes separated by a critical thickness, which is Ta dependent. It decreases (increases) linearly with the inverse thickness (1 /t ) in the first (second) regime due to the contribution of the magnetoelastic anisotropy to surface (to volume) anisotropy. The observed behavior has been analyzed through a model allowing for the separation of the magnetocrystalline, magnetoelastic, and Néel-type interface anisotropy constants to the surface and the volume anisotropies. Similar behavior has been observed for the effective fourfold anisotropy field which governs the in-plane anisotropy present in all the samples. Finally, the MS-FMR data also allow one to conclude that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with Ta.
N -Sm A -Sm C phase transitions probed by a pair of elastically bound colloids
NASA Astrophysics Data System (ADS)
M, Muhammed Rasi; Zuhail, K. P.; Roy, Arun; Dhara, Surajit
2018-03-01
The competing effect of surface anchoring of dispersed microparticles and elasticity of nematic and cholesteric liquid crystals has been shown to stabilize a variety of topological defects. Here we study a pair of colloidal microparticles with homeotropic and planar surface anchoring across N -Sm A -Sm C phase transitions. We show that below the Sm A -Sm C phase transition the temperature dependence of interparticle separation (D ) of colloids with homeotropic anchoring shows a power-law behavior; D ˜(1-T /TA C) α , with an exponent α ≈0.5 . For colloids with planar surface anchoring the angle between the joining line of the centers of the two colloids and the far field director shows characteristic variation elucidating the phase transitions.
Investigations on transparent liquid-miscibility gap systems
NASA Technical Reports Server (NTRS)
Lacy, L. L.; Nishioka, G.; Ross, S.
1979-01-01
Sedimentation and phase separation is a well known occurrence in monotectic or miscibility gap alloys. Previous investigations indicate that it may be possible to prepare such alloys in a low-gravity space environment but recent experiments indicate that there may be nongravity dependent phase separation processes which can hinder the formation of such alloys. Such phase separation processes are studied using transparent liquid systems and holography. By reconstructing holograms into a commercial-particle-analysis system, real time computer analysis can be performed on emulsions with diameters in the range of 5 micrometers or greater. Thus dynamic effects associated with particle migration and coalescence can be studied. Characterization studies on two selected immiscible systems including an accurate determination of phase diagrams, surface and interfacial tension measurements, surface excess and wetting behavior near critical solution temperatures completed.
Predicting the Fluid-Phase Behavior of Aqueous Solutions of ELP (VPGVG) Sequences Using SAFT-VR.
Zhao, Binwu; Lindeboom, Tom; Benner, Steven; Jackson, George; Galindo, Amparo; Hall, Carol K
2017-10-24
The statistical associating fluid theory for potentials of variable range (SAFT-VR) is used to predict the fluid phase behavior of elastin-like polypeptide (ELP) sequences in aqueous solution with special focus on the loci of lower critical solution temperatures (LCSTs). A SAFT-VR model for these solutions is developed following a coarse-graining approach combining information from atomistic simulations and from previous SAFT models for previously reported relevant systems. Constant-pressure temperature-composition phase diagrams are determined for solutions of (VPGVG) n sequences + water with n = 1 to 300. The SAFT-VR equation of state lends itself to the straightforward calculation of phase boundaries so that complete fluid-phase equilibria can be calculated efficiently. A broad range of thermodynamic conditions of temperature and pressure are considered, and regions of vapor-liquid and liquid-liquid coexistence, including LCSTs, are found. The calculated phase boundaries at low concentrations match those measured experimentally. The temperature-composition phase diagrams of the aqueous ELP solutions at low pressure (0.1 MPa) are similar to those of types V and VI phase behavior in the classification of Scott and van Konynenburg. An analysis of the high-pressure phase behavior confirms, however, that a closed-loop liquid-liquid immiscibility region, separate from the gas-liquid envelope, is present for aqueous solutions of (VPGVG) 30 ; such a phase diagram is typical of type VI phase behavior. ELPs with shorter lengths exhibit both liquid-liquid and gas-liquid regions, both of which become less extensive as the chain length of the ELP is decreased. The strength of the hydrogen-bonding interaction is also found to affect the phase diagram of the (VPGVG) 30 system in that the liquid-liquid and gas-liquid regions expand as the hydrogen-bonding strength is decreased and shrink as it is increased. The LCSTs of the mixtures are seen to decrease as the ELP chain length is increased.
Dohr, M; Ehmann, H M A; Jones, A O F; Salzmann, I; Shen, Q; Teichert, C; Ruzié, C; Schweicher, G; Geerts, Y H; Resel, R; Sferrazza, M; Werzer, O
2017-03-22
Film forming properties of semiconducting organic molecules comprising alkyl-chains combined with an aromatic unit have a decisive impact on possible applications in organic electronics. In particular, knowledge on the film formation process in terms of wetting or dewetting, and the precise control of these processes, is of high importance. In the present work, the subtle effect of temperature on the morphology and structure of dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) films deposited on silica surfaces by spin coating is investigated in situ via X-ray diffraction techniques and atomic force microscopy. Depending on temperature, bulk C8-BTBT exhibits a crystalline, a smectic A and an isotropic phase. Heating of thin C8-BTBT layers at temperatures below the smectic phase transition temperature leads to a strong dewetting of the films. Upon approaching the smectic phase transition, the molecules start to rewet the surface in the form of discrete monolayers with a defined number of monolayers being present at a given temperature. The wetting process and layer formation is well defined and thermally stable at a given temperature. On cooling the reverse effect is observed and dewetting occurs. This demonstrates the full reversibility of the film formation behavior and reveals that the layering process is defined by an equilibrium thermodynamic state, rather than by kinetic effects.
Enhancement of ferromagnetic properties in composites of BaSnO3 and CoFe2O4
NASA Astrophysics Data System (ADS)
Manju, M. R.; Ajay, K. S.; D'Souza, Noel M.; Hunagund, Shivakumar; Hadimani, R. L.; Dayal, Vijaylakshmi
2018-04-01
In this paper, we report structural and magnetic properties of BaSnO3(BSO)(1-x)-CoFe2O4 (CFO)(x) composite (with x = 0%, 1% (C1), 2% (C2) and 5% (C3) in molar ratio) synthesized using nitrate precursor method. The X-ray diffraction (XRD) pattern of the composite powder confirmed presence of both BaSnO3 with the cubic perovskite structure and CoFe2O4 with the cubic spinel structure. No signature of any other phases in pure BaSnO3, CoFe2O4 and composites have been detected either in XRD or energy dispersive X-ray (EDS) analysis. The temperature dependent zero field cooled (ZFC) & field cooled (FC) magnetization and magnetic field dependence magnetization measurements have been carried at room temperature of the pure BaSnO3. We observe a weak ferromagnetic (FM) behavior at room temperature in pure BaSnO3 even though it is non-magnetic in nature. The room temperature Raman spectroscopy and electron spin resonance measurements of the sample confirm the presence of oxygen vacancy and formation of F-center, which is responsible for the FM behavior. The oxidation state and elemental analysis have been carried out using X-ray photoelectron spectroscopy (XPS). The magnetic field dependence of magnetization of the composite samples reveal increase of saturation magnetization (Ms), remanence magnetization (Mr) and coercivity (Hc) with increase in ferrite content in the composite. Significant enhancement in FM components is observed with lowering of temperature.
NASA Astrophysics Data System (ADS)
Bisen, Supriya; Mishra, Ashutosh; Jarabana, Kanaka M.
2016-05-01
In this work, Barium Titanate (BaTiO3) powders were synthesized via Sol-Gel auto combustion method using citric acid as a chelating agent. We study the behavior of ferroelectric and dielectric properties of pure and doped BaTiO3 on different concentration. To understand the phase and structure of the powder calcined at 900°C were characterized by X-ray Diffraction shows that tetragonal phase is dominant for pure and doped BTO and data fitted by Rietveld Refinement. Electric and Dielectric properties were characterized by P-E Hysteresis and Dielectric measurement. In P-E measurement ferroelectric loop tracer applied for different voltage. The temperature dependant dielectric constant behavior was observed as a function of frequency recorded on hp-Hewlett Packard 4192A, LF impedance, 5Hz-13Hz analyzer.
Black hole thermodynamics in Lovelock gravity's rainbow with (A)dS asymptote
NASA Astrophysics Data System (ADS)
Hendi, Seyed Hossein; Dehghani, Ali; Faizal, Mir
2017-01-01
In this paper, we combine Lovelock gravity with gravity's rainbow to construct Lovelock gravity's rainbow. Considering the Lovelock gravity's rainbow coupled to linear and also nonlinear electromagnetic gauge fields, we present two new classes of topological black hole solutions. We compute conserved and thermodynamic quantities of these black holes (such as temperature, entropy, electric potential, charge and mass) and show that these quantities satisfy the first law of thermodynamics. In order to study the thermal stability in canonical ensemble, we calculate the heat capacity and determinant of the Hessian matrix and show in what regions there are thermally stable phases for black holes. Also, we discuss the dependence of thermodynamic behavior and thermal stability of black holes on rainbow functions. Finally, we investigate the critical behavior of black holes in the extended phase space and study their interesting properties.
Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films
Ji, Yanda; Zhang, Yin; Gao, Min; Yuan, Zhen; Xia, Yudong; Jin, Changqing; Tao, Bowan; Chen, Chonglin; Jia, Quanxi; Lin, Yuan
2014-01-01
Vanadium dioxide (VO2) with its unique sharp resistivity change at the metal-insulator transition (MIT) has been extensively considered for the near-future terahertz/infrared devices and energy harvesting systems. Controlling the epitaxial quality and microstructures of vanadium dioxide thin films and understanding the metal-insulator transition behaviors are therefore critical to novel device development. The metal-insulator transition behaviors of the epitaxial vanadium dioxide thin films deposited on Al2O3 (0001) substrates were systematically studied by characterizing the temperature dependency of both Raman spectrum and Fourier transform infrared spectroscopy. Our findings on the correlation between the nucleation dynamics of intermediate monoclinic (M2) phase with microstructures will open a new avenue for the design and integration of advanced heterostructures with controllable multifunctionalities for sensing and imaging system applications. PMID:24798056
Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina-Ruiz, Manel; Lopeandía, Aitor F.; Gonzalez-Silveira, Marta
Kinetic processes involving intermediate phase formation are often assumed to follow an Arrhenius temperature dependence. This behavior is usually inferred from limited data over narrow temperature intervals, where the exponential dependence is generally fully satisfied. However, direct evidence over wide temperature intervals is experimentally challenging and data are scarce. Here, we report a study of silicide formation between a 12 nm film of palladium and 15 nm of amorphous silicon in a wide range of heating rates, spanning six orders of magnitude, from 0.1 to 10{sup 5 }K/s, or equivalently more than 300 K of variation in reaction temperature. The calorimetric traces exhibit severalmore » distinct exothermic events related to interdiffusion, nucleation of Pd{sub 2}Si, crystallization of amorphous silicon, and vertical growth of Pd{sub 2}Si. Interestingly, the thickness of the initial nucleation layer depends on the heating rate revealing enhanced mass diffusion at the fastest heating rates during the initial stages of the reaction. In spite of this, the formation of the silicide strictly follows an Arrhenius temperature dependence over the whole temperature interval explored. A kinetic model is used to fit the calorimetric data over the complete heating rate range. Calorimetry is complemented by structural analysis through transmission electron microscopy and both standard and in-situ synchrotron X-ray diffraction.« less
NASA Astrophysics Data System (ADS)
Zaman, Arif; Malik, Rizwan Ahmed; Maqbool, Adnan; Hussain, Ali; Ahmed, Tanveer; Song, Tae Kwon; Kim, Won-Jeong; Kim, Myong-Ho
2018-03-01
Crystal structure, dielectric, ferroelectric, piezoelectric, and electric field-induced strain properties of lead-free Nb-modified 0.96Bi0.5K0.5TiO3-0.04Bi(Mg0.5Ti0.5)O3 (BKT-BMT) piezoelectric ceramics were investigated. Crystal structure analysis showed a gradual phase transition from tetragonal to pseudocubic phase with increasing Nb content. The optimal piezoelectric property of small-signal d 33 was enhanced up to ˜ 68 pC/N with a lower coercive field ( E c) of ˜ 22 kV/cm and an improved remnant polarization ( P r) of ˜ 13 μC/cm2 for x = 0.020. A relaxor-like behavior with a frequency-dependent Curie temperature T m was observed, and a high T m around 320°C was obtained in the investigated system. This study suggests that the ferroelectric properties of BKT-BMT was significantly improved by means of Nb substitution. The possible shift of depolarization temperature T d toward high temperature T m may have triggered the spontaneous relaxor to ferroelectric phase transition with long-range ferroelectric order without any traces of a nonergodic relaxor state in contradiction with Bi0.5Na0.5TiO3-based systems. The possible enhancement in ferroelectric and piezoelectric properties near the critical composition x = 0.020 may be attributed to the increased anharmonicity of lattice vibrations which may facilitate the observed phase transition from a low-symmetry tetragonal to a high-symmetry cubic phase with a decrease in the lattice anisotropy of an undoped sample. This highly flexible (at a unit cell level) narrow compositional range triggers the enhancement of d 33 and P r values.
Liquid–solid phase transition of hydrogen and deuterium in silica aerogel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Cleve, E.; Worsley, M. A.; Kucheyev, S. O., E-mail: kucheyev@llnl.gov
2014-10-28
Behavior of hydrogen isotopes confined in disordered low-density nanoporous solids remains essentially unknown. Here, we use relaxation calorimetry to study freezing and melting of H{sub 2} and D{sub 2} in an ∼85%-porous base-catalyzed silica aerogel. We find that liquid–solid transition temperatures of both isotopes inside the aerogel are depressed. The phase transition takes place over a wide temperature range of ∼4 K and non-trivially depends on the liquid filling fraction, reflecting the broad pore size distribution in the aerogel. Undercooling is observed for both H{sub 2} and D{sub 2} confined inside the aerogel monolith. Results for H{sub 2} and D{sub 2}more » are extrapolated to tritium-containing hydrogens with the quantum law of corresponding states.« less
Dynamic and magneto-optic properties of bent-core liquid crystals
NASA Astrophysics Data System (ADS)
Salili, Seyyed Muhammad
In this work, we describe dynamic behavior of free-standing bent-core liquid crystal filaments under dilative and axial compressive stresses in the B7 phase. We found that such filaments demonstrate very complex structures depending on the filament's temperature relative to the isotropic phase, initial filament thickness, and velocity at which the filament is pulled or compressed. We also present our experimental methods, results and analysis of the rupture and recoil properties of several bent-core liquid crystal filaments, anticipating that they may serve as a model system for complex biological fibers. After that, we systematically describe rheological measurements for dimeric liquid crystal compounds. We studied the shear-induced alignment properties, measured the viscoelastic properties as a function of temperature, shear rate, stress and frequency, and compared the results with the rheological properties of conventional chiral nematic and smectic phases. Then we present results of chiral nematic liquid crystals composed of flexible dimer molecules subject to large DC magnetic fields between 0 and 31T. We observe that these fields lead to selective reflection of light depending on temperature and magnetic field. The band of reflected wavelengths can be tuned from ultraviolet to beyond the IR-C band. A similar effect induced by electric fields has been presented previously, and was explained by a field-induced oblique-heliconical director deformation in accordance with early theoretical predictions. Finally, we report an unprecedented magnetic field-induced shifts of the isotropic-nematic phase transition temperature observed in liquid crystal dimers where two rigid linear mesogens are linked by flexible chains of either even- or odd-numbered hydrocarbon groups. This effect is explained in terms of quenching of the thermal fluctuations and decrease of the average bend angle of molecules in the odd-numbered dimers.
Benzocaine polymorphism: pressure-temperature phase diagram involving forms II and III.
Gana, Inès; Barrio, Maria; Do, Bernard; Tamarit, Josep-Lluís; Céolin, René; Rietveld, Ivo B
2013-11-18
Understanding the phase behavior of an active pharmaceutical ingredient in a drug formulation is required to avoid the occurrence of sudden phase changes resulting in decrease of bioavailability in a marketed product. Benzocaine is known to possess three crystalline polymorphs, but their stability hierarchy has so far not been determined. A topological method and direct calorimetric measurements under pressure have been used to construct the topological pressure-temperature diagram of the phase relationships between the solid phases II and III, the liquid, and the vapor phase. In the process, the transition temperature between solid phases III and II and its enthalpy change have been determined. Solid phase II, which has the highest melting point, is the more stable phase under ambient conditions in this phase diagram. Surprisingly, solid phase I has not been observed during the study, even though the scarce literature data on its thermal behavior appear to indicate that it might be the most stable one of the three solid phases. Copyright © 2013 Elsevier B.V. All rights reserved.
Biphasic Kinetic Behavior of E. coli WrbA, an FMN-Dependent NAD(P)H:Quinone Oxidoreductase
Kishko, Iryna; Harish, Balasubramanian; Zayats, Vasilina; Reha, David; Tenner, Brian; Beri, Dhananjay; Gustavsson, Tobias; Ettrich, Rüdiger; Carey, Jannette
2012-01-01
The E. coli protein WrbA is an FMN-dependent NAD(P)H:quinone oxidoreductase that has been implicated in oxidative defense. Three subunits of the tetrameric enzyme contribute to each of four identical, cavernous active sites that appear to accommodate NAD(P)H or various quinones, but not simultaneously, suggesting an obligate tetramer with a ping-pong mechanism in which NAD departs before oxidized quinone binds. The present work was undertaken to evaluate these suggestions and to characterize the kinetic behavior of WrbA. Steady-state kinetics results reveal that WrbA conforms to a ping-pong mechanism with respect to the constancy of the apparent Vmax to Km ratio with substrate concentration. However, the competitive/non-competitive patterns of product inhibition, though consistent with the general class of bi-substrate reactions, do not exclude a minor contribution from additional forms of the enzyme. NMR results support the presence of additional enzyme forms. Docking and energy calculations find that electron-transfer-competent binding sites for NADH and benzoquinone present severe steric overlap, consistent with the ping-pong mechanism. Unexpectedly, plots of initial velocity as a function of either NADH or benzoquinone concentration present one or two Michaelis-Menten phases depending on the temperature at which the enzyme is held prior to assay. The effect of temperature is reversible, suggesting an intramolecular conformational process. WrbA shares these and other details of its kinetic behavior with mammalian DT-diaphorase, an FAD-dependent NAD(P)H:quinone oxidoreductase. An extensive literature review reveals several other enzymes with two-plateau kinetic plots, but in no case has a molecular explanation been elucidated. Preliminary sedimentation velocity analysis of WrbA indicates a large shift in size of the multimer with temperature, suggesting that subunit assembly coupled to substrate binding may underlie the two-plateau behavior. An additional aim of this report is to bring under wider attention the apparently widespread phenomenon of two-plateau Michaelis-Menten plots. PMID:22952804
Sadeghi, Farzad; Kadkhodaee, Rassoul; Emadzadeh, Bahareh; Phillips, Glyn O
2018-01-01
In this study, the phase behavior of sodium caseinate-Persian gum mixtures was investigated. The effect of thermodynamic incompatibility on phase distribution of sodium caseinate fractions as well as the flow behavior and microstructure of the biopolymer mixtures were also studied. The phase diagram clearly demonstrated the dominant effect of Persian gum on the incompatibility of the two biopolymers. SDS-PAGE electrophoresis indicated no selective fractionation of sodium caseinate subunits between equilibrium phases upon de-mixing. The microstructure of mixtures significantly changed depending on their position within the phase diagram. Fitting viscometric data to Cross and Bingham models revealed that the apparent viscosity, relaxation time and shear thinning behavior of the mixtures is greatly influenced by the volume ratio and concentration of the equilibrium phases. There is a strong dependence of the flow behavior of sodium caseinate-Persian gum mixtures on the composition of the equilibrium phases and the corresponding microstructure of the system. Copyright © 2017. Published by Elsevier Ltd.
Structure-property relationships in semicrystalline copolymers and ionomers
NASA Astrophysics Data System (ADS)
Wakabayashi, Katsuyuki
Many outstanding physical properties of ethylene/(meth)acrylic acid (E/(M)AA) copolymers and ionomers are associated with their nanometer-scale morphology, which consists of ethylene crystallites, amorphous segments, and acid/ionic functional groups. The goal of this dissertation is a fundamental understanding of the interplay between these structural motifs and the consequent effects on the material properties. We identify small-strain modulus as a key mechanical property and investigate its dependence upon material structure through X-ray scattering, calorimetry, and mechanical property measurements. We first treat E/(M)AA copolymers as composites of polyethylene crystallites and amorphous regions, and establish a quantitative combining rule to describe the copolymer modulus. At temperatures above the Tg of the copolymers, a monotonic increase in modulus with crystallinity is quantitatively described by the Davies equation for two-phase composites, which serves as the basis for separating the effects of amorphous and crystalline phases throughout this dissertation. The room-temperature modulus of E/(M)AA copolymers is concurrently affected by ethylene crystallinity and proximity to the amorphous phase Tg, which rises through room temperature with increasing comonomer content. In E/(M)AA ionomers, phase separation and aggregation of ionic groups provide additional stiffness and toughness. Ionomers are modeled as composites of crystallites and ionically crosslinked rubber, whose amorphous phase modulus far above the ionomer Tg is satisfactorily described by simple rubber elasticity theory. Thermomechanical analyses probe the multi-step relaxation behavior of E/(M)AA ionomers and lead to the development of a new semicrystalline ionomer morphological model, wherein secondary crystallites and ionic aggregates together form rigid percolated pathways throughout the amorphous phase. Metal soaps are oligomeric analogs of E/(M)AA ionomers, which can be blended into ionomers to achieve high ion content and in turn desirable physical properties. We assess the compatibility of various types of metal soaps with E/(M)AA ionomers, and investigate how the soap modifies the ionomers' structure and properties. The mechanical properties and phase behavior of these hybrids, which are found to differ significantly depending on the neutralizing cation type and crystallinizability of the metal soap, are traced back to various levels of molecular coassembly involving the hydrocarbon chains and/or the ionic groups of both entities.
Synthesis and Characterization of A2Mo3O 12 Materials
NASA Astrophysics Data System (ADS)
Young, Lindsay Kay
Negative thermal expansion (NTE) materials have attracted considerable research interest in recent decades. These unique materials shrink when heated, offering a potential means to control the overall thermal expansion of composites. Several families of materials display this behavior, the largest of which is the A2Mo3O12 family (also called the scandium tungstate family), in which A is a trivalent cation and M is molybdenum or tungsten. These materials show NTE in an orthorhombic structure, but many members transform to a monoclinic structure with positive expansion at low temperatures. Many properties of these materials are dependent on their elemental composition, especially the identity of the A3+ cation. This includes the magnitude of NTE, as well as the phase transition behavior as a function of temperature and pressure. It is also possible to create "mixed site" cation A2Mo3O12 materials, in which the A site is occupied by two different cations. These are described as AxA'2-xM3O12 materials, as the composition A:A' can vary. Creating these new compositions may result in different phase transition properties or the ability to tune the NTE properties of these materials. In this work, the focus was on synthesis and characterization of indium gallium molybdate (InxGa2-xM3O12). The non-hydrolytic sol-gel (NHSG) method was used to synthesize indium gallium molybdate while exploring a variety of reaction parameters. While the goal was to create stoichiometric, homogenous materials, it was found that this could not be accomplished using easily accessible parameters during NHSG reactions. However, it was discovered that certain conditions allowed unusually low temperature (230 °C) crystallization of these materials. Similar conditions were explored for single cation A2Mo3O12 materials, and it was determined that crystallization of indium molybdate, iron molybdate, and scandium molybdate was possible at temperatures of 230 or 300 °C. This extremely low temperature crystallization may provide the opportunity for exploring the in situ synthesis of polymer composites containing these materials, as the crystallization temperatures are compatible with many polymer systems. In the second part of this thesis, the high pressure behavior of a number of A2Mo3O12 and AA'Mo3O12 materials was studied. The open frameworks of NTE compounds are generally prone to pressure induced phase transitions. NTE materials may have to withstand high pressures during production or regular use of composites, thus understanding the high pressure behavior of these materials is necessary for effective application. Irreversible transitions to new phases or amorphization at high pressures could lead to failure of composites, as these phases are not expected to exhibit any NTE properties. Studies were carried out at the Advanced Photon Source at Argonne National Laboratory at pressures up to 5-7 GPa using a diamond anvil cell. The materials investigated could be divided into three groups based on distinct types of high pressure behavior. The room temperature monoclinic Group1 compounds (A2 = Al2, Fe2, FeAl, AlGa) underwent a similar sequence of reversible subtle phase transitions before undergoing a major structural transition to a common high pressure structure. The unit cell of this high pressure phase was successfully indexed, and the transition was found to be reversible upon decompression. Phase transition pressures increased with decreasing A-site cation radius. In contrast, Group2 materials (A = Cr, Y) retained their low temperature monoclinic structures up to the highest pressures investigated. The remaining materials (A2 = In2, InGa) underwent a different sequence of subtle transitions followed by an irreversible transition at higher pressures. The patterns belonging to these high pressure phases are unlike those of the first group. No patterns similar to InGaMo3O12 were found in the literature, while In2Mo3O12 may transform to the same high pressure polymorph as In2W3O12. The classification of A2Mo3O12 materials into several groups with distinct high pressure behavior adds pertinent knowledge to the field that may help elucidate the structures of previously studied materials, and ultimately may help predict the behavior of compositions that have not yet been explored.
NASA Technical Reports Server (NTRS)
Agena, S. M.; Pusey, M. L.; Bogle, I. D.
1999-01-01
A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Valenti, Roser
KFe2As2 shows an intricate behavior as a function of pressure. At ambient pressure the system is superconductor with a low critical temperature Tc=3.4 K and follows a V-shaped pressure dependence of Tc for moderate pressures with a local minimum at a pressure of 1.5 GPa. Under high pressures Pc=15 GPa, KFe2As2 exhibits a structural phase transition from a tetragonal to a collapsed tetragonal phase accompanied by a boost of the superconducting critical temperature up to 12 K. On the other hand, negative pressures realized through substitution of K by Cs or Rb decrease Tc down to 2.25K. In this talk we will discuss recent progress on the understanding of the microscopic origin of this pressure-dependent behavior by considering a combination of ab initio density functional theory with dynamical mean field theory and spin fluctuation theory calculations. We will argue that a Lifshitz transition associated with the structural collapse changes the pairing symmetry from d-wave (tetragonal) to s+/- (collapsed tetragonal) at high pressures while at ambient and negative pressures correlation effects appear to be detrimental for superconductivity. Further, we shall establish cross-links to the chalcogenide family, in particular FeSe under pressure. The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for financial support.
Pham, Hieu H; Taylor, Christopher D; Henson, Neil J
2013-01-24
We introduce a procedure of quantum chemical calculations (B3P86/6-31G**) to study carboxylic acid dimerization and its correlation with temperature and properties of the solvent. Benzoic acid is chosen as a model system for studying dimerization via hydrogen bonding. Organic solvents are simulated using the self-consistent reaction field (SCRF) method with the polarized continuum model (PCM). The cyclic dimer is the most stable structure both in gas phase and solution. Dimer mono- and dihydrates could be found in the gas phase if acid molecules are in contact with water vapor. However, the formation of these hydrated conformers is very limited and cyclic dimer is the principal conformer to coexist with monomer acid in solution. Solvation of the cyclic dimer is more favorable compared to other complexes, partially due to the diminishing of hydrogen bonding capability and annihilation of dipole moments. Solvents have a strong effect on inducing dimer dissociation and this dependence is more pronounced at low dielectric constants. By accounting for selected terms in the total free energy of solvation, the solvation entropy could be incorporated to predict the dimer behavior at elevated temperatures. The temperature dependence of benzoic acid dimerization obtained by this technique is in good agreement with available experimental measurements, in which a tendency of dimer to dissociate is observed with increased temperatures. In addition, dimer breakup is more sensitive to temperature in low dielectric environments rather than in solvents with a higher dielectric constant.
NASA Astrophysics Data System (ADS)
Azatyan, V. V.; Bolod'yan, I. A.; Kopylov, N. P.; Kopylov, S. N.; Prokopenko, V. M.; Shebeko, Yu. N.
2018-05-01
It is shown that the strong dependence of the rate of gas-phase combustion reactions on temperature is determined by the high values of the reaction rate constants of free atoms and radicals. It is established that with a branched chain mechanism, a special role in the reaction rate temperature dependence is played by positive feedback between the concentrations of active intermediate species and the rate of their change. The role of the chemical mechanism in the temperature dependence of the process rate with and without inhibitors is considered.
Optical properties of new wide heterogeneous waveguides with thermo optical shifters.
De Leonardis, Francesco; Tsarev, Andrei V; Passaro, Vittorio M
2008-12-22
We present analysis and simulation of novel silicon-on-insulator (SOI) heterogeneous waveguides with thermo-optic phase shifters. New structure design contains a p-n junction on both sides of SOI ridge waveguide with 220 nm x 35 microm silicon core. Strongly mode-dependent optical losses (by additional free charge absorption) provide quasi-singe-mode behavior of wide waveguide with mode size approximately 10 microm. Local heater produces an efficient phase shifting by small temperature increase (DeltaT approximately 2K), switching power (< 40 mW) and switching time (< 10 micros). Mode optical losses are significantly decreased at high heating (DeltaT approximately 120 K).
Electrical resistivity across the tricriticality in itinerant ferromagnet
NASA Astrophysics Data System (ADS)
Opletal, P.; Prokleška, J.; Valenta, J.; Sechovský, V.
2018-05-01
We investigate the discontinuous ferromagnetic phase diagram near tricritical point in UCo1-xRuxAl compounds by electrical resistivity measurements. Separation of phases in UCo0.995Ru0.005Al at ambient pressure and in UCo0.990Ru0.010Al at pressure of 0.2 GPa and disappearance of ferromagnetism at 0.4 GPa is confirmed. The exponent of temperature dependence of electrical resistivity implies change from Fermi liquid-like behavior to non-Fermi liquid at 0.2 GPa and reaches minimum at 0.4 GPa. Our results are compared to results obtained on the pure UCoAl and explanation for different exponents is given.
Corrosion behavior of a superduplex stainless steel in chloride aqueous solution
NASA Astrophysics Data System (ADS)
Dabalà, Manuele; Calliari, Irene; Variola, Alessandra
2004-04-01
Super duplex stainless steels (SDSS) have been widely used as structural materials for chemical plants (especially in those engaged in phosphoric acid production), in the hydrometallurgy industries, and as materials for offshore applications due to their excellent corrosion resistance in chloride environments, compared with other commercial types of ferritic stainless steels. These alloys also possess superior weldability and better mechanical properties than austenitic stainless steels. However, due to their two-phase structure, the nature of which is very dependent on their composition and thermal history, the behavior of SDSS regarding localized corrosion appears difficult to predict, especially in chloride environments. To improve their final properties, the effect of the partition of the alloying elements between the two phases, and the composition and microstructure of each phase are the key to understanding the localized corrosion phenomena of SDSS. This paper concerns the effects of the SDSS microstructure and heat treatment on the SDSS corrosion resistance in aqueous solutions, containing different amounts of NaCl at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K., S C; M., T C
Plastic bonded explosives (PBX) generally consist of 85 - 95 % by weight energetic material, such as HMX, and 5 - 15 % polymeric binder. Understanding of the structure and morphology at elevated temperatures and pressures is important for predicting of PBX behavior in accident scenarios. The crystallographic behavior of pure HMX has been measured as functions of temperature and grain size. The investigation is extended to the high temperature behavior of PBX 9501 (95% HMX, 2.5 % Estane, 2.5 % BDNPA/F). The results show that the HMX {beta}-phase to {delta}-phase transition in PBX 9501 is similar to that inmore » neat HMX. However, in the presence of the PBX 9501 binder, {delta}-phase HMX readily converts back to {beta}-phase during cooling. Using the same temperature profile, the conversion rate decreases for each subsequent heating and cooling cycle. As observed in earlier experiments, no reverse conversion is observed without the polymer binder. It is proposed that the reversion of {delta}-phase to {beta}-phase is due to changes in the surface molecular potential caused by the influence of the polymer binder on the surface molecules of the {delta}-phase. Upon thermal cycling, the polymer binder segregates from the HMX particles and thus reduces the influence of the binder on the surface molecules. This segregation increases the resistance for the {delta}-phase to {beta}-phase transition, as demonstrated in an aged PBX 9501 material for which the reversion is not observed.« less
Anisotropic magnetic properties of the ferromagnetic semiconductor CrSbSe3
NASA Astrophysics Data System (ADS)
Kong, Tai; Stolze, Karoline; Ni, Danrui; Kushwaha, Satya K.; Cava, Robert J.
2018-01-01
Single crystals of CrSbSe3, a structurally pseudo-one-dimensional ferromagnetic semiconductor, were grown using a high-temperature solution growth technique and were characterized by x-ray diffraction, anisotropic temperature- and field-dependent magnetization, temperature-dependent resistivity, and optical absorption measurements. A band gap of 0.7 eV was determined from both resistivity and optical measurements. At high temperatures, CrSbSe3 is paramagnetic and isotropic, with a Curie-Weiss temperature of ˜145 K and an effective moment of ˜4.1 μB /Cr. A ferromagnetic transition occurs at Tc=71 K. The a axis, perpendicular to the chains in the structure, is the magnetic easy axis, while the chain axis direction, along b , is the hard axis. Magnetic isotherms measured around Tc do not follow the behavior predicted by simple mean-field critical exponents for a second-order phase transition. A tentative set of critical exponents is estimated based on a modified Arrott plot analysis, giving β ˜0.25 , γ ˜1.38 , and δ ˜6.6 .
Origin of steps in magnetization loops of martensitic Ni-Mn-Ga films on MgO(001)
NASA Astrophysics Data System (ADS)
Laptev, Aleksej; Lebecki, Kristof; Welker, Gesa; Luo, Yuansu; Samwer, Konrad; Fonin, Mikhail
2016-09-01
We study the temperature dependent magnetization properties of (010)-oriented Ni-Mn-Ga epitaxial films on MgO(001) substrates. In the martensitic phase, we observe pronounced abrupt slope changes in the magnetization loops for all studied samples. Our experimental findings are discussed in conjunction with the micromagnetic simulations, revealing that the characteristic magnetization behavior is governed solely by the magnetization switching within the specific martensitic variant pattern, and no reorientation of twin variants is involved in the process. Our study emphasizes the important role of the magnetostatic interactions in the magnetization behavior of magnetic shape memory alloy thin films.
High-pressure behavior of CaMo O4
NASA Astrophysics Data System (ADS)
Panchal, V.; Garg, N.; Poswal, H. K.; Errandonea, D.; Rodríguez-Hernández, P.; Muñoz, A.; Cavalli, E.
2017-09-01
We report a high-pressure study of tetragonal scheelite-type CaMo O4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMo O4 . We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependencies of the Raman-active and infrared-active modes. In addition, based on calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMo O4 . The reported results are of interest for the many technological applications of this oxide.
Rotigotine: Unexpected Polymorphism with Predictable Overall Monotropic Behavior.
Rietveld, Ivo B; Céolin, René
2015-12-01
Crystallization of polymorphs still has a touch of art, as even prior observations of polymorphs do not guarantee their crystallization. However, once crystals of various polymorphs have been obtained, their relative stabilities can be established with a straightforward thermodynamic approach even if the conclusion will depend on the quality of the experimental data. Rotigotine is an active pharmaceutical ingredient, which has suffered the same setback as Ritonavir: a sudden appearance of a more stable crystalline polymorph than the one used for the formulation. Although the cause of the defect in the formulation was quickly established, the interpretation of the phase behavior of rotigotine has been lacking in clarity. In the present paper, data published in the patents resulting from the discovery of the new polymorph have been used to establish the pressure-temperature phase diagram of the two known solid forms of rotigotine. The analysis clearly demonstrates that form II is the stable solid phase and form I is metastable in the entire pressure-temperature domain: form I is overall monotropic in relation to form II. Thus, it was a sensible decision of European Medicines Agency to ask for a reformulation, as the first formulation was metastable even if crystallization appeared to be very slow. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Ertaş, Mehmet; Deviren, Bayram; Keskin, Mustafa
2012-11-01
Nonequilibrium magnetic properties in a two-dimensional kinetic mixed spin-2 and spin-5/2 Ising system in the presence of a time-varying (sinusoidal) magnetic field are studied within the effective-field theory (EFT) with correlations. The time evolution of the system is described by using Glauber-type stochastic dynamics. The dynamic EFT equations are derived by employing the Glauber transition rates for two interpenetrating square lattices. We investigate the time dependence of the magnetizations for different interaction parameter values in order to find the phases in the system. We also study the thermal behavior of the dynamic magnetizations, the hysteresis loop area, and dynamic correlation. The dynamic phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane and we observe that the system exhibits dynamic tricritical and reentrant behaviors. Moreover, the system also displays a double critical end point (B), a zero-temperature critical point (Z), a critical end point (E), and a triple point (TP). We also performed a comparison with the mean-field prediction in order to point out the effects of correlations and found that some of the dynamic first-order phase lines, which are artifacts of the mean-field approach, disappeared.
Kim, Da Hye; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo
2009-07-07
This report on the solid-to-liquid transition region of an Ag-Pd bimetallic nanocluster is based on a constant energy microcanonical ensemble molecular dynamics simulation combined with a collision method. By varying the size and composition of an Ag-Pd bimetallic cluster, we obtained a complete solid-solution type of binary phase diagram of the Ag-Pd system. Irrespective of the size and composition of the cluster, the melting temperature of Ag-Pd bimetallic clusters is lower than that of the bulk state and rises as the cluster size and the Pd composition increase. Additionally, the slope of the phase boundaries (even though not exactly linear) is lowered when the cluster size is reduced on account of the complex relations of the surface tension, the bulk melting temperature, and the heat of fusion. The melting of the cluster initially starts at the surface layer. The initiation and propagation of a five-fold icosahedron symmetry is related to the sequential melting of the cluster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moraes, Paulo E.L., E-mail: pauloeduardo.leitedemoraes@gmail.com; Contieri, Rodrigo J., E-mail: contieri@fem.unicamp.br; Lopes, Eder S.N., E-mail: ederlopes@fem.unicamp.br
Ti and Ti alloys are widely used in restorative surgery because of their good biocompatibility, enhanced mechanical behavior and high corrosion resistance in physiological media. The corrosion resistance of Ti-based materials is due to the spontaneous formation of the TiO{sub 2} oxide film on their surface, which exhibits elevated stability in biological fluids. Ti–Nb alloys, depending on the composition and the processing routes to which the alloys are subjected, have high mechanical strength combined with low elastic modulus. The addition of Sn to Ti–Nb alloys allows the phase transformations to be controlled, particularly the precipitation of ω phase. The aimmore » of this study is to discuss the microstructure, mechanical properties and corrosion behavior of cast Ti–Nb alloys to which Sn has been added. Samples were centrifugally cast in a copper mold, and the microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffractometry. Mechanical behavior evaluation was performed using Berkovich nanoindentation, Vickers hardness and compression tests. The corrosion behavior was evaluated in Ringer's solution at room temperature using electrochemical techniques. The results obtained suggested that the physical, mechanical and chemical behaviors of the Ti–Nb–Sn alloys are directly dependent on the Sn content. - Graphical abstract: Effects of Sn addition to the Ti–30Nb alloy on the elastic modulus. - Highlights: • Sn addition causes reduction of the ω phase precipitation. • Minimum Vickers hardness and elastic modulus occurred for 6 wt.% Sn content. • Addition of 6 wt.% Sn resulted in maximum ductility and minimum compression strength. • All Ti–30Nb–XSn (X = 0, 2, 4, 6, 8 and 10%) alloys are passive in Ringer's solution. • Highest corrosion resistance was observed for 6 wt.% Sn content.« less
Kang, Wanli; Wang, Pengxiang; Fan, Haiming; Yang, Hongbin; Dai, Caili; Yin, Xia; Zhao, Yilu; Guo, Shujun
2017-02-08
Responsive wormlike micelles are very useful in a number of applications, whereas it is still challenging to create dramatic viscosity changes in wormlike micellar systems. Here we developed a pH-responsive wormlike micellar system based on a noncovalent constructed surfactant, which is formed by the complexation of N-erucamidopropyl-N,N-dimethylamine (UC 22 AMPM) and citric acid at the molar ratio of 3 : 1 (EACA). The phase behavior, aggregate microstructure and viscoelasticity of EACA solutions were investigated by macroscopic appearance observation, rheological and cryo-TEM measurements. It was found that the phase behavior of EACA solutions undergoes transition from transparent viscoelastic fluids to opalescent solutions and then phase separation with white floaters upon increasing the pH. Upon increasing the pH from 2.03 to 6.17, the viscosity of wormlike micelles in the transparent solutions continuously increased and reached ∼683 000 mPa s at pH 6.17. As the pH was adjusted to 7.31, the opalescent solution shows a water-like flowing behaviour and the η 0 rapidly declines to ∼1 mPa s. Thus, dramatic viscosity changes of about 6 magnitudes can be triggered by varying the pH values without any deterioration of the EACA system. This drastic variation in rheological behavior is attributed to the pH dependent interaction between UC 22 AMPM and citric acid. Furthermore, the dependence on concentration and temperature of the rheological behavior of EACA solutions was also studied to assist in obtaining the desired pH-responsive viscosity changes.
NASA Astrophysics Data System (ADS)
Ko, Jae-Hyeon; Kim, Tae Hyun; Roleder, K.; Rytz, D.; Kojima, Seiji
2011-09-01
The acoustic anomalies and precursor dynamics of high-quality barium titanate single crystals were investigated by Brillouin light scattering and the birefringence measurements in the paraelectric phase above the cubic-to-tetragonal ferroelectric phase transition temperature (Tc). Two elastic stiffness coefficients C11 and C44, the related sound velocities, and their absorption coefficients were determined from Tc to 400∘C for the first time. The longitudinal acoustic (LA) mode showed a substantial softening over a wide temperature range above Tc which was accompanied by a remarkable increase in the acoustic damping as well as growth of central peaks. The broad central peak (CP) exhibited a two-mode and one-mode behavior in the paraelectric and ferroelectric phase, respectively, which was consistent with recent far-infrared reflectivity measurements and first-principle-based calculations [Ponomareva , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.77.012102 77, 012102 (2008)]. The acoustic anomalies and CP behavior were correlated with the anomalous birefringence, piezoelectric effect, and the deviation of the Curie-Weiss law observed from the same crystal. This strongly indicates similarity between the dynamics of polar clusters in typical ferroelectrics and the dynamics of polar nanoregions in relaxors, consistent with recent acoustic emission measurements [Dul’kin , Appl. Phys. Lett.APPLAB0003-695110.1063/1.3464968 97, 032903 (2010)]. The relaxation times estimated from the central peak and the LA mode anomalies exhibited similar temperature dependences with comparable orders of magnitude, indicating that the polarization fluctuations due to the precursor polar clusters couples to the LA mode through density fluctuations. All these anomalies share common microscopic origin, correlated Ti off-centered motions forming polar clusters having local symmetry breaking in the paraelectric phase. The existence of the polar clusters were directly evidenced by the temperature evolution of the precise birefringence map. The narrow central peak within ±5 GHz proposed before was not confirmed to exist in the present study.
Magnetic Field-Dependent Magneto-Optical Kerr Effect in [(GeTe)2(Sb2Te3)1]8 Topological Superlattice
NASA Astrophysics Data System (ADS)
Bang, Do; Awano, Hiroyuki; Saito, Yuta; Tominaga, Junji
2016-05-01
We studied the magnetic field dependence of magneto-optical Kerr rotation of the [(GeTe)2/(Sb2Te3)1]8 topological superlattice at different temperatures (from 300 K to 440 K). At low temperatures (less than 360 K), the Kerr signal was within noise level. However, large Kerr rotation peaks with a mirror symmetric loop were at high temperatures (higher than 360 K). The temperature dependence of the observed Kerr signal can be attributed to the breaking of spatial inversion symmetry, which induces a narrow gap in surface state bands due to the Ge atomic layer movement-induced phase transition in the superlattice. We found that the resonant field of each Kerr peak gradually decreases with increasing temperature. On the other hand, the phase transition from a high temperature phase to a low temperature one could be controlled by external magnetic fields.
NASA Astrophysics Data System (ADS)
Ertaş, Mehmet; Keskin, Mustafa
2015-06-01
Using the effective-field theory based on the Glauber-type stochastic dynamics (DEFT), we investigate dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model under an oscillating magnetic field. We presented the dynamic phase diagrams in (T/J, h0/J), (D/J, T/J) and (K/J, T/J) planes, where T, h0, D, K and z are the temperature, magnetic field amplitude, crystal-field interaction, biquadratic interaction and the coordination number. The dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and special critical points, as well as re-entrant behavior depending on interaction parameters. We also compare and discuss the results with the results of the same system within the mean-field theory based on the Glauber-type stochastic dynamics and find that some of the dynamic first-order phase lines and special dynamic critical points disappeared in the DEFT calculation.
Characterization of temperature-dependent optical material properties of polymer powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laumer, Tobias; SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen; CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen
2015-05-22
In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystallinemore » thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.« less
NASA Technical Reports Server (NTRS)
Bailey, Edward; Drake, Michael J.
2004-01-01
The distinctive pattern of element concentrations in the upper mantle provides essential evidence in our attempts to understand the accretion and differentiation of the Earth (e.g., Drake and Righter, 2002; Jones and Drake, 1986; Righter et al., 1997; Wanke 1981). Core formation is best investigated through use of metal/silicate partition coefficients for siderophile elements. The variables influencing partition coefficients are temperature, pressure, the major element compositions of the silicate and metal phases, and oxygen fugacity. Examples of studies investigating the effects of these variables on partitioning behavior are: composition of the metal phase by Capobianco et al. (1999) and Righter et al. (1997); silicate melt composition by Watson (1976), Walter and Thibault (1995), Hillgren et al. (1996), Jana and Walker (1997), and Jaeger and Drake (2000); and oxygen fugacity by Capobianco et al. (1999), and Walter and Thibault (1995). Here we address the relative influences of silicate melt composition, pressure and temperature.
Structural, dielectric and magnetic studies of Mn doped Y-type barium hexaferrite (Ba2Mg2Fe12O22)
NASA Astrophysics Data System (ADS)
Abdullah, Md. F.; Pal, P.; Mohapatra, S. R.; Yadav, C. S.; Kaushik, S. D.; Singh, A. K.
2018-04-01
The polycrystalline single phase Ba2Mg2Fe12O22 (BMF) and Ba2Mg2Fe11.52Mn0.48O22 (BMFM) were prepared using conventional solid state reaction route. We report the modification in structural, dielectric and magnetic properties of BMF due to 4% Mn doping at Fe site. Phase purity of both sample are confirmed by the Reitveld refinement of XRD data. Temperature dependent dielectric study shows decrease in dielectric constant (ɛ') and dielectric loss (tan δ) due to 4% Mn doping in parent sample. The ferrimagnetic to paramagnetic transition temperature (Tc) in doped sample decreases from 277°C to 150°C. Room temperature magnetization measurement shows ferrimagnetic behavior for both the samples. We have fitted the saturation magnetization data at 300 K by using least square method which confirms the enhancement of saturation magnetization and magnetic anisotropy constant in doped sample.
Phase transitions in samarium at high pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, W.Y.; Lin, T.H.; Dunn, K.J.
1987-01-15
The electrical behavior of Sm was studied for pressures up to 43 GPa and temperatures from 430 down to 2 K. The two Neel temperatures at ambient pressure are found to move toward each other as the pressure increases and finally merge into one at the dhcp phase. At room temperature, we found that Sm transforms to a new phase, presumably fcc, at about 12 GPa. The phase line between the dhcp and the new phase appears to tie with the cusp of the bcc phase line.
Pressure Induced Phase Transformations of Silica Polymorphs and Glasses
NASA Astrophysics Data System (ADS)
Cagin, Tahir; Demiralp, Ersan; Goddard, William A., III
1998-03-01
Silica, SiO_2, is one of the most widely studied substance, and it has some complex and unusual properties. We have used a recently developed 2-body interaction force field (E. Demiralp, T. Cagin, W.A. Goddard, III, unpublished.) to study the structural phase transformations in silica under various pressure loading conditions. The specific transformations we studied are α-quartz to stishovite, coesite to stishovite and fused glass to stishovite-like dense, a dominantly six-coordinated glassy phase. Molecular dynamics simulations are performed under the constant loading rates ranging from 0.1 GPa/ps to 2.0 GPa/ps, pressures upto 100 GPa and at temperatures 300, 500, 700 and 900 K. We observe the crystal to crystal transformations to occur reconstructively, whereas it occurs in a smooth and displacive manner from glass to a stishovite-like phase confirming earlier conjectures. (E.M. Stolper and T.J. Ahrens, Geophys. Res. Let.) 14, 1231 (1987). To elucidate the shock loading experiments, we studied the dependence of transition pressure on the loading rate and the temperature. To assess the hysterisis effect we also studied the unloading behavior of each transformation.
Structural, dielectric and magnetic studies of magnetoelectric trirutile Fe{sub 2}TeO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaushik, S. D., E-mail: sdkaushik@csr.res.in; Sahu, B.; Mohapatra, S. R.
2016-05-23
We have investigated structural, magnetic and dielectric properties of Fe{sub 2}TeO{sub 6} which is a magnetoelectric antiferromagnet with the trirutile lattice. Rietveld analysis of room temperature X-ray diffraction data shows the phase purity of the sample with tetragonal trirutile structure (space group P4{sub 2}/mnm). The DC susceptibility measurement performed on polycrystalline powders exhibits antiferromagnetic ordering below transition temperature ~ 210K. The employment of Curie-Weiss law to inverse magnetic susceptibility only in the temperature range 350-260 K indicates the magnetic ordering starts developing before the transition temperature. The temperature dependent dielectric measurements show an intrinsic behavior of dielectric constant below 150more » K while a continuous increase in dielectric constant with temperature above 150 K may be attributed to a small increase in electrical conduction, known commonly in the literatures.« less
Yamashita, Jun; Shiono, Manzo; Hato, Masakatsu
2008-10-02
With a view to discovering a new family of lipids that form inverted cubic phases, the aqueous phase behavior of a series of lipids with isoprenoid-type hydrophobic chains has been examined over a temperature range from -40 to 65 degrees C by using optical microscopy, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering) techniques. The lipids examined are those with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains linked to a series of headgroups, that is, erythritol, pentaerythritol, xylose, and glucose. All of the lipid/water systems displayed a "water + liquid crystalline phase" two-phase coexistence state when sufficiently diluted. The aqueous phase structures of the most diluted liquid crystalline phases in equilibrium with excess water depend both on the lipid molecular structure and on the temperature. Given an isoprenoid chain, the preferred phase consistently follows a phase sequence of an H II (an inverted hexagonal phase) to a Q II (an inverted bicontinuous cubic phase) to an L alpha (a lamellar phase) as A* (cross-section area of the headgroup) increases. For a given lipid/water system, the phase sequence observed as the temperature increases is L alpha to Q II to H II. The present study allowed us to find four cubic phase-forming lipid species, PEOC 18+4 [mono- O-(5,9,13,17-tetramethyloctadecyl)pentaerythritol], beta-XylOC 18+4 [1- O-(5,9,13,17-tetramethyloctadecyl)-beta- d-xylopyranoside], EROCOC 17+4 [1- O-(5,9,13,17-tetramethyloctadecanoyl)erythritol], and PEOCOC 17+4 [mono- O-(5,9,13,17-tetramethyloctadecanoyl)pentaerythritol]. The values of T K (hydrated solid-liquid crystalline phase transition temperature) of the cubic phase-forming lipids are all below 0 degrees C. Quantitative analyses of the lipid molecular structure-aqueous phase structure relationship in terms of the experimentally evaluated "surfactant parameter" allow us to rationally select an optimum combination of hydrophilic/hydrophobic part of a lipid molecule that will form a desired phase in a desired temperature range.
NASA Astrophysics Data System (ADS)
Lok, R.; Kaya, S.; Yilmaz, E.
2018-05-01
In this work, the thermal phase separation and annealing optimization of ZrSiO4 thin films have been carried out. Following annealing optimization, the frequency-dependent electrical characteristics of the Al/ZrSiO4/p-Si/Al MOS capacitors were investigated in detail. The chemical evolution of the films under various annealing temperatures was determined by Fourier transform infrared spectroscopy (FTIR) measurements. The phase separation was determined by x-ray diffraction (XRD) measurements. The electrical parameters were determined via the capacitance–voltage (C–V), conductance–voltage (G/ω) and leakage-current–voltage (Ig–Vg ). The results demonstrate that zirconium silicate formations are present at 1000 °C annealing with the SiO2 interfacial layer. The film was in amorphous form after annealing at 250 °C. The tetragonal phases of ZrO2 were obtained after annealing at 500 °C. When the temperature approaches 750 °C, transitions from the tetragonal phase to the monoclinic phase were observed. The obtained XRD peaks after 1000 °C annealing matched the crystalline peaks of ZrSiO4. This means that the crystalline zirconium dioxide in the structure has been converted into a crystalline silicate phase. The interface states increased to 5.71 × 1010 and the number of border traps decreased to 7.18 × 1010 cm‑2 with the increasing temperature. These results indicate that an excellent ZrSiO4/Si interface has been fabricated. The order of the leakage current varied from 10‑9 Acm‑2 to 10‑6 Acm‑2. The MOS capacitor fabricated with the films annealed at 1000 °C shows better behavior in terms of its structural, chemical and electrical properties. Hence, detailed frequency-dependent electrical characteristics were performed for the ZrSiO4 thin film annealed at 1000 °C. Very slight capacitance variations were observed under the frequency variations. This shows that the density of frequency-dependent charges is very low at the ZrSiO4/Si interface. The barrier height of the device varies slightly from 0.776 eV to 0.827 eV under frequency dispersion. Briefly, it is concluded that the devices annealed at 1000 °C exhibit promising electrical characteristics.
Dynamical properties of water-methanol solutions
NASA Astrophysics Data System (ADS)
Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Cirino; Vasi, Sebastiano; Stanley, H. Eugene
2016-02-01
We study the relaxation times tα in the water-methanol system. We examine new data and data from the literature in the large temperature range 163 < T < 335 K obtained using different experimental techniques and focus on how tα affects the hydrogen bond structure of the system and the hydrophobicity of the alcohol methyl group. We examine the relaxation times at a fixed temperature as a function of the water molar fraction XW and observe two opposite behaviors in their curvature when the system moves from high to low T regimes. This behavior differs from that of an ideal solution in that it has excess values located at different molar fractions (XW = 0.5 for high T and 0.75 in the deep supercooled regime). We analyze the data and find that above a crossover temperature T ˜ 223 K, hydrophobicity plays a significant role and below it the water tetrahedral network dominates. This temperature is coincident with the fragile-to-strong dynamical crossover observed in confined water and supports the liquid-liquid phase transition hypothesis. At the same time, the reported data suggest that this crossover temperature (identified as the Widom line temperature) also depends on the alcohol concentration.
Anisotropic physical properties and pressure dependent magnetic ordering of CrAuTe 4
Jo, Na Hyun; Kaluarachchi, Udhara S.; Wu, Yun; ...
2016-11-11
Systematic measurements of temperature-dependent magnetization, resistivity, and angle-resolved photoemission spectroscopy (ARPES) at ambient pressure as well as resistivity under pressures up to 5.25 GPa were conducted on single crystals of CrAuTe 4. Magnetization data suggest that magnetic moments are aligned antiferromagnetically along the crystallographic c axis below T N = 255 K. ARPES measurements show band reconstruction due to the magnetic ordering. Magnetoresistance data show clear anisotropy, and, at high fields, quantum oscillations. The Néel temperature decreases monotonically under pressure, decreasing to T N = 236 K at 5.22 GPa. The pressure dependencies of (i) T N, (ii) the residualmore » resistivity ratio, and (iii) the size and power-law behavior of the low-temperature magnetoresistance all show anomalies near 2 GPa suggesting that there may be a phase transition (structural, magnetic, and/or electronic) induced by pressure. Lastly, for pressures higher than 2 GPa a significantly different quantum oscillation frequency emerges, consistent with a pressure induced change in the electronic states.« less
NASA Astrophysics Data System (ADS)
Reschke, S.; Wang, Zhe; Mayr, F.; Ruff, E.; Lunkenheimer, P.; Tsurkan, V.; Loidl, A.
2017-10-01
We report on THz time-domain spectroscopy on multiferroic GeV4S8 , which undergoes orbital ordering at a Jahn-Teller transition at 30.5 K and exhibits antiferromagnetic order below 14.6 K. The THz experiments are complemented by dielectric experiments at audio and radio frequencies. We identify a low-lying excitation close to 0.5 THz, which is only weakly temperature dependent and probably corresponds to a molecular excitation within the electronic level scheme of the V4 clusters. In addition, we detect complex temperature-dependent behavior of a low-lying phononic excitation, closely linked to the onset of orbitally driven ferroelectricity. In the high-temperature cubic phase, which is paramagnetic and orbitally disordered, this excitation is of relaxational character becomes an overdamped Lorentzian mode in the orbitally ordered phase below the Jahn-Teller transition, and finally appears as well-defined phonon excitation in the antiferromagnetic state. Abrupt changes in the real and imaginary parts of the complex dielectric permittivity show that orbital ordering appears via a structural phase transition with strong first-order character and that the onset of antiferromagnetic order is accompanied by significant structural changes, which are of first-order character, too. Dielectric spectroscopy documents that at low frequencies, significant dipolar relaxations are present in the orbitally ordered, paramagnetic phase only. In contrast to the closely related GaV4S8 , this relaxation dynamics that most likely mirrors coupled orbital and polar fluctuations does not seem to be related to the dynamic processes detected in the THz regime.
Boundary conditions for gas flow problems from anisotropic scattering kernels
NASA Astrophysics Data System (ADS)
To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline
2015-10-01
The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.
Inelastic properties of ice Ih at low temperatures and high pressures
Kirby, S.H.; Durham, W.B.; Beeman, M.L.; Heard, H.C.; Daley, M.A.
1987-01-01
The aim of our research programme is to explore the rheological behavior of H2O ices under conditions appropriate to the interiors of the icy satellites of the outer planets in order to give insight into their deformation. To this end, we have performed over 100 constant-strain-rate compression tests at pressures to 500 MPa and temperatures as low as 77 K. At P > 30 MPa, ice Ih fails by a shear instability producing faults in the maximum shear stress orientation and failure strength typically is independent of pressure. This unusual faulting behavior is thought to be connected with phase transformations localized in the shear zones. The steady-state strength follows rheological laws of the thermally-activated power-law type, with different flow law parameters depending on the range of test temperatures. The flow laws will be discussed with reference to the operating deformation mechanisms as deduced from optical-scale microstructures and comparison with other work.
NASA Astrophysics Data System (ADS)
Wartenbe, Mark
The competition between localized and delocalized f electrons in heavy fermion materials produces a wide variety of interesting physical phenomena. Among these compounds is Ce2Rh3Ge5. This heavy-fermion system undergoes an antiferromagnetic transition below 4K and exhibits an angle dependent magnetic phase transition around 25 tesla. In addition, RF conductivity measurements in pulsed field (65T) have revealed quantum oscillations. Temperature dependence at fixed angle indicates relatively heavy effective masses of values ranging from ~3me on up to ~10me. This indicates that the narrow f-electron density of states is partially hybridized close to the Fermi energy, but also places strict cryogenic constraints upon the measurement (3Helium temperatures are required). Fermi surface calculations have produced complex figures which lend validation to such rich behavior. Presented are updated measurements including magnetization and revised theoretical calculations..
NASA Astrophysics Data System (ADS)
Bhattacharya, Utso; Dutta, Amit
2018-06-01
We study the one-dimensional Kitaev chain with long-range superconductive pairing terms at a finite temperature where the system is prepared in a mixed state in equilibrium with a heat reservoir maintained at a constant temperature T . In order to probe the footprint of the ground-state topological behavior of the model at finite temperature, we look at two global quantities extracted out of two geometrical constructions: the Uhlmann and the interferometric phase. Interestingly, when the long-range effect dominates, the Uhlmann phase approach fails to reproduce the topological aspects of the model in the pure-state limit; on the other hand, the interferometric phase which has a proper pure state reduction, shows a behavior independent of the ambient temperature.
NASA Astrophysics Data System (ADS)
Kagdada, Hardik L.; Jha, Prafulla K.; Śpiewak, Piotr; Kurzydłowski, Krzysztof J.
2018-04-01
The stability of GeTe in rhombohedral (R 3 m ), face centred cubic (F m 3 m ), and simple cubic (P m 3 m ) phases has been studied using density functional perturbation theory. The rhombohedral phase of GeTe is dynamically stable at 0 GPa, while F m 3 m and P m 3 m phases are stable at 3.1 and 33 GPa, respectively. The pressure-dependent phonon modes are observed in F m 3 m and P m 3 m phases at Γ and M points, respectively. The electronic and the thermoelectric properties have been investigated for the stable phases of GeTe. The electronic band gap for rhombohedral and F m 3 m phases of GeTe has been observed as 0.66 and 0.17 eV, respectively, while the P m 3 m phase shows metallic behavior. We have used the Boltzmann transport equation under a rigid band approximation and constant relaxation time approximation as implemented in boltztrap code for the calculation of thermoelectric properties of GeTe. The metallic behavior of P m 3 m phase gives a very low value of Seebeck coefficient compared to the other two phases as a function of temperature and the chemical potential μ. It is observed that the rhombohedral phase of GeTe exhibits higher thermoelectric performance. Due to the metallic nature of P m 3 m phase, negligible thermoelectric performance is observed compared to R 3 m and F m 3 m -GeTe. The calculated lattice thermal conductivities are low for F m 3 m -GeTe and high for R 3 m -GeTe. At the relatively higher temperature of 1350 K, the figure of merit ZT is found to be 0.7 for rhombohedral GeTe. The elastic constants satisfy the Born stability criteria for all three phases. The rhombohedral and F m 3 m phases exhibits brittleness and the P m 3 m phase shows ductile nature.
Thermotropic phase behavior of choline soaps.
Klein, Regina; Dutton, Helen; Diat, Olivier; Tiddy, Gordon J T; Kunz, Werner
2011-04-14
Choline carboxylates (ChCm with m = 12-18) are simple biocompatible anionic surfactants with very low Krafft temperatures, possessing a rich aqueous phase behavior. In the present work, we have investigated the thermotropic mesomorphism of anhydrous ChCm salts for m = 12-18. Transition temperatures and enthalpies determined by differential scanning calorimetry reveal that all investigated compounds exhibit three different phases between -20 and 95 °C. The phases were further characterized by optical polarizing microscopy, NMR spin-spin relaxation, and X-ray scattering measurements. The nature of the phases was identified with increasing temperature as crystalline, semicrystalline, and liquid-crystalline lamellar. Even long-chain choline carboxylates (m = 18) were found to melt into a lamellar liquid-crystalline phase below 100 °C. Accordingly, with choline as counterion in simple fatty acid soaps, not only the water solubility is considerably enhanced but also the melting points are substantially reduced, hence facilitating thermotropic mesomorphism at temperatures between 35 and 95 °C. Thus, simple choline soaps with m = 12-18 may be classified as ionic liquids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhen; Chen, Xuefeng; Peng, Wei
The dielectric properties and electrical hysteresis behaviors of Pb{sub 0.97}La{sub 0.02}(Zr{sub 0.58}Sn{sub 0.335}Ti{sub 0.085})O{sub 3} antiferroelectric (AFE) ceramics were investigated in this work with an emphasis on energy storage properties. Three phase transition points can be detected as temperature increases. AFE and paraelectric phases are found to coexist from 100 °C to 170 °C. The room temperature recoverable energy density is 1.37 J/cm{sup 3} at 8.6 kV/mm. With increasing temperature (from 20 °C to 100 °C) and frequency (from 0.01 to 100 Hz) under 8.6 kV/mm, the variation of recoverable energy density was less than 15%, all higher than 1.2 J/cm{sup 3}. All the corresponding energy efficiencies were nomore » less than 75%. The high energy density, high energy efficiency, and their weak dependence on temperature and frequency during a wide scope indicate that these antiferroelectric ceramics are quite promising to be used for pulse power capacitors applications.« less
Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics
NASA Astrophysics Data System (ADS)
Tanwar, Amit; Sreenivas, K.; Gupta, Vinay
2009-04-01
High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi4Ti4O15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 °C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (Tc=790 °C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures (<500 °C) follows the power law and is attributed to hopping conduction. The presence of large orthorhombic distortion in the CBT ceramic sintered at 1200 °C results in high dielectric constant, low dielectric loss, and high piezoelectric coefficient (d33). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.
Deng, Wenzhuo; Fergus, Jeffrey W.
2017-07-06
The resistance of synthesized pyrochlore-type Gd 2Zr 2O 7 bulk specimens to four calcium-magnesium aluminosilicate (CMAS) compositions at different temperatures was investigated. The reaction products were identified by x-ray diffraction and penetration depths were examined using scanning electron microscopy. A dense reaction layer is comprised mainly of Ca 2Gd 8(SiO 4) 6O 2 and a cubic fluorite phase formed during the CMAS attack, and some unreacted CMAS was found in a transition layer below the reaction layer. The overall infiltration depth changed slightly with temperature, however, the thickness of the reaction layer and the morphology of the transition layer variedmore » distinctly with temperature. The sintered sample underwent the most severe degradation by the CaO-lean CMAS, whereas the effect of CaSO 4 and CaCO 3 was not significant. Furthermore, the Gd content of the ZrO 2-based cubic fluorite phase depends on the temperature and the molar ratio of Ca:Si in the CMAS.« less
Smart membranes: Hydroxypropyl cellulose for flavor delivery
NASA Astrophysics Data System (ADS)
Heitfeld, Kevin A.
2007-12-01
This work focuses on the use of temperature responsive gels (TRGs) (polymeric hydrogels with a large temperature-dependent change in volume) for flavor retention at cooking temperatures. Specifically, we have studied a gel with a lower critical solution temperature (LCST) that swells at low temperatures and collapses at high temperatures. In the collapsed state, the polymer acts as a transport barrier, keeping the volatile flavors inside. An encapsulation system was designed to utilize the solution (phase separation) behavior of a temperature responsive gel. The gel morphology was understood and diffusive properties were tailored through morphology manipulation. Heterogeneous and homogeneous gels were processed by understanding the effect of temperature on gel morphology. A morphology model was developed linking bulk diffusive properties to molecular morphology. Flavor was encapsulated within the gel and the emulsifying capability was determined. The capsules responded to temperature similarly to the pure polymer. The release kinetcs were compared to commercial gelatin capsules and the temperature responsive polymer took longer to release.
NASA Technical Reports Server (NTRS)
Howe, John T.; Yang, Lily
1991-01-01
A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.
NASA Astrophysics Data System (ADS)
Gunaydin-Sen, Ozge
2005-03-01
Natural abundance ^15N CPMAS NMR has been used to investigate the paraelectric-antiferroelectric phase transition of NH4H2AsO4 (ADA) (TN˜216K) and of NH4H2PO4 (ADP) (148K), with a focus on the role of the NH4^+ ion. Isotropic chemical shift of ^15N for ADA exhibits an almost linear temperature dependence to within TN±1K, and then changes discontinuously, followed by another almost linear dependence. The spectra of the paraelectric and antiferroelectric phases coexist around the TN. The sharp anomaly around TN implies that the NH4^+ ions undergo a displacive transition, whereas the protons in the O-HO bonds undergo an order-disorder transition. The ^15N data thus support a mixed order-disorder-displacive mechanism for this transition. The ^15N data on ADP exhibit somewhat different behavior. ^31P CPMAS measurements will also be presented and discussed in terms of the above model.
NASA Technical Reports Server (NTRS)
Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.
2007-01-01
High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.
NASA Astrophysics Data System (ADS)
Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.
2007-04-01
High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.
Chen, Xin; Fan, Ruihua; Chen, Yiming; Zhai, Hui; Zhang, Pengfei
2017-11-17
The Sachdev-Ye-Kitaev (SYK) model is a concrete solvable model to study non-Fermi liquid properties, holographic duality, and maximally chaotic behavior. In this work, we consider a generalization of the SYK model that contains two SYK models with a different number of Majorana modes coupled by quadratic terms. This model is also solvable, and the solution shows a zero-temperature quantum phase transition between two non-Fermi liquid chaotic phases. This phase transition is driven by tuning the ratio of two mode numbers, and a nonchaotic Fermi liquid sits at the critical point with an equal number of modes. At a finite temperature, the Fermi liquid phase expands to a finite regime. More intriguingly, a different non-Fermi liquid phase emerges at a finite temperature. We characterize the phase diagram in terms of the spectral function, the Lyapunov exponent, and the entropy. Our results illustrate a concrete example of the quantum phase transition and critical behavior between two non-Fermi liquid phases.
Effect of oxygen vacancies on magnetic and transport properties of Sr2IrO4
NASA Astrophysics Data System (ADS)
Dwivedi, Vinod Kumar; Mukhopadhyay, Soumik
2018-05-01
Iridates have recently attracted growing interest because of their potential for realizing various interesting phases like interaction driven Mott-type insulator and magnetically driven Slater-type. In this paper, we present the magnetic and electrical transport properties of polycrystalline Sr2IrO4 synthesized by solid state reaction route. We find a ferromagnetic transition at 240 K. The Curie-Weiss law behavior hold good above the magnetic transition temperature TMag = 240 K with a small effective paramagnetic magnetic moment μeff = 0.25 µB/f.u. and a Curie-Weiss temperature, θCW = +100 K. Zero field cooled (ZFC) magnetization shows a gradual dcrease below 150 K, while same for field cooled (FC) below 50 K. Interestingly, below temperatures, ⁓ 10 K, a sharp increase in ZFC and FC magnetization can be seen. A temperature dependent resistivity reveals insulating behavior followed by power law mechanism. The sintering of sample in air leads to the very low value of resistivity is likely related to Sr or oxygen vacancies.
Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li; Li, Yi-Fan
2014-09-01
57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m(3) and 180 pg/m(3), respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas-particle partitioning coefficients (logKp) for most low molecular weight BFRs were highly temperature dependent as well. Gas-particle partitioning coefficients (logKp) also correlated with the sub-cooled liquid vapor pressure (logPL(o)). Our results indicated that absorption into organic matter is the main control mechanism for the gas-particle partitioning of atmospheric PBDEs. Copyright © 2014 Elsevier B.V. All rights reserved.
15N NMR study of nitrate ion structure and dynamics in hydrotalcite-like compounds
Hou, X.; James, Kirkpatrick R.; Yu, P.; Moore, D.; Kim, Y.
2000-01-01
We report here the first nuclear magnetic resonance (NMR) spectroscopic study of the dynamical and structural behavior of nitrate on the surface and in the interlayer of hydrotalcite-like compounds (15NO3--HT). Spectroscopically resolvable surface-absorbed and interlayer NO3- have dramatically different dynamical characteristics. The interlayer nitrate shows a well defined, temperature independent uniaxial chemical shift anisotropy (CS A) powder pattern. It is rigidly held or perhaps undergoes rotation about its threefold axis at all temperatures between -100 ??C and +80 ??C and relative humidities (R.H.) from 0 to 100% at room temperature. For surface nitrate, however, the dynamical behavior depends substantially on temperature and relative humidity. Analysis of the temperature and R.H. dependences of the peak width yields reorieritational frequencies which increase from essentially 0 at -100 ??C to 2.6 ?? 105 Hz at 60 ??C and an activation energy of 12.6 kJ/mol. For example, for samples at R.H. = 33%, the surface nitrate is isotropically mobile at frequencies greater than 105 Hz at room temperature, but it becomes rigid or only rotates on its threefold axis at -100 ??C. For dry samples and samples heated at 200 ??C (R.H. near 0%), the surface nitrate is not isotropically averaged at room temperature. In contrast to our previous results for 35Cl--containing hydrotalcite (35Cl--HT), no NMR detectable structural phase transition is observed for 15NO3--HT. The mobility of interlayer nitrate in HT is intermediate between that of carbonate and chloride.
A first-principles study of the properties of four predicted novel phases of AlN
NASA Astrophysics Data System (ADS)
Yang, Ruike; Zhu, Chuanshuai; Wei, Qun; Du, Zheng
2017-05-01
Structural, elastic, thermodynamic, electronic and optical properties of four predicted novel AlN phases (Pmn21-AlN, Pbam-AlN, Pbca-AlN and Cmcm-AlN) are calculated using first-principles according to density function theory (DFT). These phases were found using the CALYPSO method but have not yet been synthesized experimentally. Here we predict some of their properties. The properties are analyzed by means of GGA-PBE and PBE0 respectively. The more precision results are obtained by PBE0. Cmcm-AlN owns better plasticity and it's Young's modulus has clearer anisotropy than Pmn21-AlN, Pbam-AlN and Pbca-AlN. The Debye temperature, under higher temperature, shows weak temperature dependence and approach to a constant value. The Dulong-Petit limit of all four novel AlN phases and wz-AlN is about 48 J mol-1 K-1 and they have almost the same temperature law. The band structures show that the four AlN are the wide direct band gap semiconductors, which band gaps are 5.95 (Pmn21-AlN), 5.99 (Pbam-AlN), 5.88 (Pbca-AlN) and 5.59 eV (Cmcm-AlN). The bonding behaviors are the combination of covalent and ionic nature. The dielectric constants, refractive index, reflectivity, absorption, loss spectra, conductivity and Raman spectra are also calculated in detail. All four phases have a lower plasma frequency than of wz-AlN.
NASA Astrophysics Data System (ADS)
Tennakoon, Sumudu P.
Relaxor ferroelectric lead magnesium niobate-lead titanate (PMN-PT) material exhibits exceptional electromechanical properties. The material undergoes a series of structural phase transitions with changes in temperature and the chemical composition. The work covered in this dissertation seek to gain insight into the phase diagram of PMN-PT using temperature and pressure dependence of the elastic properties. Single crystal PMN-PT with a composition near morphotropic phase boundary (MPB) was investigated using a resonant ultrasound spectroscopy (RUS) methodologies in the temperature range of 293 K - 800 K and the pressure range from near vacuum to 3.4 MPa. At atmospheric pressure, significantly high acoustic attenuation of PMN-PT is observed at temperatures below 400 K. A strong stiffening is observed in the temperature range of 400 K - 673 K, followed by a gradual softening at higher temperatures. With varying pressure, an increased pressure sensitivity of the elastic properties of PMN-PT is observed at the temperatures in the stiffening phase. Elastic behavior at elevated temperatures and pressures were studied for correlations with the ferroelectric domains at temperatures below the Curie temperature (TC), the locally polarized nano-regions, and an existence of pseudo-cubic crystalline at higher temperatures between (TC and TB). Thermoelectric lanthanum tellurides and skutterudites are being investigated by NASA's Jet Propulsion Laboratory for advanced thermoelectric generates (TEGs). Effects of nickel (Ni) doping on elastic properties of lanthanum tellurides at elevated temperatures were investigated in the temperature range of 293 K - 800 K. A linear stiffening was observed with increasing the Ni content in the material. Elastic properties of p-type and n-type bismuth-based skutterudites were investigated in the temperature range of 293 K - 723 K. Elastic properties of rare-earth doped strontium titanate were also investigated in the temperature range of 293 K - 750 K.
Sequence and Temperature Dependence of the End-to-End Collision Dynamics of Single-Stranded DNA
Uzawa, Takanori; Isoshima, Takashi; Ito, Yoshihiro; Ishimori, Koichiro; Makarov, Dmitrii E.; Plaxco, Kevin W.
2013-01-01
Intramolecular collision dynamics play an essential role in biomolecular folding and function and, increasingly, in the performance of biomimetic technologies. To date, however, the quantitative studies of dynamics of single-stranded nucleic acids have been limited. Thus motivated, here we investigate the sequence composition, chain-length, viscosity, and temperature dependencies of the end-to-end collision dynamics of single-stranded DNAs. We find that both the absolute collision rate and the temperature dependencies of these dynamics are base-composition dependent, suggesting that base stacking interactions are a significant contributor. For example, whereas the end-to-end collision dynamics of poly-thymine exhibit simple, linear Arrhenius behavior, the behavior of longer poly-adenine constructs is more complicated. Specifically, 20- and 25-adenine constructs exhibit biphasic temperature dependencies, with their temperature dependences becoming effectively indistinguishable from that of poly-thymine above 335 K for 20-adenines and 328 K for 25-adenines. The differing Arrhenius behaviors of poly-thymine and poly-adenine and the chain-length dependence of the temperature at which poly-adenine crosses over to behave like poly-thymine can be explained by a barrier friction mechanism in which, at low temperatures, the energy barrier for the local rearrangement of poly-adenine becomes the dominant contributor to its end-to-end collision dynamics. PMID:23746521
Structure and thermotropic phase behavior of sodium and potassium carboxylate ionomers
NASA Astrophysics Data System (ADS)
Mantsch, H. H.; Weng, S. F.; Yang, P. W.; Eysel, H. H.
1994-07-01
A molecular complex is formed between long-chain carboxylic acids and their alkali salts in a 1 : 1 mixture. These so-called "acid soaps" or carboxylate ionomers have multilamellar bilayer-type structures in solid state, which are retained in the presence of excess water, resembling the dispersions (gels) formed by typical two-chain amphiphiles, e.g. lipids. The special arrangement of hydrogen-bonded pairs of carboxylic acid and carboxylate groups into a unique "head-group" is supported by frequency shifts and partial or total disappearance of the characteristic vibrations of carboxylic acid dimers and of carboxylate groups. The existence of well-ordered hydrocarbon chains is demonstrated by the existence and polarization properties of the methylene rocking and wagging propagation modes. The gel to liquid-crystal phase transition of the hydrated acid soaps shows practically no cation dependence, unlike the corresponding phase transition in neutral soaps which varies considerably with the nature of the counterion. There is spectroscopic evidence to suggest a cooperative process that involves "melting" of the alkyl chains and disintegration of the hydrogen-bonded carboxylate—carboxylic acid complex, followed by a cation-dependent equilibrium that favors the formation of acid dimers at elevated temperatures and some form of hydrogen-bonded ion pair aggregates at intermediate temperatures.
Tunable magnetic properties and magnetocaloric effect of off-stoichiometric LaMnO3 nanoparticles
NASA Astrophysics Data System (ADS)
Tola, P. S.; Kim, H. S.; Kim, D. H.; Phan, T. L.; Rhyee, J. S.; Shon, W. H.; Yang, D. S.; Manh, D. H.; Lee, B. W.
2017-12-01
The crystal and electronic structures and the magnetic and magnetocaloric properties of off-stoichiometric LaMnO3 nanoparticles (NPs) with various particle sizes D = 20-100 nm were studied. The Rietveld refinement revealed that all NPs were crystallized in the rhombohedral structure, with varied structural parameters dependent on D. Magnetization (M) measurements indicated a considerable difference between zero-field-cooled and field-cooled magnetizations at temperatures below ferromagnetic-paramagnetic (FM-PM) phase transition, particularly for the samples with D = 25-40 nm. These results are ascribed to spin-glass-like behaviors and magnetic inhomogeneity. We also found the possibility of tuning the FM-PM phase transition temperature (TC) from 77 to 262 K, which is dependent on both D and W (the eg-electron bandwidth). Under an applied field of H = 50 kOe, the absolute maximum magnetic entropy change that achieved around TC can be improved from 4.02 J kg-1 K-1 for D = 40 nm to 6.36 Jṡ kg-1ṡ K-1 for D = 100 nm, corresponding to the relative-cooling-power values of 241-245 Jṡ kg-1. We also analyzed the data of M and magnetic entropy change based on theoretical models to further understand the magnetic property and phase-transition type of the NP samples.
Pressure-induced phase transition in La 1 – x Sm x O 0.5 F 0.5 BiS 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Y.; Yazici, D.; White, B. D.
Electrical resistivity measurements on La 1–xSm xO 0.5F 0.5BiS 2 (x = 0.1, 0.3, 0.6, 0.8) have been performed under applied pressures up to 2.6 GPa from 2 K to room temperature. The superconducting transition temperature T c of each sample significantly increases at a Sm-concentration dependent pressure P t, indicating a pressure-induced phase transition from a low-T c to a high-T c phase. At ambient pressure, T c increases dramatically from 2.8 K at x = 0.1 to 5.4 K at x = 0.8; however, the T c values at P > P t decrease slightly with x andmore » P t shifts to higher pressures with Sm substitution. In the normal state, semiconducting-like behavior is suppressed and metallic conduction is induced with increasing pressure in all of the samples. Furthermore, these results suggest that the pressure dependence of T c for the BiS 2-based superconductors is related to the lattice parameters at ambient pressure and enable us to estimate the evolution of T c for SmO 0.5F 0.5BiS 2 under pressure.« less
Pressure-induced phase transition in La 1 – x Sm x O 0.5 F 0.5 BiS 2
Fang, Y.; Yazici, D.; White, B. D.; ...
2015-09-15
Electrical resistivity measurements on La 1–xSm xO 0.5F 0.5BiS 2 (x = 0.1, 0.3, 0.6, 0.8) have been performed under applied pressures up to 2.6 GPa from 2 K to room temperature. The superconducting transition temperature T c of each sample significantly increases at a Sm-concentration dependent pressure P t, indicating a pressure-induced phase transition from a low-T c to a high-T c phase. At ambient pressure, T c increases dramatically from 2.8 K at x = 0.1 to 5.4 K at x = 0.8; however, the T c values at P > P t decrease slightly with x andmore » P t shifts to higher pressures with Sm substitution. In the normal state, semiconducting-like behavior is suppressed and metallic conduction is induced with increasing pressure in all of the samples. Furthermore, these results suggest that the pressure dependence of T c for the BiS 2-based superconductors is related to the lattice parameters at ambient pressure and enable us to estimate the evolution of T c for SmO 0.5F 0.5BiS 2 under pressure.« less
Creep Deformation of Allvac 718Plus
Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam
2014-11-11
The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics aremore » common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisen, Supriya; Mishra, Ashutosh; Jarabana, Kanaka M.
2016-05-23
In this work, Barium Titanate (BaTiO{sub 3}) powders were synthesized via Sol-Gel auto combustion method using citric acid as a chelating agent. We study the behavior of ferroelectric and dielectric properties of pure and doped BaTiO{sub 3} on different concentration. To understand the phase and structure of the powder calcined at 900°C were characterized by X-ray Diffraction shows that tetragonal phase is dominant for pure and doped BTO and data fitted by Rietveld Refinement. Electric and Dielectric properties were characterized by P-E Hysteresis and Dielectric measurement. In P-E measurement ferroelectric loop tracer applied for different voltage. The temperature dependant dielectricmore » constant behavior was observed as a function of frequency recorded on hp-Hewlett Packard 4192A, LF impedance, 5Hz-13Hz analyzer.« less
NASA Technical Reports Server (NTRS)
Reynolds, G. H.; Lenel, F. V.; Ansell, G. S.
1971-01-01
The effect of solute additions on the steady-state creep behavior of coarse-grained dispersion-strengthened aluminum alloys was studied. Recrystallized dispersion-strengthened solid solutions were found to have stress and temperature sensitivities quite unlike those observed in single-phase solid solutions having the same composition and grain size. The addition of magnesium or copper to the matrix of a recrystallized dispersion-strengthened aluminum causes a decrease in the steady-state creep rate which is much smaller than that caused by similar amounts of solute in single-phase solid solutions. All alloys exhibited essentially a 4.0 power stress exponent in agreement with the model of Ansell and Weertman. The activation energy for steady-state creep in dispersion-strengthened Al-Mg alloys, as well as the stress dependence, was in agreement with the physical model of dislocation climb over the dispersed particles.
Partial substitution effects on the physical properties of Ba0.67Nd0.22Ti(1-x)SnxO3
NASA Astrophysics Data System (ADS)
Brahem, R.; Rahmouni, H.; Farhat, N.; Costa, L. C.; Khirouni, K.
2015-12-01
Perovskite-ceramics Ba0.67Nd0.22Ti(1-x)SnxO3 (BNTSnx) with 0≤ x≤ 0.10 are synthesized by the conventional solid-state reaction. The diffraction peaks are sharp, indicating well crystallized phases. Ritveld analyses of XRD data show that the samples display a clean single phase without traces of secondary phases. The Scanning electron microscopy micrographs show that more dense structure is formed when increasing tin content and all samples show a similar grain habit with a parallelepipedic structure. The analysis of the dielectric properties permits to suggest the presence of diffuse phase transition in the system. The temperature dependence of the permittivity is well described by the modified Curie-Weiss law. Also, a metal-semiconductor transition is observed at around T_{MS}=220 K and 145 K, respectively for x = 0 and 0.05. For x = 0.1, only a semiconductor behavior is observed and T_{MS} is lower than 80 K. In addition, the frequency dependence of conductance is found to obey to the Jonscher universal power law.
A thermodynamic approach to model the caloric properties of semicrystalline polymers
NASA Astrophysics Data System (ADS)
Lion, Alexander; Johlitz, Michael
2016-05-01
It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented.
NASA Technical Reports Server (NTRS)
Noebe, Ronald; Padula, Santo, II; Bigelow, Glen; Rios, Orlando; Garg, Anita; Lerch, Brad
2006-01-01
Potential applications involving high-temperature shape memory alloys have been growing in recent years. Even in those cases where promising new alloys have been identified, the knowledge base for such materials contains gaps crucial to their maturation and implementation in actuator and other applications. We begin to address this issue by characterizing the mechanical behavior of a Ni19.5Pd30Ti50.5 high-temperature shape memory alloy in both uniaxial tension and compression at various temperatures. Differences in the isothermal uniaxial deformation behavior were most notable at test temperatures below the martensite finish temperature. The elastic modulus of the material was very dependent on strain level; therefore, dynamic Young#s Modulus was determined as a function of temperature by an impulse excitation technique. More importantly, the performance of a thermally activated actuator material is dependent on the work output of the alloy. Consequently, the strain-temperature response of the Ni19.5Pd30Ti50.5 alloy under various loads was determined in both tension and compression and the specific work output calculated and compared in both loading conditions. It was found that the transformation strain and thus, the specific work output were similar regardless of the loading condition. Also, in both tension and compression, the strain-temperature loops determined under constant load conditions did not close due to the fact that the transformation strain during cooling was always larger than the transformation strain during heating. This was apparently the result of permanent plastic deformation of the martensite phase with each cycle. Consequently, before this alloy can be used under cyclic actuation conditions, modification of the microstructure or composition would be required to increase the resistance of the alloy to plastic deformation by slip.
Tengdin, Phoebe; You, Wenjing; Chen, Cong; Shi, Xun; Zusin, Dmitriy; Zhang, Yingchao; Gentry, Christian; Blonsky, Adam; Keller, Mark; Oppeneer, Peter M.; Kapteyn, Henry C.; Tao, Zhensheng; Murnane, Margaret M.
2018-01-01
It has long been known that ferromagnets undergo a phase transition from ferromagnetic to paramagnetic at the Curie temperature, associated with critical phenomena such as a divergence in the heat capacity. A ferromagnet can also be transiently demagnetized by heating it with an ultrafast laser pulse. However, to date, the connection between out-of-equilibrium and equilibrium phase transitions, or how fast the out-of-equilibrium phase transitions can proceed, was not known. By combining time- and angle-resolved photoemission with time-resolved transverse magneto-optical Kerr spectroscopies, we show that the same critical behavior also governs the ultrafast magnetic phase transition in nickel. This is evidenced by several observations. First, we observe a divergence of the transient heat capacity of the electron spin system preceding material demagnetization. Second, when the electron temperature is transiently driven above the Curie temperature, we observe an extremely rapid change in the material response: The spin system absorbs sufficient energy within the first 20 fs to subsequently proceed through the phase transition, whereas demagnetization and the collapse of the exchange splitting occur on much longer, fluence-independent time scales of ~176 fs. Third, we find that the transient electron temperature alone dictates the magnetic response. Our results are important because they connect the out-of-equilibrium material behavior to the strongly coupled equilibrium behavior and uncover a new time scale in the process of ultrafast demagnetization. PMID:29511738
Tengdin, Phoebe; You, Wenjing; Chen, Cong; Shi, Xun; Zusin, Dmitriy; Zhang, Yingchao; Gentry, Christian; Blonsky, Adam; Keller, Mark; Oppeneer, Peter M; Kapteyn, Henry C; Tao, Zhensheng; Murnane, Margaret M
2018-03-01
It has long been known that ferromagnets undergo a phase transition from ferromagnetic to paramagnetic at the Curie temperature, associated with critical phenomena such as a divergence in the heat capacity. A ferromagnet can also be transiently demagnetized by heating it with an ultrafast laser pulse. However, to date, the connection between out-of-equilibrium and equilibrium phase transitions, or how fast the out-of-equilibrium phase transitions can proceed, was not known. By combining time- and angle-resolved photoemission with time-resolved transverse magneto-optical Kerr spectroscopies, we show that the same critical behavior also governs the ultrafast magnetic phase transition in nickel. This is evidenced by several observations. First, we observe a divergence of the transient heat capacity of the electron spin system preceding material demagnetization. Second, when the electron temperature is transiently driven above the Curie temperature, we observe an extremely rapid change in the material response: The spin system absorbs sufficient energy within the first 20 fs to subsequently proceed through the phase transition, whereas demagnetization and the collapse of the exchange splitting occur on much longer, fluence-independent time scales of ~176 fs. Third, we find that the transient electron temperature alone dictates the magnetic response. Our results are important because they connect the out-of-equilibrium material behavior to the strongly coupled equilibrium behavior and uncover a new time scale in the process of ultrafast demagnetization.
Joe, Yong S; Lee, Sun H; Hedin, Eric R; Kim, Young D
2013-06-01
We utilize a two-dimensional four-channel DNA model, with a tight-binding (TB) Hamiltonian, and investigate the temperature and the magnetic field dependence of the transport behavior of a short DNA molecule. Random variation of the hopping integrals due to the thermal structural disorder, which partially destroy phase coherence of electrons and reduce quantum interference, leads to a reduction of the localization length and causes suppressed overall transmission. We also incorporate a variation of magnetic field flux density into the hopping integrals as a phase factor and observe Aharonov-Bohm (AB) oscillations in the transmission. It is shown that for non-zero magnetic flux, the transmission zero leaves the real-energy axis and moves up into the complex-energy plane. We also point out that the hydrogen bonds between the base pair with flux variations play a role to determine the periodicity of AB oscillations in the transmission.
Thermodynamics and dynamics of supercooled water
NASA Astrophysics Data System (ADS)
Stokely, Kevin C.
This thesis utilizes the methods of statistical physics and computer simulation to study the thermodynamic and dynamic behavior of liquid water at supercooled temperatures. The behavior of water deviates from that of a simple liquid in a number of remarkable ways, many of which become more apparent as the liquid is supercooled below its equilibrium freezing temperature. Yet, due to nucleation to the crystalline state, a large region of the phase diagram of the supercooled liquid remains unexplored. We make use of a simple model for liquid water to shed light on the behavior of real water in the experimentally inaccessible region. The model predicts a line of phase transitions in the pressure—temperature plane, between high- and low-density forms of liquid water, ending in a liquid-liquid critical point (LLCP). Such a LLCP provides a thermodynamic origin for one of liquid water's anomalies—the rapid rise, and extrapolated divergence, of thermodynamic response functions upon cooling. We find one such response function, the isobaric specific heat, CP, displays two distinct maxima as a function of temperature T in the supercooled region. One maximum is a consequence of the directional nature of hydrogen (H) bonding among molecules; the other is a consequence of the cooperative nature of H bonding. With pressurization, these two maxima move closer in T, finally coinciding at the LLCP. This suggests that measurement of CP far from any LLCP could provide evidence for the existence of water's LLCP. Recent experiments find that the T-dependence of the characteristic time for H bond rearrangement displays three distinct regimes. Our observed behavior of CP, combined with Adam-Gibbs theory, allows for a thermodynamic interpretation of this feature of water's dynamics. The dynamics of the model are also measured directly by a Monte Carlo procedure, and are found in agreement with experiment. Further, the model allows the directional and cooperative components of the H bond interaction to be varied independently. By varying only these two energy scales, the low-T phase diagram changes dramatically, exhibiting one of several previously proposed thermodynamic scenarios. Our results link each of these scenarios, by recognizing the energetics of the H bond as the underlying physical mechanism responsible for each.
Widom Lines in Binary Mixtures of Supercritical Fluids.
Raju, Muralikrishna; Banuti, Daniel T; Ma, Peter C; Ihme, Matthias
2017-06-08
Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Jauhari, Mrinal; Mittal, R.; Krishna, P. S. R.; Reddy, V. R.; Chaplot, S. L.
2018-04-01
We have carried out systematic temperature-dependent neutron diffraction measurements in conjunction with dielectric spectroscopy from 6 to 300 K for sodium niobate based compounds (1-x) NaNbO3-xBaTiO3 (NNBTx). The dielectric constant is measured as a function of both temperature and frequency. It shows an anomaly at different temperatures in cooling and heating cycles and exhibits a large thermal hysteresis of ˜150 K for the composition x = 0.03. The dielectric constant is found to be dispersive in nature and suggests a relaxor ferroelectric behavior. In order to explore structural changes as a function of temperature, we analyzed the powder neutron diffraction data for the compositions x = 0.03 and 0.05. Drastic changes are observed in the powder profiles near 2θ ˜ 30.6°, 32.1°, and 34.6° in the diffraction pattern below 200 K during cooling and above 190 K in heating cycles, respectively. The disappearance of superlattice reflection and splitting in main perovskite peaks provide a signature for structural phase transition. We observed stabilization of a monoclinic phase (Cc) at low temperature. This monoclinic phase is believed to provide a flexible polarization rotation and considered to be directly linked to the high performance piezoelectricity in materials. The thermal hysteresis for composition x = 0.03 is larger than that for x = 0.05. This suggests that the addition of BaTiO3 to NaNbO3 suppresses the thermal hysteresis. It is also observed that the structural phase transition temperature decreases upon increasing the dopant concentration.
Process depending morphology and resulting physical properties of TPU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frick, Achim, E-mail: achim.frick@hs-aalen.de; Spadaro, Marcel, E-mail: marcel.spadaro@hs-aalen.de
2015-12-17
Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix ormore » of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.« less
NASA Astrophysics Data System (ADS)
Yao, Weiping; Yang, Chaohui; Jing, Jiliang
2018-05-01
From the viewpoint of holography, we study the behaviors of the entanglement entropy in insulator/superconductor transition with exponential nonlinear electrodynamics (ENE). We find that the entanglement entropy is a good probe to the properties of the holographic phase transition. Both in the half space and the belt space, the non-monotonic behavior of the entanglement entropy in superconducting phase versus the chemical potential is general in this model. Furthermore, the behavior of the entanglement entropy for the strip geometry shows that the confinement/deconfinement phase transition appears in both insulator and superconductor phases. And the critical width of the confinement/deconfinement phase transition depends on the chemical potential and the exponential coupling term. More interestingly, the behaviors of the entanglement entropy in their corresponding insulator phases are independent of the exponential coupling factor but depends on the width of the subsystem A.
Warm and cold pasta phase in relativistic mean field theory
NASA Astrophysics Data System (ADS)
Avancini, S. S.; Menezes, D. P.; Alloy, M. D.; Marinelli, J. R.; Moraes, M. M. W.; Providência, C.
2008-07-01
In the present article we investigate the onset of the pasta phase with different parametrizations of the nonlinear Walecka model. At zero temperature two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium is studied. The pasta phase decreases with the increase of temperature. The internal pasta structure and the beginning of the homogeneous phase vary depending on the proton fraction (or the imposition of β equilibrium), on the method used, and on the chosen parametrization. It is shown that a good parametrization of the surface tension with dependence on the temperature, proton fraction, and geometry is essential to describe correctly large isospin asymmetries and the transition from pasta to homogeneous matter.
The Effect of AOT and Octanoic Acid on the Formation of Stable Water-in-diesel Microemulsion
NASA Astrophysics Data System (ADS)
Zhang, Yue; Misran, Misni Bin; Wang, Zhicheng; Zhang, Yu
2017-05-01
Sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and octanoic acid (OA) were used as surfactants to prepare water-in-diesel microemulsion. The effect of mixed surfactants ratio on the phase behavior of water-in-diesel microemulsion was investigated. The R0-T plot phase diagrams for the diesel/AOT and OA/water system with different surfactant ratios were constructed at 30-80 °C. The results indicate that the largest single phase region could be obtained when OA to AOT molar ratio was 1. The temperature had a significant influence on phase transformation behavior. The single phase separated into two immiscible phases with the increase of temperature when R0 value was above 10. Compared with applying AOT alone, mixing AOT with appropriate amount of OA is benefit to form smaller nanosized W/O droplets. The determination of particle size was performed to verify the phase transformation behavior, and the results were consistent with the phase diagrams.
NASA Astrophysics Data System (ADS)
Ali, Rejwan
2010-03-01
Large unilamallar vesicle has been a model system to study many membrane functions. High Tg lipid systems offer many potential biomedical applications in lipid-based delivery applications. While the optimized vesicle functionalities are achieved by Polyethylene Glycol (PEG) polymer, modified PEG and other functional molecule incorporation, however, the host binary lipid system plays the pivotal role in pH-dependent phase transition based lipid vehicular methods. We have investigated a lipid binary system composed of 21:0 PC (1,2-dihenarachidoyl-sn-glycero-3-phosphocholine) and 18:0 PS(1,2-distearoyl-sn-glycero-3-phospho-L-serine). Preliminary studies implementing differential scanning calorimetry shows pH plays key role in temperature shift and thermotropic phase behavior of the binary system. While dynamic light scattering study shows lipid vesicle size is almost independent of pH changes. We will also present pH-dependent thermodynamic parameters to correlate underlying molecular mechanism in relevant pH-range.
Multiple electrical phase transitions in Al substituted barium hexaferrite
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan
2017-12-01
Barium hexaferrite is known to be a very good ferromagnetic material. However, it shows very good dielectric properties, i.e., the dielectric constant is comparable to that of the ferroelectric material. However, its crystal symmetry does not allow it to be a ferroelectric material. Hence, the electrical properties have revived the considerable research interest on these materials, not only for academic interest, but also for technological applications. There are a few reports on temperature dependent dielectric behavior of these materials. However, the exact cause of dielectric as well as electrical conductivity is yet to be established. Hence, Al (very good conducting material) substituted barium hexaferrite (BaFe12-xAlxO19, x = 0.0-4.0) has been prepared by following the modified sol-gel method to understand the ac and DC electrical properties of these materials. The crystal structure and parameters have been studied by employing the XRD and FTIR techniques. There are two transition temperatures, which have been observed in the temperature dependent ac dielectric and DC resistivity measurement. The response of dielectric behaviors to temperature is similar to that of the ferroelectric material; however, the dielectric polarization is due to the polaron hopping, which is evident from the DC resistivity analysis. Hence, the present observations lead to understand the electrical properties of barium hexaferrite. The frequency dependent dielectric dispersion can be understood by the modified Debye model. More interestingly, the dielectric constant decreases and DC resistivity increases with the increase in the Al concentration, which has the correlation between bond length modifications in the crystal due to substitution.
Cyclic deformation of NI/sub 3/(Al,Nb) single crystals at ambient and elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonda, N.R.
Cyclic tests were performed on Ni/sub 3/(Al,Nb) (..gamma..' phase) single crystals by using a servo-hydraulic machine under fully reversed plastic strain control at a frequency of 0.1-0.2 Hz at room temperature, 400/sup 0/C and 700/sup 0/C. Since the monotonic behavior is orientation dependent, three orientations were studied. Asymmetry in tensile and compressive stresses was observed in the cyclic hardening curves of specimens tested at these temperatures and they were discussed with regard to the model suggested by Paider et al for monotonic behavior. The stress levels in the cyclic stress-strain curves (CSSC) at room temperature depended on orientation and cyclicmore » history. No CSSCs were established at 400/sup 0/C and 700/sup 0/C. The deformation in cyclic tests at small plastic strain amplitudes was found to be different from that in monotonic tests in the microplastic regions in which the deformation is believed to be carried by a small density of edge dislocations. But in cyclic deformation, to and from motion of dislocations trap the edge dislocations into dipoles and therefore screw dislocations will be forced to participate in the deformation. Cracks on the surfaces of specimens tested at room temperature and 400/sup 0/C were found to be of stage I type, whereas at 700/sup 0/C, they were of stage II type.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conner, Benjamin S.; Susner, Michael A.; UES Inc., Beavercreek, OH
Advances in crystal growth have allowed for synthesis of large single crystals of Nd 1+ϵFe 4B 4, a well-known phase with a modulated structure. As a result we are able to report heat capacity and resistivity measurements on a single crystal Nd 1+ϵFe 4B 4 sample with a distribution of ϵ that skews towards the solubility limit of Nd near ϵ ≈ 17. Heat capacity measurements show evidence of crystal field splitting at temperatures higher than the long-range ferromagnetic Curie temperature. Heat capacity, resistivity, and magnetization measurements all confirm a Curie temperature of 7 K which is lower than previouslymore » reported values in the Nd 1+ϵFe 4B 4 system. Here, we also perform measurements of the angular dependence of the magnetization and discover behavior associated with the magnetic anisotropy that is inconsistent with the simple description previously proposed.« less
Conner, Benjamin S.; Susner, Michael A.; UES Inc., Beavercreek, OH; ...
2017-04-04
Advances in crystal growth have allowed for synthesis of large single crystals of Nd 1+ϵFe 4B 4, a well-known phase with a modulated structure. As a result we are able to report heat capacity and resistivity measurements on a single crystal Nd 1+ϵFe 4B 4 sample with a distribution of ϵ that skews towards the solubility limit of Nd near ϵ ≈ 17. Heat capacity measurements show evidence of crystal field splitting at temperatures higher than the long-range ferromagnetic Curie temperature. Heat capacity, resistivity, and magnetization measurements all confirm a Curie temperature of 7 K which is lower than previouslymore » reported values in the Nd 1+ϵFe 4B 4 system. Here, we also perform measurements of the angular dependence of the magnetization and discover behavior associated with the magnetic anisotropy that is inconsistent with the simple description previously proposed.« less
NASA Astrophysics Data System (ADS)
Furukawa, Kazuki; Yamamoto, Norifumi; Hino, Kazuyuki; Sekiya, Hiroshi
2016-01-01
The effect of intermolecular interaction on excited-state intramolecular proton transfer (ESIPT) in 4‧-N,N-dimethylamino-3-hydroxyflavone (DMHF) doped in acetonitrile crystals was investigated by measuring the temperature dependence of fluorescence excitation and fluorescence spectra. A solid/solid phase transition of DMHF-doped acetonitrile crystals occurred in the temperature between 210 and 218 K. Significant differences in the spectral profiles and shifts in the fluorescence spectra were observed in the low- and high-temperature regions of the phase transition. The temperature dependence of the ESIPT potential of DMHF is discussed.
Mapping Isobaric Aging onto the Equilibrium Phase Diagram.
Niss, Kristine
2017-09-15
The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case-challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.
Small influence of magnetic ordering on lattice dynamics in TaFe 1.25 Te 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opačić, M.; Lazarević, N.; Tanasković, D.
2017-11-16
Raman scattering spectra of zigzag spin chain TaFe 1.25Te 3 single crystal are presented in a temperature range from 80 to 300 K. Nine Raman active modes of A g and B g symmetry are clearly observed and assigned by probing different scattering channels, which is confirmed by lattice dynamics calculations. Temperature dependence of the Raman modes linewidth is mainly governed by the lattice anharmonicity. The only deviation from the conventional behavior is observed for A g symmetry modes in a vicinity of the magnetic phase transition at T N ≈ 200 K. This implies that the electron-phonon interaction weaklymore » changes with temperature and magnetic ordering, whereas small changes in the spectra near the critical temperature can be ascribed to spin fluctuations.« less
High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bainsla, Lakhan; Magnetic Materials Unit, National Institute for Materials Science, Tsukuba 305-0047; Suresh, K. G., E-mail: suresh@phy.iitb.ac.in
2014-11-28
We report the structure, magnetic property, and spin polarization of CoFeMnGe equiatomic quaternary Heusler alloy. The alloy was found to crystallize in the cubic Heusler structure (prototype LiMgPdSn) with considerable amount of DO{sub 3} disorder. Thermal analysis result indicated the Curie temperature is about 750 K without any other phase transformation up to melting temperature. The magnetization value was close to that predicted by the Slater-Pauling curve. Current spin polarization of P = 0.70 ± 0.01 was deduced using point contact andreev reflection measurements. The temperature dependence of electrical resistivity has been fitted in the temperature range of 5–300 K in order to check for themore » half metallic behavior. Considering the high spin polarization and Curie temperature, this material appears to be promising for spintronic applications.« less
NASA Astrophysics Data System (ADS)
Thu'o'ng, Nguyen Hoai; Sidorkin, A. S.; Milovidova, S. D.
2018-03-01
The dispersion of dielectric permittivity in nanocrystalline cellulose-triglycine sulfate composites is studied in the range of frequencies from 10-3 to 106 Hz, at temperatures varying from room temperature to the temperature of phase transition in this composite (54°C), in weak electric fields (1 V cm-1). Two behaviors for the dielectric dispersion are identified in the studied frequency range: at ultralow frequencies (10-3-10 Hz), the dispersion is due to Maxwell-Wagner polarization, while at higher frequencies (10-106 Hz), the dispersion is due to the movement of domain walls in the embedded triglycine sulfate crystallites. An additional peak in the temperature-dependent profiles of dielectric permittivity is detected at lower temperatures in freshly prepared samples of the considered composite; we associate it with the presence of residual water in these samples.
2017-01-01
We report on the synthesis and structure–property relations of a novel, dual-responsive organometallic poly(ionic liquid) (PIL), consisting of a poly(ferrocenylsilane) backbone of alternating redox-active, silane-bridged ferrocene units and tetraalkylphosphonium sulfonate moieties in the side groups. This PIL is redox responsive due to the presence of ferrocene in the backbone and also exhibits a lower critical solution temperature (LCST)-type thermal responsive behavior. The LCST phase transition originates from the interaction between water molecules and the ionic substituents and shows a concentration-dependent, tunable transition temperature in aqueous solution. The PIL’s LCST-type transition temperature can also be influenced by varying the redox state of ferrocene in the polymer main chain. As the polymer can be readily cross-linked and is easily converted into hydrogels, it represents a new dual-responsive materials platform. Interestingly, the as-formed hydrogels display an unusual, strongly hysteretic volume-phase transition indicating useful thermal memory properties. By employing the dispersing abilities of this cationic PIL, CNT-hydrogel composites were successfully prepared. These hybrid conductive composite hydrogels showed bi-stable states and tunable resistance in heating–cooling cycles. PMID:28654756
NASA Astrophysics Data System (ADS)
Politova, E. D.; Golubko, N. V.; Kaleva, G. M.; Mosunov, A. V.; Sadovskaya, N. V.; Bel'kova, D. A.; Stefanovich, S. Yu.
2018-03-01
The phase formation, specific features, and the dielectric properties of the ceramics of compositions from the region of morphotropic interface in the (Na0.5Bi0.5)TiO3-BaTiO3 system modified by Bi(Mg0.5Ti0.5)O3 and also low-melting additions KCl, NaCl-LiF, CuO, and MnO2 that favor the control of the stoichiometry and the properties of the ceramics have been studied. The ceramics are characterized by ferroelectric phase transitions that are observed as jumps at temperatures near 400 K and maxima at T m 600 K in the temperature dependences of the dielectric permittivity. The phase transitions at 400 K demonstrate the relaxor behavior indicating the existence of polar domains in the nonpolar matrix. An increase in the content of Bi(Mg0.5Ti0.5)O3 favor a decrease in the electrical conductivity and dielectric losses of the samples, and the relative dielectric permittivity at room temperature ɛrt is retained quite high, achieving the highest values ɛrt = 1080-1350 in the ceramics modified with KCl.
Behavior of sheets from Ti-alloys by rolling and heat treatment
NASA Astrophysics Data System (ADS)
Isaenkova, M.; Perlovich, Yu.; Fesenko, V.; Gritskevich, M.; Stolbov, S.; Zaripova, M.
2017-10-01
Sheets from single- and two-phase Ti-alloys (VT1-0, Ti-22Nb-9%Zr and VT-16) were rolled at the room temperature up to various deformation degrees and annealed at temperatures 500-900 °C. The regularities of texture formation in both phases were established. In the technically pure Ti (VT1-0) with the single α-Ti phase the final stable texture component is (0001)±30-40°ND-TD<101 ¯0>. In the two-phase alloy the reorientation of basal axes of α-Ti occurs by the same trajectories as in the single phase alloy. However, in the case of two-phase alloy texture development in α-Ti stops at the intermediate stage, when this texture consists of components with rolling planes (0001)±15-20°ND-RD and (0001)±30-40°ND-TD. The stability of the first components can be provided both by the mutually balanced operation of pyramidal and basal slip systems, activity of which remains at the high deformation degree of two-phase alloy, and by the dynamic α↔β phase transformations, taking place in the distorted structures of α- and β-phases in the course of its cold rolling. At recrystallization of technically pure Ti the basal component disappears in its texture. At the same time, prismatic axes turn by angles 20÷30° depending on the heating rate of the rolled sheet and annealing temperature. At recrystallization of the two-phase Ti-alloy prismatic axes of its α-grains doesn't turn relative to their positions in the rolling texture, as it occurs in the single-phase alloy. This fact indicates to some alternative mode of arising new recrystallized grains in two-phase alloys.
NASA Astrophysics Data System (ADS)
Opie, Saul
Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic strain rates and pressures. In particular, little stress-strain constitutive information at large strain rates and pressures is available for transient material phases formed at high pressures, and the continuum effect the phase transformation process has on the instability evolution. In this work, a phase-aware isotropic strength model is developed and partially validated with a novel RM-based instability experiment in addition to existing data from the literature. With the validated material model additional simulations are performed to provide insight into to the role that robust material constitutive behavior (e.g., pressure, temperature, rate dependence) has on RM instability and how RM instability experiments can be used to characterize and validated expected material behavior. For phase aware materials, particularly iron in this work, the simulations predict a strong dependence on the Atwood number that single phase materials do not have. At Atwood numbers close to unity, and pressures in the high pressure stability region, the high pressure phase dominates the RM evolution. However, at Atwood numbers close to negative one, the RM evolution is only weakly affected by the high-pressure phase even for shocks well above the phase transformation threshold. In addition to RM evolution this work looks at the closely related shock front perturbation evolution. Existing analytical models for isentropic processes in gases and liquids are modified for metal equation of states and plastic behavior for the first time. It is found that the presence of a volume collapsing phase transformation with increased pressure causes shock front perturbations to decay sooner, while plastic strength has the opposite effect which is significantly different from the effect viscosity has. These results suggest additional experimental setups to validate material models, or relevant material parameters that can be optimized for system design objectives, e.g., minimize feed through perturbations in inertial confinement fusion capsules.
Uniaxial Pressure and High-Field Effects on Superconducting Single-Crystal CeCoIn5
NASA Astrophysics Data System (ADS)
Johnson, Scooter David
We have measured the a.c. susceptibility response of single-crystal CeCoIn 5 under uniaxial pressure up to 4.07 kbar and in d.c. field parallel to the c axis up to 5 T. From these measurements we report on several pressure and field characteristics of the superconducting state. The results are divided into 3 chapters: (1) We find a non-linear dependence of the superconducting transition temperature Tc on pressure, with a maximum close to 2 kbar. The transition also broadens significantly as pressure increases. We model the broadening as a product of non-uniform pressure and discuss its implications for the pressure dependence of the transition temperature. We relate our measurements to previous theoretical work. (2) We provided evidence and pressure dependence for the FFLO phase with field and pressure along the c axis. The FFLO phase boundary is temperature independent and tracks with the suppression to lower fields of the upper critical field with pressure. We also report the strengthening of the Pauli-limited field in this orientation by calculating the increase of the orbitally-limited field with uniaxial pressure. (3) We extract the critical current using the Bean critical state model and compare it to the expected Ginzberg-Landau behavior. We find that the exponent of the critical current depends on uniaxial pressure and d.c. field. Within a d.c. field the pressure dependence of the exponent may be obscured by the field effect. We have also measured resistivity, susceptibility, and specific heat of high-quality single-crystal YIn3 below 1 K and present a refinement of Tc from previous measurements. We make suggestions for experimental comparisons to the heavy fermion family CeXIn5, (X = Rh, Ir, Co) and the parent compound CeIn3.
Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography.
Gedik, Nuh; Yang, Ding-Shyue; Logvenov, Gennady; Bozovic, Ivan; Zewail, Ahmed H
2007-04-20
Nonequilibrium phase transitions, which are defined by the formation of macroscopic transient domains, are optically dark and cannot be observed through conventional temperature- or pressure-change studies. We have directly determined the structural dynamics of such a nonequilibrium phase transition in a cuprate superconductor. Ultrafast electron crystallography with the use of a tilted optical geometry technique afforded the necessary atomic-scale spatial and temporal resolutions. The observed transient behavior displays a notable "structural isosbestic" point and a threshold effect for the dependence of c-axis expansion (Deltac) on fluence (F), with Deltac/F = 0.02 angstrom/(millijoule per square centimeter). This threshold for photon doping occurs at approximately 0.12 photons per copper site, which is unexpectedly close to the density (per site) of chemically doped carriers needed to induce superconductivity.
Phase structure of the Polyakov-quark-meson model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, B.-J.; Pawlowski, J. M.; Wambach, J.
2007-10-01
The relation between the deconfinement and chiral phase transition is explored in the framework of a Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and N{sub f}-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral condensate as function of temperature and quark chemical potential is obtained by minimizing the grand canonical thermodynamic potential of the system. The effect ofmore » the Polyakov loop dynamics on the chiral phase diagram and on several thermodynamic bulk quantities is presented.« less
Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.
Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong
2015-07-29
Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.
Optical and Transport Properties of Energetic Materials
NASA Astrophysics Data System (ADS)
Choi, Chang Sun
1990-01-01
The densities of Hydroxyl ammonium nitrate (HAN) based fast reacting liquids were measured as a function of pressure (up to 4.83 kbars) at several temperatures and the results of density measurements were fit to the Tait equation. Also the shear viscosities of this liquid were measured as a function of both pressure and temperature. The free volume model was applied to explain behavior of the shear viscosity with the assumption that only the reference temperature (T_0) in the Fulcher (1925), WLF (Williams, Landel, and Ferry) and Angell equations depends on pressure. The general relation to predict viscosity of this liquid at any temperature and pressure was derived and the difference between expected and measured values are about 5%. The phase diagrams of the HAN solution, Triethanol ammonium nitrate (TEAN) solution and LP-1845 were obtained through Differential Scanning Calorimetry (DSC) measurements. The TEAN solution has a eutectic temperature in the vicinity of 260^circK. The measured phase diagrams are in good agreement with the calculated phase diagrams. The TEAN solutions show a large supercooling effect. Some phase separation was observed in the TEAN solutions and this separation was believed to be due to eutectic composition of the TEAN solution. The expected freezing temperature of LP-1845 was almost the same with the calculated T_0 from the viscosity data. Raman spectra from the HAN solution, TEAN solution and LP-1845 were measured. Every peak in the spectra was assigned. These solutions show various interactions, such as ion-ion pairing and ion-water interaction. The strongest peak was a NO_3^- symmetric stretch mode at 1050 cm^{-1}. The time correlation functions were calculated from the Raman spectra of the 1050 cm^{-1} peak. The correlation time, which can be calculated from the linewidth, become shorter with decreasing temperatures and with increasing concentrations. The Kubo's stochastic theory explains the correlation functions very well if the solution is relatively dilute. The pressure dependence of the reaction rate was estimated by using the density data and Raman peak shift data.
Quantum path integral simulation of isotope effects in the melting temperature of ice Ih.
Ramírez, R; Herrero, C P
2010-10-14
The isotope effect in the melting temperature of ice Ih has been studied by free energy calculations within the path integral formulation of statistical mechanics. Free energy differences between isotopes are related to the dependence of their kinetic energy on the isotope mass. The water simulations were performed by using the q-TIP4P/F model, a point charge empirical potential that includes molecular flexibility and anharmonicity in the OH stretch of the water molecule. The reported melting temperature at ambient pressure of this model (T=251 K) increases by 6.5±0.5 and 8.2±0.5 K upon isotopic substitution of hydrogen by deuterium and tritium, respectively. These temperature shifts are larger than the experimental ones (3.8 and 4.5 K, respectively). In the classical limit, the melting temperature is nearly the same as that for tritiated ice. This unexpected behavior is rationalized by the coupling between intermolecular interactions and molecular flexibility. This coupling makes the kinetic energy of the OH stretching modes larger in the liquid than in the solid phase. However, the opposite behavior is found for intramolecular modes, which display larger kinetic energy in ice than in liquid water.
Kometani, Noritsugu; Tanabe, Masahiro; Su, Lei; Yang, Kun; Nishinari, Katsuyoshi
2015-06-04
Thermoreversible sol-gel transitions of agarose and methylcellulose (MC) aqueous solutions on isobaric cooling or heating under high pressure up to 400 MPa have been investigated by in situ observations of optical transmittance and falling-ball experiments. For agarose, which undergoes the gelation on cooling, the application of pressure caused a gradual rise in the cloud-point temperature over the whole pressure range examined, which is almost consistent with the pressure dependence of gelling temperature estimated by falling-ball experiments, suggesting that agarose gel is stabilized by compression and that the gelation occurs nearly in parallel with phase separation under ambient and high-pressure conditions. For MC, which undergoes the gelation on heating, the cloud-point temperature showed a slight rise with an initial elevation of pressure up to ∼150 MPa, whereas it showed a marked depression above 200 MPa. In contrast, the gelling temperature of MC, which is nearly identical to the cloud-point temperature at ambient pressure, showed a monotonous rise with increasing pressure up to 350 MPa, which means that MC undergoes phase separation prior to gelation on heating under high pressure above 200 MPa. Similar results were obtained for the melting process of MC gel on cooling. The unique behavior of the sol-gel transition of MC under high pressure has been interpreted in terms of the destruction of hydrophobic hydration by compression.
Cyclic phase change in a cylindrical thermal energy storage capsule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, M.; Mujumdar, A.S.; Weber, M.E.
1983-12-01
This paper is concerned with a practical melting/freezing problem in conjunction with the more realistic case of a cyclic phase change thermal energy storage device. In this model the phase change medium is encapsulated in long cylindrical tubes, the surface temperature of which is allowed to vary sinusoidally with time about the discrete freezing temperature. Initial temperature of the medium is assumed to be constant at a temperature above or below the freezing/melting temperature. Natural convection in the melt is assumed to be negligible and the variations in the depth of freezing and/or melting in each half cycle is ignored.more » Depending on the half-cycle parameters the problem is simplified to either freezing or melting. The governing one-dimensional heat diffusion equations for both phases are solved by the Finite Integral Transform techniques. The kernels for the transformation are the time-dependent eigen functions separately defined for each phases. This extended transform method can accomodate any time-dependent surface temperature variation. The application of the transform generated a series of coupled, nonlinear first order differential equations, which are solved by Runge Kutta-Verner fifth and sixth order method. Dimensionless solutions of temperature variations in both phases, fusion front position and the fraction solidified (or melted) are displayed graphically to aid in practical calculations. For the special case of a constant surface temperature, comparisons are made between the present results and the existing integral and purely numerical results. The results are found to compare favourably. Results for fractional solidification (or melting and interface position are also compared with the simple Conduction Shape Factor method, after allowing for the time-dependent boundary conditions. Once again the results agree reasonably well.« less
Xu, Jiageng; Chen, Yu; Tan, Zhi; Nie, Rui; Wang, Qingyuan; Zhu, Jianguo
2018-01-01
A sort of tungsten/chromium(W/Cr) co-doped bismuth titanate (BIT) ceramics (Bi4Ti2.95W0.05O12.05 + 0.2 wt % Cr2O3, abbreviate to BTWC) are ordinarily sintered between 1050 and 1150 °C, and the indentation behavior and mechanical properties of ceramics sintered at different temperatures have been investigated by both nanoindentation and microindentation technology. Firstly, more or less Bi2Ti2O7 grains as the second phase were found in BTWC ceramics, and the grain size of ceramics increased with increase of sintering temperatures. A nanoindentation test for BTWC ceramics reveals that the testing hardness of ceramics decreased with increase of sintering temperatures, which could be explained by the Hall–Petch equation, and the true hardness could be calculated according to the pressure-state-response (PSR) model considering the indentation size effect, where the value of hardness depends on the magnitude of load. While, under the application of microsized Vickers, the sample sintered at a lower temperature (1050 °C) gained four linearly propagating cracks, however, they were observed to shorten in the sample sintered at a higher temperature (1125 °C). Moreover, both the crack deflection and the crack branching existed in the latter. The hardness and the fracture toughness of BTWC ceramics presented a contrary variational tendency with increase of sintering temperatures. A high sintering tends to get a lower hardness and a higher fracture toughness, which could be attributed to the easier plastic deformation and the stronger crack inhibition of coarse grains, respectively, as well as the toughening effect coming from the second phase. PMID:29584677
NASA Astrophysics Data System (ADS)
Banerjee, Krishnarjun; Asthana, Saket; Karuna Kumari, P.; Niranjan, Manish K.
2018-03-01
Lead-free polycrystalline K1/2Bi1/2TiO3 was prepared by the solid state reaction method. Experimentally observed frequencies of Raman modes signified its tetragonal phase, and matched reasonably well with theoretically calculated values. The relaxor nature of this material was observed in the temperature-dependent real part of the permittivity and dielectric loss curve. The value of the degree of diffuseness (1.99) was estimated from the modified Curie-Weiss law confirmed its relaxor behavior. The validation of this behavior was justified by the Vogel-Fülcher relation. The shoulder in the imaginary part of the modulus (M″) and permittivity (ɛ″) spectra revealed the presence of polar nano regions (PNRs). The evidence of PNRs was detectable above freezing temperatures, and became weaker when the temperature exceeded T m (temperature at the maximum of the dielectric constant). The electric field-induced polarization and strain curve showed the stabilization of the long-range ferroelectric order of the specimen at room temperature. Moreover, the discharge energy density and strain were 0.46 J cm-3 and 0.12%, respectively, at the maximum application of the electric field of 115 kV cm-1 at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirosawa, Kazu; Fujii, Kenta; Ueki, Takeshi
Here, we utilized small-angle neutron scattering (SANS) to quantitatively characterize the LCST-type phase behavior of the poly(benzyl methacrylate) (PBnMA) derivative poly(2-phenylethyl methacrylate) (PPhEtMA) in the deuterated ionic liquid (IL) d 8-1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (d 8-[C 2mIm +][TFSA -]). The SANS curves showed a discontinuous change from those characteristics of dispersed polymer chains to those of large aggregates of PPhEtMA chains suspended in the IL solution, indicating that phase separation occurs discontinuously at T c. We also evaluated the enthalpic and entropic contributions to the effective interaction parameter χ eff of PPhEtMA in [C 2mIm +][TFSA -] and compared them with thosemore » of PBnMA. The absolute value of the enthalpic contribution observed for PPhEtMA was smaller than that for PBnMA. This difference in the enthalpic term can be attributed to the unfavorable interaction between the IL and the alkyl group in the side chain of PPhEtMA. In addition, the temperature dependence of χ eff was smaller than the previously reported value for a thermo-responsive polymer in an aqueous system. Finally, it was found out that the strong dependence of T c on the chemical structure in IL systems originated from the relatively smaller temperature dependence of χ eff.« less
Hirosawa, Kazu; Fujii, Kenta; Ueki, Takeshi; ...
2016-06-17
Here, we utilized small-angle neutron scattering (SANS) to quantitatively characterize the LCST-type phase behavior of the poly(benzyl methacrylate) (PBnMA) derivative poly(2-phenylethyl methacrylate) (PPhEtMA) in the deuterated ionic liquid (IL) d 8-1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (d 8-[C 2mIm +][TFSA -]). The SANS curves showed a discontinuous change from those characteristics of dispersed polymer chains to those of large aggregates of PPhEtMA chains suspended in the IL solution, indicating that phase separation occurs discontinuously at T c. We also evaluated the enthalpic and entropic contributions to the effective interaction parameter χ eff of PPhEtMA in [C 2mIm +][TFSA -] and compared them with thosemore » of PBnMA. The absolute value of the enthalpic contribution observed for PPhEtMA was smaller than that for PBnMA. This difference in the enthalpic term can be attributed to the unfavorable interaction between the IL and the alkyl group in the side chain of PPhEtMA. In addition, the temperature dependence of χ eff was smaller than the previously reported value for a thermo-responsive polymer in an aqueous system. Finally, it was found out that the strong dependence of T c on the chemical structure in IL systems originated from the relatively smaller temperature dependence of χ eff.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xingliang; Zhang, Zhicheng; Endrizzi, Francesco
2015-06-01
The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Komplexes) has been demonstrated in several pilot-scale operations to be effective at separating trivalent actinides (An 3+) from trivalent lanthanides (Ln 3+). However, fundamental studies have revealed undesired aspects of TALSPEAK, such as the significant partitioning of Na +, lactic acid, and water into the organic phase, thermodynamically unpredictable pH dependence, and the slow extraction kinetics. In the modified TALSPEAK process, the combination of the aqueous holdback complexant HEDTA (N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid) with the extractant HEH[EHP] (2-ethyl(hexyl) phosphonic acid mono-2-ethylhexyl ester) in the organic phase has been found tomore » exhibit a nearly flat pH dependence between 2.5 and 4.5 and more rapid phase transfer kinetics for the heavier lanthanides. To help understand the speciation of Ln 3+ and An 3+ in the modified TALSPEAK, systematic studies are underway on the thermodynamics of major reactions in the HEDTA system under conditions relevant to the process (e.g., higher temperatures). Thermodynamics of the protonation and complexation of HEDTA with Ln 3+ were studied at variable temperatures. Equilibrium constants and enthalpies were determined by a combination of techniques including potentiometry and calorimetry. This paper presents the protonation constants of HEDTA at T = (25 to 70) °C. The potentiometric titrations have demonstrated that, stepwise, the first two protonation constants decrease and the third one slightly increases with the increase of temperature. This trend is in good agreement with the enthalpy of protonation directly determined by calorimetry. The results of NMR analysis further confirm that the first two protonation reactions occur on the diamine nitrogen atoms, while the third protonation reaction occurs on the oxygen of a carboxylate group. These data, in conjunction with the thermodynamic parameters of Ln 3+/An 3+ complexes with HEDTA at different temperatures, will help to predict the speciation and temperature-dependent behavior of Ln 3+/An 3+ in the modified TALSPEAK process.« less
Monazite-type SrCr O 4 under compression
Gleissner, J.; Errandonea, Daniel; Segura, A.; ...
2016-10-20
We report a high-pressure study of monoclinic monazite-type SrCrO 4 up to 26 GPa. Therein we combined x-ray diffraction, Raman, and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO 4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO 4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO 4. We determined the pressure evolution of the band gap for the low- and high-pressure phasesmore » as well as the frequencies and pressure dependencies of the Raman-active modes. In all three phases most Raman modes harden under compression, however the presence of low-frequency modes which gradually soften is also detected. In monazite-type SrCrO 4, the band gap blueshifts under compression, but the transition to the scheelite phase causes an abrupt decrease of the band gap in SrCrO 4. Calculations showed good agreement with experiments and were used to better understand the experimental results. From x-ray-diffraction studies and calculations we determined the pressure dependence of the unit-cell parameters of the different phases and their ambient-temperature equations of state. The results are compared with the high-pressure behavior of other monazites, in particular PbCrO 4. A comparison of the high-pressure behavior of the electronic properties of SrCrO 4 (SrWO 4) and PbCrO 4 (PbWO 4) will also be made. Lastly, the possible occurrence of a third structural phase transition is discussed.« less
Exchange bias in bulk layered hydroxylammonium fluorocobaltate (NH₃OH)₂CoF₄.
Jagličić, Z; Zentková, M; Mihalik, M; Arnold, Z; Drofenik, M; Kristl, M; Dojer, B; Kasunič, M; Golobič, A; Jagodič, M
2012-02-08
The magnetic properties of layered hydroxylammonium fluorocobaltate (NH(3)OH)(2)CoF(4) were investigated by measuring its dc magnetic susceptibility in zero-field-cooled (ZFC) and field-cooled (FC) regimes, its frequency dependent ac susceptibility, its isothermal magnetization curves after ZFC and FC regimes, and its heat capacity. Effects of pressure and magnetic field on magnetic phase transitions were studied by susceptibility and heat capacity measurements, respectively. The system undergoes a magnetic phase transition from a paramagnetic state to a canted antiferromagnetic state exhibiting a weak ferromagnetic behavior at T(C) = 46.5 K and an antiferromagnetic transition at T(N) = 2.9 K. The most spectacular manifestation of the complex magnetic behavior in this system is a shift of the isothermal magnetization hysteresis loop in a temperature range below 20 K after the FC regime-an exchange bias phenomenon. We investigated the exchange bias as a function of the magnetic field during cooling and as a function of temperature. The observed exchange bias was attributed to the large exchange anisotropy which exists due to the quasi-2D structure of the layered (NH(3)OH)(2)CoF(4) material.
A stress-induced phase transition model for semi-crystallize shape memory polymer
NASA Astrophysics Data System (ADS)
Guo, Xiaogang; Zhou, Bo; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2014-03-01
The developments of constitutive models for shape memory polymer (SMP) have been motivated by its increasing applications. During cooling or heating process, the phase transition which is a continuous time-dependent process happens in semi-crystallize SMP and the various individual phases form at different temperature and in different configuration. Then, the transformation between these phases occurred and shape memory effect will emerge. In addition, stress applied on SMP is an important factor for crystal melting during phase transition. In this theory, an ideal phase transition model considering stress or pre-strain is the key to describe the behaviors of shape memory effect. So a normal distributed model was established in this research to characterize the volume fraction of each phase in SMP during phase transition. Generally, the experiment results are partly backward (in heating process) or forward (in cooling process) compared with the ideal situation considering delay effect during phase transition. So, a correction on the normal distributed model is needed. Furthermore, a nonlinear relationship between stress and phase transition temperature Tg is also taken into account for establishing an accurately normal distributed phase transition model. Finally, the constitutive model which taking the stress as an influence factor on phase transition was also established. Compared with the other expressions, this new-type model possesses less parameter and is more accurate. For the sake of verifying the rationality and accuracy of new phase transition and constitutive model, the comparisons between the simulated and experimental results were carried out.
Investigations of HID Lamp Electrodes under HF Operation
NASA Astrophysics Data System (ADS)
Reinelt, Jens; Langenscheidt, Oliver; Westermeier, Michael; Mentel, Juergen; Awakowicz, Peter
2007-10-01
Low pressure lamps are operated many years at high frequencies to improve the efficiency of these lamps and drivers. For high pressure discharge lamps this operation mode has not been installed yet. Generally it can be assumed that there are changes in the electrode physics which may lead to an undesired lamp behavior if HID lamps are operated at a high frequency. To gain insights into these fundamental changes the so called Bochum Model Lamp is used. It is an easy system which allows a fundamental research on HID electrode behavior and the near electrode region without the occurrence of acoustic resonances. For the investigation phase resolved photography, pyrometry and spectrometry is used. The presented results describe changes in the electrode temperature and changes in the kind of arc attachment on the electrodes (diffuse and spot mode) depending on frequency. Also measurements of the Electrode-Sheath-Voltage (ESV), depending on frequency, are presented.
Final Report Auto/Steel Partnership Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cady, C.M.; Chen, S.R.; Gray, G.T. III
1999-06-09
This is the final report in which effects of strain-rate, temperature, and stress-state on the yield stress and the strain hardening behavior of many common steels used in automobile construction were investigated. The yield and flow stresses were found to exhibit very high rate sensitivities for most of the steels while the hardening rates were found to be insensitive to strain rate and temperature at lower temperatures or at higher strain rates. This behavior is consistent with the observation that overcoming the intrinsic Peierls stress is shown to be the rate-controlling mechanism in these materials at low temperatures. The dependencemore » of the yield stress on temperature and strain rate was found to decrease while the strain hardening rate increased. The Mechanical Threshold Stress (MTS) model was adopted to model the stress-strain behavior of the steels. Parameters for the constitutive relations were derived for the MTS model and also for the Johnson-Cook (JC) and the Zerilli-Armstrong (ZA) models. The results of this study substantiate the applicability of these models for describing the high strain-rate deformation of these materials. The JC and ZA models, however, due to their use of a power strain hardening law were found to yield constitutive relations for the materials which are strongly dependent on the range of strains for which the models were optimized.« less
Liquid Fuels: Pyrolytic Degradation and Fire Spread Behavior as Influenced by Buoyancy
NASA Technical Reports Server (NTRS)
Ross, Howard D. (Technical Monitor); Yeboah, Yaw D.
2003-01-01
This project was conducted by the Combustion and Emission Control Lab in the Engineering Department at Clark Atlanta University under NASA Grant No. NCC3-707. The work aimed at providing data to supplement the ongoing NASA research activities on flame spread across liquid pools by providing flow visualization and velocity measurements especially in the gas phase and gas-liquid interface. During this investigation, the detailed physics of flame spread across liquid pools was revealed using particle image velocimetry (PIV), 3-dimensional Laser Doppler velocimetry (LDV) and high-speed video imaging system (HSVS). Flow fields (front and side views) of both the liquid and gas phases were visually investigated for the three subflash regimes of flame spread behavior. Some interesting findings obtained from the front and side views on flame spread across butanol pools are presented. PIV results showed the size of the transient vortex in the liquid phase near the flame front varied with the initial pool temperature. The transient vortex ahead of the flame front in the gas phase was, for the first time, clearly observed located just within 0-3 mm above the liquid surface and its size was dependent on the initial pool temperature. We calculated the flow velocity at 1 mm below the liquid surface near the flame front and inferred the generation mechanism of the vortex in the gas phase. Finally, after comparison of the flow velocity of the liquid surface and the flame spread rate, a reasonable explanation to the formation mechanism of the pulsating characteristic was proposed. This explanation is compatible with the previous numerical calculations and deductions.
NASA Astrophysics Data System (ADS)
Yurtseven, Hamit; Yılmaz, Aygül
2016-06-01
We study the temperature dependence of the heat capacity Cp for the pure CH4 and the coadsorbed CH4/CCl4 on graphite near the melting point. The heat capacity peaks are analyzed using the experimental data from the literature by means of the power-law formula. The critical exponents for the heat capacity are deduced below and above the melting point for CH4 (Tm = 104.8 K) and CH4/CCl4 (Tm = 99.2 K). Our exponent values are larger as compared with the predicted values of some theoretical models exhibiting second order transition. Our analyses indicate that the pure methane shows a nearly second order (weak discontinuity in the heat capacity peak), whereas the transition in coadsorbed CH4/CCl4 is of first order (apparent discontinuity in Cp). We also study the T - X phase diagram of a two-component system of CH3CCl3+CCl4 using the Landau phenomenological model. Phase lines of the R+L (rhombohedral+liquid) and FCC+L (face-centred cubic + liquid) are calculated using the observed T - X phase diagram of this binary mixture. Our results show that the Landau mean field theory describes the observed behavior of CH3CCl3+CCl4 adequately. From the calculated T - X phase diagram, critical behavior of some thermodynamic quantities can be predicted at various temperatures and concentrations (CCl4) for a binary mixture of CH3CCl3+CCl4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, T. Maurice; Robinson, Neil J.; Tsvelik, Alexei M.
Here, the high-temperature normal state of the unconventional cuprate superconductors has resistivity linear in temperature T, which persists to values well beyond the Mott-Ioffe-Regel upper bound. At low temperatures, within the pseudogap phase, the resistivity is instead quadratic in T, as would be expected from Fermi liquid theory. Developing an understanding of these normal phases of the cuprates is crucial to explain the unconventional superconductivity. We present a simple explanation for this behavior, in terms of the umklapp scattering of electrons. This fits within the general picture emerging from functional renormalization group calculations that spurred the Yang-Rice-Zhang ansatz: Umklapp scatteringmore » is at the heart of the behavior in the normal phase.« less