Sample records for template functional monomer

  1. Rational computational design for the development of andrographolide molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Krishnan, Hemavathi; Islam, K. M. Shafiqul; Hamzah, Zainab; Ahmad, Mohd Noor

    2017-10-01

    Andrographolide is a popular medicinal compound derived from Andrographis Paniculata (AP). Molecularly Imprint Polymer (MIP) is a "Lock and Key" approach, where MIP is the lock and Andrographolide is the key which fits to the MIP lock by both physically and chemically. MIP will be used as selective extraction tool to enrich Andrographolide bioactive compound. Pre-polymerization step is crucial to design MIP. This work investigates molecular interactions and the Gibbs free binding energies on the development of MIP. The structure of Andrographolide (template) and functional monomers were drawn in HyperChem 8.0.10. A hybrid quantum chemical model was used with a few functional monomers. Possible conformations of template and functional monomer as 1:n (n < 4) were designed and simulated to geometrically optimize the complex to the lowest energy in gas phase. The Gibbs free binding energies of each conformation were calculated using semi-empirical PM3 simulation method. Results proved that functional monomers that contain carboxylic group shows higher binding energy compared to those with amine functional group. Itaconic acid (IA) chosen as the best functional monomer at optimum ratio (1:3) of template: monomer to prepare andrographolide MIP. This study demonstrates the importance of studying intermolecular interaction among template, functional monomer and template-monomer ratio in developing MIP.

  2. A Functional Monomer Is Not Enough: Principal Component Analysis of the Influence of Template Complexation in Pre-Polymerization Mixtures on Imprinted Polymer Recognition and Morphology

    PubMed Central

    Golker, Kerstin; Karlsson, Björn C. G.; Rosengren, Annika M.; Nicholls, Ian A.

    2014-01-01

    In this report, principal component analysis (PCA) has been used to explore the influence of template complexation in the pre-polymerization phase on template molecularly imprinted polymer (MIP) recognition and polymer morphology. A series of 16 bupivacaine MIPs were studied. The ethylene glycol dimethacrylate (EGDMA)-crosslinked polymers had either methacrylic acid (MAA) or methyl methacrylate (MMA) as the functional monomer, and the stoichiometry between template, functional monomer and crosslinker was varied. The polymers were characterized using radioligand equilibrium binding experiments, gas sorption measurements, swelling studies and data extracted from molecular dynamics (MD) simulations of all-component pre-polymerization mixtures. The molar fraction of the functional monomer in the MAA-polymers contributed to describing both the binding, surface area and pore volume. Interestingly, weak positive correlations between the swelling behavior and the rebinding characteristics of the MAA-MIPs were exposed. Polymers prepared with MMA as a functional monomer and a polymer prepared with only EGDMA were found to share the same characteristics, such as poor rebinding capacities, as well as similar surface area and pore volume, independent of the molar fraction MMA used in synthesis. The use of PCA for interpreting relationships between MD-derived descriptions of events in the pre-polymerization mixture, recognition properties and morphologies of the corresponding polymers illustrates the potential of PCA as a tool for better understanding these complex materials and for their rational design. PMID:25391043

  3. A functional monomer is not enough: principal component analysis of the influence of template complexation in pre-polymerization mixtures on imprinted polymer recognition and morphology.

    PubMed

    Golker, Kerstin; Karlsson, Björn C G; Rosengren, Annika M; Nicholls, Ian A

    2014-11-10

    In this report, principal component analysis (PCA) has been used to explore the influence of template complexation in the pre-polymerization phase on template molecularly imprinted polymer (MIP) recognition and polymer morphology. A series of 16 bupivacaine MIPs were studied. The ethylene glycol dimethacrylate (EGDMA)-crosslinked polymers had either methacrylic acid (MAA) or methyl methacrylate (MMA) as the functional monomer, and the stoichiometry between template, functional monomer and crosslinker was varied. The polymers were characterized using radioligand equilibrium binding experiments, gas sorption measurements, swelling studies and data extracted from molecular dynamics (MD) simulations of all-component pre-polymerization mixtures. The molar fraction of the functional monomer in the MAA-polymers contributed to describing both the binding, surface area and pore volume. Interestingly, weak positive correlations between the swelling behavior and the rebinding characteristics of the MAA-MIPs were exposed. Polymers prepared with MMA as a functional monomer and a polymer prepared with only EGDMA were found to share the same characteristics, such as poor rebinding capacities, as well as similar surface area and pore volume, independent of the molar fraction MMA used in synthesis. The use of PCA for interpreting relationships between MD-derived descriptions of events in the pre-polymerization mixture, recognition properties and morphologies of the corresponding polymers illustrates the potential of PCA as a tool for better understanding these complex materials and for their rational design.

  4. Preparation of "dummy" l-phenylalanine molecularly imprinted microspheres by using ionic liquid as a template and functional monomer.

    PubMed

    Li, Ji; Hu, Xiaoling; Guan, Ping; Song, Dongmen; Qian, Liwei; Du, Chunbao; Song, Renyuan; Wang, Chaoli

    2015-07-07

    In this study, dummy imprinting technology was employed for the preparation of l-phenylalanine-imprinted microspheres. Ionic liquids were utilized as both a "dummy" template and functional monomer, and 4-vinylpyridine and ethylene glycol dimethacrylate were used as the assistant monomer and cross-linker, respectively, for preparing a surface-imprinted polymer on poly(divinylbenzene) microspheres. By the results obtained by theoretical investigation, the interaction between the template and monomer complex was improved as compared with that between the template and the traditional l-phenylalanine-imprinted polymer. The batch experiments indicated that the imprinting factor reached 2.5. Scatchard analysis demonstrated that the obtained "dummy" molecularly imprinted microspheres exhibited an affinity of 77.4 M·10 -4 , significantly higher that of a traditional polymer directly prepared by l-phenylalanine, which is in agreement with theoretical results. Competitive adsorption experiments also showed that the molecularly imprinted polymer with the dummy template effectively isolated l-phenylalanine from l-histidine and l-tryptophan with separation factors of 5.68 and 2.68, respectively. All these results demonstrated that the polymerizable ionic liquid as the dummy template could enhance the affinity and selectivity of molecularly imprinted polymer, thereby promoting the development of imprinting technology for biomolecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Virtual imprinting as a tool to design efficient MIPs for photosynthesis-inhibiting herbicides.

    PubMed

    Breton, Florent; Rouillon, Regis; Piletska, Elena V; Karim, Kal; Guerreiro, Antonio; Chianella, Iva; Piletsky, Sergey A

    2007-04-15

    Molecular modelling and computational screening were used to identify functional monomers capable of interacting with several different photosynthesis-inhibiting herbicides. The process involved the design of a virtual library of molecular models of functional monomers containing polymerizable residues and residues able to interact with the template through electrostatic, hydrophobic, Van der Waals forces and dipole-dipole interactions. Each of the entries in the virtual library was probed for its possible interactions with molecular models of the template molecules. It was anticipated that the monomers giving the highest binding score would represent good candidates for the preparation of affinity polymers. Strong interactions were computationally determined between acidic functional monomers like methacrylic acid (MAA) or itaconic acid (IA) with triazines, and between vinylimidazole with bentazone and bromoxynil. Nevertheless, weaker interactions were seen with phenylureas. The corresponding blank polymers were prepared using the selected monomers and tested in the solid phase extraction (SPE) of herbicides from chloroform solutions. A good correlation was found between the binding score of the monomers and the affinities of the corresponding polymers. The use of computationally designed blanks can potentially eliminate the need for molecular imprinting, (adding a template to the monomer mixture to create specific binding sites). Data also showed that some monomers have a natural selectivity for some herbicides, which can be further enhanced by imprinting. Thus, in regard to retention on the blank polymer, we can estimate if the resulting imprinted polymer will be effective or not.

  6. Chiral imprinted polymers as enantiospecific coatings of stir bar sorptive extraction devices.

    PubMed

    Gomez-Caballero, Alberto; Guerreiro, Antonio; Karim, Kal; Piletsky, Sergey; Goicolea, M Aranzazu; Barrio, Ramon J

    2011-10-15

    This paper reports the design of Molecularly Imprinted Polymers (MIP) with affinity towards (S)-citalopram using computational modeling for the selection of functional monomers and monomer:template ratio. Acrylamide was selected as functional monomer and the final complex functional monomer/template resulted in a 3:1 ratio. The polymer was synthesized by radical polymerization initiated by UV onto magnetic stir-bars in order to obtain a stir bar sorptive extraction (SBSE) device capable of selective enantiomeric recognition. After successful template removal, the parameters affecting the SBSE procedure (sample volume, ionic strength, extraction time and pH) were optimized for the effective rebinding of the target analyte. The resultant chirally imprinted polymer based stir-bar was able to selectively extract (S)-citalopram from a racemic mixture in an aqueous media with high specificity (specificity factor 4) between 25 and 500 μgL(-1). The MIP coated stir-bars can have significance for enantiospecific sample pre-concentration and subsequent analysis without the need for any chiral chromatographic separation. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Synthesis and characterization of MAA-based molecularly-imprinted polymer (MIP) with D-glucose template

    NASA Astrophysics Data System (ADS)

    Yanti; Nurhayati, T.; Royani, I.; Widayani; Khairurrijal

    2016-08-01

    In this study, molecularly-imprinted polymer (MIP) was prepared by using a D-glucose template and a methacrylic acid (MAA) functional monomer. The obtained MIP was characterized using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques to study the template imprinting results. For comparison, similar characterizations were also carried out for the respective non imprinted polymer (NIP). It was found that the polymer has semicrystalline structure, with crystallinity degree of the unleached- polymer, the NIP, and the MIP is 62.40%, 62.97%, and 63.47%, respectively. XRD patterns showed that the intensity peaks increases as D-glucose content decreases. The FTIR spectra of the MIP indicate the detail interaction of template and functional monomer.

  8. Preparation of molecular imprinted polymers using bi-functional monomer and bi-crosslinker for solid-phase extraction of rutin.

    PubMed

    Zeng, Huan; Wang, Yuzhi; Liu, Xiaojie; Kong, Jinhuan; Nie, Chan

    2012-05-15

    Molecular imprinted polymers (MIPs) were prepared using rutin as the template, different reagents as the functional monomer and different reagents as the cross-linker by solution polymerization. Several parameters that would influence the performance of MIPs were investigated including the type of functional monomer (single or double) and cross-linker (single or double), and the molar ratio of the template, the functional monomer and the cross-linker. The optimum synthesis conditions of MIPs were found to be bi-monomers (acrylamide-co-2-vinyl pyridine, 3:1) and bi-crosslinker (ethylene glycol dimethacrylate-co-divinylbenzene, 3:1). The ratio of the template, the functional monomer and the cross-linker was found to be 1:6:20. MIPs synthesized under these conditions were filled into the cartridges as the adsorbents of solid-phase extraction (SPE). A competition test was conducted to authenticate the selectivity and the specificity of molecularly imprinted solid-phase extraction (MISPE) for rutin using the mixture solution of standard rutin and its structural analogs including quercetin, naringenin and kaempferol. Compared with purchased SPE including C(18), silica and PCX, MISPE showed better selectivity and enrichment property for rutin in the extracted solutions of Chinese medicinal plants than any others. The mean recoveries were 85.93% (RSD: 3.04%, n=3) for Saururus chinensis (Lour.) Bail and 88.61% (RSD: 3.36%, n=3) for Flos Sophorae, respectively, which indicated that the optimized rutin-MIPs possess the value of practical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Acetic and Acrylic Acid Molecular Imprinted Model Silicone Hydrogel Materials for Ciprofloxacin-HCl Delivery

    PubMed Central

    Hui, Alex; Sheardown, Heather; Jones, Lyndon

    2012-01-01

    Contact lenses, as an alternative drug delivery vehicle for the eye compared to eye drops, are desirable due to potential advantages in dosing regimen, bioavailability and patient tolerance/compliance. The challenge has been to engineer and develop these materials to sustain drug delivery to the eye for a long period of time. In this study, model silicone hydrogel materials were created using a molecular imprinting strategy to deliver the antibiotic ciprofloxacin. Acetic and acrylic acid were used as the functional monomers, to interact with the ciprofloxacin template to efficiently create recognition cavities within the final polymerized material. Synthesized materials were loaded with 9.06 mM, 0.10 mM and 0.025 mM solutions of ciprofloxacin, and the release of ciprofloxacin into an artificial tear solution was monitored over time. The materials were shown to release for periods varying from 3 to 14 days, dependent on the loading solution, functional monomer concentration and functional monomer:template ratio, with materials with greater monomer:template ratio (8:1 and 16:1 imprinted) tending to release for longer periods of time. Materials with a lower monomer:template ratio (4:1 imprinted) tended to release comparatively greater amounts of ciprofloxacin into solution, but the release was somewhat shorter. The total amount of drug released from the imprinted materials was sufficient to reach levels relevant to inhibit the growth of common ocular isolates of bacteria. This work is one of the first to demonstrate the feasibility of molecular imprinting in model silicone hydrogel-type materials. PMID:28817033

  10. On the influence of crosslinker on template complexation in molecularly imprinted polymers: a computational study of prepolymerization mixture events with correlations to template-polymer recognition behavior and NMR spectroscopic studies.

    PubMed

    Shoravi, Siamak; Olsson, Gustaf D; Karlsson, Björn C G; Nicholls, Ian A

    2014-06-12

    Aspects of the molecular-level basis for the function of ethylene glycol dimethacrylate and trimethylolproprane trimethacrylate crosslinked methacrylic acid copolymers molecularly imprinted with (S)-propranolol have been studied using a series of all-component and all-atom molecular dynamics studies of the corresponding prepolymerization systems. The crosslinking agents were observed to contribute to template complexation, and the results were contrasted with previously reported template-recognition behavior of the corresponding polymers. Differences in the extent to which the two crosslinkers interacted with the functional monomer were identified, and correlations were made to polymer-ligand recognition behavior and the results of nuclear magnetic resonance spectroscopic studies studies. This study demonstrates the importance of considering the functional monomer-crosslinker interaction when designing molecularly imprinted polymers, and highlights the often neglected general contribution of crosslinker to determining the nature of molecularly imprinted polymer-template selectivity.

  11. Towards Phosphate Detection in Hydroponics Using Molecularly Imprinted Polymer Sensors.

    PubMed

    Storer, Christopher S; Coldrick, Zachary; Tate, Daniel J; Donoghue, Jack Marsden; Grieve, Bruce

    2018-02-10

    An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N -allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate, and trimethyl phosphate. A cross-interference study between phosphate, nitrate, and sulfate was carried out for the MIP materials using an inductance, capacitance, and resistance (LCR) meter. Capacitance measurements were taken by applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP.

  12. Towards Phosphate Detection in Hydroponics Using Molecularly Imprinted Polymer Sensors

    PubMed Central

    Storer, Christopher S.; Coldrick, Zachary; Donoghue, Jack Marsden

    2018-01-01

    An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N-allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate, and trimethyl phosphate. A cross-interference study between phosphate, nitrate, and sulfate was carried out for the MIP materials using an inductance, capacitance, and resistance (LCR) meter. Capacitance measurements were taken by applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP. PMID:29439386

  13. Single chain technology: Toward the controlled synthesis of polymer nanostructures

    NASA Astrophysics Data System (ADS)

    Lyon, Christopher

    A technique for fabricating advanced polymer nanostructures enjoying recent popularity is the collapse or folding of single polymer chains in highly dilute solution mediated by intramolecular cross-linking. We term the resultant structures single-chain nanoparticles (SCNP). This technique has proven particularly valuable in the synthesis of nanomaterials on the order of 5 -- 20 nm. Many different types of covalent and non-covalent chemistries have been used to this end. This dissertation investigates the use of so-called single-chain technology to synthesize nanoparticles using modular techniques that allow for easy incorporation of functionality or special structural or characteristic features. Specifically, the synthesis of linear polymers functionalized with pendant monomer units and the subsequent intramolecular polymerization of these monomer units is discussed. In chapter 2, the synthesis of SCNP using alternating radical polymerization is described. Polymers functionalized with pendant styrene and stilbene groups are synthesized via a modular post-polymerization Wittig reaction. These polymers were exposed to radical initiators in the presence (and absence) of maleic anhydride and other electron deficient monomers in order to form intramolecular cross-links. Chapter 3 discusses templated acyclic diene metathesis (ADMET) polymerization using single-chain technology, starting with the controlled ring-opening polymerization of a glycidyl ether functionalized with an ADMET monomer. This polymer was then exposed to Grubbs' catalyst to polymerize the ADMET monomer units. The ADMET polymer was hydrolytically cleaved from the template and separated. Upon characterization, it was found that the daughter ADMET polymer had a similar degree of polymerization, but did not retain the low dispersity of the template. Chapter 4 details the synthesis of aldehyde- and diol-functionalized polymers toward the synthesis of SCNP containing dynamic, acid-degradable acetal cross-links. SCNP fabrication with these materials is beyond the scope of this dissertation.

  14. Characterization of molecularly imprinted polymers using a new polar solvent titration method.

    PubMed

    Song, Di; Zhang, Yagang; Geer, Michael F; Shimizu, Ken D

    2014-07-01

    A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non-imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non-imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Computational design and fabrication of core-shell magnetic molecularly imprinted polymer for dispersive micro-solid-phase extraction coupled with high-performance liquid chromatography for the determination of rhodamine 6G.

    PubMed

    Xie, Jin; Xie, Jie; Deng, Jian; Fang, Xiangfang; Zhao, Haiqing; Qian, Duo; Wang, Hongjuan

    2016-06-01

    A novel core-shell magnetic nano-adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro-solid-phase extraction followed by determination of rhodamine 6G using high-performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m-aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (3(4) ) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid-base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano-adsorbent was successfully applied to dispersive micro-solid-phase extraction coupled to high-performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0-99.1, 89.5-92.7, and 86.9-105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Template-based modeling and ab initio refinement of protein oligomer structures using GALAXY in CAPRI round 30.

    PubMed

    Lee, Hasup; Baek, Minkyung; Lee, Gyu Rie; Park, Sangwoo; Seok, Chaok

    2017-03-01

    Many proteins function as homo- or hetero-oligomers; therefore, attempts to understand and regulate protein functions require knowledge of protein oligomer structures. The number of available experimental protein structures is increasing, and oligomer structures can be predicted using the experimental structures of related proteins as templates. However, template-based models may have errors due to sequence differences between the target and template proteins, which can lead to functional differences. Such structural differences may be predicted by loop modeling of local regions or refinement of the overall structure. In CAPRI (Critical Assessment of PRotein Interactions) round 30, we used recently developed features of the GALAXY protein modeling package, including template-based structure prediction, loop modeling, model refinement, and protein-protein docking to predict protein complex structures from amino acid sequences. Out of the 25 CAPRI targets, medium and acceptable quality models were obtained for 14 and 1 target(s), respectively, for which proper oligomer or monomer templates could be detected. Symmetric interface loop modeling on oligomer model structures successfully improved model quality, while loop modeling on monomer model structures failed. Overall refinement of the predicted oligomer structures consistently improved the model quality, in particular in interface contacts. Proteins 2017; 85:399-407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure.

    PubMed

    Baek, Minkyung; Park, Taeyong; Heo, Lim; Park, Chiwook; Seok, Chaok

    2017-07-03

    Homo-oligomerization of proteins is abundant in nature, and is often intimately related with the physiological functions of proteins, such as in metabolism, signal transduction or immunity. Information on the homo-oligomer structure is therefore important to obtain a molecular-level understanding of protein functions and their regulation. Currently available web servers predict protein homo-oligomer structures either by template-based modeling using homo-oligomer templates selected from the protein structure database or by ab initio docking of monomer structures resolved by experiment or predicted by computation. The GalaxyHomomer server, freely accessible at http://galaxy.seoklab.org/homomer, carries out template-based modeling, ab initio docking or both depending on the availability of proper oligomer templates. It also incorporates recently developed model refinement methods that can consistently improve model quality. Moreover, the server provides additional options that can be chosen by the user depending on the availability of information on the monomer structure, oligomeric state and locations of unreliable/flexible loops or termini. The performance of the server was better than or comparable to that of other available methods when tested on benchmark sets and in a recent CASP performed in a blind fashion. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.

    PubMed

    Bhawani, Showkat Ahmad; Sen, Tham Soon; Ibrahim, Mohammad Nasir Mohammad

    2018-02-21

    The molecularly imprinted polymers for gallic acid were synthesized by precipitation polymerization. During the process of synthesis a non-covalent approach was used for the interaction of template and monomer. In the polymerization process, gallic acid was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobisisobutyronitrile as an initiator and acetonitrile as a solvent. The synthesized imprinted and non-imprinted polymer particles were characterized by using Fourier-transform infrared spectroscopy and scanning electron microscopy. The rebinding efficiency of synthesized polymer particles was evaluated by batch binding assay. The highly selective imprinted polymer for gallic acid was MIPI1 with a composition (molar ratio) of 1:4:20, template: monomer: cross-linker, respectively. The MIPI1 showed highest binding efficiency (79.50%) as compared to other imprinted and non-imprinted polymers. The highly selective imprinted polymers have successfully extracted about 80% of gallic acid from spiked urine sample.

  19. Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol

    NASA Astrophysics Data System (ADS)

    Fonseca, Matheus C.; Nascimento, Clebio S.; Borges, Keyller B.

    2016-02-01

    The purpose of this Letter was to study for the first time the interaction process of tramadol (TRM) with distinct functional monomers (FM) in the formation of molecular imprinted polymer (MIP), using density functional theory (DFT) calculations at B3LYP/6-31G(d,p). As result we were able to establish that the best MIP synthesis conditions are obtained with acrylic acid as FM in 1:3 molar ratio and with chloroform as solvent. This condition presented the lowest stabilization energy for the pre-polymerization complexes. Besides, the intermolecular hydrogen bonds found between the template molecule and functional monomers play a primary role to the complex stability.

  20. Surface engineering: molecularly imprinted affinity membranes by photograft polymerization

    NASA Astrophysics Data System (ADS)

    Matuschewski, Heike; Sergeyeva, Tatiana A.; Bendig, Juergen; Piletsky, Sergey A.; Ulbricht, Matthies; Schedler, Uwe

    2001-02-01

    Commercial polymer microfiltration membranes were surface-modified with a graft copolymer of a functional monomer and a crosslinker in the presence of a template (triazine-herbicide). As result, membranes covered with a thin layer of imprinted polymer (MIP) selective to the template were obtained. The influence of the polymerization conditions on membrane recognition properties was studied by membranes

  1. Co-operation between Polymerases and Nucleotide Synthetases in the RNA World.

    PubMed

    Kim, Ye Eun; Higgs, Paul G

    2016-11-01

    It is believed that life passed through an RNA World stage in which replication was sustained by catalytic RNAs (ribozymes). The two most obvious types of ribozymes are a polymerase, which uses a neighbouring strand as a template to make a complementary sequence to the template, and a nucleotide synthetase, which synthesizes monomers for use by the polymerase. When a chemical source of monomers is available, the polymerase can survive on its own. When the chemical supply of monomers is too low, nucleotide production by the synthetase is essential and the two ribozymes can only survive when they are together. Here we consider a computational model to investigate conditions under which coexistence and cooperation of these two types of ribozymes is possible. The model considers six types of strands: the two functional sequences, the complementary strands to these sequences (which are required as templates), and non-functional mutants of the two sequences (which act as parasites). Strands are distributed on a two-dimensional lattice. Polymerases replicate strands on neighbouring sites and synthetases produce monomers that diffuse in the local neighbourhood. We show that coexistence of unlinked polymerases and synthetases is possible in this spatial model under conditions in which neither sequence could survive alone; hence, there is a selective force for increasing complexity. Coexistence is dependent on the relative lengths of the two functional strands, the strand diffusion rate, the monomer diffusion rate, and the rate of deleterious mutations. The sensitivity of this two-ribozyme system suggests that evolution of a system of many types of ribozymes would be difficult in a purely spatial model with unlinked genes. We therefore speculate that linkage of genes onto mini-chromosomes and encapsulation of strands in protocells would have been important fairly early in the history of life as a means of enabling more complex systems to evolve.

  2. Kinetic dissection of individual steps in the poly(C)-directed oligoguanylate synthesis from guanosine 5'-monophosphate 2-methylimidazolide

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Bernasconi, C. F.; Alberas, D. J.; Baird, E. E.

    1993-01-01

    A kinetic study of oligoguanylate synthesis on a polycytidylate template, poly(C), as a function of the concentration of the activated monomer, guanosine 5'-monophosphate 2-methylimidazolide, 2-MeImpG, is reported. Reactions were run with 0.005-0.045 M 2-MeImpG in the presence of 0.05 M poly(C) at 23 degrees C. The kinetic results are consistent with a reaction scheme (eq 1) that consists of a series of consecutive steps, each step representing the addition of one molecule of 2-MeImpG to the growing oligomer. This scheme allows the calculation of second-order rate constants for every step by analyzing the time-dependent growth of each oligomer. Computer simulations of the course of reaction based on the determined rate constants and eq 1 are in excellent agreement with the product distributions seen in the HPLC profiles. In accord with an earlier study (Fakhrai, H.; Inoue, T.; Orgel, L. E. Tetrahedron 1984, 40, 39), rate constants, ki, for the formation of the tetramer and longer oligomers up to the 16-mer were found to be independent of length and somewhat higher than k3 (formation of trimer), which in turn is much higher than k2 (formation of dimer). The ki (i > or = 4), k3, and k2 values are not true second-order rate constants but vary with monomer concentration. Mechanistic models for the dimerization (Scheme I) and elongation reactions (Scheme II) are proposed that are consistent with our results. These models take into account that the monomer associates with the template in a cooperative manner. Our kinetic analysis allowed the determination of rate constants for the elementary processes of covalent bond formation between two monomers (dimerization) and between an oligomer and a monomer (elongation) on the template. A major conclusion from our study is that bond formation between two monomer units or between a primer and a monomer is assisted by the presence of additional next-neighbor monomer units. This is consistent with recent findings with hairpin oligonucleotides (Wu, T.; Orgel, L. E. J. Am. Chem. Soc. 1992, 114, 317). Our study is the first of its kind that shows the feasibility of a thorough kinetic analysis of a template-directed oligomerization and provides a detailed mechanistic model of these reactions.

  3. Thermal preparation of lysozyme-imprinted microspheres by using ionic liquid as a stabilizer.

    PubMed

    Qian, Li-Wei; Hu, Xiao-Ling; Guan, Ping; Gao, Bo; Wang, Dan; Wang, Chao-Li; Li, Ji; Du, Chun-Bao; Song, Wen-Qi

    2014-11-01

    Thermal preparation of lysozyme-imprinted microspheres was firstly investigated by using biocompatible ionic liquid (IL) as a thermal stabilizer. The imprinted microspheres made with IL could obtain the good recognition ability to template protein, whereas the imprinted polymer synthesized in the absence of it had a similar adsorption capacity to the non-imprinted one. Furthermore, the preparation conditions of imprinted polymers (MIPs) including the content of IL, temperature of polymerization, and types of functional monomers and crosslinkers were systematically analyzed via circular dichroism spectrum and activity assay. The results illustrated that using hydroxyethyl acrylate as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, 5 % IL as the stabilizer, and 75 °C as the reaction temperature could retain the structure of template protein as much as possible. The obtained MIPs showed excellent recognition ability to the template protein with the separation factor and selectivity factor value of 4.30 and 2.21, respectively. Consequently, it is an effective way to accurately imprint and separate template protein by cooperatively using circular dichroism spectroscopy and activity assay during the preparation of protein MIPs. The method of utilizing IL to stabilizing protein at high temperature would offer a good opportunity for various technologies to improve the development of macromolecules imprinting.

  4. Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach

    DOEpatents

    Gin, D.L.; Fischer, W.M.; Gray, D.H.; Smith, R.C.

    1998-12-15

    A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material. 13 figs.

  5. Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach

    DOEpatents

    Gin, Douglas L.; Fischer, Walter M.; Gray, David H.; Smith, Ryan C.

    1998-01-01

    A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material.

  6. A generic rate equation for catalysed, template-directed polymerisation.

    PubMed

    Hofmeyr, Jan-Hendrik S; Gqwaka, Olona P C; Rohwer, Johann M

    2013-09-02

    Biosynthetic networks link to growth and reproduction processes through template-directed synthesis of macromolecules such as polynucleotides and polypeptides. No rate equation exists that captures this link in a way that it can effectively be incorporated into a single computational model of the overall process. This paper describes the derivation of such a generic steady-state rate equation for catalysed, template-directed polymerisation reactions with varying monomer stoichiometry and varying chain length. The derivation is based on a classical Michaelis-Menten mechanism with template binding and an arbitrary number of chain elongation steps that produce a polymer composed of an arbitrary number of monomer types. The rate equation only requires the identity of the first dimer in the polymer sequence; for the remainder only the monomer composition needs be known. Further simplification of a term in the denominator yielded an equation requiring no positional information at all, only the monomer composition of the polymer; this equation still gave an excellent estimate of the reaction rate provided that either the monomer concentrations are at least half-saturating, or the polymer is very long. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Template-based structure modeling of protein-protein interactions

    PubMed Central

    Szilagyi, Andras; Zhang, Yang

    2014-01-01

    The structure of protein-protein complexes can be constructed by using the known structure of other protein complexes as a template. The complex structure templates are generally detected either by homology-based sequence alignments or, given the structure of monomer components, by structure-based comparisons. Critical improvements have been made in recent years by utilizing interface recognition and by recombining monomer and complex template libraries. Encouraging progress has also been witnessed in genome-wide applications of template-based modeling, with modeling accuracy comparable to high-throughput experimental data. Nevertheless, bottlenecks exist due to the incompleteness of the proteinprotein complex structure library and the lack of methods for distant homologous template identification and full-length complex structure refinement. PMID:24721449

  8. Preparation of Palladium(II) Ion-Imprinted Polymeric Nanospheres and Its Removal of Palladium(II) from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Tao, Hu-Chun; Gu, Yi-Han; Liu, Wei; Huang, Shuai-Bin; Cheng, Ling; Zhang, Li-Juan; Zhu, Li-Li; Wang, Yong

    2017-11-01

    Three kinds of functional monomers, 4-vinylpridine(4-VP), 2-(allylthio)nicotinic acid(ANA), and 2-Acetamidoacrylic acid(AAA), were used to synthetize palladium(II) ion-imprinted polymeric nanospheres (Pd(II) IIPs) via precipitation-polymerization method in order to study the effects of different functional monomers on the adsorption properties of ion-imprinted materials. The results of UV spectra in order to study the interaction between template ion PdCl4 2- and functional monomers showed that there were great differences in structure after the template reacted with three functional monomers, 4-VP and ANA caused a large structural change, while AAA basically did not change. Further results on the adsorption performance of Pd(II) IIPs on Pd(II) confirmed 4-VP was the most promising candidate for the synthesis of Pd(II) IIPs with an adsorption capacity of 5.042 mg/g as compared with ANA and AAA. The influence of operating parameters on Pd(II) IIP's performance on Pd(II) adsorption was investigated. There was an increase in the adsorption capacity of Pd(II) IIPs at higher pH, temperature, and initial concentration of Pd(II). The results of multi-metal competitive adsorption experiments showed that Pd(II) IIPs had selectivity for Pd(II). An adsorption equilibrium could be reached at 180 min. Kinetic analysis showed that the adsorption test data fitted best to the pseudo-second order kinetic model, and the theoretical equilibrium adsorption capacity was about 5.085 mg/g. The adsorption isotherms of Pd(II) by Pd(II) IIPs agreed well with the Freundlich equation, suggesting a favorable adsorption reaction under optimal conditions. These results showed that Pd(II) IIPs have potential application in the removal of Pd(II) from aqueous solutions and may provide some information for the selection of functional monomers in the preparation of Pd(II) IIPs.

  9. Formation of Polymer Particles by Direct Polymerization on the Surface of a Supramolecular Template.

    PubMed

    Schmuck, Carsten; Li, Mao; Zellermann, Elio

    2018-04-06

    Formation of polymeric materials on the surface of supramolecular assemblies is rather challenging due to the often weak non-covalent interactions between the self-assembled template and the monomers before polymerization. We herein describe that the introduction of a supramolecular anion recognition motif, the guanidiniocarbonyl pyrrole cation (GCP), into a short Fmoc-dipeptide 1 leads to self-assembled spherical nanoparticles in aqueous solution. Onto the surface of these nanoparticles negatively charged diacetylene monomers can be attached which after UV polymerization lead to the formation of a polymer shell around the self-assembled template. The hybrid supramolecular and polymeric nanoparticles demonstrated intriguing thermal hysteresis phenomenon. The template nanoparticle could be disassembled through the treatment with organic base which cleaved the Fmoc moiety on 1. This strategy thus showed that a supramolecular anion recognition motif allows the post-assembly formation of polymeric nanomaterials from anionic monomers around a cationic self-assembled template. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Selective enrichment and separation of phosphotyrosine peptides by thermosensitive molecularly imprinted polymers.

    PubMed

    Yang, Xiaoqing; Xia, Yan

    2016-01-01

    Novel thermosensitive molecularly imprinted polymers were successfully prepared using the epitope imprinting approach in the presence of the mimic template phenylphosphonic acid, the functional monomer vinylphosphonic acid-Ti(4+) , the temperature-sensitive monomer N-isopropylacrylamide and the crosslinker N,N'-methylenebisacrylamide. The ratio of the template/thermosensitive monomers/crosslinker was optimized, and when the ratio was 2:2:1, the prepared thermosensitive molecularly imprinted polymers had the highest imprinting factor. The synthetic thermosensitive molecularly imprinted polymers were characterized by Fourier transform infrared spectroscopy to reveal the combination and elution processes of the template. Then, the adsorption capacity and thermosensitivity was measured. When the temperature was 28°C, the imprinting factor was the highest. The selectivity and adsorption capacity of the thermosensitive molecularly imprinted polymers for phosphotyrosine peptides from a mixture of three tailor-made peptides were measured by high-performance liquid chromatography. The results showed that the thermosensitive molecularly imprinted polymers have good selectivity for phosphotyrosine peptides. Finally, the imprinted hydrogels were applied to specifically adsorb phosphotyrosine peptides from a sample mixture containing phosphotyrosine and a tryptic digest of β-casein, which demonstrated high selectivity. After four rebinding cycles, 78.9% adsorption efficiency was still retained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Kinetics of template-directed pyrophosphate-linked dideoxyguanylate synthesis as a function of 2-MeImpdG and poly(C) concentration: insights into the mechanism

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Gangopadhyay, S.

    1999-01-01

    Aqueous solutions of deoxyguanosine 5'-monophosphate 2-methylimidazolide, 2-MeImpdG, yield primarily deoxyguanosine 5'-monophosphate, 5'dGMP, and pyrophosphate-linked dideoxyguanylate, dG5'ppdG, abbreviated G2p (see Chart 1). The initial rate of G2p formation, d[G2p]/dt in M h-1, determined at 23 degrees C, pH 7.8, 1.0 M NaCl and 0.2 M Mg2+ by timed high-performance liquid chromatography (HPLC) analysis, exhibits a second-order dependence on 2-MeImpdG concentration, [G]o, indicating a bimolecular mechanism of dimerization in the range 0.02 M < or = [G]o < or = 0.09 M. In the presence of polycytidylate, poly(C), G2p synthesis is accelerated and oligodeoxyguanylate products are formed by incorporation of 2-MeImpdG molecules. The kinetics of G2p formation as a function of both monomer and polymer concentration, expressed in C equivalents, were also determined under the above conditions and exhibited a complex behavior. Specifically, at a constant [poly(C)], values of d[G2p]/dt typically increased with [G]o with a parabolic upward curvature. At a constant [G]o, values of d[G2p]/dt increase with [poly(C)], but level off at the higher poly(C) concentrations. As [G]o increases this saturation occurs at a higher poly(C) concentration, a result opposite to expectation for a simple complexation of two reacting monomers with the catalyst prior to reaction. Nevertheless, these results are shown to be quantitatively consistent with a template-directed (TD) mechanism of dimerization where poly(C) acts as the template to bind 2-MeImpdG in a cooperative manner and lead, for the first time, to the formulation of principles that govern template-directed chemistry. Analysis of the kinetic data via a proposed TD cooperative model provides association constants for the affinity between polymer and monomer and the intrinsic reactivity of 2-MeImpdG toward pyrophosphate synthesis. To the best of our knowledge, poly(C)/2-MeImpdG is the first system that could serve as a textbook example of a TD reaction under conditions such that the template is fully saturated by monomers and under conditions that it is not.

  12. Computer-assisted design and synthesis of a highly selective smart adsorbent for extraction of clonazepam from human serum.

    PubMed

    Aqababa, Heydar; Tabandeh, Mehrdad; Tabatabaei, Meisam; Hasheminejad, Meisam; Emadi, Masoomeh

    2013-01-01

    A computational approach was applied to screen functional monomers and polymerization solvents for rational design of molecular imprinted polymers (MIPs) as smart adsorbents for solid-phase extraction of clonazepam (CLO) form human serum. The comparison of the computed binding energies of the complexes formed between the template and functional monomers was conducted. The primary computational results were corrected by taking into calculation both the basis set superposition error (BSSE) and the effect of the polymerization solvent using the counterpoise (CP) correction and the polarizable continuum model, respectively. Based on the theoretical calculations, trifluoromethyl acrylic acid (TFMAA) and acrylonitrile (ACN) were found as the best and the worst functional monomers, correspondingly. To test the accuracy of the computational results, three MIPs were synthesized by different functional monomers and their Langmuir-Freundlich (LF) isotherms were studied. The experimental results obtained confirmed the computational results and indicated that the MIP synthesized using TFMAA had the highest affinity for CLO in human serum despite the presence of a vast spectrum of ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Ultrasensitive detection of endotoxins using computationally designed nanoMIPs.

    PubMed

    Altintas, Zeynep; Abdin, Mohammed J; Tothill, Alexander M; Karim, Kal; Tothill, Ibtisam E

    2016-09-07

    Novel molecularly imprinted polymer nanoparticles (nanoMIPs) were designed for endotoxin from Escherichia coli 0111:B4, using computational modeling. The screening process based on binding energy between endotoxin and each monomer was performed with 21 commonly used monomers, resulting in the selection of itaconic acid, methacrylic acid and acrylamide as functional monomers due to their strong binding interaction with the endotoxin template. The nanoMIPs were successfully synthesized with functional groups on the outer surface to aid in the immobilization onto sensor surface. The solid phase photopolymerization approach used for the synthesis of nanoMIPs ranging from 200 to 235 nm in diameter. The limit of detection and KD were significantly improved when endotoxin samples were prepared using a novel triethylamine method. This improved the efficiency of gold nanoparticle functionalization by targeting the subunits of the endotoxin. Compared to the vancomycin MIP control, the endotoxin MIPs displayed outstanding affinity and selectivity towards the endotoxin with KD values in the range of 4.4-5.3 × 10(-10) M, with limits of detection of 0.44 ± 0.02 ng mL(-1) as determined by surface plasmon resonance (SPR) sensor when itaconic acid was used as the functional monomer. The MIP surface can be regenerated >30 times without significant loss of binding activity making this approach highly cost effective for expensive analyte templates. The combination of molecular modeling and solid phase synthesis enabled the successful synthesis of nanoMIPs capable of recognition and ultrasensitive detection of endotoxins using the highly sensitive SPR biosensor with triethylamine method. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The sorption properties of polymers with molecular imprints of chlorine-containing pesticides

    NASA Astrophysics Data System (ADS)

    Popov, S. A.; Dmitrienko, S. G.; Chumichkina, Yu. A.; Zolotov, Yu. A.

    2009-04-01

    Polymers with molecular imprints of 2,4-dichlorophenoxyacetic acid (2,4-D), 3,6-dichloro-2-methoxybenzoic acid (dicamba), and (RS)-1- p-chlorophenyl-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl) pentan-3-ol and the corresponding blank polymers were synthesized using acrylamide as a functional monomer. The specific surface area of the resulting materials was estimated and their sorption properties were studied. It was found that the sorption characteristics of the polymers with molecular imprints of chlorine-containing pesticides depended on the nature of template molecules, functional monomer: template ratio in the polymerization mixture, and nature and content of solvents varied at the synthesis stage. According to the sorption isotherms, the difference in the sorption behavior of molecularly imprinted and blank polymers was observed over a wide range of chlorine-containing pesticide concentrations. The selectivity of the adsorbent with 2,4-D imprints was estimated for the example of structurally related compounds.

  15. Amyloid Oligomers and Protofibrils, but Not Filaments, Self-Replicate from Native Lysozyme

    PubMed Central

    2015-01-01

    Self-assembly of amyloid fibrils is the molecular mechanism best known for its connection with debilitating human disorders such as Alzheimer’s disease but is also associated with various functional cellular responses. There is increasing evidence that amyloid formation proceeds along two distinct assembly pathways involving either globular oligomers and protofibrils or rigid monomeric filaments. Oligomers, in particular, have been implicated as the dominant molecular species responsible for pathogenesis. Yet the molecular mechanisms regulating their self-assembly have remained elusive. Here we show that oligomers/protofibrils and monomeric filaments, formed along distinct assembly pathways, display critical differences in their ability to template amyloid growth at physiological vs denaturing temperatures. At physiological temperatures, amyloid filaments remained stable but could not seed growth of native monomers. In contrast, oligomers and protofibrils not only remained intact but were capable of self-replication using native monomers as the substrate. Kinetic data further suggested that this prion-like growth mode of oligomers/protofibrils involved two distinct activities operating orthogonal from each other: autocatalytic self-replication of oligomers from native monomers and nucleated polymerization of oligomers into protofibrils. The environmental changes to stability and templating competence of these different amyloid species in different environments are likely to be important for understanding the molecular mechanisms underlying both pathogenic and functional amyloid self-assembly. PMID:24884889

  16. Amyloid oligomers and protofibrils, but not filaments, self-replicate from native lysozyme.

    PubMed

    Mulaj, Mentor; Foley, Joseph; Muschol, Martin

    2014-06-25

    Self-assembly of amyloid fibrils is the molecular mechanism best known for its connection with debilitating human disorders such as Alzheimer's disease but is also associated with various functional cellular responses. There is increasing evidence that amyloid formation proceeds along two distinct assembly pathways involving either globular oligomers and protofibrils or rigid monomeric filaments. Oligomers, in particular, have been implicated as the dominant molecular species responsible for pathogenesis. Yet the molecular mechanisms regulating their self-assembly have remained elusive. Here we show that oligomers/protofibrils and monomeric filaments, formed along distinct assembly pathways, display critical differences in their ability to template amyloid growth at physiological vs denaturing temperatures. At physiological temperatures, amyloid filaments remained stable but could not seed growth of native monomers. In contrast, oligomers and protofibrils not only remained intact but were capable of self-replication using native monomers as the substrate. Kinetic data further suggested that this prion-like growth mode of oligomers/protofibrils involved two distinct activities operating orthogonal from each other: autocatalytic self-replication of oligomers from native monomers and nucleated polymerization of oligomers into protofibrils. The environmental changes to stability and templating competence of these different amyloid species in different environments are likely to be important for understanding the molecular mechanisms underlying both pathogenic and functional amyloid self-assembly.

  17. A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water.

    PubMed

    Zhang, Chao; She, Yongxin; Li, Tengfei; Zhao, Fengnian; Jin, Maojun; Guo, Yirong; Zheng, Lufei; Wang, Shanshan; Jin, Fen; Shao, Hua; Liu, Haijin; Wang, Jing

    2017-12-01

    An electrochemical sensor based on molecularly imprinted polypyrrole (MIPPy) was developed for selective and sensitive detection of the herbicide glyphosate (Gly) in cucumber and tap water samples. The sensor was prepared via synthesis of molecularly imprinted polymers on a gold electrode in the presence of Gly as the template molecule and pyrrole as the functional monomer by cyclic voltammetry (CV). The sensor preparation conditions including the ratio of template to functional monomers, number of CV cycles in the electropolymerization process, the method of template removal, incubation time, and pH were optimized. Under the optimal experimental conditions, the DPV peak currents of hexacyanoferrate/hexacyanoferrite changed linearly with Gly concentration in the range from 5 to 800 ng mL -1 , with a detection limit of 0.27 ng mL -1 (S/N = 3). The sensor was used to detect the concentration of Gly in cucumber and tap water samples, with recoveries ranging from 72.70 to 98.96%. The proposed sensor showed excellent selectivity, good stability and reversibility, and could detect the Gly in real samples rapidly and sensitively. Graphical abstract Schematic illustration of the experimental procedure to detect Gly using the MIPPy electrode.

  18. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers

    NASA Astrophysics Data System (ADS)

    Pardeshi, Sushma; Dhodapkar, Rita; Kumar, Anupama

    2013-12-01

    Gallic acid (GA) is known by its antioxidant, anticarcinogenic properties and scavenger activity against several types of harmful free radicals. Molecularly imprinted polymers (MIPs) are used in separation of a pure compound from complex matrices. A stable template-monomer complex generates the MIPs with the highest affinity and selectivity for the template. The quantum chemical computations based on density functional theory (DFT) was used on the template Gallic acid (GA), monomer acrylic acid (AA) and GA-AA complex to study the nature of interactions involved in the GA-AA complex. B3LYP/6-31+G(2d,2p) model chemistry was used to optimize their structures and frequency calculations. The effect of porogen acetonitrile (ACN) on complex formation was included by using polarizable continuum model (PCM). The results demonstrated the formation of a stable GA-AA complex through the intermolecular hydrogen bonding between carboxylic acid groups of GA and AA. The Mulliken atomic charge analysis and simulated vibrational spectra also supported the stable hydrogen bonding interaction between the carboxylic acid groups of GA and AA with minimal interference of porogen ACN. Further, simulations on GA-AA mole ratio revealed that 1:4 GA-AA was optimum for synthesis of MIP for GA.

  19. Long conducting polymer nanonecklaces with a `beads-on-a-string' morphology: DNA nanotube-template synthesis and electrical properties

    NASA Astrophysics Data System (ADS)

    Chen, Guofang; Mao, Chengde

    2016-05-01

    Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties.Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01603k

  20. A molecularly imprinted polymer (MIP)-coated microbeam MEMS sensor for chemical detection

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Li, Lily; Hiller, Tobias; Turner, Kimberly L.

    2015-05-01

    Recently, microcantilever-based technology has emerged as a viable sensing platform due to its many advantages such as small size, high sensitivity, and low cost. However, microcantilevers lack the inherent ability to selectively identify hazardous chemicals (e.g., explosives, chemical warfare agents). The key to overcoming this challenge is to functionalize the top surface of the microcantilever with a receptor material (e.g., a polymer coating) so that selective binding between the cantilever and analyte of interest takes place. Molecularly imprinted polymers (MIPs) can be utilized as artificial recognition elements for target chemical analytes of interest. Molecular imprinting involves arranging polymerizable functional monomers around a template molecule followed by polymerization and template removal. The selectivity for the target analyte is based on the spatial orientation of the binding site and covalent or noncovalent interactions between the functional monomer and the analyte. In this work, thin films of sol-gel-derived xerogels molecularly imprinted for TNT and dimethyl methylphosphonate (DMMP), a chemical warfare agent stimulant, have demonstrated selectivity and stability in combination with a fixed-fixed beam microelectromechanical systems (MEMS)-based gas sensor. The sensor was characterized by parametric bifurcation noise-based tracking.

  1. Coatings of molecularly imprinted polymers based on polyhedral oligomeric silsesquioxane for open tubular capillary electrochromatography.

    PubMed

    Zhao, Qing-Li; Zhou, Jin; Zhang, Li-Shun; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-05-15

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic coating for capillary electrochromatography. The imprinted monolithic coating was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), S-amlodipine (template), methacrylic acid (functional monomer), and 2-methacrylamidopropyl methacrylate (crosslinker), in a porogenic mixture of toluene-isooctane. The influence of synthesis parameters on the imprinting effect and separation performance, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest resolution for enantiomers separation on the imprinted monolithic column prepared with MA 0702 was up to 22.3, about 2 times higher than that prepared in absence of the POSS. Column efficiency on the POSS-based MIP coatings was beyond 30,000 plate m(-1). The comparisons between MIP coating synthesized with the POSS and without the POSS were made in terms of selectivity, column efficiency, and resolution. POSS-based MIP capillaries with naproxen or zopiclone was also prepared and separation of enantiomers can be achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable-oriented surface imprinting.

    PubMed

    Xing, Rongrong; Wang, Shuangshou; Bie, Zijun; He, Hui; Liu, Zhen

    2017-05-01

    Molecularly imprinted polymers (MIPs) are materials that are designed to be receptors for a template molecule (e.g., a protein). They are made by polymerizing the polymerizable reagents in the presence of the template; when the template is removed, the material can be used for many applications that would traditionally use antibodies. Thus, MIPs are biomimetic of antibodies and in this capacity have found wide applications, such as sensing, separation and diagnosis. However, many imprinting approaches are uncontrollable, and facile imprinting approaches widely applicable to a large variety of templates remain limited. We developed an approach called boronate affinity controllable-oriented surface imprinting, which allows for easy and efficient preparation of MIPs specific to glycoproteins, glycans and monosaccharides. This approach relies on immobilization of a template (glycoprotein, glycan or monosaccharide) on a boronic-acid-functionalized substrate through boronate affinity interaction, followed by self-polymerization of biocompatible monomer(s) to form an imprinting layer on the substrate with appropriate thickness. Imprinting in this approach is performed in a controllable manner, permitting the thickness of the imprinting layer to be fine-tuned according to the molecular size of the template by adjusting the imprinting time. This not only simplifies the imprinting procedure but also makes the approach widely applicable to a large range of sugar-containing biomolecules. MIPs prepared by this approach exhibit excellent binding properties and can be applied to complex real samples. The MIPs prepared by this protocol have been used in affinity separation, disease diagnosis and bioimaging. The entire protocol, including preparation, property characterization and performance evaluation, takes ∼3-8 d, depending on the type of substrate and template used.

  3. Selective extraction of bisphenol A from water by one-monomer molecularly imprinted magnetic nanoparticles.

    PubMed

    Lin, Zhenkun; Zhang, Yanfang; Su, Yu; Qi, Jinxia; Jia, Yinhang; Huang, Changjiang; Dong, Qiaoxiang

    2018-01-15

    One-monomer molecularly imprinted magnetic nanoparticles were prepared as adsorbents for selective extraction of bisphenol A from water in this study. A single bi-functional monomer was adopted for preparation of the molecularly imprinted polymer, avoiding the tedious trial-and-error optimizations as traditional strategy. Moreover, bisphenol F was used as the dummy template for bisphenol A to avoid the interference from residual template molecules. These nanoparticles showed not only large adsorption capacity and good selectivity to the bisphenol A but also outstanding magnetic response performance. Furthermore, they were successfully used as magnetic solid-phase extraction adsorbents of bisphenol A from various water samples, including tap water, river water, and seawater. The developed method was found to be much more efficient, convenient, and economical for selective extraction of bisphenol A compared with the traditional solid-phase extraction. Separation of these nanoparticles can be easily achieved with an external magnetic field, and the optimized adsorption time was only 15 min. The recoveries of bisphenol A in different water samples ranged from 85.38 to 93.75%, with relative standard deviation lower than 7.47%. These results showed that one-monomer molecularly imprinted magnetic nanoparticles had the potential to be popular adsorbents for selective extraction of pollutants from water. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Universal Sequence Replication, Reversible Polymerization and Early Functional Biopolymers: A Model for the Initiation of Prebiotic Sequence Evolution

    PubMed Central

    Walker, Sara Imari; Grover, Martha A.; Hud, Nicholas V.

    2012-01-01

    Many models for the origin of life have focused on understanding how evolution can drive the refinement of a preexisting enzyme, such as the evolution of efficient replicase activity. Here we present a model for what was, arguably, an even earlier stage of chemical evolution, when polymer sequence diversity was generated and sustained before, and during, the onset of functional selection. The model includes regular environmental cycles (e.g. hydration-dehydration cycles) that drive polymers between times of replication and functional activity, which coincide with times of different monomer and polymer diffusivity. Template-directed replication of informational polymers, which takes place during the dehydration stage of each cycle, is considered to be sequence-independent. New sequences are generated by spontaneous polymer formation, and all sequences compete for a finite monomer resource that is recycled via reversible polymerization. Kinetic Monte Carlo simulations demonstrate that this proposed prebiotic scenario provides a robust mechanism for the exploration of sequence space. Introduction of a polymer sequence with monomer synthetase activity illustrates that functional sequences can become established in a preexisting pool of otherwise non-functional sequences. Functional selection does not dominate system dynamics and sequence diversity remains high, permitting the emergence and spread of more than one functional sequence. It is also observed that polymers spontaneously form clusters in simulations where polymers diffuse more slowly than monomers, a feature that is reminiscent of a previous proposal that the earliest stages of life could have been defined by the collective evolution of a system-wide cooperation of polymer aggregates. Overall, the results presented demonstrate the merits of considering plausible prebiotic polymer chemistries and environments that would have allowed for the rapid turnover of monomer resources and for regularly varying monomer/polymer diffusivities. PMID:22493682

  5. Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouza, Maksim, E-mail: mkouza@chem.uw.edu.pl; Kolinski, Andrzej; Co, Nguyen Truong

    2015-04-14

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleusmore » size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in slowing down fibril elongation in vivo.« less

  6. Engineering topochemical polymerizations using block copolymer templates.

    PubMed

    Zhu, Liangliang; Tran, Helen; Beyer, Frederick L; Walck, Scott D; Li, Xin; Agren, Hans; Killops, Kato L; Campos, Luis M

    2014-09-24

    With the aim to achieve rapid and efficient topochemical polymerizations in the solid state, via solution-based processing of thin films, we report the integration of a diphenyldiacetylene monomer and a poly(styrene-b-acrylic acid) block copolymer template for the generation of supramolecular architectural photopolymerizable materials. This strategy takes advantage of non-covalent interactions to template a topochemical photopolymerization that yields a polydiphenyldiacetylene (PDPDA) derivative. In thin films, it was found that hierarchical self-assembly of the diacetylene monomers by microphase segregation of the block copolymer template enhances the topochemical photopolymerization, which is complete within a 20 s exposure to UV light. Moreover, UV-active cross-linkable groups were incorporated within the block copolymer template to create micropatterns of PDPDA by photolithography, in the same step as the polymerization reaction. The materials design and processing may find potential uses in the microfabrication of sensors and other important areas that benefit from solution-based processing of flexible conjugated materials.

  7. Synthesis of RNA oligomers on heterogeneous templates

    NASA Technical Reports Server (NTRS)

    Ertem, G.; Ferris, J. P.

    1996-01-01

    The concept of an RNA world in the chemical origin of life is appealing, as nucleic acids are capable of both information storage and acting as templates that catalyse the synthesis of complementary molecules. Template-directed synthesis has been demonstrated for homogeneous oligonucleotides that, like natural nucleic acids, have 3',5' linkages between the nucleotide monomers. But it seems likely that prebiotic routes to RNA-like molecules would have produced heterogeneous molecules with various kinds of phosphodiester linkages and both linear and cyclic nucleotide chains. Here we show that such heterogeneity need be no obstacle to the templating of complementary molecules. Specifically, we show that heterogeneous oligocytidylates, formed by the montmorillonite clay-catalysed condensation of actuated monomers, can serve as templates for the synthesis of oligoguanylates. Furthermore, we show that oligocytidylates that are exclusively 2',5'-linked can also direct synthesis of oligoguanylates. Such heterogeneous templating reactions could have increased the diversity of the pool of protonucleic acids from which life ultimately emerged.

  8. Separation and determination of citrinin in corn using HPLC fluorescence detection assisted by molecularly imprinted solid phase extraction clean-up

    USDA-ARS?s Scientific Manuscript database

    A liquid chromatography based method to detect citrinin in corn was developed using molecularly imprinted solid phase extraction (MISPE) sample clean-up. Molecularly imprinted polymers were synthesized using 1,4-dihydroxy-2-naphthoic acid as the template and an amine functional monomer. Density func...

  9. Scattering Studies of Hydrophobic Monomers in Liposomal Bilayers: An Expanding Shell Model of Monomer Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Andrew; Dergunov, Sergey; Ganus, Bill

    2011-01-01

    Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scatteringmore » (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.« less

  10. Scattering Studies of Hydrophobic Monomers in Liposomal Bilayers: An Expanding Shell Model of Monomer Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Andrew G.; Dergunov, Sergey A.; Ganus, Bill

    2011-03-10

    Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scatteringmore » (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Finally, pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.« less

  11. Removal of carbamazepine and clofibric acid from water using double templates-molecularly imprinted polymers.

    PubMed

    Dai, Chao-meng; Zhang, Juan; Zhang, Ya-lei; Zhou, Xue-fei; Duan, Yan-ping; Liu, Shu-guang

    2013-08-01

    A novel double templates-molecularly imprinted polymer (MIP) was prepared by precipitation polymerization using carbamazepine (CBZ) and clofibric acid (CA) as the double templates molecular and 2-vinylpyridine as functional monomer. The equilibrium data of MIP was well described by the Freundlich isotherm model. Two kinetic models were adopted to describe the experimental data, and the pseudo second-order model well-described adsorption of CBZ and CA on the MIP. Adsorption experimental results showed that the MIP had good selectivity and adsorption capacity for CBZ and CA in the presence of competitive compounds compared with non-imprinted polymer, commercial powdered activated carbon, and C18 adsorbents. The feasibility of removing CBZ and CA from water by the MIP was demonstrated using tap water, lake water, and river water.

  12. Spontaneous emergence of autocatalytic information-coding polymers

    NASA Astrophysics Data System (ADS)

    Tkachenko, Alexei; Maslov, Sergei

    2015-03-01

    Self-replicating systems based on information-coding polymers are of crucial importance in biology. They also recently emerged as a paradigm in design on nano- and micro-scales. We present a general theoretical and numerical analysis of the problem of spontaneous emergence of autocatalysis for heteropolymers capable of template-assisted ligation driven by cyclic changes in the environment. Our central result is the existence of the first order transition between the regime dominated by free monomers and that with a self-sustaining population of sufficiently long oligomers. We provide a simple mathematically tractable model that predicts the parameters for the onset of autocatalysis and the distribution of chain lengths, in terms of monomer concentration, and two fundamental rate constants. Another key result is the emergence of the kinetically-limited optimal overlap length between a template and its two substrates. Template-assisted ligation allows for heritable transmission of information encoded in oligomer sequences thus opening up the possibility of long-term memory and evolvability of such systems. Research was carried out in part at the Center for Functional Nanomaterials at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Work at Biosciences Department was supported by US Department of Energy Office of Biological Research Grant PM-031.

  13. Enhanced molecular recognition for imprinted monolithic column containing polyhedral oligomeric silsesquioxanes by dendritic effect of mesoporous molecular sieve scaffolds.

    PubMed

    Yang, Fang-Fang; Li, Zai-Xuan; Xu, Yu-Jing; Huang, Yan-Ping; Liu, Zhao-Sheng

    2018-06-07

    The dendritic effect of nano mesoporous molecular sieve was first used to enhance molecular recognition of molecularly imprinted polymers (MIPs)-based polyhedral oligomeric silsesquioxanes (POSS). In this study, the MIPs were made using S-naproxen (S-NAP) as template molecule, 4-vinylpyridine (4-VP) as functional monomer, ethylene glycol dimethacrylate as cross-linker, 1-butyl-3-methylimidazoliumtetrafluoroborate ([BMIM]BF 4 )/DMSO as binary porogens, 1-propylmethacrylate-heptaisobutyl substituted as POSS monomer, and mesoporous molecular sieve (Mobil composition of matter No. 41, MCM-41) as dendritic scaffold. The influence of synthesis parameters on the imprinting effect, including the content of POSS monomer and derivatized MCM-41-MPS, the ratio of template to monomer, and the ratio of binary porogens were also investigated, respectively. The morphology of the polymers was characterized by scanning electron microscopy, nitrogen adsorption, and X-ray powder diffraction. The results showed that POSS&MCM-41-MPS MIP had a stronger imprinting effect with an imprinting factor 6.86, which is approximately 2.4, 2.3, and 3 times than that of POSS MIP, MCM-41-MPS MIP, and conventional MIP, respectively. The increase of affinity might be attributed to impediment of the chain motion of polymer due to improved POSS aggregation and the dipole interaction between the POSS units by introduce of MCM-41-MPS as scaffolds. The resulting POSS&MCM-41-MPS MIP was used as adsorbent for the enrichment of S-NAP in solid-phase extraction with a high recovery of 97.65% and the value of RSD was 0.94%.

  14. The use of differential scanning fluorimetry in the rational design of plastic antibodies for protein targets.

    PubMed

    Ashley, Jon; Shukor, Yunus; Tothill, Ibtisam E

    2016-11-14

    The development of molecularly imprinted polymer nanoparticles (MIP-NPs), which specifically bind biomolecules, is of great interest in the area of biosensors, sample purification, therapeutic agents and biotechnology. Polymerisation techniques such as precipitation polymerisation, solid phase synthesis and core shell surface imprinting have allowed for significant improvements to be made in developing MIP-NPs which specifically recognise proteins. However, the development of MIP-NPs for protein templates (targets) still require lengthy optimisation and characterisation using different ratios of monomers in order to control their size, binding affinity and specificity. In this work we successfully demonstrated that differential scanning fluorimetry (DSF) can be used to rapidly determine the optimum imprinting conditions and monomer composition required for MIP-NP design and polymerisation. This is based on the stability of the protein template and shift in apparent melting points (Tm) upon interaction with different functional acrylic monomers. The method allows for the characterisation of molecularly imprinted nanoparticles (MIP-NPs) due to the observed differences in melting point profiles between, protein-MIP-NPs complexes, pre-polymerisation mixtures and non-imprinted nanoparticles (NIP-NPs) without the need for prior purification. The technique is simple, rapid and can be carried out on most quantitative polymerase chain reaction (qPCR) thermal cyclers which have the required filters for SYPRO © orange and could lead to the rapid development of MIPs nanoparticles for proteins.

  15. Structural colored gels for tunable soft photonic crystals.

    PubMed

    Harun-Ur-Rashid, Mohammad; Seki, Takahiro; Takeoka, Yukikazu

    2009-01-01

    A periodically ordered interconnecting porous structure can be embodied in chemical gels by using closest-packed colloidal crystals as templates. The interconnecting porosity not only provides a quick response but also endows the porous gels with structural color arising from coherent Bragg optical diffraction. The structural colors revealed by porous gels can be regulated by several techniques, and thus, it is feasible to obtain desirable, smart, soft materials. A well-known thermosensitive monomer, N-isopropylacrylamide (NIPA), and other minor monomers were used to fabricate various structural colored gels. The selection of minor monomers depended on the targeted properties. This review focuses on the synthesis of templates, structural colored porous gels, and the applications of structural colored gel as smart soft materials for tunable photonic crystals. (c) 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  16. Preparation of molecular imprinted microspheres based on inorganic-organic co-functional monomer for miniaturized solid-phase extraction of fluoroquinolones in milk.

    PubMed

    Wang, Hui; Wang, Ruiling; Han, Yehong

    2014-02-15

    An inorganic-organic co-functional monomer, methacrylic acid-vinyltriethoxysilan (MAA-VTES) was designed for the synthesis of molecularly imprinted microspheres (MIMs). By virtue of the aqueous suspension polymerization and dummy template (pazufloxacin), the obtained MAA-VTES based MIMs exhibited good recognition and selectivity to fluoroquinolones (FQs), and were successfully applied as selective sorbents of a miniaturized home-made solid phase extraction device for the determination of ofloxacin (OFL), lomefloxacin (LOM) and ciprofloxacin (CIP) in milk samples. Under the optimum conditions of the miniaturized molecularly imprinted solid phase extraction (mini-MISPE) coupled with liquid chromatography-ultraviolet detector (LC-UV), good linearities were obtained for three FQs in a range of 0.2-20.0μgmL(-1) and the average recoveries at three spiked levels were ranged from 87.2% to 106.1% with the relative standard deviation (RSD) less than 5.4%. The presented co-functional monomer based mini-MISPE-LC-UV protocol introduced the rigidity and flexibility of inorganic silicon materials, exhibited excellent extraction performance towards targets, and could be potentially applied to the determination of FQs in milk samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Bioimprinted QCM sensors for virus detection-screening of plant sap.

    PubMed

    Dickert, Franz L; Hayden, Oliver; Bindeus, Roland; Mann, Karl-J; Blaas, Dieter; Waigmann, Elisabeth

    2004-04-01

    Surface imprinting techniques on polymer-coated quartz-crystal microbalances (QCM) have been used to detect tobacco mosaic viruses (TMV) in aqueous media. Molecularly imprinted polymers (MIP), tailor-made by self organisation of monomers around a template (TMV), were generated directly on the gold electrodes. Imprinted trenches on the polymer surface mimicking the shape and surface functionality of the virus serve as recognition sites for re-adsorption after washing out of the template. The sensors are applicable to TMV detection ranging from 100 ng mL(-1) to 1 mg mL(-1) within minutes. Furthermore, direct measurements without time-consuming sample preparation are possible in complex matrices such as tobacco plant sap.

  18. Kinetic preference for the 3'-5'-linked dimer in the reaction of guanosine 5'-phosphorylmorpholinamide with deoxyguanosine 5'-phosphoryl-2-methylimidazolide as a function of poly(C) concentration

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.

    1998-01-01

    The formation of the internucleotide bond in diguanylate synthesis was studied in aqueous solution at pH 8 and 0.2 M Mg2+ in the presence and absence of polycytidylate, poly(C). The investigation was simplified by using guanosine 5'-phosphorylmorpholinamide, mor-pG, which can act only as a nucleophile, and deoxyguanosine 5'-phosphoryl-2-methylimidazolide, 2-MeImpdG, which can act only as an electrophile. The time-dependent product distribution was monitored by high-performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC/MS). In the absence of poly(C) the reaction between mor-pG and 2-MeImpdG yielded small amounts of the dimer mor-pGpdG with a regioselectivity of 2'-5':3'-5' = 3.5. In the presence of poly(C) dimer yields increased and a reversal in regioselectivity occurred; both effects were in proportion to the concentration of the polymer. The results can be quantitatively explained with the proposition that poly(C), acting as the template, catalyzes the reaction between template-bound monomers by about a factor of 4-5 over the reaction in solution and yields dimers with a regioselectivity of 2'-5':3'-5' approximately 0.33. These findings illustrate the intrinsic preference of guanosine monomers to correctly self-assemble on the appropriate template.

  19. Ultrastructural and Functional Analyses of Recombinant Influenza Virus Ribonucleoproteins Suggest Dimerization of Nucleoprotein during Virus Amplification

    PubMed Central

    Ortega, Joaquín; Martín-Benito, Jaime; Zürcher, Thomas; Valpuesta, José M.; Carrascosa, José L.; Ortín, Juan

    2000-01-01

    Influenza virus ribonucleoproteins (RNPs) were reconstituted in vivo from cloned cDNAs expressing the three polymerase subunits, the nucleoprotein (NP), and short template RNAs. The structure of purified RNPs was studied by electron microscopy and image processing. Circular and elliptic structures were obtained in which the NP and the polymerase complex could be defined. Comparison of the structure of RNPs of various lengths indicated that each NP monomer interacts with approximately 24 nucleotides. The analysis of the amplification of RNPs with different lengths showed that those with the highest replication efficiency contained an even number of NP monomers, suggesting that the NP is incorporated as dimers into newly synthesized RNPs. PMID:10590102

  20. Rapid removal of aniline from contaminated water by a novel polymeric adsorbent.

    PubMed

    Huang, Yunhong; Xu, Yang; He, Qinghua; Cao, Yusheng; Du, Bibai

    2014-01-01

    Dummy molecularly imprinted polymers (DMIPs) for aniline were synthesized by a thermal polymerization method using acrylamide as a functional monomer, ethylene dimethacrylate as a crosslinker, 2,2-azobisisobutyronitrile as a free radical initiator, acetonitrile as a porogenic solvent, and analogues of aniline, namely sulfadiazine, as the template. The DMIPs that were obtained showed a high affinity to aniline compared to non-imprinted polymers. It was proven that the DMIPs obtained using sulfadiazine as the template were much better than the molecularly imprinted polymers using aniline as the template. The results indicated that the Freundlich model was fit for the adsorption model of DMIP for aniline and the adsorption model of the DMIP for aniline was multilayer adsorption. Furthermore, the results showed that the DMIP synthesized by bulk polymerization could be used as a novel adsorbent for removal of aniline from contaminated water.

  1. Models for mirror symmetry breaking via β-sheet-controlled copolymerization: (i) mass balance and (ii) probabilistic treatment.

    PubMed

    Blanco, Celia; Hochberg, David

    2012-12-06

    Experimental mechanisms that yield the growth of homochiral copolymers over their heterochiral counterparts have been advocated by Lahav and co-workers. These chiral amplification mechanisms proceed through racemic β-sheet-controlled polymerization operative in both surface crystallites as well as in solution. We develop two complementary theoretical models for these template-induced desymmetrization processes leading to multicomponent homochiral copolymers. First, assuming reversible β-sheet formation, the equilibrium between the free monomer pool and the polymer strand within the template is assumed. This yields coupled nonlinear mass balance equations whose solutions are used to calculate enantiomeric excesses and average lengths of the homochiral chains formed. The second approach is a probabilistic treatment based on random polymerization. The occlusion probabilities depend on the polymerization activation energies for each monomer species and are proportional to the concentrations of the monomers in solution in the constant pool approximation. The monomer occlusion probabilities are represented geometrically in terms of unit simplexes from which conditions for maximizing or minimizing the likelihood for mirror symmetry breaking can be determined.

  2. Fabrication, structural characterization and sensing properties of polydiacetylene nanofibers templated from anodized aluminum oxide

    USDA-ARS?s Scientific Manuscript database

    Polydiacetylene (PDA), a unique conjugated polymer, has shown its potential in the application of chem/bio-sensors and optoelectronics. In this work, we first infiltrated PDA monomer (10, 12-pentacosadiynoic acid, PCDA) melted into the anodized aluminum oxide template, and then illuminated the infil...

  3. Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts.

    PubMed

    Yañez, Fernando; Chianella, Iva; Piletsky, Sergey A; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2010-02-05

    This work has focused on the rational development of polymers capable of acting as traps of bile salts. Computational modeling was combined with molecular imprinting technology to obtain networks with high affinity for cholate salts in aqueous medium. The screening of a virtual library of 18 monomers, which are commonly used for imprinted networks, identified N-(3-aminopropyl)-methacrylate hydrochloride (APMA.HCl), N,N-diethylamino ethyl methacrylate (DEAEM) and ethyleneglycol methacrylate phosphate (EGMP) as suitable functional monomers with medium-to-high affinity for cholic acid. The polymers were prepared with a fix cholic acid:functional monomer mole ratio of 1:4, but with various cross-linking densities. Compared to polymers prepared without functional monomer, both imprinted and non-imprinted microparticles showed a high capability to remove sodium cholate from aqueous medium. High affinity APMA-based particles even resembled the performance of commercially available cholesterol-lowering granules. The imprinting effect was evident in most of the networks prepared, showing that computational modeling and molecular imprinting can act synergistically to improve the performance of certain polymers. Nevertheless, both the imprinted and non-imprinted networks prepared with the best monomer (APMA.HCl) identified by the modeling demonstrated such high affinity for the template that the imprinting effect was less important. The fitting of adsorption isotherms to the Freundlich model indicated that, in general, imprinting increases the population of high affinity binding sites, except when the affinity of the functional monomer for the target molecule is already very high. The cross-linking density was confirmed as a key parameter that determines the accessibility of the binding points to sodium cholate. Materials prepared with 9% mol APMA and 91% mol cross-linker showed enough affinity to achieve binding levels of up to 0.4 mmol g(-1) (i.e., 170 mg g(-1)) under flow (1 mL min(-1)) of 0.2 mM sodium cholate solution. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Design of molecular imprinted polymers compatible with aqueous environment.

    PubMed

    Piletska, Elena V; Guerreiro, Antonio R; Romero-Guerra, Maria; Chianella, Iva; Turner, Anthony P F; Piletsky, Sergey A

    2008-01-21

    The main problem of poor water compatibility of molecularly imprinted polymers (MIPs) was addressed in examples describing design of synthetic receptors with high affinity for drugs of abuse. An extensive potentiometric titration of 10 popular functional monomers and corresponding imprinted and blank polymers was conducted in order to evaluate the subtleties of functional groups ionisation under aqueous conditions. It was found that polymers prepared using 2-trifluoromethacrylic acid (TFMAA) in combination with toluene as porogen possess superior properties which make them suitable for effective template recognition in water. The potential impact of phase separation during polymerisation on formation of high quality imprints has been discussed. Three drugs of abuse such as cocaine, deoxyephedrine and methadone were used as template models in polymer preparation for the practical validation of obtained results. The polymer testing showed that synthesized molecularly imprinted polymers have high affinity and selectivity for corresponding templates in aqueous environment, with imprinting factors of 2.6 for cocaine and 1.4 for methadone and deoxyephedrine. Corresponding blank polymers were unable to differentiate between analytes, suggesting that imprinting phenomenon was responsible for the recognition properties.

  5. Rapid, High Affinity Binding by a Fluorescein Templated Copolymer Combining Covalent, Hydrophobic, and Acid–Base Noncovalent Crosslinks

    PubMed Central

    Timberman, Anthony; Yang, Rongfang; Papantones, Alex; Seitz, W. Rudolf

    2018-01-01

    A new type of biomimetic templated copolymer has been prepared by reverse addition fragmentation chain transfer polymerization (RAFT) in dioxane. The initial formulation includes the template fluorescein, N-isopropylacrylamide (NIPAM, 84 mol %), methacrylic acid (MAA, 5-mol %), 4-vinylpyridine (4-VP, 9 mmol %), and N,N′-methylenebis(acrylamide) (MBA, 2 mol %). PolyNIPAM is a thermosensitive polymer that comes out of aqueous solution above its lower critical solution temperature forming hydrophobic ‘crosslinks’. MAA and 4-VP interact in dioxane forming acid–base crosslinks. The excess 4-VP serves as a recognition monomer organizing around the template fluorescein to form a binding site that is held in place by the noncovalent and covalent crosslinks. The MBA is a covalent crosslinker. The RAFT agent in the resulting copolylmer was reduced to a thiol and attached to gold nanoparticles. The gold nanoparticle bound copolymer binds fluorescein completely in less than two seconds with an affinity constant greater than 108 M−1. A reference copolymer prepared with the same monomers by the same procedure binds fluorescein much more weakly. PMID:29693601

  6. The rational design of recognitive polymeric networks for sensing applications

    NASA Astrophysics Data System (ADS)

    Noss, Kimberly Ryanne Dial

    Testosterone recognitive networks were synthesized with varying feed crosslinking percentages and length of the bi-functional crosslinking agent to analyze the effect of changing structural parameters on template binding properties such as affinity, selectivity, capacity, and diffusional transport. The crosslinking percentage of the crosslinking monomer ethylene glycol dimethacrylate was varied from 50% to 90% and associated networks experienced a 2 fold increase in capacity and a 4 fold increase in affinity with the equilibrium association constants, Ka, ranging from 0.32 +/- 0.02 x 10 4 M-1 to 1.3 +/- 0.1 x 104 M -1, respectively. The higher concentration of crosslinking monomer increased the crosslinking points available for inter-chain stabilization creating an increased number of stable cavities for template association. However, by increasing the length of the crosslinking agent and increasing the feed crosslinking percentage from 77% crosslinked poly(methacrylic acid- co-ethylene glycol dimethacrylate) (poly(MAA-co-EGDMA)) to 50% crosslinked poly(methacrylic acid-co-poly(ethylene glycol)200 dimethacrylate) (poly(MAA-co-PEG200DMA)), the mesh size of the network increased resulting in an increased template diffusion coefficient from (2.83 +/- 0.06) x 109 cm2/s to (4.3 +/- 0.06) x 109 cm2/s, respectively, which is approximately a 40% faster template diffussional transport. A 77% crosslinked poly (MAA-co-PEG200DMA) recognitive network had an association constant of (0.20 +/- 0.05) x 104 M -1 and bound (0.72 +/- 0.04) x 10-2 mmol testosterone/g dry polymer, which was less by 6 and 3 fold, respectively, compared to a similarly crosslinked poly(MAA-co-EGDMA) recognitive network. Structural manipulation of the macromolecular architecture illustrates the programmability of recognitive networks for specific template binding parameters and diffusional transport, which may lead to enhanced imprinted sensor materials and successful integration onto sensor platforms.

  7. Hierarchical templating in deposition of semi-covalently imprinted inverse opal polythiophene film for femtomolar determination of human serum albumin.

    PubMed

    Dabrowski, Marcin; Cieplak, Maciej; Sharma, Piyush Sindhu; Borowicz, Pawel; Noworyta, Krzysztof; Lisowski, Wojciech; D'Souza, Francis; Kuhn, Alexander; Kutner, Wlodzimierz

    2017-08-15

    Nanostructured artificial receptor materials with unprecedented hierarchical structure for determination of human serum albumin (HSA) are designed and fabricated. For that purpose a new hierarchical template is prepared. This template allowed for simultaneous structural control of the deposited molecularly imprinted polymer (MIP) film on three length scales. A colloidal crystal templating with optimized electrochemical polymerization of 2,3'-bithiophene enables deposition of an MIP film in the form of an inverse opal. Thickness of the deposited polymer film is precisely controlled with the number of current oscillations during potentiostatic deposition of the imprinted poly(2,3'-bithiophene) film. Prior immobilization of HSA on the colloidal crystal allows formation of molecularly imprinted cavities exclusively on the internal surface of the pores. Furthermore, all binding sites are located on the surface of the imprinted cavities at locations corresponding to positions of functional groups present on the surface of HSA molecules due to prior derivatization of HSA molecules with appropriate functional monomers. This synergistic strategy results in a material with superior recognition performance. Integration of the MIP film as a recognition unit with a sensitive extended-gate field-effect transistor (EG-FET) transducer leads to highly selective HSA determination in the femtomolar concentration range. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Attempted nonenzymatic template-directed oligomerizations on a polyadenylic acid template: implications for the nature of the first genetic material

    NASA Technical Reports Server (NTRS)

    Stribling, R.; Miller, S. L.

    1991-01-01

    Previous attempts to produce nonenzymatic template-directed oligomerizations of activated pyrimidines on polypurine templates have been unsuccessful. The only efficient reactions are those where the template is composed primarily of pyrimidines, especially cytosine. Because molecular evolution requires that a synthesized daughter polynucleotide be capable of acting as a template for the synthesis of the original polynucleotide, the one-way replication achieved thus far is inadequate to initiate an evolving system. Several uracil analogs were used in this investigation in order to search for possible replacements for uracil. The monomers used in this investigation were the imidazolides of UMP, xanthosine 5'-monophosphate, the bis-monophosphates of the acyclic nucleosides of uracil, and 2,4-quinazolinedione. The concentrations of various salts, buffers, pH, and temperature were among the different variables investigated in attempts to find conditions that would permit template-directed oligomerizations. Although the different monomers in this study demonstrated varying abilities to form very short oligomers, we were unable to detect any enhancement of this oligomerization that could be attributed to the poly(A) template. Although special conditions might be found that would allow purine-rich templates to work, these reactions cannot be considered robust. The results of our experiments suggest that pyrimidines were not part of the original replicating system on the primitive Earth. It has already been shown that ribose is an unlikely component of the first replicating systems, and we now suggest that phosphate was absent as well. This is due to the low solubility of phosphate in the present ocean (3 x 10(-6) M), as well as the difficulty of prebiotic activation of phosphates.

  9. Novel biocompatible hydrogel nanoparticles: generation and size-tuning of nanoparticles by the formation of micelle templates obtained from thermo-responsive monomers mixtures

    NASA Astrophysics Data System (ADS)

    Khandadash, Raz; Machtey, Victoria; Shainer, Inbal; Gottlieb, Hugo E.; Gothilf, Yoav; Ebenstein, Yuval; Weiss, Aryeh; Byk, Gerardo

    2014-12-01

    Biocompatible hydrogel nanoparticles are prepared by polymerization and cross-linking of N-isopropyl acrylamide in a micelle template formed by block copolymers macro-monomers at high temperature. Different monomer ratios form, at high temperature, well-defined micelles of different sizes which are further polymerized leading to nanoparticles with varied sizes from 20 to 390 nm. Physico-chemical characterization of the nanoparticles demonstrates their composition and homogeneity. The NPs were tested in vitro and in vivo biocompatibility assays, and their lack of toxicity was proven. The NPs can be labeled with fluorescent probes, and their intracellular fate can be visualized and quantified using confocal microscopy. Their uptake by live stem cells and distribution in whole developing animals is reported. On the basis of our results, a mechanism of nanoparticle formation is suggested. The lack of toxicity makes these nanoparticles especially attractive for biological applications such as screening and bio-sensing.

  10. Natural Products Version 2.0: Connecting Genes to Molecules

    PubMed Central

    Walsh, Christopher T.; Fischbach, Michael A.

    2009-01-01

    Natural products have played a prominent role in the history of organic chemistry, and they continue to be important as drugs, biological probes, and targets of study for synthetic and analytical chemists. In this perspective, we explore how connecting Nature’s small molecules to the genes that encode them has sparked a renaissance in natural product research, focusing primarily on the biosynthesis of polyketides and nonribosomal peptides. We survey monomer biogenesis, coupling chemistries from templated and non-templated pathways, and the broad set of tailoring reactions and hybrid pathways that give rise to the diverse scaffolds and functionalization patterns of natural products. We conclude by considering two questions: What would it take to find all natural product scaffolds? What kind of scientists will be studying natural products in the future? PMID:20121095

  11. Heparin molecularly imprinted polymer thin flm on gold electrode by plasma-induced graft polymerization for label-free biosensor.

    PubMed

    Orihara, Kouhei; Hikichi, Atsushi; Arita, Tomohiko; Muguruma, Hitoshi; Yoshimi, Yasuo

    2018-03-20

    Heparin, a highly sulfated glycosaminoglycan, is an important biomaterial having biological and therapeutic functionalities such as anticoagulation, regeneration, and protein stabilization. This study addresses a label-free quartz crystal microbalance (QCM) biosensor for heparin detection based on a macromolecularly imprinted polymer (MIP) as an artificial recognition element. We demonstrate the novel strategy for MIP in the form of thin film on a gold (Au) electrode with the plasma-induced graft polymerization (PIP) technique. The procedure of PIP is as follows: (i) Hexamethyldisiloxane plasma-polymerized thin film (PPF) as a pre-coating scaffold of active species for PIP (post-polymerization) is deposited on an Au electrode. (ii) The PPF/Au electrode is soaked in an water solution containing heparin (template), (2-(methacryloxy)-ethyl)trimethylammonium chloride acrylamide (functional monomer), acrylamide, and N,N-methylenebisacrylamide (crosslinker). Double bonds of monomer and crosslinker attacked by residually active species in pre-coating PPF cause radical chain reaction. Consequently, a growing polymer network of 20 nm thickness of PIP-MIP thin film is formed and grafted on the PPF/Au surface. (iii) The PIP-MIP/PPF/Au is washed by sodium chloride solution so as to remove the template. Non-imprinted polymer (NIP) is carried out like the same procedure without a template. The AFM, XPS, and QCM measurements show that the PIP process facilitates macromolecularly surface imprinting of template heparin where the template is easily removed and is rapidly rebound to PIP-MIP without a diffusional barrier. The heparin-PIP-MIP specifically binds to heparin compared with heparin analog chondroitin sulfate C (selective factor: 4.0) and a detectable range of heparin in the presence of CS (0.1 wt%) was 0.001-0.1 wt%. The PIP-NIP does not show selectivity between them. The evaluated binding kinetics are association (k a  = 350 ± 100 M -1  s -1 ), dissociation (k d  = (5.0 ± 2.0) × 10 -4  s -1 ), and binding (K D  = 1.3 ± 0.6 μM) constants, demonstrating that the PIP-MIP as a synthetic antibody can be applied to analytical chemistry. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Molecularly Imprinted Polymers with DNA Aptamer Fragments as Macromonomers.

    PubMed

    Zhang, Zijie; Liu, Juewen

    2016-03-01

    Molecularly imprinted polymers (MIPs) are produced in the presence of a template molecule. After removing the template, the cavity can selectively rebind the template. MIPs are attractive functional materials with a low cost and high stability, but traditional MIPs often suffer from low binding affinity. This study employs DNA aptamer fragments as macromonomers to improve MIPs. The DNA aptamer for adenosine was first split into two halves, fluorescently labeled, and copolymerized into MIPs. With a fluorescence quenching assay, the importance of imprinting was confirmed. Further studies were carried out using isothermal titration calorimetry (ITC). Compared to the mixture of the free aptamer fragments, their MIPs doubled the binding affinity. Each free aptamer fragment alone cannot bind adenosine, whereas MIPs containing each fragment are effective binders. We further shortened one of the aptamer fragments, and the DNA length was pushed to as short as six nucleotides, yielding MIPs with a dissociation constant of 27 μM adenosine. This study provides a new method for preparing functional MIP materials by combining high-affinity biopolymer fragments with low-cost synthetic monomers, allowing higher binding affinity and providing a method for signaling binding based on DNA chemistry.

  13. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    NASA Astrophysics Data System (ADS)

    Ocakoglu, Kasim; Joya, Khurram S.; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-07-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01661k

  14. Site-specific colloidal crystal nucleation by template-enhanced particle transport

    NASA Astrophysics Data System (ADS)

    Mishra, Chandan K.; Sood, A. K.; Ganapathy, Rajesh

    2016-10-01

    The monomer surface mobility is the single most important parameter that decides the nucleation density and morphology of islands during thin-film growth. During template-assisted surface growth in particular, low surface mobilities can prevent monomers from reaching target sites and this results in a partial to complete loss of nucleation control. Whereas in atomic systems a broad range of surface mobilities can be readily accessed, for colloids, owing to their large size, this window is substantially narrow and therefore imposes severe restrictions in extending template-assisted growth techniques to steer their self-assembly. Here, we circumvented this fundamental limitation by designing templates with spatially varying feature sizes, in this case moiré patterns, which in the presence of short-range depletion attraction presented surface energy gradients for the diffusing colloids. The templates serve a dual purpose: first, directing the particles to target sites by enhancing their surface mean-free paths and second, dictating the size and symmetry of the growing crystallites. Using optical microscopy, we directly followed the nucleation and growth kinetics of colloidal islands on these surfaces at the single-particle level. We demonstrate nucleation control, with high fidelity, in a regime that has remained unaccessed in theoretical, numerical, and experimental studies on atoms and molecules as well. Our findings pave the way for fabricating nontrivial surface architectures composed of complex colloids and nanoparticles as well.

  15. Molecular structure, vibrational spectra and quantum chemical MP2/DFT studies toward the rational design of hydroxyurea imprinted polymer

    NASA Astrophysics Data System (ADS)

    Prasad, Bhim Bali; Rai, Garima

    2013-03-01

    In this study, both experimental and theoretical vibrational spectra of template (hydroxyurea, HU), monomer (N-(4,6-bisacryloyl amino-[1,3,5] triazine-2-yl-)-acryl amide, TAT), and HU-TAT complexes were compared and these were respectively found to be in good agreement. Binding energies of HU, when complexed with different monomers, were computed using second order Moller Plesset theory (MP2) at 6-311++G(d,p) level both in the gas as well as solution phases. HU is an antineoplastic agent extensively being used in the treatment of polycythaemia Vera and thrombocythemia. It is also used to reduce the frequency of painful attacks in sickle cell anemia. It has antiretroviral property in disease like AIDS. All spectral characterizations were made using Density Functional Theory (DFT) at B3LYP employing 6-31+g(2d, 2p) basis set. The theoretical values for 13C and 1H NMR chemical shifts were found to be in accordance with the corresponding experimental values. Of all different monomers studied for the synthesis of molecularly imprinted polymer (MIP) systems, the monomer TAT (2 mol) was typically found to have a best binding score requisite for complexation with HU (1 mol) at the ground state.

  16. Physical Selectivity of Molecularly Imprinted polymers evaluated through free volume size distributions derived from Positron Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pasang, T.; Ranganathaiah, C.

    2015-06-01

    The technique of imprinting molecules of various sizes in a stable structure of polymer matrix has derived multitudes of applications. Once the template molecule is extracted from the polymer matrix, it leaves behind a cavity which is physically (size and shape) and chemically (functional binding site) compatible to the particular template molecule. Positron Annihilation Lifetime Spectroscopy (PALS) is a well known technique to measure cavity sizes precisely in the nanoscale and is not being used in the field of MIPs effectively. This method is capable of measuring nanopores and hence suitable to understand the physical selectivity of the MIPs better. With this idea in mind, we have prepared molecular imprinted polymers (MIPs) with methacrylicacid (MAA) as monomer and EGDMA as cross linker in different molar ratio for three different size template molecules, viz. 4-Chlorophenol (4CP)(2.29 Å), 2-Nephthol (2NP) (3.36 Å) and Phenolphthalein (PP) (4.47Å). FTIR and the dye chemical reactions are used to confirm the complete extraction of the template molecules from the polymer matrix. The free volume size and its distribution have been derived from the measured o-Ps lifetime spectra. Based on the free volume distribution analysis, the percentage of functional cavities for the three template molecules are determined. Percentage of functional binding cavities for 4-CP molecules has been found out to be 70.2% and the rest are native cavities. Similarly for 2NP it is 81.5% and nearly 100% for PP. Therefore, PALS method proves to be very precise and accurate for determining the physical selectivity of MIPs.

  17. Metal chelation dual-template epitope imprinting polymer via distillation-precipitation polymerization for recognition of porcine serum albumin.

    PubMed

    Qin, Ya-Ping; Wang, Hai-Yan; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui

    2018-08-01

    A novel dual-template epitope imprinting polymer coated on magnetic carbon nanotubes (MCNTs@D-EMIP) was successfully prepared for specific recognition of porcine serum albumin (PSA) via dual-template epitope imprinting, metal chelation imprinting and distillation-precipitation polymerization (DPP). C-terminal peptides and N-terminal peptides of PSA were selected as templates simultaneously, and zinc acrylate and ethylene glycol dimethacrylate (EGDMA) were used as functional monomer and cross-linker, respectively. The epitope templates were immobilized by metal chelation and six-membered ring formed with zinc acrylate. Finally, MCNTs@D-EMIP was synthesized by DPP in only 30 min, which was much shorter than those of other polymerization methods. The prepared MCNTs@D-EMIP displayed specific recognition ability toward PSA and its adsorption amount and imprinting factor were 45.05 mg g -1 and 4.50, which were much higher than those of single template epitope imprinting polymers. Besides, high-performance liquid chromatography (HPLC) analysis of PSA in porcine blood serum real sample indicated that the specificity was not affected by other competitive proteins, which forcefully stated that the MCNTs@D-EMIP had potential to be applied in bio-separation area. In addition, the results of cross-reactivity experiment proved that this strategy had generality to prepare dual-template epitope imprinting polymer for recognition of target protein. In summary, this study provided an efficient protocol to recognize target protein in complex sample via dual-template epitope imprinting approach, metal chelation imprinting and distillation-precipitation polymerization. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Restricted access molecularly imprinted polymers obtained by bovine serum albumin and/or hydrophilic monomers' external layers: a comparison related to physical and chemical properties.

    PubMed

    Santos, Mariane Gonçalves; Moraes, Gabriel de Oliveira Isac; Nakamura, Maurício Gustavo; dos Santos-Neto, Álvaro José; Figueiredo, Eduardo Costa

    2015-11-21

    Molecularly imprinting polymers (MIPs) can be modified with external layers in order to obtain restricted access molecularly imprinted polymers (RAMIPs) able to exclude macromolecules and retain low weight compounds. These modifications have been frequently achieved using hydrophilic monomers, chemically bound on the MIP surface. Recently, our group proposed a new biocompatible RAMIP based on the formation of a bovine serum albumin coating on the surface of MIP particles. This material has been used to extract drugs directly from untreated human plasma samples, but its physicochemical evaluation has not been carried out yet, mainly in comparison with RAMIPs obtained by hydrophilic monomers. Thus, we proposed in this paper a comparative study involving the surface composition, microscopic aspect, selectivity, binding kinetics, adsorption and macromolecule elimination ability of these different materials. We concluded that the synthesis procedure influences the size and shape of particles and that hydrophilic co-monomer addition as well as coating with BSA do not alter the chemical recognition ability of the material. The difference between imprinted and non-imprinted polymers' adsorption was evident (suggesting that imprinted polymers have a better capacity to bind the template than the non-imprinted ones). The Langmuir model presents the best fit to describe the materials' adsorption profile. The polymer covered with hydrophilic monomers presented the best adsorption for the template in an aqueous medium, probably due to a hydrophilic layer on its surface. We also concluded that an association of the hydrophilic monomers with the bovine serum albumin coating is important to obtain materials with higher capacity of macromolecule exclusion.

  19. MIRATE: MIps RATional dEsign Science Gateway.

    PubMed

    Busato, Mirko; Distefano, Rosario; Bates, Ferdia; Karim, Kal; Bossi, Alessandra Maria; López Vilariño, José Manuel; Piletsky, Sergey; Bombieri, Nicola; Giorgetti, Alejandro

    2018-06-13

    Molecularly imprinted polymers (MIPs) are high affinity robust synthetic receptors, which can be optimally synthesized and manufactured more economically than their biological equivalents (i.e. antibody). In MIPs production, rational design based on molecular modeling is a commonly employed technique. This mostly aids in (i) virtual screening of functional monomers (FMs), (ii) optimization of monomer-template ratio, and (iii) selectivity analysis. We present MIRATE, an integrated science gateway for the intelligent design of MIPs. By combining and adapting multiple state-of-the-art bioinformatics tools into automated and innovative pipelines, MIRATE guides the user through the entire process of MIPs' design. The platform allows the user to fully customize each stage involved in the MIPs' design, with the main goal to support the synthesis in the wet-laboratory. MIRATE is freely accessible with no login requirement at http://mirate.di.univr.it/. All major browsers are supported.

  20. Controlled release of mitomycin C from PHEMAH-Cu(II) cryogel membranes.

    PubMed

    Bakhshpour, Monireh; Yavuz, Handan; Denizli, Adil

    2018-02-19

    Molecular imprinting technique was used for the preparation of antibiotic and anti-neoplastic chemotherapy drug (mitomycin C) imprinted cryogel membranes (MMC-ICM). The membranes were synthezied by using metal ion coordination interactions with N-methacryloyl-(l)-histidine methyl ester (MAH) functional monomer and template molecules (i.e. MMC). The 2-hydroxyethyl methacrylate (HEMA) monomer and methylene bisacrylamide (MBAAm) crosslinker were used for the preparation of mitomycin C imprinted cryogel membranes by radical suspension polymerization technique. The imprinted cryogel membranes were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and swelling degree measurements. Cytotoxicity of MMC-ICMs was investigated using mouse fibroblast cell line L929. Time-dependent release of MMC was demonstrated within 150 h from cryogel membranes. Cryogels demonstrated very high MMC loading efficiency (70-80%) and sustained MMC release over hours.

  1. Artificial receptor-functionalized nanoshell: facile preparation, fast separation and specific protein recognition

    NASA Astrophysics Data System (ADS)

    Ouyang, Ruizhuo; Lei, Jianping; Ju, Huangxian

    2010-05-01

    This work combined molecular imprinting technology with superparamagnetic nanospheres as the core to prepare artificial receptor-functionalized magnetic nanoparticles for separation of homologous proteins. Using dopamine as a functional monomer, novel surface protein-imprinted superparamagnetic polydopamine (PDA) core-shell nanoparticles were successfully prepared in physiological conditions, which could maintain the natural structure of a protein template and achieved the development of molecularly imprinted polymers (MIPs) from one dimension to zero dimension for efficient recognition towards large biomolecules. The resultant nanoparticles could be used for convenient magnetic separation of homologous proteins with high specificity. The nanoparticles possessed good monodispersibility, uniform surface morphology and high saturation magnetization value. The bound amounts of template proteins measured by both indirect and direct methods were in good agreement. The maximum number of imprinted cavities on the surface of the bovine hemoglobin (Hb)-imprinted nanoshell was 2.21 × 1018 g - 1, which well matched their maximum binding capacity toward bovine Hb. Both the simple method for preparation of MIPs and the magnetic nanospheres showed good application potential in fast separation, effective concentration and selective biosensing of large protein molecules.

  2. Spontaneous emergence of autocatalytic information-coding polymers

    DOE PAGES

    Tkachenko, Alexei V.; Maslov, Sergei

    2015-07-28

    Self-replicating systems based on information-coding polymers are of crucial importance in biology. They also recently emerged as a paradigm in material design on nano- and micro-scales. We present a general theoretical and numerical analysis of the problem of spontaneous emergence of autocatalysis for heteropolymers capable of template-assisted ligation driven by cyclic changes in the environment. Our central result is the existence of the first order transition between the regime dominated by free monomers and that with a self-sustaining population of sufficiently long chains. We provide a simple, mathematically tractable model supported by numerical simulations, which predicts the distribution of chainmore » lengths and the onset of autocatalysis in terms of the overall monomer concentration and two fundamental rate constants. Another key result of our study is the emergence of the kinetically limited optimal overlap length between a template and each of its two substrates. The template-assisted ligation allows for heritable transmission of the information encoded in chain sequences thus opening up the possibility of long-term memory and evolvability in such systems.« less

  3. Spontaneous emergence of autocatalytic information-coding polymers

    NASA Astrophysics Data System (ADS)

    Tkachenko, Alexei V.; Maslov, Sergei

    2015-07-01

    Self-replicating systems based on information-coding polymers are of crucial importance in biology. They also recently emerged as a paradigm in material design on nano- and micro-scales. We present a general theoretical and numerical analysis of the problem of spontaneous emergence of autocatalysis for heteropolymers capable of template-assisted ligation driven by cyclic changes in the environment. Our central result is the existence of the first order transition between the regime dominated by free monomers and that with a self-sustaining population of sufficiently long chains. We provide a simple, mathematically tractable model supported by numerical simulations, which predicts the distribution of chain lengths and the onset of autocatalysis in terms of the overall monomer concentration and two fundamental rate constants. Another key result of our study is the emergence of the kinetically limited optimal overlap length between a template and each of its two substrates. The template-assisted ligation allows for heritable transmission of the information encoded in chain sequences thus opening up the possibility of long-term memory and evolvability in such systems.

  4. Template-directed synthesis using the heterogeneous templates produced by montmorillonite catalysis. A possible bridge between the prebiotic and RNA worlds

    NASA Technical Reports Server (NTRS)

    Ertem, G.; Ferris, J. P.

    1997-01-01

    The synthesis of oligoguanylates [oligo(G)s] is catalyzed by a template of oligocytidylates [oligo(C)s] containing 2',5'- and 3',5'-linked phosphodiester bonds with and without incorporated C5'ppC groupings. An oligo(C) template containing exclusively 2',5'-phosphodiester bonds also serves as a template for the synthesis of complementary oligo(G)s. The oligo(C) template was prepared by the condensation of the 5'-phosphorimidazolide of cytidine on montmorillonite clay. These studies establish that RNA oligomers prepared by mineral catalysis, or other routes on the primitive earth, did not have to be exclusively 3',5'-linked to catalyze template-directed synthesis, since oligo(C)s containing a variety of linkage isomers serve as templates for the formation of complementary oligo(G)s. These findings support the postulate that origin of the RNA world was initiated by the RNA oligomers produced by polymerization of activated monomers formed by prebiotic processes.

  5. Oxytetracycline recovery from aqueous media using computationally designed molecularly imprinted polymers.

    PubMed

    Rodríguez-Dorado, Rosalía; Carro, Antonia M; Chianella, Iva; Karim, Kal; Concheiro, Angel; Lorenzo, Rosa A; Piletsky, Sergey; Alvarez-Lorenzo, Carmen

    2016-09-01

    Polymers for recovery/removal of the antimicrobial agent oxytetracycline (OTC) from aqueous media were developed with use of computational design and molecular imprinting. 2-Hydroxyethyl methacrylate, 2-acrylamide-2-methylpropane sulfonic acid (AMPS), and mixtures of the two were chosen according to their predicted affinity for OTC and evaluated as functional monomers in molecularly imprinted polymers and nonimprinted polymers. Two levels of AMPS were tested. After bulk polymerization, the polymers were crushed into particles (200-1000 μm). Pressurized liquid extraction was implemented for template removal with a low amount of methanol (less than 20 mL in each extraction) and a few extractions (12-18 for each polymer) in a short period (20 min per extraction). Particle size distribution, microporous structure, and capacity to rebind OTC from aqueous media were evaluated. Adsorption isotherms obtained from OTC solutions (30-110 mg L(-1)) revealed that the polymers prepared with AMPS had the highest affinity for OTC. The uptake capacity depended on the ionic strength as follows: purified water > saline solution (0.9 % NaCl) > seawater (3.5 % NaCl). Polymer particles containing AMPS as a functional monomer showed a remarkable ability to clean water contaminated with OTC. The usefulness of the stationary phase developed for molecularly imprinted solid-phase extraction was also demonstrated. Graphical Abstract Selection of functional monomers by molecular modeling renders polymer networks suitable for removal of pollutants from contaminated aqueous environments, under either dynamic or static conditions.

  6. Improvement of imprinting effect of ionic liquid molecularly imprinted polymers by use of a molecular crowding agent.

    PubMed

    Jia, Man; Yang, Jian; Sun, Ya Kun; Bai, Xi; Wu, Tao; Liu, Zhao Sheng; Aisa, Haji Akber

    2018-01-01

    We aimed to improve the imprinting effect of ionic liquid molecularly imprinted polymers (MIPs) by use of a molecular crowding agent. The ionic liquid 1-vinyl-3-ethylimidazolium tetrafluoroborate ([VEIm][BF 4 ]) was used as the functional monomer and aesculetin was used as the template molecule in a crowding environment, which was made up of a tetrahydrofuran solution of polystyrene. The ionic liquid MIPs that were prepared in the crowding environment displayed an enhanced imprinting effect. NMR peak shifts of active hydrogen of aesculetin suggested that interaction between the functional monomer and the template could be increased by the use of a crowding agent in the self-assembly process. The retention and selectivity of aesculetin were affected greatly by high molecular crowding, the amount of high molecular weight crowding agent, and the ratio of [VEIm][BF 4 ] to aesculetin. The optimal MIPs were used as solid-phase extraction sorbents to extract aesculetin from Cichorium glandulosum. A calibration curve was obtained with aesculetin concentrations from 0.0005 to 0.05 mg mL -1 (correlation coefficient R 2 of 0.9999, y = 1519x + 0.0923). The limit of quantification was 0.12 μg mL -1 , and the limit of detection was 0.05 μg mL -1 . The absolute recovery of aesculetin was (80 ± 2)% (n = 3), and the purity of aesculetin was (92 ± 0.5)% (n = 5). As a conclusion, molecular crowding is an effective approach to obtain ionic liquid MIPs with high selectivity even in a polar solvent environment.

  7. The syntheses and characterization of molecularly imprinted polymers for the controlled release of bromhexine.

    PubMed

    Azodi-Deilami, Saman; Abdouss, Majid; Javanbakht, Mehran

    2011-05-01

    Imprinted polymers are now being increasingly considered for active biomedical uses such as drug delivery. In this work, the use of molecularly imprinted polymers (MIPs) in designing new drug delivery devices was studied. Imprinted polymers were prepared from methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linker), and bromhexine (as a drug template) using bulk polymerization method. The influence of the template/functional monomer proportion and pH on the achievement of MIPs with pore cavities with a high enough affinity for the drug was investigated. The polymeric devices were further characterized by FT-IR, thermogravimetric analysis, scanning electron microscopy, and binding experiments. The imprinted polymers showed a higher affinity for bromhexine and a slower release rate than the non-imprinted polymers. The controlled release of bromhexine from the prepared imprinted polymers was investigated through in vitro dissolution tests by measuring absorbance at λ (max) of 310 nm by HPLC-UV. The dissolution media employed were hydrochloric acid at the pH level of 3.0 and phosphate buffers, at pH levels of 6.0 and 8.0, maintained at 37.0 and 25.0 ± 0.5 °C. Results from the analyses showed the ability of MIP polymers to control the release of bromhexine In all cases The imprinted polymers showed a higher affinity for bromhexine and a slower release rate than the non-imprinted polymers. At the pH level of 3.0 and at the temperature of 25 °C, slower release of bromhexine imprinted polymer occurred.

  8. Adsorption of β-sitosterol on molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Soekamto, N. H.; Fauziah, St.; Taba, P.; Amran, M. B.

    2017-04-01

    Molecularly Imprinted Polymer (MIP) has been synthesized using methacrylate acid (MAA) as a monomer with hydroxyl and carbonyl functional groups that can react with ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, and β-sitosterol as a template molecule. After the template was removed from the polymer, MIP_TFMAA was obtained. The MIP was used to adsorb β-sitosterol. The amount of β-sitosterol in solution after the adsorption was determined by HPLC. The results showed that the MIP was able to adsorb well the β-sitosterol at a pH 7 and the contact time of 90 min. The kinetic adsorption data obtained for β-sitosterol followed the pseudo-second-order model and consistent with the model of Feundlich isothermal with the adsorption capacity of 1.05 mg/g. The MIP was selective on β-sitosterol because it was able to adsorb β-sitosterol better than cholesterol.

  9. [Synthesis and Study on Adsorption Property of Congo Red Molecularly Imprinted Polymer Nanospheres].

    PubMed

    Chang, Zi-qiang; Chen, Fu-bin; Zhang, Yu; Shi, Zuo-long; Yang, Chun-yan; Zhang, Zhu-jun

    2015-07-01

    Molecularly imprinted polymer nanospheres (MIP) were prepared with Congo red as the template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross linker, azodiisobutyronitrile (AIBN) as an initiator, and acetonitrile as the porogen by precipitation polymerization. The morphology of MIP was characterized by SEM and TEM which showed that the diameter of MIP was nanometer grade (90 nm) and the shape was homogeneous. The specific surface area and pore volumes of MIP and NIP were examined through Brunauer-Emett-Teller method of nitrogen adsorption experiments. Then, the adsorption and selective recognition ability of MIPs were evaluated using the equilibrium rebinding experiments. The results indicated that the prepared MIP showed a good selectivity recognition ability to its template. It concluded that MIP could be employed as an effective material for removing Congo red from waste water.

  10. [Preparation and evaluation of novel mesoporous molecular sieve of baicalin surface molecularly imprinted polymers].

    PubMed

    Gu, Xia-li; He, Hong-liang; Shi, Li-ying; Gao, Yan-kun; Chen, Li-na

    2015-05-01

    Taking mesoporous molecular sieve MCM-41 as a substrate, baicalin (BA) as template, acrylamide (AM) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, ethanol as solvent, under thermal polymerization initiator of azobis isobutyronitrilo (AIBN) , a kind of selective recognition of baicalin surface molecularly imprinted polymer was synthesized. The surface morphologies and characteristics of the MIPs were characterized by infrared spectroscopy (IR) and transmission electron microscope (TEM). The adsorption properties of polymer microsphere for the template were tested by the dynamic adsorption equilibrium experiments and static adsorption equilibrium experiments. The experiment showed that the imprinting process was successfully and the well-ordered one-dimensional pore structure of MCM-41 was still preserved. Furthermore, molecularly imprinted polymers had higher selective ability for BA, then provided a new method for the efficient separation and enrichment of baicalin active ingredients from medicinal plants Scutellaria baicalensis.

  11. Spectrophotometric determination of fluoxetine by molecularly imprinted polypyrrole and optimization by experimental design, artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Nezhadali, Azizollah; Motlagh, Maryam Omidvar; Sadeghzadeh, Samira

    2018-02-01

    A selective method based on molecularly imprinted polymer (MIP) solid-phase extraction (SPE) using UV-Vis spectrophotometry as a detection technique was developed for the determination of fluoxetine (FLU) in pharmaceutical and human serum samples. The MIPs were synthesized using pyrrole as a functional monomer in the presence of FLU as a template molecule. The factors that affecting the preparation and extraction ability of MIP such as amount of sorbent, initiator concentration, the amount of monomer to template ratio, uptake shaking rate, uptake time, washing buffer pH, take shaking rate, Taking time and polymerization time were considered for optimization. First a Plackett-Burman design (PBD) consists of 12 randomized runs were applied to determine the influence of each factor. The other optimization processes were performed using central composite design (CCD), artificial neural network (ANN) and genetic algorithm (GA). At optimal condition the calibration curve showed linearity over a concentration range of 10- 7-10- 8 M with a correlation coefficient (R2) of 0.9970. The limit of detection (LOD) for FLU was obtained 6.56 × 10- 9 M. The repeatability of the method was obtained 1.61%. The synthesized MIP sorbent showed a good selectivity and sensitivity toward FLU. The MIP/SPE method was used for the determination of FLU in pharmaceutical, serum and plasma samples, successfully.

  12. Possible Role of Ice in the Synthesis of Polymeric Compounds

    NASA Astrophysics Data System (ADS)

    Monnard, Pierre-Alain; Doerr, Mark; Loeffler, Philipp, M. G.

    COSPAR Session F3.6, Bremen July 18-25, 2010 Possible role of ice in the synthesis of polymeric compounds Doerr, Mark, Loeffler, Philipp M.G and Monnard, Pierre-Alain, University of Southern Den-mark, FLinT Center, Odense M, Denmark. Email: monnard@ifk.sdu.dk Cellular life relies on a collection of linear polymers (among them DNA, RNA, proteins) to perform the functions necessary to its survival. It seems likely that catalytic and informational polymers played essential roles in the emergence of the first living entities, precursors of con-temporary cells. Thus, their detection on other planetary bodies might hint at either emerging, or extant, or past life in these environments. A non-enzymatic synthesis of such polymeric materials or their precursors likely had to rely on a supply of monomers dissolved at low concentrations in an aqueous medium. An aqueous environment represents a clear hurdle to the synthesis of long polymers as it tends to inhibit polymerization due to entropic effects and favors the reverse reaction (decomposition by hy-drolysis). It was therefore proposed that polymerization could occur in a distinct micro-or nanostructured environment that would permit a local increase in the monomer concentration, reduce water activity and protect monomers and polymers from hydrolysis. Several types of micro-or nanostructured environments, among them mineral surfaces [1], lattices of organic molecules, such as amphiphile bilayer structures [2], and the eutectic phase in water-ice [3-8] have been proposed to promote RNA and peptide formation. This last environment might be of particular interest since space exploration has established that water exists on Mars, Europa, Enceladus and comets, mostly as ice. Ice deposits may also have existed on the early Earth. When an aqueous solution is cooled below its freezing point, but above the eutectic point, two aqueous phases co-exist and form the eutectic phase system: a solid (the ice crystals made of pure water) and a liquid phase containing most solutes. The role of water likely extends beyond that of a simple chemical liquid medium since the surfaces of ice crystals could act as a substrate on which other reactants can attach and/or become aligned. The emergence of a polymer-based genetic or/and catalytic system, as it for example according to the "RNA World hypothesis" states, initially requires the synthesis of monomers followed by three non-enzymatic processes: polymerization of monomers; elongation of existing polymers with monomers or short oligomers; and replication of existing polymers in a template-directed fashion. Ideally, these processes should take place efficiently, using simple metal ions as cat-alysts. However, in a dilute solution, even when using activated monomers, these chemical processes occur very slowly, if at all. We have been exploring the plausibility of chemical reactions, such as non-enzymatic nucleotide condensations forming RNA, under cold environmental conditions and found that the polymer-ization of RNA from imidazole-activated ribonucleotides can proceed efficiently in the eutectic phase in water-ice when metal ions are available as catalysts [4]. Starting from monomer mix-tures, polymers up to 30 monomeric units in length can be readily formed [5]. Longer polymers can be obtained by adding freshly activated monomers or short oligomers to a solution over several freeze-thawing cycles. Depending on their sequences, oligomers can be elongated using monomers to obtain up to a 45-mer. Furthermore, the decomposition of the longer chains remained low. By using activated short oligomers, even longer polymers can be formed [6]. Studying RNA template-directed RNA polymerization under these conditions, we established-discovered that the initial elongation rates depended on the complementarity of the monomers with the templating nucleobases. That is, the polymerization rates for all four nucleobases op-positepairing with their corresponding Watson-Crick base-pairing nucleobase were higher than in non-base-pairing systems cases where hydrogen bond based pairing is not favoured [7]-this was even the found for low H-bridging uridine monomers [7, 8]. The presence of templates fur-ther allows the synthesis of long complementary strands [9]. Thus, template-directed elongation of RNA in the eutectic phase of the water-ice system seems possible. Recently, Miller's group [10, 11] in San Diego further established that dilute solutions of ammo-nium cyanide maintained frozen at -78 C could promote the synthesis of nucleobases, although with rather low yields. The catalytic activity of a RNA-ligase ribozyme was also detected in the eutectic phase [12]. All the observations on the promotion of synthetic reactions in the eutectic phase in water-ice suggest that the cold conditions with transient thawing periods could have allowed the formation of RNA monomers on our Earth and possibly on other icy planets. [1] Ferris, J. P. Phil. Trans. R. Soc. B, 2006, 361, 1777. [2] Rajamani, S.; Vlassov, A.; Coombs, A.; F., O.; Deamer, D. W. Orig Life Evol Biosph, accepted2008, 38, 57. [3] Bada, J. L.; Bigham, C.; Miller, S. L. Proc. Nat. Acad Sci USA, 1994, 91, 1248. [4] Kanavarioti, A.; Monnard, P.-A.; Deamer, D. W. Astrobiology, 2001, 1, 271. [5] Monnard, P.-A.; Kanavarioti, A.; Deamer, D. W. J. Am. Chem. Soc., 2003, 125, 13734. [6] Dürr, M and Monnard, P.-A. in preparation. [7] Monnard, P.-A.; Szostak, J. W. J. Inorg. Biochem., 2008, 112, 1104. [8] Vogel, S. R.; Richert, C. Chem Commun (Camb), 2007, 1896. [9] Trinks, H.; Schroder, W.; Biebricher, C. K. Orig Life Evol Biosph, 2005, 35, 429. [10] Miyakawa, S.; Cleaves, H. J.; Miller, S. L. Orig. Life Evol Biosphere, 2002, 32, 195. [11] Miyakawa, S.; Cleaves, H. J.; Miller, S. L. Orig. Life Evol Biosphere, 2002, 32, 209. [12] Vlassov, A.; Johnston, B. H.; Landweber, L. F.; Kazakov, S. A. Nucl. Acids. Res., 2004, 32, 2966.

  13. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    NASA Astrophysics Data System (ADS)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates. Electronic supplementary information (ESI) available: Additional circular dichroism data and nanoparticle tracking analysis trace. See DOI: 10.1039/c6nr02009g

  14. Synthesis and Study of Guest-Rebinding of MIP Based on MAA Prepared using Theophylline Template

    NASA Astrophysics Data System (ADS)

    Nurhayati, T.; Yanti; Royani, I.; Widayani; Khairurrijal

    2016-08-01

    A molecularly imprinted polymer (MIP) based on methacrylic acid (MAA) monomer and theophylline template has been synthesized using a modified bulk polymerization method. Theophylline was employed as a template and it formed a complex with MAA through hydrogen bonding. Self-assembly of template-monomer was followed by cross-linking process using ethylene glycol dimethacrylate (EGDMA) cross-linker. The polymerization process was initiated by thermal decomposition of benzoyl peroxide (BPO) as the initiator at 60oC after cooling treatment at -5oC. After 7 hours, a rigid polymer was obtained and followed by grinding the polymer and removing the template. As a reference, a nonimprinted polymer (NIP) has also been synthesized using similar procedure by excluding the template. FTIR study was carried out to investigate the presence of theophylline in the as- prepared polymer, MIP, and NIP. The spectra indicated that theophylline was successfully incorporated in the as-prepared polymer. This result was also confirmed by EDS analysis showing that N atoms of the as-prepared polymer were derived from amino group of theophylline. Furthermore, the polymer particles of MIP were irregular in shape and size as shown by its SEM image. The capability of guest-rebinding of the MIP was analyzed through Batchwise guest-binding experiment. The results showed that for initial concentration of theophylline in methanol/chloroform (1/1, v/v) of 0.333 mM, the binding capacity of the MIP was 23.22 /mol/g. Compared to the MIP, the adsorption capacity of the NIP was only 3.73 /mol/g. This result shows that MIP has higher affinity than NIP.

  15. Synthesizing a Trefoil Knotted Block Copolymer via Ring-Expansion Strategy

    DOE PAGES

    Cao, Pengfei; Rong, Li-Han; Mangadlao, Joey; ...

    2017-02-07

    We synthesized a synthetic trefoil knotted poly(e-caprolatone) block-poly(L-lactide) (TK-PLA-b-PCL) via a ring expansion strategy from a trefoil knotted tin (Sn) initiator. Ring closing reaction between the bis-copper(I) templated phenanthro line complex and dibutyldimethoxytin results in a templated trefoil knotted initiator. Furthermore, the bis-copper(I) templated trefoil knotted poly(L-lactide) (TK-PLA) can be synthesized by ring-opening polymerization of L-lactide monomer, and decomplexation reaction of the templated TK-PLA will result in a geniune TK-PLA without constraint from the copper template. Subsequent insertion of e caprolactone in the bis-copper(I) templated TK-PLA forms the templated trefoil knotted block copolymer, i.e., TK-PLA-b-PCL, and the copper-free TK-PLA-b-PCL canmore » be obtained by decomplexation reaction. Finally, both TK-PLA and TK-PLA-b-PCL are analyzed by the 1 H NMR, FT-IR, UV-vis, DLS, and GPC.« less

  16. Preparation and evaluation of a macroporous molecularly imprinted hybrid silica monolithic column for recognition of proteins by high performance liquid chromatography.

    PubMed

    Lin, Zian; Yang, Fan; He, Xiwen; Zhao, Xiaomiao; Zhang, Yukui

    2009-12-04

    A novel type of macroporous molecularly imprinted hybrid silica monolithic column was first developed for recognition of proteins. The macroporous silica-based monolithic skeleton was synthesized in a 4.6mm i.d. stainless steel column by a mild sol-gel process with methyltrimethoxysilane (MTMS) as a sole precursor, and then vinyl groups were introduced onto the surface of the silica skeleton by chemical modification of gamma-methacryloxypropyltrimethoxysilane (gamma-MAPS). Subsequently, the molecularly imprinted polymer (MIP) coating was copolymerized and anchored onto the surface of the silica monolith. Bovine serum albumin (BSA) and lysozyme (Lyz), which differ greatly in molecular size, isoelectric point, and charge, were representatively selected for imprinted templates to evaluate recognition property of the hybrid silica-based MIP monolith. Some important factors, such as template-monomer molar ratio, total monomer concentration and crosslinking density, were systematically investigated. Under the optimum conditions, the obtained hybrid silica-based MIP monolith showed higher binding affinity for template than its corresponding non-imprinted (NIP) monolith. The imprinted factor (IF) for BSA and Lyz reached 9.07 and 6.52, respectively. Moreover, the hybrid silica-based MIP monolith displayed favorable binding characteristics for template over competitive protein. Compared with the imprinted silica beads for stationary phase and in situ organic polymer-based hydrogel MIP monolith, the hybrid silica MIP monolith exhibited higher recognition, stability and lifetime.

  17. Spatial localization of the Ebola virus glycoprotein mucin-like domain determined by cryo-electron tomography.

    PubMed

    Tran, Erin E H; Simmons, James A; Bartesaghi, Alberto; Shoemaker, Charles J; Nelson, Elizabeth; White, Judith M; Subramaniam, Sriram

    2014-09-01

    The Ebola virus glycoprotein mucin-like domain (MLD) is implicated in Ebola virus cell entry and immune evasion. Using cryo-electron tomography of Ebola virus-like particles, we determined a three-dimensional structure for the full-length glycoprotein in a near-native state and compared it to that of a glycoprotein lacking the MLD. Our results, which show that the MLD is located at the apex and the sides of each glycoprotein monomer, provide a structural template for analysis of MLD function. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. An Intriguing Method for Fabricating Arbitrarily Shaped “Matreshka” Hydrogels Using a Self-Healing Template

    PubMed Central

    Sato, Takeshi; Uto, Koichiro; Aoyagi, Takao; Ebara, Mitsuhiro

    2016-01-01

    This work describes an intriguing strategy for the creation of arbitrarily shaped hydrogels utilizing a self-healing template (SHT). A SHT was loaded with a photo-crosslinkable monomer, PEG diacrylate (PEGDA), and then ultraviolet light (UV) crosslinked after first shaping. The SHT template was removed by simple washing with water, leaving behind the hydrogel in the desired physical shape. A hierarchical 3D structure such as “Matreshka” boxes were successfully prepared by simply repeating the “self-healing” and “photo-irradiation” processes. We have also explored the potential of the SHT system for the manipulation of cells. PMID:28773983

  19. Novel strategy for synthesis of magnetic dummy molecularly imprinted nanoparticles based on functionalized silica as an efficient sorbent for the determination of acrylamide in potato chips: Optimization by experimental design methodology.

    PubMed

    Arabi, Maryam; Ostovan, Abbas; Ghaedi, Mehrorang; Purkait, Mihir K

    2016-07-01

    This study discusses a novel and simple method for the preparation of magnetic dummy molecularly imprinted nanoparticles (MDMINPs). Firstly, Fe3O4 magnetic nanoparticles (MNPs) were synthesized as a magnetic component. Subsequently, MDMINPs were constructed via the sol-gel strategy using APTMS as the functional monomer. Urethane was considered as dummy template to avoid residual template and TEOS as the cross linker. The prepared MDMINPs were used for the pre-concentration of acrylamide from potato chips. Quantification was carried out by high performance liquid chromatography with UV detection (HPLC-UV). The impact of influential variables such as pH, amount of sorbent, sonication time and eluent volume were well investigated and optimized using a central composite design. The particles had excellent magnetic property and high selectivity to the targeted molecule. In optimized conditions, the recovery ranged from 94.0% to 98.0% with the detection limit of 0.35µgkg(-1). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Surface-mounted MOF templated fabrication of homochiral polymer thin film for enantioselective adsorption of drugs.

    PubMed

    Gu, Zhi-Gang; Fu, Wen-Qiang; Liu, Min; Zhang, Jian

    2017-01-26

    A self-polymerized chiral monomer 3,4-dihydroxy-l-phenylalanine (l-DOPA) has been introduced into the pores of an achiral surface-mounted metal organic framework (SURMOF), and then the homochiral poly(l-DOPA) thin film has been successfully formed after UV light irradiation and etching of the SURMOF. Remarkably, such a poly(l-DOPA) thin film exhibited enantioselective adsorption of naproxen. This study opened a SURMOF-templated approach for preparing porous polymer thin films.

  1. Fabrication of thermo-responsive PNIPAAm-g-ETFE for cell culture dishes by pre-irradiation grafting

    NASA Astrophysics Data System (ADS)

    Yamahara, Yumi; Nagasawa, Naotsugu; Taguchi, Mitsumasa; Oshima, Akihiro; Washio, Masakazu

    2018-01-01

    Thermo-responsive templates for the cell cultivation based on Poly(tetrafluoroethylene-co-ethylene) (ETFE) were fabricated by pre-irradiation grafting of N-isoproplyacrylamide (NIPAAm) monomer by electron beam (EB) irradiation under nitrogen gas atmosphere at room temperature, and their characteristic properties were studied. The detachment of cultured HeLa cells from fabricated thermo-responsive templates were attempted. Furthermore, the reaction mechanism is proposed using ESR spectroscopy and FT-IR spectroscopy. It is confirmed that the cultured HeLa cells were detached from fabricated thermo-responsive templates at 20 °C. Water contact angle analysis indicated that obtained templates had thermo-response around 30 °C. It is suggested that the grafted polymer chains would mainly react with peroxy radicals (-CF2-CF(OO・)-) on tetrafluoroethylene unit in ETFE.

  2. Computational and experimental investigation of molecular imprinted polymers for selective extraction of dimethoate and its metabolite omethoate from olive oil.

    PubMed

    Bakas, Idriss; Oujji, Najwa Ben; Moczko, Ewa; Istamboulie, Georges; Piletsky, Sergey; Piletska, Elena; Ait-Addi, Elhabib; Ait-Ichou, Ihya; Noguer, Thierry; Rouillon, Régis

    2013-01-25

    This work presents the development of molecularly imprinted polymers (MIPs) for the selective extraction of dimethoate from olive oil. Computational simulations allowed selecting itaconic acid as the monomer showing the highest affinity towards dimethoate. Experimental validation confirmed modelling predictions and showed that the polymer based on IA as functional monomer and omethoate as template molecule displays the highest selectivity for the structurally similar pesticides dimethoate, omethoate and monocrotophos. Molecularly imprinted solid phase extraction (MISPE) method was developed and applied to the clean-up of olive oil extracts. It was found that the most suitable solvents for loading, washing and elution step were respectively hexane, hexane-dichloromethane (85:15%) and methanol. The developed MIPSE was successfully applied to extraction of dimethoate from olive oil, with recovery rates up to 94%. The limits of detection and quantification of the described method were respectively 0.012 and 0.05 μg g(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. [Preparation of surface molecularly imprinted polymers for penicilloic acid, and its adsorption properties].

    PubMed

    Zheng, Penglei; Luo, Zhimin; Chang, Ruimiao; Ge, Yanhui; Du, Wei; Chang, Chun; Fu, Qiang

    2015-09-01

    On account of the specificity and reproducibility for the determination of penicilloic acid in penicillin, this study aims to prepare penicilloic acid imprinted polymers (PEOA-MIPs) by surface polymerization method at the surface of modified silica particles by using penicilloic acid (PEOA) as the template molecule, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate ( EGDMA) as the cross linker, and methanol/acetonitrile as the solvents. The synthesis conditions were optimized, and PEOA-MIPs had the best adsorption capacity when the molar ratio of template molecule/functional monomer was 1 :4, cross linking degree was 85% and the solvent ratio of methanol/acetonitrile was 1 :1 (v/v). The adsorption properties were evaluated by adsorption experiments, including the adsorption isotherms, kinetics and selectivity. The adsorption process between PEOA-MIPs and PEOA fitted the Langmuir adsorption isotherm with the maximum adsorption capacity of 122. 78 mg/g and the pseudo-second-order reaction kinetics with fast adsorption kinetics (the equilibrium time of 45 min). The as-synthesized PEOA-MIPs were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). The results indicated that the MIPs layer has been successfully grafted on the surface of SiO2 microparticles and the PEOA-MIPs had the excellent thermal stability. The PEOA-MIPs showed the highest selective recognition for PEOA. The PEOA-MIPs possess a high adsorption capacity, rapid mass-transfer rate and high selectivity to PEOA when compared with non-imprinted polymers (PEOA-NIPs). The PEOA-MIPs was expected to be used as the solid phase extraction medium and this study provides the potential applications for fast recognition and analysis of the penicilloic acid in penicillin.

  4. Synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates

    NASA Astrophysics Data System (ADS)

    Marquez, Maricel

    The subject of this work is the synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates, also termed Template Assisted Admicellar Polymerization (TAAP). The first chapter reviews some of the most current nanopatterning techniques (including both top-down and bottom-up approaches), with particular emphasis on the fabrication of organic and inorganic patterned nanostructures via particle lithography. In chapter 2, highly ordered hexagonal arrays of latex spheres were prepared on highly ordered pyrolytic graphite (HOPG) from a variation of the Langmuir Blodgett technique, using an anionic surfactant (SDS), and a low molecular weight (ca. 10000) polyacrylamide as spreading agents. When a nonionic polyethoxylated (EO = 9) surfactant was used as the spreading agent, no ordered arrays were observed. Based on the correlation found between the surface tension in the presence of the latex particles and the critical concentration at which hexagonal arrangements of latex spheres occurs; a model was proposed to explain the role of the spreading agent in forming stable monolayers at the air/liquid interface, which in turn are necessary for the formation of well-ordered monolayers on a solid substrate from the LB technique. According to this model, solid-like regions of small numbers of latex spheres form at the liquid-air interface, which are then transferred to the substrate. These ordered regions then act as nuclei for the formation of 2D arrays of latex spheres on the surface upon water evaporation. The role of other factors such as relative humidity, substrate and solvent choice, and pulling vs. compression speed were also found to affect the quality of the monolayers formed. Finally, a simple, easy to automate, yet effective surface tension method was proposed to predict the optimal conditions for the formation of ordered monolayers using a variation of the LB deposition method from any monodisperse set of spheres. In chapter 3, a novel method for the formation of nanometer-scale polymer structures on solid surfaces via template assisted admicellar polymerization (TAAP) is described. Admicellar polymerization uses a surfactant layer adsorbed on a surface to localize monomer to the surface prior to polymerization of the monomer. TAAP refers to nanostructures that form by restricting adsorption to the uncovered sites of an already-templated surface. In this case, the interstitial sites between adsorbed latex spheres were used as the template. Unlike most other process that form polymer nanostructures, polymer dimensions can be significantly smaller than the interstitial size because of sphere-surfactant-monomer interactions. As a proof of concept, nanostructures formed via TAAP were compared to structures prepared by others via adsorption of three different proteins (Bovine serum albumin, fibrinogen, and anti-mouse IgG) in the interstitial sites of colloidal monolayers. The size and shape of the nanostructures formed (honeycomb vs. pillars) was dependent upon the size of the spheres utilized and the method of polymer deposition (i.e. admicellar polymerization vs. polymer adsorption). Thinner honeycomb walls, and larger separation distances between the template and the nanostructures were consistently found for TAAP. In chapter 4, an in-depth study of the factors affecting TAAP is presented for three different monomers: aniline, pyrrole and methyl methacrylate; and three different surfaces: highly ordered pyrolytic graphite (HOPG), gold, and SiO2. Among the parameters discussed are the effect of monomer and surfactant concentration, surfactant chain length, polymerization time and temperature, solution ionic strength, substrate choice and surface treatment. Control over these parameters allowed the synthesis of polymer nanopillars, nanorings, honeycombs, and "honeytubes." Experimental results showed that the nanostructures' morphology can be effectively modified by changing the length of the hydrophobic chain of the surfactant. Nanostructures with fewer defects were found for surfactants with the longest hydrophobic tails (i.e. 12 carbon atoms). The hydrophobic nature of the monomer also seemed to affect the morphology of the nanostructure; poly(methyl methacrylate) (PMMA) honeycombs showed thicker walls compared to polyaniline (PANI) and polypyrrole (Ppy). In general, HOPG seems to be a better choice of substrate for TAAP compared to gold-coated glass and SiO2 wafers. Preliminary results on the formation of layered polymer nanostructures via multiple TAAP sequences were also presented.

  5. Spectrophotometric determination of fluoxetine by molecularly imprinted polypyrrole and optimization by experimental design, artificial neural network and genetic algorithm.

    PubMed

    Nezhadali, Azizollah; Motlagh, Maryam Omidvar; Sadeghzadeh, Samira

    2018-02-05

    A selective method based on molecularly imprinted polymer (MIP) solid-phase extraction (SPE) using UV-Vis spectrophotometry as a detection technique was developed for the determination of fluoxetine (FLU) in pharmaceutical and human serum samples. The MIPs were synthesized using pyrrole as a functional monomer in the presence of FLU as a template molecule. The factors that affecting the preparation and extraction ability of MIP such as amount of sorbent, initiator concentration, the amount of monomer to template ratio, uptake shaking rate, uptake time, washing buffer pH, take shaking rate, Taking time and polymerization time were considered for optimization. First a Plackett-Burman design (PBD) consists of 12 randomized runs were applied to determine the influence of each factor. The other optimization processes were performed using central composite design (CCD), artificial neural network (ANN) and genetic algorithm (GA). At optimal condition the calibration curve showed linearity over a concentration range of 10 -7 -10 -8 M with a correlation coefficient (R 2 ) of 0.9970. The limit of detection (LOD) for FLU was obtained 6.56×10 -9 M. The repeatability of the method was obtained 1.61%. The synthesized MIP sorbent showed a good selectivity and sensitivity toward FLU. The MIP/SPE method was used for the determination of FLU in pharmaceutical, serum and plasma samples, successfully. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Computational design of d-peptide inhibitors of hepatitis delta antigen dimerization

    NASA Astrophysics Data System (ADS)

    Elkin, Carl D.; Zuccola, Harmon J.; Hogle, James M.; Joseph-McCarthy, Diane

    2000-11-01

    Hepatitis delta virus (HDV) encodes a single polypeptide called hepatitis delta antigen (DAg). Dimerization of DAg is required for viral replication. The structure of the dimerization region, residues 12 to 60, consists of an anti-parallel coiled coil [Zuccola et al., Structure, 6 (1998) 821]. Multiple Copy Simultaneous Searches (MCSS) of the hydrophobic core region formed by the bend in the helix of one monomer of this structure were carried out for many diverse functional groups. Six critical interaction sites were identified. The Protein Data Bank was searched for backbone templates to use in the subsequent design process by matching to these sites. A 14 residue helix expected to bind to the d-isomer of the target structure was selected as the template. Over 200 000 mutant sequences of this peptide were generated based on the MCSS results. A secondary structure prediction algorithm was used to screen all sequences, and in general only those that were predicted to be highly helical were retained. Approximately 100 of these 14-mers were model built as d-peptides and docked with the l-isomer of the target monomer. Based on calculated interaction energies, predicted helicity, and intrahelical salt bridge patterns, a small number of peptides were selected as the most promising candidates. The ligand design approach presented here is the computational analogue of mirror image phage display. The results have been used to characterize the interactions responsible for formation of this model anti-parallel coiled coil and to suggest potential ligands to disrupt it.

  7. Template-free electrochemical nanofabrication of polyaniline nanobrush and hybrid polyaniline with carbon nanohorns for supercapacitors.

    PubMed

    Wei, Di; Wang, Haolan; Hiralal, Pritesh; Andrew, Piers; Ryhänen, Tapani; Hayashi, Yasuhiko; Amaratunga, Gehan A J

    2010-10-29

    Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.

  8. Template-free electrochemical nanofabrication of polyaniline nanobrush and hybrid polyaniline with carbon nanohorns for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wei, Di; Wang, Haolan; Hiralal, Pritesh; Andrew, Piers; Ryhänen, Tapani; Hayashi, Yasuhiko; Amaratunga, Gehan A. J.

    2010-10-01

    Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.

  9. The Properties of Amyloid-β Fibrils Are Determined by their Path of Formation.

    PubMed

    Brännström, Kristoffer; Islam, Tohidul; Gharibyan, Anna L; Iakovleva, Irina; Nilsson, Lina; Lee, Cheng Choo; Sandblad, Linda; Pamrén, Annelie; Olofsson, Anders

    2018-06-22

    Fibril formation of the amyloid-β peptide (Aβ) follows a nucleation-dependent polymerization process and is associated with Alzheimer's disease. Several different lengths of Aβ are observed in vivo, but Aβ1-40 and Aβ1-42 are the dominant forms. The fibril architectures of Aβ1-40 and Aβ1-42 differ and Aβ1-42 assemblies are generally considered more pathogenic. We show here that monomeric Aβ1-42 can be cross-templated and incorporated into the ends of Aβ1-40 fibrils, while incorporation of Aβ1-40 monomers into Aβ1-42 fibrils is very poor. We also show that via cross-templating incorporated Aβ monomers acquire the properties of the parental fibrils. The suppressed ability of Aβ1-40 to incorporate into the ends of Aβ1-42 fibrils and the capacity of Aβ1-42 monomers to adopt the properties of Aβ1-40 fibrils may thus represent two mechanisms reducing the total load of fibrils having the intrinsic, and possibly pathogenic, features of Aβ1-42 fibrils in vivo. We also show that the transfer of fibrillar properties is restricted to fibril-end templating and does not apply to cross-nucleation via the recently described path of surface-catalyzed secondary nucleation, which instead generates similar structures to those acquired via de novo primary nucleation in the absence of catalyzing seeds. Taken together these results uncover an intrinsic barrier that prevents Aβ1-40 from adopting the fibrillar properties of Aβ1-42 and exposes that the transfer of properties between amyloid-β fibrils are determined by their path of formation. Copyright © 2018. Published by Elsevier Ltd.

  10. A fluorescent glycosyl-imprinted polymer for pH and temperature regulated sensing of target glycopeptide antibiotic.

    PubMed

    Chen, Kuncai; He, Rong; Luo, Xiaoyan; Qin, Pengzhe; Tan, Lei; Tang, Youwen; Yang, Zhicong

    2017-08-15

    This paper demonstrates a new strategy for developing a fluorescent glycosyl-imprinted polymer for pH and temperature regulated sensing of target glycopeptide antibiotic. The technique provides amino modified Mn-doped ZnS QDs as fluorescent supports, 4-vinylphenylbronic acid as a covalent monomer, N-isopropyl acrylamide as a thermo-responsive monomer in combination with acrylamide as a non-covalent monomer, and glycosyl moiety of a glycopeptide antibiotic as a template to produce fluorescent molecularly imprinted polymer (FMIP) in aqueous solution. The FMIP can alter its functional moieties and structure with pH and temperature stimulation. This allows recognition of target molecules through control of pH and temperature. The fluorescence intensity of the FMIP was enhanced gradually as the concentration of telavancin increased, and showed selective recognition toward the target glycopeptide antibiotic preferentially among other antibiotics. Using the FMIP as a sensing material, good linear correlations were obtained over the concentration range of 3.0-300.0μg/L and with a low limit of detection of 1.0μg/L. The analysis results of telavancin in real samples were consistent with that obtained by liquid chromatography tandem mass spectrometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    PubMed

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. N-isopropylacrylamide-based fine-dispersed thermosensitive ferrogels obtained via in-situ technique.

    PubMed

    Korotych, O; Samchenko, Yu; Boldeskul, I; Ulberg, Z; Zholobak, N; Sukhodub, L

    2013-03-01

    Thermosensitive hydrogels with magnetic properties (ferrogels) are very promising for medical application, first of all, for the design of targeted delivery systems with controlled release of drugs and for magnetic hyperthermia and chemotherapy treatment of cancer. These magnetic hydrogels could be obtained using diverse techniques: ex- and in-situ syntheses. The present work is devoted to the study of magnetite (Fe(3)O(4)) formation inside the nanoreactors of (co)polymeric hydrogels. Polymeric templates (hydrogel films and fine-dispersed hydrogels) used for obtaining ferrogels were based on acrylic monomers: thermosensitive N-isopropylacrylamide, and hydrophilic acrylamide. Covalent cross-linking was accomplished using bifunctional monomer N,N'-methylenebisacrylamide. Influence of hydrophilic-lipophilic balance of polymeric templates and concentration of iron cations on the magnetite formation were investigated along with the development of ferrogel preparation technique. Cytotoxicity, physical and chemical properties of obtained magnetic hydrogels have been studied in this work. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Rational design and synthesis of water-compatible molecularly imprinted polymers for selective solid phase extraction of amiodarone.

    PubMed

    Muhammad, Turghun; Cui, Liu; Jide, Wang; Piletska, Elena V; Guerreiro, Antonio R; Piletsky, Sergey A

    2012-01-04

    Novel water-compatible molecularly imprinted polymers (MIPs) selective for amiodarone (AD) were designed via a new methodology which relies on screening library of non-imprinted polymers (NIPs). The NIP library consisted of eighteen cross-linked co-polymers synthesized from monomers commonly used in molecular imprinting. The binding capacity of each polymer in the library was analyzed in two different solvents. Binding in water was used to assess non-specific (hydrophobic) interactions and binding in an appropriate organic solvent was used to assess specific interactions. A good correlation was found between the screening tests and modeling of monomer-template interactions performed using computational approach. Additionally, analysis of template-monomer interactions was performed using UV-vis spectroscopy. As the result, 4-vinylpyridine (4-VP) was selected as the best monomer for developing MIP for AD. The 4-VP-based polymers demonstrated imprinting factor equal 3.9. The polymers performance in SPE was evaluated using AD and its structural analogues. The recovery of AD was as high as 96% when extracted from spiked phosphate buffer (pH 4.5) solution and 82.1% from spiked serum samples. The developed MIP shown as a material with specific binding to AD, comparing to its structural analogues, 1-(2-diethylaminoethoxy)-2,6-diiodo-4-nitrobenzene and lidocaine, which shown 9.9% and 25.4% of recovery from the buffer solution, correspondingly. We believe that the screening of NIP library could be proposed as an alternative to commonly used computational and combinatorial approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Polydopamine-Coated Magnetic Molecularly Imprinted Polymers with Fragment Template for Identification of Pulsatilla Saponin Metabolites in Rat Feces with UPLC-Q-TOF-MS.

    PubMed

    Zhang, Yu-Zhen; Zhang, Jia-Wei; Wang, Chong-Zhi; Zhou, Lian-Di; Zhang, Qi-Hui; Yuan, Chun-Su

    2018-01-24

    In this work, a modified pretreatment method using magnetic molecularly imprinted polymers (MMIPs) was successfully applied to study the metabolites of an important botanical with ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The MMIPs for glucoside-specific adsorption was used to identify metabolites of Pulsatilla chinensis in rat feces. Polymers were prepared by using Fe 3 O 4 nanoparticles as the supporting matrix, d-glucose as fragment template, and dopamine as the functional monomer and cross-linker. Results showed that MMIPs exhibited excellent extraction performance, large adsorption capacity (5.65 mg/g), fast kinetics (60 min), and magnetic separation. Furthermore, the MMIPs coupled with UPLC-Q-TOF-MS were successfully utilized for the identification of 17 compounds including 15 metabolites from the Pulsatilla saponin metabolic pool. This study provides a reliable protocol for the separation and identification of saponin metabolites in a complex biological sample, including those from herbal medicines.

  15. Halloysite-based dopamine-imprinted polymer for selective protein capture.

    PubMed

    Zhu, Xiaohong; Li, Hui; Liu, Hui; Peng, Wei; Zhong, Shian; Wang, Yan

    2016-06-01

    We describe a facile, general, and highly efficient approach to obtain polydopamine-coated molecularly imprinted polymer based on halloysite nanotubes for bovine serum albumin. The method combined surface molecular imprinting and one-step immobilized template technique. Hierarchically structured polymer was prepared in physiological conditions adopting dopamine as functional monomer. A thin layer of polydopamine can be coated on the surface of amino-modified halloysite nanotubes by self-polymerization, and the thickness of the imprinted shells can be controlled by the mass ratio of matrix and dopamine. The polymer was characterized by Fourier transform infrared spectrometry, transmission electron microscopy, and thermogravimetric analysis. The prepared material showed high binding capacity (45.4 mg/g) and specific recognition behavior toward the template protein. In addition, stability and regeneration analyses indicated that the imprinted polymer exhibited excellent reusability (relative standard deviation < 9% for batch-to-batch evaluation). Therefore, the developed polymer is effective for protein recognition and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rational design of molecularly imprinted polymer: the choice of cross-linker.

    PubMed

    Muhammad, Turghun; Nur, Zohre; Piletska, Elena V; Yimit, Osmanjan; Piletsky, Sergey A

    2012-06-07

    The paper describes a rational approach for the selection of cross-linkers during the development of molecularly imprinted polymers (MIPs). As a model system for this research MIPs specific for the drug zidovudine (AZT) were designed and tested. Three cross-linkers trimethylolpropane trimethacrylate (TRIM), ethylene glycol dimethacrylate (EGDMA) and divinylbenzene (DVB) were studied. The analogue of zidovudine (AZT) ester (AZT-ES) was used as a dummy template. The imprinting factors for all of the polymers in the static adsorption experiments were calculated. The data on the AZT adsorption by control polymers (CP), which were prepared with different cross-linkers without a functional monomer, was also analyzed. DVB was found to be more inert towards zidovudine than EGDMA and TRIM, which was confirmed by both molecular modelling and adsorption experiments. It was demonstrated that DVB-based polymers had a higher imprinting factor (I = 1.85) compared with other tested cross-linked polymers. It was suggested that the selection of the cross-linker should be based on the strength of the interaction with the template: the cross-linker which displays lower binding of the template should be preferential because it generates MIPs with lower non-specific binding and a higher imprinting factor, and therefore specificity. Which cross-linker to use for the preparation of any particular MIP can be determined by analysis of the interactions between the cross-linker and template. This could be done either virtually using computational modelling or by template adsorption using a small library of polymers prepared using different cross-linkers.

  17. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates.

    PubMed

    Ocakoglu, Kasim; Joya, Khurram S; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T

    2014-08-21

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ∼120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.

  18. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Caicedo, Hector M.; Dempere, Luisa A.; Vermerris, Wilfred

    2012-03-01

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells.

  19. Enantiomeric Cross-Inhibition in the Synthesis of Oligonucleotides on a Nonchiral Template

    NASA Technical Reports Server (NTRS)

    Schmidt, Jurgen G.; Nielsen, Peter E.; Orgel, Leslie E.

    1997-01-01

    Prebiotic syntheses of chiral monomers always yield racemic mixtures. Living systems, however, utilize L-amino acids and D-nucleotides in their biopolymers. The generation of optical asymmetry by selection and amplification in an autocatalytic process is, therefore, an important element in many theories of the origin of life. Replication of polynucleotides in template-directed syntheses is an obvious candidate for such an amplification step in a pre-'RNA world'. A serious objection to this suggestion is the observation that the efficiency of template-directed syntheses of RNA is limited by enantiomeric cross-inhibition. Peptide Nucleic Acids (PNAs), amide-linked, nonchiral analogues of RNA, have been 'copied' into RNA and constitute an alternative to chiral polynucleotides as an informational replicating system. Here, we use PNA as model for a hypothetical, nonchiral precursor of RNA in experiments re-examining enantiomeric cross-inhibition. We find that enantiomeric cross-inhibition is as serious in the polymerization of nucleotides on a PNA template as it is on a conventional RNA or DNA template.

  20. Cost-effective imprinting combining macromolecular crowding and a dummy template for the fast purification of punicalagin from pomegranate husk extract.

    PubMed

    Sun, Guang-Ying; Wang, Chao; Luo, Yu-Qin; Zhao, Yong-Xin; Yang, Jian; Liu, Zhao-Sheng; Aisa, Haji Akber

    2016-05-01

    The combination of molecular crowding and virtual imprinting was employed to develop a cost-effective method to prepare molecularly imprinted polymers. By using linear polymer polystyrene as a macromolecular crowding agent, an imprinted polymer recognizable to punicalagin had been successfully synthesized with punicalin as the dummy template. The resulting punicalin-imprinted polymer presented a remarkable selectivity to punicalagin with an imprinting factor of 3.17 even at extremely low consumption of the template (template/monomer ratio of 1:782). In contrast, the imprinted polymer synthesized without crowding agent, did not show any imprinting effect at so low template amount. The imprinted polymers made by combination of molecular crowding and virtual imprinting can be utilized for the fast separation of punicalagin from pomegranate husk extract after optimizing the protocol of solid-phase extraction with the recovery of 85.3 ± 1.2%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effective determination of a pharmaceutical, sulpiride, in river water by online SPE-LC-MS using a molecularly imprinted polymer as a preconcentration medium.

    PubMed

    Kubo, Takuya; Kuroda, Kenta; Tominaga, Yuichi; Naito, Toyohiro; Sueyoshi, Kenji; Hosoya, Ken; Otsuka, Koji

    2014-02-01

    We report an effective and a quantitative analysis method for one of pharmaceuticals, sulpiride, in river water by online solid phase extraction (SPE) connected with liquid chromatography-mass spectrometry (LC-MS) using a molecularly imprinted polymer as a preconcentration medium. The polymer prepared with a pseudo template molecule showed the selective retention ability based on the interval recognition of functional groups in sulpiride. Also, the imprinted polymer provided an effective concentration of a trace level of sulpiride in offline SPE with dual washing processes using water and acetonitrile, although another imprinted polymer prepared by an authentic method using sulpiride and methacrylic acid as a template and a functional monomer, respectively, showed the selective adsorption only in organic solvents. Furthermore, we employed the imprinted polymer as the preconcentration column of online SPE-LC-MS and the results supposed that the proposed system allowed the quantitative analysis of sulpiride with high sensitivity and recovery (10ng/L at 96%). Additionally, the determination of sulpiride in real river water without an additional spiking was effectively achieved by the system. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Mesoporous silicon oxide films and their uses as templates in obtaining nanostructured conductive polymers

    NASA Astrophysics Data System (ADS)

    Salgado, R.; Arteaga, G. C.; Arias, J. M.

    2018-04-01

    Obtaining conductive polymers (CPs) for the manufacture of OLEDs, solar cells, electrochromic devices, sensors, etc., has been possible through the use of electrochemical techniques that allow obtaining films of controlled thickness with positive results in different applications. Current trends point towards the manufacture of nanomaterials, and therefore it is necessary to develop methods that allow obtaining CPs with nanostructured morphology. This is possible by using a porous template to allow the growth of the polymeric materials. However, prior and subsequent treatments are required to separate the material from the template so that it can be evaluated in the applications mentioned above. This is why mesoporous silicon oxide films (template) are essential for the synthesis of nanostructured polymers since both the template and the polymer are obtained on the electrode surface, and therefore it is not necessary to separate the material from the template. Thus, the material can be evaluated directly in the applications mentioned above. The dimensions of the resulting nanostructures will depend on the power, time and technique used for electropolymerization as well as the monomer and the surfactant of the mesoporous film.

  3. Stimuli-responsive one-dimensional copolymer nanostructures fabricated by metallogel template polymerization and their adsorption of aspirin.

    PubMed

    Wen, Xing; Tang, Liming; Qiang, Lu

    2014-06-14

    pH responsive poly(N,N'-methylenebisacrylamide-co-4-vinylpyridine) (P(MBA-4VP)) one dimensional (1D) nanostructures have been prepared by metallogel template copolymerization, which was carried out in an Ag(i)-coordinated organogel with benzoyl peroxide (BPO) as the initiator. The product has been characterized using infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The experimental results reveal that the gel fiber is a crucial template for polymerization. Due to the degradation of the template in copolymerization, nanofibers of metallogel were transcribed to copolymer nanowires. The introduction of co-monomer 4-vinylpyridine (4VP) imparts to the 1D copolymer nanostructures pH sensitivity and the possible use as an adsorption material of aspirin. Adsorbed 1D copolymer nanostructures could be regenerated using proton solvent, acid medium and salt solution. In addition, silver nanoparticle loaded copolymer nanowires have been produced from the reduction of silver ions instead of template removal, where silver ions act both as the template and as the nanoparticle growth substrate.

  4. Fabrication of polypyrrole/vanadium oxide nanotube composite with enhanced electrochemical performance as cathode in rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaowei; Chen, Xu; He, Taoling; Bi, Qinsong; Sun, Li; Liu, Zhu

    2017-05-01

    Vanadium oxide nanotubes (VOxNTs) with hollow as well as multi-walled features were fabricated under hydrothermal condition by soft-template method. This novel VOxNTs can be used as cathode material for lithium ion batteries (LIBs), but displaying low specific capacity and poor cycling performance owing to the residual of a mass of soft-template (C12H27N) and intrinsic low conductivity of VOx. Cation exchange technique and oxidative polymerization process of pyrrole monomers were conducted to wipe off partial soft-template without electrochemical activity within VOxNTs and simultaneously form polypyrrole coating on VOxNTs, respectively. The resulting polypyrrole/VOxNTs nanocomposite delivers much improved capacity and cyclic stability. Further optimizations, such as complete elimination of organic template and enhancing the crystallinity, can make this unique nanostructure a promising cathode for LIBs.

  5. Formation of oligonucleotide-PNA-chimeras by template-directed ligation

    NASA Technical Reports Server (NTRS)

    Koppitz, M.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    DNA sequences have previously been reported to act as templates for the synthesis of PNA, and vice versa. A continuous evolutionary transition from an informational replicating system based on one polymer to a system based on the other would be facilitated if it were possible to form chimeras, that is molecules that contain monomers of both types. Here we show that ligation to form chimeras proceeds efficiently both on PNA and on DNA templates. The efficiency of ligation is primarily determined by the number of backbone bonds at the ligation site and the relative orientation of template and substrate strands. The most efficient reactions result in the formation of chimeras with ligation junctions resembling the structures of the backbones of PNA and DNA and with antiparallel alignment of both components of the chimera with the template, that is, ligations involving formation of 3'-phosphoramidate and 5'-ester bonds. However, double helices involving PNA are stable both with antiparallel and parallel orientation of the two strands. Ligation on PNA but not on DNA templates is, therefore, sometimes possible on templates with reversed orientation. The relevance of these findings to discussions of possible transitions between genetic systems is discussed.

  6. Electrochemical Sensor Based on Rh(III) Ion-Imprinted Polymer as a New Modifying Agent for Rhodium Determination.

    PubMed

    Bai, Huiping; Xiong, Caiyun; Wang, Chunqiong; Liu, Peng; Dong, Su; Cao, Qiue

    2018-05-01

    A rhodium (III) ion carbon paste electrode (CPE) based on an ion imprinted polymer (IIP) as a new modifying agent has been prepared and studied. Rh(III) ion imprinted polymer was synthesized by copolymerization of acrylamide-Rh(III) complex and ethylene glycol dimethacrylate according to the precipitation polymerization. Acrylamide acted as both functional monomer and complexing agent to create selective coordination sites in a cross-linked polymer. The ion imprinted carbon paste electrode (IIP-CPE) was prepared by mixing rhodium IIP-nanoparticles and graphite powder in n-eicosane as an adhesive and then embedding them in a Teflon tube. Amperometric i-t curve method was applied as the determination technique. Several parameters, including the functional monomer, molar ratio of template, monomer and cross-linking agent, the amounts of IIP, the applied potential, the buffer solution and pH have been studied. According to the results, IIP-CPE showed a considerably higher response in comparison with the electrode embedded with non-imprinted polymer (NIP), indicating the formation of suitable recognition sites in the IIP structure during the polymerization stage. The introduced electrode showed a linear range of 1.00×10-8~3.0×10-5 mol·L-1 and detection limit of 6.0 nmol L-1 (S/N = 3). The IIP-CPE was successfully applied for the trace rhodium determination in catalyst and plant samples with RSD of less than 3.3% (n = 5) and recoveries in the range of 95.5~102.5%.

  7. [Rapid fabrication of molecularly imprinted polymer fibers for solid phase microextraction of bisphenol A].

    PubMed

    Hu, Mei; Zhang, Yijun; Yang, Jinghua; Zhou, Xiaomao; Wei, Zhuqing; Ding, Xiaoqing; Zhang, Yuping

    2015-02-01

    The rapid preparation of molecularly imprinted polymer (MIP) fibers was reported using bisphenol A (BPA) as the template molecular, acetonitrile (ACN) as the porogenic solvent, α-methacrylic acid (MAA) as the functional monomer, ethylene dimethacrylate (EDMA) as the crosslinker, and azodiisobutyronitrile (AIBN) as the thermal initiator. It was carried out within a capillary of 530 µm inner diameter (I. D.) by microwave irradiation in 7 min. The resulted BPA-MIP fibers were pushed out from the capillary, eluted in a vial and inserted in the capillary again followed by the application of the solid phase microextraction (SPME) procedure. The extraction performance was investigated in detail by varying the molar ratios between the template and the monomer (BPA/MAA), the concentration of NaCl, the extraction and desorption time, the pH value and the desorption solvents. The selectivity of the prepared MIP and non-molecularly imprinted polymer (NIP) fibers was comparatively evaluated by selecting two structurally-related compounds, phenol (P) and 4-phenylphenol (PP), and non-analogue dicyandiamide (DCD). The established method was successfully applied for the pretreatment and determination of BPA from beverage samples coupled to high performance liquid chromatography (HPLC). Under the optimal conditions, the linear range of BPA was 10-400 µg/L; the detection limit (LOD) was 0.45 µg/L and the recoveries spiked in the mineral water were 88.4%-102. 8%. The results demonstrated that the developed method can determine BPA in real samples with some advantages of simple pretreatment, rapid analysis, low limit of detection and low consumption of materials.

  8. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP.

    PubMed

    Czulak, J; Guerreiro, A; Metran, K; Canfarotta, F; Goddard, A; Cowan, R H; Trochimczuk, A W; Piletsky, S

    2016-06-07

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.

  9. Molecularly imprinted polymer for selective extraction of malachite green from seawater and seafood coupled with high-performance liquid chromatographic determination.

    PubMed

    Lian, Ziru; Wang, Jiangtao

    2012-12-01

    In this paper, a highly selective sample cleanup procedure combining molecular imprinting technique (MIT) and solid-phase extraction (SPE) was developed for the isolation of malachite green in seawater and seafood samples. The molecularly imprinted polymer (MIP) was prepared using malachite green as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer. The imprinted polymer and non-imprinted polymer were characterized by scanning electron microscope and static adsorption experiments. The MIP showed a high adsorption capacity and was used as selective sorbent for the SPE of malachite green. An off-line molecularly imprinted solid-phase extraction (MISPE) method followed by high-performance liquid chromatography with diodearray detection for the analysis of malachite green in seawater and seafood samples was also established. Finally, five samples were determined. The results showed that malachite green concentration in one seawater sample was at 1.30 μg L⁻¹ and the RSD (n=3) was 4.15%. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  10. Processable high-carbon-yielding polymer for micro- and nanofabrication

    NASA Astrophysics Data System (ADS)

    Perpall, Mark W.; Zengin, Huseyin; Perera, K. Prasanna U.; Zhou, Wensheng; Shah, Hiren; Wu, Xinyu; Creager, Stephen E.; Smith, Dennis W., Jr.; Foulger, Stephen H.; Ballato, John M.

    2003-01-01

    Bis-ortho-Diynyl Arene (BODA) monomers polymerize to network polynapthalene by the thermally-driven Bergman cyclization and subsequent radical polymerization via oligomeric intermediates that can be melt or solution processed. Further heating of the network to 1000 °C affords a high-yield glassy carbon structure that retains the approximate size and dimensions of the polymer precursor. The higher carbon-yield for BODA networks (75- 80 % by mass) is significantly greater than that of traditional phenol-formaldehyde resins and other carbon precursor polymers leading to its greater dimensional stability. Phenyl terminated BODA derived polymers were fabricated using microprocessing such as the micromolding in capillaries (MIMIC) technique, direct microtransfer molding, and molding in quartz capillary tubes. Nano-scale fabrication using closed packed silica spheres as templates was demonstrated with an hydroxy-terminated monomer which exhibits greatly enhanced compatibility for silica surfaces. After pyrolysis to glassy carbon, the silica is chemically etched leaving an inverse carbon opal photonic crystal which is electrically conductive. The wavelength of light diffracted is a function of the average refractive index of the carbon/ filler composite, which can be modified for use as sensitive detector elements.

  11. Enantiomers Recognition of Propranolol Based on Organic-Inorganic Hybrid Open-Tubular MIPs-CEC Column Using 3-(Trimethoxysilyl)Propyl Methacrylate as a Cross-Linking Monomer.

    PubMed

    Chen, Guo-Ning; Li, Ning; Luo, Tian; Dong, Yu-Ming

    2017-04-01

    In this study, 3-(trimethoxysilyl)propyl methacrylate (γ-MPS), a bifunctional group compound, was used as a single cross-linking agent to prepare molecular imprinted inorganic-organic hybrid polymers by in situ polymerization for open-tubular capillary electro chromatography (CEC) column. The optimal preparation conditions were: the ratio between template molecule and functional monomer was 1:4; the volume proportion of porogen toluene and methanol was 1:1 and the volume of cross-linking agent γ-MPS was 69 μL. The optimal separation conditions were separation voltage of 15 kV; detection wavelength at 215 nm and background electrolyte composed of 70% acetonitrile/20 mmol/L boric acid salt (pH 6.9). Under the optimized conditions, the propranolol enantiomers can be separated well by CEC. The method is simple and fast, it can be a potentially useful approach for propranolol enantiomers separation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Molecular dynamics approaches to the design and synthesis of PCB targeting molecularly imprinted polymers: interference to monomer-template interactions in imprinting of 1,2,3-trichlorobenzene.

    PubMed

    Cleland, Dougal; Olsson, Gustaf D; Karlsson, Björn C G; Nicholls, Ian A; McCluskey, Adam

    2014-02-07

    The interactions between each component of the pre-polymerisation mixtures used in the synthesis of molecularly imprinted polymers (MIP) specific for 1,2,3,4,5-pentachlorobenzene (1) and 1,2,3-trichlorobenzene (2) were examined in four molecular dynamics simulations. These simulations revealed that the relative frequency of functional monomer-template (FM-T) interactions was consistent with results obtained by the synthesis and evaluation of the actual MIPs. The higher frequency of 1 interaction with trimethylstyrene (TMS; 54.7%) than 1 interaction with pentafluorostyrene (PFS; 44.7%) correlated with a higher imprinting factor (IF) of 2.1 vs. 1.7 for each functional monomer respectively. The higher frequency of PFS interactions with 2 (29.6%) than TMS interactions with 2 (1.9%) also correlated well with the observed differences in IF (3.7) of 2 MIPs imprinted using PFS as the FM than the IF (2.8) of 2 MIPs imprinted using TMS as the FM. The TMS-1 interaction dominated the molecular simulation due to high interaction energies, but the weaker TMS-2 resulted in low interaction maintenance, and thus lower IF values. Examination of the other pre-polymerisation mixture components revealed that the low levels of TMS-2 interaction was, in part, due to interference caused by the cross linker (CL) ethyleneglycol dimethylacrylate (EGDMA) interactions with TMS. The main reason was, however, attributed to MeOH interactions with TMS in both a hydrogen bond and perpendicular configuration. This positioned a MeOH directly above the π-orbital of all TMS for an average of 63.8% of MD2 creating significant interference to π-π stacking interactions between 2 and TMS. These findings are consistent with the deviation from the 'normal' molecularly imprinted polymer synthesis ratio of 1 : 4 : 20 (T : FM : CL) of 20 : 1 : 29 and 15 : 6 : 29 observed with 2 and TMS and PFS respectively. Our molecular dynamics simulations correctly predicted the high level of interference from other MIP synthesis components. The effect on PFS-1 interaction by MeOH was significantly lower and thus this system was not adversely affected.

  13. Oligomerization of deoxynucleoside-biphosphate dimers - Template and linkage specificity

    NASA Technical Reports Server (NTRS)

    Visscher, J.; Van Der Woerd, R.; Bakker, C. G.; Schwartz, Alan W.

    1989-01-01

    The oligomerization of the activated 3-prime-5-prime pyrophosphate-linked dimer, pdAppdAp, is presently noted to be selectively favored by a poly(U) template over the 3-prime-3-prime and 5-prime-5-prime linked dimers. Both overall yields and the production of the longest oligomers were markedly stimulated by poly(U)'s presence; in its absence, the 5-prime-5-prime linked dimer became the most reactive, yielding chains of the order of 60 monomer-unit lengths. Remarkable self-organization properties are noted for the 5-prime-5-prime dimer of pdAp.

  14. Chemical synthesis of water-soluble, chiral conducting-polymer complexes

    DOEpatents

    Wang, Hsing-Lin; McCarthy, Patrick A.; Yang, Sze Cheng

    2003-01-01

    The template-guided synthesis of water-soluble, chiral conducting polymer complexes is described. Synthesis of water-soluble polyaniline complexes is achieved by carefully controlling the experimental parameters such as; acid concentration, ionic strength, monomer/template ratio, total reagent concentration, and order of reagent addition. Chiral (helical) polyaniline complexes can be synthesized by addition of a chiral inducing agent (chiral acid) prior to polymerization, and the polyaniline helix can be controlled by the addition of the (+) or (-) form of the chiral acid. Moreover the quantity of chiral acid and the salt content has a significant impact on the degree of chirality in the final polymer complexes. The polyaniline and the template have been found to be mixed at the molecular level which results in chiral complexes that are robust through repeated doping and dedoping cycles.

  15. Modulation of Quorum Sensing in a Gram-Positive Pathogen by Linear Molecularly Imprinted Polymers with Anti-infective Properties.

    PubMed

    Motib, Anfal; Guerreiro, Antonio; Al-Bayati, Firas; Piletska, Elena; Manzoor, Irfan; Shafeeq, Sulman; Kadam, Anagha; Kuipers, Oscar; Hiller, Luisa; Cowen, Todd; Piletsky, Sergey; Andrew, Peter W; Yesilkaya, Hasan

    2017-12-22

    We describe the development, characterization, and biological testing of a new type of linear molecularly imprinted polymer (LMIP) designed to act as an anti-infective by blocking the quorum sensing (QS) mechanism and so abrogating the virulence of the pathogen Streptococcus pneumoniae. The LMIP is prepared (polymerized) in presence of a template molecule, but unlike in traditional molecular imprinting approaches, no cross-linker is used. This results in soluble low-molecular-weight oligomers that can act as a therapeutic agent in vitro and in vivo. The LMIP was characterized by mass spectrometry to determine its monomer composition. Fragments identified were then aligned along the peptide template by computer modeling to predict the possible monomer sequence of the LMIP. These findings provide a proof of principle that LMIPs can be used to block QS, thus setting the stage for the development of LMIPs a novel drug-discovery platform and class of materials to target Gram-positive pathogens. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Interference of functional monomers with polymerization efficiency of adhesives.

    PubMed

    Hanabusa, Masao; Yoshihara, Kumiko; Yoshida, Yasuhiro; Okihara, Takumi; Yamamoto, Takatsugu; Momoi, Yasuko; Van Meerbeek, Bart

    2016-04-01

    The degree of conversion (DC) of camphorquinone/amine-based adhesives is affected by acidic functional monomers as a result of inactivation of the amine co-initiator through an acid-base reaction. During bonding, functional monomers of self-etch adhesives chemically interact with hydroxyapatite (HAp). Here, we tested in how far the latter interaction of functional monomers with HAp counteracts the expected reduction in DC of camphorquinone/amine-based adhesives. The DC of three experimental adhesive formulations, containing either of the two functional monomers [10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) or 4-methacryloxyethyl trimellitic acid anhydride (4-META)] or no functional monomer (no-FM; control), was measured with and without HAp powder added to the adhesive formulations. Both the variables 'functional monomer' and 'HAp' were found to be significant, with the functional monomer reducing the DC and HAp counteracting this effect. It is concluded that the functional monomers 10-MDP and 4-META interfere with the polymerization efficiency of adhesives. This interference is less prominent in the presence of HAp, which would clinically correspond to when these two functional monomers of the adhesive simultaneously interact with HAp in tooth tissue. © 2016 Eur J Oral Sci.

  17. Using ultrasonic (US)-initiated template copolymerization for preparation of an enhanced cationic polyacrylamide (CPAM) and its application in sludge dewatering.

    PubMed

    Feng, Li; Liu, Shuang; Zheng, Huaili; Liang, Jianjun; Sun, Yongjun; Zhang, Shixin; Chen, Xin

    2018-06-01

    In this study, the ultrasonic (US)-initiated template copolymerization was employed to synthesize a novel cationic polyacrylamide (CPAM) characterized by a microblock structure using dimethyldiallylammonium chloride (DMDAAC) and acrylamide (AM) as monomers, and sodium polyacrylate (NaPAA) as template. The polymers structure property was analyzed by Fourier transform infrared spectroscopy (FT-IR), 1 H nuclear magnetic resonance spectroscopy ( 1 H NMR) and thermogravimetric analysis (TGA). The results showed that a novel cationic microblock structure was successfully synthesized in the template copolymer of DMDAAC and AM (TPADM). Meanwhile, the analysis result of association constant (M K ) provided powerful support for a I Zip-up (ZIP) template polymerization mechanism and the formation of the microblock structure. The factors affecting the polymerization were investigated, including ultrasonic power, ultrasonic time, monomer concentration, initiator concentration, m AM :m DMDAAC and n NaPAA :n DMDAAC . The sludge dewatering performance of the polymers was evaluated in terms of specific resistance to filtration (SRF), filter cake moisture content (FCMC), floc size (d 50 ) and fractal dimension (D f ). Flocculation mechanism was also analyzed and discussed. The sludge dewatering results revealed that the polymer with the novel microblock structure showed a more excellent flocculation performance than those with randomly distributed cationic units. A desirable flocculation performance with a SRF of 4.5 × 10 12  m kg -1 , FCMC of 73.1%, d 50 of 439.156 µm and D f of 1.490 were obtained at pH of 7.0, dosage of 40 mg L -1 and the molecular weight of 5.0 × 10 6  Da. The cationic microblock extremely enhanced the polymer charge neutralization and bridging ability, thus obtaining the excellent sludge dewatering performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Study on the molecularly imprinted polymers with methyl-testosterone as the template.

    PubMed

    Yang, Minli; Gu, Wancheng; Sun, Li; Zhang, Feng; Ling, Yun; Chu, Xiaogang; Wang, Daning

    2010-04-15

    Molecularly imprinted polymers (MIPs) using methyl-testosterone as the template, methacrylic acid (MAA) as the monomer and ethylene glycol dimethacrylate (EDMA) as the crosslinker were prepared by precipitation polymerization. The morphology of the obtained particles was characterized by scanning electron microscopy (SEM) and the pore size was measured by BET. Then, the specificity and selectivity of the MIPs were evaluated using the equilibrium rebinding experiments. Besides, the MIPs were also used as the stationary phase of HPLC column and the retention behaviour to the template and analogues was confirmed using HPLC-MS-MS. Finally, the real application of the methyl-testosterone imprinted polymers was evaluated using SPE procedure with the spiked tap water and lake water. The results indicated that the prepared methyl-testosterone imprinted polymer showed specific rebinding ability to its template and could retain the template strongly compared with other structural analogues. At the same time, the MIPs could be used as SPE column to enrich methyl-testosterone in the lake water and show broad prospects in real samples. (c) 2009 Elsevier B.V. All rights reserved.

  19. Preparation and adsorption behavior of berberine hydrochloride imprinted polymers by using silica gel as sacrificed support material

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Yuzhuo; Li, Zhiping; Peng, Xiyang; Li, Yanan; Li, Gui; Tan, Xianzhou; Chen, Gongxi

    2012-03-01

    Preparation of berberine hydrochloride (B-Cl) imprinted polymers (MIPs) based on surface imprinting technique with silica gel as sacrificial support material was performed successfully by using B-Cl as template, methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. The prepared polymers were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption behavior of the MIPs for the template and its structural analogues was investigated. Sites distribution on the surface of MIPs was explored by using different isotherm adsorption models and thermodynamic parameters for the adsorption of B-Cl on the MIPs determined. Sample application and reusability for the MIPs was also evaluated. Results indicated the strong adsorption and high selectivity of the MIPs for B-Cl. Saturated adsorption capacity reached 27.2 μmol g-1 and the selectivity coefficient of the MIPs for B-Cl relative to jatrorrhizine hydrochloride (J-Cl) and palmatine palmatus hydrochloride (P-Cl) are 3.70 and 6.03, respectively. In addition, the MIPs were shown with good reusability and selectively retention ability in sample application.

  20. Self-replication with magnetic dipolar colloids

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  1. Bioinspired fabrication of hierarchically structured, pH-tunable photonic crystals with unique transition.

    PubMed

    Yang, Qingqing; Zhu, Shenmin; Peng, Wenhong; Yin, Chao; Wang, Wanlin; Gu, Jiajun; Zhang, Wang; Ma, Jun; Deng, Tao; Feng, Chuanliang; Zhang, Di

    2013-06-25

    We herein report a new class of photonic crystals with hierarchical structures, which are of color tunability over pH. The materials were fabricated through the deposition of polymethylacrylic acid (PMAA) onto a Morpho butterfly wing template by using a surface bonding and polymerization route. The amine groups of chitosan in Morpho butterfly wings provide reaction sites for the MAA monomer, resulting in hydrogen bonding between the template and MAA. Subsequent polymerization results in PMAA layers coating homogenously on the hierarchical photonic structures of the biotemplate. The pH-induced color change was detected by reflectance spectra as well as optical observation. A distinct U transition with pH was observed, demonstrating PMAA content-dependent properties. The appearance of the unique U transition results from electrostatic interaction between the -NH3(+) of chitosan and the -COO(-) groups of PMAA formed, leading to a special blue-shifted point at the pH value of the U transition, and the ionization of the two functional groups in the alkali and acid environment separately, resulting in a red shift. This work sets up a strategy for the design and fabrication of tunable photonic crystals with hierarchical structures, which provides a route for combining functional polymers with biotemplates for wide potential use in many fields.

  2. Template Directed Replication Supports the Maintenance of the Metabolically Coupled Replicator System

    NASA Astrophysics Data System (ADS)

    Könnyű, Balázs; Czárán, Tamás

    2015-06-01

    The RNA World scenario of prebiotic chemical evolution is among the most plausible conceptual framework available today for modelling the origin of life. RNA offers genetic and catalytic (metabolic) functionality embodied in a single chemical entity, and a metabolically cooperating community of RNA molecules would constitute a viable infrabiological subsystem with a potential to evolve into proto-cellular life. Our Metabolically Coupled Replicator System (MCRS) model is a spatially explicit computer simulation implementation of the RNA-World scenario, in which replicable ribozymes cooperate in supplying each other with monomers for their own replication. MCRS has been repeatedly demonstrated to be viable and evolvable, with different versions of the model improved in depth (chemical detail of metabolism) or in extension (additional functions of RNA molecules). One of the dynamically relevant extensions of the MCRS approach to prebiotic RNA evolution is the explicit inclusion of template replication into its assumptions, which we have studied in the present version. We found that this modification has not changed the behaviour of the system in the qualitative sense, just the range of the parameter space which is optimal for the coexistence of metabolically cooperating replicators has shifted in terms of metabolite mobility. The system also remains resistant and tolerant to parasitic replicators.

  3. Montmorillonite, Oligonucleotides, RNA and Origin of Life

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen

    2004-12-01

    Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5'-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3',5'-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5'-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12-14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75-80% of the monomers are linked by 2',5'-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3',5'- and 2',5'-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5'-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2',5'-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2',5'- and 3',5'-phosphodiester bonds. Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer <3-mer <4-mer ... <7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible isomers (Ertem and Ferris, 2000). Formation of phosphodiester bonds between mononucleotides by montmorillonite catalysis is a fascinating discovery, and a significant step forward in efforts to find out how the first RNA-like oligomers might have formed in the course of chemical evolution. However, as has been pointed out in several publications, these systems should be regarded as models rather than a literal representation of prebiotic chemistry (Orgel, 1998; Joyce and Orgel, 1999; Schwartz, 1999).

  4. Montmorillonite, oligonucleotides, RNA and origin of life

    NASA Technical Reports Server (NTRS)

    Ertem, Gozen

    2004-01-01

    Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5'-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3',5'-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5'-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12-14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75-80% of the monomers are linked by 2',5'-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3',5'- and 2',5'-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5'-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2',5'-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2',5'- and 3',5'-phosphodiester bonds. Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer < 3-mer < 4-mer ... < 7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible isomers (Ertem and Ferris, 2000). Formation of phosphodiester bonds between mononucleotides by montmorillonite catalysis is a fascinating discovery, and a significant step forward in efforts to find out how the first RNA-like oligomers might have formed in the course of chemical evolution. However, as has been pointed out in several publications, these systems should be regarded as models rather than a literal representation of prebiotic chemistry (Orgel, 1998; Joyce and Orgel, 1999; Schwartz, 1999).

  5. Limiting concentrations of activated mononucleotides necessary for poly(C)-directed elongation of oligoguanylates

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Chang, S.; Alberas, D. J.

    1990-01-01

    Selected imidazolide-activated nucleotides have been subjected to hydrolysis under conditions similar to those that favor their template-directed oligomerization. Rate constants of hydrolysis of the P-N bond in guanosine 5'-monophosphate 2-methylimidazolide (2-MeImpG) and in guanosine 5'-monophosphate imidazolide (ImpG), kh, have been determined in the presence/absence of magnesium ion as a function of temperature and polycytidylate [poly(C)] concentration. Using the rate constant of hydrolysis of 2-MeImpG and the rate constant of elongation, i.e., the reaction of an oligoguanylate with 2-MeImpG in the presence of poly(C) acting as template, the limiting concentration of 2-MeImpG necessary for oligonucleotide elongation to compete with hydrolysis can be calculated. The limiting concentration is defined as the initial concentration of monomer that results in its equal consumption by hydrolysis and by elongation. These limiting concentrations of 2-MeImpG are found to be 1.7 mM at 37 degrees C and 0.36 mM at 1 degrees C. Boundary conditions in the form of limiting concentration of activated nucleotide may be used to evaluate a prebiotic model for chemical synthesis of biopolymers. For instance, the limiting concentration of monomer can be used as a basis of comparison among catalytic, but nonenzymatic, RNA-type systems. We also determined the rate constant of dimerization of 2-MeImpG, k2 = 0.45 +/- 0.06 M-1 h-1 in the absence of poly(C), and 0.45 +/- 0.06 less than or equal to k2 less than or equal to 0.97 +/- 0.13 M-1 h-1 in its presence at 37 degrees C and pH 7.95.(ABSTRACT TRUNCATED AT 250 WORDS).

  6. Development of a Molecularly Imprinted Polymer-Based Sensor for the Electrochemical Determination of Triacetone Triperoxide (TATP)

    PubMed Central

    Mamo, Samuel Kassahun; Gonzalez-Rodriguez, Jose

    2014-01-01

    The explosive triacetone triperoxide (TATP), which can be prepared from commercially readily available reagents following an easy synthetic procedure, is one of the most common components of improvised explosive devices (IEDs). Molecularly-imprinted polymer (MIP) electrochemical sensors have proved useful for the determination of different compounds in different matrices with the required sensitivity and selectivity. In this work, a highly sensitive and selective molecularly imprinted polymer with electrochemical capabilities for the determination of TATP has been developed. The molecular imprinting has been performed via electropolymerisation onto a glassy carbon electrode surface by cyclic voltammetry from a solution of pyrrole functional monomer, TATP template and LiClO4. Differential Pulse Voltammetry of TATP, with LiClO4 as supporting electrolyte, was performed in a potential range of −2.0 V to +1.0 V (vs. Ag/AgCl). Three-factor two-level factorial design was used to optimise the monomer concentration at 0.1 mol·L−1, template concentration at 100 mmol·L−1 and the number of cyclic voltammetry scan cycles to 10. The molecularly imprinted polymer-modified glassy carbon electrode demonstrated good performance at low concentrations for a linear range of 82–44,300 μg·L−1 and a correlation coefficient of r2 = 0.996. The limits of detection (LoD) and quantification (LoQ) achieved were 26.9 μg·L−1 and 81.6 μg·L−1, respectively. The sensor demonstrated very good repeatability with precision values (n = 6, expressed as %RSD) of 1.098% and 0.55% for 1108 and 2216 μg·L−1, respectively. It also proved selective for TATP in the presence of other explosive substances such as PETN, RDX, HMX, and TNT. PMID:25490589

  7. Molecularly Imprinted Microrods via Mesophase Polymerization.

    PubMed

    Parisi, Ortensia Ilaria; Scrivano, Luca; Candamano, Sebastiano; Ruffo, Mariarosa; Vattimo, Anna Francesca; Spanedda, Maria Vittoria; Puoci, Francesco

    2017-12-28

    The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  8. Fabrication of Aligned Polyaniline Nanofiber Array via a Facile Wet Chemical Process.

    PubMed

    Sun, Qunhui; Bi, Wu; Fuller, Thomas F; Ding, Yong; Deng, Yulin

    2009-06-17

    In this work, we demonstrate for the first time a template free approach to synthesize aligned polyaniline nanofiber (PN) array on a passivated gold (Au) substrate via a facile wet chemical process. The Au surface was first modified using 4-aminothiophenol (4-ATP) to afford the surface functionality, followed subsequently by an oxidation polymerization of aniline (AN) monomer in an aqueous medium using ammonium persulfate as the oxidant and tartaric acid as the doping agent. The results show that a vertically aligned PANI nanofiber array with individual fiber diameters of ca. 100 nm, heights of ca. 600 nm and a packing density of ca. 40 pieces·µm(-2) , was synthesized. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and morphogenesis of organic and inorganic polymers by means of biominerals and biomimetic materials.

    PubMed

    Kijima, Misako; Oaki, Yuya; Munekawa, Yurika; Imai, Hiroaki

    2013-02-11

    We have studied the simultaneous synthesis and morphogenesis of polymer materials with hierarchical structures from nanoscopic to macroscopic scales. The morphologies of the original materials can be replicated to the polymer materials. In general, it is not easy to achieve the simultaneous synthesis and morphogenesis of polymer material even using host materials. In the present work, four biominerals and three biomimetic mesocrystal structures are used as the host materials or templates and polypyrrole, poly(3-hexylthiopehene), and silica were used as the precursors for the simultaneous syntheses and morphogenesis of polymer materials. The host materials with the hierarchical structure possess the nanospace for the incorporation of the monomers. After the incorporation of the monomers, the polymerization reaction proceeds in the nanospace with addition of the initiator agents. Then, the dissolution of the host materials leads to the formation and morphogenesis of the polymer materials. The scheme of the replication can be classified into the three types based on the structures of the host materials (types I-III). The type I template facilitates the hierarchical replication of the whole host material, type II mediates the hierarchical surface replication, and type III induces the formation of the two-dimensional nanosheets. Based on these results, the approach for the coupled synthesis and morphogenesis can be applied to a variety of combinations of the templates and polymer materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Determination of ibuprofen, naproxen and diclofenac in aqueous samples using a multi-template molecularly imprinted polymer as selective adsorbent for solid-phase extraction.

    PubMed

    Madikizela, Lawrence Mzukisi; Chimuka, Luke

    2016-09-05

    This study describes the application of multi-template molecularly imprinted polymer (MIP) as selective sorbent in the solid-phase extraction (SPE) of naproxen, ibuprofen and diclofenac from wastewater and river water. MIP was synthesized at 70°C by employing naproxen, ibuprofen and diclofenac as multi-templates, ethylene glycol dimethacrylate, 2-vinyl pyridine and toluene as cross-linker, functional monomer and porogen, respectively. Wastewater and river water samples (pH 2.5) were percolated through SPE cartridge packed with 50mg of the MIP. The cartridge was washed with 2mL of methanol-water 10:90% (v:v) prior to elution with 2mL of acetic acid-acetonitrile 20:80% (v:v). Quantification of eluted compounds was performed with high performance liquid chromatography equipped with photo diode array detection. The detection limits were 0.15, 1.00 and 0.63μgL(-1) for naproxen, ibuprofen and diclofenac, respectively. Recoveries for naproxen, ibuprofen and diclofenac in deionized water spiked at 5 and 50μgL(-1) were greater than 80%. Ibuprofen was the most frequently detected compound with maximum concentrations of 221, 67.9 and 11.4μgL(-1) in wastewater influent, effluent and river water, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Molecularly imprinted solid-phase extraction for determination of tilmicosin in feed using high performance liquid chromatography.

    PubMed

    Zheng, Yaqiu; Liu, Yahong; Guo, Hongbin; He, Limin; Fang, Binghu; Zeng, Zhenling

    2011-04-01

    A simple, sensitive and reproducible molecularly imprinted solid-phase extraction (MISPE) coupled with high performance liquid chromatographic method was developed for monitoring tilmicosin in feeds. The polymers were prepared using tylosin as mimic template molecule, methacrylic acid as functional monomer and ethylene glycol dimethacrylate as cross-linking monomer, and chloroform as a solvent by bulk polymerization. Under the optimum MISPE conditions, the novel polymer sorbent can selectively extract and enrich tilmicosin from variety of feeds. The MISPE cartridge was better than non-imprinted, C(18) and HLB cartridges in terms of both recovery and precision. Mean recoveries of tilmicosin from five kinds of feeds spiked at 1, 10 and 50 mg kg(-1) ranged from 76.9% to 95.6%, with intra-day and inter-day relative standard deviation less than 7.6%. The linearity was ranged from 1.0 to 100 mg L(-1) for matrix standard solution (r=0.9990). The limit of detection was approximately 0.35 mg kg(-1) and the limit of quantification was approximately 0.98 mg kg(-1). There was cleaner chromatogram by using MISPE than C(18) and HLB SPE. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Solid-phase synthesis of molecularly imprinted nanoparticles.

    PubMed

    Canfarotta, Francesco; Poma, Alessandro; Guerreiro, Antonio; Piletsky, Sergey

    2016-03-01

    Molecularly imprinted polymers (MIPs) are synthetic materials, generally based on acrylic or methacrylic monomers, that are polymerized in the presence of a specific target molecule called the 'template' and capable of rebinding selectively to this target molecule. They have the potential to be low-cost and robust alternatives to biomolecules such as antibodies and receptors. When prepared by traditional synthetic methods (i.e., with free template in solution), their usefulness has been limited by high binding site heterogeneity, the presence of residual template and the fact that the production methods are complex and difficult to standardize. To overcome some of these limitations, we developed a method for the synthesis of MIP nanoparticles (nanoMIPs) using an innovative solid-phase approach, which relies on the covalent immobilization of the template molecules onto the surface of a solid support (glass beads). The obtained nanoMIPs are virtually free of template and demonstrate high affinity for the target molecule (e.g., melamine and trypsin in our published work). Because of an affinity separation step performed on the solid phase after polymerization, poor binders and unproductive polymer are removed, so the final product has more uniform binding characteristics. The overall protocol, starting from the immobilization of the template onto the solid phase and including the purification and characterization of the nanoparticles, takes up to 1 week.

  13. Carprofen-imprinted monolith prepared by reversible addition-fragmentation chain transfer polymerization in room temperature ionic liquids.

    PubMed

    Ban, Lu; Han, Xu; Wang, Xian-Hua; Huang, Yan-Ping; Liu, Zhao-Sheng

    2013-10-01

    To obtain fast separation, ionic liquids were used as porogens first in combination with reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare a new type of molecularly imprinted polymer (MIP) monolith. The imprinted monolithic column was synthesized using a mixture of carprofen (template), 4-vinylpyridine, ethylene glycol dimethacrylate, [BMIM]BF4, and chain transfer agent (CTA). Some polymerization factors, such as template-monomer molar ratio, the degree of crosslinking, the composition of the porogen, and the content of CTA, on the column efficiency and imprinting effect of the resulting MIP monolith were systematically investigated. Affinity screening of structurally similar compounds with the template can be achieved in 200 s on the MIP monolith due to high column efficiency (up to 12,070 plates/m) and good column permeability. Recognition mechanism of the imprinted monolith was also investigated.

  14. Unusually large acrylamide induced effect on the droplet size in AOT/Brij30 water-in-oil microemulsions.

    PubMed

    Poulsen, Allan K; Arleth, Lise; Almdal, Kristoffer; Scharff-Poulsen, Anne Marie

    2007-02-01

    Droplet microemulsions are widely used as templates for controlled synthesis of nanometer sized polymer gel beads for use as, e.g., nanobiosensors. Here we examine water-in-oil microemulsions typically used for preparation of sensors. The cores of the microemulsion droplets are constituted by an aqueous component consisting of water, reagent monomer mixture, buffer salts, and the relevant dyes and/or enzymes. The cores are encapsulated by a mixture of the surfactants Brij30 and AOT and the resulting microemulsion droplets are suspended in a continuous hexane phase. The size of the final polymer particles may be of great importance for the applications of the sensors. Our initial working hypothesis was that the size of the droplet cores and therefore the size of the synthesized polymer gel beads could be controlled by the surfactant-to-water ratio of the template microemulsion. In the present work we have tested this hypothesis and investigated how the monomers and the ratio between the two surfactants affect the size of the microemulsion droplets and the microemulsion domain. We find that the monomers in water have a profound effect on the microemulsion domain as well as on the size of the microemulsion droplets. The relation between microemulsion composition and droplet size is in this case more complicated than assumed in standard descriptions of microemulsions [R. Strey, Colloid Polym. Sci. 272 (1994) 1005-1019; I. Danielsson, B. Lindman, Colloids Surf. 3 (1981) 391-392; Y. Chevalier, T. Zemb, Rep. Progr. Phys. 53 (1990) 279-371].

  15. Template-directed synthesis and selective adsorption of oligoadenylates in hydroxyapatite

    NASA Technical Reports Server (NTRS)

    Gibbs, D.; Lohrmann, R.; Orgel, L. E.

    1980-01-01

    Polyuridylic acid is adsorbed completely from aqueous solution by hydroxyapatite under conditions that permit template-directed synthesis of oligoadenylates in free solution. The yield of oligoadenylates is enhanced to almost the same extent by poly(U) in the presence or the absence of hydroxyapatite. Under very similar conditions small quantities of hydroxyapatite adsorb higher-molecular-weight oligoadenylates selectively from a mixture of oligomers. On the basis of these results a mechanism for prebiotic oligonucleotide formation is proposed in which selective adsorption on hydroxyapatite or some other immobilized anion-exchanging material plays a major role. Monomers are released from the surface for reactivation, while oligomers are retained in a protected environment by adsorption to the apatite surface.

  16. Pyrrole-phenylboronic acid: a novel monomer for dopamine recognition and detection based on imprinted electrochemical sensor.

    PubMed

    Zhong, Min; Teng, Ying; Pang, Shufen; Yan, Liqin; Kan, Xianwen

    2015-02-15

    A molecular imprinting polymer (MIP) based electrochemical sensor was successfully prepared for dopamine (DA) recognition and detection using pyrrole-phenylboronic acid (py-PBA) as a novel electropolymerized monomer. py-PBA could form cyclic boronic ester bond with DA, thus endowing a double recognition capacity of the sensor to DA in the combination of the imprinted effect of MIP. Compared with the sensor prepared using pyrrole or phenylboronic acid as electropolymerized monomer, the present sensor exhibited a remarkable high imprinted factor to DA. The influence factors including pH value, the mole ratio between monomer and template molecule, electropolymerization scan rate, and scan cycles of electropolymerization process were investigated and optimized. Under the optimal conditions, the sensor could recognize DA from its analogs and monosaccharides. A linear ranging from 5.0 × 10(-8) to 1.0 × 10(-5) mol/L for the detection of DA was obtained with a detection limit of 3.3 × 10(-8) mol/L (S/N = 3). The sensor has been applied to analyze DA in injection samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Proteolysis of truncated hemolysin A yields a stable dimerization interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, Walter R. P.; Bhattacharyya, Basudeb; Grilley, Daniel P.

    2017-02-21

    Wild-type and variant forms of HpmA265 (truncated hemolysin A) fromProteus mirabilisreveal a right-handed, parallel β-helix capped and flanked by segments of antiparallel β-strands. The low-salt crystal structures form a dimeric structureviathe implementation of on-edge main-chain hydrogen bonds donated by residues 243–263 of adjacent monomers. Surprisingly, in the high-salt structures of two variants, Y134A and Q125A-Y134A, a new dimeric interface is formedviamain-chain hydrogen bonds donated by residues 203–215 of adjacent monomers, and a previously unobserved tetramer is formed. In addition, an eight-stranded antiparallel β-sheet is formed from the flap regions of crystallographically related monomers in the high-salt structures. This new interfacemore » is possible owing to additional proteolysis of these variants after Tyr240. The interface formed in the high-salt crystal forms of hemolysin A variants may mimic the on-edge β-strand positioning used in template-assisted hemolytic activity.« less

  18. Hollow nanotubular toroidal polymer microrings.

    PubMed

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  19. Template-directed deposition of amyloid

    NASA Astrophysics Data System (ADS)

    Ha, Chanki

    The formation of amyloid plaques in tissue is a pathological feature of many neurodegenerative diseases. Amyloid deposition, the process of amyloid plaque growth by the association of individual soluble amyloid molecules with a pre-existing amyloid template (i.e. plaque), is known to be critical for amyloid formation in vivo. In order to characterize amyloid deposition, we developed novel, synthetic amyloid templates like amyloid plaques in the human Alzheimer's brain by attaching amyloid seeds covalently onto an N-hydroxysuccinimide-activated surface. Amyloid plaques with a characteristic beta-sheet structure formed through a conformational rearrangement of soluble insulin or Abeta monomers upon interaction with the template. The amyloid deposition rate followed saturation kinetics with respect to insulin concentration in the solution. According to visualization of temporal evolution of Abeta plaque deposition on a template, it was found that mature amyloid plaques serve as a sink of soluble Abeta in a solution as well as a reservoir of small aggregates such as oligomers and protofibrils. Quantitative analysis of seeding efficiencies of three different Abeta species revealed that oligomeric forms of Abeta act more efficiently as seeds than monomers or fibrils do. Furthermore, studies on the interaction between Abeta40 and 42 showed an important role of Abeta42 in amyloid deposition. A slightly acidic condition was found to be unfavorable for amyloid plaque formation. Effects of metal ions on amyloid deposition indicated that Fe3+, but not Cu3 and Zn2+, is important for the deposition of amyloid plaques. The binding of Fe3+ to Abeta42 peptide was confirmed by using SIMS analysis. Zn2+ induced nonfibrillar amorphous aggregates, but the release of Zn2+ from Abeta42 deposits by Fe3+ triggered the formation of amyloid fibers. Effects or metal ion chelators such as ethylenediamine tetraacetic acid, deferoxamine, and clioquinol on amyloid deposition were tested to determine if they can be effective in preventing the deposition of amyloid plaques. The results may give insights into understanding the effects of environmental factors on amyloid plaque deposition and important information for therapeutic development for Alzheimer's disease.

  20. Growing TiO2 nanowires on the surface of graphene sheets in supercritical CO2: characterization and photoefficiency.

    PubMed

    Farhangi, Nasrin; Medina-Gonzalez, Yaocihuatl; Chowdhury, Rajib Roy; Charpentier, Paul A

    2012-07-27

    Tremendous interest exists towards synthesizing nanoassemblies for dye-sensitized solar cells (DSSCs) using earth-abundant and -friendly materials with green synthetic approaches. In this work, high surface area TiO(2) nanowire arrays were grown on the surface of functionalized graphene sheets (FGSs) containing -COOH functionalities acting as a template by using a sol-gel method in the green solvent, supercritical carbon dioxide (scCO(2)). The effect of scCO(2) pressure (1500, 3000 and 5000 psi), temperature (40, 60 and 80 °C), acetic acid/titanium isopropoxide monomer ratios (HAc/TIP = 2, 4 and 6), functionalized graphene sheets (FGSs)/TIP weight ratios (1:20, 1:40 and 1:60 w/w) and solvents (EtOH, hexane) were investigated. Increasing the HAc/TIPweight ratio from 4 to 6 in scCO(2) resulted in increasing the TiO(2) nanowire diameter from 10 to 40 nm. Raman and high resolution XPS showed the interaction of TiO(2) with the -COOH groups on the surface of the graphene sheets, indicating that graphene acted as a template for polycondensation growth. UV-vis diffuse reflectance and photoluminescence spectroscopy showed a reduction in titania's bandgap and also a significant reduction in electron-hole recombination compared to bare TiO(2) nanowires. Photocurrent measurements showed that the TiO(2)nanowire/graphene composites prepared in scCO(2) gave a 5× enhancement in photoefficiency compared to bare TiO(2) nanowires.

  1. Growing TiO2 nanowires on the surface of graphene sheets in supercritical CO2: characterization and photoefficiency

    NASA Astrophysics Data System (ADS)

    Farhangi, Nasrin; Medina-Gonzalez, Yaocihuatl; Chowdhury, Rajib Roy; Charpentier, Paul A.

    2012-07-01

    Tremendous interest exists towards synthesizing nanoassemblies for dye-sensitized solar cells (DSSCs) using earth-abundant and -friendly materials with green synthetic approaches. In this work, high surface area TiO2 nanowire arrays were grown on the surface of functionalized graphene sheets (FGSs) containing -COOH functionalities acting as a template by using a sol-gel method in the green solvent, supercritical carbon dioxide (scCO2). The effect of scCO2 pressure (1500, 3000 and 5000 psi), temperature (40, 60 and 80 °C), acetic acid/titanium isopropoxide monomer ratios (HAc/TIP = 2, 4 and 6), functionalized graphene sheets (FGSs)/TIP weight ratios (1:20, 1:40 and 1:60 w/w) and solvents (EtOH, hexane) were investigated. Increasing the HAc/TIPweight ratio from 4 to 6 in scCO2 resulted in increasing the TiO2 nanowire diameter from 10 to 40 nm. Raman and high resolution XPS showed the interaction of TiO2 with the -COOH groups on the surface of the graphene sheets, indicating that graphene acted as a template for polycondensation growth. UV-vis diffuse reflectance and photoluminescence spectroscopy showed a reduction in titania’s bandgap and also a significant reduction in electron-hole recombination compared to bare TiO2 nanowires. Photocurrent measurements showed that the TiO2nanowire/graphene composites prepared in scCO2 gave a 5× enhancement in photoefficiency compared to bare TiO2 nanowires.

  2. Synthesis, characterization and evaluation of uniformly sized core-shell imprinted microspheres for the separation trans-resveratrol from giant knotweed

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohui; Liu, Li; Li, Hui; Yao, Shouzhuo

    2009-09-01

    A novel core-shell molecularly imprinting microspheres (MIMs) with trans-resveratrol as the template molecule; acrylamide (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker, was prepared based on SiO 2 microspheres with surface imprinting technique. These core-shell trans-resveratrol imprinted microspheres were characterized by infrared spectra (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and high performance liquid chromatography (HPLC). The results showed that these core-shell imprinted microspheres, which take on perfect spherical shape with average shell thickness of 150 nm, exhibit especially selective recognition for trans-resveratrol. These imprinted microspheres were applied as solid-phase extraction materials for selective extraction of trans-resveratrol from giant knotweed extracting solution successfully.

  3. Novel approach for extraction of quercetin using molecular imprinted membranes

    NASA Astrophysics Data System (ADS)

    Kamarudin, Siti Fatimah; Ahmad, Mohd Noor; Dzahir, Irfan Hatim Mohamed; Nasir, Azalina Mohamed; Ishak, Noorhidayah; Halim, Nurul Farhanah

    2017-12-01

    Quercetin imprinted membrane (QIM) was synthesized and applied for the extraction of quercetin. The quercetin imprinted membranes (QIM) were fabricated through a non-covalent approach via surface thermal polymerization. Polyvinylidene fluoride (PVDF) microfiltration membrane was used as a support to improve mechanical stability of the membrane. The thin imprinted layer was formed by copolymerization of acrylamide (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinker in the presence of quercetin as template in tetrahydrofuran (THF) solution. The Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to visualize the surface of membrane. Batch rebinding and binding kinetic experiments proved that the binding properties of the QIM are higher than non-imprinted membranes (NIM). QIM also have higher selectivity towards quercetin compared to sinensetin and rosmarinic acid.

  4. [Study on the choice of functional monomer before preparation of myclobutanil molecularly imprinted polymer].

    PubMed

    Gao, Wen-Hui; Liu, Bo; Li, Xing-Feng; Han, Jun-Hua; Jia, Ying-Min

    2014-03-01

    To prepare myclobutanil molecularly imprinted polymer, a method was established for the choice of the appropriate functional monomer and its dosage. UV spectra was applied to study the combination form, the effect intensity, the optimal concentration ratio and the numbers of binding sites between myclobutanil and methyl acrylic acid (MAA) or acrylamide (AM) functional monomer. The results showed that hydrogen-bonding interaction could be formed between myclobutanil and methyl acrylic acid (MAA) or acrylamide (AM) functional monomer. The pi electron of the triazole ring conjugated double bond in my clobutanil could transit to pi* conjugate antibonding orbital when it absorbed energy. The formation of hydrogen bond could make pi-->pi* absorption band transit. Maximum absorption wavelength produced red shift with the increase in the functional monomer concentration in the system. The research revealed that the optimal concentration ratios between myclobutanil and the two monomers were c(M):c(MAA) = 1:4, c(M):c(AM) = 1:2. Myclobutanil and the both the functional monomers had the bonding ability, and strong bonding force. The prepared molecularly imprinted polymer using AM as a functional monomer had better stability and specificity of recognition for myclobutanil.

  5. Condensation of activated diguanylates on a Poly/C/ template. [prebiotic polynucleotide replication mechanism

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.; Bridson, P. K.; Orgel, L. E.

    1981-01-01

    The metal-ion catalysis of the oligomerization of activated diguanylate isomers on a polycytidylic acid template is studied in an investigation of possible early prebiotic polynucleotide replication mechanisms. The 5'-imidazolides of diguanylates linked 2' to 5' or 3' to 5' were reacted with polyC in a 1-methylimidazole or a 2,6-lutidine buffer in the presence of a Zn(+2) or a Pb(+2) catalyst, and reaction products were determined by paper chromatography, paper electrophoresis and liquid chromatography. In the lutidine buffer, the presence of both the Zn(+2) catalyst and the polyC template is found to result in the production of 3'-5' linked oligomers with up to 10 diguanylate units, and from diguanylates in the presence of the monomer. In the reactions conducted in the 1-methylimidazole buffer, the addition of Pb(+2) is found to lead to less marked increases in oligomerization in the presence of template, with approximately equal proportions of 2'-5' and 3'-5' oligomers formed from the 2'-5' substrate and mainly 3'-5' bonds from the 3'-5' linked dimer.

  6. Potential transducers based man-tailored biomimetic sensors for selective recognition of dextromethorphan as an antitussive drug.

    PubMed

    El-Naby, Eman H; Kamel, Ayman H

    2015-09-01

    A biomimetic potentiometric sensor for specific recognition of dextromethorphan (DXM), a drug classified according to the Drug Enforcement Administration (DEA) as a "drug of concern", is designed and characterized. A molecularly imprinted polymer (MIP), with special molecular recognition properties of DXM, was prepared by thermal polymerization in which DXM acted as template molecule, methacrylic acid (MAA) and acrylonitrile (AN) acted as functional monomers in the presence of ethylene glycol dimethacrylate (EGDMA) as crosslinker. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors revealed near-Nernstian response with slopes of 49.6±0.5 and 53.4±0.5 mV decade(-1) with a detection limit of 1.9×10(-6), and 1.0×10(-6) mol L(-1) DXM with MIP/MAA and MIP/AN membrane based sensors, respectively. Significantly improved accuracy, precision, response time, stability, selectivity and sensitivity were offered by these simple and cost-effective potentiometric sensors compared with other standard techniques. The method has the requisite accuracy, sensitivity and precision to assay DXM in pharmaceutical products. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Dummy molecularly imprinted microbeads as solid-phase extraction material for selective determination of phthalate esters in water.

    PubMed

    Özer, Elif Tümay; Osman, Bilgen; Yazıcı, Tuğçe

    2017-06-02

    The aim of this study was to investigate the usability of newly synthesized dummy molecularly imprinted microbeads (DMIMs) as a solid phase extraction (SPE) material to determine six phthalate esters (PEs) in water by GC-MS analysis. Diethyl phthalate (DEP) was used as a dummy template to prepare poly(ethylene glycol dimethacrylate N-methacryloyl-l-tryptophan methyl ester) [PEMATrp)] DMIMs by using suspension polymerization. The PEMATrp DMIMs were characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Firstly, the adsorption capacities of the DMIMs prepared in different template molecule (DEP) to functional monomer (MATrp) ratios were investigated by using DEP solutions in the concentration range of 1-500mg/L at pH 3.0. Styrene and vanillic acid were used to evaluate the selectivity of the prepared DMIMs towards the template molecule (DEP). Then, the best analytical conditions were investigated for the simultaneous determination of dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzylbutyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) in aqueous media by using the PEMATrp DMIMs as SPE material. Validation experiments showed that the PEMATrp DMIMs-SPE method had good linearity at 12.5-250.0μg/L (0.988-0.999), good precision (1.2-5.9%), and limits of detection in a range of 0.31-0.41μg/L. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Preparation, characterization and adsorption study of o-cresol molecularly imprinted grafted silica gel sorbent synthesized by sol-gel polymerization

    NASA Astrophysics Data System (ADS)

    Zinalibdin, Mohamad Raizul; Jaafar, Jafariah; Majid, Zaiton Abdul; Sanagi, Mohd Marsin

    2017-11-01

    In this study, a new composite core-shell of o-cresol molecularly imprinted polymer grafted silica gel (MIP@SiO2) was prepared via sol-gel polymerization. It was synthesized using o-cresol as the template molecule, 3-propyl(metacrylate)trimethoxysilane (3-PMTMOS) as the functional monomer, tetraethoxysilane (TEOS) as the cross-linker and ethanol as the porogenic solvent in the surface of silica gel. The non-imprinted polymer-grafted silica gel (NIP@SiO2) was prepared with the same technique but without template molecule. This analyte was selected as a template due to the fact that it is one of toluene metabolites. The characterization of MIP@SiO2 and NIP@SiO2 were observed by N2 adsorption analysis and Field emission scanning electron microscopy-energy dispersive x-ray (FESEM-EDX). The MIP@SiO2 and NIP@SiO2 were employed as an adsorbent for the extraction of o-cresol, a metabolite in urine sample for the monitoring of occupational toluene exposure in workers. Based on the results of the adsorption study, the MIP prepared using 0.5 mmol 3-(propylmethacrylate)trimethoxysilane), 10 mL of ethanol, 4 mmol TEOS,0.05 mmol o-cresol, 0.1g silica gel and 1mL of 0.01 mol/L acetic acid was found the adsorption capacity (0.9920 mg g-1) and imprint factor (5.21).

  9. Reinforced self-assembly of donor-acceptor π-conjugated molecules to DNA templates by dipole-dipole interactions together with complementary hydrogen bonding interactions for biomimetics.

    PubMed

    Yang, Wanggui; Chen, Yali; Wong, Man Shing; Lo, Pik Kwan

    2012-10-08

    One of the most important criteria for the successful DNA-templated polymerization to generate fully synthetic biomimetic polymers is to design the complementary structural monomers, which assemble to the templates strongly and precisely before carrying polymerization. In this study, water-soluble, laterally thymine-substituted donor-acceptor π-conjugated molecules were designed and synthesized to self-assemble with complementary oligoadenines templates, dA(20) and dA(40), into stable and tubular assemblies through noncovalent interactions including π-π stacking, dipole-dipole interactions, and the complementary adenine-thymine (A-T) hydrogen-bonding. UV-vis, fluorescence, circular dichroism (CD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques were used to investigate the formation of highly robust nanofibrous structures. Our results have demonstrated for the first time that the dipole-dipole interactions are stronger and useful to reinforce the assembly of donor-acceptor π-conjugated molecules to DNA templates and the formation of the stable and robust supramolecular nanofibrous complexes together with the complementary hydrogen bonding interactions. This provides an initial step toward DNA-templated polymerization to create fully synthetic DNA-mimetic polymers for biotechnological applications. This study also presents an opportunity to precisely position donor-acceptor type molecules in a controlled manner and tailor-make advanced materials for various biotechnological applications.

  10. Computational-aided design of molecularly imprinted polymer for selective extraction of methadone from plasma and saliva and determination by gas chromatography.

    PubMed

    Ahmadi, F; Rezaei, H; Tahvilian, R

    2012-12-28

    The main objective of this research was computational designing of an imprinted polymer for selective solid phase extraction (SPE) of methadone from plasma and saliva samples analyzed by gas chromatography-flam ionization detector (GC-FID). The density functional theory (DFT) at B3LYP/6-31G+ (d, p) level and Gaussian 2003 package was used to calculate the interaction energy of template-monomers (ΔE). The effect of polymerization solvent was also studied using polarizable continuum model (PCM). It was shown that, methacrylic acid (MAA) gave the largest ΔE in acetonitrile as a polymerization solvent. To examine the validity of this approach, two MIP were synthesized for methadone as template molecule and methacrylic acid as functional monomer in acetonitrile (AN) and methanol (MeOH), respectively. The performance of each polymer was evaluated by using imprinting effect. As it is expected, the best results were obtained for the molecularly imprinted polymer (MIP) which was prepared in AN. For the optimized method, the linearity between responses (peak areas) and concentration of methadone in plasma and saliva samples were found over the range of 3.6-40,000 ng mL(-1) (R(2)=0.997) and 3.0-40,000 ng mL(-1) (R(2)=0.998), respectively. The limit of detection (LOD) and limit of quantification (LOQ) for methadone in plasma were calculated to be 2.45 and 3.6 ng mL(-1), respectively. The LOD and LOQ for methadone in saliva were 2.14 and 3.0 ng mL(-1), respectively. The relative standard deviation (RSD; n=4) for plasma samples containing 10, 100, 500, 1000 ng mL(-1)of methadone were 5.98, 5.78, 5.52, 4.78, 4.74, and the RSD (n=4) for saliva sample containing 5, 20, 100, 1000 ng mL(-1) of methadone were 4.74, 5.1, 5.9, 5.6, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Active ester functional single core magnetic nanostructures as a versatile immobilization matrix for effective bioseparation and catalysis.

    PubMed

    Gelbrich, Thorsten; Reinartz, Michael; Schmidt, Annette M

    2010-03-08

    Multifunctional nanocarriers for amino functional targets with a high density of accessible binding sites are obtained in a single polymerization step by grafting from copolymerization of an active ester monomer from superparamagnetic cores. As a result of the brush-like structure of the highly dispersed shell, the nano-objects exhibit an available capture capacity for amines that is found to be up to 2 orders of magnitude higher than for commercial magnetic beads, and the functional brush shell can serve as a template for many types of pendant functional groups and molecules. As comonomer, oligo(ethylene glycol) methacrylate allows for excellent water solubility at room temperature, biocompatibility, and thermoflocculation. We demonstrate the biorelated applicability of the hybrid nanoparticles by two different approaches. In the first approach, the immobilization of trypsin to the core-shell nanoparticles results in highly active, nanoparticulate biocatalysts that can easily be separated magnetically. Second, we demonstrate that the obtained nanoparticles are suitable for the effective labeling of cell membranes, opening a novel pathway for the easy and effective isolation of membrane proteins.

  12. 8-hydroxy-2'-deoxyguanosine (8-OHdG) biomarker detection down to picoMolar level on a plastic antibody film.

    PubMed

    Martins, Gabriela V; Marques, Ana C; Fortunato, Elvira; Sales, M Goreti F

    2016-12-15

    An innovative biosensor assembly relying on a simple and straightforward in-situ construction is presented to monitor urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) down to the pmol/L level. The sensing film of the biosensor consisted of a molecularly imprinted polymer (MIP) layer for 8-OHdG assembled on a gold electrode through electropolymerization of monomer combined with the template. The analytical features of the resulting biosensor were assessed by Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). Some experimental parameters such as the initial concentration of the monomer and the ratio template-monomer were investigated and optimized in order to finely tune the performance of the MIP-based sensor. Under optimal conditions, the developed biosensor was able to rebind 8-OHdG with a linear response against EIS from 0.1 to 100pg/ml 3.5-3500 pM. The interference of coexisting species was tested, also with calibrations on urine samples, and good selectivity towards 8-OHdG was obtained. RAMAN spectroscopy, FTIR and SEM evaluations of the prepared films confirmed the formation of a polyphenol thin-film on the electrode surface. The presence and distribution of the imprinted cavities on the MIP layer was confirmed by confocal microscopy imaging of the film, after a post-treatment with Fluorescein Isothiocyanate (FITC) labeled 8-OHdG antibody. Overall, this label-free biosensor for urinary 8-OHdG detection constitutes a promising low-cost alternative to the conventional immunoassay approaches, due to its simplicity, stability, high sensitivity and selectivity for biological sample assays, opening new doors for other applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Metabolically Coupled Replicator Systems: Overview of an RNA-world model concept of prebiotic evolution on mineral surfaces.

    PubMed

    Czárán, Tamás; Könnyű, Balázs; Szathmáry, Eörs

    2015-09-21

    Metabolically Coupled Replicator Systems (MCRS) are a family of models implementing a simple, physico-chemically and ecologically feasible scenario for the first steps of chemical evolution towards life. Evolution in an abiotically produced RNA-population sets in as soon as any one of the RNA molecules become autocatalytic by engaging in template directed self-replication from activated monomers, and starts increasing exponentially. Competition for the finite external supply of monomers ignites selection favouring RNA molecules with catalytic activity helping self-replication by any possible means. One way of providing such autocatalytic help is to become a replicase ribozyme. An additional way is through increasing monomer supply by contributing to monomer synthesis from external resources, i.e., by evolving metabolic enzyme activity. Retroevolution may build up an increasingly autotrophic, cooperating community of metabolic ribozymes running an increasingly complicated and ever more efficient metabolism. Maintaining such a cooperating community of metabolic replicators raises two serious ecological problems: one is keeping the system coexistent in spite of the different replicabilities of the cooperating replicators; the other is constraining parasitism, i.e., keeping "cheaters" in check. Surface-bound MCRS provide an automatic solution to both problems: coexistence and parasite resistance are the consequences of assuming the local nature of metabolic interactions. In this review we present an overview of results published in previous articles, showing that these effects are, indeed, robust in different MCRS implementations, by considering different environmental setups and realistic chemical details in a few different models. We argue that the MCRS model framework naturally offers a suitable starting point for the future modelling of membrane evolution and extending the theory to cover the emergence of the first protocell in a self-consistent manner. The coevolution of metabolic, genetic and membrane functions is hypothesized to follow the progressive sequestration scenario, the conceptual blueprint for the earliest steps of protocell evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Preparation of High-Efficiency Cytochrome c-Imprinted Polymer on the Surface of Magnetic Carbon Nanotubes by Epitope Approach via Metal Chelation and Six-Membered Ring.

    PubMed

    Qin, Ya-Ping; Li, Dong-Yan; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui

    2016-04-27

    A novel epitope molecularly imprinted polymer on the surface of magnetic carbon nanotubes (MCNTs@EMIP) was successfully fabricated to specifically recognize target protein cytochrome c (Cyt C) with high performance. The peptides sequences corresponding to the surface-exposed C-terminus domains of Cyt C was selected as epitope template molecule, and commercially available zinc acrylate and ethylene glycol dimethacrylate (EGDMA) were employed as functional monomer and cross-linker, respectively, to synthesize MIP via free radical polymerization. The epitope was immobilized via metal chelation and six-membered ring formed between the functional monomer and the hydroxyl and amino groups of the epitope. The resulting MCNTs@EMIP exhibited specific recognition ability toward target Cyt C including more satisfactory imprinting factor (about 11.7) than that of other reported imprinting methods. In addition, the MCNTs@EMIP demonstrated a high adsorption amount (about 780.0 mg g(-1)) and excellent selectivity. Besides, the magnetic property of the support material made the processes easy and highly efficient by assistance of an external magnetic field. High-performance liquid chromatography analysis of Cyt C in bovine blood real sample and protein mixture indicated that the specificity was not affected by other competitive proteins, which forcefully stated that the MCNTs@EMIP had potential to be applied in bioseparation area. In brief, this study provided a new protocol to detect target protein in complex sample via epitope imprinting approach and surface imprinting strategy.

  15. [Preparation of Pb2+ imprinted acrylic acid-co-styrene and analysis of its adsorption properties by FAAS].

    PubMed

    Shawket, Abliz; Abdiryim, Supahun; Wang, Ji-De; Ismayil, Nurulla

    2011-06-01

    With lead ion template, acrylic acid as functional monomer, potassium persulfate as initiator, strytrene as framework monomer, lead ion imprinted polymers (Pb(II)-IIPs) were prepared using free emulsion polymerization method. The structure and morphology of the polymers were analyzed by UV-spectra, FTIR and scanning electron microscopy. The adsorption/ desorption and selectivity for Pb2+ were investigated by flame atomic absorption spectrometry (FAAS) as the detection means. The results show that compared with non-imprinted polymers(NIPs), the Pb(II)-IIPs had higher specific adsorption properties and selective recognition ability for Pb(II). The relative selectivity coefficient of Pb(II)-IIPs for Pb(II) was 6.25, 6.18, 6.25 and 6.38 in the presence of Cd(II), Cu(II), Mn(II) and Zn(II) interferences, respectively. The absorption rate was the best at the pH of adsorbent solution of 6, Adsorption rate reached 96% during the 2.5 h static adsorption time. Using 3.0 mol x L(-1) HCI as the best desorption solvent to desorb the adsorbents, the desorbtion rate reached 98%. Under the best adsorption conditions, the adsorption capacity of Pb(II)-IIPs for Pb(II) was found to be 40. mg x g(-1).

  16. Synthesis of molecularly imprinted polymers by atom transfer radical polymerization for the solid-phase extraction of phthalate esters in edible oil.

    PubMed

    Chen, Ningning; He, Juan; Wu, Chaojun; Li, Yuanyuan; Suo, An; Wei, Hongliang; He, Lijun; Zhang, Shusheng

    2017-03-01

    Novel molecularly imprinted polymers of phthalate esters were prepared by atom transfer radical polymerization using methyl methacrylate as functional monomer, cyclohexanone as solvent, cuprous chloride as catalyst, 1-chlorine-1-ethyl benzene as initiator and 2,2-bipyridyl as cross-linker in the mixture of methanol and water (1:1, v/v). The effect of reaction conditions such as monomer ratio and template on the adsorption properties was investigated. The optimum condition was obtained by an orthogonal experiment. The obtained polymers were characterized using scanning electron microscopy. The binding property was studied with both static and dynamic methods. Results showed that the polymers exhibited excellent recognition capacity and outstanding selectivity for ten phthalate esters. Factors affecting the extraction efficiency of the molecularly imprinted solid-phase extraction were systematically investigated. An analytical method based on the molecularly imprinted coupled with gas chromatography and flame ionization detection was successfully developed for the simultaneous determination of ten phthalate esters from edible oil. The method detection limits were 0.10-0.25 μg/mL, and the recoveries of spiked samples were 82.5-101.4% with relative standard deviations of 1.24-5.37% (n = 6). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Computational approaches in the design of synthetic receptors - A review.

    PubMed

    Cowen, Todd; Karim, Kal; Piletsky, Sergey

    2016-09-14

    The rational design of molecularly imprinted polymers (MIPs) has been a major contributor to their reputation as "plastic antibodies" - high affinity robust synthetic receptors which can be optimally designed, and produced for a much reduced cost than their biological equivalents. Computational design has become a routine procedure in the production of MIPs, and has led to major advances in functional monomer screening, selection of cross-linker and solvent, optimisation of monomer(s)-template ratio and selectivity analysis. In this review the various computational methods will be discussed with reference to all the published relevant literature since the end of 2013, with each article described by the target molecule, the computational approach applied (whether molecular mechanics/molecular dynamics, semi-empirical quantum mechanics, ab initio quantum mechanics (Hartree-Fock, Møller-Plesset, etc.) or DFT) and the purpose for which they were used. Detailed analysis is given to novel techniques including analysis of polymer binding sites, the use of novel screening programs and simulations of MIP polymerisation reaction. The further advances in molecular modelling and computational design of synthetic receptors in particular will have serious impact on the future of nanotechnology and biotechnology, permitting the further translation of MIPs into the realms of analytics and medical technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Molecularly imprinted polymer cartridges coupled to high performance liquid chromatography (HPLC-UV) for simple and rapid analysis of fenthion in olive oil.

    PubMed

    Bakas, Idriss; Ben Oujji, Najwa; Istamboulié, Georges; Piletsky, Sergey; Piletska, Elena; Ait-Addi, Elhabib; Ait-Ichou, Ihya; Noguer, Thierry; Rouillon, Régis

    2014-07-01

    A combination of molecular modelling and a screening of the library of non-imprinted polymers (NIPs) was used to identify acrylamide as a functional monomer with high affinity towards fenthion, organophosphate insecticide, which is frequently used in the treatment of olives. A good correlation was found between the screening tests and modelling of monomer-template interactions performed using a computational approach. Acrylamide-based molecularly imprinted polymer (MIP) and non-imprinted polymer (NIP) were thermally synthesised in dimethyl formamide (porogen) using ethylene glycol dimethacrylate as a cross-linker and 1,1-azo-bis (isobutyronitrile) as an initiator. The chemical and physical properties of the prepared polymers were characterised. The binding of fenthion by the polymers was studied using solvents with different polarities. The developed MIP showed a high selectivity towards fenthion, compared to other organophosphates (dimethoate, methidathion malalthion), and allowed extraction of fenthion from olive oil samples with a recovery rate of about 96%. The extraction of fenthion using MIPs was much more effective than traditional C18 reverse-phase solid phase extraction and allowed to achieve a low detection limit (LOD) (5 µg L(-1)). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Selective extraction of derivates of p-hydroxy-benzoic acid from plant material by using a molecularly imprinted polymer.

    PubMed

    Karasová, Gabriela; Lehotay, Jozef; Sádecká, Jana; Skacáni, Ivan; Lachová, Miroslava

    2005-12-01

    Selective SPE of derivates of p-hydroxybenzoic acid (pHBA) from plant extract of Melissa officinalis is presented using a molecularly imprinted polymer (MIP) made with protocatechuic acid (PA) as template molecule. MIP was prepared with acrylamide as functional monomer, ethylene glycol dimethacrylate as crosslinking monomer and ACN as porogen. MIP was evaluated towards six phenolic acids: PA, gallic acid, pHBA, vanillic acid (VA), gentisic acid (GeA) and syringic acid (SyrA), and then steps of molecularly imprinted SPE (MISPE) procedure were optimized. The best specific binding capacity of MIP was obtained for PA in ACN (34.7 microg/g of MIP). Other tested acids were also bound on MIP if they were dissolved in this solvent. ACN was chosen as solvent for sample application. M. officinalis was extracted into methanol/water (4:1, v/v), the extract was then evaporated to dryness and dissolved in ACN before application on MIP. Water and ACN were used as washing solvents and elution of benzoic acids was performed by means of a mixture methanol/acetic acid (9:1, v/v). pHBA, GA, PA and VA were extracted with recoveries of 56.3-82.1% using this MISPE method. GeA was not determined in plant extract.

  20. Proline Substitution of Dimer Interface β-strand Residues as a Strategy for the Design of Functional Monomeric Proteins

    PubMed Central

    Joseph, Prem Raj B.; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M.; Garofalo, Roberto P.; Rajarathnam, Krishna

    2013-01-01

    Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline’s unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. PMID:24048001

  1. New synthesis method for 4-MAPBA monomer and using for the recognition of IgM and mannose with MIP-based QCM sensors.

    PubMed

    Diltemiz, Sibel Emir; Hür, Deniz; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan

    2013-03-07

    Quartz crystal microbalance (QCM) sensors coated with molecularly imprinted polymers (MIP) have been developed for the recognition of immunoglobulin M (IgM) and mannose. In this method, methacryloylamidophenylboronic acid (MAPBA) was used as a monomer and mannose was used as a template. For this purpose, initially, QCM electrodes were modified with 2-propene-1-thiol to form mannose-binding regions on the QCM sensor surface. In the second step, the methacryloylamidophenylboronic acid-mannose [MAPBA-mannose], pre-organized monomer system, was prepared using the MAPBA monomer. Then, a molecularly imprinted film was coated on to the QCM electrode surface under UV light using ethylene glycol dimethacrylate (EDMA), and azobisisobutyronitrile (AIBN) as a cross-linking agent and an initiator, respectively. The mannose can be simultaneously bound to MAPBA and fitted into the shape-selective cavities. The binding affinity of the mannose-imprinted sensors was investigated using the Langmuir isotherm. The mannose-imprinted QCM electrodes have shown homogeneous binding sites for mannose (K(a): 3.3 × 10(4) M(-1)) and heterogeneous binding sites for IgM (K(a1): 1.0 × 10(4) M(-1); K(a2): 3.3 × 10(3) M(-1)).

  2. Two-Dimensional Fullerene Assembly from an Exfoliated van der Waals Template.

    PubMed

    Lee, Kihong; Choi, Bonnie; Plante, Ilan Jen-La; Paley, Maria V; Zhong, Xinjue; Crowther, Andrew C; Owen, Jonathan S; Zhu, Xiaoyang; Roy, Xavier

    2018-05-22

    Two-dimensional (2D) materials are commonly prepared by exfoliating bulk layered van der Waals crystals. The creation of synthetic 2D materials from bottom-up methods is an important challenge as their structural flexibility will enable chemists to tune the materials properties. A 2D material was assembled using C 60 as a polymerizable monomer. The C 60 building blocks are first assembled into a layered solid using a molecular cluster as structure director. The resulting hierarchical crystal is used as a template to polymerize its C 60 monolayers, which can be exfoliated down to 2D crystalline nanosheets. Derived from the parent template, the 2D structure is composed of a layer of inorganic cluster, sandwiched between two monolayers of polymerized C 60 . The nanosheets can be transferred onto solid substrates and depolymerized by heating. Electronic absorption spectroscopy reveals an optical gap of 0.25 eV, narrower than that of the bulk parent crystalline solid. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples.

    PubMed

    Baggiani, C; Giovannoli, C; Anfossi, L; Tozzi, C

    2001-12-14

    A molecularly imprinted polymer (MIP) was synthesized using the herbicide 2,4,5-trichlorophenoxyacetic acid as a template, 4-vinylpyridine as an interacting monomer, ethylendimethacrylate as a cross-linker and a methanol-water mixture as a porogen. The binding properties and the selectivity of the polymer towards the template were investigated by frontal and zonal liquid chromatography. The polymer was used as a solid-phase extraction material for the clean-up of the template molecule and some related herbicides (2,4-dichlorophenoxyacetic acid, fenoprop, dichlorprop) from river water samples at a concentration level of ng/ml with quantitative recoveries comparable with those obtained with a traditional C18 reversed-phase column when analyzed by capillary electrophoresis. The results obtained show that the MIP-based approach to the solid-phase extraction is comparable with the more traditional solid-phase extraction with C18 reversed-phase columns in terms of recovery, but it is superior in terms of sample clean-up.

  4. The RNA synthesis machinery of negative-stranded RNA viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortín, Juan, E-mail: jortin@cnb.csic.es; Martín-Benito, Jaime, E-mail: jmartinb@cnb.csic.es

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure ofmore » their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes.« less

  5. Highly selective and efficient imprinted polymers based on carboxyl-functionalized magnetic nanoparticles for the extraction of gallic acid from pomegranate rind.

    PubMed

    Zhang, Junjie; Li, Benqiang; Yue, Huijuan; Wang, Jing; Zheng, Yuansuo

    2018-01-01

    With the combined surface imprinting technique and immobilized template strategy, molecularly imprinted magnetic nanoparticles were successfully prepared and coupled with high-performance liquid chromatography to selectively separate and determine gallic acid from the pomegranate rind. On the surface of carboxyl-functionalized magnetic nanospheres, thin imprinting shells were formed using dopamine as monomer and crosslinker. The characteristics, polymerization conditions, and adsorption performances of the resultant nanomaterials were investigated in detail. In addition of good crystallinity, satisfactory magnetism, and uniform morphology of the obtained polymers, they had rapid binding kinetics, high adsorption capacity, and favorable reusability. In the mixed solution of four hydroxybenzoic acids, the prepared nanomaterials have an excellent selectivity to gallic acid with an imprinting factor of as high as 17.5. Therefore, the polymers have great potentials in specific extraction and enrichment of gallic acid from the complex natural resources. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Method of assembly of molecular-sized nets and scaffolding

    DOEpatents

    Michl, Josef; Magnera, Thomas F.; David, Donald E.; Harrison, Robin M.

    1999-01-01

    The present invention relates to methods and starting materials for forming molecular-sized grids or nets, or other structures based on such grids and nets, by creating molecular links between elementary molecular modules constrained to move in only two directions on an interface or surface by adhesion or bonding to that interface or surface. In the methods of this invention, monomers are employed as the building blocks of grids and more complex structures. Monomers are introduced onto and allowed to adhere or bond to an interface. The connector groups of adjacent adhered monomers are then polymerized with each other to form a regular grid in two dimensions above the interface. Modules that are not bound or adhered to the interface are removed prior to reaction of the connector groups to avoid undesired three-dimensional cross-linking and the formation of non-grid structures. Grids formed by the methods of this invention are useful in a variety of applications, including among others, for separations technology, as masks for forming regular surface structures (i.e., metal deposition) and as templates for three-dimensional molecular-sized structures.

  7. Method of assembly of molecular-sized nets and scaffolding

    DOEpatents

    Michl, J.; Magnera, T.F.; David, D.E.; Harrison, R.M.

    1999-03-02

    The present invention relates to methods and starting materials for forming molecular-sized grids or nets, or other structures based on such grids and nets, by creating molecular links between elementary molecular modules constrained to move in only two directions on an interface or surface by adhesion or bonding to that interface or surface. In the methods of this invention, monomers are employed as the building blocks of grids and more complex structures. Monomers are introduced onto and allowed to adhere or bond to an interface. The connector groups of adjacent adhered monomers are then polymerized with each other to form a regular grid in two dimensions above the interface. Modules that are not bound or adhered to the interface are removed prior to reaction of the connector groups to avoid undesired three-dimensional cross-linking and the formation of non-grid structures. Grids formed by the methods of this invention are useful in a variety of applications, including among others, for separations technology, as masks for forming regular surface structures (i.e., metal deposition) and as templates for three-dimensional molecular-sized structures. 9 figs.

  8. Two-dimensional inverse opal hydrogel for pH sensing.

    PubMed

    Xue, Fei; Meng, Zihui; Qi, Fenglian; Xue, Min; Wang, Fengyan; Chen, Wei; Yan, Zequn

    2014-12-07

    A novel hydrogel film with a highly ordered macropore monolayer on its surface was prepared by templated photo-polymerization of hydrogel monomers on a two-dimensional (2D) polystyrene colloidal array. The 2D inverse opal hydrogel has prominent advantages over traditional three-dimensional (3D) inverse opal hydrogels. First, the formation of the 2D array template through a self-assembly method is considerably faster and simpler. Second, the stable ordering structure of the 2D array template makes it easier to introduce the polymerization solution into the template. Third, a simple measurement, a Debye diffraction ring, is utilized to characterize the neighboring pore spacing of the 2D inverse opal hydrogel. Acrylic acid was copolymerized into the hydrogel; thus, the hydrogel responded to pH through volume change, which resulted from the formation of the Donnan potential. The 2D inverse opal hydrogel showed that the neighboring pore spacing increased by about 150 nm and diffracted color red-shifted from blue to red as the pH increased from pH 2 to 7. In addition, the pH response kinetics and ionic strength effect of this 2D mesoporous polymer film were also investigated.

  9. Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking.

    PubMed

    Yan, Yumeng; Wen, Zeyu; Wang, Xinxiang; Huang, Sheng-You

    2017-03-01

    Protein-protein docking is an important computational tool for predicting protein-protein interactions. With the rapid development of proteomics projects, more and more experimental binding information ranging from mutagenesis data to three-dimensional structures of protein complexes are becoming available. Therefore, how to appropriately incorporate the biological information into traditional ab initio docking has been an important issue and challenge in the field of protein-protein docking. To address these challenges, we have developed a Hybrid DOCKing protocol of template-based and template-free approaches, referred to as HDOCK. The basic procedure of HDOCK is to model the structures of individual components based on the template complex by a template-based method if a template is available; otherwise, the component structures will be modeled based on monomer proteins by regular homology modeling. Then, the complex structure of the component models is predicted by traditional protein-protein docking. With the HDOCK protocol, we have participated in the CPARI experiment for rounds 28-35. Out of the 25 CASP-CAPRI targets for oligomer modeling, our HDOCK protocol predicted correct models for 16 targets, ranking one of the top algorithms in this challenge. Our docking method also made correct predictions on other CAPRI challenges such as protein-peptide binding for 6 out of 8 targets and water predictions for 2 out of 2 targets. The advantage of our hybrid docking approach over pure template-based docking was further confirmed by a comparative evaluation on 20 CASP-CAPRI targets. Proteins 2017; 85:497-512. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Novel organic-inorganic hybrid mesoporous materials and nanocomposites

    NASA Astrophysics Data System (ADS)

    Feng, Qiuwei

    Organic-inorganic hybrid mesoporous materials have been prepared successfully via the nonsurfactant templated sol-gel pathway using dibenzoyl-L-tartaric acid (DBTA) as the templating compound. Styrene and methyl methacrylate polymers have been incorporated into the mesoporous silica matrix on the molecular level. The synthetic conditions have been systematically studied and optimized. Titania based mesoporous materials have also been made using nonionic polyethylene glycol surfactant as the pore forming or structure-directing agent. In all of the above mesoporous materials, pore structures have been studied in detail by Transmission Electron Microscopy (TEM), X-ray diffraction and Brunauer-Emmett-Teller (BET) characterizations. The relationship between the template concentration and the pore parameters has been established. This nonsurfactant templated pathway possesses many advantages over the known surfactant approaches such as low cost, environment friendly and biocompatability. To overcome the drawback of nonsurfactant templated mesoporous materials that lack a well ordered pore structure, a flow induced synthesis has been attempted to orientate the sol-gel solution in order to obtain aligned pore structures. The versatility of this nonsurfactant templated pathway can even be extended to the making of organic-inorganic hybrid nanocomposite materials. On the basis of this approach, polymer-silica nanocomposite materials have been prepared using a polymerizable template. It is shown that the organic monomer such as hydroxyethyl methacrylate can act as a template in making nanoporous silica materials and then be further polymerized through a post synthesis technique. The properties and morphology of this new material have been studied by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Infrared Absorption Spectroscopy (FTIR). Electroactive organic-inorganic hybrid materials have also been synthesized via the sol-gel process. A coupling agent was used to covalently bond the organic and inorganic species. The morphology and conductivity of the products have been investigated.

  11. Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins.

    PubMed

    Joseph, Prem Raj B; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M; Garofalo, Roberto P; Rajarathnam, Krishna

    2013-09-17

    Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline's unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Influence of hydrogen bond accepting ability of anions on the adsorption performance of ionic liquid surface molecularly imprinted polymers.

    PubMed

    Zhu, Guifen; Gao, Xia; Wang, Xiaolong; Wang, Jianji; Fan, Jing

    2018-01-12

    To illuminate the influence mechanism of anionic structure of ionic liquids (ILs) on the adsorption performance of surface molecularly imprinted polymers (MIPs), in this work, six newly designed MIPs were prepared on the surface of amino-poly(styrene-divinylbenzene) particles by using imidazolium ILs with the same cation [C 4 mim] + but different anions (Cl, CH 3 SO 3 , PF 6 , BF 4 , C 4 F 7 O 2 , C 4 F 9 SO 3 ) as template molecules, methacrylic acid as functional monomer, and ethylene dimethacrylate as cross-linker. The resulting MIP materials were characterized by IR and SEM, and the influence of hydrogen bond accepting ability of anions on the adsorption performance of the MIPs for the ILs was investigated in acetonitrile. It was found that adsorption capacity of the MIPs towards the ILs decreased in the order MIP [C4mim][Cl]  > MIP [C4mim][C4F7O2]  ≥ MIP [C4mim][BF4] and MIP [C4mim][CH3SO3]  > MIP [C4mim][C4F9SO3]  > MIP [C4mim][PF6] , which is in good agreement with the ability of anions of the ILs to form hydrogen bonds. Ultraviolet, 1 H-NMR and 35 Cl-NMR spectroscopy was then used to study the interactions of anions of the ILs with the functional monomer. It was found that the hydrogen bond interaction between anions of the ILs and acidic proton of the functional monomer was the main driving force for the high adsorption selectivity of the imprinted polymers, and the stronger hydrogen bond interaction indicates higher binding capacity and higher selectivity of the polymers towards the ILs. It was also verified that the ILs with stronger hydrogen bond accepting ability of anions could be selectively extracted by the corresponding IL-MIPs. These results may provide new insight into the recognition mechanism of MIPs for ILs, and are also useful for the rational design of this new class of imprinting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Diffusion of residual monomer in polymer resins.

    PubMed Central

    Piver, W T

    1976-01-01

    A simplified mathematical model which made use of Fick's laws of diffusion written in spherical coordinates was developed to describe the rate of diffusion of residual monomers from polymer resins. The properties of the monomer-polymer system which influenced the amount of monomer remaining in the polymer as a function of time were the diffusivity and solubility of the monomer in the polymer, and the particle size of the polymer resin. This model was used to analyze literature data on the diffusion of residual vinyl chloride monomer in polyvinyl chloride resins made by the suspension process. It was concluded that particle size of the resin was a significant parameter which should be taken advantage of in process equipment designed to remove residual monomer from PVC resins. The diffusivity of the monomer in the polymer was a function of the solubility of the monomer in the polymer. Monomer solubility can be determined from Henry's law. It was suggested that this model could be adapted to describe diffusion of monomers from any monomer-polymer system, and would be a useful approach to modeling the transport of nonreactive chemical additives from plastics. PMID:1026410

  14. Theoretical and experimental study for the biomimetic recognition of levothyroxine hormone on magnetic molecularly imprinted polymer.

    PubMed

    Moura, Silio Lima; Fajardo, Laura Martinez; Cunha, Leonardo Dos Anjos; Sotomayor, Maria Del Pilar Taboada; Machado, Francisco Bolivar Correto; Ferrão, Luiz Fernando Araújo; Pividori, Maria Isabel

    2018-06-01

    This study addresses the rational design of a magnetic molecularly imprinted polymer (magnetic-MIP) for the selective recognition of the hormone levothyroxine. The theoretical study was carried out by the density functional theory (DFT) computations considering dispersion interaction energies, and using the D2 Grimme's correction. The B97-D/def2-SV(P)/PCM method is used not only for studying the structure of the template the and monomer-monomer interactions, but also to assess the stoichiometry, noncovalent binding energies, solvation effects and thermodynamics properties such as binding energy. Among the 13 monomers studied in silico, itaconic acid is the most suitable according to the thermodynamic values. In order to assess the efficiency of the computational study, three different magnetic-MIPs based on itaconic acid, acrylic acid and acrylamide were synthesized and experimentally compared. The theoretical results are in agreement with experimental binding studies based on laser confocal microscopy, magneto-actuated immunoassay and electrochemical sensing. Furthermore, and for the first time, the direct electrochemical sensing of L-thyroxine preconcentrated on magnetic-MIP was successfully performed on magneto-actuated electrodes within 30 min with a limit of detection of as low as 0.0356 ng mL -1 which cover the clinical range of total L-thyroxine. Finally, the main analytical features were compared with the gold standard method based on commercial competitive immunoassays. This work provides a thoughtful strategy for magnetic molecularly imprinted polymer design, synthesis and application, opening new perspectives in the integration of these materials in magneto-actuated approaches for replacing specific antibodies in biosensors and microfluidic devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Synthesis of nano-sized hydrogen phosphate-imprinted polymer in acetonitrile/water mixture and its use as a recognition element of hydrogen phosphate selective all-solid state potentiometric electrode.

    PubMed

    Alizadeh, Taher; Atayi, Khalil

    2018-02-01

    Herein, a new recipe is introduced for the preparation of hydrogen phosphate ion-imprinted polymer nanoparticles (nano-IIP) in acetonitrile/water (63.5:36.5) using phosphoric acid as the template. The nano-IIP obtained was used as the recognition element of a carbon paste potentiometric sensor. The IIP electrode showed a Nernstian response to hydrogen phosphate anion; whereas, the non-imprinted polymer (NIP)-based electrode had no considerable sensitivity to the anion. The presence of both methacrylic acid and vinyl pyridine in the IIP structure, as well as optimization of the functional monomers-template proportion, was found to be important to observe the sensing capability of the IIP electrode. The nano-IIP electrode showed a dynamic linear range of 1 × 10 -5 -1 × 10 -1  mol L-1, Nernstian slope of 30.6 ± (0.5) mV decade -1 , response time of 25 seconds, and detection limit of 4.0 × 10 -6  mol L -1 . The utility of the electrodes was checked by potentiometric titration of hydrogen phosphate with La 3+ solution. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Boronate affinity-based surface molecularly imprinted polymers using glucose as fragment template for excellent recognition of glucosides.

    PubMed

    Peng, Mijun; Xiang, Haiyan; Hu, Xin; Shi, Shuyun; Chen, Xiaoqing

    2016-11-25

    Rapid and efficient extraction of bioactive glycosides from complex natural origins poses a difficult challenge, and then is often inherent bottleneck for their highly utilization. Herein, we propose a strategy to fabricate boronate affinity based surface molecularly imprinted polymers (MIPs) for excellent recognition of glucosides. d-glucose was used as fragment template. Boronic acid, dynamic covalent binding with d-glucose under different pH conditions, was selected as functional monomer to improve specificity. Fe 3 O 4 solid core for surface imprinting using tetraethyl orthosilicate (TEOS) as crosslinker could control imprinted shell thickness for favorable adsorption capacity and satisfactory mass transfer rate, improve hydrophilicity, separate easily by a magnet. Model adsorption studies showed that the resulting MIPs show specific recognition of glucosides. The equilibrium data fitted well to Langmuir equation and the adsorption process could be described by pseudo-second order model. Furthermore, the MIPs were successfully applied for selective extraction of three flavonoid glucosides (daidzin, glycitin, and genistin) from soybean. Results indicated that selective extraction of glucosides from complex aqueous media based on the prepared MIPs is simple, rapid, efficient and specific. Moreover, this method opens up a universal route for imprinting saccharide with cis-diol group for glycosides recognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Recognition of oxytocin by capillary electrochromatography with monolithic tetrapeptide-imprinted polymer used as the stationary phase.

    PubMed

    Zheng, Chao; Liu, Zhaosheng; Gao, Ruyu; Zhang, Lihua; Zhang, Yukui

    2007-07-01

    Using YPLG (Tyr-Pro-Leu-Gly), a tetrapeptide, as the template, an imprinted monolithic column was prepared and applied to the selective recognition of oxytocin based on the epitope approach and capillary electrochromatography (CEC). By optimizing the polymerization solution in terms of functional monomer, cross-linking reagent, porogen, and imprinted template via CEC evaluations of synthesized columns, an imprinted monolith with good recognition capacity (the imprinting factors for YPLG and oxytocin were 4.499 and 4.013, respectively) and high column efficiency (theoretical plates for YPLG and oxytocin were 22,995 plates/m and 16,952 plates/m, respectively) was achieved. In addition, the effects of various experimental parameters on the recognition of oxytocin, including the organic modifier content, the buffer concentration, and the pH value, were studied systematically. Furthermore, a mixture of oxytocin and other proteins was analyzed using this monolithic CEC column, and oxytocin was eluted much more slowly than other large biomolecules, which demonstrated the high selective recognition ability of such an imprinted monolith for oxytocin with PLG (Pro-Leu-Gly) as the epitope. Figure Separation of a mixture of oxytocin, BSA, bovine hemoglobin, ovalbumin, and lysozyme on the open column, the blank monolithic column, and the monolithic YPLG-imprinted column.

  18. [Preparation of molecularly imprinted polypyrrole/Fe3O4 composite material and its application in recognition of tryptophan enantiomers].

    PubMed

    Chen, Zhidong; Shan, Xueling; Kong, Yong

    2012-04-01

    Ferrosoferric oxide (Fe(3)O(4)) magnetic material was first synthesized, and then the in-situ chemical polymerization of pyrrole was carried out on the surface of Fe(3)O(4) by using pyrole and L-tryptophan (L-Trp) as the functional monomer and templates, respectively. As a result, molecularly imprinted polypyrrole/Fe(3)O(4) composite material was obtained. This composite material was separated from the solution because of its magnetic property. Polypyrrole in the composite was overoxidized in 1 mol/L NaOH solution by applying a potential of 1.0 V, and thus L-Trp templates were de-deoped from the composite. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical methods were employed to characterize the composite. The solution containing L- or D-Trp was pumped through a porous ceramic tube packed with the composite, separately. High performance liquid chromatography (HPLC) was adopted for the detection of L- or D-Trp in the eluate, and the results indicated that the enrichment ability of the composite for L-Trp was almost 2 times that of D-Trp. Therefore, the electro-magnetic composite material has potential applications as chromatographic stationary phase for chiral recognition.

  19. Functional Nanostructured Materials Based on Polymerized Surfactant Liquid Crystal Assemblies Liquid Crystal Assemblies

    NASA Astrophysics Data System (ADS)

    Gin, Douglas

    2003-03-01

    The development of materials with controlled nanostructures is one of the most important new areas of scientific research in chemistry and engineering. Our research group has developed a novel approach for making nanostructured polymer materials with unique functional properties using liquid crystals as starting materials. In this approach, we design polymerizable organic building blocks based on lyotropic liquid crystals (LLCs) (i.e., amphiphiles or surfactants) that carry, or can accommodate, a functional property of general interest. Through appropriate molecular design, these monomers self-assemble in the presence of water into fluid, yet ordered phase-separated, water-hydrocarbon assemblies with predictable nanoscale geometries. The architectures of these LLC phases can range from stacked two-dimensional lamellae to hexagonally ordered cylindrical channels with uniform feature sizes in the 1-10 nm range. These LLC phases are then photopolymerized into robust polymer networks with preservation of their small-scale structures. This approach allows us to investigate the effect of nanometer-scale architecture on important bulk properties, as well as to engineer chemical environments on the nanometer-scale for several areas of application. In this talk, new functional materials based on the polymerization of the lyotropic inverted hexagonal phase will be presented as one example of our general approach. Issues in the design and photopolymerization of functional amphiphilic monomers that adopt this LC architecture will be discussed. More importantly, the use of the resulting nanostructured polymer networks in three areas of application will be presented: (1) as templates for the synthesis of functional nanocomposites; (2) as tunable heterogeneous catalysts, and (3) as nanoporous membrane and separation media. In particular, issues pertaining to the contribution of nanoscale architecture to the performance of these systems will be highlighted. Opportunities for tailoring the nanoscale chemical environment and architecture of these materials through molecular design will be presented. Finally, the development of methods for controlling macroscopic orientation through processing will also be discussed.

  20. Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin

    NASA Astrophysics Data System (ADS)

    Newland, Ben; Leupelt, Daniel; Zheng, Yu; Thomas, Laurent S. V.; Werner, Carsten; Steinhart, Martin; Wang, Wenxin

    2015-12-01

    Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers, and various therapeutics.

  1. Selective extraction of clonazepam from human plasma and urine samples by molecularly imprinted polymeric beads.

    PubMed

    Panahi, Homayon Ahmad; Mehramizi, Ali; Ghassemi, Somayeh; Moniri, Elham

    2014-03-01

    A molecularly imprinted polymer (MIP) based on free-radical polymerization was prepared with 1-(N,N-biscarboxymethyl)amino-3-allylglycerol and N,N-dimethylacrylamide as functional monomers, N,N-methylene diacrylamide as the cross-linker, copper ion-clonazepam as the template and 2,2-azobis(2-methylbutyronitrile) as the initiator. The imprinted polymer was characterized by Fourier transform infrared spectroscopy, elemental analysis, thermo-gravimetric analysis, and SEM. The MIP of agglomerated microparticles with multipores was used for SPE. The imprinted polymer sorbent was selective for clonazepam. The optimum pH and sorption capacity were 5 and 0.18 mg/g at 20C, respectively. The profile of the drug uptake by the sorbent reflects good accessibility of the active sites in the imprinted polymer sorbent. The MIP-SPE was the most feasible technique for the extraction of clonazepam with a high recovery from human plasma and urine samples.

  2. Experimental mixture design as a tool for the synthesis of antimicrobial selective molecularly imprinted monodisperse microbeads.

    PubMed

    Benito-Peña, Elena; Navarro-Villoslada, Fernando; Carrasco, Sergio; Jockusch, Steffen; Ottaviani, M Francesca; Moreno-Bondi, Maria C

    2015-05-27

    The effect of the cross-linker on the shape and size of molecular imprinted polymer (MIP) beads prepared by precipitation polymerization has been evaluated using a chemometric approach. Molecularly imprinted microspheres for the selective recognition of fluoroquinolone antimicrobials were prepared in a one-step precipitation polymerization procedure using enrofloxacin (ENR) as the template molecule, methacrylic acid as functional monomer, 2-hydroxyethyl methacrylate as hydrophilic comonomer, and acetonitrile as the porogen. The type and amount of cross-linker, namely ethylene glycol dimethacrylate, divinylbenzene or trimethylolpropane trimethacrylate, to obtain monodispersed MIP spherical beads in the micrometer range was optimized using a simplex lattice design. Particle size and morphology were assessed by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption measurements. Electron paramagnetic resonance spectroscopy in conjunction with a nitroxide as spin probe revealed information about the microviscosity and polarity of the binding sites in imprinted and nonimprinted polymer beads.

  3. Biomimetic/Optical Sensors for Detecting Bacterial Species

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ksendzov, Alexander; Yen, Shiao-Pin; Ryan, Margaret; Lazazzera, Beth

    2006-01-01

    Biomimetic/optical sensors have been proposed as means of real-time detection of bacteria in liquid samples through real-time detection of compounds secreted by the bacteria. Bacterial species of interest would be identified through detection of signaling compounds unique to those species. The best-characterized examples of quorum-signaling compounds are acyl-homoserine lactones and peptides. Each compound, secreted by each bacterium of an affected species, serves as a signal to other bacteria of the same species to engage in a collective behavior when the population density of that species reaches a threshold level analogous to a quorum. A sensor according to the proposal would include a specially formulated biomimetic film, made of a molecularly imprinted polymer (MIP), that would respond optically to the signaling compound of interest. The MIP film would be integrated directly onto an opticalwaveguide- based ring resonator for optical readout. Optically, the sensor would resemble the one described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. MIPs have been used before as molecular- recognition compounds, though not in the manner of the present proposal. Molecular imprinting is an approach to making molecularly selective cavities in a polymer matrix. These cavities function much as enzyme receptor sites: the chemical functionality and shape of a cavity in the polymer matrix cause the cavity to bind to specific molecules. An MIP matrix is made by polymerizing monomers in the presence of the compound of interest (template molecule). The polymer forms around the template. After the polymer solidifies, the template molecules are removed from the polymer matrix by decomplexing them from their binding sites and then dissolving them, leaving cavities that are matched to the template molecules in size, shape, and chemical functionality. The cavities thus become molecular-recognition sites that bind only to molecules matched to the sites; other molecules are excluded. In a sensor according to the proposal, the MIP would feature molecular recognition sites that would bind the specific signaling molecules selectively according to their size, shape, and chemical functionality (see figure). As the film took up the signaling molecules in the molecular recognition sites, the index of refraction and thickness of the film would change, causing a wavelength shift of the peak of the resonance spectrum. It has been estimated that by measuring this wavelength shift, it should be possible to detect as little as 10 picomoles of a peptide signaling compound.

  4. Novel (meth)acrylate monomers for ultrarapid polymerization and enhanced polymer properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckel, E. R.; Berchtold, K. A.; Nie, J.

    2002-01-01

    Ultraviolet light is known to be one of the most efficient methods to initiatc polymeric reactions in the presence of a photonitiator. Photopolymerizations are advantageous because the chemistry of the materials can be tailored to design liquid monomers for ultrarapid polymerization into a solid polymer material. One way to achieve rapid photopolymerizations is to utilize multifunctional (meth)acrylate monomers. which form highly crosslinked polymers; however, these monomers typically do not achieve complete functional group conversion. Recently, Decker et al. developed novel monovinyl acrylate monomers that display polyriicrization kinetics that rival those of multifunctional acrylate monomers. These novel acrylate monomers incorporate secondarymore » functionalities and end groups such as carbonates, carbamates, cyclic carbonates and oxazolidone which promote the increased polymerization kinetics of these monomers. In addition to thc polynierization kinetics, these novel monovinyl monomers form crosslinked polymers, which are characterized by having high strength and high flexibility. Unfortunately, the exact mechanism or mechanisms responsible for the polymerization kinetics and crosslinking are not well understood.« less

  5. Nicotine molecularly imprinted polymer: synergy of coordination and hydrogen bonding.

    PubMed

    Huynh, Tan-Phat; B K C, Chandra; Sosnowska, Marta; Sobczak, Janusz W; Nesterov, Vladimir N; D'Souza, Francis; Kutner, Wlodzimierz

    2015-02-15

    Two new bis(2,2'-bithienyl)methane derivatives, one with the zinc phthalocyanine substituent (ZnPc-S16) and the other with the 2-hydroxyethyl substituent (EtOH-S4), were synthesized to serve as functional monomers for biomimetic recognition of nicotine (Nic) by molecular imprinting. Formation of a pre-polymerization complex of the Nic template with ZnPc-S16 and EtOH-S4 was confirmed by both the high negative Gibbs free energy gain, ΔG = -115.95 kJ/mol, calculated using the density functional theory at the B3LYP/3-21G* level, and the high stability constant, Ks = 4.67 × 10(5) M(-1), determined by UV-vis titration in chloroform. A solution of this complex was used to deposit a Nic-templated molecularly imprinted polymer (MIP-Nic) film on an Au electrode of a quartz crystal resonator of EQCM by potentiodynamic electropolymerization. The imprinting factor was as high as ~9.9. Complexation of the Nic molecules by the MIP cavities was monitored with X-ray photoelectron spectroscopy (XPS), as manifested by a negative shift of the binding energy of the Zn 2p3/2 electron of ZnPc-S16 after Nic templating. For sensing applications, simultaneous chronoamperometry (CA) and piezoelectric microgravimetry (PM) measurements were performed under flow-injection analysis conditions. The limit of detection of the CA and PM chemosensing was as low as 40 and 12 µM, respectively. Among them, the CA chemosensing was more selective to the cotinine and myosmine interferences due to the 1.10 V vs. Ag/AgCl discriminating potential of nicotine electro-oxidation applied. Differences in selectivity to the analyte and interferences were interpreted by modeling complexation of Nic and, separately, each of the interferences with a "frozen" MIP-Nic molecular cavity. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Molecularly imprinted polymers coated on multi-walled carbon nanotubes through a simple indirect method for the determination of 2,4-dichlorophenoxyacetic acid in environmental water

    NASA Astrophysics Data System (ADS)

    Yang, Weijie; Jiao, Feipeng; Zhou, Lei; Chen, Xiaoqing; Jiang, Xinyu

    2013-11-01

    A new and facile method was presented to graft molecularly imprinted polymers (MIPs) on carbon nanotubes (CNTs) for 2,4-dichlorophenoxyacetic acid (2,4-D) analysis. In brief, CNTs were firstly coated with a layer of vinyl group modified silica, followed by a common precipitation polymerization with 2,4-D as the template, ethylene glycol dimethacrylate (EGDMA) as the crosslinker and 2,2-azobisisobutyronitrile (AIBN) as the initiator. The imprinted effects obtained by using different monomers were investigated, and the results showed that acrylamide (AM) and styrene as mixed monomers was the best choice. This functionalized material was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetry (TG), which demonstrated a successful polymerization reaction on CNTs with MIPs grafting ratio of about 80%. The results of static adsorption experiments indicated the imprinted material possessed fast kinetics and good selectivity for 2,4-D molecules. A corresponding analytical method was developed and demonstrated to be applicable for the determination of 2,4-D in environmental water. The recoveries were in the range from 74.6% to 81.2% with relative standard deviation below 7.0%. To be emphasized, the method for MIPs coating proposed herein also provides a significant reference for other radical polymerization reactions based on CNTs.

  7. Microemulsions containing lecithin and sugar-based surfactants: nanoparticle templates for delivery of proteins and peptides.

    PubMed

    Graf, Anja; Ablinger, Elisabeth; Peters, Silvia; Zimmer, Andreas; Hook, Sarah; Rades, Thomas

    2008-02-28

    Two pseudo-ternary systems comprising isopropyl myristate, soybean lecithin, water, ethanol and either decyl glucoside (DG) or capryl-caprylyl glucoside (CCG) as surfactant were investigated for their potential to form microemulsion templates to produce nanoparticles as drug delivery vehicles for proteins and peptides. All microemulsion and nanoparticle compounds used were pharmaceutically acceptable and biocompatible. Phase diagrams were established and characterized using polarizing light microscopy, viscosity, conductivity, electron microscopy, differential scanning calorimetry and self-diffusion NMR. An area in the phase diagrams containing optically isotropic, monophasic systems was designated as the microemulsion region and systems therein identified as solution-type microemulsions. Poly(alkylcyanoacrylate) nanoparticles prepared by interfacial polymerisation from selected microemulsions ranged from 145 to 660nm in size with a unimodal size distribution depending on the type of monomer (ethyl (2) or butyl (2) cyanoacrylate) and microemulsion template. Generally larger nanoparticles were formed by butyl (2) cyanoacrylate. Insulin was added as a model protein and did not alter the physicochemical behaviour of the microemulsions or the morphology of the nanoparticles. However, insulin-loaded nanoparticles in the CCG containing system decreased in size when using butyl (2) cyanoacrylate. This study shows that microemulsions containing sugar-based surfactants are suitable formulation templates for the formation of nanoparticles to deliver peptides.

  8. Direct observation of bis(dicarbollyl)nickel conformers in solution by fluorescence spectroscopy: an approach to redox-controlled metallacarborane molecular motors.

    PubMed

    Safronov, Alexander V; Shlyakhtina, Natalia I; Everett, Thomas A; VanGordon, Monika R; Sevryugina, Yulia V; Jalisatgi, Satish S; Hawthorne, M Frederick

    2014-10-06

    As a continuation of work on metallacarborane-based molecular motors, the structures of substituted bis(dicarbollyl)nickel complexes in Ni(III) and Ni(IV) oxidation states were investigated in solution by fluorescence spectroscopy. Symmetrically positioned cage-linked pyrene molecules served as fluorescent probes to enable the observation of mixed meso-trans/dl-gauche (pyrene monomer fluorescence) and dl-cis/dl-gauche (intramolecular pyrene excimer fluorescence with residual monomer fluorescence) cage conformations of the nickelacarboranes in the Ni(III) and Ni(IV) oxidation states, respectively. The absence of energetically disfavored conformers in solution--dl-cis in the case of nickel(III) complexes and meso-trans in the case of nickel(IV)--was demonstrated based on spectroscopic data and conformer energy calculations in solution. The conformational persistence observed in solution indicates that bis(dicarbollyl)nickel complexes may provide attractive templates for building electrically driven and/or photodriven molecular motors.

  9. Effects of (monomer - crosslinker – initiator) composition during non imprinted polymers synthesis for catechin retention

    NASA Astrophysics Data System (ADS)

    Triadhi, U.; Zulfikar, M. A.; Setiyanto, H.; Amran, M. B.

    2018-05-01

    MISPE (molecularly imprinted Solid Phase Extraction) is a separation technique using a solid adsorbent as a principle of MI (molecularly imprinted). Methacrylic acid (MAA) was used as a monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, benzoyl peroxide (BPO) as an initiator and acetonitrile (ACN) as a porogen. Catechin will be used as the template. Thermal and microwave methods were employed in the synthesis method. When analyzed using FTIR spectra, it was found that there were no significant differences between NIP (non-imprinted polymer) resulting from thermal method and that resulting from microwave method. Preparation of polymers by microwave method required 4 mins at 60-65 °C, significantly less than thermal method, that took 60 minutes at the same temperature. The variations of mole ratios of the monomer, the crosslinker, and the initiator were also performed. Based on the FTIR spectra, intensity of some peaks were changed due to the decreases of concentration. The optimum composition for NIP synthesis was MAA: EGDMA: BPO ratio of 5:30:0.5 (in mmole). The TGA curve showed that the NIP sythesized using microwave method experienced mass loss of around 98.50% at 604.8 °C.

  10. A Generalized Michaelis-Menten Equation in Protein Synthesis: Effects of Mis-Charged Cognate tRNA and Mis-Reading of Codon.

    PubMed

    Dutta, Annwesha; Chowdhury, Debashish

    2017-05-01

    The sequence of amino acid monomers in the primary structure of a protein is decided by the corresponding sequence of codons (triplets of nucleic acid monomers) on the template messenger RNA (mRNA). The polymerization of a protein, by incorporation of the successive amino acid monomers, is carried out by a molecular machine called ribosome. We develop a stochastic kinetic model that captures the possibilities of mis-reading of mRNA codon and prior mis-charging of a tRNA. By a combination of analytical and numerical methods, we obtain the distribution of the times taken for incorporation of the successive amino acids in the growing protein in this mathematical model. The corresponding exact analytical expression for the average rate of elongation of a nascent protein is a 'biologically motivated' generalization of the Michaelis-Menten formula for the average rate of enzymatic reactions. This generalized Michaelis-Menten-like formula (and the exact analytical expressions for a few other quantities) that we report here display the interplay of four different branched pathways corresponding to selection of four different types of tRNA.

  11. Biopolymers Containing Unnatural Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter

    Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty aminomore » acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in proteins using a novel metal-ion binding amino acid, which may facilitate our ability to generate new protein based sensors and catalysts.« less

  12. Remote Enantioselection Transmitted by an Achiral Peptide Nucleic Acid Backbone

    NASA Technical Reports Server (NTRS)

    Kozlov, Igor A.; Orgel, Leslie E.; Nielsen, Peter E.

    2000-01-01

    short homochiral segment of DNA into a PNA helix could have guaranteed that the next short segment of DNA to be incorporated would have the same handedness as the first. Once two segments of the same handedness were present, the probability that a third segment would have the same handedness would increase, and so on. Evolution could then slowly dilute out the PNA part. This scenario would ultimately allow the formation of a chiral oligonucleotide by processes that are largely resistant to enantiomeric crossinhibition. It is important to note that the ligation of homochiral dinucleotides on a nucleic acid template would probably be at least as enantiospecific as the reaction that we have studied. The disadvantage of using chiral monomers as components of a replicating system arises from the difficulty of generating a first long homochiral template from a racemic mixture of monomers, although results of experiments designed to overcome this difficulty by employing homochiral tetramers have been reported.l l The probability of obtaining a homochiral n-mer from achiral substrates is approximately 1P-I if the nontemplate-directed extension of the primer is not enantioselective. Hence, it would be very hard to get started with a homochiral 40-mer, for example. No such difficulty exists in a scenario that originates with an achiral genetic material and in which the incorporation of very few chiral monomers in this achiral background gradually progresses towards homochirality. It seems possible that some PNA sequences could act as catalysts, analogous to ribozymes, even though PNA lacks clear metal binding sites. Although such catalysts could not be enantioselective, the incorporation of as few as two chiral nucleotides could then impose chiral specificity on the system. Furthermore, such patch chimeras could help to bridge the gap in catalytic potential between PNA and RNA, while guaranteeing enantioselectivity.

  13. Biopolymers Containing Unnatural Building Blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter G.

    2013-06-30

    Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty aminomore » acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in proteins using a novel metal-ion binding amino acid, which may facilitate our ability to generate new protein based sensors and catalysts.« less

  14. Polymer solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawczyk, Gerhard Erich; Miller, Kevin Michael

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  15. The study on mechanism of holographic recording in photopolymer with dual monomer

    NASA Astrophysics Data System (ADS)

    Zhai, Qianli; Tao, Shiquan; Wang, Dayong

    2010-06-01

    In this paper we study the dynamics of refractive index modulation in a dual-monomer photopolymer through grating growth under different experiment stages. By using different sets of parameters for vinyl monomers (NVC) and acrylate monomers (POEA) respectively, a composite dual-monomer model, extended from the uniform post-exposure (UPE) model for single monomer photopolymer, is proposed and fitted with the experiment data very well. Further discussions indicate that the dominant contribution to the total index modulation is made by NVC monomers, and a brief explanation of the function of POEA monomers is given.

  16. Applications of molecularly imprinted polymers to the analysis and removal of personal care products: A review.

    PubMed

    Figueiredo, L; Erny, G L; Santos, L; Alves, A

    2016-01-01

    Personal-care products (PCPs) involve a variety of chemicals whose persistency along with their constant release into the environment raised concern to their potential impact on wildlife and humans health. Regarded as emergent contaminants, PCPs demonstrated estrogenic activity leading to the need of new methodologies to detect and remove those compounds from the environment. Molecular imprinting starts with a complex between a template molecule and a functional monomer, which is then polymerized in the presence of a cross-linker. After template removal, the polymer will contain specific cavities. Based on a good selectivity towards the template, molecularly imprinted polymers (MIPs) have been investigated as efficient materials for the analysis and extraction of the so called emergent pollutants contaminants. Rather than lowering the limit of detections, the key theoretical advantage of MIP over existing methodologies is the potential to target specific chemicals. This unique feature, sometime named specificity (as synonym to very high selectivity) allows to use cheap, simple and/or rapid quantitative techniques such as fast separation with ultra-violet (UV) detection, sensors or even spectrometric techniques. When a high degree of selectivity is achieved, samples extracted with MIPs can be directly analyzed without the need of a separation step. However, while some papers clearly demonstrated the specificity of their MIP toward the targeted PCP, such prove is often lacking, especially with real matrices, making it difficult to assess the success of the different approaches. This review paper focusses on the latest development of MIPs for the analysis of personal care products in the environment, with particular emphasis on design, preparation and practical applications of MIPs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Preparation and utilization of molecularly imprinted polymer for chlorsulfuron extraction from water, soil, and wheat plant.

    PubMed

    Fu, Xu Wei; Wu, Yan Jiao; Qu, Jin Rong; Yang, Hong

    2012-07-01

    A molecularly imprinted polymer (MIP) was prepared using chlorsulfuron (CS), a herbicide as a template molecule, methacrylic acid as a functional monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, methanol and toluene as a porogen, and 2,2-azobisisobutyronitrile as an initiator. The binding behaviors of the template chlorsulfuron and its analog on MIP were evaluated by equilibrium adsorption experiments, which showed that the MIP particles had specific affinity for the template CS. Solid-phase extraction (SPE) with the chlorsulfuron molecularly imprinted polymer as an adsorbent was investigated. The optimum loading, washing, and eluting conditions for chlorsulfuron molecularly imprinted polymer solid-phase extraction (CS-MISPE) were established. The optimized CS-MISPE procedure was developed to enrich and clean up the chlorsulfuron residue in water, soils, and wheat plants. Concentrations of chlorsulfuron in the samples were analyzed by HPLC-UVD. The average recoveries of CS spiked standard at 0.05~0.2 mg L(-1) in water were 90.2~93.3%, with the relative standard deviation (RSD) being 2.0~3.9% (n=3). The average recoveries of 1.0 mL CS spiked standard at 0.1~0.5 mg L(-1) in 10 g soil were 91.1~94.7%, with the RSD being 3.1~5.6% (n=3). The average recoveries of 1.0 mL CS spiked standard at 0.1~0.5 mg L(-1) in 5 g wheat plant were 82.3~94.3%, with the RSD being 2.9~6.8% (n=3). Overall, our study provides a sensitive and cost-effective method for accurate determination of CS residues in water, soils, and plants.

  18. Fe doped TiO2 nanofibers on the surface of graphene sheets for photovoltaics applications

    NASA Astrophysics Data System (ADS)

    Farhangi, Nasrin; Medina-Gonzalez, Yaocihuatl; Charpentier, Paul A.

    2011-08-01

    Highly ordered, visible light driven TiO2 nanowire arrays doped with Fe photocatalysts were grown on the surface of functionalized graphene sheets (FGSs) using a sol-gel method with titanium isopropoxide (TIP) monomer, acetic acid (HAc) as the polycondensation agent and iron chloride in the green solvent, supercritical carbon dioxide (scCO2). The morphology of the synthesized materials was studied by SEM and TEM, which showed uniform formation of Fe doped TiO2 nanofibers on the surface of graphene sheets, which acted as a template for nanowire growth through surface -COOH functionalities. Increasing Fe content in the nanowires did not change the morphology significantly. Optical properties of the synthesized composites were examined by UV spectroscopy which showed a significant reduction in band gap with increasing Fe content, i.e. 2.25 eV at 0.6% Fe. The enhancement of the optical properties of synthesized materials was confirmed by photocurrent measurement. The optimum sample containing 0.6% Fe doped TiO2 on the graphene sheets increased the power conversation efficiency by 6-fold in comparison to TiO2 alone.

  19. Molecularly imprinted hydrogels as functional active packaging materials.

    PubMed

    Benito-Peña, Elena; González-Vallejo, Victoria; Rico-Yuste, Alberto; Barbosa-Pereira, Letricia; Cruz, José Manuel; Bilbao, Ainhoa; Alvarez-Lorenzo, Carmen; Moreno-Bondi, María Cruz

    2016-01-01

    This paper describes the synthesis of novel molecularly imprinted hydrogels (MIHs) for the natural antioxidant ferulic acid (FA), and their application as packaging materials to prevent lipid oxidation of butter. A library of MIHs was synthesized using a synthetic surrogate of FA, 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HFA), as template molecule, ethyleneglycol dimethacrylate (EDMA) as cross-linker, and 1-allylpiperazine (1-ALPP) or 2-(dimethylamino)ethyl methacrylate (DMAEMA), in combination with 2-hydroxyethyl methacrylate (HEMA) as functional monomers, at different molar concentrations. The DMAEMA/HEMA-based MIHs showed the greatest FA loading capacity, while the 1-ALLP/HEMA-based polymers exhibited the highest imprinting effect. During cold storage, FA-loaded MIHs protected butter from oxidation and led to TBARs values that were approximately half those of butter stored without protection and 25% less than those recorded for butter covered with hydrogels without FA, potentially extending the shelf life of butter. Active packaging is a new field of application for MIHs with great potential in the food industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Synthesis and application of in-situ molecularly imprinted silica monolithic in pipette-tip solid-phase microextraction for the separation and determination of gallic acid in orange juice samples.

    PubMed

    Arabi, Maryam; Ghaedi, Mehrorang; Ostovan, Abbas

    2017-03-24

    A novel strategy was presented for the synthesis and application of functionalized silica monolithic as artificial receptor of gallic acid at micro-pipette tip. A sol-gel process was used to prepare the sorbent. In this in-situ polymerization reaction, tetraethyl orthosilicate (TEOS), 3-aminopropyl trimethoxysilane (APTMS), gallic acid and thiourea were used, respectively, as cross-linker, functionalized monomer, template and precursor to make crack-free and non-fragile structure. Such durable and inexpensive in-situ monolithic was successfully employed as useful tool for highly efficient extraction of gallic acid from orange juice samples. The effective parameters in extraction recovery were investigated and optimum conditions were obtained using experimental design methodology. Applying HPLC-UV for separation quantification at optimal conditions, the gallic acid was efficiently extracted without significant matrix interference. Good linearity for gallic acid in the range of 0.02-5.0mgL -1 with correlation coefficients of R 2 >0.999 revealed well applicability of the method for trace analysis. Copyright © 2017. Published by Elsevier B.V.

  1. Rational design of a molecularly imprinted polymer for dinotefuran: theoretical and experimental studies aimed at the development of an efficient adsorbent for microextraction by packed sorbent.

    PubMed

    Silva, Camilla Fonseca; Borges, Keyller Bastos; do Nascimento, Clebio Soares

    2017-12-18

    In this work, we studied theoretically the formation process of a molecularly imprinted polymer (MIP) for dinotefuran (DNF), testing distinct functional monomers (FM) in various solvents through density functional theory calculations. The results revealed that the best conditions for MIP synthesis were established with methacrylic acid (MAA) as FM in a 1 : 4 stoichiometry and with chloroform as the solvent. This protocol showed the most favourable stabilization energies for the pre-polymerization complexes. Furthermore, the formation of the FM/template complex is enthalpy driven and the occurrence of hydrogen bonds between the DNF and MAA plays a major role in the complex stability. To confirm the theoretical results, MIP was experimentally synthesized considering the best conditions found at the molecular level and characterized by scanning electron microscopy and thermogravimetric analysis. After that, the synthesized material was efficiently employed in microextraction by packed sorbent combined with high-performance liquid chromatography in a preliminary study of the recovery of DNF from water and artificial saliva samples.

  2. Prions, From Structure to Epigenetics and Neuronal Functions

    NASA Astrophysics Data System (ADS)

    Lindquist, Susan

    2012-02-01

    Prions are a unique type of protein that can misfold and convert other proteins to the same shape. The well-characterized yeast prion [PSI+] is formed from an inactive amyloid fiber conformation of the translation-termination factor, Sup35. This altered conformation is passed from mother cells to daughters, acting as a template to perpetuate the prion state and providing a mechanism of protein-based inheritance. We employed a variety of methods to determine the structure of Sup35 amyloid fibrils. First, using fluorescent tags and cross-linking we identified specific segments of the protein monomer that form intermolecular contacts in a ``Head-to-Head,'' ``Tail-to-Tail'' fashion while a central region forms intramolecular contacts. Then, using peptide arrays we mapped the region responsible for the prion transmission barrier between two different yeast species. We have also used optical tweezers to reveal that the non-covalent intermolecular contacts between monomers are unusually strong, and maintain fibril integrity even under forces that partially unfold individual monomers and extend fibril length. Based on the handful of known yeast prion proteins we predicted sequences that could be responsible for prion-like amyloid folding. Our screen identified 19 new candidate prions, whose protein-folding properties and diverse cellular functions we have characterized using a combination of genetic and biochemical techniques. Prion-driven phenotypic diversity increases under stress, and can be amplified by the dynamic maturation of prion-initiating states. These qualities allow prions to act as ``bet-hedging'' devices that facilitate the adaptation of yeast to stressful environments, and might speed the evolution of new traits. Together with Kandel and Si, we have also found that a regulatory protein that plays an important role in synaptic plasticity behaves as a prion in yeast. Cytoplasmic polyAdenylation element binding protein, CPEB, maintains synapses by promoting the local translation of mRNAs. We postulate that the self-perpetuating folding of the prion domain acts as a molecular memory. Thus yeast prions have provided evidence for the surprising possibility that amyloid protein folds can serve as the basis for memory and inheritance.

  3. Surface imprinting on nano-TiO2 as sacrificial material for the preparation of hollow chlorogenic acid imprinted polymer and its recognition behavior

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Gui; Li, Zhiping; Lu, Cuimei; Li, Yanan; Tan, Xianzhou

    2013-01-01

    Surface imprinting chlorogenic acid (CGA) on nano-TiO2 particles as sacrificial support material was successfully performed by using 4-vinylpyridine (4-VP) as functional monomer to obtain a hollow CGA-imprinted polymer (H-MIP1). Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM) were utilized for structurally characterizing the polymers obtained and adsorption dynamics and thermodynamic behavior investigated according to different models. Binding selectivity, adsorption capacity and the reusability for this H-MIP1 were also evaluated. This hollow CGA imprinted polymer shows rapid binding dynamics and higher binding capability toward the template molecules. The pseudo first-order kinetic model was shown best to describe the binding process of CGA on the H-MIP1 and Langmuir isotherm model best to fit the experimental adsorption isotherm data. Through adsorption isotherms at different temperatures, thermodynamic parameter values were obtained. Selectivity coefficients for the H-MIP1 toward the template were 2.209, 3.213, 1.746 and 2.353 relative to CA, VA, PCA and GA, respectively. This H-MIP1 was also indicated with a good imprint effect and a high capability to capture CGA from methanol extract of Eucommia ulmoides (E. ulmoides) leaves. Additionally, a good reusability for this imprinted polymer was exhibited during repeated adsorption-desorption use.

  4. Yeast prion architecture explains how proteins can be genes

    NASA Astrophysics Data System (ADS)

    Wickner, Reed

    2013-03-01

    Prions (infectious proteins) transmit information without an accompanying DNA or RNA. Most yeast prions are self-propagating amyloids that inactivate a normally functional protein. A single protein can become any of several prion variants, with different manifestations due to different amyloid structures. We showed that the yeast prion amyloids of Ure2p, Sup35p and Rnq1p are folded in-register parallel beta sheets using solid state NMR dipolar recoupling experiments, mass-per-filament-length measurements, and filament diameter measurements. The extent of beta sheet structure, measured by chemical shifts in solid-state NMR and acquired protease-resistance on amyloid formation, combined with the measured filament diameters, imply that the beta sheets must be folded along the long axis of the filament. We speculate that prion variants of a single protein sequence differ in the location of these folds. Favorable interactions between identical side chains must hold these structures in-register. The same interactions must guide an unstructured monomer joining the end of a filament to assume the same conformation as molecules already in the filament, with the turns at the same locations. In this way, a protein can template its own conformation, in analogy to the ability of a DNA molecule to template its sequence by specific base-pairing. Bldg. 8, Room 225, NIH, 8 Center Drive MSC 0830, Bethesda, MD 20892-0830, wickner@helix.nih.gov, 301-496-3452

  5. Synthesis of monodisperse molecularly imprinted microspheres with multi-recognition ability via precipitation polymerization for the selective extraction of cyromazine, melamine, triamterene and trimethoprim.

    PubMed

    Wang, Xian-Hua; Xie, Li-Fu; Dong, Qian; Liu, Hao-Long; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-15

    Through precipitation polymerization, three monodisperse molecularly imprinted polymers (MIPs) containing imprints of 2,4-diamino-6-methyl-1,3,5-triazine (DM), cyromazine (CY) or trimethoprim (TM), were synthesized using methacrylic acid as functional monomer, divinylbenzene as cross-linker, and a mixture of acetonitrile-toluene (90/10, v/v) as porogen. The morphology and selectivity of the MIPs were characterized and compared systematically. The MIPs had the best specific binding in pure acetonitrile, and the data of adsorption experiment were fitted well with Langmuir and Freundlich model. In addition, DM-MIPs showed the excellent binding and multi-recognition capability for CY, melamine (ME), triamterene (TA) and TM, and the binding capacity were 7.18, 7.56, 5.66 and 5.45μmol/g, respectively. Due to the pseudo template and the ability of multi-recognition, DM-MIPs as sorbent material could avoid the effect of template leakage on quantitative analysis. Therefore, DM-MIPs were used as a solid-phase extraction material to enrich ME, CY, TA and TM from different bio-matrix samples for high performance liquid chromatography analysis. Under the optimized conditions, the recoveries of three spiked levels in different bio-matrix samples were ranged from 80.9% to 91.5% with RSD≤4.2 (n=3). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Poly(3,6-diamino-9-ethylcarbazole) based molecularly imprinted polymer sensor for ultra-sensitive and selective detection of 17-β-estradiol in biological fluids.

    PubMed

    Liu, Weilu; Li, Haifeng; Yu, Shangmin; Zhang, Jiaxing; Zheng, Weihua; Niu, Liting; Li, Gengen

    2018-05-01

    In this work, we reported the synthesis of 3, 6-diamino-9-ethylcarbazole and its application as a new monomer for preparation of molecularly imprinted polymer (MIP) electrochemical sensor. The as prepared MIP sensor exhibited ultrahigh sensitivity and selectivity for the detection of 17-β-estradiol in attomolar levels (1 × 10 -18 molL -1 ). The sensor works by detecting the change of the interfacial impedance that is derived from recognition of 17-β-estradiol on the MIP layer. The MIP sensor based on 3, 6-diamino-9-ethylcarbazole monomer revealed better performance than that of unmodified carbazole monomer. The monomer/template ratio, electropolymerization scanning cycles, and the incubation pH values were optimised in order to obtain the best detection efficiency. Under the optimised condition, the MIP sensor exhibits a wide linear range from 1aM to 10μM (1 × 10 -18 ̶ 1 × 10 -5 molL -1 ). A low detection limit of 0.36aM (3.6 × 10 -19 molL -1 ) and a good selectivity towards structurally similar compounds were obtained. The proposed MIP sensor also exhibits long-term stability and applicability in human serum samples. These advantages enabled this MIP sensor to be a promising alternative of electrochemical sensor and may be extended to detection of other endogenous compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Sequence selection by dynamical symmetry breaking in an autocatalytic binary polymer model

    NASA Astrophysics Data System (ADS)

    Fellermann, Harold; Tanaka, Shinpei; Rasmussen, Steen

    2017-12-01

    Template-directed replication of nucleic acids is at the essence of all living beings and a major milestone for any origin of life scenario. We present an idealized model of prebiotic sequence replication, where binary polymers act as templates for their autocatalytic replication, thereby serving as each others reactants and products in an intertwined molecular ecology. Our model demonstrates how autocatalysis alters the qualitative and quantitative system dynamics in counterintuitive ways. Most notably, numerical simulations reveal a very strong intrinsic selection mechanism that favors the appearance of a few population structures with highly ordered and repetitive sequence patterns when starting from a pool of monomers. We demonstrate both analytically and through simulation how this "selection of the dullest" is caused by continued symmetry breaking through random fluctuations in the transient dynamics that are amplified by autocatalysis and eventually propagate to the population level. The impact of these observations on related prebiotic mathematical models is discussed.

  8. Mixing of immiscible polymers using nanoporous coordination templates

    NASA Astrophysics Data System (ADS)

    Uemura, Takashi; Kaseda, Tetsuya; Sasaki, Yotaro; Inukai, Munehiro; Toriyama, Takaaki; Takahara, Atsushi; Jinnai, Hiroshi; Kitagawa, Susumu

    2015-07-01

    The establishment of methodologies for the mixing of immiscible substances is highly desirable to facilitate the development of fundamental science and materials technology. Herein we describe a new protocol for the compatibilization of immiscible polymers at the molecular level using porous coordination polymers (PCPs) as removable templates. In this process, the typical immiscible polymer pair of polystyrene (PSt) and poly(methyl methacrylate) (PMMA) was prepared via the successive homopolymerizations of their monomers in a PCP to distribute the polymers inside the PCP particles. Subsequent dissolution of the PCP frameworks in a chelator solution affords a PSt/PMMA blend that is homogeneous in the range of several nanometers. Due to the unusual compatibilization, the thermal properties of the polymer blend are remarkably improved compared with the conventional solvent-cast blend. This method is also applicable to the compatibilization of PSt and polyacrylonitrile, which have very different solubility parameters.

  9. Protocols for Copying and Proofreading in Template-Assisted Polymerization

    NASA Astrophysics Data System (ADS)

    Pigolotti, Simone; Sartori, Pablo

    2016-03-01

    We discuss how information encoded in a template polymer can be stochastically copied into a copy polymer. We consider four different stochastic copy protocols of increasing complexity, inspired by building blocks of the mRNA translation pathway. In the first protocol, monomer incorporation occurs in a single stochastic transition. We then move to a more elaborate protocol in which an intermediate step can be used for error correction. Finally, we discuss the operating regimes of two kinetic proofreading protocols: one in which proofreading acts from the final copying step, and one in which it acts from an intermediate step. We review known results for these models and, in some cases, extend them to analyze all possible combinations of energetic and kinetic discrimination. We show that, in each of these protocols, only a limited number of these combinations leads to an improvement of the overall copying accuracy.

  10. Facile and green preparation of novel adsorption materials by combining sol-gel with ion imprinting technology for selective removal of Cu(II) ions from aqueous solution

    NASA Astrophysics Data System (ADS)

    Ren, Zhongqi; Zhu, Xinyan; Du, Jian; Kong, Delong; Wang, Nian; Wang, Zhuo; Wang, Qi; Liu, Wei; Li, Qunsheng; Zhou, Zhiyong

    2018-03-01

    A novel green adsorption polymer was prepared by ion imprinted technology in conjunction with sol-gel process under mild conditions for the selective removal of Cu(II) ions from aqueous solution. Effects of preparation conditions on adsorption performance of prepared polymers were studied. The ion-imprinted polymer was prepared using Cu(II) ion as template, N-[3-(2-aminoethylamino) propyl] trimethoxysilane (AAPTMS) as functional monomer and tetraethyl orthosilicate (TEOS) as cross-linker. Water was used as solvent in the whole preparation process. The imprinted and non-imprinted polymers were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM), Brunauer, Emmett and Teller (BET) and zeta potential. Three-dimensional network structure was formed and functional monomer was successfully cross-linked into the network structure of polymers. Effects of adsorption conditions on adsorption performance of prepared polymers were studied too. The pH value is of great influence on adsorption behavior. Adsorption by ion-imprinted polymer was fast (adsorption equilibrium was reached within 60 min). The adsorption capacity of Cu(II) ion-imprinted polymer was always larger than that of non-imprinted polymer. Pseudo-second-order kinetics model and Freundlich isotherm model fitted well with adsorption data. The maximum adsorption capacity of Cu(II) ion-imprinted polymer was 39.82 mg·g-1. However, the preparation conditions used in this work are much milder than those reported in literatures. The Cu(II) ion-imprinted polymer showed high selectivity and relative selectivity coefficients for Pb(II), Ni(II), Cd(II) and Co(II). In addition, the prepared ion-imprinted polymer could be reused several times without significant loss of adsorption capacity.

  11. Facile and controllable one-step fabrication of molecularly imprinted polymer membrane by magnetic field directed self-assembly for electrochemical sensing of glutathione.

    PubMed

    Zhu, Wanying; Jiang, Guoyi; Xu, Lei; Li, Bingzhi; Cai, Qizhi; Jiang, Huijun; Zhou, Xuemin

    2015-07-30

    Based on magnetic field directed self-assembly (MDSA) of the ternary Fe3O4@PANI/rGO nanocomposites, a facile and controllable molecularly imprinted electrochemical sensor (MIES) was fabricated through a one-step approach for detection of glutathione (GSH). The ternary Fe3O4@PANI/rGO nanocomposites were obtained by chemical oxidative polymerization and intercalation of Fe3O4@PANI into the graphene oxide layers via π-π stacking interaction, followed by reduction of graphene oxide in the presence of hydrazine hydrate. In molecular imprinting process, the pre-polymers, including GSH as template molecule, Fe3O4@PANI/rGO nanocomposites as functional monomers and pyrrole as both cross-linker and co-monomer, was assembled through N-H hydrogen bonds and the electrostatic interaction, and then was rapidly oriented onto the surface of MGCE under the magnetic field induction. Subsequently, the electrochemical GSH sensor was formed by electropolymerization. In this work, the ternary Fe3O4@PANI/rGO nanocomposites could not only provide available functionalized sites in the matrix to form hydrogen bond and electrostatic interaction with GSH, but also afford a promoting network for electron transfer. Moreover, the biomimetic sensing membrane could be controlled more conveniently and effectively by adjusting the magnetic field strength. The as-prepared controllable sensor showed good stability and reproducibility for the determination of GSH with the detection limit reaching 3 nmol L(-1) (S/N = 3). In addition, the highly sensitive and selective biomimetic sensor has been successfully used for the clinical determination of GSH in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Solid-phase extraction of chlorophenols in seawater using a magnetic ionic liquid molecularly imprinted polymer with incorporated silicon dioxide as a sorbent.

    PubMed

    Ma, Wanwan; Row, Kyung Ho

    2018-07-20

    A type of magnetic ionic liquid based molecularly imprinted polymer coated on SiO 2 (Fe 3 O 4 @SiO 2 @IL-MIPs) was prepared with 1-vinyl-3-ethylimidazole ionic liquid as functional monomer, and 1,4-butane-3,3'-bis-1-ethylimidazole ionic liquid as cross linker, 4-Chlorophenol as template was successfully applied as a selective adsorbent for selective extraction of 5 chlorophenols in seawater samples by using the magnetic solid-phase extraction (MSPE) method. 11 types of Fe 3 O 4 @SiO 2 @IL-MIPs were synthesized and investigated for their different compositions of functional monomer (such as [C 2 min][Br], [C 2 min][BF 4 ], [C 2 min][PF 6 ], acrylamide, methacrylic acid and 4-vinyl pyridine) and cross-linker (such as [C 4 min 2 ][Br], [C 4 min 2 ][BF 4 ], [C 4 min 2 ][PF 6 ], divinylbenzene, and ethylene glycol dimethacrylate), respectively. The [C 2 min][BF 4 ] and [C 4 min 2 ][PF 6 ] based Fe 3 O 4 @SiO 2 @IL-MIP with the highest extraction efficiencies was applied to the optimization experiment of MSPE process (including extraction time, adsorbent mass and desorption solvents). Good linearity was obtained with correlation coefficients (R 2 ) over 0.9990 and the relative standard deviations for the intra-day and inter-day determination were less than 3.10% with the extraction recoveries ranged from 85.0% to 98.4%. The results indicated that the proposed Fe 3 O 4 @SiO 2 @IL-MIPs possesses great identification and adsorption properties, and could be used as a good sorbent for selective extraction of CPs in environment waters. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A highly sensitive and selective sensor based on a graphene-coated carbon paste electrode modified with a computationally designed boron-embedded duplex molecularly imprinted hybrid membrane for the sensing of lamotrigine.

    PubMed

    Wang, Hongjuan; Qian, Duo; Xiao, Xilin; Gao, Shuqin; Cheng, Jianlin; He, Bo; Liao, Lifu; Deng, Jian

    2017-08-15

    An innovative electrochemical sensor, based on a carbon paste electrode (CPE) modified with graphene (GR) and a boron-embedded duplex molecularly imprinted hybrid membrane (B-DMIHM), was fabricated for the highly sensitive and selective determination of lamotrigine (LMT). Density functional theory (DFT) was employed to study the interactions between the template and monomers to screen appropriate functional monomers for rational design of the B-DMIHM. The distinct synergic effect of GR and B-DMIHM was evidenced by the positive shift of the reduction peak potential of LMT at B-DMIHM/GR modified CPE (B-DMIHM/GR/CPE) by about 300mV, and the 13-fold amplification of the peak current, compared to a bare carbon paste electrode (CPE). The electrochemical reduction mechanism of lamotrigine was investigated by different voltammetric techniques. It was illustrated that square wave voltammetry (SWV) was more sensitive than different pulse voltammetry (DPV) for the quantitative analysis of LMT. Thereafter, a highly sensitive electroanalytical method for LMT was established by SWV at B-DMIHM/GR/CPE with a good linear relationship from 5.0×10 -8 to 5.0×10 -5 and 5.0×10 -5 to 3.0×10 -4 molL -1 with a lower detection limit (1.52×10 -9 molL -1 ) based on the lower linear range(S/N=3). The practical application of the sensor was demonstrated by determining the concentration of LMT in pharmaceutical and biological samples with good precision (RSD 1.04-4.41%) and acceptable recoveries (92.40-107.0%). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Fluorescent sensor systems based on nanostructured polymeric membranes for selective recognition of Aflatoxin B1.

    PubMed

    Sergeyeva, Tetyana; Yarynka, Daria; Piletska, Elena; Lynnik, Rostyslav; Zaporozhets, Olga; Brovko, Oleksandr; Piletsky, Sergey; El'skaya, Anna

    2017-12-01

    Nanostructured polymeric membranes for selective recognition of aflatoxin B1 were synthesized in situ and used as highly sensitive recognition elements in the developed fluorescent sensor. Artificial binding sites capable of selective recognition of aflatoxin B1 were formed in the structure of the polymeric membranes using the method of molecular imprinting. A composition of molecularly imprinted polymer (MIP) membranes was optimized using the method of computational modeling. The MIP membranes were synthesized using the non-toxic close structural analogue of aflatoxin B1, ethyl-2-oxocyclopentanecarboxylate as a dummy template. The MIP membranes with the optimized composition demonstrated extremely high selectivity towards aflatoxin B1 (AFB1). Negligible binding of close structural analogues of AFB1 - aflatoxins B2 (AFB2), aflatoxin G2 (AFG2), and ochratoxin A (OTA) was demonstrated. Binding of AFB1 by the MIP membranes was investigated as a function of both type and concentration of the functional monomer in the initial monomer composition used for the membranes' synthesis, as well as sample composition. The conditions of the solid-phase extraction of the mycotoxin using the MIP membrane as a stationary phase (pH, ionic strength, buffer concentration, volume of the solution, ratio between water and organic solvent, filtration rate) were optimized. The fluorescent sensor system based on the optimized MIP membranes provided a possibility of AFB1 detection within the range 14-500ngmL -1 demonstrating detection limit (3Ϭ) of 14ngmL -1 . The developed technique was successfully applied for the analysis of model solutions and waste waters from bread-making plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis and evaluation of novel siloxane-methacrylate monomers used as dentin adhesives

    PubMed Central

    Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette

    2014-01-01

    Objectives The objectives of this study were to synthesize two new siloxane-methacrylate (SM) monomers for application in dentin adhesives and to investigate the influence of different functionality of the siloxane-containing monomers on the adhesive photopolymerization, water sorption, and mechanical properties. Materials and method Two siloxane-methacrylate monomers (SM1 and SM2) with four and eight methacrylate groups were synthesized. Dentin adhesives containing BisGMA, HEMA and the siloxane-methacrylate monomers were photo-polymerized. The experimental adhesives were compared with the control adhesive (HEMA/BisGMA 45/55 w/w) and characterized with regard to degree of conversion (DC), water miscibility of the liquid resin, water sorption and dynamic mechanical analysis (DMA). Results The experimental adhesives exhibited improved water miscibility as compared to the control. When cured in the presence of 12 wt % water to simulate the wet environment of the mouth, the SM-containing adhesives showed DC comparable to the control. The experimental adhesives showed higher rubbery modulus than the control under dry conditions. Under wet conditions, the mechanical properties of the formulations containing SM monomer with increased functionality were comparable with the control, even with more water sorption. Significance The concentration and functionality of the newly synthesized siloxane-methacrylate monomers affected the water miscibility, water sorption and mechanical properties of the adhesives. The experimental adhesives show improved water compatibility compared with the control. The mechanical properties were enhanced with an increase of the functionality of the siloxane-containing monomers. The results provide critical structure/property relationships and important information for future development of durable, versatile siloxane-containing dentin adhesives. PMID:24993811

  16. Synthesis and evaluation of novel siloxane-methacrylate monomers used as dentin adhesives.

    PubMed

    Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette

    2014-09-01

    The objectives of this study were to synthesize two new siloxane-methacrylate (SM) monomers for application in dentin adhesives and to investigate the influence of different functionality of the siloxane-containing monomers on the adhesive photopolymerization, water sorption, and mechanical properties. Two siloxane-methacrylate monomers (SM1 and SM2) with four and eight methacrylate groups were synthesized. Dentin adhesives containing BisGMA, HEMA and the siloxane-methacrylate monomers were photo-polymerized. The experimental adhesives were compared with the control adhesive (HEMA/BisGMA, 45/55, w/w) and characterized with regard to degree of conversion (DC), water miscibility of the liquid resin, water sorption and dynamic mechanical analysis (DMA). The experimental adhesives exhibited improved water miscibility as compared to the control. When cured in the presence of 12 wt% water to simulate the wet environment of the mouth, the SM-containing adhesives showed DC comparable to the control. The experimental adhesives showed higher rubbery modulus than the control under dry conditions. Under wet conditions, the mechanical properties of the formulations containing SM monomer with increased functionality were comparable with the control, even with more water sorption. The concentration and functionality of the newly synthesized siloxane-methacrylate monomers affected the water miscibility, water sorption and mechanical properties of the adhesives. The experimental adhesives show improved water compatibility compared with the control. The mechanical properties were enhanced with an increase of the functionality of the siloxane-containing monomers. The results provide critical structure/property relationships and important information for future development of durable, versatile siloxane-containing dentin adhesives. Published by Elsevier Ltd.

  17. Mapping monomeric threading to protein-protein structure prediction.

    PubMed

    Guerler, Aysam; Govindarajoo, Brandon; Zhang, Yang

    2013-03-25

    The key step of template-based protein-protein structure prediction is the recognition of complexes from experimental structure libraries that have similar quaternary fold. Maintaining two monomer and dimer structure libraries is however laborious, and inappropriate library construction can degrade template recognition coverage. We propose a novel strategy SPRING to identify complexes by mapping monomeric threading alignments to protein-protein interactions based on the original oligomer entries in the PDB, which does not rely on library construction and increases the efficiency and quality of complex template recognitions. SPRING is tested on 1838 nonhomologous protein complexes which can recognize correct quaternary template structures with a TM score >0.5 in 1115 cases after excluding homologous proteins. The average TM score of the first model is 60% and 17% higher than that by HHsearch and COTH, respectively, while the number of targets with an interface RMSD <2.5 Å by SPRING is 134% and 167% higher than these competing methods. SPRING is controlled with ZDOCK on 77 docking benchmark proteins. Although the relative performance of SPRING and ZDOCK depends on the level of homology filters, a combination of the two methods can result in a significantly higher model quality than ZDOCK at all homology thresholds. These data demonstrate a new efficient approach to quaternary structure recognition that is ready to use for genome-scale modeling of protein-protein interactions due to the high speed and accuracy.

  18. Enhanced adsorption of Co atoms on grain boundary of boron nitride

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Chen, Guibin; Zhu, Liyan

    2017-11-01

    Structural, energetic, electronic, and magnetic properties of Co monomer, dimer, and trimer adsorbed on a single-layer boron nitride (BN) with a grain boundary (GB) consisting of tetragons and octagons ( 4|8) are theoretically explored via density functional calculations. Due to the presence of 4|8 GB, the adsorption energies (EAs) of small Co clusters are generally enhanced by 10% as compared with those adsorbed on pristine BN, e.g., the EA of Co monomer, and dimer increase by 0.1 eV on a global amount of 0.87 eV, and 0.2 eV for the case of Co trimer. Most interestingly, the increase in adsorption energy exhibits a strong correlation to the number of atoms directly bonded to the substrate. The enhanced binding of Co adatom on the BN with 4|8 GBs ( BN 48 ) is due to the strong hybridization of d orbitals of Co adatom and the localized defect states at the 4|8 GBs. However, the GBs have negligible influence on the electronic and magnetic properties of adsorbates. Hence, the two-dimensional (2D) nanosheets with linear GBs might be a better candidate for anchoring the transition metal atoms than pristine BN. Such a strategy may also be applied to other 2D materials, e.g., MoS2 and phosphorene, to enhance the binding of adatom on them, or to utilize them as 1D templates to assemble transition metal atoms into nanowires.

  19. Preparation and application of a carbon paste electrode modified with multi-walled carbon nanotubes and boron-embedded molecularly imprinted composite membranes.

    PubMed

    Wang, Hongjuan; Qian, Duo; Xiao, Xilin; Deng, Chunyan; Liao, Lifu; Deng, Jian; Lin, Ying-Wu

    2018-06-01

    An innovative electrochemical sensor was fabricated for the sensitive and selective determination of tinidazole (TNZ), based on a carbon paste electrode (CPE) modified with multi-walled carbon nanotubes (MWCNTs) and boron-embedded molecularly imprinted composite membranes (B-MICMs). Density functional theory (DFT) calculations were carried out to investigate the utility of template-monomer interactions to screen appropriate monomers for the rational design of B-MICMs. The distinct synergic effect of MWCNTs and B-MICMs was evidenced by the positive shift of the reduction peak potential of TNZ at B-MICMs/MWCNTs modified CPE (B-MICMs/MWCNTs/CPE) by about 200 mV, and the 12-fold amplification of the peak current, compared with a bare carbon paste electrode (CPE). Moreover, the coordinate interactions between trisubstituted boron atoms embedded in B-MICMs matrix and nitrogen atoms of TNZ endow the sensor with advanced affinity and specific directionality. Thereafter, a highly sensitive electrochemical analytical method for TNZ was established by different pulse voltammetry (DPV) at B-MICMs/MWCNTs/CPE with a lower detection limit (1.25 × 10 -12  mol L -1 ) (S/N = 3). The practical application of the sensor was demonstrated by determining TNZ in pharmaceutical and biological samples with good precision (RSD 1.36% to 3.85%) and acceptable recoveries (82.40%-104.0%). Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Synthesis of surface Cr (VI)-imprinted magnetic nanoparticles for selective dispersive solid-phase extraction and determination of Cr (VI) in water samples.

    PubMed

    Qi, Xue; Gao, Shuang; Ding, Guosheng; Tang, An-Na

    2017-01-01

    A facile, rapid and selective magnetic dispersed solid-phase extraction (dSPE) method for the extraction and enrichment of Cr (VI) prior to flame atomic absorption spectrometry (AAS) was introduced. For highly selective and efficient extraction, magnetic Cr (VI)-imprinted nanoparticles (Fe 3 O 4 @ Cr (VI) IIPs) were prepared by hyphenating surface ion-imprinted with sol-gel techniques. In the preparation process, chromate (Cr(VI)) was used as the template ion; vinylimidazole and 3-aminopropyltriethoxysilane were selected as organic functional monomer and co-monomer respectively. Another reagent, methacryloxypropyltrimethoxysilane was adopted as coupling agent to form the stable covalent bonding between organic and inorganic phases. The effects of various parameters on the extraction efficiency, such as pH of sample solution, the amount of adsorbent, extraction time, the type and concentration of eluent were systematically investigated. Furthermore, the thermodynamic and kinetic properties of the adsorption process were studied to explore the internal adsorption mechanism. Under optimized conditions, the preconcentration factor, limit of detection and linear range of the established dSPE-AAS method for Cr (VI) were found to be 98, 0.29μgL -1 and 4-140μgL -1 , respectively. The developed method was also successfully applied to the analysis of Cr (VI) in different water samples with satisfactory results, proving its reliability and feasibility in real sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Synthesis, characterization, and applications of electroactive polymeric nanostructures for organic coatings

    NASA Astrophysics Data System (ADS)

    Suryawanshi, Abhijit Jagnnath

    Electroactive polymers (EAP) such as polypyrrole (PPy) and polyaniline (PANI) are being explored intensively in the scientific community. Nanostructures of EAPs have low dimensions and high surface area enabling them to be considered for various useful applications. These applications are in several fields including corrosion inhibition, capacitors, artificial muscles, solar cells, polymer light emitting diodes, and energy storage devices. Nanostructures of EAPs have been synthesized in different morphologies such as nanowires, nanorods, nanotubes, nanospheres, and nanocapsules. This variety in morphology is traditionally achieved using soft templates, such as surfactant micelles, or hard templates, such as anodized aluminum oxide (AAO). Templates provide stability and groundwork from which the polymer can grow, but the templates add undesirable expense to the process and can change the properties of the nanoparticles by integrating its own properties. In this study a template free method is introduced to synthesize EAP nanostructures of PPy and PANI utilizing ozone oxidation. The simple techniques involve ozone exposure to the monomer solution to produce aqueous dispersions of EAP nanostructures. The synthesized nanostructures exhibit uniform morphology, low particle size distribution, and stability against agglomeration. Ozone oxidation is further explored for the synthesis of silver-PPy (Ag-PPy) core-shell nanospheres (CSNs). Coatings containing PPy nanospheres were formulated to study the corrosion inhibition efficiency of PPy nanospheres. Investigation of the coatings using electrochemical techniques revealed that the PPy nanospheres may provide corrosion inhibition against filiform corrosion by oxygen scavenging mechanism. Finally, organic corrosion inhibitors were incorporated in PPy to develop efficient corrosion inhibiting systems, by using the synergistic effects from PPy and organic corrosion inhibitors.

  2. Synthesis and properties of magnetic molecularly imprinted polymers based on multiwalled carbon nanotubes for magnetic extraction of bisphenol A from water.

    PubMed

    Zhang, Zhaohui; Chen, Xing; Rao, Wei; Chen, Hongjun; Cai, Rong

    2014-08-15

    Novel magnetic molecularly imprinted polymers based on multiwalled carbon nanotubes (MWNTs@MMIPs) with specific selectivity toward bisphenol A were synthesized using bisphenol A as the template molecule, methacrylic acid, and β-cyclodextrin as binary functional monomers and ethylene glycol dimethacrylate as the cross-linker. The MWNTs@MMIPs were characterized by Fourier transform infrared, vibrating sample magnetometer, and transmission electron microscopy. Batch mode adsorption experiment was carried out to investigate the specific adsorption equilibrium and kinetics of the MWNTs@MMIPs. The MWNTs@MMIPs exhibited good affinity with a maximum adsorption capacity of 49.26 μmol g(-1) and excellent selectivity toward bisphenol A. Combined with high-performance liquid chromatography analysis, the MWNTs@MMIPs were employed to extract bisphenol A in tap water, rain water, and lake water successfully with the recoveries of 89.8-95.4, 89.9-93.4, and 87.3-94.1%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Molecularly imprinted polymers for separation of various sugars from human urine.

    PubMed

    Okutucu, Burcu; Onal, Seçil

    2011-12-15

    Molecularly imprinted polymers were the new, simple and unexpensive materials that can be used in several clinical applications. Phenylboronic acid has been frequently used as functional monomer for the covalent imprinting of diols. In this study, the phenylboronic acid esters of fructose, galactose, glucose and raffinose were synthesized and then used as template analytes. The adsorption capacities of fructose, galactose and glucose-phenylboronic acid imprinted polymers were 75, 10 and 30%, respectively. The batch rebinding studies and Scatchard analysis were done for all sugar imprinted polymer. Glucose is one of the mostly found sugar in the urine. The glucose:phenylboronic acid imprinted polymer was used for the analysis of glucose, fructose, galactose, sucrose, maltose, lactose and raffinose in spiked urine. The selectivity of glucose:phenylboronic acid imprinted polymer to urine monosaccharides was found as nearly 45-55% and to di- and polysaccharides was found as 30-35%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Pyrogallol-imprinted polymers with methyl methacrylate via precipitation polymerization

    NASA Astrophysics Data System (ADS)

    Mehamod, Faizatul Shimal; Othman, Nor Amira; Bulat, Ku Halim Ku; Suah, Faiz Bukhari Mohd

    2018-06-01

    Molecular simulation techniques are important to study the understanding of chemical and physical properties of any material. Computational modeling is considered as time reducer in finding the best recipes for Molecularly-Imprinted Polymers (MIPs). In this study, Pyrogallol-imprinted polymers (PIP) and non-imprinted polymers (NIPs) were synthesized via precipitation polymerization using Pyrogallol (Py), methyl methacrylate (MMA), divinylbenzene (DVB) as template, functional monomer and cross-linker, respectively. The recipe was according to the results from computational techniques. The synthesized PIP and NIPs were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and UV-visible spectroscopy (UV-vis). Studies on adsorption isotherm showed that PIP and NIPs follow Scatchard isotherm models. Sorption kinetic study found that PIP and NIPs follow pseudo-second order which indicates the rate-limiting step is the surface adsorption. The imprinting factor of PIP was determined by selectivity study and showed the value of k >1, which proved that PIP was selective toward Pyrogallol compared to NIP.

  5. Synthesis and application of ion imprinting polymer coated magnetic multi-walled carbon nanotubes for selective adsorption of nickel ion

    NASA Astrophysics Data System (ADS)

    He, Junnan; Shang, Hongzhou; Zhang, Xing; Sun, Xiaoran

    2018-01-01

    A novel nickel ion imprinted polymers (IIPs) based on multi-walled carbon nanotubes (MWCNTs) were synthesized inverse emulsion system, using chitosan(CS) and acrylic acid as the functional monomers, Ni (II) as the template, and N' N-methylene bis-acrylamide as the cross-linker. The chemical structure and morphological feature of the IIPs were characterized by scanning electron microscopy (SEM), Thermogravimetry (TG), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FTIR). The studies indicated that the gel layer was well grafted on the surface of MWCNTs. Studies on the adsorption ability of the IIPs, by atomic absorption spectrophotometry, demonstrated that IIPs possessed excellent adsorption and selective ability towards Ni (II), fitting to pseudo second-order kinetic isotherms and with a maximum capacity of 19.86 mg/g, and selectivity factor of 13.09 and 4.42. The electrochemical performance of ion imprinting carbon paste electrode (CPE/IIPs) was characterized by Cyclic voltammetry (CV). Studies have shown that CPE/IIPs showed excellent electrochemical performance.

  6. Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin

    PubMed Central

    Newland, Ben; Leupelt, Daniel; Zheng, Yu; Thomas, Laurent S. V.; Werner, Carsten; Steinhart, Martin; Wang, Wenxin

    2015-01-01

    Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers, and various therapeutics. PMID:26619814

  7. Fluorescence measurements of activity associated with a molecularly imprinted polymer imprinted to dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Anderson, John; Pestov, Dmitry; Fischer, Robert L.; Webb, Stanley; Tepper, Gary C.

    2004-03-01

    Steady state and lifetime fluorescence measurements were acquired to measure the binding activity associated with molecularly imprinted polymer (MIP) microparticles imprinted to dipicolinic acid. Dipicolinic acid is a unique compound associated with the sporulation phase of spore-forming bacteria (e.g., genus Bacillus and Clostridium). Vinylic monomers were polymerized in a dimethylformamide solution containing the dipicolinic acid as a template. The resulting MIP was then pulverized and size selected into small microscale particles. Samplers were adapted incorporating the MIP particles within a dialyzer (500 MW). Tests were run on replicate samples of biologically active cultures representing both stationary phase and sporulation post fermentation products in standard media. The permeability of the membrane permitted diffusion of lighter molecular weight constituents from media effluents to enter the dialyzer chamber and contact the MIP. Extractions of the media were measured using steady state and lifetime fluorescence. Results showed dramatic steady state fluorescence changes as a function of excitation, emission and intensity and an estimated lifetime of 5.8 ns.

  8. Determination of ractopamine in pork using a magnetic molecularly imprinted polymer as adsorbent followed by HPLC.

    PubMed

    Tang, Yiwei; Gao, Jingwen; Liu, Xiuying; Lan, Jianxing; Gao, Xue; Ma, Yong; Li, Min; Li, Jianrong

    2016-06-15

    A new magnetic molecularly imprinted polymers (MMIPs) for separation and concentration of ractopamine (RAC) were prepared using surface molecular imprinting technique with methacryloyl chloride as functional monomer and RAC as template. The MMIPs were characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and vibrating sample magnetometer. The results of re-binding experiments indicated that the MMIPs had fast adsorption kinetics and could reach binding equilibrium within 20 min, and the adsorption capacity of the MMIPs was 2.87-fold higher than that of the corresponding non-imprinted polymer. The selectivity of the MMIPs was evaluated according to its recognition to RAC and its analogues. The synthesized MMIPs were successfully applied to extraction, followed by high performance liquid chromatography to determine RAC in real food samples. Spiked recoveries ranged from 73.60% to 94.5%, with relative standard deviations of <11.17%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A study of a new TSM bio-mimetic sensor using a molecularly imprinted polymer coating and its application for the determination of nicotine in human serum and urine.

    PubMed

    Tan, Y; Yin, J; Liang, C; Peng, H; Nie, L; Yao, S

    2001-03-01

    A new bio-mimetic quartz crystal thickness-shear-mode (TSM) sensor, using an imprinted polymer coating as the sensitive material, has been fabricated and applied to the determination of nicotine (NIC) in human serum and urine. The molecularly imprinted polymer (MIP) was synthesized using NIC as the template molecule and methacrylic acid (MAA) as the functional monomer. The sensor showed high selectivity and a sensitive response to NIC in aqueous system. The linear response range of the sensor was between 5.0 x 10(-8) and 1.0 x 10(-4) M with a detection limit of 2.5 x 10(-8) M. The viscoelasticity of the coating in the air and in liquid has been studied by the impedance spectrum. The MIP sensor was stable and exhibited effective reproducibility. Satisfactory results were achieved in the detection of the real samples.

  10. Controllable synthesis, crystal structure and magnetic properties of Monomer-Dimer Cocrystallized MnIII Salen-type composite material

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Wu, Wei; Wu, Yongmei; Li, Weili; Qiao, Yongfeng; Wang, Ying; Wang, Baoling

    2018-04-01

    By the reaction of manganese-Schiff-base complexes with penta-anionic Anderson heteropolyanion, a new supramolecular architecture [Mn2(Salen)2(H2O)2][Mn(Salen)(H2O)2]2Na[IMo6O24]·8H2O (1) (salen = N,N‧-ethylene-bis (salicylideneiminate) has been isolated. Compound 1 was characterized by the single-crystal X-ray diffraction, elemental, IR and thermal gravimetric analyses. Structural analysis reveals that the unit cell simultaneously contains MnIII-Salen dimer and monomer cation fragments, for which the Anderson-type polyanions serve as counter anions. In the packing arrangement, all the MnIII dimers are well separated by polyoxometalate units and form tertiary structure together with MnIII monomers. Interestingly, different from the previous work, in the exact same reaction conditions, we are able to template MnIII-Salen complexes into different configurations by varying the charge state of polyanions. Besides, the magnetic properties of 1 were also examined by using both dc and ac magnetic field of the superconducting quantum interference devices. Most importantly, our fitting of the experimental data to a Heisenberg-type spin model shows that there exists a ferromagnetic exchange interaction ∼5 K between the spins (S = 2) on MnIII in the dimer, while antiferromagnetic ones exist among monomers and dimer (∼2 K). This meta-magnetic state could induce a slight spin frustration at low temperature, which would in turn affect the magnetic behavior. In addition, our ac field measurement of the susceptibilities suggests a typical signature for a single-molecule magnet.

  11. Random heteropolymers preserve protein function in foreign environments

    NASA Astrophysics Data System (ADS)

    Panganiban, Brian; Qiao, Baofu; Jiang, Tao; DelRe, Christopher; Obadia, Mona M.; Nguyen, Trung Dac; Smith, Anton A. A.; Hall, Aaron; Sit, Izaac; Crosby, Marquise G.; Dennis, Patrick B.; Drockenmuller, Eric; Olvera de la Cruz, Monica; Xu, Ting

    2018-03-01

    The successful incorporation of active proteins into synthetic polymers could lead to a new class of materials with functions found only in living systems. However, proteins rarely function under the conditions suitable for polymer processing. On the basis of an analysis of trends in protein sequences and characteristic chemical patterns on protein surfaces, we designed four-monomer random heteropolymers to mimic intrinsically disordered proteins for protein solubilization and stabilization in non-native environments. The heteropolymers, with optimized composition and statistical monomer distribution, enable cell-free synthesis of membrane proteins with proper protein folding for transport and enzyme-containing plastics for toxin bioremediation. Controlling the statistical monomer distribution in a heteropolymer, rather than the specific monomer sequence, affords a new strategy to interface with biological systems for protein-based biomaterials.

  12. Using monomer vibrational wavefunctions as contracted basis functions to compute rovibrational levels of an H2O-atom complex in full dimensionality.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2017-03-14

    In this paper, we present new ideas for computing rovibrational energy levels of molecules composed of two components and apply them to H 2 O-Cl - . When both components are themselves molecules, Euler angles that specify their orientation with respect to an axis system attached to the inter-monomer vector are used as vibrational coordinates. For H 2 O-Cl - , there is only one set of Euler angles. Using Euler angles as intermolecular vibrational coordinates is advantageous because in many cases coupling between them and coordinates that describe the shape of the monomers is unimportant. The monomers are not assumed to be rigid. In the most efficient calculation, vibrational wavefunctions of the monomers are used as contracted basis functions. Energy levels are calculated using the Lanczos algorithm.

  13. Using monomer vibrational wavefunctions as contracted basis functions to compute rovibrational levels of an H2O-atom complex in full dimensionality

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2017-03-01

    In this paper, we present new ideas for computing rovibrational energy levels of molecules composed of two components and apply them to H2O-Cl-. When both components are themselves molecules, Euler angles that specify their orientation with respect to an axis system attached to the inter-monomer vector are used as vibrational coordinates. For H2O-Cl-, there is only one set of Euler angles. Using Euler angles as intermolecular vibrational coordinates is advantageous because in many cases coupling between them and coordinates that describe the shape of the monomers is unimportant. The monomers are not assumed to be rigid. In the most efficient calculation, vibrational wavefunctions of the monomers are used as contracted basis functions. Energy levels are calculated using the Lanczos algorithm.

  14. Functional Programming with C++ Template Metaprograms

    NASA Astrophysics Data System (ADS)

    Porkoláb, Zoltán

    Template metaprogramming is an emerging new direction of generative programming. With the clever definitions of templates we can force the C++ compiler to execute algorithms at compilation time. Among the application areas of template metaprograms are the expression templates, static interface checking, code optimization with adaption, language embedding and active libraries. However, as template metaprogramming was not an original design goal, the C++ language is not capable of elegant expression of metaprograms. The complicated syntax leads to the creation of code that is hard to write, understand and maintain. Although template metaprogramming has a strong relationship with functional programming, this is not reflected in the language syntax and existing libraries. In this paper we give a short and incomplete introduction to C++ templates and the basics of template metaprogramming. We will enlight the role of template metaprograms, and some important and widely used idioms. We give an overview of the possible application areas as well as debugging and profiling techniques. We suggest a pure functional style programming interface for C++ template metaprograms in the form of embedded Haskell code which is transformed to standard compliant C++ source.

  15. Design and development of molecularly imprinted polymers for the selective extraction of deltamethrin in olive oil: An integrated computational-assisted approach.

    PubMed

    Martins, Nuno; Carreiro, Elisabete P; Locati, Abel; Ramalho, João P Prates; Cabrita, Maria João; Burke, Anthony J; Garcia, Raquel

    2015-08-28

    This work firstly addresses the design and development of molecularly imprinted systems selective for deltamethrin aiming to provide a suitable sorbent for solid phase (SPE) extraction that will be further used for the implementation of an analytical methodology for the trace analysis of the target pesticide in spiked olive oil samples. To achieve this goal, a preliminary evaluation of the molecular recognition and selectivity of the molecularly imprinted polymers has been performed. In order to investigate the complexity of the mechanistic basis for template selective recognition in these polymeric matrices, the use of a quantum chemical approach has been attempted providing new insights about the mechanisms underlying template recognition, and in particular the crucial role of the crosslinker agent and the solvent used. Thus, DFT calculations corroborate the results obtained by experimental molecular recognition assays enabling one to select the most suitable imprinting system for MISPE extraction technique which encompasses acrylamide as functional monomer and ethylene glycol dimethacrylate as crosslinker. Furthermore, an analytical methodology comprising a sample preparation step based on solid phase extraction has been implemented using this "tailor made" imprinting system as sorbent, for the selective isolation/pre-concentration of deltamethrin from olive oil samples. Molecularly imprinted solid phase extraction (MISPE) methodology was successfully applied for the clean-up of spiked olive oil samples, with recovery rates up to 94%. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Development of ocular drug delivery systems using molecularly imprinted soft contact lenses.

    PubMed

    Tashakori-Sabzevar, Faezeh; Mohajeri, Seyed Ahmad

    2015-05-01

    Recently, significant advances have been made in order to optimize drug delivery to ocular tissues. The main problems in ocular drug delivery are poor bioavailability and uncontrollable drug delivery of conventional ophthalmic preparations (e.g. eye drops). Hydrogels have been investigated since 1965 as new ocular drug delivery systems. Increase of hydrogel loading capacity, optimization of drug residence time on the ocular surface and biocompatibility with the eye tissue has been the main focus of previous studies. Molecular imprinting technology provided the opportunity to fulfill the above-mentioned objectives. Molecularly imprinted soft contact lenses (SCLs) have high potentials as novel drug delivery systems for the treatment of eye disorders. This technique is used for the preparation of polymers with specific binding sites for a template molecule. Previous studies indicated that molecular imprinting technology could be successfully applied for the preparation of SCLs as ocular drug delivery systems. Previous research, particularly in vivo studies, demonstrated that molecular imprinting is a versatile and effective method in optimizing the drug release behavior and enhancing the loading capacity of SCLs as new ocular drug delivery systems. This review highlights various potentials of molecularly imprinted contact lenses in enhancing the drug-loading capacity and controlling the drug release, compared to other ocular drug delivery systems. We have also studied the effects of contributing factors such as the type of comonomer, template/functional monomer molar ratio, crosslinker concentration in drug-loading capacity, and the release properties of molecularly imprinted hydrogels.

  17. An extreme vertices mixture design approach to the optimisation of 1,2,3-trichlorobenzene specific molecularly imprinted polymers.

    PubMed

    Cleland, Dougal; McCluskey, Adam

    2013-07-28

    Traditional approaches to molecularly imprinted polymer (MIP) design and optimisation typically afford a template (T) : functional monomer (FM) : crosslinker (CL) ratio of 1 : 2 : 20 to 1 : 4 : 20. This approach for 1,2,3-trichlorobenzene (7) as template gave a styrene based MIP (MIP(STY)) with an imprinting factor (IF) = 1.3. An extreme vertices mixture design (EVMD) approach was applied, and in two design cycles, 15 total experimental points, the optimum composition for MIP(STY) was determined as 0.40 : 0.05 : 0.55 (T : FM : CL) with IF = 2.8. Refinements gave optimum T : FM : CL ratios for the functional monomers: 4-vinylpyridine (4VP, 0.40 : 0.02 : 0.58); 2,4,6-trimethylstyrene (TMS, 0.40 : 0.02 : 0.58) and 2,3,4,5,6-pentafluorostyrene (PFS, 0.30 : 0.12 : 0.58) with IF = 2.8, 2.8 and 3.7 respectively. These ratios deviated significantly from the traditional MIP synthesis ratio. The low levels of FM for all MIPs, except for MIP(PFS), suggest that imprinting was more consistent with T-CL, than FM-T, interactions. Analysis of the specific interactions and removal (SR) of 7 with these MIPs revealed that the SR with MIP(STY) increased from 36% at 0.02 STY to 48% at 0.13 STY; with MIP(TMS) SR increased from 38% at 0.02 TMS to 42% at 0.10 TMS; and with MIP(PFS) SR increased from 34% at 0.02 PFS to 56% at 0.14 PFS. MIP(4VP) saw a decline in SR with increasing FM, with the highest SR was 35% at 0.02 4VP. This is consistent with changes in the non-specific interactions between 7 and the MIPs. Increasing the proportion of PFS produced the largest increase in imprinting of 7 demonstrated by the highest SR (56%) and highest IF (3.7). The application of an EVMD approach resulted in the IF of MIP(STY) increased from 1.3 to 2.8. The highest IF achieved by this study was 3.7 for MIP(PFS) in proportions of 0.30 : 0.12 : 0.48 (T : FM : CL).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hua; Zhou, Feng; Ren, Gerui

    In this article, the SuFEx-based polycondensation between bisalkylsulfonyl fluorides (AA monomers) and bisphenol bis(t-butyldimethylsilyl) ethers (BB monomers) using [Ph 3P=N-PPh 3] +[HF 2] - as the catalyst is described. The AA monomers were prepared via the highly reliable Michael addition of ethenesulfonyl fluoride and amines/anilines while the BB monomers were obtained from silylation of bisphenols by t-butyldimethylsilyl chloride. With these reactions, a remarkable diversity of monomeric building blocks was achieved by exploiting readily available amines, anilines, and bisphenols as starting materials. The SuFEx-based polysulfonate formation reaction exhibited excellent efficiency and functional group tolerance, producing polysulfonates with a variety of sidemore » chain functionalities in >99 % conversion within 10 min to 1 h. When bearing an orthogonal group on the side chain, the polysulfonates can be further functionalized via click-chemistry-based post-polymerization modification.« less

  19. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of mercury in water and food samples employing cold vapor atomic absorption spectrometry.

    PubMed

    Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein

    2015-09-01

    We describe a nanosized Hg(II)-imprinted polymer that was prepared from methacrylic acid as functional monomer, ethyleneglycol dimethacrylate as cross-linker, 2,2'-azobisisobutyronitrile (AIBN) as radical initiator, 2, 2'-di pyrydyl amine as a specific ligand, and Hg (II) as the template ions by precipitation polymerization method in methanol as the progeny solvent. Batch adsorption experiments were carried out as a function of pH, Hg (II) imprinted polymer amount, adsorption and desorption time, volume, and concentration of eluent. The synthesized polymer particles were characterized physically and morphologically by using infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopic techniques. The maximum adsorption capacity of the ion-imprinted and non-imprinted sorbent was 27.96 and 7.89 mg g(-1), respectively. Under optimal conditions, the detection limit for mercury was 0.01 μg L(-1) and the relative standard deviation was 3.2 % (n = 6) at the 1.00 μg L(-1). The procedure was applied to determination of mercury in fish and water samples with satisfactory results.

  20. Application of magnetic molecularly imprinted polymers for extraction of imidacloprid from eggplant and honey.

    PubMed

    Kumar, Niranjan; Narayanan, Neethu; Gupta, Suman

    2018-07-30

    A magnetic molecularly imprinted polymer (MMIP) adsorbent for imidacloprid was prepared using non-covalent approach with functionalized nano Fe 3 O 4 particles (magnetic cores), imidacloprid (template), acrylic acid (functional monomer), ethylene glycol dimethacrylate (cross linker) and azobisisobutyronitrile (initiator) and used for selective separation of imidacloprid from honey and vegetable samples. The polymers were characterized using FT-IR spectroscopy, SEM and TEM images. For analysis of imidacloprid LC-MS/MS equipment was used. Adsorption kinetics was best explained by pseudo-second-order kinetic model. Adsorption data fitted well into linearized Freundlich equation (R 2  > 0.98). Scatchard plot analysis indicates the presence of two classes of binding sites in the MMIPs with the C max of 1889.6 µg g -1 and 65448.9 µg g -1 , respectively. MMIPs demonstrated much higher affinity for imidacloprid over structurally similar analogues acetamiprid (α = 23.59) and thiamethoxam (α = 17.15). About 87.1 ± 5.0% and 90.6 ± 5.6% of the added imidacloprid was recovered from MMIPs in case of fortified eggplant and honey samples, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Preparation and evaluation of molecularly imprinted polymer for selective recognition and adsorption of gossypol.

    PubMed

    Zhi, Keke; Wang, Lulu; Zhang, Yagang; Zhang, Xuemin; Zhang, Letao; Liu, Li; Yao, Jun; Xiang, Wei

    2018-03-01

    Molecularly imprinted polymers (MIPs) were designed and prepared via bulk thermal polymerization with gossypol as the template molecule and dimethylaminoethyl methacrylate as the functional monomer. The morphology and microstructures of MIPs were characterized by scanning electron microscope and Brunauer-Emmett-Teller surface areas. Static adsorption tests were performed to evaluate adsorption behavior of gossypol by the MIPs. It was found that adsorption kinetics and adsorption isotherms data of MIPs for gossypol were fit well with the pseudo-second-order model and Freundlich model, respectively. Scatchard analysis showed that heterogeneous binding sites were formed in the MIPs, including lower-affinity binding sites with the maximum adsorption of 252 mg/g and higher-affinity binding sites with the maximum adsorption of 632 mg/g. Binding studies also revealed that MIPs had favorable selectivity towards gossypol compared with non-imprinted polymers. Furthermore, adsorption capacity of MIPs maintained above 90% after 5 regeneration cycles, indicating MIPs were recyclable and could be used multiple times. These results demonstrated that prepared MIPs could be a promising functional material for selective adsorption of gossypol. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Chiral determination of cinchonine using an electrochemiluminescent sensor with molecularly imprinted membrane on the surfaces of magnetic particles.

    PubMed

    Yuan, Xingyi; Tan, Yanji; Wei, Xiaoping; Li, Jianping

    2017-11-01

    A novel molecular imprinting electrochemiluminescence sensor for detecting chiral cinchonine molecules was developed with a molecularly imprinted polymer membrane on the surfaces of magnetic microspheres. Fe 3 O 4 @Au nanoparticles modified with 6-mercapto-beta-cyclodextrin were used as a carrier, cinchonine as a template molecule, methacrylic acid as a functional monomer and N,N'-methylenebisacrylamide as a cross-linking agent. Cinchonine was specifically recognized by the 6-mercapto-beta-cyclodextrin functional molecularly imprinted polymer and detected based on enhancement of the electrochemiluminescence intensity caused by the reaction of tertiary amino structures of cinchonine molecules with Ru(bpy) 3 2+ . Cinchonine concentrations of 1 × 10 -10 to 4 × 10 -7  mol/L showed a good linear relationship with changes of the electrochemiluminescence intensity, and the detection limit of the sensor was 3.13 × 10 -11  mol/L. The sensor has high sensitivity and selectivity, and is easy to renew. It was designed for detecting serum samples, with recovery rates of 98.2% to 107.6%. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin.

    PubMed

    Wang, Yanying; Han, Miao; Liu, Guishen; Hou, Xiaodong; Huang, Yina; Wu, Kangbing; Li, Chunya

    2015-12-15

    A molecularly imprinted polymer film was in situ polymerized on a carboxyl functionalized multi-walled carbon nanotubes modified glassy carbon electrode surface under room temperature. This technique provides a promising imprinting approach for protein in an aqueous solution using 3-(3-aminopropyl)-1-vinylimidazolium tetrafluoroborate ionic liquid as functional monomer, N, N'-methylenebisacrylamide as crossing linker, ammonium persulfate and N,N,N',N'-tetramethylethylenediamine as initiator, and bovine serum albumin (BSA) as template. The molecularly imprinted polymerized ionic liquid film shows enhanced accessibility, high specificity and sensitivity towards BSA. Electrochemical sensing performance of the imprinted sensor was thoroughly investigated using K3Fe[CN]6/K4Fe[CN]6 as electroactive probes. Under optimal conditions, the current difference before and after specific recognition of BSA was found linearly related to its concentration in the range from 1.50×10(-9) to 1.50×10(-6) mol L(-1). The detection limit was calculated to be 3.91×10(-10) mol L(-1) (S/N=3). The practical application of the imprinted sensor was demonstrated by determining BSA in liquid milk samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. UV-initiated template copolymerization of AM and MAPTAC: Microblock structure, copolymerization mechanism, and flocculation performance.

    PubMed

    Li, Xiang; Zheng, Huaili; Gao, Baoyu; Sun, Yongjun; Liu, Bingzhi; Zhao, Chuanliang

    2017-01-01

    Flocculation as the core technology of sludge pretreatment can improve the dewatering performance of sludge that enables to reduce the cost of sludge transportation and the subsequent disposal costs. Therefore, synthesis of high-efficiency and economic flocculant is remarkably desired in this field. This study presents a cationic polyacrylamide (CPAM) flocculant with microblock structure synthesized through ultraviolet (UV)-initiated template copolymerization by using acrylamide (AM) and methacrylamido propyl trimethyl ammonium chloride (MAPTAC) as monomers, sodium polyacrylate (PAAS) as template, and 2,2'-azobis [2-(2-imidazolin-2-yl) propane] dihydrochloride (VA-044) as photoinitiator. The microblock structure of the CPAM was observed through nuclear magnetic resonance ( 1 H NMR and 13 C NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) analyses. Furthermore, thermogravimetric/differential scanning calorimetry (TG/DSC) analysis was used to evaluate its thermal decomposition property. The copolymerization mechanism was investigated through the determination of the binding constant M K and study on polymerization kinetics. Results showed that the copolymerization was conducted in accordance with the I (ZIP) template polymerization mechanism, and revealed the coexistence of bimolecular termination free-radical reaction and mono-radical termination in the polymerization process. Results of sludge dewatering tests indicated the superior flocculation performance of microblock flocculant than random distributed CPAM. The residual turbidity, filter cake moisture content, and specific resistance to filtration reached 9.37 NTU, 68.01%, and 6.24 (10 12  m kg -1 ), respectively, at 40 mg L -1 of template poly(AM-MAPTAC) and pH 6.0. Furthermore, all flocculant except commercial CPAM showed a wide scope of pH application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Phospholipid imprinted polymers as selective endotoxin scavengers

    NASA Astrophysics Data System (ADS)

    Sulc, Robert; Szekely, Gyorgy; Shinde, Sudhirkumar; Wierzbicka, Celina; Vilela, Filipe; Bauer, David; Sellergren, Börje

    2017-03-01

    Herein we explore phospholipid imprinting as a means to design receptors for complex glycolipids comprising the toxic lipopolysaccharide endotoxin. A series of polymerizable bis-imidazolium and urea hosts were evaluated as cationic and neutral hosts for phosphates and phosphonates, the latter used as mimics of the phospholipid head groups. The bis-imidazolium hosts interacted with the guests in a cooperative manner leading to the presence of tight and well defined 1:2 ternary complexes. Optimized monomer combinations were subsequently used for imprinting of phosphatidic acid as an endotoxin dummy template. Presence of the aforementioned ternary complexes during polymerization resulted in imprinting of lipid dimers - the latter believed to crudely mimic the endotoxin Lipid A motif. The polymers were characterized with respect to template rebinding, binding affinity, capacity and common structural properties, leading to the identification of polymers which were thereafter subjected to an industrially validated endotoxin removal test. Two of the polymers were capable of removing endotoxin down to levels well below the accepted threshold (0.005 EU/mg API) in pharmaceutical production.

  6. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy,more » transmission electron microscopy (TEM) and magnetic measurements.« less

  7. Synthesis of molecularly imprinted polymers using acrylamide-β-cyclodextrin as a cofunctional monomer for the specific capture of tea saponins from the defatted cake extract of Camellia oleifera.

    PubMed

    Guo, Huiqin; Xiong, Jingjing; Ma, Wentian; Wu, Minghuo; Yan, Liushui; Li, Kexin; Liu, Yu

    2016-11-01

    Molecularly imprinted polymers were synthesized using mixed tea saponins as a template and acrylamide-β-cyclodextrin as a cofunctional monomer for the specific binding and purification of tea saponins from the defatted cake extract of Camellia oleifera. The adsorption properties of the prepared polymers were systematically evaluated including adsorption kinetics, adsorption isotherms, and selective recognition characteristics. It showed that the adsorption kinetics followed the pseudo first-order kinetic model (R 2 = 0.995) with an equilibrium time of 3 h, adsorption isotherm data fitted well with the Langmuir-Freundlich model (R 2 = 0.984) with an adsorption capacity of 14.23 mg/g. The relative selectivity coefficient (k´) in the presence of the analogues glycyrrhizic acid and glycyrrhetinic acid were 1.16 and 17.21, respectively. The performance of the molecularly imprinted polymers as solid-phase extraction materials was investigated and the results indicated that using acrylamide-β-cyclodextrin as a cofunctional monomer improved both the adsorption capacity and active sites stability of the imprinted polymers. The solid-phase extraction using the polymers as packing materials was subsequently applied for the separation of tea saponins in raw C. oleifera press extract, and targets were obtained with a purity reaching 89%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Molecular Modeling of the Axial and Circumferential Elastic Moduli of Tubulin

    PubMed Central

    Zeiger, A. S.; Layton, B. E.

    2008-01-01

    Microtubules play a number of important mechanical roles in almost all cell types in nearly all major phylogenetic trees. We have used a molecular mechanics approach to perform tensile tests on individual tubulin monomers and determined values for the axial and circumferential moduli for all currently known complete sequences. The axial elastic moduli, in vacuo, were found to be 1.25 GPa and 1.34 GPa for α- and β-bovine tubulin monomers. In the circumferential direction, these moduli were 378 MPa for α- and 460 MPa for β-structures. Using bovine tubulin as a template, 269 homologous tubulin structures were also subjected to simulated tensile loads yielding an average axial elastic modulus of 1.10 ± 0.14 GPa for α-tubulin structures and 1.39 ± 0.68 GPa for β-tubulin. Circumferentially the α- and β-moduli were 936 ± 216 MPa and 658 ± 134 MPa, respectively. Our primary finding is that that the axial elastic modulus of tubulin diminishes as the length of the monomer increases. However, in the circumferential direction, no correlation exists. These predicted anisotropies and scale dependencies may assist in interpreting the macroscale behavior of microtubules during mitosis or cell growth. Additionally, an intergenomic approach to investigating the mechanical properties of proteins may provide a way to elucidate the evolutionary mechanical constraints imposed by nature upon individual subcellular components. PMID:18621829

  9. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone.

    PubMed

    Nikaido, Toru; Ichikawa, Chiaki; Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Yoshida, Yasuhiro; Suzuki, Kazuomi; Tagami, Junji

    2011-01-01

    This study aimed at evaluating the effect of functional monomers in all-in-one adhesive systems on formation of acid-base resistant zone (ABRZ) in enamel and dentin. Experimental adhesive systems containing one of three functional monomers; MDP, 3D-SR and 4-META were applied to enamel or dentin surface and light-cured. A universal resin composite was then placed. The specimens were subjected to a demineralizing solution (pH 4.5) and 5% NaClO for acid-base challenge and then observed by SEM. The ABRZ was clearly observed in both enamel and dentin interfaces. However, enamel ABRZ was thinner than dentin ABRZ in all adhesives. Morphology of the ABRZ was different between enamel and dentin, and also among the adhesives. Funnel-shaped erosion was observed only in the enamel specimen with the 4-META adhesive. The formation of enamel/dentin ABRZ was confirmed in all adhesives, but the morphology was influenced by the functional monomers.

  10. SuFEx-Based Polysulfonate Formation from Ethenesulfonyl Fluoride-Amine Adducts

    DOE PAGES

    Wang, Hua; Zhou, Feng; Ren, Gerui; ...

    2017-05-18

    In this article, the SuFEx-based polycondensation between bisalkylsulfonyl fluorides (AA monomers) and bisphenol bis(t-butyldimethylsilyl) ethers (BB monomers) using [Ph 3P=N-PPh 3] +[HF 2] - as the catalyst is described. The AA monomers were prepared via the highly reliable Michael addition of ethenesulfonyl fluoride and amines/anilines while the BB monomers were obtained from silylation of bisphenols by t-butyldimethylsilyl chloride. With these reactions, a remarkable diversity of monomeric building blocks was achieved by exploiting readily available amines, anilines, and bisphenols as starting materials. The SuFEx-based polysulfonate formation reaction exhibited excellent efficiency and functional group tolerance, producing polysulfonates with a variety of sidemore » chain functionalities in >99 % conversion within 10 min to 1 h. When bearing an orthogonal group on the side chain, the polysulfonates can be further functionalized via click-chemistry-based post-polymerization modification.« less

  11. Molecular imprinting-based separation methods for selective analysis of fluoroquinolones in soils.

    PubMed

    Turiel, Esther; Martín-Esteban, Antonio; Tadeo, José Luis

    2007-11-23

    Molecularly imprinted polymers (MIPs) for fluoroquinolone antibiotics (FQs) have been synthesised in one single preparative step by precipitation polymerisation using ciprofloxacin (CIP) as template. Combinations of methacrylic acid (MAA) or 4-vinylpyridine (VP) as functional monomers, ethylene glycol dimethacrylate as crosslinker and dichloromethane, methanol, acetonitrile or toluene as porogens were tested. The experiments carried out by molecularly imprinted solid-phase extraction (MISPE) in cartridges did not allow to detect any imprint effect in the VP-based polymers whereas it was clearly observed in the MAA-based polymers. Among them, the MIP prepared in methanol using MAA as monomer showed the best performance and was chosen for further experiments. The ability of the selected MIP for the selective recognition of other widely used FQs (enoxacin, norfloxacin, danofloxacin and enrofloxacin) and quinolones (Qs) (cinoxacin, flumequine, nalidixic acid and oxolinic acid) was evaluated. The obtained results revealed the high selectivity of the obtained polymer, which was able to distinguish between FQs, that were recognised and retained onto the MIP cartridge, and Qs, which were washed out during loading and washing steps. The MIP was then packed into a stainless steel column (50mmx4.6mm i.d.) and evaluated as chromatography column for screening of FQs in soil samples. The mobile phase composition, flow rate, and the elution profile were then optimised in order to improve peak shape without sacrifying imprinting factor. Finally, under optimised conditions, soil samples spiked with CIP or with a mixture of fluoroquinolones in concentration of 0.5microgg(-1) were successfully analysed by the developed MIP-based procedures.

  12. Preparation of a surface-grafted imprinted ceramic membrane for selective separation of molybdate anion from water solutions.

    PubMed

    Zeng, Jianxian; Dong, Zhihui; Zhang, Zhe; Liu, Yuan

    2017-07-05

    A surface-grafted imprinted ceramic membrane (IIP-PVI/CM) for recognizing molybdate (Mo(VI)) anion was prepared by surface-initiated graft-polymerization. Firstly, raw alumina ceramic membrane (CM) was deposited with SiO 2 active layer by situ hydrolysis deposition method. Subsequently, γ-methacryloxy propyl trimethoxyl silane (MPS) was used as a coupling agent to introduce double bonds onto the SiO 2 layer (MPS-CM). Then, 1-vinylimidazole (VI) was employed as a functional monomer to graft-polymerization onto the MPS-CM (PVI-CM). During the graft-polymerization, the influence factors of grafting degree of PVI were investigated in detail. Under optimum conditions (monomer concentration 20wt%, temperature 70°C, initiator amount 1.1wt% and reaction time 8h), the grafting degree of 20.39g/100g was obtained. Further, Mo(VI) anion was used as a template to imprint in the PVI-CM by employing 1,6-dibromohexane as a cross-linking agent, and then Mo(VI) was removed, obtaining the IIP-PVI/CM with many imprinted cavities for Mo(VI). Thereafter, static adsorption and dynamic separation properties of IIP-PVI/CM for Mo(VI) were studied. Results indicate that IIP-PVI/CM shows a specific selectivity for Mo(VI) with the adsorption capacity of 0.69mmol/100g, and the selectivity coefficient of IIP-PVI/CM is 7.48 for molybdate to tungstate anions. During the dynamic separation, IIP-PVI/CM has also good selectivity for separation of Mo(VI) and W(VI) anions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions

    NASA Astrophysics Data System (ADS)

    Parlett, Christopher M. A.; Isaacs, Mark A.; Beaumont, Simon K.; Bingham, Laura M.; Hondow, Nicole S.; Wilson, Karen; Lee, Adam F.

    2016-02-01

    The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol-gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous-mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.

  14. Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach

    PubMed Central

    Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef

    2017-01-01

    Abstract Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins. PMID:29491797

  15. Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach.

    PubMed

    Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef

    2017-01-01

    Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins.

  16. Poly(meth)acrylates obtained by cascade reaction.

    PubMed

    Popescu, Dragos; Keul, Helmut; Moeller, Martin

    2011-04-04

    Preparation, purification, and stabilization of functional (meth)acrylates with a high dipole moment are complex, laborious, and expensive processes. In order to avoid purification and stabilization of the highly reactive functional monomers, a concept of cascade reactions was developed comprising enzymatic monomer synthesis and radical polymerization. Transacylation of methyl acrylate (MA) and methyl methacrylate (MMA) with different functional alcohols, diols, and triols (1,2,6-hexanetriol and glycerol) in the presence of Novozyme 435 led to functional (meth)acrylates. After the removal of the enzyme by means of filtration, removal of excess (meth)acrylate and/or addition of a new monomer, e.g., 2-hydroxyethyl (meth)acrylate the (co)polymerization via free radical (FRP) or nitroxide mediated radical polymerization (NMP) resulted in poly[(meth)acrylate]s with predefined functionalities. Hydrophilic, hydrophobic as well as ionic repeating units were assembled within the copolymer. The transacylation of MA and MMA with diols and triols carried out under mild conditions is an easy and rapid process and is suitable for the preparation of sensitive monomers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions.

    PubMed

    Molina, Ricardo; Teixidó, Josep Maria; Kan, Chi-Wai; Jovančić, Petar

    2017-02-15

    Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.

  18. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts.

    PubMed

    Krause, Martin R; Regen, Steven L

    2014-12-16

    CONSPECTUS: Defining the two-dimensional structure of cell membranes represents one of the most daunting challenges currently facing chemists, biochemists, and biophysicists. In particular, the time-averaged lateral organization of the lipids and proteins that make up these natural enclosures has yet to be established. As the classic Singer-Nicolson model of cell membranes has evolved over the past 40 years, special attention has focused on the structural role played by cholesterol, a key component that represents ca. 30% of the total lipids that are present. Despite extensive studies with model membranes, two fundamental issues have remained a mystery: (i) the mechanism by which cholesterol condenses low-melting lipids by uncoiling their acyl chains and (ii) the thermodynamics of the interaction between cholesterol and high- and low-melting lipids. The latter bears directly on one of the most popular notions in modern cell biology, that is, the lipid raft hypothesis, whereby cholesterol is thought to combine with high-melting lipids to form "lipid rafts" that float in a "sea" of low-melting lipids. In this Account, we first describe a chemical approach that we have developed in our laboratories that has allowed us to quantify the interactions between exchangeable mimics of cholesterol and low- and high-melting lipids in model membranes. In essence, this "nearest-neighbor recognition" (NNR) method involves the synthesis of dimeric forms of these lipids that contain a disulfide moiety as a linker. By means of thiolate-disulfide interchange reactions, equilibrium mixtures of dimers are then formed. These exchange reactions are initiated either by adding dithiothreitol to a liposomal dispersion to generate a small amount of thiol monomer or by including a small amount of thiol monomer in the liposomes at pH 5.0 and then raising the pH to 7.4. We then show how such NNR measurements have allowed us to distinguish between two very different mechanisms that have been proposed for cholesterol's condensing effect: (i) an umbrella mechanism in which the acyl chains and cholesterol become more tightly packed as cholesterol content increases because they share limited space under phospholipid headgroups and (ii) a template mechanism whereby cholesterol functions as a planar hydrophobic template at the membrane surface, thereby maximizing hydrophobic interactions and the hydrophobic effect. Specifically, our NNR experiments rule out the umbrella mechanism and provide strong support for the template mechanism. Similar NNR measurements have also allowed us to address the question of whether the interactions between low-melting kinked phospholipids and cholesterol can play a significant role in the formation of lipid rafts. Specifically, these NNR measurements have led to our discovery of a new physical principle in the lipids and membranes area that must be operating in biological membranes, that is, a "push-pull" mechanism, whereby cholesterol is pushed away from low-melting phospholipids and pulled toward high-melting lipids. Thus, to the extent that lipid rafts play a role in the functioning of cell membranes, low-melting phospholipids must be active participants.

  19. Graphene Emerges as a Versatile Template for Materials Preparation.

    PubMed

    Li, Zhengjie; Wu, Sida; Lv, Wei; Shao, Jiao-Jing; Kang, Feiyu; Yang, Quan-Hong

    2016-05-01

    Graphene and its derivatives are emerging as a class of novel but versatile templates for the controlled preparation and functionalization of materials. In this paper a conceptual review on graphene-based templates is given, highlighting their versatile roles in materials preparation. Graphene is capable of acting as a low-dimensional hard template, where its two-dimensional morphology directs the formation of novel nanostructures. Graphene oxide and other functionalized graphenes are amphiphilic and may be seen as soft templates for formatting the growth or inducing the controlled assembly of nanostructures. In addition, nanospaces in restacked graphene can be used for confining the growth of sheet-like nanostructures, and assemblies of interlinked graphenes can behave either as skeletons for the formation of composite materials or as sacrificial templates for novel materials with a controlled network structure. In summary, flexible graphene and its derivatives together with an increasing number of assembled structures show great potentials as templates for materials production. Many challenges remain, for example precise structural control of such novel templates and the removal of the non-functional remaining templates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. TESS: a geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites.

    PubMed Central

    Wallace, A. C.; Borkakoti, N.; Thornton, J. M.

    1997-01-01

    It is well established that sequence templates such as those in the PROSITE and PRINTS databases are powerful tools for predicting the biological function and tertiary structure for newly derived protein sequences. The number of X-ray and NMR protein structures is increasing rapidly and it is apparent that a 3D equivalent of the sequence templates is needed. Here, we describe an algorithm called TESS that automatically derives 3D templates from structures deposited in the Brookhaven Protein Data Bank. While a new sequence can be searched for sequence patterns, a new structure can be scanned against these 3D templates to identify functional sites. As examples, 3D templates are derived for enzymes with an O-His-O "catalytic triad" and for the ribonucleases and lysozymes. When these 3D templates are applied to a large data set of nonidentical proteins, several interesting hits are located. This suggests that the development of a 3D template database may help to identify the function of new protein structures, if unknown, as well as to design proteins with specific functions. PMID:9385633

  1. Improved dielectric functions in metallic films obtained via template stripping

    NASA Astrophysics Data System (ADS)

    Hyuk Park, Jong; Nagpal, Prashant; Oh, Sang-Hyun; Norris, David J.

    2012-02-01

    We compare the dielectric functions of silver interfaces obtained via thermal evaporation with those obtained with template stripping. Ellipsometry measurements show that the smoother template-stripped surfaces exhibit effective dielectric functions with a more negative real component and a smaller imaginary component, implying higher conductivity and less energy loss, respectively. These results agree with the relation between dielectric function and surface roughness derived from combining the effective-medium model and the Drude-Lorentz model. The improvement in the effective dielectric properties shows that metallic films prepared via template stripping can be favorable for applications in electronics, nanophotonics, and plasmonics.

  2. Hybrid fusions show that inter-monomer electron transfer robustly supports cytochrome bc{sub 1} function in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekiert, Robert; Czapla, Monika; Sarewicz, Marcin

    2014-08-22

    Highlights: • We used hybrid fusion bc{sub 1} complex to test inter-monomer electron transfer in vivo. • Cross-inactivated complexes were able to sustain photoheterotrophic growth. • Inter-monomer electron transfer supports catalytic cycle in vivo. • bc{sub 1} dimer is functional even when cytochrome b subunits come from different species. - Abstract: Electronic connection between Q{sub o} and Q{sub i} quinone catalytic sites of dimeric cytochrome bc{sub 1} is a central feature of the energy-conserving Q cycle. While both the intra- and inter-monomer electron transfers were shown to connect the sites in the enzyme, mechanistic and physiological significance of the lattermore » remains unclear. Here, using a series of mutated hybrid cytochrome bc{sub 1}-like complexes, we show that inter-monomer electron transfer robustly sustains the function of the enzyme in vivo, even when the two subunits in a dimer come from different species. This indicates that minimal requirement for bioenergetic efficiency is to provide a chain of cofactors for uncompromised electron flux between the catalytic sites, while the details of protein scaffold are secondary.« less

  3. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes.

    PubMed

    Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi

    2017-02-16

    The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix effect contributed to the sensitivity and selectivity of the optimized sensor array. The developed MISGs were expected to be promising materials for the detection and recognition of volatile aldehydes contained in exhaled breath or human body odor.

  4. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes

    PubMed Central

    Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi

    2017-01-01

    The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix effect contributed to the sensitivity and selectivity of the optimized sensor array. The developed MISGs were expected to be promising materials for the detection and recognition of volatile aldehydes contained in exhaled breath or human body odor. PMID:28212347

  5. Molecular Imprinting: From Fundamentals to Applications

    NASA Astrophysics Data System (ADS)

    Komiyama, Makoto; Takeuchi, Toshifumi; Mukawa, Takashi; Asanuma, Hiroyuki

    2003-03-01

    Molecular imprinting, the polymerization of monomers in the presence of a template molecule which imprints structural information into the resulting polymers, is a scientific field which is rapidly gaining significance for a widening range of applications in biotechnology, biochemistry and pharmaceutical research. The methods and tools needed to distinguish target molecules from others by means of tailor-made receptors are constantly growing in importance and complexity. This book gives a concise and highly up-to-date overview of the remarkable progress made in this field in the last five years. The material is comprehensively presented by the authors, giving a thorough insight into fundamentals and applications for researchers in both industry and academy.

  6. Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Lai, Cui; Wang, Man-Man; Zeng, Guang-Ming; Liu, Yun-Guo; Huang, Dan-Lian; Zhang, Chen; Wang, Rong-Zhong; Xu, Piao; Cheng, Min; Huang, Chao; Wu, Hai-Peng; Qin, Lei

    2016-12-01

    The molecular imprinted TiO2/graphene photocatalyst (MIP-TiO2/GR) was successfully prepared with bisphenol A (BPA) as the template molecule (target pollutant) and o-phenylenediamine (OPDA) as functional monomers by the surface molecular imprinting method. The combination between BPA and OPDA led to the formation of the precursor, and the subsequent polymerization of OPDA initiated by ultraviolet radiation can ensure the realization of MIP-TiO2/GR. The samples were characterized by SEM, EDS, XRD, BET, UV-vis DRS and Zeta potential. In addition, adsorption capacities, adsorption selectivity and visible light photocatalytic performances of MIP-TiO2/GR and non-imprinted TiO2/graphene (NIP-TiO2/GR) were evaluated. Moreover, the effects of pH and initial BPA concentration on removal efficiency of BPA were also investigated. The results showed that MIP-TiO2/GR exhibited better adsorption capacity and adsorption selectivity towards the template molecule compared to NIP-TiO2/GR due to the imprinted cavities on the surface of MIP-TiO2/GR. Moreover, the photocatalytic activity of MIP-TiO2/GR toward the target molecules was stronger than that of NIP-TiO2/GR as a result of large adsorption capacity to target molecules and narrow band gap energy on MIP-TiO2/GR. Therefore, modifying the photocatalyst by the surface molecular imprinting is a promising method to improve the molecule recognition and photocatalytic efficiency of photocatalyst for target pollutant.

  7. Analysis of alternariol and alternariol monomethyl ether in foodstuffs by molecularly imprinted solid-phase extraction and ultra-high-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Rico-Yuste, A; Walravens, J; Urraca, J L; Abou-Hany, R A G; Descalzo, A B; Orellana, G; Rychlik, M; De Saeger, S; Moreno-Bondi, M C

    2018-03-15

    Molecularly imprinted porous polymer microspheres selective to Alternaria mycotoxins, alternariol (AOH) and alternariol monomethyl ether (AME), were synthesized and applied to the extraction of both mycotoxins in food samples. The polymer was prepared using 4-vinylpiridine (VIPY) and methacrylamide (MAM) as functional monomers, ethylene glycol dimethacrylate (EDMA) as cross-linker and 3,8,9-trihydroxy-6H-dibenzo[b,d]pyran-6-one (S2) as AOH surrogate template. A molecularly imprinted solid phase extraction (MISPE) method has been optimized for the selective isolation of the mycotoxins from aqueous samples coupled to HPLC with fluorescence (λ ex =258nm; λ em =440nm) or MS/MS analysis. The MISPE method was validated by UPLC-MS/MS for the determination of AOH and AME in tomato juice and sesame oil based on the European Commission Decision 2002/657/EC. Method performance was satisfactory with recoveries from 92.5% to 106.2% and limits of quantification within the 1.1-2.8µgkg -1 range in both samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Magnetic molecularly imprinted polymer for the selective extraction of quercetagetin from Calendula officinalis extract.

    PubMed

    Ma, Run-Tian; Shi, Yan-Ping

    2015-03-01

    A new magnetic molecularly imprinted polymers (MMIPs) for quercetagetin was prepared by surface molecular imprinting method using super paramagnetic core-shell nanoparticle as the supporter. Acrylamide as the functional monomer, ethyleneglycol dimethacrylate as the crosslinker and acetonitrile as the porogen were applied in the preparation process. Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Vibrating sample magnetometer (VSM) were applied to characterize the MMIPs, and High performance liquid chromatography (HPLC) was utilized to analyze the target analytes. The selectivity of quercetagetin MMIPs was evaluated according to their recognition to template and its analogues. Excellent binding for quercetagetin was observed in MMIPs adsorption experiment, and the adsorption isotherm models analysis showed that the homogeneous binding sites were distributed on the surface of the MMIPs. The MMIPs were employed as adsorbents in solid phase extraction for the determination of quercetagetin in Calendula officinalis extracts. Furthermore, this method is fast, simple and could fulfill the determination and extraction of quercetagetin from herbal extract. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Photoresponsive surface molecularly imprinted polymer on ZnO nanorods for uric acid detection in physiological fluids.

    PubMed

    Tang, Qian; Li, Zai-Yong; Wei, Yu-Bo; Yang, Xia; Liu, Lan-Tao; Gong, Cheng-Bin; Ma, Xue-Bing; Lam, Michael Hon-Wah; Chow, Cheuk-Fai

    2016-09-01

    A photoresponsive surface molecularly imprinted polymer for uric acid in physiological fluids was fabricated through a facile and effective method using bio-safe and biocompatible ZnO nanorods as a support. The strategy was carried out by introducing double bonds on the surface of the ZnO nanorods with 3-methacryloxypropyltrimethoxysilane. The surface molecularly imprinted polymer on ZnO nanorods was then prepared by surface polymerization using uric acid as template, water-soluble 5-[(4-(methacryloyloxy)phenyl)diazenyl]isophthalic acid as functional monomer, and triethanolamine trimethacryl ester as cross-linker. The surface molecularly imprinted polymer on ZnO nanorods showed good photoresponsive properties, high recognition ability, and fast binding kinetics toward uric acid, with a dissociation constant of 3.22×10(-5)M in aqueous NaH2PO4 buffer at pH=7.0 and a maximal adsorption capacity of 1.45μmolg(-1). Upon alternate irradiation at 365 and 440nm, the surface molecularly imprinted polymer on ZnO nanorods can quantitatively uptake and release uric acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Molecularly imprinted solid-phase extraction for the determination of ten macrolide drugs residues in animal muscles by liquid chromatography-tandem mass spectrometry.

    PubMed

    Song, Xuqin; Zhou, Tong; Liu, Qingying; Zhang, Meiyu; Meng, Chenying; Li, Jiufeng; He, Limin

    2016-10-01

    A simple and sensitive method based on molecularly imprinted solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry was developed for the determination of the residues of ten macrolide drugs in swine, cattle and chicken muscles samples. The molecularly imprinted polymers (MIPs) were synthesized using tylosin as a template and methacrylic acid as a functional monomer. Samples were extracted with sodium borate buffer solution and ethyl acetate, and purified by the MIP cartridge. The results showed that the cartridge exhibited good recognition performance for macrolides, and better purification effect than the traditional solid-phase extraction cartridges. Recoveries of analytes at three spiking levels 1, 5 and 20μgkg(-1) ranged from 60.7% to 100.3% with the relative standard deviations less than 14%. The limits of detection of the method were between 0.1 and 0.4μgkg(-1). The method is useful for the routine monitoring of the residues of macrolide drugs in animal muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Tuning calcium carbonate growth through physical confinement and templating with amyloid-like polypeptide aggregates

    NASA Astrophysics Data System (ADS)

    Colaco, Martin Francis

    The creation of useful composite materials requires precise control of the interface between the components in order to tune the overall shape and material properties. Despite the current research into nanotechnology, our ability to create materials with nanoscale precision is nascent. However, nature has a paradigm for the creation of finely structured composites under mild conditions called biomineralization. Through control of protein template assembly, solution conditions, and physical confinement, organisms are able to create useful optical and structural materials, such as bones, teeth, and mollusk shells. The objective of this thesis is to elucidate the importance of these various controls in synthetic systems to further our ability to create nanostructured materials. We begin by examining the formation of self-assembled monolayers (SAMs) of organosilanes on silica oxides. The formation of functionalized surfaces can help control the mineralization of amorphous or crystalline calcium carbonate. Long-chained organosilanes organize on surfaces to form dense, solid-like films, with the terminal groups determining the hydrophobicity and stereochemistry of the film. Our work has shown that uniform hydrophobic and hydrophilic films can be formed by using cleaned silica over glass or mica and through a vapor phase reaction over a liquid one. Additionally, we showed that mixed SAMs with phase-separated domains could be created through the selection of organosilanes and reaction conditions. We have built on these functionalized surfaces through the use of microfabrication and a gas permeable polymer to create three-dimensionally confined microcrystallizers. Other researchers have shown that one-dimensional confinement with a multi-functional surface (patterned with a small nucleating ordered region in a disordered SAM) can stabilize the creation of an amorphous calcium carbonate film before a single, large, micropatterned crystal is grown. Our work has determined that this methodology does not extend to three-dimensional confined systems, as the water has no method of escape. Through the addition of an insoluble hydroscopic polymer to our microreactors, amorphous calcium carbonate of controllable sizes can be grown. However, crystalline calcium carbonate cannot be grown without some type of templating. Studies of calcium carbonate templating have predominantly been performed on SAMs or in poorly characterized gels or protein films. The use of ordered protein or polypeptide aggregates for templating permits both geometry and charge surface density to be varied. We have studied the kinetics and final morphology of ordered aggregates of poly-L-glutamic acid and a copolymer of glutamic acid and alanine through experiments and simulations. Electrostatics, not structure, of the monomer appeared to be the dominating factor in the aggregation, as pH and salt concentration changes led to dramatic changes in the kinetics. Examining our experimental with existing models provided inconsistent results, so we developed a new model that yielded physically realistic rate constants, while generating better fits with longer lag phases and faster growths. However, despite the similarity of aggregation conditions, the two polypeptides yielded vastly different morphologies, with the PEA forming typical amyloid-like fibrils and PE forming larger, twisted lamellar aggregates. Templating with these aggregates also yielded dramatically different patterns. Polycrystalline rhombohedral calcite with smooth faces and edges grew on PEA fibrils, with minimal templating in evidence. However, on PE, numerous calcite crystals with triangular projections tracked the surface of the aggregate. The PE lamellae are characterized by extensive beta-sheet structure. In this conformation, the glutamic acid spacings on the surface of the aggregates can mimic the spacings of the carboxylates in the calcite lattice. In addition, the high negative charge density on the polypeptide surface led to a large number of nucleation sites. As the crystals grow, they impinge on each other but are limited to grow in one direction, perpendicular to the aggregate surface. Thus, the crystal structure propagates even at large length scales.

  12. Computational studies at the density functional theory (DFT) level about the surface functionalization of hexagonal monolayers by chitosan monomer

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Javad; Ahangari, Morteza Ghorbanzadeh; Jahanshahi, Mohsen

    2018-05-01

    Theoretical investigations based on density functional theory have been carried out to understand the underlying interactions between the chitosan monomer and several types of hexagonal monolayers consisting of pristine and defected graphene and boron-nitride nanosheets. Based on the obtained results, it was found that the type of the interaction for all the systems is of non-covalent nature and the chitosan monomer physically interacts with the surface of mentioned nanostructures. The interaction strength was evaluated by calculating the adsorption energies for the considered systems and it was found that the adsorption of chitosan monomer accompanies by the release of about -0.67 and -0.66 eV energy for pristine graphene and h-BN monolayer, respectively. The role of structural defect has also been considered by embedding a Stone-Wales defect within the structure of mentioned monolayers and it was found that the introduced defect enhances the interactions between the chitosan monomer and nanostructures. The role of dispersion interactions has also been taken into account and it was found that these long-range interactions play the dominating role in the attachment of chitosan monomer onto the graphene sheet, while having strong contribution together with the electrostatic interactions for the stabilization of chitosan onto the surface of h-BN monolayer. For all the cases, the adsorption of chitosan monomer did not change the inherent electronic properties of the nanostructures based on the results of charge transfer analysis and energy gap calculations. The findings of the present work would be very useful in future investigations to explore the potential applications of these hybrid materials in materials science and bio-related fields.

  13. Cytotoxic effects of polybasic acids, poly(alkenoic acid)s, and the monomers with various functional groups on human pulp fibroblasts.

    PubMed

    Kurata, Shigeaki; Morishita, Kumiko; Kawase, Toshio; Umemoto, Kozo

    2011-01-01

    This study evaluated the cytotoxicity of various polybasic acids, poly(alkenoic acid)s, and the monomers with various acidic functional groups such as carboxyl, phosphoryl, and sulfo group. The cell growth of fibroblasts cultivated in medium containing polybasic acids and polymers up to the concentration to 5 mmol/L was not significantly different compared with that of control without their acids. On the other hand, the cell growth fibroblasts cultivated in medium containing 1 mmol/L of the monomers with acryloyloxy and phosphoryl or carboxyl group decreased remarkably compared with that of the control and the cells were probably lifeless. Those exposed to the monomers with a ether bond and a carboxyl group or a amide bond and a sulfo group was not significantly different compared with that of control.

  14. Room temperature synthesis and binding studies of solution-processable histamine-imprinted microspheres.

    PubMed

    Romano, Edwin F; Holdsworth, Clovia I; Quirino, Joselito P; So, Regina C

    2018-01-01

    Accurate quantification of histamine levels in food and in biological samples is important for monitoring the quality of food products and for the detection of pathophysiological conditions. In this study, solution processable histamine-imprinted microspheres were synthesized at 30°C via dilute free radical phototochemical polymerization technique using ethylene glycol dimethacrylate (EGDMA) as the crosslinker and methacrylic acid (MAA) as the monomer. The processability of the resulting polymer is dictated by the monomer feed concentration (eg, 4 wt% 80:20 EGDMA:MAA formulation) and solvent (acetonitrile). Whereas, the particle size is influenced by the monomer feed concentration, the presence of template molecule, and independent of the crosslinker content. Evaluation of the binding performance of the photochemically imprinted polymers (PCP) with different crosslinker content (80 and 90 wt%) indicated that the selective binding capacity was notably higher in PCP-80 (N= 16.0 μmol/g) compared to PCP-90 (N= 10.1 μmol/g) when analyzed via frontal analysis capillary electrophoresis (FACE) using Freundlich isotherm. In addition, PCP-80 microspheres are more selective toward histamine than conventional thermal polymers (CTP-80) prepared at 60°C in the presence of structural analogs such as histidine, imidazole, and tryptamine under cross-rebinding and competitive conditions. These results demonstrated that histamine-selective imprinted polymers can be obtained readily using room temperature photochemical polymerization where these materials can be subsequently used as recognition element for optical-based histamine sensing. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Using monomer vibrational wavefunctions to compute numerically exact (12D) rovibrational levels of water dimer

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2018-02-01

    We compute numerically exact rovibrational levels of water dimer, with 12 vibrational coordinates, on the accurate CCpol-8sf ab initio flexible monomer potential energy surface [C. Leforestier et al., J. Chem. Phys. 137, 014305 (2012)]. It does not have a sum-of-products or multimode form and therefore quadrature in some form must be used. To do the calculation, it is necessary to use an efficient basis set and to develop computational tools, for evaluating the matrix-vector products required to calculate the spectrum, that obviate the need to store the potential on a 12D quadrature grid. The basis functions we use are products of monomer vibrational wavefunctions and standard rigid-monomer basis functions (which involve products of three Wigner functions). Potential matrix-vector products are evaluated using the F matrix idea previously used to compute rovibrational levels of 5-atom and 6-atom molecules. When the coupling between inter- and intra-monomer coordinates is weak, this crude adiabatic type basis is efficient (only a few monomer vibrational wavefunctions are necessary), although the calculation of matrix elements is straightforward. It is much easier to use than an adiabatic basis. The product structure of the basis is compatible with the product structure of the kinetic energy operator and this facilitates computation of matrix-vector products. Compared with the results obtained using a [6 + 6]D adiabatic approach, we find good agreement for the inter-molecular levels and larger differences for the intra-molecular water bend levels.

  16. Using monomer vibrational wavefunctions to compute numerically exact (12D) rovibrational levels of water dimer.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2018-02-21

    We compute numerically exact rovibrational levels of water dimer, with 12 vibrational coordinates, on the accurate CCpol-8sf ab initio flexible monomer potential energy surface [C. Leforestier et al., J. Chem. Phys. 137, 014305 (2012)]. It does not have a sum-of-products or multimode form and therefore quadrature in some form must be used. To do the calculation, it is necessary to use an efficient basis set and to develop computational tools, for evaluating the matrix-vector products required to calculate the spectrum, that obviate the need to store the potential on a 12D quadrature grid. The basis functions we use are products of monomer vibrational wavefunctions and standard rigid-monomer basis functions (which involve products of three Wigner functions). Potential matrix-vector products are evaluated using the F matrix idea previously used to compute rovibrational levels of 5-atom and 6-atom molecules. When the coupling between inter- and intra-monomer coordinates is weak, this crude adiabatic type basis is efficient (only a few monomer vibrational wavefunctions are necessary), although the calculation of matrix elements is straightforward. It is much easier to use than an adiabatic basis. The product structure of the basis is compatible with the product structure of the kinetic energy operator and this facilitates computation of matrix-vector products. Compared with the results obtained using a [6 + 6]D adiabatic approach, we find good agreement for the inter-molecular levels and larger differences for the intra-molecular water bend levels.

  17. Plasma-Enhanced Copolymerization of Amino Acid and Synthetic Monomers

    DTIC Science & Technology

    2011-12-16

    Langmuir 2012, 28, 1833−18451839 The final copolymerization study utilizing a liquid inorganic component, titanium isopropoxide , and solid L-tyrosine was...conducted with the two monomers being vaporized and exposed to the plasma simultaneously. Titanium isopropoxide was heated in a liquid state to...hydroxyethyl methacrylate (HEMA), and titanium tetraiso- propoxide (TTIP). The organic and inorganic functional monomers used were chosen to demonstrate the

  18. Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition.

    PubMed

    Diltemiz, Sibel Emir; Say, Ridvan; Büyüktiryaki, Sibel; Hür, Deniz; Denizli, Adil; Ersöz, Arzu

    2008-05-30

    Molecular imprinted polymers (MIPs) as a recognition element for sensors are increasingly of interest and MIP nanoparticles have started to appear in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamido-cysteine (MAC) attached to CdS quantum dots (QDs), reminiscent of a self-assembled monolayer and have reconstructed surface shell by synthetic host polymers based on molecular imprinting method for DNA recognition. In this method, methacryloylamidohistidine-platinium (MAH-Pt(II)) is used as a new metal-chelating monomer via metal coordination-chelation interactions and guanosine templates of DNA. Nanoshell sensors with guanosine templates give a cavity that is selective for guanosine and its analogues. The guanosine can simultaneously chelate to Pt(II) metal ion and fit into the shape-selective cavity. Thus, the interaction between Pt(II) ion and free coordination spheres has an effect on the binding ability of the CdS QD nanosensor. The binding affinity of the guanosine imprinted nanocrystals has investigated by using the Langmuir and Scatchard methods, and experiments have shown the shape-selective cavity formation with O6 and N7 of a guanosine nucleotide (K(a) = 4.841x10(6) mol L(-1)) and a free guanine base (K(a) = 0.894x10(6) mol L(-1)). Additionally, the guanosine template of the nanocrystals is more favored for single stranded DNA compared to double stranded DNA.

  19. Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1

    PubMed Central

    Vandooren, Jennifer; Born, Benjamin; Solomonov, Inna; Zajac, Ewa; Saldova, Radka; Senske, Michael; Ugarte-Berzal, Estefanía; Martens, Erik; Van den Steen, Philippe E.; Van Damme, Jo; Garcia-Pardo, Angeles; Froeyen, Matheus; Deryugina, Elena I.; Quigley, James P.; Moestrup, Søren K.; Rudd, Pauline M.; Sagi, Irit; Opdenakker, Ghislain

    2015-01-01

    Gelatinase B/matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) cleaves many substrates and is produced by most cell types as a zymogen, proMMP-9, in complex with the tissue inhibitor of metalloproteinases-1 (TIMP-1). Natural proMMP-9 occurs as monomers, homomultimers, and heterocomplexes, but our knowledge about the overall structure of proMMP-9 monomers and multimers is limited. We investigated biochemical, biophysical, and functional characteristics of zymogen and activated forms of MMP-9 monomers and multimers. In contrast to a conventional notion of a dimeric nature of MMP-9 homomultimers, we demonstrate that these are reduction-sensitive trimers. Based on the information from electrophoresis, atomic force microscopy (AFM) and transmission electron microscopy (TEM), we generated a 3Dstructure model of the proMMP-9 trimer. Remarkably, the proMMP-9 trimers possessed a 50-fold higher affinity for TIMP-1 than the monomers. In vivo, this finding was reflected in a higher extent of TIMP-1 inhibition of angiogenesis induced by trimers versus monomers. Our results show that proMMP-9 trimers constitute a novel structural and functional entity that is differentially regulated by TIMP-1. PMID:25360794

  20. Creating Shape Templates for Patient Specific Biventricular Modeling in Congenital Heart Disease

    PubMed Central

    Gilbert, Kathleen; Farrar, Genevieve; Cowan, Brett R.; Suinesiaputra, Avan; Occleshaw, Christopher; Pontré, Beau; Perry, James; Hegde, Sanjeet; Marsden, Alison; Omens, Jeff; McCulloch, Andrew; Young, Alistair A.

    2018-01-01

    Survival rates for infants with congenital heart disease (CHD) are improving, resulting in a growing population of adults with CHD. However, the analysis of left and right ventricular function is very time-consuming owing to the variety of congenital morphologies. Efficient customization of patient geometry and function depends on high quality shape templates specifically designed for the application. In this paper, we combine a method for creating finite element shape templates with an interactive template customization to patient MRI examinations. This enables different templates to be chosen depending on patient morphology. To demonstrate this pipeline, a new biventricular template with 162 elements was created and tested in place of an existing 82-element template. The method was able to provide fast interactive biventricular analysis with 0.31 sec per edit response time. The new template was customized to 13 CHD patients with similar biventricular topology, showing improved performance over the previous template and good agreement with clinical indices. PMID:26736353

  1. Preparation and application of epitope magnetic molecularly imprinted polymers for enrichment of sulfonamide antibiotics in water.

    PubMed

    Hu, Yufeng; Wang, Cheng; Li, Xiangdao; Liu, Lifen

    2017-10-01

    Sulfonamides, which are widely used synthetic antibiotics, are hydrophilic and stable. They can easily migrate into the environment and aquatic animals, and increase the risk of cancer, drug resistance, and allergic symptoms if consumed by humans. Here, we developed an epitope magnetic imprinting approach to enrich multiple sulfonamide antibiotics from a water sample. Epitope magnetic molecularly imprinted polymers (EMMIPs) were prepared by free-radical polymerization using vinyl-functioned Fe 3 O 4 as a core, sulfanilamide (SA) as a dummy template, methacrylic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linker. The performance of the EMMIPs was first evaluated by rebinding SA, and then an adsorption experiment was conducted to assess the extraction of multiple sulfonamide antibiotics containing the SA group. The binding experiments showed that the EMMIPs reached adsorption equilibrium in only 5 min with adsorption of SA at 2040 μg/g, compared with just 462 μg/g for the epitope magnetic non-imprinted polymers. EMMIPs were combined with HPLC for the detection of six sulfonamide antibiotics in surface water samples. The recoveries ranged from 79.3 to 92.4% and the relative standard deviations from 0.9 to 7.3%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Physical Principles and Extant Biology Reveal Roles for RNA-Containing Membraneless Compartments in Origins of Life Chemistry.

    PubMed

    Poudyal, Raghav R; Pir Cakmak, Fatma; Keating, Christine D; Bevilacqua, Philip C

    2018-05-01

    This Perspective focuses on RNA in biological and nonbiological compartments resulting from liquid-liquid phase separation (LLPS), with an emphasis on origins of life. In extant cells, intracellular liquid condensates, many of which are rich in RNAs and intrinsically disordered proteins, provide spatial regulation of biomolecular interactions that can result in altered gene expression. Given the diversity of biogenic and abiogenic molecules that undergo LLPS, such membraneless compartments may have also played key roles in prebiotic chemistries relevant to the origins of life. The RNA World hypothesis posits that RNA may have served as both a genetic information carrier and a catalyst during the origin of life. Because of its polyanionic backbone, RNA can undergo LLPS by complex coacervation in the presence of polycations. Phase separation could provide a mechanism for concentrating monomers for RNA synthesis and selectively partition longer RNAs with enzymatic functions, thus driving prebiotic evolution. We introduce several types of LLPS that could lead to compartmentalization and discuss potential roles in template-mediated non-enzymatic polymerization of RNA and other related biomolecules, functions of ribozymes and aptamers, and benefits or penalties imparted by liquid demixing. We conclude that tiny liquid droplets may have concentrated precious biomolecules and acted as bioreactors in the RNA World.

  3. Chimeric polymers formed from a monomer capable of free radical, oxidative and electrochemical polymerisation.

    PubMed

    Lakshmi, Dhana; Whitcombe, Michael J; Davis, Frank; Chianella, Iva; Piletska, Elena V; Guerreiro, Antonio; Subrahmanyam, Sreenath; Brito, Paula S; Fowler, Steven A; Piletsky, Sergey A

    2009-05-21

    A new monomer, which incorporates both aniline and methacrylamide functional groups, was shown to possess orthogonal polymerisation behaviour to produce conjugated polyaniline suitable for a wide range of applications.

  4. Synthesis of Cu/SiO2 Core-Shell Particles Using Hyperbranched Polyester as Template and Dispersant

    NASA Astrophysics Data System (ADS)

    Han, Wensong

    2017-07-01

    Third-generation hyperbranched polyester (HBPE3) was synthesized by stepwise polymerization with N, N-diethylol-3-amine methylpropionate as AB2 monomer and pentaerythritol as core molecule. Then, Cu particles were prepared by reduction of copper nitrate with ascorbic acid in aqueous solution using HBPE3 as template. Finally, Cu/SiO2 particles were prepared by coating silica on the surface of Cu particles. The structure and morphology of the samples were characterized by Fourier-transform infrared (FT-IR) spectrometry, x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results confirmed the formation of the silica coating on the surface of Cu and that the Cu/SiO2 particles had spherical shape with particle size in the range of 0.8 μm to 2 μm. Compared with pure Cu, the synthesized Cu/SiO2 core-shell particles exhibited better oxidation resistance at high temperature. Moreover, the oxidation resistance of the Cu/SiO2 particles increased significantly with increasing tetraethyl orthosilicate (TEOS) concentration.

  5. Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals.

    PubMed

    Wang, Guang; Garvey, Christopher J; Zhao, Han; Huang, Kang; Kong, Lingxue

    2017-07-21

    Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF) membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs) and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane.

  6. A novel molecularly imprinted material based on magnetic halloysite nanotubes for rapid enrichment of 2,4-dichlorophenoxyacetic acid in water.

    PubMed

    Zhong, Shian; Zhou, Chengyun; Zhang, Xiaona; Zhou, Hui; Li, Hui; Zhu, Xiaohong; Wang, Yan

    2014-07-15

    A new type of magnetic halloysite nanotubes molecularly imprinted polymer (MHNTs@MIP) based on halloysite nanotubes (HNTs) with embedded magnetic nanoparticles was introduced in this study. MHNTs@MIP was prepared through surface imprinting technology, using 2,4-dichlorophenoxyacetic acid (2,4-D) as a template, 4-vinylpyridine as the monomer, divinylbenzene as cross-linking agents, and 2,2-azodiisobutyronitrile as initiator. MHNTs@MIP was characterized by Fourier Transform Infrared Spectrometer, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometer. MHNTs@MIP exhibited rapid and reliable analysis with supermagnetic properties, as well as repeated use and template-specific recognition. The adsorption capacity of magnetic halloysite nanotubes non-imprinted polymer (MHNTs@NIP) and MHNTs@MIP was 10.3mg/g and 35.2mg/g, respectively. In the detailed discussion on specific selectivity, MHNTs@MIP can be applied as an adsorbent for sample pretreatment extraction and obtain high recoveries of about 85-94%. After extraction, high-performance liquid chromatography was used to detect 2,4-D residue in water. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering.

    PubMed

    Brüggemann, O

    2001-08-01

    Molecular imprinting is a way of creating polymers bearing artificial receptors. It allows the fabrication of highly selective plastics by polymerizing monomers in the presence of a template. This technique primarily had been developed for the generation of biomimetic materials to be used in chromatographic separation, in extraction approaches and in sensors and assays. Beyond these applications, in the past few years molecular imprinting has become a tool for producing new kinds of catalysts. For catalytic applications, the template must be chosen, so that it is structurally comparable with the transition state (a transition state analogue, TSA) of a reaction, or with the product or substrate. The advantage of using these polymeric catalysts is obvious: the backbone withstands more aggressive conditions than a bio material could ever survive. Results are presented showing the applicability of a molecularly imprinted catalyst in different kinds of chemical reactors. It is demonstrated that the catalysts can be utilized not only in batch but also in continuously driven reactors and that their performance can be improved by means of chemical reaction engineering.

  8. Binding Interactions of Dopamine and Apomorphine in D2High and D2Low States of Human Dopamine D2 Receptor Using Computational and Experimental Techniques.

    PubMed

    Durdagi, Serdar; Salmas, Ramin Ekhteiari; Stein, Matthias; Yurtsever, Mine; Seeman, Philip

    2016-02-17

    We have recently reported G-protein coupled receptor (GPCR) model structures for the active and inactive states of the human dopamine D2 receptor (D2R) using adrenergic crystal structures as templates. Since the therapeutic concentrations of dopamine agonists that suppress the release of prolactin are the same as those that act at the high-affinity state of the D2 receptor (D2High), D2High in the anterior pituitary gland is considered to be the functional state of the receptor. In addition, the therapeutic concentrations of anti-Parkinson drugs are also related to the dissociation constants in the D2High form of the receptor. The discrimination between the high- and low-affinity (D2Low) components of the D2R is not obvious and requires advanced computer-assisted structural biology investigations. Therefore, in this work, the derived D2High and D2Low receptor models (GPCR monomer and dimer three-dimensional structures) are used as drug-binding targets to investigate binding interactions of dopamine and apomorphine. The study reveals a match between the experimental dissociation constants of dopamine and apomorphine at their high- and low-affinity sites of the D2 receptor in monomer and dimer and their calculated dissociation constants. The allosteric receptor-receptor interaction for dopamine D2R dimer is associated with the accessibility of adjacent residues of transmembrane region 4. The measured negative cooperativity between agonist ligand at dopamine D2 receptor is also correctly predicted using the D2R homodimerization model.

  9. Nano-structured polymer composites and process for preparing same

    DOEpatents

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  10. Synthesis and Multiple Incorporations of 2′‐O‐Methyl‐5‐hydroxymethylcytidine, 5‐Hydroxymethylcytidine and 5‐Formylcytidine Monomers into RNA Oligonucleotides

    PubMed Central

    Tanpure, Arun A.

    2017-01-01

    Abstract The synthesis of 2′‐O‐methyl‐5‐hydroxymethylcytidine (hm5Cm), 5‐hydroxymethylcytidine (hm5C) and 5‐formylcytidine (f5C) phosphoramidite monomers has been developed. Optimisation of mild post‐synthetic deprotection conditions enabled the synthesis of RNA containing all four naturally occurring cytosine modifications (hm5Cm, hm5C, f5C plus 5‐methylcytosine). Given the considerable interest in RNA modifications and epitranscriptomics, the availability of synthetic monomers and RNAs containing these modifications will be valuable for elucidating their biological function(s). PMID:28901692

  11. Novel conjugates of peptides and conjugated polymers for optoelectronics and neural interfaces

    NASA Astrophysics Data System (ADS)

    Bhagwat, Nandita

    Peptide-polymer conjugates are a novel class of hybrid materials that take advantage of each individual component giving the opportunity to generate materials with unique physical, chemical, mechanical, optical, and electronic properties. In this dissertation peptide-polymer conjugates for two different applications are discussed. The first set of peptide-polymer conjugates were developed as templates to study the intermolecular interactions between electroactive molecules by manipulating the intermolecular distances at nano-scale level. A PEGylated, alpha-helical peptide template was employed to effectively display an array of organic chromophores (oxadiazole containing phenylenevinylene oligomers, Oxa-PPV). Three Oxa-PPV chromophores were strategically positioned on each template, at distances ranging from 6 to 17 A from each other, as dictated by the chemical and structural properties of the peptide. The Oxa-PPV modified PEGylated helical peptides (produced via Heck coupling strategies) were characterized by a variety of spectroscopic methods. Electronic contributions from multiple pairs of chromophores on a scaffold were detectable; the number and relative positioning of the chromophores dictated the absorbance and emission maxima, thus confirming the utility of these polymer--peptide templates for complex presentation of organic chromophores. The rest of the thesis is focused on using poly(3,4-alkylenedioxythiophene) based conjugated polymers as coatings for neural electrodes. This thiophene derivative is of considerable current interest for functionalizing the surfaces of a wide variety of devices including implantable biomedical electronics, specifically neural bio-electrodes. Toward these ends, copolymer films of 3,4-ethylenedioxythiophene (EDOT) with a carboxylic acid functional EDOT (EDOTacid) were electrochemically deposited and characterized as a systematic function of the EDOTacid content (0, 25, 50, 75, and 100%). The chemical surface characterization of the films confirmed the presence of both EODT and EDOTacid units. Cyclic voltammetry showed that the films had comparable charge storage capacities regardless of their composition. The morphology of the films varied depending on the monomer feed ratio. Thus we were able to develop a method for synthesizing electrically active carboxylic acid functional poly(3,4-ethylenedioxythiophene) copolymer films with tunable hydrophilicities and surface morphologies. For longer lifetime devices incorporating a biomolecule via covalent immobilization techniques are preferred over physical adsorption or entrapment. We took advantage of the carboxylic acid group on the PEDOTacid copolymer films to modify the surface of these films with a laminin based peptide, the nonapeptide sequence CDPGYIGSR. XPS and toluidine blue O assay proved the presence of the peptide on the surface and electrochemical analysis demonstrated unaltered properties of the peptide modified films. The bioactivity of the peptide along with the need of a spacer molecule for cell adhesion and differentiation was tested using the rat pheochromocytoma (PC12) cells. Films modified with the longest poly(ethylene glycol) spacer used in this study, a 3 nm long molecule, demonstrated the best attachment and neurite outgrowth compared to films with peptides with no spacer and a 1 nm spacer, PEG3. The films with PEG10-CDPGYISGR covalently modified to the surface demonstrated 11.5% neurite expression with the mean neurite length of 90 microm. Along with the acid functionalized PEDOT films, vinyl terminated ProDOT films were also investigated as coatings for neural electrodes. The vinyl group was successfully modified with a RGD peptide via thiol-ene click chemistry. Both the acid and vinyl functional conducting polymer films provide an effective approach to biofunctionalize conducting polymer films.

  12. Topology-driven phase transitions in the classical monomer-dimer-loop model.

    PubMed

    Li, Sazi; Li, Wei; Chen, Ziyu

    2015-06-01

    In this work, we investigate the classical loop models doped with monomers and dimers on a square lattice, whose partition function can be expressed as a tensor network (TN). In the thermodynamic limit, we use the boundary matrix product state technique to contract the partition function TN, and determine the thermodynamic properties with high accuracy. In this monomer-dimer-loop model, we find a second-order phase transition between a trivial monomer-condensation and a loop-condensation (LC) phase, which cannot be distinguished by any local order parameter, while nevertheless the two phases have distinct topological properties. In the LC phase, we find two degenerate dominating eigenvalues in the transfer-matrix spectrum, as well as a nonvanishing (nonlocal) string order parameter, both of which identify the topological ergodicity breaking in the LC phase and can serve as the order parameter for detecting the phase transitions.

  13. Protein–DNA Interactions: The Story so Far and a New Method for Prediction

    DOE PAGES

    Jones, Susan; Thornton, Janet M.

    2003-01-01

    This review describes methods for the prediction of DNA binding function, and specifically summarizes a new method using 3D structural templates. The new method features the HTH motif that is found in approximately one-third of DNAbinding protein families. A library of 3D structural templates of HTH motifs was derived from proteins in the PDB. Templates were scanned against complete protein structures and the optimal superposition of a template on a structure calculated. Significance thresholds in terms of a minimum root mean squared deviation (rmsd) of an optimal superposition, and a minimum motif accessible surface area (ASA), have been calculated. Inmore » this way, it is possible to scan the template library against proteins of unknown function to make predictions about DNA-binding functionality.« less

  14. A Facile Strategy for In Situ Core-Template-Functionalizing Siliceous Hollow Nanospheres for Guest Species Entrapment

    PubMed Central

    2009-01-01

    The shell wall-functionalized siliceous hollow nanospheres (SHNs) with functional molecules represent an important class of nanocarriers for a rich range of potential applications. Herein, a self-templated approach has been developed for the synthesis of in situ functionalized SHNs, in which the biocompatible long-chain polycarboxylates (i.e., polyacrylate, polyaspartate, gelatin) provide the framework for silica precursor deposition by simply controlling chain conformation with divalent metal ions (i.e., Ca2+, Sr2+), without the intervention of any external templates. Metal ions play crucial roles in the formation of organic vesicle templates by modulating the long chains of polymers and preventing them from separation by washing process. We also show that, by in situ functionalizing the shell wall of SHNs, it is capable of entrapping nearly an eightfold quantity of vitamin Bc in comparison to the bare bulk silica nanospheres. These results confirm the feasibility of guest species entrapment in the functionalized shell wall, and SHNs are effective carriers of guest (bio-)molecules potentially for a variety of biomedical applications. By rationally choosing the functional (self-templating) molecules, this concept may represent a general strategy for the production of functionalized silica hollow structures. PMID:20596316

  15. Shrinkage strain-rates of dental resin-monomer and composite systems.

    PubMed

    Atai, Mohammad; Watts, David C; Atai, Zahra

    2005-08-01

    The purpose of this study was to investigate the shrinkage strain rate of different monomers, which are commonly used in dental composites and the effect of monomer functionality and molecular mass on the rate. Bis-GMA, TEGDMA, UDMA, MMA, HEMA, HPMA and different ratios of Bis-GMA/TEGDMA were mixed with Camphorquinone and Dimethyl aminoethyle methacrylate as initiator system. The shrinkage strain of the samples photopolymerised at Ca. 550 mW/cm2 and 23 degrees C was measured using the bonded-disk technique of Watts and Cash (Meas. Sci. Technol. 2 (1991) 788-794), and initial shrinkage-strain rates were obtained by numerical differentiation. Shrinkage-strain rates rose rapidly to a maximum, and then fell rapidly upon vitrification. Strain and initial strain rate were dependent upon monomer functionality, molecular mass and viscosity. Strain rates were correlated with Bis-GMA in Bis-GMA/TEGDMA mixtures up to 75-80 w/w%, due to the higher molecular mass of Bis-GMA affecting termination reactions, and then decreased due to its higher viscosity affecting propagation reactions. Monofunctional monomers exhibited lower rates. UDMA, a difunctional monomer of medium viscosity, showed the highest shrinkage strain rate (P < 0.05). Shrinkage strain rate, related to polymerization rate, is an important factor affecting the biomechanics and marginal integrity of composites cured in dental cavities. This study shows how this is related to monomer molecular structure and viscosity. The results are significant for the production, optimization and clinical application of dental composite restoratives.

  16. Electrochemical Deposition of Nanostructured Conducting Polymer Coatings on Neural Prosthetic Devices

    NASA Astrophysics Data System (ADS)

    Yang, Junyan; Martin, David

    2003-03-01

    Micromachined neural prosthetic devices facilitate the functional stimulation of and recording from the central nervous system (CNS). These devices have been fabricated to consist of silicon shanks that have gold or iridium sites along their surface. Our goal is to improve the biocompatibility and long-term performance of the neural prosthetic probes when they are implanted chronically in the brain. In our most recent efforts we have established that electrochemical polymerization can be used to deposit fuzzy coatings of conducting polymers specifically on the electrode sites. For neural prosthetic devices that are intended for long term implantation, we need to develop surfaces that provide intimate contact and promote efficient signal transport at the interface of the microelectrode array and brain tissue. We have developed methods to rapidly and reliably fabricate nanostructured conducting polymer coatings on the electrode probes using templated and surfactant-mediated techniques. Conducting polymer nanomushrooms and nanohairs of polypyrrole (PPy) were electrochemically polymerized onto the functional sites of neural probes by using either nanoporous block copolymers thin films, "track-etched" polycarbonate films or anodic aluminium oxide membranes as templates. Nanofibers of conducting polymers have also been successfully obtained by polymerizations in the presence of surfactants. The influence of current density, monomer concentration, surfactant concentration, and deposition charge on the thickness and morphology of the nanostructured conducting polymer coatings has been studied by optical, scanned probe, scanning electron and transmission electron microscopy. As compared with the normal nodular morphology of polypyrrole, the nanostructured morphologies grown from the neural electrode result in fuzzy coatings with extremely high surface area. The electrical properties of the polymer coatings were studied by Impedance Spectroscopy (IS) and Cyclic Voltammetry (CV). The significant drop in impedance in magnitude and phase angle is consistent with an increase of the surface area due to the roughened surface morphology.

  17. Origin of life. Primordial genetics: Information transfer in a pre-RNA world based on self-replicating beta-sheet amyloid conformers.

    PubMed

    Maury, Carl Peter J

    2015-10-07

    The question of the origin of life on Earth can largely be reduced to the question of what was the first molecular replicator system that was able to replicate and evolve under the presumably very harsh conditions on the early Earth. It is unlikely that a functional RNA could have existed under such conditions and it is generally assumed that some other kind of information system preceded the RNA world. Here, I present an informational molecular system that is stable, self-replicative, environmentally responsive, and evolvable under conditions characterized by high temperatures, ultraviolet and cosmic radiation. This postulated pregenetic system is based on the amyloid fold, a functionally unique polypeptide fold characterized by a cross beta-sheet structure in which the beta strands are arranged perpendicular to the fiber axis. Beside an extraordinary structural robustness, the amyloid fold possesses a unique ability to transmit information by a three-dimensional templating mechanism. In amyloidogenesis short peptide monomers are added one by one to the growing end of the fiber. From the same monomeric subunits several structural variants of amyloid may be formed. Then, in a self-replicative mode, a specific amyloid conformer can act as a template and confer its spatially encoded information to daughter molecular entities in a repetitive way. In this process, the specific conformational information, the spatially changed organization, is transmitted; the coding element is the steric zipper structure, and recognition occurs by amino acid side chain complementarity. The amyloid information system fulfills several basic requirements of a primordial evolvable replicator system: (i) it is stable under the presumed primitive Earth conditions, (ii) the monomeric building blocks of the informational polymer can be formed from available prebiotic compounds, (iii) the system is self-assembling and self-replicative and (iv) it is adaptive to changes in the environment and evolvable. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  18. Effective holographic recordings in the photopolymer nanocomposites with functionalized silica nanoparticle and polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Han, Samsook; Lee, Muncheul; Kim, Byung Kyu

    2011-11-01

    Effective holographic nanocomposites were developed by the surface-functionalized silica nanoparticles and two acrylate monomers/polyurethane (PU) matrix polymer. The functionalization was done with silane compounds carrying long alkyl chain or vinyl group. We evaluated the holographic nanocomposite films by the diffraction efficiency, volume shrinkage, optical loss, and the film morphology. It was found that acrylate monomers/PU system gave higher diffraction efficiency than those of two monomers due to the high refractive index mismatch between the acrylate-rich and PU-rich regions. With the modification of silica particle, up to 35% of particle loading was possible to give a maximum diffraction efficiency of 93.6% for a film of 20 μm in thickness, along with improved refractive index modulation and the sensitivity.

  19. Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia

    PubMed Central

    Vitriol, Eric A.; McMillen, Laura M.; Kapustina, Maryna; Gomez, Shawn M.; Vavylonis, Dimitrios; Zheng, James Q.

    2015-01-01

    Summary Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer binding protein thymosin β4 (Tβ4) for optimal leading edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it doesn’t interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions. PMID:25865895

  20. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions

    PubMed Central

    Joseph, Prem Raj B.; Mosier, Philip D.; Desai, Umesh R.; Rajarathnam, Krishna

    2015-01-01

    Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8–GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer–GAG interactions and function. PMID:26371375

  1. Growth of aragonite calcium carbonate nanorods in the biomimetic anodic aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Lee, Inho; Han, Haksoo; Lee, Sang-Yup

    2010-04-01

    In this study, a biomimetic template was prepared and applied for growing calcium carbonate (CaCO 3) nanorods whose shape and polymorphism were controlled. A biomimetic template was prepared by adsorbing catalytic dipeptides into the pores of an anodic aluminum oxide (AAO) membrane. Using this peptide-adsorbed template, mineralization and aggregation of CaCO 3 was carried out to form large nanorods in the pores. The nanorods were aragonite and had a structure similar to nanoneedle assembly. This aragonite nanorod formation was driven by both the AAO template and catalytic function of dipeptides. The AAO membrane pores promoted generation of aragonite polymorph and guided nanorod formation by guiding the nanorod growth. The catalytic dipeptides promoted the aggregation and further dehydration of calcium species to form large nanorods. Functions of the AAO template and catalytic dipeptides were verified through several control experiments. This biomimetic approach makes possible the production of functional inorganic materials with controlled shapes and crystalline structures.

  2. Numerically Exact Calculation of Rovibrational Levels of Cl^-H_2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2014-06-01

    Large amplitude vibrations of Van der Waals clusters are important because they reveal large regions of a potential energy surface (PES). To calculate spectra of Van der Waals clusters it is common to use an adiabatic approximation. When coupling between intra- and inter-molecular coordinates is important non-adiabatic coupling cannot be neglected and it is therefore critical to develop and test theoretical methods that couple both types of coordinates. We have developed new product basis and contracted basis Lanczos methods for Van der Waals complexes and tested them by computing rovibrational energy levels of Cl^-H_2O. The new product basis is made of functions of the inter-monomer distance, Wigner functions that depend on Euler angles specifying the orientation of H_2O with respect to a frame attached to the inter-monomer Jacobi vector, basis functions for H_2O vibration, and Wigner functions that depend on Euler angles specifying the orientation of the inter-monomer Jacobi vector with respect to a space-fixed frame. An advantage of this product basis is that it can be used to make an efficient contracted basis by replacing the vibrational basis functions for the monomer with monomer vibrational wavefunctions. Due to weak coupling between intra- and inter-molecular coordinates, only a few tens of monomer vibrational wavefunctions are necessary. The validity of the two new methods is established by comparing energy levels with benchmark rovibrational levels obtained with polyspherical coordinates and spherical harmonic type basis functions. For all bases, product structure is exploited to calculate eigenvalues with the Lanczos algorithm. For Cl^-H_2O, we are able, for the first time, to compute accurate splittings due to tunnelling between the two equivalent C_s minima. We use the PES of Rheinecker and Bowman (RB). Our results are in good agreement with experiment for the five fundamental bands observed. J. Rheinecker and J. M. Bowman, J. Chem. Phys. 124 131102 (2006) J. Rheinecker and J. M. Bowman, J. Chem. Phys. 125 133206 (2006)} S. Horvath, A. B. McCoy, B. M. Elliott, G. H. Weddle, J. R. Roscioli, and M. A. Johnson J. Phys. Chem. A 114 1556 (2010)

  3. Bulk synthesis of polypyrrole nanofibers by a seeding approach.

    PubMed

    Zhang, Xinyu; Manohar, Sanjeev K

    2004-10-13

    The morphology of doped polypyrrole.Cl powder changes dramatically from granular to nanofibrillar when a very small amount (1-4 mg) of V2O5 nanofibers are added to a chemical oxidative polymerization of pyrrole in aq 1.0 M HCl using (NH4)2S2O8 as the oxidant. Unlike the polyaniline system, a key synthetic requirement in the polypyrrole system is for the seed template to be "active", i.e., to be capable of independently oxidizing the pyrrole monomer. Thin, strongly adherent films can be obtained on inert surfaces such as glass, plastics, etc., directly from the polymerization mixture without any bulk product isolation steps, significantly simplifying the processing of these nanofibers.

  4. Preferential polymerization and adsorption of L-optical isomers of amino acids relative to D-optical isomers on kaolinite templates.

    NASA Technical Reports Server (NTRS)

    Jackson, T. A.

    1971-01-01

    Experiments on the polymerization of the L- and D-optical isomers of aspartic acid and serine using kaolinite as a catalyst showed that the L-optical isomers were polymerized at a much higher rate than the D-optical isomers; racemic (DL-) mixtures were polymerized at an intermediate rate. The peptides formed from the L-monomers were preferentially adsorbed by the clay. In the absence of kaolinite, no significant or consistent difference in the behavior of the L- and D-optical isomers was observed. In experiments on the adsorption of L- and D-phenylalanine by kaolinite, the L-optical isomer was preferentially adsorbed.

  5. Modeling phase separation in mixtures of intrinsically-disordered proteins

    NASA Astrophysics Data System (ADS)

    Gu, Chad; Zilman, Anton

    Phase separation in a pure or mixed solution of intrinsically-disordered proteins (IDPs) and its role in various biological processes has generated interest from the theoretical biophysics community. Phase separation of IDPs has been implicated in the formation of membrane-less organelles such as nucleoli, as well as in a mechanism of selectivity in transport through the nuclear pore complex. Based on a lattice model of polymers, we study the phase diagram of IDPs in a mixture and describe the selective exclusion of soluble proteins from the dense-phase IDP aggregates. The model captures the essential behaviour of phase separation by a minimal set of coarse-grained parameters, corresponding to the average monomer-monomer and monomer-protein attraction strength, as well as the protein-to-monomer size ratio. Contrary to the intuition that strong monomer-monomer interaction increases exclusion of soluble proteins from the dense IDP aggregates, our model predicts that the concentration of soluble proteins in the aggregate phase as a function of monomer-monomer attraction is non-monotonic. We corroborate the predictions of the lattice model using Langevin dynamics simulations of grafted polymers in planar and cylindrical geometries, mimicking various in-vivo and in-vitro conditions.

  6. Smart coumarin-tagged imprinted polymers for the rapid detection of tamoxifen.

    PubMed

    Ray, Judith V; Mirata, Fosca; Pérollier, Celine; Arotcarena, Michel; Bayoudh, Sami; Resmini, Marina

    2016-03-01

    A signalling molecularly imprinted polymer was synthesised for easy detection of tamoxifen and its metabolites. 6-Vinylcoumarin-4-carboxylic acid (VCC) was synthesised from 4-bromophenol to give a fluorescent monomer, designed to switch off upon binding of tamoxifen. Clomiphene, a chlorinated analogue, was used as the template for the imprinting, and its ability to quench the coumarin fluorescence when used in a 1:1 ratio was demonstrated. Tamoxifen and 4-hydroxytamoxifen were also shown to quench coumarin fluorescence. Imprinted and non-imprinted polymers were synthesised using VCC, methacrylic acid as a backbone monomer and ethylene glycol dimethacrylate as cross-linker, and were ground and sieved to particle sizes ranging between 45 and 25 μm. Rebinding experiments demonstrate that the imprinted polymer shows very strong affinity for both clomiphene and tamoxifen, while the non-imprinted polymer shows negligible rebinding. The fluorescence of the imprinted polymer is quenched by clomiphene, tamoxifen and 4-hydroxytamoxifen. The switch off in fluorescence of the imprinted polymer under these conditions could also be detected under a UV lamp with the naked eye, making this matrix suitable for applications when coupled with a sample preparation system.

  7. Remote site-selective C–H activation directed by a catalytic bifunctional template

    PubMed Central

    Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan

    2017-01-01

    Converting C–H bonds directly into carbon-carbon and carbon-heteroatom bonds can significantly improve step-economy in synthesis by providing alternative disconnections to traditional functional group manipulations. In this context, directed C–H activation reactions have been extensively explored for regioselective functionalization1-5. Though applicability can be severely curtailed by distance from the directing group and the shape of the molecule, a number of approaches have been developed to overcome this limitation6-12. For instance, recognition of the distal and geometric relationship between an existing functional group and multiple C–H bonds has recently been exploited to achieve meta-selective C–H activation by use of a covalently attached U-shaped template13-17. However, stoichiometric installation of the template is not feasible in the absence of an appropriate functional group handle. Here we report the design of a catalytic, bifunctional template that binds heterocyclic substrate via reversible coordination instead of covalent linkage, allowing remote site-selective C–H olefination of heterocycles. The two metal centers coordinated to this template play different roles; anchoring substrates to the proximity of catalyst and cleaving the remote C–H bonds respectively. Using this strategy, we demonstrate remote site-selective C–H olefination of heterocyclic substrates which do not have functional group handles for covalently attaching templates. PMID:28273068

  8. Polymers functionalized with bronsted acid groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Humbeck, Jeffrey; Long, Jeffrey R.; McDonald, Thomas M.

    Porous aromatic framework polymers functionalized with Bronsted acid moieties are prepared by polymerization of a three-dimensional organic aryl or heteroaryl monomer and its copolymerization with a second aryl or heteroaryl monomer functionalized with one or more Bronsted acid moiety. The polymers are characterized by a stable three-dimensional structure, which, in exemplary embodiments, includes interpenetrating subunits within one or more domain of the bulk polymer structure. The polymers are of use in methods of adsorbing ammonia and amines and in devices and systems configured for this purpose.

  9. Self-assembled molecular films incorporating a ligand

    DOEpatents

    Bednarski, M.D.; Wilson, T.E.; Mastandra, M.S.

    1996-04-23

    Functionalized monomers are presented which can be used in the fabrication of molecular films for controlling adhesion, detection of receptor-ligand binding and enzymatic reactions; new coatings for lithography; and for semiconductor materials. The monomers are a combination of a ligand, a linker, optionally including a polymerizable group, and a surface attachment group. The processes and an apparatus for making films from these monomers, as well as methods of using the films are also provided. 7 figs.

  10. TEGDMA and UDMA monomers released from composite dental material polymerized with diode and halogen lamps.

    PubMed

    Wacławczyk, Agnieszka; Postek-Stefańska, Lidia; Pietraszewska, Daria; Birkner, Ewa; Zalejska-Fiolka, Jolanta; Wysoczańska-Jankowicz, Iwona

    2018-03-20

    More than 35 substances released from composite fillings have been identified. Among these, basic monomers and the so-called co-monomers are most often reported. The substances released from polymer-based materials demonstrate allergenic, cytotoxic, genotoxic, mutagenic, embryotoxic, teratogenic, and estrogenic properties. The aim of this study was to measure the amounts of triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA) monomers released from composite dental fillings to citrate-phosphate buffer with the pH of 4, 6, 8 after 24 h and 6 months from the polymerization. Ten samples for each polymerization method had been made from the composite material (Filtek Supreme XT, 3M ESPE, St. Paul, USA), which underwent polymerization using the following lamps: halogen lamp (Translux CL, Heraeus Kulzer, Hanau, Germany) (sample H) and diode lamp (Elipar Freelight 2, 3M ESPE), with soft start function (group DS) and without that function (group DWS). It has been demonstrated that the type of light-curing units has a significant impact on the amount of TEGDMA and UDMA released. The amount of UDMA and TEGDMA monomers released from composite fillings differed significantly depending on the source of polymerization applied, as well as the pH of the solution and sample storage time. Elution of the monomers from composite material polymerized using halogen lamp was significantly greater as compared to curing with diode lamps.

  11. Selective Functionalization of Arbitrary Nanowires

    DTIC Science & Technology

    2006-11-02

    3-mercaptopropyl)- trimethoxysilane (MPTMS). The wires were grown electrochemically in anodic aluminum oxide ( AAO ) templates. Selective deposition...In the past, templates composed of polycarbonate track-etched membranes or anodic aluminum oxide materials have been used for the construction of...modifier MPTMS was used to function- alize the AAO template because it can form covalent bonds with silanes and metal oxide surfaces21 and because of

  12. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Fengxia; Zhang, Minjie; University of Chinese Academy of Sciences, Beijing 100049

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage.more » Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.« less

  13. The Key Role of U28 in the Aqueous Self-Assembly of Uranyl Peroxide Nanocages.

    PubMed

    Falaise, Clément; Nyman, May

    2016-10-04

    For 11 years now, the structural diversity and aesthetic beauty of uranyl-peroxide capsules have fascinated researchers from the diverse fields of mineralogy, polyoxometalate chemistry, and nuclear fuel technologies. There is still much to be learned about the mechanisms of the self-assembly process, and the role of solution parameters including pH, alkali template, temperature, time, and others. Here we have exploited the high solubility of the UO2 (2+) /H2 O2 /LiOH aqueous system to address the effect of the hydroxide concentration. Important techniques of this study are single-crystal X-ray diffraction, small-angle X-ray scattering, and Raman spectroscopy. Three key phases dominate the solution speciation as a function of time and the LiOH/UO2 (2+) ratio: the uranyl-triperoxide monomer [UO2 (O2 )3 ](4-) and the two capsules [(UO2 )(O2 )(OH)]24 (24-) (U24 ) and [(UO2 )(O2 )1.5 ]28 (28-) (U28 ). When the LiOH/U ratio is around three, U28 forms rapidly and this cluster can be isolated in high yield and purity. This result was most surprising and challenges the hypothesis that alkali templating is the most important determinant in the cluster geometry. Moreover, analogous experiments with KOH, NH4 OH, and TEAOH (TEA=tetraethylammonium) also rapidly yield U28 , which suggests that U28 is the kinetically favored species. Complete mapping of the pH-time phase space reveals only a narrow window of the U28 dominance, which is why it was previously overlooked as an important kinetic species in this chemical system, as well as others with different counterions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Directed Self-Assembly in "Breath Figure" Templating of Melamine-Based Amphiphilic Copolymers: Effect of Hydrophilic End-Chain on Honeycomb Film Formation and Wetting.

    PubMed

    Yin, Hongyao; Feng, Yujun; Billon, Laurent

    2018-01-09

    Amphiphilic copolymers are widely used in the fabrication of hierarchically honeycomb-structured films through a "breath figure" (BF) process because the hydrophilic block plays a key role in stabilising water templating. However, the hydrophilic monomers reported are mainly confined to acrylic acid and its derivatives, which largely limits understanding of the formation of BF arrays and the introduction of additional functions on porous films. The relationship between polymer composition, film microstructure and surface properties are also less documented. Herein, a novel melamine-based hydrophilic moiety, N-[3-({3-[(4,6-bis{[3-(dimethylamino)propyl]amino}-1,3,5-triazin-2yl)amino]propyl}(methyl)amino)propyl]methacrylamide (ANME), was incorporated into polystyrene (PS) chains by combining atom-transfer radical polymerisation and post-modification to afford three well-defined end-functionalised PS-PANME derivatives. These polymers were used to fabricate honeycomb films through the BF technique. Both inner and outer microstructures of the films were characterised by optical microscopy, AFM and SEM. Polymer hydrophilicity is enhanced upon increasing the PANME content, which results in variation of the film microstructure and porosity, and provokes a transition from Cassie-Baxter to Wenzel behaviour. Furthermore, the surface wettability of as-prepared honeycomb films and corresponding pillared films is mainly governed by film morphology, rather than by the properties of the polymers. Knowledge of the relationships between polymer composition and film structure, as well as surface wettability, is beneficial to design and prepare hierarchically porous films with desirable structures and properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 40 CFR 723.250 - Polymers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... functional group. Fluorotelomers means the products of telomerization, which is the reaction of a telogen... relevant polymer-forming reaction used for the particular process. Monomer Unit means the reacted form of... monomer units but which, under the relevant reaction conditions used for the particular process, cannot...

  16. The information capacity of hypercycles.

    PubMed

    Silvestre, Daniel A M M; Fontanari, José F

    2008-10-21

    Hypercycles are information integration systems which are thought to overcome the information crisis of prebiotic evolution by ensuring the coexistence of several short templates. For imperfect template replication, we derive a simple expression for the maximum number of distinct templates n(m) that can coexist in a hypercycle and show that it is a decreasing function of the length L of the templates. In the case of high replication accuracy we find that the product n(m)L tends to a constant value, limiting thus the information content of the hypercycle. Template coexistence is achieved either as a stationary equilibrium (stable fixed point) or a stable periodic orbit in which the total concentration of functional templates is nonzero. For the hypercycle system studied here we find numerical evidence that the existence of an unstable fixed point is a necessary condition for the presence of periodic orbits.

  17. Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering.

    PubMed

    Owen, Robert; Sherborne, Colin; Paterson, Thomas; Green, Nicola H; Reilly, Gwendolen C; Claeyssens, Frederik

    2016-02-01

    Polymerised High Internal Phase Emulsions (PolyHIPEs) are manufactured via emulsion templating and exhibit a highly interconnected microporosity. These materials are commonly used as thin membranes for 3D cell culture. This study uses emulsion templating in combination with microstereolithography to fabricate PolyHIPE scaffolds with a tightly controlled and reproducible architecture. This combination of methods produces hierarchical structures, where the microstructural properties can be independently controlled from the scaffold macrostructure. PolyHIPEs were fabricated with varying ratios of two acrylate monomers (2-ethylhexyl acrylate (EHA) and isobornyl acrylate (IBOA)) and varying nominal porosity to tune mechanical properties. Young's modulus, ultimate tensile stress (UTS) and elongation at failure were determined for twenty EHA/IBOA compositions. Moduli ranged from 63.01±9.13 to 0.36±0.04MPa, UTS from 2.03±0.33 to 0.11±0.01MPa and failure strain from 21.86±2.87% to 2.60±0.61%. Selected compositions were fabricated into macro-porous woodpile structures, plasma treated with air or acrylic acid and seeded with human embryonic stem-cell derived mesenchymal progenitor cells (hES-MPs). Confocal and two-photon microscopy confirmed cell proliferation and penetration into the micro- and macro-porous architecture. The scaffolds supported osteogenic differentiation of mesenchymal cells and interestingly, the stiffest IBOA-based scaffolds that were plasma treated with acrylic acid promoted osteogenesis more strongly than the other scaffolds. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. EFFECTS OF DOPAMINERGIC DRUGS ON WORKING AND REFERENCE MEMORY IN RATS

    EPA Science Inventory

    Occupational exposure to styrene monomer has been associated with cognitive dysfunction in humans, and changes in dopaminergic function have been suggested to underly effects of repeated exposure to styrene monomer in animals. his study was designed to determine whether styrene a...

  19. A direct comparison between gas state and atomised liquid state precursor in the deposition of functional coatings by pin corona plasma

    NASA Astrophysics Data System (ADS)

    Herbert, P. A. F.; Jaroszyńska-Wolińska, J.

    2011-07-01

    An atmospheric pressure non-thermal equilibrium pin corona plasma jet was used to deposit polymeric coatings from monomer precursor in both vapour and liquid aerosol states to allow a direct comparison of the quality and performance of the as-deposited coatings, specifically with respect to the achievement of soft plasma polymerisation (SPP) where the coating exhibits minimal fragmentation or damage to the monomer molecule while, at the same time, being highly cross-linked. A long chain perfluorocarbon molecule was introduced into the helium plasma and coatings deposited at rates of up to 50 nm/min. XPS, FTIR, contact angle and ellipsometric measurements indicated that a controlled polymerisation reaction had taken place in the case of the vapour deposited samples through the vinyl group of the monomer, with only minor fragmentation of the functional perfluoro chain. Furthermore, a high level of cross-linking was achieved and the coatings were stable to a toluene wash. In contrast, while the liquid deposition samples showed good retention of monomer molecular structure, they exhibited negligible cross-linking and were readily removed by immersion in toluene rendering them functionally useless.

  20. Surface-functionalized mesoporous carbon materials

    DOEpatents

    Dai, Sheng; Gorka, Joanna; Mayes, Richard T.

    2016-02-02

    A functionalized mesoporous carbon composition comprising a mesoporous carbon scaffold having mesopores in which polyvinyl polymer grafts are covalently attached, wherein said mesopores have a size of at least 2 nm and up to 50 nm. Also described is a method for producing the functionalized mesoporous composition, wherein a reaction medium comprising a precursor mesoporous carbon, vinyl monomer, initiator, and solvent is subjected to sonication of sufficient power to result in grafting and polymerization of the vinyl monomer into mesopores of the precursor mesoporous carbon. Also described are methods for using the functionalized mesoporous carbon, particularly in extracting metal ions from metal-containing solutions.

  1. Nonchemically amplified resists for deep-UV lithography

    NASA Astrophysics Data System (ADS)

    Ganesan, Ramakrishnan; Kim, Sumin; Youn, Seul Ki; Cho, Youngook; Yun, Jei-Moon; Kim, Jin-Baek

    2007-03-01

    A novel monomer containing a diazoketo functional group was designed and synthesized. Polymers were synthesized using the diazoketo-functionalized monomer and their physical properties were evaluated. The polymers were synthesized by radical copolymerization of cholic acid 3-diazo-3-ethoxycarbonyl-2-oxo-propyl ester methacrylate, methyl methacrylate, and γ-butyrolacton-2-yl methacrylate. These polymers showed 0.7 μm line and space patterns using a mercury-xenon lamp in a contact printing mode.

  2. Framework for adaptive multiscale analysis of nonhomogeneous point processes.

    PubMed

    Helgason, Hannes; Bartroff, Jay; Abry, Patrice

    2011-01-01

    We develop the methodology for hypothesis testing and model selection in nonhomogeneous Poisson processes, with an eye toward the application of modeling and variability detection in heart beat data. Modeling the process' non-constant rate function using templates of simple basis functions, we develop the generalized likelihood ratio statistic for a given template and a multiple testing scheme to model-select from a family of templates. A dynamic programming algorithm inspired by network flows is used to compute the maximum likelihood template in a multiscale manner. In a numerical example, the proposed procedure is nearly as powerful as the super-optimal procedures that know the true template size and true partition, respectively. Extensions to general history-dependent point processes is discussed.

  3. Metathesis process for preparing an alpha, omega-functionalized olefin

    DOEpatents

    Burdett, Kenneth A.; Mokhtarzadeh, Morteza; Timmers, Francis J.

    2010-10-12

    A cross-metathesis process for preparing an .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, and an .alpha.-olefin having three or more carbon atoms, such as 1-decene. The process involves contacting in a first reaction zone an .alpha.-functionalized internal olefin, such as methyl oleate, and an .alpha.-olefinic monomer having three or more carbon atoms, such as 1-decene, with a first metathesis catalyst to prepare an effluent stream containing the .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, an unfunctionalized internal olefin, such as 9-octadecene, unconverted reactant olefins, and optionally, an .alpha.,.omega.-difunctionalized internal olefinic dimer, such as dimethyl 9-octadecen-1,18-dioate; separating said effluent streams; then contacting in a second reaction zone the unfunctionalized internal olefin with ethylene in the presence of a second metathesis catalyst to obtain a second product effluent containing the .alpha.-olefinic monomer having three or more carbon atoms; and cycling a portion of the .alpha.-olefinic monomer stream(s) to the first zone.

  4. A nanocomposite optosensor containing carboxylic functionalized multiwall carbon nanotubes and quantum dots incorporated into a molecularly imprinted polymer for highly selective and sensitive detection of ciprofloxacin.

    PubMed

    Yuphintharakun, Naphat; Nurerk, Piyaluk; Chullasat, Kochaporn; Kanatharana, Proespichaya; Davis, Frank; Sooksawat, Dhassida; Bunkoed, Opas

    2018-08-05

    A nanocomposite optosensor consisting of carboxylic acid functionalized multiwall carbon nanotubes and CdTe quantum dots embedded inside a molecularly imprinted polymer (COOH@MWCNT-MIP-QDs) was developed for trace ciprofloxacin detection. The COOH@MWCNT-MIP-QDs were synthesized through a facile sol-gel process using ciprofloxacin as a template molecule, 3-aminopropylethoxysilane as a functional monomer and tetraethoxysilane as a cross-linker at a molar ratio of 1:8:20. The synthesized nanocomposite optosensor had high sensitivity, excellent specificity and high binding affinity to ciprofloxacin. Under optimal conditions, the fluorescence intensity of the optosensor decreased in a linear fashion with the concentration of ciprofloxacin and two linear dynamic ranges were obtained, 0.10-1.0 μg L -1 and 1.0-100.0 μg L -1 with a very low limit of detection of 0.066 μg L -1 . The imprinting factors of the two linear range were 17.67 and 4.28, respectively. The developed nanocomposite fluorescence probe was applied towards the determination of ciprofloxacin levels in chicken muscle and milk samples with satisfactory recoveries being obtained in the range of 82.6 to 98.4%. The results were also in good agreement with a HPLC method which indicates that the optosensor can be used as a sensitive, selective and rapid method to detect ciprofloxacin in chicken and milk samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Molecularly imprinted solid-phase extraction combined with high performance liquid chromatography for analysis of phenolic compounds from environmental water samples.

    PubMed

    Feng, Qin-Zhong; Zhao, Li-Xia; Yan, Wei; Lin, Jin-Ming; Zheng, Zhi-Xia

    2009-08-15

    The molecularly imprinted bulk polymer with 2,4,6-trichlorophenol (2,4,6-TCP) as the template molecule and methylacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA) as functional monomer and the crosslinker, respectively, has been prepared and applied to the molecularly imprinted solid-phase extraction (MISPE) procedure for selective preconcentration of phenolic compounds from environmental water samples. Various parameters affecting the extraction efficiency of the polymer have been evaluated to optimize the selective preconcentration of the phenolic compounds from aqueous samples. The characteristics of the MISPE method were validated by HPLC. The recoveries ranged between 90% and 98% (RSD: 0.9-2.3%, n=3) for tap water, between 85% and 105% (RSD: 2.6-4.9%, n=3) for river water, between 78% and 98% (RSD: 2.6-5.4%, n=3) for sewage water fortified with 0.4 mg L(-1) of phenol, 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), pentachlorophenol (PCP). It was demonstrated that this MISPE-HPLC method could be applied to direct preconcentration and determination of phenolic compounds in environmental water samples.

  6. Electrochemical MIP-Sensors for Drugs.

    PubMed

    Yarman, Aysu; Kurbanoglu, Sevinc; Jetzschmann, Katharina J; Ozkan, Sibel A; Wollenberger, Ulla; Scheller, Frieder

    2017-10-05

    In order to replace bio-macromolecules by stable synthetic materials in separation techniques and bioanalysis biomimetic receptors and catalysts have been developed: Functional monomers are polymerized together with the target analyte and after template removal cavities are formed in the "molecularly imprinted polymer" (MIP) which resemble the active sites of antibodies and enzymes. Staring almost 80 years ago, around 1,100 papers on MIPs were published in 2016. Electropolymerization allows to deposit MIPs directly on voltammetric electrodes or chips for quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). For the readout of MIPs for drugs amperometry, differential pulse voltammetry (DPV) and impedance spectroscopy (EIS) offer higher sensitivity as compared with QCM or SPR. Application of simple electrochemical devices allows both the reproducible preparation of MIP sensors, but also the sensitive signal generation. Electrochemical MIP-sensors for the whole arsenal of drugs, e.g. the most frequently used analgesics, antibiotics and anticancer drugs have been presented in literature and tested under laboratory conditions. These biomimetic sensors typically have measuring ranges covering the lower nano- up to millimolar concentration range and they are stable under extreme pH and in organic solvents like non-aqueous extracts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Ionic Liquids and Poly(ionic liquid)s for Morphosynthesis of Inorganic Materials.

    PubMed

    Gao, Min-Rui; Yuan, Jiayin; Antonietti, Markus

    2017-04-24

    Ionic liquids (ILs) are new, innovative ionic solvents with rich physicochemical properties and intriguing pre-organized solvent structures; these materials offer great potential to impact across versatile areas of scientific research, for example, synthetic inorganic chemistry. Recent use of ILs as precursors, templates, and solvents has led to inorganic materials with tailored sizes, dimensionalities, morphologies, and functionalities that are difficult to obtain, or even not accessible, by using conventional solvents. Poly(ionic liquid)s (PILs) polymerized from IL monomers also raise the prospect of modifying nucleation, growth, and crystallization of inorganic objects, shedding light on the synthesis of a wide range of new materials. Here we survey recent key progress in using ILs and PILs in the field of synthetic inorganic chemistry. As well as highlighting the unique features of ILs and PILs that enable advanced synthesis, the effects of adding other solvents to the final products, along with the emerging applications of the created inorganic materials will be discussed. We finally provide an outlook on several development opportunities that could lead to new advancements of this exciting research field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Polymerizable Molecular Silsesquioxane Cage Armored Hybrid Microcapsules with In Situ Shell Functionalization.

    PubMed

    Xing, Yuxiu; Peng, Jun; Xu, Kai; Lin, Weihong; Gao, Shuxi; Ren, Yuanyuan; Gui, Xuefeng; Liang, Shengyuan; Chen, Mingcai

    2016-02-01

    We prepared core-shell polymer-silsesquioxane hybrid microcapsules from cage-like methacryloxypropyl silsesquioxanes (CMSQs) and styrene (St). The presence of CMSQ can moderately reduce the interfacial tension between St and water and help to emulsify the monomer prior to polymerization. Dynamic light scattering (DLS) and TEM analysis demonstrated that uniform core-shell latex particles were achieved. The polymer latex particles were subsequently transformed into well-defined hollow nanospheres by removing the polystyrene (PS) core with 1:1 ethanol/cyclohexane. High-resolution TEM and nitrogen adsorption-desorption analysis showed that the final nanospheres possessed hollow cavities and had porous shells; the pore size was approximately 2-3 nm. The nanospheres exhibited large surface areas (up to 486 m 2  g -1 ) and preferential adsorption, and they demonstrated the highest reported methylene blue adsorption capacity (95.1 mg g -1 ). Moreover, the uniform distribution of the methacryloyl moiety on the hollow nanospheres endowed them with more potential properties. These results could provide a new benchmark for preparing hollow microspheres by a facile one-step template-free method for various applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development of a fiber coating based on molecular sol-gel imprinting technology for selective solid-phase micro extraction of caffeine from human serum and determination by gas chromatography/mass spectrometry.

    PubMed

    Rajabi Khorrami, Afshin; Rashidpur, Amene

    2012-05-21

    In this work, a molecular sol-gel imprinting approach has been introduced to produce a fiber coating for selective direct immersion solid-phase microextraction (SPME) of caffeine. The polymerization mixture was composed of vinyl trimethoxysilane and methacrylic acid as vinyl sol-gel precursor and functional monomer, respectively. Caffeine was used as template molecule during polymerization process. The prepared fibers could be coupled directly to gas chromatography/mass spectrometry (GC/MS) and used for trace analysis of caffeine in a complex sample such as human serum. The parameters influencing SPME such as time, temperature and stirring speed were optimized. The prepared coating showed good selectivity towards caffeine in the presence of some structurally related compounds. Also, it offered high imprinting capability in comparison to bare fiber and non-imprinted coating. Linear range for caffeine detection was 1-80 μg mL(-1) and the limit of detection was 0.1 μg mL(-1). The intra-day and inter-day precisions of the peak areas for five replicates were 10 and 16%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Boronic acid based imprinted electrochemical sensor for rutin recognition and detection.

    PubMed

    Wang, Chunlei; Wang, Qi; Zhong, Min; Kan, Xianwen

    2016-10-21

    Multi-walled carbon nanotubes (MWNTs) and boronic acid based molecular imprinting polymer (MIP) were successively modified on a glassy carbon electrode surface to fabricate a novel electrochemical sensor for rutin recognition and detection. 3-Aminophenylboronic acid (APBA) was chosen as a monomer for the electropolymerization of MIP film in the presence of rutin. In addition to the imprinted cavities in MIP film to complement the template molecule in shape and functional groups, the high affinity between the boronic acid group of APBA and vicinal diols of rutin also enhanced the selectivity of the sensor, which made the sensor display a good selectivity to rutin. Moreover, the modified MWNTs improved the sensitivity of the sensor for rutin detection. The mole ratios of rutin and APBA, electropolymerized scan cycles and rates, and pH value of the detection solution were optimized. Under optimal conditions, the sensor was used to detect rutin in a linear range from 4.0 × 10 -7 to 1.0 × 10 -5 mol L -1 with a detection limit of 1.1 × 10 -7 mol L -1 . The sensor has also been applied to assay rutin in tablets with satisfactory results.

  11. Synthesis of molecularly imprinted dye-silica nanocomposites with high selectivity and sensitivity: Fluorescent imprinted sensor for rapid and efficient detection of τ-fluvalinate in vodka.

    PubMed

    Wang, Yunyun; Wang, Jixiang; Cheng, Rujia; Sun, Lin; Dai, Xiaohui; Yan, Yongsheng

    2018-04-01

    An imprinted fluorescent sensor was fabricated based on SiO 2 nanoparticles encapsulated with a molecularly imprinted polymer containing allyl fluorescein. High fluorine cypermethirin as template molecules, methyl methacrylate as functional monomer, and allyl fluorescein as optical materials synthesized a core-shell fluorescent molecular imprinted sensor, which showed a high and rapid sensitivity and selectivity for the detection of τ-fluvalinate. The sensor presented appreciable sensitivity with a limit of 13.251 nM, rapid detection that reached to equilibrium within 3 min, great linear relationship in the relevant concentration range from 0 to 150 nM, and excellent selectivity over structural analogues. In addition, the fluorescent sensor demonstrated desirable regeneration ability (eight cycling operations). The molecularly imprinted polymers ensured specificity, while the fluorescent dyes provided the stabile sensitivity. Finally, an effective application of the sensor was implemented by the detection of τ-fluvalinate in real samples from vodka. The molecularly imprinted fluorescent sensor showed a promising potential in environmental monitoring and food safety. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cholesterol-imprinted macroporous monoliths: Preparation and characterization.

    PubMed

    Stepanova, Mariia А; Kinziabulatova, Lilia R; Nikitina, Anna A; Korzhikova-Vlakh, Evgenia G; Tennikova, Tatiana B

    2017-11-01

    The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.d. All prepared materials were characterized regarding to their hydrodynamic permeability and porous properties, as well as examined by BET and SEM methods. Imprinting factors, apparent dynamic dissociation constants, the maximum binding capacity, the number of theoretical plates and the height equivalent to a theoretical palate of MIP monoliths at different mobile phase flow rates were determined. The separation of a mixture of structural analogues, namely, cholesterol and prednisolone, was demonstrated. Additionally, the possibility of using the developed monoliths for cholesterol solid-phase extraction from simulated biological solution was shown. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Understanding the General Packing Rearrangements Required for Successful Template Based Modeling of Protein Structure from a CASP Experiment

    PubMed Central

    Day, Ryan; Joo, Hyun; Chavan, Archana; Lennox, Kristin P.; Chen, Ann; Dahl, David B.; Vannucci, Marina; Tsai, Jerry W.

    2012-01-01

    As an alternative to the common template based protein structure prediction methods based on main-chain position, a novel side-chain centric approach has been developed. Together with a Bayesian loop modeling procedure and a combination scoring function, the Stone Soup algorithm was applied to the CASP9 set of template based modeling targets. Although the method did not generate as large of perturbations to the template structures as necessary, the analysis of the results gives unique insights into the differences in packing between the target structures and their templates. Considerable variation in packing is found between target and template structures even when the structures are close, and this variation is found due to 2 and 3 body packing interactions. Outside the inherent restrictions in packing representation of the PDB, the first steps in correctly defining those regions of variable packing have been mapped primarily to local interactions, as the packing at the secondary and tertiary structure are largely conserved. Of the scoring functions used, a loop scoring function based on water structure exhibited some promise for discrimination. These results present a clear structural path for further development of a side-chain centered approach to template based modeling. PMID:23266765

  14. Understanding the general packing rearrangements required for successful template based modeling of protein structure from a CASP experiment.

    PubMed

    Day, Ryan; Joo, Hyun; Chavan, Archana C; Lennox, Kristin P; Chen, Y Ann; Dahl, David B; Vannucci, Marina; Tsai, Jerry W

    2013-02-01

    As an alternative to the common template based protein structure prediction methods based on main-chain position, a novel side-chain centric approach has been developed. Together with a Bayesian loop modeling procedure and a combination scoring function, the Stone Soup algorithm was applied to the CASP9 set of template based modeling targets. Although the method did not generate as large of perturbations to the template structures as necessary, the analysis of the results gives unique insights into the differences in packing between the target structures and their templates. Considerable variation in packing is found between target and template structures even when the structures are close, and this variation is found due to 2 and 3 body packing interactions. Outside the inherent restrictions in packing representation of the PDB, the first steps in correctly defining those regions of variable packing have been mapped primarily to local interactions, as the packing at the secondary and tertiary structure are largely conserved. Of the scoring functions used, a loop scoring function based on water structure exhibited some promise for discrimination. These results present a clear structural path for further development of a side-chain centered approach to template based modeling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. An engineered transforming growth factor β (TGF-β) monomer that functions as a dominant negative to block TGF-β signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun Kyung; Barron, Lindsey; Hinck, Cynthia S.

    The transforming growth factor β isoforms, TGF-β1, -β2, and -β3, are small secreted homodimeric signaling proteins with essential roles in regulating the adaptive immune system and maintaining the extracellular matrix. However, dysregulation of the TGF-β pathway is responsible for promoting the progression of several human diseases, including cancer and fibrosis. Despite the known importance of TGF-βs in promoting disease progression, no inhibitors have been approved for use in humans. Herein, we describe an engineered TGF-β monomer, lacking the heel helix, a structural motif essential for binding the TGF-β type I receptor (TβRI) but dispensable for binding the other receptor requiredmore » for TGF-β signaling, the TGF-β type II receptor (TβRII), as an alternative therapeutic modality for blocking TGF-β signaling in humans. As shown through binding studies and crystallography, the engineered monomer retained the same overall structure of native TGF-β monomers and bound TβRII in an identical manner. Cell-based luciferase assays showed that the engineered monomer functioned as a dominant negative to inhibit TGF-β signaling with a Ki of 20–70 nM. Investigation of the mechanism showed that the high affinity of the engineered monomer for TβRII, coupled with its reduced ability to non-covalently dimerize and its inability to bind and recruit TβRI, enabled it to bind endogenous TβRII but prevented it from binding and recruiting TβRI to form a signaling complex. Such engineered monomers provide a new avenue to probe and manipulate TGF-β signaling and may inform similar modifications of other TGF-β family members.« less

  16. New cation-exchange material based on a sulfonated 3,4-ethylenedioxythiophene monomer

    NASA Astrophysics Data System (ADS)

    Stéphan, O.; Schottland, P.; Le Gall, P.-Y.; Chevrot, C.

    1998-06-01

    The electrochemical oxidation, in aqueous medium, of a 3,4-ethylenedioxythiophene monomer functionalized by a sulfonate group exhibiting cation-exchange properties, allows the synthesis of a new type of water-soluble material. In order to synthesize in water, by oxidative electropolymerization, polymer films of controlled thickness containing attached sulfonate groups, we have investigated the polymerization of the functionalized monomer in the presence of the unsubstituted one without supporting electrolyte. Using an equimolar mixture (0.01 mol/l) of both monomers, copolymers exhibiting cation exchange abilities have been synthesized. As an example, th easy incorporation of hexaamine-ruthenium(III) into one of these copolymers is briefly reported. L'oxydation électrochimique en milieu aqueux d'un monomère de type 3,4- éthylènedioxythiophène fonctionnalisé par un groupement sulfonate permet d'envisager la synthèse d'un nouveau type de polymère hydrosoluble. Afin d'obtenir électrochimiquement en milieu aqueux, un film de polymère d'épaisseur contrôlée contenant des groupements sulfonates, nous avons evisagé de polymériser ce monomère en présence de son homologue non substitué. En partant d'un mélange équimolaire (0.01 mol/l) des deux monomères et en l'absence d'électrolyte support, nous avons synthétisé un matériau possédant des propriétés d'échange de cations. A titre d'exemple, nous présentons brièvement l'incorporation d'un complexe hexaaminé du ruthénium(III) dans un de ces copolymères.

  17. Enzymatic Specific Production and Chemical Functionalization of Phenylpropanone Platform Monomers from Lignin

    PubMed Central

    Hasegawa, Ryoichi; Kurosawa, Kanako; Maeda, Allyn H.; Koizumi, Toshio; Nishimura, Hiroshi; Okada, Hitomi; Qu, Chen; Saito, Kaori; Watanabe, Takashi; Hatada, Yuji

    2016-01-01

    Abstract Enzymatic catalysis is an ecofriendly strategy for the production of high‐value low‐molecular‐weight aromatic compounds from lignin. Although well‐definable aromatic monomers have been obtained from synthetic lignin‐model dimers, enzymatic‐selective synthesis of platform monomers from natural lignin has not been accomplished. In this study, we successfully achieved highly specific synthesis of aromatic monomers with a phenylpropane structure directly from natural lignin using a cascade reaction of β‐O‐4‐cleaving bacterial enzymes in one pot. Guaiacylhydroxylpropanone (GHP) and the GHP/syringylhydroxylpropanone (SHP) mixture are exclusive monomers from lignin isolated from softwood (Cryptomeria japonica) and hardwood (Eucalyptus globulus). The intermediate products in the enzymatic reactions show the capacity to accommodate highly heterologous substrates at the substrate‐binding sites of the enzymes. To demonstrate the applicability of GHP as a platform chemical for bio‐based industries, we chemically generate value‐added GHP derivatives for bio‐based polymers. Together with these chemical conversions for the valorization of lignin‐derived phenylpropanone monomers, the specific and enzymatic production of the monomers directly from natural lignin is expected to provide a new stream in “white biotechnology” for sustainable biorefineries. PMID:27878983

  18. Laser-ignited frontal polymerization of shape-controllable poly(VI-co-AM) hydrogels based on 3D templates toward adsorption of heavy metal ions

    NASA Astrophysics Data System (ADS)

    Fan, Suzhen; Liu, Sisi; Wang, Xiao-Qiao; Wang, Cai-Feng; Chen, Su

    2016-06-01

    Given the increasing heavy metal pollution issue, fast preparation of polymeric hydrogels with excellent adsorption property toward heavy metal ions is very attractive. In this work, a series of poly( N-vinylimidazole-co-acrylamide) (poly(VI-co-AM)) hydrogels were synthesized via laser-ignited frontal polymerization (LIFP) for the first time. The dependence of frontal velocity and temperature on two factors monomer ratios and initiator concentrations was systematically investigated. Poly(VI-co-AM) hydrogels with any self-supporting shapes can be synthesized by a one-step LIFP in seconds through the application of 3D templates. These shape-persistent hydrogels are pH-responsive and exhibit excellent adsorption/desorption characteristics toward Mn(II), Zn(II), Cd(II), Ni(II), Cu(II) and Co(II) ions, and the adsorption conformed to the pseudo-second-order kinetic model. The reusability of the hydrogels toward mental ions adsorption was further researched, which suggested that the hydrogels can be reused without serious decrease in adsorption capacity. This work might open a promising strategy to facilely prepare shape-controllable hydrogels and expand the application of LIFP.

  19. Imprint lithography: lab curiosity or the real NGL

    NASA Astrophysics Data System (ADS)

    Resnick, Douglas J.; Dauksher, William J.; Mancini, David P.; Nordquist, Kevin J.; Bailey, Todd C.; Johnson, Stephen C.; Stacey, Nicholas A.; Ekerdt, John G.; Willson, C. Grant; Sreenivasan, S. V.; Schumaker, Norman E.

    2003-06-01

    The escalating cost for Next Generation Lithography (NGL) tools is driven in part by the need for complex sources and optics. The cost for a single NGL tool could exceed $50M in the next few years, a prohibitive number for many companies. As a result, several researchers are looking at low cost alternative methods for printing sub-100 nm features. In the mid-1990s, several resarech groups started investigating different methods for imprinting small features. Many of these methods, although very effective at printing small features across an entire wafer, are limited in their ability to do precise overlay. In 1999, Willson and Sreenivasan discovered that imprinting could be done at low pressures and at room temperatures by using low viscosity UV curable monomers. The technology is typically referred to as Step and Flash Imprint Lithography. The use of a quartz template enabled the photocuring process to occur and also opened up the potential for optical alignment of teh wafer and template. This paper traces the development of nanoimprint lithography and addresses the issues that must be solved if this type of technology is to be applied to high-density silicon integrated circuitry.

  20. In silico designed nanoMIP based optical sensor for endotoxins monitoring.

    PubMed

    Abdin, M J; Altintas, Z; Tothill, I E

    2015-05-15

    Molecular modelling was used to select specific monomers suitable for the design of molecularly imprinted polymers (MIPs) with high affinity towards endotoxins. MIPs were synthesised using solid-phase photopolymerisation with endotoxins from Escherichia coli 0111:B4 as the template. This technique also allowed the endotoxin template to be reused successfully. Particle size of ~190-220 nm was achieved with low polydispersity index, which confirms the quality of the produced MIPs. For the development of the optical sensor, SPR-2 biosensor system was used by functionalising the gold sensor chip with the MIP nanoparticles using EDC/NHS coupling procedure. The affinity based-endotoxin assay can detect endotoxins in the concentration range of 15.6-500 ng mL(-1). MIP surfaces were regenerated showing stability of the method for subsequent analysis and dissociation constants were calculated as 3.24-5.24×10(-8) M. The developed SPR sensor with the novel endotoxins nanoMIP showed the potential of the technology for endotoxins capture, detection and risk management and also the importance of computational modelling to design the artificial affinity ligands. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Replication initiator protein RepE of mini-F plasmid: functional differentiation between monomers (initiator) and dimers (autogenous repressor).

    PubMed Central

    Ishiai, M; Wada, C; Kawasaki, Y; Yura, T

    1994-01-01

    Replication of mini-F plasmid requires the plasmid-encoded RepE initiator protein and several host factors including DnaJ, DnaK, and GrpE, heat shock proteins of Escherichia coli. The RepE protein plays a crucial role in replication and exhibits two major functions: initiation of replication from the origin, ori2, and autogenous repression of repE transcription. One of the mini-F plasmid mutants that can replicate in the dnaJ-defective host produces an altered RepE (RepE54) with a markedly enhanced initiator activity but little or no repressor activity. RepE54 has been purified from cell extracts primarily in monomeric form, unlike the wild-type RepE that is recovered in dimeric form. Gel-retardation assays revealed that RepE54 monomers bind to ori2 (direct repeats) with a very high efficiency but hardly bind to the repE operator (inverted repeat), in accordance with the properties of RepE54 in vivo. Furthermore, the treatment of wild-type RepE dimers with protein denaturants enhanced their binding to ori2 but reduced binding to the operator: RepE dimers were partially converted to monomers, and the ori2 binding activity was uniquely associated with monomers. These results strongly suggest that RepE monomers represent an active form by binding to ori2 to initiate replication, whereas dimers act as an autogenous repressor by binding to the operator. We propose that RepE is structurally and functionally differentiated and that monomerization of RepE dimers, presumably mediated by heat shock protein(s), activates the initiator function and participates in regulation of mini-F DNA replication. Images PMID:8170998

  2. Development of magnetic molecularly imprinted polymers with double templates for the rapid and selective determination of amphenicol antibiotics in water, blood, and egg samples.

    PubMed

    Wei, Shoulian; Li, Jianwen; Liu, Yong; Ma, Jinkui

    2016-11-18

    A magnetic mesoporous dual-template molecularly imprinted polymer (Fe 3 O 4 @mSiO 2 @DMIP) with a specific recognition capability for chloramphenicol (CAP) and florfenicol (FF) was synthesised. CAP and FF were used as dual-template molecules, α-methacrylic acid and Fe 3 O 4 @mSiO 2 @-CHCH 2 as dual functional monomers, and ethylene glycol dimethyl methacrylate as a crosslinking agent. For comparison, a magnetic mesoporous non-molecularly imprinted polymer (Fe 3 O 4 @mSiO 2 @NIP) was also prepared using the same synthesis procedure, but without the dual templates. The prepared polymers were characterised using scanning electron microscopy, Fourier-transform infrared spectroscopy and adsorption experiments. Results indicated that both the Fe 3 O 4 @mSiO 2 @DMIP and the Fe 3 O 4 @mSiO 2 @NIP were microspherical nanoparticles, and the surface of the Fe 3 O 4 @mSiO 2 @DMIP was rougher than that of the Fe 3 O 4 @mSiO 2 @NIP. In addition, the prepared Fe 3 O 4 @mSiO 2 @DMIP possessed a higher adsorption capacity and better selectivity for CAP and FF than the Fe 3 O 4 @mSiO 2 @NIP. The maximum static adsorption capacities of the Fe 3 O 4 @mSiO 2 @ DMIP for CAP and FF were 146.5 and 190.1mgg -1 , respectively, whereas those of the Fe 3 O 4 @mSiO 2 @NIP were 50.0 and 44.0mgg -1 , respectively. The obtained Fe 3 O 4 @mSiO 2 @DMIP particles were applied as a magnetic solid-phase extraction sorbent for the rapid and selective extraction of CAP, FF, and thiamphenicol (TAP) in water, chicken blood and egg samples. The method of magnetic molecularly imprinted solid-phase extraction (M-MISPE) coupled to high-performance liquid chromatography with UV detection (HPLC-UV) was conducted to detect CAP, FF, and TAP. The limits of detection for CAP, FF, and TAP were 0.16, 0.08, and 0.08μgkg -1 , respectively. The average recovery and precision values for the spiked water, chicken blood, and egg samples ranged from 88.3% to 99.1% and 2.7% to 7.9%, respectively. Given its rapidity, selectivity, and sensitivity, the developed method of M-MISPE coupled to HPLC-UV detection has good application prospects in environmental, biological, and food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. In-situ preparation of functionalized molecular sieve material and a methodology to remove template

    NASA Astrophysics Data System (ADS)

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  4. In-situ preparation of functionalized molecular sieve material and a methodology to remove template.

    PubMed

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-10

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, (13)C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  5. Molecular imprinting solid phase extraction for selective detection of methidathion in olive oil.

    PubMed

    Bakas, Idriss; Oujji, Najwa Ben; Moczko, Ewa; Istamboulie, Georges; Piletsky, Sergey; Piletska, Elena; Ait-Ichou, Ihya; Ait-Addi, Elhabib; Noguer, Thierry; Rouillon, Régis

    2012-07-13

    A specific adsorbent for extraction of methidathion from olive oil was developed. The design of the molecularly imprinted polymer (MIP) was based on the results of the computational screening of the library of polymerisable functional monomers. MIP was prepared by thermal polymerisation using N,N'-methylene bisacrylamide (MBAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross-linker. The polymers based on the itaconic acid (IA), methacrylic acid (MAA) and 2-(trifluoromethyl)acryl acid (TFMAA) functional monomers and one control polymer which was made without functional monomers with cross-linker EGDMA were also synthesised and tested. The performance of each polymer was compared using corresponding imprinting factor. As it was predicted by molecular modelling the best results were obtained for the MIP prepared with MBAA. The obtained MIP was optimised in solid-phase extraction coupled with high performance liquid chromatography (MISPE-HPLC-UV) and tested for the rapid screening of methidathion in olive oil. The proposed method allowed the efficient extraction of methidathion for concentrations ranging from 0.1 to 9 mg L(-1) (r(2)=0.996). The limits of detection (LOD) and quantification (LOQ) in olive oil were 0.02 mg L(-1) and 0.1 mg L(-1), respectively. MIPs extraction was much more effective than traditional C18 reverse-phase solid phase extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. The effect of the polymerization initiator and light source on the elution of residual Bis-GMA and TEGDMA monomers: A study using liquid chromatography with UV detection.

    PubMed

    Denis, Aline B; Diagone, Cristina A; Plepis, Ana M G; Viana, Rommel B

    2015-12-05

    A method for the extraction and quantification of two residual monomers, bisphenol glycidyl dimethacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA), that were evaluated using high efficiency liquid chromatography with UV detection was developed and validated in this study. Three types of solvents were applied in the extraction of the monomers (methanol, ethanol and acetonitrile), where the highest extraction efficiency was obtained using acetonitrile. The different resins were prepared by photoactivation of Bis-GMA and TEGDMA monomers. Additionally, the effects of the addition of two photoinitiators (camphorquinone (CQ) and phenyl propanodione (PPD) and that of a co-initiator (N,N-dimethyl-p-toluidine) were also analyzed. When only the CQ photoinitiator was used, a smaller amount of residual monomers was obtained, whereas a larger amount was obtained with PPD. When the two photoinitiators were used in the same matrix, however, no significant changes were observed in relation to the amount of residual TEGDMA monomers. For the addition of the co-initiator, there were no large changes in the extraction of residual monomers. The effect of the two photoactivation sources (halogen lamp and LED) led to small differences in the elution of the two monomers, although all of the resins differed significantly when photoactivated with a LED. Quantum chemical calculations using Density Functional Theory were carried out to characterize several molecular properties of each monomer. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Elucidation of neurophysin/bioligand interactions from molecular modeling.

    PubMed

    Kaźmierkiewicz, R; Czaplewski, C; Ciarkowski, J

    1997-01-01

    This is a review of our recent modeling work aimed at: (i) development and assessment of techniques for reliable refinement of low-resolution protein structures and (ii) using these techniques, at solving specific problems pertinent to neurophysin-bioligand interactions. Neurophysins I and II (NPI and NPII) serve in the neurosecretory granules of the posterior pituitary as carrier proteins for the neurophyseal hormones oxytocin (OT) and vasopressin (VP), respectively, until the latter are released into blood. NPs are homologous two-domain, sulphur rich small proteins (93-95 residues, 7 disulphide bridges per monomer), capable of being aggregated. The C2 symmetrical NPI2 and NPII2 homodimers, and the (NPI/OT)2 and (NPII/VP)2 heterotetramers, all believed to be the smallest functional units, were modeled using low-resolution structure information, i.e. the C alpha-carbon coordinates of the homologous NPII/dipeptide complex as a template. The all-atom representations of the models were obtained using the SYBYL suite of programs (by Tripos, Inc.). Subsequently, they were relaxed, using a constrained simulated annealing (CSA) protocol, and submitted to about 100 ps molecular dynamics (MD) in water, using the AMBER 4.1 force field. The (NPI/OT)2 and (NPII/VP)2 structures, averaged after the last 20 ps of MD, were remarkably similar to those recently reported either for NPII/dipeptide or NPII/oxytocin complex in the solid state (Chen et al., 1991, Proc. Natl. Acad. Sci., U.S.A. 88, 4240-4244; Rose et al., 1996, Nature Struct. Biol. 3, 163-169). The results indicate that the 3(10) helices (terminating the amino domains) and the carboxyl domains are more mobile than the remainder of the NP monomers. The hormones become anchored by residues 1-3 and 6 to the host, leaving residues 4-5 and 7-9 exposed on the surface and free to move. A cluster of attractive interactions, extending from the ligand binding site, Tyr-24-Ile-26 of unit 1(2), to the inter-monomer interface Val-36 of unit 1(2), Cys-79 and Ile-72 of unit 2(1), is clearly seen. We suggest that both these interactions as well as the increased mobility of the 3(10) helix and the carboxyl domain may contribute to the allosteric communication between the ligand and the unit1-unit2 interface.

  8. VieSLAF Framework: Enabling Adaptive and Versatile SLA-Management

    NASA Astrophysics Data System (ADS)

    Brandic, Ivona; Music, Dejan; Leitner, Philipp; Dustdar, Schahram

    Novel computing paradigms like Grid and Cloud computing demand guarantees on non-functional requirements such as application execution time or price. Such requirements are usually negotiated following a specific Quality of Service (QoS) model and are expressed using Service Level Agreements (SLAs). Currently available QoS models assume either that service provider and consumer have matching SLA templates and common understanding of the negotiated terms or provide public templates, which can be downloaded and utilized by the end users. On the one hand, matching SLA templates represent an unrealistic assumption in systems where service consumer and provider meet dynamically and on demand. On the other hand, handling of public templates seems to be a rather challenging issue, especially if the templates do not reflect users’ needs. In this paper we present VieSLAF, a novel framework for the specification and management of SLA mappings. Using VieSLAF users may specify, manage, and apply SLA mapping bridging the gap between non-matching SLA templates. Moreover, based on the predefined learning functions and considering accumulated SLA mappings, domain specific public SLA templates can be derived reflecting users’ needs.

  9. [Spectroscopic Study of Salbutamol Molecularly Imprinted Polymers].

    PubMed

    Ren, Hui-peng; Guan, Yu-yu; Dai, Rong-hua; Liu, Guo-yan; Chai, Chun-yan

    2016-02-01

    In order to solve the problem of on-site rapid detection of salbutamol residues in feed and animal products, and develop a new method of fast detection of salbutamol on the basis of the molecular imprinting technology, this article uses the salbutamol (SAL) working as template molecule, methacrylic acid (MAA) working as functional monomer. On this basis, a new type of core-shell type salbutamol molecularly imprinted polymers were prepared with colloidal gold particles as triggering core. Superficial characteristics of the MIPs and the related compounds were investigated by ultraviolet (UV) spectra and infrared (IR) spectra, Raman spectra, Scanning electron microscopy (SEM) respectively. The results indicated that a stable hydrogen bonding complex has been formed between the carboxyl groups of SAL and MA with a matching ratio of 1:1. The complex can be easily eluted by the reagent containing hydrogen bonding. The chemical binding constant K reaches -0.245 x 10⁶ L² · mol⁻². The possible binding sites of the hydrogen bonding was formed between the hydrogen atoms of -COOH in MA and the oxygen atoms of C==O in SAL. IR and Raman spectrum showed that, compared with MA, a significant red shift of -OH absorption peak was manifested in MIPs, which proved that SAL as template molecule occurred a specific bond between MA. Red shift of stretching vibration absorption peak of C==O was also detected in the un-eluted MIPs and obvious energy loss happened, which demonstrated a possible binding sites is SAL intramolecular of C==O atom of oxygen. If the hydrogen atoms of -COOH in MA wanted to generate hydrogen bond. However, the shapes of absorption peak of other functional groups including C==C, C==O, and -OH were very similar both in MIPs and NIPs. Specific cavities were formed after the template molecules in MIPs were removed. It was proved by the adsorption experiment that the specific sites in these cavities highly match with the chemical and space structure of SAL. Besides, colloidal gold type core-shell molecularly imprinted polymers have looser surface, more cavities in the surface compared with ordinary molecularly imprinted polymers, which increased the effective area of adsorption to target molecules. So it have better performance in adsorption. Based on the principle that these cavities can specificly recognize and combine with target molecule in the test sample, and the excellent ability of colloidal gold core-shell molecularly imprinted polymers, the development of novel methods for fast determination of SAL based on the molecular imprinting technology can be expected in the near future.

  10. Sol–gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roik, N.V., E-mail: roik_nadya@ukr.net; Belyakova, L.A.

    2013-11-15

    Silica particles with uniform hexagonal mesopore architecture were synthesized by template directed sol–gel condensation of tetraethoxysilane or mixture of tetraethoxysilane and (3-chloropropyl)triethoxysilane in a water–ethanol–ammonia solution. Selective functionalization of exterior surface of parent materials was carried out by postsynthetic treatment of template-filled MCM-41 and Cl-MCM-41 with vapors of (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vacuum. The chemical composition of obtained mesoporous silicas was estimated by IR spectroscopy and chemical analysis of surface products of reactions. Characteristics of porous structure of resulting materials were determined from the data of X-ray, low-temperature nitrogen ad-desorption and transmission electron microscopy measurements. Obtained results confirm invariability ofmore » highly ordered mesoporous structure of MCM-41 and Cl-MCM-41 after their selective postsynthetic modification in vapor phase. It was proved that proposed method of vapor-phase functionalization of template-filled starting materials is not accompanied by dissolution of the template and chemical modification of pores surface. This provides preferential localization of grafted functional groups onto the exterior surface of mesoporous silicas. - Graphical abstract: Sol–gel synthesis and postsynthetic chemical modification of template-filled MCM-41 and Cl-MCM-41 with (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vapor phase. Display Omitted - Highlights: • Synthesis of MCM-41 silica by template directed sol–gel condensation. • Selective vapor-phase functionalization of template-filled silica particles. • Preferential localization of grafted groups onto the exterior surface of mesoporous silicas.« less

  11. Molecular weights and subunit structure of LamB proteins.

    PubMed

    Nakae, T; Ishii, J N

    1982-01-01

    Phage lambda-receptor proteins of Escherichia coli, LamB proteins, form oligomeric aggregates to build transmembrane diffusion pores selective for maltose and maltodextrins. The molecular weights (MW) of functional oligomers as well as dissociated monomers were determined by sedimentation equilibrium analysis in homogeneous non-ionic surfactant and deuterium oxide and in 6 M guanidine-HCl, respectively. The MW of oligomers and monomers appeared as 135 600 and 45 900, respectively. Thus, functional Lamb proteins consisted of three identical subunits.

  12. Vertical Carbon Nanotube Device in Nanoporous Templates

    NASA Technical Reports Server (NTRS)

    Sands, Timothy (Inventor); Fisher, Timothy Scott (Inventor); Bashir, Rashid (Inventor); Maschmann, Matthew Ralph (Inventor)

    2014-01-01

    A modified porous anodic alumina template (PAA) containing a thin CNT catalyst layer directly embedded into the pore walls. CNT synthesis using the template selectively catalyzes SWNTs and DWNTs from the embedded catalyst layer to the top PAA surface, creating a vertical CNT channel within the pores. Subsequent processing allows for easy contact metallization and adaptable functionalization of the CNTs and template for a myriad of applications.

  13. Recent New Methodologies for Acetylenic Polymers with Advanced Functionalities.

    PubMed

    Qiu, Zijie; Han, Ting; Lam, Jacky W Y; Tang, Ben Zhong

    2017-08-01

    Polymers synthesized from acetylenic monomers often possess electronically unsaturated fused rings and thus show versatile optoelectronic properties and advanced functionalities. To expand the family of acetylenic polymers, development of new catalyst systems and synthetic routes is critically important. We summarize herein recent research progress on development of new methodologies towards functional polymers using alkyne building blocks since 2014. The polymerizations are categorized by the number of monomer components, namely homopolymerizations, two-component polymerizations, and multicomponent polymerizations. The properties and applications of acetylenic polymers, such as aggregation-induced emission, fluorescent photopatterning, light refraction, chemosensing, mechanochromism, chain helicity, etc., are also discussed.

  14. Template properties of oligocytidylates formed in the montmorillonite catalyzed condensation of ImpC. [Abstract only

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Goezen

    1994-01-01

    In an attempt to investigate the prebiotic formation of phosphodiester bond in RNA, we have studied the self condensation of 5'-phosphorimidazolide of adenosine (ImpA), in aqueous solutions containing 0.2 M sodium chloride and 0.075 M magnesium chloride at pH 8 using clay minerals as catalyst. In the presence of certain montmorillonites, oligomers containing up to ten monomer units in their chain were formed, while in control experiments, where no catalyst was added, the major product was 5',5'-diadenosine diphosphate, A(sup 5')ppA. In reactions carried out with ImpA: A(sup 5')ppA mixtures at 9:1 mole ratio, oligomers of the type A(sup 5')p(pA)(sub n) and (A(sup 5')p)(sub n)A(sup 5')ppA(pA)(sub n) formed at the expense of (pA)(sub n) type oligomers. Addition of A(sup 5')ppA to the reaction mixture increased the regiospecifity of 3',5'-link formation from 67% to 79%. The condensation of the 5'-phosphorimidazolide of cytidine, ImpC, was also carried out in the presence and absence of A(sup 5')ppA under the same conditions and oligomers containing up to twelve monomer units were obtained.

  15. Analysis of the temporal effects on grating evolution in photopolymer

    NASA Astrophysics Data System (ADS)

    Kelly, John V.; Gleeson, Michael R.; Close, Ciara E.; O'Neill, Feidhlim T.; Sheridan, John T.; Gallego, Sergi; Neipp, Cristian

    2006-04-01

    The nonlocal polymerization driven diffusion model is used to describe holographic grating formation in acrylamidebased photopolymer. The free radical chain polymerization process results in polymer being generated nonlocal both in space and time to the point of chain initiation. A Gaussian spatial material response function and an exponential temporal material response function are used to account for these effects. In this paper we firstly examine the nature of the temporal evolution of grating formation for short recording periods. It is shown that in this case, temporal effects become most notable and the inclusion of the nonlocal temporal response function is shown to be necessary to accurately describe the process. In particular, brief post exposure selfamplification of the refractive index modulation is noted. This is attributed to continued chain growth for a brief period after exposure. Following this a slight decay in the grating amplitude also occurs. This we believe is due to the continued diffusion of monomer after exposure. Since the sinusoidal recording pattern generates a monomer concentration gradient during the recording process monomer diffusion occurs both during and after exposure. The evolution of the refractive index modulation is determined by the respective refractive index values of the recording material components. From independent measurements it is noted that the refractive index value of the monomer is slightly less than that of the background material. Therefore as monomer diffuses back into the dark regions, a reduction in overall refractive index modulation occurs. Volume changes occurring within the material also affect the nature of grating evolution. To model these effects we employ a free volume concept. Due to the fact that the covalent single carbon bond in the polymer is up to 50% shorter than the van der Waals bond in the liquid monomer state, free volume is created when monomer is converted to polymer. For each bond conversion we assume a hole is generated which then collapses at some characteristic rate constant. Incorporating each of these effects into our model, the model is then solved using a Finite-Difference Time- Domain method (FDTD). The Lorentz-Lorenz relation is used to determine the overall evolution refractive index modulation and the corresponding diffraction efficiency of the resulting grating is calculated using Rigorous Coupled Wave Analysis (RCWA). Fits are then carried out to experimental data for 1 second exposures. Good quality fits are achieved and material parameters extracted. Monomer diffusion rates are determined to be of the order of D ~ 10 -10 cm 2/s and the time constant of the nonlocal material temporal response function being of the order of τ n ~ 10 -2s. Material shrinkage occurring over these recording periods is also determined.

  16. Facile and high-efficient immobilization of histidine-tagged multimeric protein G on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Jiho; Chang, Jeong Ho

    2014-12-01

    This work reports the high-efficient and one-step immobilization of multimeric protein G on magnetic nanoparticles. The histidine-tagged (His-tag) recombinant multimeric protein G was overexpressed in Escherichia coli BL21 by the repeated linking of protein G monomers with a flexible linker. High-efficient immobilization on magnetic nanoparticles was demonstrated by two different preparation methods through the amino-silane and chloro-silane functionalization on silica-coated magnetic nanoparticles. Three kinds of multimeric protein G such as His-tag monomer, dimer, and trimer were tested for immobilization efficiency. For these tests, bicinchoninic acid (BCA) assay was employed to determine the amount of immobilized His-tag multimeric protein G. The result showed that the immobilization efficiency of the His-tag multimeric protein G of the monomer, dimer, and trimer was increased with the use of chloro-silane-functionalized magnetic nanoparticles in the range of 98% to 99%, rather than the use of amino-silane-functionalized magnetic nanoparticles in the range of 55% to 77%, respectively.

  17. Synthesis of 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer molecule and its characterization by experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Cankaya, N.; Kurt, M.

    2018-06-01

    In this work 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer has been synthesized as newly, characterized both experimentally and theoretically. Experimentally, it has been characterized by FT-IR, FT-Raman, 1H and 13C NMR spectroscopy techniques. The theoretical calculations have been performed with Density Functional Theory (DFT) including B3LYP method. The scaled theoretical wavenumbers have been assigned based on total energy distribution (TED). Electronic properties of monomer have been performed using time-dependent TD-DFT/B3LYP/B3LYP/6-311G++(d,p) method. The results of experimental have been compared with theoretical values. Both experimental and theoretical methods have shown that the monomer was suitable for the literature.

  18. Generation of Synthetic Copolymer Libraries by Combinatorial Assembly on Nucleic Acid Templates.

    PubMed

    Kong, Dehui; Yeung, Wayland; Hili, Ryan

    2016-07-11

    Recent advances in nucleic acid-templated copolymerization have expanded the scope of sequence-controlled synthetic copolymers beyond the molecular architectures witnessed in nature. This has enabled the power of molecular evolution to be applied to synthetic copolymer libraries to evolve molecular function ranging from molecular recognition to catalysis. This Review seeks to summarize different approaches available to generate sequence-defined monodispersed synthetic copolymer libraries using nucleic acid-templated polymerization. Key concepts and principles governing nucleic acid-templated polymerization, as well as the fidelity of various copolymerization technologies, will be described. The Review will focus on methods that enable the combinatorial generation of copolymer libraries and their molecular evolution for desired function.

  19. Empirical Relationships Between Optical Properties and Equivalent Diameters of Fractal Soot Aggregates at 550 Nm Wavelength.

    NASA Technical Reports Server (NTRS)

    Pandey, Apoorva; Chakrabarty, Rajan K.; Liu, Li; Mishchenko, Michael I.

    2015-01-01

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numericallyexact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships.

  20. Modulation of gene expression using electrospun scaffolds with templated architecture.

    PubMed

    Karchin, A; Wang, Y-N; Sanders, J E

    2012-06-01

    The fabrication of biomimetic scaffolds is a critical component to fulfill the promise of functional tissue-engineered materials. We describe herein a simple technique, based on printed circuit board manufacturing, to produce novel templates for electrospinning scaffolds for tissue-engineering applications. This technique facilitates fabrication of electrospun scaffolds with templated architecture, which we defined as a scaffold's bulk mechanical properties being driven by its fiber architecture. Electrospun scaffolds with templated architectures were characterized with regard to fiber alignment and mechanical properties. Fast Fourier transform analysis revealed a high degree of fiber alignment along the conducting traces of the templates. Mechanical testing showed that scaffolds demonstrated tunable mechanical properties as a function of templated architecture. Fibroblast-seeded scaffolds were subjected to a peak strain of 3 or 10% at 0.5 Hz for 1 h. Exposing seeded scaffolds to the low strain magnitude (3%) significantly increased collagen I gene expression compared to the high strain magnitude (10%) in a scaffold architecture-dependent manner. These experiments indicate that scaffolds with templated architectures can be produced, and modulation of gene expression is possible with templated architectures. This technology holds promise for the long-term goal of creating tissue-engineered replacements with the biomechanical and biochemical make-up of native tissues. Copyright © 2012 Wiley Periodicals, Inc.

  1. Remote site-selective C-H activation directed by a catalytic bifunctional template

    NASA Astrophysics Data System (ADS)

    Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan

    2017-03-01

    In chemical syntheses, the activation of carbon-hydrogen (C-H) bonds converts them directly into carbon-carbon or carbon-heteroatom bonds without requiring any prior functionalization. C-H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C-H bond in a substrate can be activated by using a ‘directing’ (usually a functional) group to obtain the desired product selectively. The applicability of such a C-H activation reaction can be severely curtailed by the distance of the C-H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C-H bonds of a substrate has been exploited to achieve meta-selective C-H activation by using a covalently attached, U-shaped template. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C-H bonds. Using this strategy, we demonstrate remote, site-selective C-H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.

  2. Remote site-selective C-H activation directed by a catalytic bifunctional template.

    PubMed

    Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan

    2017-03-23

    In chemical syntheses, the activation of carbon-hydrogen (C-H) bonds converts them directly into carbon-carbon or carbon-heteroatom bonds without requiring any prior functionalization. C-H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C-H bond in a substrate can be activated by using a 'directing' (usually a functional) group to obtain the desired product selectively. The applicability of such a C-H activation reaction can be severely curtailed by the distance of the C-H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C-H bonds of a substrate has been exploited to achieve meta-selective C-H activation by using a covalently attached, U-shaped template. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C-H bonds. Using this strategy, we demonstrate remote, site-selective C-H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.

  3. Target templates: the precision of mental representations affects attentional guidance and decision-making in visual search.

    PubMed

    Hout, Michael C; Goldinger, Stephen D

    2015-01-01

    When people look for things in the environment, they use target templates-mental representations of the objects they are attempting to locate-to guide attention and to assess incoming visual input as potential targets. However, unlike laboratory participants, searchers in the real world rarely have perfect knowledge regarding the potential appearance of targets. In seven experiments, we examined how the precision of target templates affects the ability to conduct visual search. Specifically, we degraded template precision in two ways: 1) by contaminating searchers' templates with inaccurate features, and 2) by introducing extraneous features to the template that were unhelpful. We recorded eye movements to allow inferences regarding the relative extents to which attentional guidance and decision-making are hindered by template imprecision. Our findings support a dual-function theory of the target template and highlight the importance of examining template precision in visual search.

  4. Size matters: smart copolymeric nanohydrogels: synthesis and applications.

    PubMed

    Katime, Issa; Guerrero, Luis Guillermo; Mendizabal, Eduardo

    2012-01-01

    In this work the synthesis of smart nanoparticles capable of respond to external stimulus (pH and temperature variations) is reported. To avoid post-polymerization modification, functionalized monomers able to respond to pH and temperature changes were and then polymerized. The synthesized monomers have the capability for coupling with folic acid which is the target molecule. For this reason their polymers can be used as targeted drug delivery systems. Smart polymeric nanoparticles were prepared by direct and inverse microemulsion polymerization of the synthesized monomers. The nanoparticles were charged with drugs and their release kinetic was studied.

  5. Template based rotation: A method for functional connectivity analysis with a priori templates☆

    PubMed Central

    Schultz, Aaron P.; Chhatwal, Jasmeer P.; Huijbers, Willem; Hedden, Trey; van Dijk, Koene R.A.; McLaren, Donald G.; Ward, Andrew M.; Wigman, Sarah; Sperling, Reisa A.

    2014-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) is a powerful tool for understanding the network level organization of the brain in research settings and is increasingly being used to study large-scale neuronal network degeneration in clinical trial settings. Presently, a variety of techniques, including seed-based correlation analysis and group independent components analysis (with either dual regression or back projection) are commonly employed to compute functional connectivity metrics. In the present report, we introduce template based rotation,1 a novel analytic approach optimized for use with a priori network parcellations, which may be particularly useful in clinical trial settings. Template based rotation was designed to leverage the stable spatial patterns of intrinsic connectivity derived from out-of-sample datasets by mapping data from novel sessions onto the previously defined a priori templates. We first demonstrate the feasibility of using previously defined a priori templates in connectivity analyses, and then compare the performance of template based rotation to seed based and dual regression methods by applying these analytic approaches to an fMRI dataset of normal young and elderly subjects. We observed that template based rotation and dual regression are approximately equivalent in detecting fcMRI differences between young and old subjects, demonstrating similar effect sizes for group differences and similar reliability metrics across 12 cortical networks. Both template based rotation and dual-regression demonstrated larger effect sizes and comparable reliabilities as compared to seed based correlation analysis, though all three methods yielded similar patterns of network differences. When performing inter-network and sub-network connectivity analyses, we observed that template based rotation offered greater flexibility, larger group differences, and more stable connectivity estimates as compared to dual regression and seed based analyses. This flexibility owes to the reduced spatial and temporal orthogonality constraints of template based rotation as compared to dual regression. These results suggest that template based rotation can provide a useful alternative to existing fcMRI analytic methods, particularly in clinical trial settings where predefined outcome measures and conserved network descriptions across groups are at a premium. PMID:25150630

  6. Surface-modified multifunctional MIP nanoparticles

    NASA Astrophysics Data System (ADS)

    Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; Perez de Vargas Sansalvador, Isabel; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J.; Piletsky, Sergey

    2013-04-01

    The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinylferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors.The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinylferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors. Electronic supplementary information (ESI) available: Details of the synthesis of eosin O-acrylate monomer and 1H-NMR spectrum of MIP NPs post-derivatised with PEG shell. See DOI: 10.1039/c3nr00354j

  7. Computational study of textured ferroelectric polycrystals: Dielectric and piezoelectric properties of template-matrix composites

    NASA Astrophysics Data System (ADS)

    Zhou, Jie E.; Yan, Yongke; Priya, Shashank; Wang, Yu U.

    2017-01-01

    Quantitative relationships between processing, microstructure, and properties in textured ferroelectric polycrystals and the underlying responsible mechanisms are investigated by phase field modeling and computer simulation. This study focuses on three important aspects of textured ferroelectric ceramics: (i) grain microstructure evolution during templated grain growth processing, (ii) crystallographic texture development as a function of volume fraction and seed size of the templates, and (iii) dielectric and piezoelectric properties of the obtained template-matrix composites of textured polycrystals. Findings on the third aspect are presented here, while an accompanying paper of this work reports findings on the first two aspects. In this paper, the competing effects of crystallographic texture and template seed volume fraction on the dielectric and piezoelectric properties of ferroelectric polycrystals are investigated. The phase field model of ferroelectric composites consisting of template seeds embedded in matrix grains is developed to simulate domain evolution, polarization-electric field (P-E), and strain-electric field (ɛ-E) hysteresis loops. The coercive field, remnant polarization, dielectric permittivity, piezoelectric coefficient, and dissipation factor are studied as a function of grain texture and template seed volume fraction. It is found that, while crystallographic texture significantly improves the polycrystal properties towards those of single crystals, a higher volume fraction of template seeds tends to decrease the electromechanical properties, thus canceling the advantage of ferroelectric polycrystals textured by templated grain growth processing. This competing detrimental effect is shown to arise from the composite effect, where the template phase possesses material properties inferior to the matrix phase, causing mechanical clamping and charge accumulation at inter-phase interfaces between matrix and template inclusions. The computational results are compared with complementary experiments, where good agreement is obtained.

  8. Kinetics of bulk photo-initiated copper(i)-catalyzed azide–alkyne cycloaddition (CuAAC) polymerizations†

    PubMed Central

    Song, Han Byul; Baranek, Austin; Bowman, Christopher N.

    2016-01-01

    Photoinitiation of polymerizations based on the copper(i)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction enables spatio-temporal control and the formation of mechanically robust, highly glassy photopolymers. Here, we investigated several critical factors influencing photo-CuAAC polymerization kinetics via systematic variation of reaction conditions such as the physicochemical nature of the monomers; the copper salt and photoinitiator types and concentrations; light intensity; exposure time and solvent content. Real time Fourier transform infrared spectroscopy (FTIR) was used to monitor the polymerization kinetics in situ. Six different di-functional azide monomers and four different tri-functional alkyne monomers containing either aliphatic, aromatic, ether and/or carbamate substituents were synthesized and polymerized. Replacing carbamate structures with ether moieties in the monomers enabled an increase in conversion from 65% to 90% under similar irradiation conditions. The carbamate results in stiffer monomers and higher viscosity mixtures indicating that chain mobility and diffusion are key factors that determine the CuAAC network formation kinetics. Photoinitiation rates were manipulated by altering various aspects of the photo-reduction step; ultimately, a loading above 3 mol% per functional group for both the copper catalyst and the photoinitiator showed little or no rate dependence on concentration while a loading below 3 mol% exhibited 1st order rate dependence. Furthermore, a photoinitiating system consisting of camphorquinone resulted in 60% conversion in the dark after only 1 minute of 75 mW cm−2 light exposure at 400–500 nm, highlighting a unique characteristic of the CuAAC photopolymerization enabled by the combination of the copper(i)’s catalytic lifetime and the nature of the step-growth polymerization. PMID:27429650

  9. Kinetics of bulk photo-initiated copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) polymerizations.

    PubMed

    Song, Han Byul; Baranek, Austin; Bowman, Christopher N

    2016-01-21

    Photoinitiation of polymerizations based on the copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction enables spatio-temporal control and the formation of mechanically robust, highly glassy photopolymers. Here, we investigated several critical factors influencing photo-CuAAC polymerization kinetics via systematic variation of reaction conditions such as the physicochemical nature of the monomers; the copper salt and photoinitiator types and concentrations; light intensity; exposure time and solvent content. Real time Fourier transform infrared spectroscopy (FTIR) was used to monitor the polymerization kinetics in situ . Six different di-functional azide monomers and four different tri-functional alkyne monomers containing either aliphatic, aromatic, ether and/or carbamate substituents were synthesized and polymerized. Replacing carbamate structures with ether moieties in the monomers enabled an increase in conversion from 65% to 90% under similar irradiation conditions. The carbamate results in stiffer monomers and higher viscosity mixtures indicating that chain mobility and diffusion are key factors that determine the CuAAC network formation kinetics. Photoinitiation rates were manipulated by altering various aspects of the photo-reduction step; ultimately, a loading above 3 mol% per functional group for both the copper catalyst and the photoinitiator showed little or no rate dependence on concentration while a loading below 3 mol% exhibited 1 st order rate dependence. Furthermore, a photoinitiating system consisting of camphorquinone resulted in 60% conversion in the dark after only 1 minute of 75 mW cm -2 light exposure at 400-500 nm, highlighting a unique characteristic of the CuAAC photopolymerization enabled by the combination of the copper(i)'s catalytic lifetime and the nature of the step-growth polymerization.

  10. Synthesis of a Temperature-Sensitive Matrine-Imprinted Polymer and Its Potential Application for the Selective Extraction of Matrine from Radix Sophorae Tonkinensis

    PubMed Central

    Jiang, Minjie; Wang, Lisheng; Liu, Xu; Yang, Hua; Ren, Fan; Gan, Lizhen; Jiang, Weizhe

    2015-01-01

    A temperature-sensitive matrine-imprinted polymer was prepared in chloroform by free-radical cross-linking copolymerization of methacrylic acid at 60 °C in the presence of ethylene glycol dimethacrylate as the cross-linker, N-isopropyl acrylamide as the temperature-responsive monomer and matrine as the template molecule. Binding experiments and Scatchard analyses revealed that two classes of binding sites were formed on molecular imprinted polymer (MIP) at 50 °C. Additionally, the thermoresponsive MIP was tested for its application as a sorbent material for the selective separation of matrine from Chinese medicinal plant radix Sophorae tonkinensis. It was shown that the thermoresponsive MIP displayed different efficiency in clean-up and enrichments using the SPE protocol at different temperatures. PMID:25658797

  11. Templated synthesis of metal nanorods in silica nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yadong; Gao, Chuanbo

    A method of preparing a metal nanorod. The method includes seeding a metal nanoparticle within the lumen of a nanotube, and growing a metal nanorod from the seeded metal nanoparticle to form a metal nanorod-nanotube composite. In some cases, the nanotube includes metal binding ligands attached to the inner surface. Growing of the metal nanorod includes incubating the seeded nanotube in a solution that includes: a metal source for the metal in the metal nanorod, the metal source including an ion of the metal; a coordinating ligand that forms a stable complex with the metal ion; a reducing agent formore » reducing the metal ion, and a capping agent that stabilizes atomic monomers of the metal. Compositions derived from the method are also provided.« less

  12. 3D structure of the influenza virus polymerase complex: Localization of subunit domains

    PubMed Central

    Area, Estela; Martín-Benito, Jaime; Gastaminza, Pablo; Torreira, Eva; Valpuesta, José M.; Carrascosa, José L.; Ortín, Juan

    2004-01-01

    The 3D structure of the influenza virus polymerase complex was determined by electron microscopy and image processing of recombinant ribonucleoproteins (RNPs). The RNPs were generated by in vivo amplification using cDNAs of the three polymerase subunits, the nucleoprotein, and a model virus-associated RNA containing 248 nt. The polymerase structure obtained is very compact, with no apparent boundaries among subunits. The position of specific regions of the PB1, PB2, and PA subunits was determined by 3D reconstruction of either RNP–mAb complexes or tagged RNPs. This structural model is available for the polymerase of a negative-stranded RNA virus and provides a general delineation of the complex and its interaction with the template-associated nucleoprotein monomers in the RNP. PMID:14691253

  13. Optical behaviors of flexible photonic films via the developed multiple UV-exposed fabrications.

    PubMed

    Chien, Chih-Chieh; Liu, Jui-Hsiang

    2014-07-01

    Recently, extensive investigations are carried out on design of highly controlled architecture and morphology by polymerizing the monomers doped in well-defined liquid crystalline materials, followed by removal of the template liquid crystal molecules. In this communication, a photonic structure used as a new photonic bandgap (PBG) material is developed by imprinting helical structures on polymer matrices through multiple photocrosslinking processes in an induced chiral nematic mesophase using flexible polyethylene terephthalate (PET) films as substrates. The tuning properties of the reflection band of the imprinted cell are achieved using an uniaxial thermo-stretching equipment. Furthermore, refilling of isotropic materials into the imprinted cells tune the reflection light wavelength leads to the change of color. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Scattering properties of alumina particle clusters with different radius of monomers in aerocraft plume

    NASA Astrophysics Data System (ADS)

    Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin; Gong, Yanjun

    2017-11-01

    In this paper, diffusion limited aggregation (DLA) algorithm is improved to generate the alumina particle cluster with different radius of monomers in the plume. Scattering properties of these alumina clusters are solved by the multiple sphere T matrix method (MSTM). The effect of the number and radius of monomers on the scattering properties of clusters of alumina particles is discussed. The scattering properties of two types of alumina particle clusters are compared, one has different radius of monomers that follows lognormal probability distribution, another has the same radius of monomers that equals the mean of lognormal probability distribution. The result show that the scattering phase functions and linear polarization degrees of these two types of alumina particle clusters are of great differences. For the alumina clusters with different radius of monomers, the forward scatterings are bigger and the linear polarization degree has multiple peaks. Moreover, the vary of their scattering properties do not have strong correlative with the change of number of monomers. For larger booster motors, 25-38% of the plume being condensed alumina. The alumina can scatter radiation from other sources present in the plume and effect on radiation transfer characteristics of plume. In addition, the shape, size distribution and refractive index of the particles in the plume are estimated by linear polarization degree. Therefore, accurate scattering properties calculation is very important to decrease the deviation in the related research.

  15. Growth of Au and ZnS nanostructures via engineered peptide and M13 bacteriophage templates.

    PubMed

    Chung, Sungwook; Chung, Woo-Jae; Wang, Debin; Lee, Seung-Wuk; De Yoreo, James J

    2018-04-25

    We demonstrate directed nucleation of Au and ZnS patterns on templates comprised of functional peptides and an M13 bacteriophage. We discuss the control over nucleation in terms of the interplay between enhanced ion binding and reduced interfacial energy resulting from the presence of the templates.

  16. Human monoclonal antibody homodimers. Effect of valency on in vitro and in vivo antibacterial activity.

    PubMed

    Wolff, E A; Esselstyn, J; Maloney, G; Raff, H V

    1992-04-15

    Human IgG1 mAb dimers specific for either group B streptococci or Escherichia coli K1 bacteria were formed using chemical cross-linkers. The effect of antibody valency on biologic efficacy was investigated by comparing the IgG dimers against the corresponding IgG monomers. Binding activity and relative avidity were assessed using Ag binding and competition ELISA, and functional activity was analyzed using opsonophagocytic assays. These in vitro assays revealed that the dimers were greater than or equal to 50-fold more active than the monomers. A neonatal rat infection model showed the in vivo protective efficacy of the dimers was greater than or equal to 20-fold greater than that of the monomers. Enhancing the activity of mAb by chemical cross-linking may be a useful strategy for salvaging low affinity IgG mAb that possess poor functional properties.

  17. Each Monomer of the Dimeric Accessory Protein for Human Mitochondrial DNA Polymerase Has a Distinct Role in Conferring Processivity*

    PubMed Central

    Lee, Young-Sam; Lee, Sujin; Demeler, Borries; Molineux, Ian J.; Johnson, Kenneth A.; Yin, Y. Whitney

    2010-01-01

    The accessory protein polymerase (pol) γB of the human mitochondrial DNA polymerase stimulates the synthetic activity of the catalytic subunit. pol γB functions by both accelerating the polymerization rate and enhancing polymerase-DNA interaction, thereby distinguishing itself from the accessory subunits of other DNA polymerases. The molecular basis for the unique functions of human pol γB lies in its dimeric structure, where the pol γB monomer proximal to pol γA in the holoenzyme strengthens the interaction with DNA, and the distal pol γB monomer accelerates the reaction rate. We further show that human pol γB exhibits a catalytic subunit- and substrate DNA-dependent dimerization. By duplicating the monomeric pol γB of lower eukaryotes, the dimeric mammalian proteins confer additional processivity to the holoenzyme polymerase. PMID:19858216

  18. Calculation of density functional theory (DFT) vibrational parameters of nucleotides for use in theoretical optical calculations: Herein applied to circular dichroism (CD) and absorption of polynucleotides

    NASA Astrophysics Data System (ADS)

    Ferber, Steven Dwight

    2005-11-01

    The Vibrational Circular Dichroism (VCD) of Nucleic Acids is a sensitive function of their conformation. DeVoe's classically derived polarizability theory allows the calculation of polymer absorption and circular dichroism spectra in any frequency range. Following the approach of Tinoco and Cech as modified by Moore and Self, calculations were done in the infrared (IR) region with theoretically derived monomer input parameters. Presented herein are calculated absorption and CD spectra for nucleic acid oligomers and polymers. These calculations improve upon earlier attempts, which utilized frequencies, intensities and normal modes from empirical analysis of the nitrogenous base of the monomers. These more complete input polarizability parameters include all contributions to specific vibrational normal modes for the entire nucleotide structure. They are derived from density functional theory (DFT) vibrational analysis on quasi-nucleotide monomers using the GAUSSIAN '98/'03 program. The normal modes are "integrated" for the first time into single virtual (DeVoe) oscillators by incorporating "fixed partial charges" in the manner of Schellman. The results include the complete set of monomer normal modes. All of these modes may be analyzed, in a manner similar to those demonstrated here (for the 1500-1800 cm-1 region). A model is utilized for the polymer/oligomer monomers which maintains the actual electrostatic charge on the adjacent protonated phosphoryl groups (hydrogen phosphate, a mono-anion). This deters the optimization from "collapsing" into a hydrogen-bonded "ball" and thereby maintains the extended (polymer-like) conformation. As well, the precise C2 "endo" conformation of the sugar ring is maintained in the DNA monomers. The analogous C3 "endo" conformation is also maintained for the RNA monomers, which are constrained by massive "anchors" at the phosphates. The complete IR absorbance spectra (0-4,000 cm-1) are calculated directly in Gaussian. Calculated VCD and Absorbance Spectra for the eight standard Ribonucleic and Deoxy-ribonucleic acid homo-polymers in the nitrogenous base absorbing region 1550-1750 cm-1 are presented. These spectra match measured spectra at least as well as spectra calculated from empirical parameters. These results demonstrate that the purely theoretical calculation, an example given herein, should serve to provide more transferable, universal parameters for the polarizability treatment of the optical properties of oligomers and polymers.

  19. Consistency of magnetoencephalographic functional connectivity and network reconstruction using a template versus native MRI for co‐registration

    PubMed Central

    Douw, Linda; Stam, Cornelis J.; Tewarie, Prejaas; Hillebrand, Arjan

    2017-01-01

    Abstract Introduction Studies using functional connectivity and network analyses based on magnetoencephalography (MEG) with source localization are rapidly emerging in neuroscientific literature. However, these analyses currently depend on the availability of costly and sometimes burdensome individual MR scans for co‐registration. We evaluated the consistency of these measures when using a template MRI, instead of native MRI, for the analysis of functional connectivity and network topology. Methods Seventeen healthy participants underwent resting‐state eyes‐closed MEG and anatomical MRI. These data were projected into source space using an atlas‐based peak voxel and a centroid beamforming approach either using (1) participants’ native MRIs or (2) the Montreal Neurological Institute's template. For both methods, time series were reconstructed from 78 cortical atlas regions. Relative power was determined in six classical frequency bands per region and globally averaged. Functional connectivity (phase lag index) between each pair of regions was calculated. The adjacency matrices were then used to reconstruct functional networks, of which regional and global metrics were determined. Intraclass correlation coefficients were calculated and Bland–Altman plots were made to quantify the consistency and potential bias of the use of template versus native MRI. Results Co‐registration with the template yielded largely consistent relative power, connectivity, and network estimates compared to native MRI. Discussion These findings indicate that there is no (systematic) bias or inconsistency between template and native MRI co‐registration of MEG. They open up possibilities for retrospective and prospective analyses to MEG datasets in the general population that have no native MRIs available. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. Hum Brain Mapp 39:104–119, 2018. © 2017 Wiley Periodicals, Inc. PMID:28990264

  20. DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes

    PubMed Central

    Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.

    2009-01-01

    The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each building block, and functionalization densities. PMID:18341334

  1. Design, Sustainable Synthesis, and Programmed Reactions of Templated N-Heteroaryl-Fused Vinyl Sultams.

    PubMed

    Laha, Joydev K; Sharma, Shubhra; Kirar, Seema; Banerjee, Uttam C

    2017-09-15

    A de novo design and synthesis of N-heteroaryl-fused vinyl sultams as templates for programming chemical reactions on vinyl sultam periphery or (hetero)aryl ring is described. The key features include rational designing and sustainable synthesis of the template, customized reactions of vinyl sultams at C═C bond or involving N-S bond cleavage, and reactions on the periphery of the heteroaryl ring for late-stage diversification. The simple, easy access to the template coupled with opportunities for the synthesis of diversely functionalized heterocyles from a single template constitutes a rare study in contemporary organic synthesis.

  2. Electrosynthesis and binding properties of molecularly imprinted poly-o-phenylenediamine for selective recognition and direct electrochemical detection of myoglobin.

    PubMed

    Shumyantseva, Victoria V; Bulko, Tatiana V; Sigolaeva, Larisa V; Kuzikov, Alexey V; Archakov, Alexander I

    2016-12-15

    Electrosynthesis of molecularly imprinted polymer (MIP) templated with myoglobin (Mb) and the reference non-imprinted polymer (NIP) was examined with o-phenylenediamine (o-PD) as a monomer. Mass-sensitive quartz crystal microbalance with dissipation monitoring supplied by an electrochemical module (EQCM-D) was applied to characterize and optimize MIP/NIP electrosynthesis. Mb rebinding was detected by direct electrocatalytic reduction of Mb by square wave voltammetry (SWV) or differential pulse voltammetry (DPV). The results obtained showed high specificity of polymeric antibodies to template Mb, with an imprinting factor determined as a ratio Imax(MIP)/Imax(NIP) of 2-4. The prepared MIP sensor is characterized by an apparent dissociation constant of (3.3±0.5)×10(-9)M and has a broad range of working concentrations of 1nM-1μМ, with the detection limit of 0.5nM (9ng/ml). Mb rebinding was examined in Mb-free diluted human serum spiked with Mb as well as in plasma samples of patients with acute myocardial infarction (AMI) and in control plasma of healthy donors in order to demonstrate the potential medical application of developed MIP sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Molecularly imprinted polymer doped with Hectorite for selective recognition of sinomenine hydrochloride.

    PubMed

    Zhang, W; Fu, H L; Li, X Y; Zhang, H; Wang, N; Li, W; Zhang, X X

    2016-01-01

    In this work, a new and facile method was introduced to prepare molecularly imprinted polymers (MIPs) based on nano clay hectorite (Hec) for sinomenine hydrochloride (SM) analysis. Hec was firstly dissolved in distilled water in order to swell adequately, followed by a common precipitation polymerization with SM as the template, methacrylic acid as monomer, ethylene glycol dimethacrylate as a crosslinker and 2,2-azobisisobutyronitrile as an initiator. Hec@SM-MIPs were characterized by Fourier transform infrared spectrometer, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The maximum binding capacity of Hec@SM-MIPs, SM-MIPs and non-imprinted polymers (NIPs) (Hec@NIPs) was 57.4, 16.8 and 11.6 mg/g, respectively. The reason for this result may be that Hec@SM-MIPs have more binding sites and imprinted cavities for template molecule. Equilibrium data were described by the Langmuir and Freundlich isotherm models. The results showed that the Hec@SM-MIPs adsorption data correlated better with the Langmuir equation than the Freundlich equation under the studied concentration range. In vitro drug release experiment, Hec@SM-MIPs have a better ability to control SM release than SM-MIPs. Therefore, Hec@SM-MIPs were successfully applied to extraction of SM and used as the materials for drug delivery system.

  4. Target templates: the precision of mental representations affects attentional guidance and decision-making in visual search

    PubMed Central

    Hout, Michael C.; Goldinger, Stephen D.

    2014-01-01

    When people look for things in the environment, they use target templates—mental representations of the objects they are attempting to locate—to guide attention and to assess incoming visual input as potential targets. However, unlike laboratory participants, searchers in the real world rarely have perfect knowledge regarding the potential appearance of targets. In seven experiments, we examined how the precision of target templates affects the ability to conduct visual search. Specifically, we degraded template precision in two ways: 1) by contaminating searchers’ templates with inaccurate features, and 2) by introducing extraneous features to the template that were unhelpful. We recorded eye movements to allow inferences regarding the relative extents to which attentional guidance and decision-making are hindered by template imprecision. Our findings support a dual-function theory of the target template and highlight the importance of examining template precision in visual search. PMID:25214306

  5. 'Gate effect' in templated polyacrylamide membranes influences the electrotransport of proteins and finds applications in proteome analysis.

    PubMed

    Bossi, Alessandra; Andreoli, Matteo; Bonini, Francesca; Piletsky, Sergey

    2007-09-01

    Templating is an effective way for the structural modifications of a material and hence for altering its functional properties. Here protein imprinting was exploited to alter polymeric polyacrylamide (PAA) membranes. The sieving properties and selection abilities of the material formed were evaluated by studying the electrically driven transport of various proteins across templated PAA membranes. The sieving properties correlated with the templating process and depended on the quantity of template used during the polymerisation. For 1 mg/mL protein-templated membranes a 'gate effect' was shown, which induced a preferential migration of the template and of similar-size proteins. Such template preferential electrotransport was exploited for the selective removal of certain proteins in biological fluids prior to proteome analysis (depletion of albumin from human serum); the efficiency of the removal was demonstrated by analysing the serum proteome by two-dimensional electrophoresis experiments.

  6. Construction of population-specific Indian MRI brain template: Morphometric comparison with Chinese and Caucasian templates.

    PubMed

    Bhalerao, Gaurav Vivek; Parlikar, Rujuta; Agrawal, Rimjhim; Shivakumar, Venkataram; Kalmady, Sunil V; Rao, Naren P; Agarwal, Sri Mahavir; Narayanaswamy, Janardhanan C; Reddy, Y C Janardhan; Venkatasubramanian, Ganesan

    2018-06-01

    Spatial normalization of brain MR images is highly dependent on the choice of target brain template. Morphological differences caused by factors like genetic and environmental exposures, generates a necessity to construct population specific brain templates. Brain image analysis performed using brain templates from Caucasian population may not be appropriate for non-Caucasian population. In this study, our objective was to construct an Indian brain template from a large population (N = 157 subjects) and compare the morphometric parameters of this template with that of Chinese-56 and MNI-152 templates. In addition, using an independent MRI data of 15 Indian subjects, we also evaluated the potential registration accuracy differences using these three templates. Indian brain template was constructed using iterative routines as per established procedures. We compared our Indian template with standard MNI-152 template and Chinese template by measuring global brain features. We also examined accuracy of registration by aligning 15 new Indian brains to Indian, Chinese and MNI templates. Furthermore, we supported our measurement protocol with inter-rater and intra-rater reliability analysis. Our results showed that there were significant differences in global brain features of Indian template in comparison with Chinese and MNI brain templates. The results of registration accuracy analysis revealed that fewer deformations are required when Indian brains are registered to Indian template as compared to Chinese and MNI templates. This study concludes that population specific Indian template is likely to be more appropriate for structural and functional image analysis of Indian population. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Fluorescent metallacycle-cored polymers via covalent linkage and their use as contrast agents for cell imaging.

    PubMed

    Zhang, Mingming; Li, Shuya; Yan, Xuzhou; Zhou, Zhixuan; Saha, Manik Lal; Wang, Yu-Cai; Stang, Peter J

    2016-10-04

    The covalent linkage of supramolecular monomers provides a powerful strategy for constructing dynamic polymeric materials whose properties can be readily tuned either by the selection of monomers or the choice of functional linkers. In this strategy, the stabilities of the supramolecular monomers and the reactions used to link the monomers are crucial because such monomers are normally dynamic and can disassemble during the linking process, leading to mixture of products. Therefore, although noncovalent interactions have been widely introduced into metallacycle structures to prepare metallosupramolecular polymers, metallacycle-cored polymers linked by covalent bonds have been rarely reported. Herein, we used the mild, highly efficient amidation reaction between alkylamine and N-hydroxysuccinimide-activated carboxylic acid to link the pendent amino functional groups of a rhomboidal metallacycle 10 to give metallacycle-cored polymers P1 and P2, which further yielded nanoparticles at low concentration and transformed into network structures as the concentration increased. Moreover, these polymers exhibited enhanced emission and showed better quantum yields than metallacycle 10 in methanol and methanol/water (1/9, vol/vol) due to the aggregation-induced emission properties of a tetraphenylethene-based pyridyl donor, which serves as a precursor for metallacycle 10. The fluorescence properties of these polymers were further used in cell imaging, and they showed a significant enrichment in lung cells after i.v. injection. Considering the anticancer activity of rhomboidal Pt(II) metallacycles, this type of fluorescent metallacycle-cored polymers can have potential applications toward lung cancer treatment.

  8. Prebiotic replicase evolution in a surface-bound metabolic system: parasites as a source of adaptive evolution

    PubMed Central

    2008-01-01

    Background The remarkable potential of recent forms of life for reliably passing on genetic information through many generations now depends on the coordinated action of thousands of specialized biochemical "machines" (enzymes) that were obviously absent in prebiotic times. Thus the question how a complicated system like the living cell could have assembled on Earth seems puzzling. In seeking for a scientific explanation one has to search for step-by-step evolutionary changes from prebiotic chemistry to the emergence of the first proto-cell. Results We try to sketch a plausible scenario for the first steps of prebiotic evolution by exploring the ecological feasibility of a mineral surface-bound replicator system that facilitates a primitive metabolism. Metabolism is a hypothetical network of simple chemical reactions producing monomers for the template-copying of RNA-like replicators, which in turn catalyse metabolic reactions. Using stochastic cellular automata (SCA) simulations we show that the surface-bound metabolic replicator system is viable despite internal competition among the genes and that it also maintains a set of mild "parasitic" sequences which occasionally evolve functions such as that of a replicase. Conclusion Replicase activity is shown to increase even at the expense of slowing down the replication of the evolving ribozyme itself, due to indirect mutualistic benefits in a diffuse form of group selection among neighbouring replicators. We suggest possible paths for further evolutionary changes in the metabolic replicator system leading to increased metabolic efficiency, improved replicase functionality, and membrane production. PMID:18826645

  9. Peptide-Modified Zwitterionic Porous Hydrogels for Endothelial Cell and Vascular Engineering

    PubMed Central

    Lin, Chih-Yeh; Wang, Yi-Ren; Lin, Che-Wei; Wang, Shih-Wen; Chien, Hsiu-Wen; Cheng, Nai-Chen; Tsai, Wei-Bor

    2014-01-01

    Abstract Hydrogels allow control of gel composition and mechanics, and permit incorporation of cells and a wide variety of molecules from nanoparticles to micromolecules. Peptide-linked hydrogels should tune the basic polymer into a more bioactive template to influence cellular activities. In this study, we first introduced the generation of 2D poly-(sulfobetaine methacrylate [SBMA]) hydrogel surfaces. By incorporating with functional peptide RGD and vascular endothelial growth factor-mimicking peptide KLTWQELYQLKYKG (QK) peptides, endothelial cells attached to the surface well and proliferated in a short-term culturing. However, the mechanical property, which plays a crucial role directing the cellular functions and supporting the structures, decreased when peptides graft onto hydrogels. Manipulating the mechanical property was thus necessary, and the most related factor was the monomer concentration. From our results, the higher amount of SBMA caused greater stiffness in hydrogels. Following the 2D surface studies, we fabricated 3D porous hydrogels for cell scaffolds by several methods. The salt/particle leaching method showed a more reliable way than gas-foaming method to fabricate homogeneous and open-interconnected pores within the hydrogel. Using the salt/particle leaching method, we can control the pore size before leaching. Morphology of endothelial cells within scaffolds was also investigated by scanning electron microscopy, and histological analysis was conducted in vitro and in vivo to test the biocompatibility of SB hydrogel and its potential as a therapeutic reagent for ischemic tissue repair in mice. PMID:25469315

  10. Efficient and Tunable Three-Dimensional Functionalization of Fully Zwitterionic Antifouling Surface Coatings.

    PubMed

    Lange, Stefanie C; van Andel, Esther; Smulders, Maarten M J; Zuilhof, Han

    2016-10-11

    To enhance the sensitivity and selectivity of surface-based (bio)sensors, it is of crucial importance to diminish background signals that arise from the nonspecific binding of biomolecules, so-called biofouling. Zwitterionic polymer brushes have been shown to be excellent antifouling materials. However, for sensing purposes, antifouling does not suffice but needs to be combined with the possibility to efficiently modify the brush with recognition units. So far this has been achieved only at the expense of either antifouling properties or binding capacity. Herein we present a conceptually new approach by integrating both characteristics into a single tailor-made monomer: a novel sulfobetaine-based zwitterionic monomer equipped with a clickable azide moiety. Copolymerization of this monomer with a well-established standard sulfobetaine monomer results in highly antifouling surface coatings with a large yet tunable number of clickable groups present throughout the entire brush. Subsequent functionalization of the azido brushes via widely used strain-promoted alkyne azide click reactions yields fully zwitterionic 3D-functionalized coatings with a recognition unit of choice that can be tailored for any specific application. Here we show a proof of principle with biotin-functionalized brushes on Si 3 N 4 that combine excellent antifouling properties with specific avidin binding from a protein mixture. The signal-to-noise ratio is significantly improved over that of traditional chain-end modification of sulfobetaine polymer brushes, even if the azide content is lowered to 1%. This therefore offers a viable approach to the development of biosensors with greatly enhanced performance on any surface.

  11. A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets

    NASA Astrophysics Data System (ADS)

    Xue, Jiangli; Mo, Maosong; Liu, Zhuming; Ye, Dapeng; Cheng, Zhihua; Xu, Tong; Qu, Liangti

    2018-05-01

    A 3D macroporous conductive polymer foam of thin 2D polypyrrole (PPy) nanosheets is developed by adopting a novel intercalation of guest (monomer Py) between the layers of the lamellar host (3D vanadium oxide foam) template-replication strategy. The 3D PPy foam of thin 2D nanosheets exhibits diverse functions including reversible compressibility, shape memory, absorption/adsorption and mechanically deformable supercapacitor characteristics. The as-prepared 3D PPy foam of thin nanosheets is highly light weight with a density of 12 mg·cm-3 which can bear the large compressive strain up to 80% whether in wet or dry states; and can absorb organic solutions or extract dye molecules fast and efficiently. In particular, the PPy nanosheet-based foamas a mechanically deformable electrode material for supercapacitors exhibits high specific capacitance of 70 F·g-1 at a fast charge-discharge rate of 50 mA·g-1, superior to that of any other typical pure PPy-based capacitor. We envision that the strategy presented here should be applicable to fabrication of a wide variety of organic polymer foams and hydrogels of low-dimensional nanostructures and even inorganic foams and hydrogels of low-dimensional nanostructures, and thus allow for exploration of their advanced physical and chemical properties.

  12. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of copper ions in environmental water samples.

    PubMed

    Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein

    2015-04-01

    Novel Cu(II) ion-imprinted polymers (Cu-IIP) nanoparticles were prepared by using Cu(II) ion-thiosemicarbazide complex as the template molecule and methacrylic acid, ethylene glycol dimethacrylate (EGDMA), and 2,2'azobisisobutyronitrile (AIBN) as the functional monomer, cross-linker, and the radical initiator, respectively. The synthesized polymer nanoparticles were characterized by using infrared spectroscopy (IR), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopic (SEM) techniques. Some parameters such as pH, weight of the polymer, adsorption time, elution time, eluent type, and eluent volume which affect the extraction efficiency of the polymer were studied. In the proposed method, the maximum sorbent capacity of the ion-imprinted polymer was calculated to be 38.8 mg g(-1). The preconcentration factor, relative standard deviation, and limit of detection of the method were found to be 80, 1.7%, and 0.003 μg mL(-1), respectively. The prepared ion-imprinted polymer nanoparticles have an increased selectivity toward Cu(II) ions over a range of competing metal ions with the same charge and similar ionic radius. The method was applied to the determination of ultra trace levels of Cu2+ in environmental water samples with satisfactory results.

  13. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions.

    PubMed

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang

    2015-08-30

    A novel molecularly imprinted polymer (MIP)-coated magnetic TiO2 nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC-MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, "green" and low-cost degradation of CR in industrial printing and dyeing wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Molecularly imprinted polymer cartridges coupled on-line with high performance liquid chromatography for simple and rapid analysis of dextromethorphan in human plasma samples.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Akbari-Adergani, Behrouz

    2011-04-01

    In this paper, a novel method is described for automated determination of dextromethorphan in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as a sample clean-up technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and dextromethorphan as template molecule. These imprinted polymers were used as solid-phase extraction sorbent for the extraction of dextromethorphan from human plasma samples. Various parameters affecting the extraction efficiency of the MIP cartridges were evaluated. The high selectivity of the sorbent coupled to the high performance liquid chromatographic system permitted a simple and rapid analysis of this drug in plasma samples with limits of detection (LOD) and quantification (LOQ) of 0.12 ng/mL and 0.35 ng/mL, respectively. The MIP selectivity was evaluated by analyzing of the dextromethorphan in presence of several substances with similar molecular structures and properties. Results from the HPLC analyses showed that the recoveries of dextromethorphan using MIP cartridges from human plasma samples in the range of 1-50 ng/mL were higher than 87%. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Synthesis and characterization of core-shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food.

    PubMed

    Su, Xiaomeng; Li, Xiaoyan; Li, Junjie; Liu, Min; Lei, Fuhou; Tan, Xuecai; Li, Pengfei; Luo, Weiqiang

    2015-03-15

    Core-shell magnetic molecularly imprinted polymers (MIPs) nanoparticles (NPs), in which a Rhodamine B-imprinted layer was coated on Fe3O4 NPs. were synthesized. First, Fe3O4 NPs were prepared by a coprecipitation method. Then, amino-modified Fe3O4 NPs (Fe3O4@SiO2-NH2) was prepared. Finally, the MIPs were coated on the Fe3O4@SiO2-NH2 surface by the copolymerization with functional monomer, acrylamide, using a cross-linking agent, ethylene glycol dimethacrylate; an initiator, azobisisobutyronitrile and a template molecule, Rhodamine B. The Fe3O4@MIPs were characterized using a scanning electron microscope, Fourier transform infrared spectrometer, vibrating sample magnetometer, and re-binding experiments. The Fe3O4@MIPs showed a fast adsorption equilibrium, a highly improved imprinting capacity, and significant selectivity; they could be used as a solid-phase extraction material and detect illegal addition Rhodamine B in food. A method was developed for the selective isolation and enrichment of Rhodamine B in food samples with recoveries in the range 78.47-101.6% and the relative standard deviation was <2%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Molecularly imprinted poly(4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid) modified glassy carbon electrode as an electrochemical theophylline sensor.

    PubMed

    Aswini, K K; Vinu Mohan, A M; Biju, V M

    2016-08-01

    Theophylline is an inexpensive drug employed in asthma and chronic obstructive pulmonary disorder medications and is toxic at higher concentration. The development of a molecularly imprinted polymer based theophylline electrochemical sensor on glassy carbon electrode by the electropolymerization of 4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid is being discussed in this work. The MIP modification enhances the theophylline recognition ability and the electron transfer kinetics of the bare electrode. The parameters, controlling the performance of the imprinted polymer based sensor, like number of electropolymerization cycles, composition of the pre-polymerization mixture, pH and immersion time were investigated and optimized. The interaction energy and the most stable conformation of the template-monomer complex in the pre-polymerization mixture were determined computationally using ab initio calculations based on density functional theory. The amperometric measurements showed that the developed sensor has a method detection limit of 0.32μM for the dynamic range of 0.4 to 17μM, at optimized conditions. The transducer possesses appreciable selectivity in the presence of structurally similar interferents such as theobromine, caffeine and doxofylline. The developed sensor showed remarkable stability and reproducibility and was also successfully employed in theophylline detection from commercially available tablets. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Fabrication of a biomimetic adsorbent imprinted with a common specificity determinant for the removal of α- and β-amanitin from plasma.

    PubMed

    Tan, Lei; He, Rong; Li, Yongxian; Liang, Yong; Li, He; Tang, Youwen

    2016-08-12

    α-Amanitin and β-amanitin are the main toxins of mushroom poisoning. The application of traditional non-selective adsorbents is not satisfactory in clinical treatment of amanita mushroom poisoning due to lack of specificity adsorption capability of these adsorbents toward amanitin toxins. In the current work, we introduce a novel molecularly imprinted biomimetic adsorbent based on a ligand specificity determinant through surface imprinted strategy. Owing to the expensive price of the amanitin sources, we selected a typical common moiety of α, β-amanitin as specificity determinant to synthesize a template necessary for the preparation of molecularly imprinted polymers (MIPs). Computer simulation was used to initially select acidic methacrylic acid (MAA) and basic 4-vinyl pyridine (4-VP) together as functional monomers. The experiments further demonstrated that the synergistic interaction of MAA and 4-VP played a primary role in the recognition of α, β-amanitin by MIPs. By means of batch and packed-bed column experiment and the hemocompatibility evaluation, the resultant biomimetic adsorbent has been proved to be capable of selectively removing α, β-amanitin and possess good hemocompatibility. This novel adsorbent has great potential to find application in human plasma purification. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample.

    PubMed

    Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing; Luo, Ningjing

    2016-04-01

    We describe novel cinnamic acid polydopamine-coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi-walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high-performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid-phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4-115.0% for cinnamic acid, 89.4-103.0% for ferulic acid and 86.6-96.0% for caffeic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Determination of malachite green in fish based on magnetic molecularly imprinted polymer extraction followed by electrochemiluminescence.

    PubMed

    Huang, Baomei; Zhou, Xibin; Chen, Jing; Wu, Guofan; Lu, Xiaoquan

    2015-09-01

    A novel procedure for selective extraction of malachite green (MG) from fish samples was set up by using magnetic molecularly imprinted polymers (MMIP) as the solid phase extraction material followed by electrochemiluminescence (ECL) determination. MMIP was prepared by using Fe3O4 magnetite as magnetic component, MG as template molecule, methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent. MMIP was characterized by SEM, TEM, FT-IR, VSM and XRD. Leucomalachite green (LMG) was oxidized in situ to MG by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). And then MMIP was successfully used to selectively enrich MG from fish samples. Adsorbed MG was desorbed and determined by ECL. Under the optimal conditions, calibration curve was good linear in the range of 0.29-290 μg/kg and the limit of detection (LOD) was 7.3 ng/kg (S/N=3). The recoveries of MMIP extraction were 77.1-101.2%. In addition, MMIP could be regenerated. To the best of our knowledge, MMIP coupling with ECL quenching of Ru(bpy)3(2+)/TPA for the determination of MG has not yet been developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses.

    PubMed

    White, Charles J; McBride, Matthew K; Pate, Kayla M; Tieppo, Arianna; Byrne, Mark E

    2011-08-01

    Symptoms of contact lenses induced dry eye (CLIDE) are typically treated through application of macromolecular re-wetting agents via eye drops. Therapeutic soft contact lenses can be formulated to alleviate CLIDE symptoms by slowly releasing comfort agent from the lens. In this paper, we present an extended wear silicone hydrogel contact lens with extended, controllable release of 120 kDa hydroxypropyl methylcellulose (HPMC) using a molecular imprinting strategy. A commercial silicone hydrogel lens was tailored to release approximately 1000 μg of HPMC over a period of up to 60 days in a constant manner at a rate of 16 μg/day under physiological flowrates, releasing over the entire range of continuous wear. Release rates could be significantly varied by the imprinting effect and functional monomer to template ratio (M/T) with M/T values 0, 0.2, 2.8, 3.4 corresponding to HPMC release durations of 10, 13, 23, and 53 days, respectively. Lenses had high optical quality and adequate mechanical properties for contact lens use. This work highlights the potential of imprinting in the design and engineering of silicone hydrogel lenses to release macromolecules for the duration of wear, which may lead to decreased CLIDE symptoms and more comfortable contact lenses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets

    NASA Astrophysics Data System (ADS)

    Xue, Jiangli; Mo, Maosong; Liu, Zhuming; Ye, Dapeng; Cheng, Zhihua; Xu, Tong; Qu, Liangti

    2018-06-01

    A 3D macroporous conductive polymer foam of thin 2D polypyrrole (PPy) nanosheets is developed by adopting a novel intercalation of guest (monomer Py) between the layers of the lamellar host (3D vanadium oxide foam) template-replication strategy. The 3D PPy foam of thin 2D nanosheets exhibits diverse functions including reversible compressibility, shape memory, absorption/adsorption and mechanically deformable supercapacitor characteristics. The as-prepared 3D PPy foam of thin nanosheets is highly light weight with a density of 12 mg·cm-3 which can bear the large compressive strain up to 80% whether in wet or dry states; and can absorb organic solutions or extract dye molecules fast and efficiently. In particular, the PPy nanosheet-based foam as a mechanically deformable electrode material for supercapacitors exhibits high specific capacitance of 70 F·g-1 at a fast charge-discharge rate of 50 mA·g-1, superior to that of any other typical pure PPy-based capacitor. We envision that the strategy presented here should be applicable to fabrication of a wide variety of organic polymer foams and hydrogels of low-dimensional nanostructures and even inorganic foams and hydrogels of low-dimensional nanostructures, and thus allow for exploration of their advanced physical and chemical properties.

  2. Selective solid-phase extraction based on molecularly imprinted technology for the simultaneous determination of 20 triazole pesticides in cucumber samples using high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhao, Fengnian; She, Yongxin; Zhang, Chao; Cao, Xiaolin; Wang, Shanshan; Zheng, Lufei; Jin, Maojun; Shao, Hua; Jin, Fen; Wang, Jing

    2017-10-01

    A selective analytical method for the simultaneous determination of 20 triazole fungicides and plant growth regulators in cucumber samples was developed using solid-phase extraction with specific molecularly imprinted polymers (MIPs) as adsorbents. The MIPs were successfully prepared by precipitation polymerization using triadimefon as the template molecule, methacrylic acid as the functional monomer, trimethylolpropane trimethacrylate as the crosslinker, and acetonitrile as the porogen. The performance and recognition mechanism for both the MIPs and non-molecularly imprinted polymers were evaluated using adsorption isotherms and adsorption kinetics. Liquid chromatography-tandem quadrupole mass spectrometry was used to identify and quantify the target analytes. The solid-phase extraction using the MIPs was rapid, convenient, and efficient for extraction and enrichment of the 20 triazole pesticides from cucumber samples. The recoveries obtained at three concentration levels (1, 2, and 10μgL -1 ) ranged from 82.3% to 117.6% with relative standard deviations of less than 11.8% (n=5) for all analytes. The limits of detection for the 20 triazole pesticides were all less than 0.4μgL -1 , and were sufficient to meet international standards. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Preparation of magnetic imprinted graphene oxide composite for catalytic degradation of Congo red under dark ambient conditions.

    PubMed

    Yang, Xiaochao; You, Xiaoxiao; Zhang, Bin; Guo, Chuigen; Yu, Chaosheng

    2017-10-01

    Magnetic imprinted N-doped P25/Fe 3 O 4 -graphene oxide (MIGNT) was prepared with methyl orange as the dummy template and pyrrole as functional monomer for catalytic degradation of Congo red (CR). Hummers method and the hydrothermal method were used to synthesize Fe 3 O 4 -GO and N-doped P25, respectively. The results of adsorption and degradation experiments showed that the adsorption capacity and catalytic degradation ability of the imprinted composite for CR were obviously higher than those of a non-imprinted one. Moreover, the effect factors on degradation efficiency of CR, such as the initial concentration of CR, catalysis time, pH of the solution and temperature, were investigated. The MIGNT was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, a physical property measurement system and a thermal gravimetric analyzer. The degradation products of CR were detected with high performance liquid chromatography and a mass spectrometer. The MIGNT was a brand-new imprinted composite and had high degradation efficiency for CR under dark ambient conditions. The MIGNT could be recycled conveniently, due to its magnetic property, and could be used as an effective, environmentally friendly and low-cost catalytic degradation material for the treatment of water contaminated by CR.

  4. Detection of trace tetracycline in fish via synchronous fluorescence quenching with carbon quantum dots coated with molecularly imprinted silica

    NASA Astrophysics Data System (ADS)

    Yang, Ji; Lin, Zheng-Zhong; Nur, A.-Zha; Lu, Yan; Wu, Ming-Hui; Zeng, Jun; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-02-01

    A novel fluorescence-based sensor combining synchronous fluorescence spectroscopy (SFS) with molecularly imprinted polymers (MIPs) was fabricated with reverse microemulsion method. Tetracycline (TC), (3-aminopropyl) triethoxysilane (APTES), tetraethyl orthosilicate (TEOS) and carbon quantum dots (CDs) were used as template, functional monomer, cross-linker and signal sources respectively in the probe preparation. A synchronous fluorescence emission (λem) at 355 nm was observed for the prepared MIP-coated CDs (MIP@CDs) particles when the wavelength interval (Δλ) was set as 70 nm, and the synchronous fluorescence intensity could be rapidly and efficiently quenched by TC based on inner filter effect (IFE). The quenching efficiencies of synchronous fluorescence intensity was linearly fitted with tetracycline (TC) concentrations ranging from 0.1 to 50 μmol L- 1 with a detection limit (DL) of 9 nmol L- 1 (3σ, n = 9). The MIP@CDs was used as a probe to detect TC in fish samples with the recoveries ranging from 98.4% to 103.1% and the relative standard deviation less than 6.0%. The results illustrated that the as-prepared MIP@CDs could be applied to the detection of trace TC in fish samples with rapidity, high sensitivity and accuracy.

  5. Synthesis of surface molecular imprinting polymer on SiO2-coated CdTe quantum dots as sensor for selective detection of sulfadimidine

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiping; Ying, Haiqin; Liu, Yanyan; Xu, Wanzhen; Yang, Yanfei; Luan, Yu; Lu, Yi; Liu, Tianshu; Yu, Shui; Yang, Wenming

    2017-05-01

    This paper demonstrates a facile method to synthesize surface molecular imprinting polymer (MIP) on SiO2-coated CdTe QDs for selective detection of sulfadimidine (SM2). The fluorescent MIP sensor was prepared using cadmium telluride quantum dots (CdTe QDs) as the material of fluorescent signal readout, sulfadimidine as template molecule, 3-aminopropyltriethoxysilane (APTES) as functional monomer and tetraethyloxysilane (TEOS) as cross-linking agent. The CdTe cores were embed in the silicon shells by a sol-gel reaction and then the molecular imprinting layers were immobilized on the surface of the SiO2-coated CdTe QDs. Under the optimized conditions, the relative fluorescent intensity weakened in a linear way with the increasing concentration of sulfadimidine in the range of 10-60 μmol L-1. The practical application of the fluorescent MIP sensor was evaluated by means of analyzing sulfadimidine in the real milk samples. The recoveries were at the range of 90.3-99.6% and the relative standard deviation (RSD) ranged from 1.9 to 3.1%, which indicates the successful synthesis of the fluorescent MIP sensor. This sensor provides an alternative solution for selective determination of sulfadimidine from real milk samples.

  6. HPLC imprinted-stationary phase prepared by precipitation polymerisation for the determination of thiabendazole in fruit.

    PubMed

    Turiel, E; Tadeo, J L; Cormack, P A G; Martin-Esteban, A

    2005-12-01

    A molecularly imprinted polymer (MIP) tailored for the HPLC determination of the fungicide thiabendazole (TBZ) has been synthesised in one single preparative step by precipitation polymerisation in an acetonitrile/toluene co-solvent, using TBZ as template molecule, methacrylic acid as functional monomer and divinylbenzene-80 as crosslinker. The imprinted polymer particulates obtained were characterised by scanning electron microscopy and nitrogen sorption porosimetry. These analyses showed clearly that spherical polymer particulates (polymer microspheres) with narrow size distributions (average particle diameter approximately 3.5 microm) and well-developed pore structures had been produced. The imprinted microspheres were packed into a stainless steel HPLC column (50 x 4.6 mm id) and evaluated as an imprinted stationary phase. The imprinting effect was demonstrated clearly, i.e., the column was observed to bind TBZ selectively, and the effect of different chromatographic parameters (e.g., temperature, flow-rate and elution solvents) on TBZ retention/elution studied. Under optimised conditions, the TBZ-imprinted column was used for the HPLC-fluorescence (HPLC-F) determination of TBZ directly from orange (both whole fruit and juice), lemon, grape and strawberry extracts at low concentration levels in less than 15 min, without any need for a clean-up step in the analytical protocol.

  7. Use of a bisphenol-A imprinted polymer as a selective sorbent for the determination of phenols and phenoxyacids in honey by liquid chromatography with diode array and tandem mass spectrometric detection.

    PubMed

    Herrero-Hernández, E; Carabias-Martínez, R; Rodríguez-Gonzalo, E

    2009-09-21

    An extraction-preconcentration procedure based on the use of a molecularly imprinted polymer (MIP) as selective sorbent has been developed for the determination of several phenolic compounds (bisphenol-A, bisphenol-F and 4-nitrophenol) and phenoxyacid herbicides (2,4-D, 2,4,5-T and 2,4,5-TP) in honey samples. Liquid chromatography with diode array detection (LC-DAD) and electrospray ionisation-ion trap mass spectrometry (LC-IT-MS) were used for the separation, identification and quantification of these analytes. The molecularly imprinted polymer was obtained by precipitation polymerisation with bisphenol-A (BPA) as template and 4-vinylpyridine as the functional monomer. The behaviour of this sorbent was compared with those of other materials frequently used in SPE. The selectivity of the BPA-MIP for the target analytes was tested in samples containing other pesticides in common use. The recoveries achieved for all six compounds were in the 81-96% range. By applying the proposed procedure prior to LC-IT-MS, the limits of detection achieved in commercial honey samples were in the 0.1-3.8 ng g(-1) range, with relative standard deviations of 12-24%.

  8. Application of molecular imprinted polymer nanoparticles as a selective solid phase extraction for preconcentration and trace determination of 2,4-dichlorophenoxyacetic acid in the human urine and different water samples.

    PubMed

    Omidi, Fariborz; Behbahani, Mohammad; Sadeghi Abandansari, Hamid; Sedighi, Alireza; Shahtaheri, Seyed Jamaleddin

    2014-01-01

    A molecular-imprinted polymer nanoparticles (MIP-NP) for the selective preconcentration of 2,4-dichlorophenoxyacetic acid (2,4-D) is described. It was obtained by precipitation polymerization from methacrylic acid (the functional monomer), ethylene glycol dimethacrylate (the cross-linker), 2,2'-azobisisobutyronitrile (the initiator) and 2,4-D (the template molecule) in acetonitrile solution. The MIP-NPs were characterized by thermogravimetric analysis, and by scanning electron microscopy. Imprinted 2,4-D molecules were removed from the polymeric structure using acetic acid in methanol (15:85 v/v %) as the eluting solvent. The sorption and desorption process occur within 10 min and 15 min, respectively. The maximum sorbent capacity of the molecular imprinted polymer is 89.2 mg g(-1). The relative standard deviation and limit of detection for water samples by introduced selective solid phase extraction were 4.2% and 1.25 μg L(-1), and these data for urine samples were 4.7% and 1.80 μg L(-1), respectively. The method was applied to the determination of 2,4-D in the urine and different water samples.

  9. Determination of Ten Macrolide Drugs in Environmental Water Using Molecularly Imprinted Solid-Phase Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Song, Xuqin; Zhou, Tong; Li, Jiufeng; Zhang, Meiyu; Xie, Jingmeng; He, Limin

    2018-05-14

    With the extensive application of antibiotics in livestock, their contamination of the aquatic environment has received more attention. Molecularly imprinted polymer (MIP), as an eco-friendly and durable solid-phase extraction material, has shown great potential for the separation and enrichment of antibiotics in water. This study aims at developing a practical and economical method based on molecularly imprinted solid phase extraction (MISPE) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneously detecting ten macrolide drugs in different sources of water samples. The MIP was synthesized by bulk polymerization using tylosin as the template and methacrylic acid as the functional monomer. The MIP exhibited a favorable load-bearing capacity for water (>90 mL), which is more than triple that of non-molecularly imprinted polymers (NIP). The mean recoveries of macrolides at four spiked concentration levels (limit of quantification, 40, 100, and 400 ng/L) were 62.6⁻100.9%, with intra-day and inter-day relative standard deviations below 12.6%. The limit of detection and limit of quantification were 1.0⁻15.0 ng/L and 3.0⁻40.0 ng/L, respectively. Finally, the proposed method was successfully applied to the analysis of real water samples.

  10. GalaxyGPCRloop: Template-Based and Ab Initio Structure Sampling of the Extracellular Loops of G-Protein-Coupled Receptors.

    PubMed

    Won, Jonghun; Lee, Gyu Rie; Park, Hahnbeom; Seok, Chaok

    2018-06-07

    The second extracellular loops (ECL2s) of G-protein-coupled receptors (GPCRs) are often involved in GPCR functions, and their structures have important implications in drug discovery. However, structure prediction of ECL2 is difficult because of its long length and the structural diversity among different GPCRs. In this study, a new ECL2 conformational sampling method involving both template-based and ab initio sampling was developed. Inspired by the observation of similar ECL2 structures of closely related GPCRs, a template-based sampling method employing loop structure templates selected from the structure database was developed. A new metric for evaluating similarity of the target loop to templates was introduced for template selection. An ab initio loop sampling method was also developed to treat cases without highly similar templates. The ab initio method is based on the previously developed fragment assembly and loop closure method. A new sampling component that takes advantage of secondary structure prediction was added. In addition, a conserved disulfide bridge restraining ECL2 conformation was predicted and analytically incorporated into sampling, reducing the effective dimension of the conformational search space. The sampling method was combined with an existing energy function for comparison with previously reported loop structure prediction methods, and the benchmark test demonstrated outstanding performance.

  11. 101 Templates for School Business Administration. For Use with Lotus 1-2-3.

    ERIC Educational Resources Information Center

    Graczyk, Sandra L.; Faux, James H.

    In most school districts, the chief business official is involved in some aspect of a variety of support functions. This book provides 101 ready-made, field-tested computerized templates of applications commonly used in school business administration. The 101 school business applications and corresponding templates are described in the text and…

  12. BRCA1 Protein Complexes: Dynamic Changes and Functions Important in Breast Cancer

    DTIC Science & Technology

    2007-04-01

    template (lanes 3 and 4), and the proteins were analyzed on protein gels . Western blots were probed with TFIIE (p56E) antibody. (c) A staged...the p(C2AT)19 vector (44) and have been described (45). The linearized IgG template was prepared by digestion with XmnI and subsequent gel purification...The immobilized ML template was prepared by excising the template from its plasmid with HindIII/XmnI digest. The fragment was gel purified, and the 5

  13. Synthesis and application of selective adsorbent for pirimicarb pesticides in aqueous media using allyl-β-cyclodextrin based binary functional monomers.

    PubMed

    He, Chengzijing; Lay, Sovichea; Yu, Haining; Shen, Shengrong

    2018-04-01

    Binary functional monomers, allyl-β-cyclodextrin (allyl-β-CD) and methacrylic acid (MAA) or allyl-β-CD and acrylonitrile (AN), were exploited in a fabrication of molecularly imprinted polymers (MIPs) for selective recognition and large enrichment of pirimicarb from aqueous media. Special attention was paid to the computational simulation of the imprinting molecular and functional monomers. The morphological characteristics of MIPs made of allyl-β-CD and MAA (M-MAA) were characterised by scanning electron microscopy. The effect of binding capacity of MAA-linked allyl-β-CD MIPs (M-MAA) demonstrated higher efficiency than that of AN-linked allyl-β-CD MIPs (M-AN) when tested in binding specificity. Finally, M-MAA was chosen to run through molecularly imprinted solid-phase extraction (MISPE) to analyse the spiked fresh leafy vegetables of pirimicarb. The present proposed technique is a promising tool for the preparation of the receptors which could recognise pirimicarb pesticide in aqueous media. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Fabrication of an electrochemical sensor based on computationally designed molecularly imprinted polymer for the determination of mesalamine in real samples.

    PubMed

    Torkashvand, M; Gholivand, M B; Taherkhani, F

    2015-10-01

    A novel electrochemical sensor based on mesalamine molecularly imprinted polymer (MIP) film on a glassy carbon electrode was fabricated. Density functional theory (DFT) in gas and solution phases was developed to study the intermolecular interactions in the pre-polymerization mixture and to find the suitable functional monomers in MIP preparation. On the basis of computational results, o-phenylenediamine (OP), gallic acid (GA) and p-aminobenzoic acid (ABA) were selected as functional monomers. The MIP film was cast on glassy carbon electrode by electropolymerization of solution containing ternary monomers and then followed by Ag dendrites (AgDs) with nanobranch deposition. The surface feature of the modified electrode (AgDs/MIP/GCE) was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Under the optimal experimental conditions, the peak current was proportional to the concentration of mesalamine ranging from 0.05 to 100 μM, with the detection limit of 0.015 μM. The proposed sensor was applied successfully for mesalamine determination in real samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The construction of MRI brain/head templates for Chinese children from 7 to 16 years of age

    PubMed Central

    Xie, Wanze; Richards, John E.; Lei, Du; Zhu, Hongyan; Lee, Kang; Gong, Qiyong

    2015-01-01

    Population-specific brain templates that provide detailed brain information are beneficial to both structural and functional neuroimaging research. However, age-specific MRI templates have not been constructed for Chinese or any Asian developmental populations. This study developed novel T1-weighted average brain and head templates for Chinese children from 7 to 16 years of age in two-year increments using high quality magnetic resonance imaging (MRI) and well-validated image analysis techniques. A total of 138 Chinese children (51 F/87 M) were included in this study. The internally and externally validated registrations show that these Chinese age-specific templates fit Chinese children’s MR images significantly better than age-specific templates created from U.S. children, or adult templates based on either Chinese or North American adults. It implies that age-inappropriate (e.g., the Chinese56 template, the US20–24 template) and nationality-inappropriate brain templates (e.g., U.S. children’s templates, the US20–24 template) do not provide optimal reference MRIs for processing MR brain images of Chinese pediatric populations. Thus, our age-specific MRI templates are the first of the kind and should be useful in neuroimaging studies with children from Chinese or other Asian populations. These templates can also serve as the foundations for the construction of more comprehensive sets of nationality-specific templates for Asian developmental populations. These templates are available for use in our database. PMID:26343862

  16. Fibrinogen Vicenza and Genova II: two new cases of congenital dysfibrinogenemia with isolated defect of fibrin monomer polymerization and inhibitory activity on normal coagulation.

    PubMed

    Rodeghiero, F; Castaman, G C; Dal Belin Peruffo, A; Dini, E; Galletti, A; Barone, E; Gastaldi, G

    1987-06-03

    Two new cases of congenital dysfibrinogenemia are presented in which defective fibrin monomer polymerization and inhibitory activity on normal coagulation were observed. They have been tentatively called fibrinogen Vicenza and Genova II. The first was discovered in a family with mild bleeding diathesis, the second in an asymptomatic family. In almost all reported cases of fibrinogens with defective fibrin monomer polymerization, additional functional or structural defects have been detected. In our cases, on the contrary, detailed investigations failed to show any other abnormality. Fibrinogen Genova II is apparently identical to fibrinogen Baltimore IV, whereas fibrinogen Vicenza is similar to fibrinogen Troyes and Genova I, but also exerts an evident inhibitory activity on normal coagulation and differs from fibrinogen Genova II and Baltimore IV showing a different kinetic pattern of fibrin monomer polymerization.

  17. Dynamers: Polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity

    PubMed Central

    Skene, Williams G.; Lehn, Jean-Marie P.

    2004-01-01

    Component exchange in reversible polymers allows the generation of dynamic constitutional diversity. The polycondensation of dihydrazides with dialdehydes generates polyacylhydrazones, to which the acylhydrazone functionality formed confers both hydrogen-bonding and reversibility features through the amide and imine groups, respectively. Polyacylhydrazones are thus dynamic polyamides. They are able to reversibly exchange either one or both of their repeating monomer units in the presence of different monomers, thus presenting constitutional dynamic diversity. The polymers subjected to monomer exchange/interchange may be brought to exhibit physical properties vastly different from those of the original polymer. The principle may be extended to other important classes of polymers, giving access, for instance, to dynamic polyureas or polycarbamates. These reversible polymers are therefore able to incorporate, decorporate, or reshuffle their constituting monomers, namely in response to environmental physical or chemical factors, an adaptability feature central to constitutional dynamic chemistry. PMID:15150411

  18. Diffusion of copolymers composed of monomers with drastically different friction factors in copolymer/homopolymer blends

    DOE PAGES

    Duranty, Edward R.; Baschnagel, Jörg; Dadmun, Mark

    2017-02-07

    Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this paper, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary themore » connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. Finally, the results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer’s local volume.« less

  19. Synthesis of CdS nanorods in soft template under gamma-irradiation.

    PubMed

    Zhao, Bing; Wang, Yanli; Zhang, Haijiao; Jiao, Zheng; Wang, Haobo; Ding, Guoji; Wu, Minghong

    2009-02-01

    CdS nano material which has a band gap of 2.42 eV at room temperature is a typical II-VII semiconductor having many commercial or potential applications, e.g., light-emitting diodes, solar cell and optoelectronic devices. In this paper, we use a new strategy to synthesize CdS nanorods. CdS nanorods were prepared in soft template under gamma-irradiation though the reaction of cadmium sulphide and thiacetamide (TAA). The formation process and characters of CdS nanorods was investigated in detail by transmission electron microscopy (TEM), electron diffraction (ED) pattern, X-ray powder diffraction (XRD), ultraviolet spectrophotometer (UV) and photoluminescence spectrophotometer (PL). In the experiment we proposed that the irradiation of gamma-ray accelerated the formation of S(2-) under acidic condition (pH = 3) and vinyl acetate (VAc) monomer formed pre-organized nano polymer tubules which were used as both templates and nanoreacters for the growth of CdS nanorods. In this process, we have obtained the CdS polycrystal nanorods with PVAc nano tubules and CdS single-crystal nanorods. The result of X-ray powder diffraction confirms that the crystal type of CdS nanorods is cubic F-43 m (216). The results from transmission electron microscopy and electron diffraction show that the concentrations of reactants and the dose rate of gamma-ray are key to produce appropriate CdS nanorods. Relatively low concentrations (Cd2+: 0.008-0.02 mol/L, Cd2+ : S(2-) = 1 : 2) of reactants and long time (1-2 d) of irradiation in low dose rate (6-14 Gy/min) are propitious to form CdS single-crystal nanorods with small diameter (less than 100 nm) and well length (2-5 microm). UV and PL characterizations show the sample have well optical properties.

  20. The use of coenzyme Q0 as a template in the development of a molecularly imprinted polymer for the selective recognition of coenzyme Q10.

    PubMed

    Contin, Mario; Flor, Sabrina; Martinefski, Manuela; Lucangioli, Silvia; Tripodi, Valeria

    2014-01-07

    In this work, a novel molecularly imprinted polymer (MIP) for use as a solid phase extraction sorbent was developed for the determination of coenzyme Q10 (CoQ10) in liver extract. CoQ10 is an essential cofactor in mitochondrial oxidative phosphorylation and a powerful antioxidant agent found in low concentrations in biological samples. This fact and its high hydrophobicity make the analysis of CoQ10 technically challenging. Accordingly, a MIP was synthesised using coenzyme Q0 as the template, methacrylic acid as the functional monomer, acetonitrile as the porogen, ethylene glycol dimethacrylate as the crosslinker and benzoyl peroxide as the initiator. Various parameters affecting the polymer preparation and extraction efficiency were evaluated. Morphological characterisation of the MIP and its proper comparison with C18 as a sorbent in solid phase extraction were performed. The optimal conditions for the molecularly imprinted solid phase extraction (MISPE) consisted of 400 μL of sample mixed with 30 mg of MIP and 600 μL of water to reach the optimum solution loading. The loading was followed by a washing step consisting of 1 mL of a 1-propanol solution (1-propanol:water, 30:70,v/v) and elution with 1 mL of 1-propanol. After clean-up, the CoQ10 in the samples was analysed by high performance liquid chromatography. The extraction recoveries were higher than 73.7% with good precision (3.6-8.3%). The limits of detection and quantification were 2.4 and 7.5 μg g(-1), respectively, and a linear range between 7.5 and 150 μg g(-1) of tissue was achieved. The new MISPE procedure provided a successful clean-up for the determination of CoQ10 in a complex matrix. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Kinetics of the monomer-dimer reaction of yeast hexokinase PI.

    PubMed

    Hoggett, J G; Kellett, G L

    1992-10-15

    Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity.

  2. Kinetics of the monomer-dimer reaction of yeast hexokinase PI.

    PubMed Central

    Hoggett, J G; Kellett, G L

    1992-01-01

    Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity. Images Fig. 1. PMID:1445216

  3. Surface-initiated polymerization within mesoporous silica spheres for the modular design of charge-neutral polymer particles.

    PubMed

    Müllner, Markus; Cui, Jiwei; Noi, Ka Fung; Gunawan, Sylvia T; Caruso, Frank

    2014-06-03

    We report a templating approach for the preparation of functional polymer replica particles via surface-initiated polymerization in mesoporous silica templates. Subsequent removal of the template resulted in discrete polymer particles. Furthermore, redox-responsive replica particles could be engineered to disassemble in a reducing environment. Particles, made of poly(methacryloyloxyethyl phosphorylcholine) (PMPC) or poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA), exhibited very low association to human cancer cells (below 5%), which renders the reported charge-neutral polymer particles a modular and versatile class of highly functional carriers with potential applications in drug delivery.

  4. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  5. Visualization of early events in acetic acid denaturation of HIV-1 protease: a molecular dynamics study.

    PubMed

    Borkar, Aditi Narendra; Rout, Manoj Kumar; Hosur, Ramakrishna V

    2011-01-01

    Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR) was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH) solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH reveal that the PR denaturation begins by separation of dimer into intact monomers and it is only after this separation that the monomer units start denaturing. The denaturation of the monomers is flagged off by the loss of crucial interactions between the α-helix at C-terminal and surrounding β-strands. This causes the structure to transit from the equilibrium dynamics to random non-equilibrating dynamics. Residence time calculations indicate that denaturation occurs via direct interaction of the acetic acid molecules with certain regions of the protein in 9 M AcOH. All these observations have helped to decipher a picture of the early events in acetic acid denaturation of PR and have illustrated that the α-helix and the β-sheet at the C-terminus of a native and functional PR dimer should maintain both the stability and the function of the enzyme and thus present newer targets for blocking PR function.

  6. Template identification technology of nuclear warheads and components

    NASA Astrophysics Data System (ADS)

    Liu, Su-Ping; Gong, Jian; Hao, Fan-Hua; Hu, Guang-Chun

    2008-02-01

    Template identification technology (TIT) is designed for the scenarios where a batch of disarmed nuclear weapons or components would be dismantled to observe a nuclear disarmament treaty. The core function played by the TIT is to make a judgment on whether the verified item belongs to a certain kind of nuclear weapons or component (NW/NC) or to which kind the verified item belongs. This paper analyses the functions played by the TIT in the process of NW/NC dismantlement, and proposes that two phases would be followed when applying the TIT: firstly to establish NW/NC templates with a sample of size n drawn from a certain kind of disarmament NW; secondly to authenticate NW/NC by means of the TIT. This paper also expatiates some terms related to the concept of the TIT and investigates on the development status of NW/NC TIT based on radiation signatures. The study concludes that the design of template structure is crucial to the establishment of an effective TIT and that starting from different research angles and aiming at the same goal of classification different template structures and corresponding template identification methods can be built up to meet specific identification requirements.

  7. X-Aerogels for Structural Components and High Temperature Applications

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Future NASA missions and space explorations rely on the use of materials that are strong ultra lightweight and able to withstand extreme temperatures. Aerogels are low density (0.01-0.5 g/cu cm) high porosity materials that contain a glass like structure formed through standard sol-gel chemistry. As a result of these structural properties, aerogels are excellent thermal insulators and are able to withstand temperatures in excess of l,000 C. The open structure of aerogels, however, renders these materials extremely fragile (fracturing at stress forces less than 0.5 N/sq cm). The goal of NASA Glenn Research Center is to increase the strength of these materials by templating polymers and metals onto the surface of an aerogel network facilitating the use of this material for practical applications such as structural components of space vehicles used in exploration. The work this past year focused on two areas; (1) the research and development of new templated aerogels materials and (2) process development for future manufacturing of structural components. Research and development occurred on the production and characterization of new templating materials onto the standard silica aerogel. Materials examined included polymers such as polyimides, fluorinated isocyanates and epoxies, and, metals such as silver, gold and platinum. The final properties indicated that the density of the material formed using an isocyanate is around 0.50 g/cc with a strength greater than that of steel and has low thermal conductivity. The process used to construct these materials is extremely time consuming and labor intensive. One aspect of the project involved investigating the feasibility of shortening the process time by preparing the aerogels in the templating solvent. Traditionally the polymerization used THF as the solvent and after several washes to remove any residual monomers and water, the solvent around the aerogels was changed to acetonitrile for the templating step. This process took a couple of days. It was experimentally determined that the polymerization reaction could be done in acetonitrile instead of THF with no detrimental effects to the properties of the resulting aerogel. Other changes in the time needed to crosslink the gels in the isocyanate solution as well as changes to the subsequent washing procedure could also shorten the processing time with no effect on the properties. Processing methods were also developed that allowed a variety of shapes as well as sizes of these materials to be formed.

  8. System and method for constructing filters for detecting signals whose frequency content varies with time

    DOEpatents

    Qian, S.; Dunham, M.E.

    1996-11-12

    A system and method are disclosed for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos(2{pi}{phi}(t)) and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {phi}{prime}(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series. The joint time-frequency transformation represents the analyzed signal energy at time t and frequency f, P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function {phi}{prime}(t) which best fits the multivalued function f(t). Integrating {phi}{prime}(t) along t yields {phi}{prime}(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template. 7 figs.

  9. System and method for constructing filters for detecting signals whose frequency content varies with time

    DOEpatents

    Qian, Shie; Dunham, Mark E.

    1996-01-01

    A system and method for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos{2.pi..phi.(t)} and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {.phi.'(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series (also known as the Gabor spectrogram). The joint time-frequency transformation represents the analyzed signal energy at time t and frequency .function., P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function .phi.'(t) which best fits the multivalued function f(t), a trajectory of the joint time-frequency domain representation of x(t). Integrating .phi.'(t) along t yields .phi.(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template.

  10. Utilization of group theory in studies of molecular clusters

    NASA Astrophysics Data System (ADS)

    Ocak, Mahir E.

    The structure of the molecular symmetry group of molecular clusters was analyzed and it is shown that the molecular symmetry group of a molecular cluster can be written as direct products and semidirect products of its subgroups. Symmetry adaptation of basis functions in direct product groups and semidirect product groups was considered in general and the sequential symmetry adaptation procedure which is already known for direct product groups was extended to the case of semidirect product groups. By using the sequential symmetry adaptation procedure a new method for calculating the VRT spectra of molecular clusters which is named as Monomer Basis Representation (MBR) method is developed. In the MBR method, calculations starts with a single monomer with the purpose of obtaining an optimized basis for that monomer as a linear combination of some primitive basis functions. Then, an optimized basis for each identical monomer is generated from the optimized basis of this monomer. By using the optimized bases of the monomers, a basis is generated generated for the solution of the full problem, and the VRT spectra of the cluster is obtained by using this basis. Since an optimized basis is used for each monomer which has a much smaller size than the primitive basis from which the optimized bases are generated, the MBR method leads to an exponential optimization in the size of the basis that is required for the calculations. Application of the MBR method has been illustrated by calculating the VRT spectra of water dimer by using the SAPT-5st potential surface of Groenenboom et al. The rest of the calculations are in good agreement with both the original calculations of Groenenboom et al. and also with the experimental results. Comparing the size of the optimized basis with the size of the primitive basis, it can be said that the method works efficiently. Because of its efficiency, the MBR method can be used for studies of clusters bigger than dimers. Thus, MBR method can be used for studying the many-body terms and for deriving accurate potential surfaces.

  11. An in vivo MRI Template Set for Morphometry, Tissue Segmentation, and fMRI Localization in Rats

    PubMed Central

    Valdés-Hernández, Pedro Antonio; Sumiyoshi, Akira; Nonaka, Hiroi; Haga, Risa; Aubert-Vásquez, Eduardo; Ogawa, Takeshi; Iturria-Medina, Yasser; Riera, Jorge J.; Kawashima, Ryuta

    2011-01-01

    Over the last decade, several papers have focused on the construction of highly detailed mouse high field magnetic resonance image (MRI) templates via non-linear registration to unbiased reference spaces, allowing for a variety of neuroimaging applications such as robust morphometric analyses. However, work in rats has only provided medium field MRI averages based on linear registration to biased spaces with the sole purpose of approximate functional MRI (fMRI) localization. This precludes any morphometric analysis in spite of the need of exploring in detail the neuroanatomical substrates of diseases in a recent advent of rat models. In this paper we present a new in vivo rat T2 MRI template set, comprising average images of both intensity and shape, obtained via non-linear registration. Also, unlike previous rat template sets, we include white and gray matter probabilistic segmentations, expanding its use to those applications demanding prior-based tissue segmentation, e.g., statistical parametric mapping (SPM) voxel-based morphometry. We also provide a preliminary digitalization of latest Paxinos and Watson atlas for anatomical and functional interpretations within the cerebral cortex. We confirmed that, like with previous templates, forepaw and hindpaw fMRI activations can be correctly localized in the expected atlas structure. To exemplify the use of our new MRI template set, were reported the volumes of brain tissues and cortical structures and probed their relationships with ontogenetic development. Other in vivo applications in the near future can be tensor-, deformation-, or voxel-based morphometry, morphological connectivity, and diffusion tensor-based anatomical connectivity. Our template set, freely available through the SPM extension website, could be an important tool for future longitudinal and/or functional extensive preclinical studies. PMID:22275894

  12. Improving the convergence rate in affine registration of PET and SPECT brain images using histogram equalization.

    PubMed

    Salas-Gonzalez, D; Górriz, J M; Ramírez, J; Padilla, P; Illán, I A

    2013-01-01

    A procedure to improve the convergence rate for affine registration methods of medical brain images when the images differ greatly from the template is presented. The methodology is based on a histogram matching of the source images with respect to the reference brain template before proceeding with the affine registration. The preprocessed source brain images are spatially normalized to a template using a general affine model with 12 parameters. A sum of squared differences between the source images and the template is considered as objective function, and a Gauss-Newton optimization algorithm is used to find the minimum of the cost function. Using histogram equalization as a preprocessing step improves the convergence rate in the affine registration algorithm of brain images as we show in this work using SPECT and PET brain images.

  13. Theory of adsorption in a polydisperse templated porous material: Hard sphere systems

    NASA Astrophysics Data System (ADS)

    RŻysko, Wojciech; Sokołowski, Stefan; Pizio, Orest

    2002-03-01

    A theoretical description of adsorption in a templated porous material, formed by an equilibrium quench of a polydisperse fluid composed of matrix and template particles and subsequent removal of the template particles is presented. The approach is based on the solution of the replica Ornstein-Zernike equations with Percus-Yevick and hypernetted chain closures. The method of solution uses expansions of size-dependent correlation functions into Fourier series, as described by Lado [J. Chem. Phys. 108, 6441 (1998)]. Specific calculations have been carried out for model systems, composed of hard spheres.

  14. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    PubMed Central

    Cui, Yun-Liang; Zhang, Sheng; Tian, Zhao-Tao; Lin, Zhao-Fen; Chen, De-Chang

    2016-01-01

    Background: Intact endothelial structure and function are critical for maintaining microcirculatory homeostasis. Dysfunction of the latter is an underlying cause of various organ pathologies. In a previous study, we showed that rhubarb, a traditional Chinese medicine, protected intestinal mucosal microvascular endothelial cells in rats with metastasizing septicemia. In this study, we investigated the effects and mechanisms of rhubarb on matrix metalloproteinase-9 (MMP9)-induced vascular endothelial (VE) permeability. Methods: Rhubarb monomers were extracted and purified by a series of chromatography approaches. The identity of these monomers was analyzed by hydrogen-1 nuclear magnetic resonance (NMR), carbon-13 NMR, and distortionless enhancement by polarization transfer magnetic resonance spectroscopy. We established a human umbilical vein endothelial cell (HUVEC) monolayer on a Transwell insert. We measured the HUVEC permeability, proliferation, and the secretion of VE-cadherin into culture medium using fluorescein isothiocyanate-dextran assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, and enzyme-linked immunosorbent assay, respectively, in response to treatment with MMP9 and/or rhubarb monomers. Results: A total of 21 rhubarb monomers were extracted and identified. MMP9 significantly increased the permeability of the HUVEC monolayer, which was significantly reduced by five individual rhubarb monomer (emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein) or a combination of all five monomers (1 μmol/L for each monomer). Mechanistically, the five-monomer mixture at 1 μmol/L promoted HUVEC proliferation. In addition, MMP9 stimulated the secretion of VE-cadherin into the culture medium, which was significantly inhibited by the five-monomer mixture. Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein, at a low concentration, antagonized the MMP9-induced HUVEC monolayer permeability by promoting HUVEC proliferation and reducing extracellular VE-cadherin concentrations. PMID:27411464

  15. The role of functional monomers in bonding to enamel: acid-base resistant zone and bonding performance.

    PubMed

    Li, Na; Nikaido, Toru; Takagaki, Tomohiro; Sadr, Alireza; Makishi, Patricia; Chen, Jihua; Tagami, Junji

    2010-09-01

    To investigate the effects of two functional monomers on caries-inhibition potential and bond strength of two-step self-etching adhesive systems to enamel. Clearfil SE Bond and similar experimental formulations different in the functional monomer were used. Four combinations of primer and bonding agents were evaluated: (1) Clearfil SE Bond which contains MDP in both primer and bonding (M-M); (2) Clearfil SE Bond primer and Phenyl-P in bonding (M-P); (3) Phenyl-P in primer and Clearfil SE Bond bonding (P-M); (4) Phenyl-P in primer and bonding (P-P). Ground buccal enamel surfaces of human sound premolars were treated with one of the systems and the bonded interface was exposed to an artificial demineralising solution (pH 4.5) for 4.5 h, and then 5% NaOCl with ultrasonication for 30 min. After argon-ion etching, the interfacial ultrastructure was observed using SEM. Micro-shear bond strength to enamel was measured for all groups and results were analysed using one-way ANOVA and Turkey's HSD, while failure modes were analysed by chi-square test. An acid-base resistant zone (ABRZ) was found with all adhesive systems containing MDP either in primer or bond; however, ultramorphology and crystallite arrangement in the ABRZ were different among groups. P-P was the only group devoid of this protective zone. Micro-shear bond strength in M-M was significantly higher than those in M-P, P-M and P-P, while the latter three were not different from each other. Failure modes were significantly different (p<0.05). Functional monomers in two-step self-etching systems influence both the bonding performance and the formation of ABRZ on enamel. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Structure and function of echinoderm telomerase RNA

    PubMed Central

    Podlevsky, Joshua D.; Li, Yang; Chen, Julian J.-L.

    2016-01-01

    Telomerase is a ribonucleoprotein (RNP) enzyme that requires an integral telomerase RNA (TR) subunit, in addition to the catalytic telomerase reverse transcriptase (TERT), for enzymatic function. The secondary structures of TRs from the three major groups of species, ciliates, fungi, and vertebrates, have been studied extensively and demonstrate dramatic diversity. Herein, we report the first comprehensive secondary structure of TR from echinoderms—marine invertebrates closely related to vertebrates—determined by phylogenetic comparative analysis of 16 TR sequences from three separate echinoderm classes. Similar to vertebrate TR, echinoderm TR contains the highly conserved template/pseudoknot and H/ACA domains. However, echinoderm TR lacks the ancestral CR4/5 structural domain found throughout vertebrate and fungal TRs. Instead, echinoderm TR contains a distinct simple helical region, termed eCR4/5, that is functionally equivalent to the CR4/5 domain. The urchin and brittle star eCR4/5 domains bind specifically to their respective TERT proteins and stimulate telomerase activity. Distinct from vertebrate telomerase, the echinoderm TR template/pseudoknot domain with the TERT protein is sufficient to reconstitute significant telomerase activity. This gain-of-function of the echinoderm template/pseudoknot domain for conferring telomerase activity presumably facilitated the rapid structural evolution of the eCR4/5 domain throughout the echinoderm lineage. Additionally, echinoderm TR utilizes the template-adjacent P1.1 helix as a physical template boundary element to prevent nontelomeric DNA synthesis, a mechanism used by ciliate and fungal TRs. Thus, the chimeric and eccentric structural features of echinoderm TR provide unparalleled insights into the rapid evolution of telomerase RNP structure and function. PMID:26598712

  17. Molecularly imprinted polymers for RGD selective recognition and separation.

    PubMed

    Papaioannou, Emmanuel; Koutsas, Christos; Liakopoulou-Kyriakides, Maria

    2009-03-01

    Molecularly imprinted polymers that could recognize the tripeptide Arg-Gly-Asp have been produced with the use of two functional monomers and three different cross-linkers, respectively. Methacrylic acid and acrylamide were used as functional monomers and the role of the ethylene glycol dimethacrylate, trimethylpropane trimethacrylate and N,N'-methylene-bisacrylamide as crosslinking monomers, was investigated on their recognition capability. The % net rebinding and the imprinting factor values were obtained, giving for the methacrylic acid-trimethylpropane trimethacrylate polymer the highest values 12.3% and 2.44, respectively. In addition, this polymer presented lower dissociation constant (K(D)) value and the higher B (max)% of theoretical total binding sites than all the other polymers. Rebinding experiments with Lys-Gly-Asp, an analogue of Arg-Gly-Asp, and other different peptides, such as cholecystokinin C-terminal tri- and pentapeptide and gramicidin, further indicated the selectivity of methacrylic acid-trimethylpropane trimethacrylate copolymer for Arg-Gly-Asp giving specific selectivity factor values 1.27, 1.98, 1.31 and 1.67, respectively.

  18. Molecular simulations of assembly of functionalized spherical nanoparticles

    NASA Astrophysics Data System (ADS)

    Seifpour, Arezou

    Precise assembly of nanoparticles is crucial for creating spatially engineered materials that can be used for photonics, photovoltaic, and metamaterials applications. One way to control nanoparticle assembly is by functionalizing the nanoparticle with ligands, such as polymers, DNA, and proteins, that can manipulate the interactions between the nanoparticles in the medium the particles are placed in. This thesis research aims to design ligands to provide a new route to the programmable assembly of nanoparticles. We first investigate using Monte Carlo simulation the effect of copolymer ligands on nanoparticle assembly. We first study a single nanoparticle grafted with many copolymer chains to understand how monomer sequence (e.g. alternating ABAB, or diblock AxBx) and chemistry of the copolymers affect the grafted chain conformation at various particle diameters, grafting densities, copolymer chain lengths, and monomer-monomer interactions in an implicit small molecule solvent. We find that the size of the grafted chain varies non-monotonically with increasing blockiness of the monomer sequence for a small particle diameter. From this first study, we selected the two sequences with the most different chain conformations---alternating and diblock---and studied the effect of the sequence and a range of monomer chemistries of the copolymer on the characteristics of assembly of multiple copolymer-functionalized nanoparticles. We find that the alternating sequence produces nanoclusters that are relatively isotropic, whereas diblock sequence tends to form anisotropic structures that are smaller and more compact when the block closer to the surface is attractive and larger loosely held together clusters when the outer block is attractive. Next, we conduct molecular dynamics simulations to study the effect of DNA ligands on nanoparticle assembly. Specifically we investigate the effect of grafted DNA strand composition (e.g. G/C content, placement and sequence) and bidispersity in DNA strand lengths on the thermodynamics and structure of assembly of functionalized nanoparticles. We find that higher G/C content increases cluster dissociation temperature for smaller particles. Placement of G/C block inward along the strand decreases number of neighbors within the assembled cluster. Finally, increased bidispersity in DNA strand lengths leads a distribution of inter-particle distances in the assembled cluster.

  19. Development of Total Knee Replacement Digital Templating Software

    NASA Astrophysics Data System (ADS)

    Yusof, Siti Fairuz; Sulaiman, Riza; Thian Seng, Lee; Mohd. Kassim, Abdul Yazid; Abdullah, Suhail; Yusof, Shahril; Omar, Masbah; Abdul Hamid, Hamzaini

    In this study, by taking full advantage of digital X-ray and computer technology, we have developed a semi-automated procedure to template knee implants, by making use of digital templating method. Using this approach, a software system called OrthoKneeTMhas been designed and developed. The system is to be utilities as a study in the Department of Orthopaedic and Traumatology in medical faculty, UKM (FPUKM). OrthoKneeTMtemplating process employs uses a technique similar to those used by many surgeons, using acetate templates over X-ray films. Using template technique makes it easy to template various implant from every Implant manufacturers who have with a comprehensive database of templates. The templating functionality includes, template (knee) and manufactures templates (Smith & Nephew; and Zimmer). From an image of patient x-ray OrthoKneeTMtemplates help in quickly and easily reads to the approximate template size needed. The visual templating features then allow us quickly review multiple template sizes against the X-ray and thus obtain the nearly precise view of the implant size required. The system can assist by templating on one patient image and will generate reports that can accompany patient notes. The software system was implemented in Visual basic 6.0 Pro using the object-oriented techniques to manage the graphics and objects. The approaches for image scaling will be discussed. Several of measurement in orthopedic diagnosis process have been studied and added in this software as measurement tools features using mathematic theorem and equations. The study compared the results of the semi-automated (using digital templating) method to the conventional method to demonstrate the accuracy of the system.

  20. Thermostability of photosystem I trimers and monomers from the cyanobacterium Thermosynechococcus elongatus

    NASA Astrophysics Data System (ADS)

    Shubin, Vladimir V.; Terekhova, Irina V.; Bolychevtseva, Yulia V.; El-Mohsnawy, Eithar; Rögner, Matthias; Mäntele, Werner; Kopczak, Marta J.; Džafić, Enela

    2017-05-01

    The performance of solar energy conversion into alternative energy sources in artificial systems highly depends on the thermostability of photosystem I (PSI) complexes Terasaki et al. (2007), Iwuchukwu et al. (2010), Kothe et al. (2013) . To assess the thermostability of PSI complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus heating induced perturbations on the level of secondary structure of the proteins were studied. Changes were monitored by Fourier transform infrared (FT-IR) spectra in the mid-IR region upon slow heating (1 °C per minute) of samples in D2O phosphate buffer (pD 7.4) from 20 °C to 100 °C. These spectra showed distinct changes in the Amide I region of PSI complexes as a function of the rising temperature. Absorbance at the Amide I maximum of PSI monomers (centered around 1653 cm- 1), gradually dropped in two temperature intervals, i.e. 60-75 and 80-90 °C. In contrast, absorbance at the Amide I maximum of PSI trimers (around 1656 cm- 1) dropped only in one temperature interval 80-95 °C. The thermal profile of the spectral shift of α-helices bands in the region 1656-1642 cm- 1 confirms the same two temperature intervals for PSI monomers and only one interval for trimers. Apparently, the observed absorbance changes at the Amide I maximum during heating of PSI monomers and trimers are caused by deformation and unfolding of α-helices. The absence of absorbance changes in the interval of 20-65 °C in PSI trimers is probably caused by a greater stability of protein secondary structure as compared to that in monomers. Upon heating above 80 °C a large part of α-helices both in trimers and monomers converts to unordered and aggregated structures. Spectral changes of PSI trimers and monomers heated up to 100 °C are irreversible due to protein denaturation and non-specific aggregation of complexes leading to new absorption bands at 1618-1620 cm- 1. We propose that monomers shield the denaturation sensitive sides at the monomer/monomer interface within a trimer, making the oligomeric structure more stable against thermal stress.

  1. Labelling Polymers and Micellar Nanoparticles via Initiation, Propagation and Termination with ROMP

    PubMed Central

    Thompson, Matthew P.; Randolph, Lyndsay M.; James, Carrie R.; Davalos, Ashley N.; Hahn, Michael E.

    2014-01-01

    In this paper we compare and contrast three approaches for labelling polymers with functional groups via ring-opening metathesis polymerization (ROMP). We explored the incorporation of functionality via initiation, termination and propagation employing an array of novel initiators, termination agents and monomers. The goal was to allow the generation of selectively labelled and well-defined polymers that would in turn lead to the formation of labelled nanomaterials. Norbornene analogues, prepared as functionalized monomers for ROMP, included fluorescent dyes (rhodamine, fluorescein, EDANS, and coumarin), quenchers (DABCYL), conjugatable moieties (NHS esters, pentafluorophenyl esters), and protected amines. In addition, a set of symmetrical olefins for terminally labelling polymers, and for the generation of initiators in situ is described. PMID:24855496

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duranty, Edward R.; Baschnagel, Jörg; Dadmun, Mark

    Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this paper, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary themore » connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. Finally, the results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer’s local volume.« less

  3. Biocatalytic synthesis and polymerization via ROMP of new biobased phenolic monomers: a greener process towards sustainable antioxidant polymers

    NASA Astrophysics Data System (ADS)

    Diot-Néant, Florian; Migeot, Loïs; Hollande, Louis; Reano, Felix A.; Domenek, Sandra; Allais, Florent

    2017-12-01

    Antioxidant norbornene-based monomers bearing biobased sterically hindered phenols (SHP) - NDF (norbornene dihydroferulate) and NDS (norbornene dihydrosinapate) - have been successfully prepared through biocatalysis from naturally occurring ferulic and sinapic acids, respectively, in presence of Candida antarctica Lipase B (Cal-B). The ring opening metathesis polymerization (ROMP) of these monomers was investigated according to ruthenium catalyst type (GI) vs. (HGII) and monomer to catalyst molar ratio ([M]/[C]). The co-polymerization of antioxidant functionalized monomer (NDF or NDS) and non-active norbornene (N) has also been performed in order to adjust the number of SHP groups present per weight unit and tune the antioxidant activity of the copolymers. The polydispersity of the resulting copolymers was readily improved by a simple acetone wash to provide antioxidant polymers with well-defined structures. After hydrogenation with p-toluenesulfonylhydrazine (p-TSH), the radical scavenging ability of the resulting saturated polymers was evaluated using α,α-diphenyl-β-picrylhydrazyl (DPPH) analysis. Results demonstrated that polymers bearing sinapic acid SHP exhibited higher antiradical activity than the polymer bearing ferulic acid SHP. In addition it was also shown that only a small SHP content was needed in the copolymers to exhibit a potent antioxidant activity.

  4. Well-defined single polymer nanoparticles for the antibody-targeted delivery of chemotherapeutic agents.

    PubMed

    Lane, D D; Chiu, D Y; Su, F Y; Srinivasan, S; Kern, H B; Press, O W; Stayton, P S; Convertine, A J

    2015-02-28

    Aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization was employed to prepare a series of linear copolymers of N,N-dimethylacrylamide (DMA) and 2-hydroxyethylacrylamide (HEAm) with narrow Đ values over a molecular weight range spanning three orders of magnitude (10 3 to 10 6 Da). Trithiocarbonate-based RAFT chain transfer agents (CTAs) were grafted onto these scaffolds using carbodiimide chemistry catalyzed with DMAP. The resultant graft chain transfer agent (gCTA) was subsequently employed to synthesize polymeric brushes with a number of important vinyl monomer classes including acrylamido, methacrylamido, and methacrylate. Brush polymerization kinetics were evaluated for the aqueous RAFT polymerization of DMA from a 10 arm gCTA. Polymeric brushes containing hydroxyl functionality were further functionalized in order to prepare 2nd generation gCTAs which were subsequently employed to prepare polymers with a brushed-brush architecture with molecular weights in excess of 10 6 Da. These resultant single particle nanoparticles (SNPs) were employed as drug delivery vehicles for the anthracycline-based drug doxorubicin via copolymerization of DMA with a protected carbazate monomer (bocSMA). Cell-specific targeting functionality was also introduced via copolymerization with a biotin-functional monomer (bioHEMA). Drug release of the hydrazone linked doxorubicin was evaluated as function of pH and serum and chemotherapeutic activity was evaluated in SKOV3 ovarian cancer cells.

  5. Genomic, RNAseq, and Molecular Modeling Evidence Suggests That the Major Allergen Domain in Insects Evolved from a Homodimeric Origin

    PubMed Central

    Randall, Thomas A.; Perera, Lalith; London, Robert E.; Mueller, Geoffrey A.

    2013-01-01

    The major allergen domain (MA) is widely distributed in insects. The crystal structure of a single Bla g 1 MA revealed a novel protein fold in which the fundamental structure was a duplex of two subsequences (monomers), which had diverged over time. This suggested that the evolutionary origin of the MA structure may have been a homodimer of this smaller subsequence. Using publicly available genomic data, the distribution of the basic unit of this class of proteins was determined to better understand its evolutionary history. The duplication and divergence is examined at three distinct levels of resolution: 1) within the orders Diptera and Hymenoptera, 2) within one genus Drosophila, and 3) within one species Aedes aegypti. Within the family Culicidae, we have found two separate occurrences of monomers as independent genes. The organization of the gene family in A. aegypti shows a common evolutionary origin for its monomer and several closely related MAs. Molecular modeling of the A. aegypti monomer with the unique Bla g 1 fold confirms the distant evolutionary relationship and supports the feasibility of homodimer formation from a single monomer. RNAseq data for A. aegypti confirms that the monomer is expressed in the mosquito similar to other A. aegypti MAs after a blood meal. Together, these data support the contention that the detected monomer shares similar functional characteristics to related MAs in other insects. An extensive search for this domain outside of Insecta confirms that the MAs are restricted to insects. PMID:24253356

  6. Functional materials from cellulose-derived liquid-crystal templates.

    PubMed

    Giese, Michael; Blusch, Lina K; Khan, Mostofa K; MacLachlan, Mark J

    2015-03-02

    Cellulose nanocrystals (CNCs), known for more than 50 years, have attracted attention because of their unique properties such as high specific strength and modulus, high surface area, and fascinating optical properties. Just recently, however, their potential in supramolecular templating was identified by making use of their self-assembly behavior in aqueous dispersions in the presence of compatible precursors. The combination of the mesoporosity, photonic properties, and chiral nematic order of the materials, which are available as freestanding films, has led to a significant number of interesting and promising discoveries towards new functional materials. This Review summarizes the use of cellulose derivatives, especially CNCs, as novel templates and gives an overview of the recent developments toward new functional materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Advanced clay nanocomposites based on in situ photopolymerization utilizing novel polymerizable organoclays

    NASA Astrophysics Data System (ADS)

    Kim, Soon Ki

    Polymer nanocomposite technology has had significant impact on material design. With the environmental advantages of photopolymerization, a research has recently focused on producing nanocomposites utilizing inexpensive clay particles based on in situ photopolymerization. In this research, novel polymerizable organoclays and thiol-ene photopolymerization have been utilized to develop advanced photopolymer clay nanocomposites and to overcome several limitations in conventional free radical photopolymers. To this end, factors important in nanocomposite processes such as monomer composition, clay dispersion, and photopolymerization behavior in combination with the evolution of ultimate nanocomposite properties have been investigated. For monomer-organoclay compositions, higher chemical compatibility of components induces enhanced clay exfoliation, resulting in photopolymerization rate increases due to an amplified clay template effect. Additionally, by affecting the stoichiometric ratio between thiol and acrylate double bond in the clay gallery, thiolated organoclays enhance thiol-ene copolymerization with increased final thiol conversion while acrylated organoclays encourage acrylate homopolymerization. In accordance with the reaction behavior, incorporation of thiolated organoclays makes polymer chains more flexible with decreased glass transition temperature due to higher formation of thio-ether linkages while adding acrylated organoclays significantly increases the modulus. Photopolymer nanocomposites also help overcome two major drawbacks in conventional free radical photopolymerization, namely severe polymerization shrinkage and oxygen inhibition during polymerization. With addition of a low level of thiol monomers, the oxygen inhibition in various acrylate systems can be overcome by addition of only 5wt% thiolated organoclay. The same amount of polymerizable organoclay also induces up to 90% decreases in the shrinkage stress for acrylate or thiol-acrylate systems. However, nonreactive clays do not reduce the stress substantially and even decreases the polymerization rate in air. Additionally, the clay morphology and polymerization behavior are closely related with evolution of ultimate nanocomposite performance. Use of polymerizable organoclay significantly improves overall toughness of nanocomposites by increasing either modulus or elongation at break based on the type of polymerizable organoclay, which demonstrates the promise of this technology as a modulation and/or optimization tool for nanocomposite properties.

  8. Preparation, Characterization and Application of a Molecularly Imprinted Polymer for Selective Recognition of Sulpiride

    PubMed Central

    Zhang, Wei; She, Xuhui; Wang, Liping; Fan, Huajun; Zhou, Qing; Huang, Xiaowen; Tang, James Z.

    2017-01-01

    A novel molecular imprinting polymer (MIP) was prepared by bulk polymerization using sulpiride as the template molecule, itaconic acid (ITA) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the crosslinker. The formation of the MIP was determined as the molar ratio of sulpiride-ITA-EGDMA of 1:4:15 by single-factor experiments. The MIP showed good adsorption property with imprinting factor α of 5.36 and maximum adsorption capacity of 61.13 μmol/g, and was characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and surface area analysis. With the structural analogs (amisulpride, tiapride, lidocaine and cisapride) and small molecules containing a mono-functional group (p-toluenesulfonamide, formamide and 1-methylpyrrolidine) as substrates, static adsorption, kinetic adsorption, and rebinding experiments were also performed to investigate the selective adsorption ability, kinetic characteristic, and recognition mechanism of the MIP. A serial study suggested that the highly selective recognition ability of the MIP mainly depended on binding sites provided by N-functional groups of amide and amine. Moreover, the MIP as solid-phase extractant was successfully applied to extraction of sulpiride from the mixed solution (consisted of p-toluenesulfonamide, sulfamethoxazole, sulfanilamide, p-nitroaniline, acetanilide and trimethoprim) and serum sample, and extraction recoveries ranged from 81.57% to 86.63%. The tentative tests of drug release in stimulated intestinal fluid (pH 6.8) demonstrated that the tablet with the MIP–sulpiride could obviously inhibit sulpiride release rate. Thus, ITA-based MIP is an efficient and promising alternative to solid-phase adsorbent for extraction of sulpiride and removal of interferences in biosample analysis, and could be used as a potential carrier for controlled drug release. PMID:28772831

  9. Construction of dual-functional polymer nanomaterials with near-infrared fluorescence imaging and polymer prodrug by RAFT-mediated aqueous dispersion polymerization.

    PubMed

    Tian, Chun; Niu, Jinyun; Wei, Xuerui; Xu, Yujie; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2018-05-31

    The performance of functional polymer nanomaterials is a vigorously discussed topic in polymer science. We devoted ourselves to investigating polymer nanomaterials based on near-infrared (NIR) fluorescence imaging and polymer prodrug in this study. Aza-boron dipyrromethene (BODIPY) is an important organic dye, having characteristics such as environmental resistance, light resistance, high molar extinction coefficient, and fluorescence quantum yield. We incorporated it into our target monomer, which can be polymerized without changing its parent structure in a polar solvent and copolymerized with water-soluble monomer to improve the solubility of the dye in an aqueous solution. At the same time, the hydrophobic drug camptothecin (CPT) was designed as a prodrug monomer, and the polymeric nanoparticles (NPs) with NIR fluorescence imaging and prodrug were synthesized in situ in reversible addition-fragmentation chain transfer (RAFT)-mediated aqueous dispersion polymerization. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed the final uniform size of the dual-functional polymeric NPs morphology. The dual-functional polymeric NPs had a strong absorption and emission signal in the NIR region (>650 nm) based on the fluorescence tests. In consideration of the long-term biological toxicity, confocal laser scanning microscopy (CLSM) results indicated that the dual-functional NPs with controlled drug content exhibited effective capability of killing HeLa cells. In addition, in vivo imaging of the dual-functional NPs was observed in real time, and the fluorescent signals clearly demonstrated the dynamic process of prodrug transfer.

  10. Vinyl monomers-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Chetan P.; Singh, Krishan K.; Kumar, Manmohan, E-mail: manmoku@barc.gov.in

    2010-01-15

    A simple wet chemical method has been developed to synthesize selenium nanoparticles (size 100-200 nm), by reaction of sodium selenosulphate precursor with different vinyl monomers, such as acrylamide, N,N'-dimethylene bis acrylamide, methyl methacrylate, sodium acrylate, etc., in aqueous medium, under ambient conditions. Polyvinyl alcohol has been used to stabilize the selenium nanoparticles. Average size of the synthesized selenium nanoparticles can be controlled by adjusting concentration of both the precursors and the stabilizer. Rate of the reaction as well as size of the resultant selenium nanoparticles have been correlated with the functional groups of the different monomers. UV-vis optical absorption spectroscopy,more » X-ray diffraction, energy dispersive X-rays, differential scanning calorimetry, atomic force microscopy, scanning electron microscopy and transmission electron microscopy techniques have been employed to characterize the synthesized selenium nanoparticles. Gas chromatographic analysis of the reaction mixture established the non-catalytic role of the vinyl monomers, which were found to be consumed during the course of the reaction.« less

  11. MODELING POROUS DUST GRAINS WITH BALLISTIC AGGREGATES. II. LIGHT SCATTERING PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Yue; Draine, B. T.; Johnson, Eric T.

    2009-05-10

    We study the light scattering properties of random ballistic aggregates constructed in Shen et al. Using the discrete-dipole approximation, we compute the scattering phase function and linear polarization for random aggregates with various sizes and porosities, and with two different compositions: 100% silicate and 50% silicate +50% graphite. We investigate the dependence of light scattering properties on wavelength, cluster size, and porosity using these aggregate models. We find that while the shape of the phase function depends mainly on the size parameter of the aggregates, the linear polarization depends on both the size parameter and the porosity of the aggregates,more » with increasing degree of polarization as the porosity increases. Contrary to previous studies, we argue that the monomer size has negligible effects on the light scattering properties of ballistic aggregates, as long as the constituent monomer is smaller than the incident wavelength up to 2{pi}a {sub 0}/{lambda} {approx} 1.6 where a {sub 0} is the monomer radius. Previous claims for such monomer size effects are in fact the combined effects of size parameter and porosity. Finally, we present aggregate models that can reproduce the phase function and polarization of scattered light from the AU Mic debris disk and from cometary dust, including the negative polarization observed for comets at scattering angles 160 deg. {approx}< {theta} < 180 deg. These aggregates have moderate porosities, P{approx}0.6, and are of sub-{mu}m size for the debris disk case, or {mu}m size for the comet case.« less

  12. Functional annotation by sequence-weighted structure alignments: statistical analysis and case studies from the Protein 3000 structural genomics project in Japan.

    PubMed

    Standley, Daron M; Toh, Hiroyuki; Nakamura, Haruki

    2008-09-01

    A method to functionally annotate structural genomics targets, based on a novel structural alignment scoring function, is proposed. In the proposed score, position-specific scoring matrices are used to weight structurally aligned residue pairs to highlight evolutionarily conserved motifs. The functional form of the score is first optimized for discriminating domains belonging to the same Pfam family from domains belonging to different families but the same CATH or SCOP superfamily. In the optimization stage, we consider four standard weighting functions as well as our own, the "maximum substitution probability," and combinations of these functions. The optimized score achieves an area of 0.87 under the receiver-operating characteristic curve with respect to identifying Pfam families within a sequence-unique benchmark set of domain pairs. Confidence measures are then derived from the benchmark distribution of true-positive scores. The alignment method is next applied to the task of functionally annotating 230 query proteins released to the public as part of the Protein 3000 structural genomics project in Japan. Of these queries, 78 were found to align to templates with the same Pfam family as the query or had sequence identities > or = 30%. Another 49 queries were found to match more distantly related templates. Within this group, the template predicted by our method to be the closest functional relative was often not the most structurally similar. Several nontrivial cases are discussed in detail. Finally, 103 queries matched templates at the fold level, but not the family or superfamily level, and remain functionally uncharacterized. 2008 Wiley-Liss, Inc.

  13. [Study on anti-bacterium activity of ginkgolic acids and their momomers].

    PubMed

    Yang, Xiaoming; Zhu, Wei; Chen, Jun; Qian, Zhiyu; Xie, Jimin

    2004-09-01

    Ginkgolic acids and their three monomers were separated from ginkgo sarcotestas. The anti-bacterium activity of ginkgolic acids were tested. The relation between the anti-bacterium activity and side chain of ginkgolic acid were studied. The MIC of ginkgolic acids and their three monomers and salicylic acid were tested. Ginkgolic acid has strong inhibitive effect on G+-bacterium. Salicylic acid has no side chain, so no anti-bacterial activity. When the length of gingkolic acid side chain is C13:0, it has the strongest anti-bacterial activity in three monomers. The side chain of ginkgolic acid is the key functional group that possessed anti-bacterial activity. The length of Ginkgolic acid was the main effective factor of anti-bacterial activity.

  14. Atom Transfer Radical Polymerization of Functionalized Vinyl Monomers Using Perylene as a Visible Light Photocatalyst

    PubMed Central

    Theriot, Jordan C.; Ryan, Matthew D.; French, Tracy A.; Pearson, Ryan M.; Miyake, Garret M.

    2016-01-01

    A standardized technique for atom transfer radical polymerization of vinyl monomers using perylene as a visible-light photocatalyst is presented. The procedure is performed under an inert atmosphere using air- and water-exclusion techniques. The outcome of the polymerization is affected by the ratios of monomer, initiator, and catalyst used as well as the reaction concentration, solvent, and nature of the light source. Temporal control over the polymerization can be exercised by turning the visible light source off and on. Low dispersities of the resultant polymers as well as the ability to chain-extend to form block copolymers suggest control over the polymerization, while chain end-group analysis provides evidence supporting an atom-transfer radical polymerization mechanism. PMID:27166728

  15. Open tubular capillary columns with basic templates made by the generalized preparation protocol in capillary electrochromatography chiral separation and template structural effects on chiral separation capability.

    PubMed

    Zaidi, Shabi Abbas; Lee, Seung Mi; Cheong, Won Jo

    2011-03-04

    Some open tubular (OT) molecule imprinted polymer (MIP) silica capillary columns have been prepared using atenolol, sulpiride, methyl benzylamine (MBA) and (1-naphthyl)-ethylamine (NEA) as templates by the pre-established generalized preparation protocol. The four MIP thin layers of different templates showed quite different morphologies. The racemic selectivity of each MIP column for the template enantiomers was optimized by changing eluent composition and pH. The template structural effects on chiral separation performance have been examined. This work verifies the versatility of the generalized preparation protocol for OT-MIP silica capillary columns by extending its boundary toward templates with basic functional group moieties. This study is the very first report to demonstrate a generalized MIP preparation protocol that is valid for both acidic and basic templates. The chiral separation performances of atenolol and sulpiride by the MIPs of this study were found better than or comparable to those of atenolol and sulpiride obtained by non-MIP separation techniques and those of some basic template enantiomers obtained by MIP based techniques. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Surface plasmon resonance sensor for femtomolar detection of testosterone with water-compatible macroporous molecularly imprinted film.

    PubMed

    Zhang, Qingwen; Jing, Lijing; Zhang, Jinling; Ren, Yamin; Wang, Yang; Wang, Yi; Wei, Tianxin; Liedberg, Bo

    2014-10-15

    A novel water-compatible macroporous molecularly imprinted film (MIF) has been developed for rapid, sensitive, and label-free detection of small molecule testosterone in urine. The MIF was synthesized by photo copolymerization of monomers (methacrylic acid [MAA] and 2-hydroxyethyl methacrylate [HEMA]), cross-linker (ethylene glycol dimethacrylate, EGDMA), and polystyrene nanoparticles (PS NPs) in combination with template testosterone molecules. The PS NPs and template molecules were subsequently removed to form an MIF with macroporous structures and the specific recognition sites of testosterone. Incubation of artificial urine and human urine on the MIF and the non-imprinted film (NIF), respectively, indicated undetectable nonspecific adsorption. Accordingly, the MIF was applied on a surface plasmon resonance (SPR) sensor for the detection of testosterone in phosphate-buffered saline (PBS) and artificial urine with a limit of detection (LOD) down to 10(-15)g/ml. To the best of our knowledge, the LOD is considered as one of the lowest among the SPR sensors for the detection of small molecules. The control experiments performed with analogue molecules such as progesterone and estradiol demonstrated the good selectivity of this MIF for sensing testosterone. Furthermore, this MIF-based SPR sensor shows high stability and reproducibility over 8months of storage at room temperature, which is more robust than protein-based biosensors. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Novel Biocompatible Thermoresponsive Poly(N-vinyl Caprolactam)/Clay Nanocomposite Hydrogels with Macroporous Structure and Improved Mechanical Characteristics.

    PubMed

    Shi, Kun; Liu, Zhuang; Yang, Chao; Li, Xiao-Ying; Sun, Yi-Min; Deng, Yi; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Chu, Liang-Yin

    2017-07-05

    Poly(N-vinyl caprolactam) (PVCL) hydrogels usually suffer from the imporous structure and poor mechanical characteristics as well as the toxicity of cross-linkers, although PVCL itself is biocompatible. In this paper, novel biocompatible thermoresponsive poly(N-vinyl caprolactam)/clay nanocomposite (PVCL-Clay) hydrogels with macroporous structure and improved mechanical characteristics are developed for the first time. The macroporosity in the hydrogel is introduced by using Pickering emulsions as templates, which contain N-vinyl caprolactam (VCL) monomer as dispersed phase and clay sheets as stabilizers at the interface. After polymerization, macropores are formed inside the hydrogels with the residual unreacted VCL droplets as templates. The three-dimensional PVCL polymer networks are cross-linked by the clay nanosheets. Due to the nanocomposite structure, the hydrogel exhibits better mechanical characteristics in comparison to the conventional PVCL hydrogels cross-linked by N,N'-methylene diacrylamide (BIS). The prepared PVCL-Clay hydrogel possesses remarkable temperature-responsive characteristics with a volume phase transition temperature (VPTT) around 35 °C, and provides a feasible platform for cell culture. With macroporous structure and good mechanical characteristics as well as flexible assembly performance, the proposed biocompatible thermoresponsive PVCL-Clay nanocomposite hydrogels are ideal material candidates for biomedical, analytical, and other applications such as entrapment of enzymes, cell culture, tissue engineering, and affinity and displacement chromatography.

  18. Molecularly imprinted polymeric stir bar: Preparation and application for the determination of naftopidil in plasma and urine samples.

    PubMed

    Peng, Jun; Xiao, Deli; He, Hua; Zhao, Hongyan; Wang, Cuixia; Shi, Tian; Shi, Kexin

    2016-01-01

    In this study, molecularly imprinting technology and stir bar absorption technology were combined to develop a microextraction approach based on a molecularly imprinted polymeric stir bar. The molecularly imprinted polymer stir bar has a high performance, is specific, economical, and simple to prepare. The obtained naftopidil-imprinted polymer-coated bars could simultaneously agitate and adsorb naftopidil in the sample solution. The ratio of template/monomer/cross-linker and conditions of template removal were optimized to prepare a stir bar with highly efficient adsorption. Fourier transform infrared spectroscopy, scanning electron microscopy, selectivity, and extraction capacity experiments showed that the molecularly imprinted polymer stir bar was prepared successfully. To utilize the molecularly imprinted polymer stir bar for the determination of naftopidil in complex body fluid matrices, the extraction time, stirring speed, eluent, and elution time were optimized. The limits of detection of naftopidil in plasma and urine sample were 7.5 and 4.0 ng/mL, respectively, and the recoveries were in the range of 90-112%. The within-run precision and between-run precision were acceptable (relative standard deviation <7%). These data demonstrated that the molecularly imprinted polymeric stir bar based microextraction with high-performance liquid chromatography was a convenient, rapid, efficient, and specific method for the precise determination of trace naftopidil in clinical analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cooperative Binding of Cyclodextrin Dimers to Isoflavone Analogues Elucidated by Free Energy Calculations.

    PubMed

    Zhang, Haiyang; Tan, Tianwei; Hetényi, Csaba; Lv, Yongqin; van der Spoel, David

    2014-04-03

    Dimerization of cyclodextrin (CD) molecules is an elementary step in the construction of CD-based nanostructured materials. Cooperative binding of CD cavities to guest molecules facilitates the dimerization process and, consequently, the overall stability and assembly of CD nanostructures. In the present study, all three dimerization modes (head-to-head, head-to-tail, and tail-to-tail) of β-CD molecules and their binding to three isoflavone drug analogues (puerarin, daidzin, and daidzein) were investigated in explicit water surrounding using molecular dynamics simulations. Total and individual contributions from the binding partners and solvent environment to the thermodynamics of these binding reactions are quantified in detail using free energy calculations. Cooperative drug binding to two CD cavities gives an enhanced binding strength for daidzin and daidzein, whereas for puerarin no obvious enhancement is observed. Head-to-head dimerization yields the most stable complexes for inclusion of the tested isoflavones (templates) and may be a promising building block for construction of template-stabilized CD nanostructures. Compared to the case of CD monomers, the desolvation of CD dimers and entropy changes upon complexation prove to be influential factors of cooperative binding. Our results shed light on key points of the design of CD-based supramolecular assemblies. We also show that structure-based calculation of binding thermodynamics can quantify stabilization caused by cooperative effects in building blocks of nanostructured materials.

  20. Synthesis and Characterization of Polydiacetylene Films and Nanotubes

    PubMed Central

    Gatebe, Erastus; Herron, Hayley; Zakeri, Rashid; Rajasekaran, Pradeep Ramiah; Aouadi, Samir; Kohli, Punit

    2009-01-01

    We report here the synthesis and characterization of polydiacetylene (PDA) films and nanotubes using layer-by-layer (LBL) chemistry. 10,12-Docosadiyndioic acid (DCDA) monomer was self-assembled on flat surfaces and inside of nanoporous alumina templates. UV irradiation of DCDA provided polymerized-DCDA (PDCDA) films and nanotubes. We have used zirconium-carboxylate interlayer chemistry to synthesize PDCDA multilayers on flat surfaces and in nanoporous template. PDCDA multilayers were characterized using optical (UV–vis, fluorescence, ellipsometry, FTIR) spectroscopies, ionic current–voltage (I–V) analysis, and scanning electron microscopy. Ellipsometry, FTIR, electronic absorption and emission spectroscopies showed a uniform DCDA deposition at each deposition cycle. Our optical spectroscopic analysis indicates that carboxylate-zirconium interlinking chemistry is robust. To explain the disorganization in the alkyl portion of PDCDA multilayer films, we propose carboxylate-zirconium interlinkages act as “locks” in between PDCDA layers which restrict the movement of alkyl portion in the films. Because of this locking, the induced-stresses in the polymer chains can not be efficiently relieved. Our ionic resistance data from I–V analysis correlate well with calculated resistance at smaller number of PDCDA layers but significantly deviated for thicker PDCDA nanotubes. These differences were attributed to ion-blocking because some of the PDCDA nanotubes were totally closed and the nonohmic and permselective ionic behaviors when the diameter of the pores approaches the double-layer thickness of the solution inside of the nanotubes. PMID:18823090

  1. Creation of structured documentation templates using Natural Language Processing techniques.

    PubMed

    Kashyap, Vipul; Turchin, Alexander; Morin, Laura; Chang, Frank; Li, Qi; Hongsermeier, Tonya

    2006-01-01

    Structured Clinical Documentation is a fundamental component of the healthcare enterprise, linking both clinical (e.g., electronic health record, clinical decision support) and administrative functions (e.g., evaluation and management coding, billing). One of the challenges in creating good quality documentation templates has been the inability to address specialized clinical disciplines and adapt to local clinical practices. A one-size-fits-all approach leads to poor adoption and inefficiencies in the documentation process. On the other hand, the cost associated with manual generation of documentation templates is significant. Consequently there is a need for at least partial automation of the template generation process. We propose an approach and methodology for the creation of structured documentation templates for diabetes using Natural Language Processing (NLP).

  2. Silver nanowires-templated metal oxide for broadband Schottky photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Malkeshkumar; Kim, Hong-Sik; Kim, Joondong, E-mail: joonkim@inu.ac.kr

    2016-04-04

    Silver nanowires (AgNWs)-templated transparent metal oxide layer was applied for Si Schottky junction device, which remarked the record fastest photoresponse of 3.4 μs. Self-operating AgNWs-templated Schottky photodetector showed broad wavelength photodetection with high responsivity (42.4 A W{sup −1}) and detectivity (2.75 × 10{sup 15} Jones). AgNWs-templated indium-tin-oxide (ITO) showed band-to-band excitation due to the internal photoemission, resulting in significant carrier collection performances. Functional metal oxide layer was formed by AgNWs-templated from ITO structure. The grown ITO above AgNWs has a cylindrical shape and acts as a thermal protector of AgNWs for high temperature environment without any deformation. We developed thermal stable AgNWs-templated transparent oxidemore » devices and demonstrated the working mechanism of AgNWs-templated Schottky devices. We may propose the high potential of hybrid transparent layer design for various photoelectric applications, including solar cells.« less

  3. A Modified Personalized Image-Based Drill Guide Template for Atlantoaxial Pedicle Screw Placement: A Clinical Study

    PubMed Central

    Jiang, Lianghai; Dong, Liang; Tan, Mingsheng; Qi, Yingna; Yang, Feng; Yi, Ping; Tang, Xiangsheng

    2017-01-01

    Background Atlantoaxial posterior pedicle screw fixation has been widely used for treatment of atlantoaxial instability (AAI). However, precise and safe insertion of atlantoaxial pedicle screws remains challenging. This study presents a modified drill guide template based on a previous template for atlantoaxial pedicle screw placement. Material/Methods Our study included 54 patients (34 males and 20 females) with AAI. All the patients underwent posterior atlantoaxial pedicle screw fixation: 25 patients underwent surgery with the use of a modified drill guide template (template group) and 29 patients underwent surgery via the conventional method (conventional group). In the template group, a modified drill guide template was designed for each patient. The modified drill guide template and intraoperative fluoroscopy were used for surgery in the template group, while only intraoperative fluoroscopy was used in the conventional group. Results Of the 54 patients, 52 (96.3%) completed the follow-up for more than 12 months. The template group had significantly lower intraoperative fluoroscopy frequency (p<0.001) and higher accuracy of screw insertion (p=0.045) than the conventional group. There were no significant differences in surgical duration, intraoperative blood loss, or improvement of neurological function between the 2 groups (p>0.05). Conclusions Based on the results of this study, it is feasible to use the modified drill guide template for atlantoaxial pedicle screw placement. Using the template can significantly lower the screw malposition rate and the frequency of intraoperative fluoroscopy. PMID:28301445

  4. Tailoring local density of optical states to control emission intensity and anisotropy of quantum dots in hybrid photonic-plasmonic templates

    NASA Astrophysics Data System (ADS)

    Indukuri, Chaitanya; Mukherjee, Arnab; Basu, J. K.

    2015-03-01

    We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators.

  5. Structural asymmetry and intersubunit communication in muscle creatine kinase.

    PubMed

    Ohren, Jeffrey F; Kundracik, Melisa L; Borders, Charles L; Edmiston, Paul; Viola, Ronald E

    2007-03-01

    The structure of a transition-state analog complex of a highly soluble mutant (R134K) of rabbit muscle creatine kinase (rmCK) has been determined to 1.65 A resolution in order to elucidate the structural changes that are required to support and regulate catalysis. Significant structural asymmetry is seen within the functional homodimer of rmCK, with one monomer found in a closed conformation with the active site occupied by the transition-state analog components creatine, MgADP and nitrate. The other monomer has the two loops that control access to the active site in an open conformation and only MgADP is bound. The N-terminal region of each monomer makes a substantial contribution to the dimer interface; however, the conformation of this region is dramatically different in each subunit. Based on this structural evidence, two mutational modifications of rmCK were conducted in order to better understand the role of the amino-terminus in controlling creatine kinase activity. The deletion of the first 15 residues of rmCK and a single point mutant (P20G) both disrupt subunit cohesion, causing the dissociation of the functional homodimer into monomers with reduced catalytic activity. This study provides support for a structural role for the amino-terminus in subunit association and a mechanistic role in active-site communication and catalytic regulation.

  6. Red fluorescent protein eqFP611 and its genetically engineered dimeric variants.

    PubMed

    Wiedenmann, Jörg; Vallone, Beatrice; Renzi, Fabiana; Nienhaus, Karin; Ivanchenko, Sergey; Röcker, Carlheinz; Nienhaus, G Ulrich

    2005-01-01

    The red fluorescent protein (FP) eqFP611 from the sea anemone Entacmaea quadricolor shows favorable properties for applications as a molecular marker. Like other anthozoan FPs, it forms tetramers at physiological concentrations. The interactions among the monomers, however, are comparatively weak, as inferred from the dissociation into monomers in the presence of sodium dodecyl sulfate (SDS) or at high dilution. Analysis at the single-molecule level revealed that the monomers are highly fluorescent. For application as fusion markers, monomeric FPs are highly desirable. Therefore, we examine the monomer interfaces in the x-ray structure of eqFP611 to provide a basis for the rational design of monomeric variants. The arrangement of the four beta cans is very similar to that of other green fluorescent protein (GFP-like) proteins such as DsRed and RTMS5. A variety of structural features of the tetrameric interfaces explain the weak subunit interactions in eqFP611. We produce functional dimeric variants by introducing single point mutations in the A/B interface (Thr122Arg, Val124Thr). By contrast, structural manipulations in the A/C interface result in essentially complete loss of fluorescence, suggesting that A/C interfacial interactions play a crucial role in the folding of eqFP611 into its functional form. Copyright 2005 Society of Photo-Optical Instrumentation Engineers

  7. Inhibition of Poliovirus-Induced Cleavage of Cellular Protein PCBP2 Reduces the Levels of Viral RNA Replication

    PubMed Central

    Chase, Amanda J.; Daijogo, Sarah

    2014-01-01

    ABSTRACT Due to their small genome size, picornaviruses must utilize host proteins to mediate cap-independent translation and viral RNA replication. The host RNA-binding protein poly(rC) binding protein 2 (PCBP2) is involved in both processes in poliovirus infected cells. It has been shown that the viral proteinase 3CD cleaves PCBP2 and contributes to viral translation inhibition. However, cleaved PCBP2 remains active in viral RNA replication. This would suggest that both cleaved and intact forms of PCBP2 have a role in the viral RNA replication cycle. The picornavirus genome must act as a template for both translation and RNA replication. However, a template that is actively being translated cannot function as a template for RNA replication, suggesting that there is a switch in template usage from translation to RNA replication. We demonstrate that the cleavage of PCBP2 by the poliovirus 3CD proteinase is a necessary step for efficient viral RNA replication and, as such, may be important for mediating a switch in template usage from translation to RNA replication. IMPORTANCE Poliovirus, like all positive-strand RNA viruses that replicate in the cytoplasm of eukaryotic cells, uses its genomic RNA as a template for both viral protein synthesis and RNA replication. Given that these processes cannot occur simultaneously on the same template, poliovirus has evolved a mechanism(s) to facilitate the switch from using templates for translation to using them for RNA synthesis. This study explores one possible scenario for how the virus alters the functions of a host cell RNA binding protein to mediate, in part, this important transition. PMID:24371074

  8. New template family for the detection of gravitational waves from comparable-mass black hole binaries

    NASA Astrophysics Data System (ADS)

    Porter, Edward K.

    2007-11-01

    In order to improve the phasing of the comparable-mass waveform as we approach the last stable orbit for a system, various resummation methods have been used to improve the standard post-Newtonian waveforms. In this work we present a new family of templates for the detection of gravitational waves from the inspiral of two comparable-mass black hole binaries. These new adiabatic templates are based on reexpressing the derivative of the binding energy and the gravitational wave flux functions in terms of shifted Chebyshev polynomials. The Chebyshev polynomials are a useful tool in numerical methods as they display the fastest convergence of any of the orthogonal polynomials. In this case they are also particularly useful as they eliminate one of the features that plagues the post-Newtonian expansion. The Chebyshev binding energy now has information at all post-Newtonian orders, compared to the post-Newtonian templates which only have information at full integer orders. In this work, we compare both the post-Newtonian and Chebyshev templates against a fiducially exact waveform. This waveform is constructed from a hybrid method of using the test-mass results combined with the mass dependent parts of the post-Newtonian expansions for the binding energy and flux functions. Our results show that the Chebyshev templates achieve extremely high fitting factors at all post-Newtonian orders and provide excellent parameter extraction. We also show that this new template family has a faster Cauchy convergence, gives a better prediction of the position of the last stable orbit and in general recovers higher Signal-to-Noise ratios than the post-Newtonian templates.

  9. Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.

    2000-07-14

    Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety ofmore » applications such as scavenging of heavy metals.« less

  10. Enhanced ICBM Diffusion Tensor Template of the Human Brain

    PubMed Central

    Zhang, Shengwei; Peng, Huiling; Dawe, Robert J.; Arfanakis, Konstantinos

    2010-01-01

    Development of a diffusion tensor (DT) template that is representative of the micro-architecture of the human brain is crucial for comparisons of neuronal structural integrity and brain connectivity across populations, as well as for the generation of a detailed white matter atlas. Furthermore, a DT template in ICBM space may simplify consolidation of information from DT, anatomical and functional MRI studies. The previously developed “IIT DT brain template” was produced in ICBM-152 space, based on a large number of subjects from a limited age-range, using data with minimal image artifacts, and non-linear registration. That template was characterized by higher image sharpness, provided the ability to distinguish smaller white matter fiber structures, and contained fewer image artifacts, than several previously published DT templates. However, low-dimensional registration was used in the development of that template, which led to a mismatch of DT information across subjects, eventually manifested as loss of local diffusion information and errors in the final tensors. Also, low-dimensional registration led to a mismatch of the anatomy in the IIT and ICBM-152 templates. In this work, a significantly improved DT brain template in ICBM-152 space was developed, using high-dimensional non-linear registration and the raw data collected for the purposes of the IIT template. The accuracy of inter-subject DT matching was significantly increased compared to that achieved for the development of the IIT template. Consequently, the new template contained DT information that was more representative of single-subject human brain data, and was characterized by higher image sharpness than the IIT template. Furthermore, a bootstrap approach demonstrated that the variance of tensor characteristics was lower in the new template. Additionally, compared to the IIT template, brain anatomy in the new template more accurately matched ICBM-152 space. Finally, spatial normalization of a number of DT datasets through registration to the new and existing IIT templates was improved when using the new template. PMID:20851772

  11. Learning that Prepares for More Learning: Symbolic Mathematics in Physical Chemistry

    ERIC Educational Resources Information Center

    Zielinski, Theresa Julia

    2004-01-01

    The well-crafted templates are useful to learn the new concepts of chemistry. The templates focus on pressure-volume work, the Boltzmann distribution, the Gibbs free energy function, intermolecular potentials, the second virial coefficient and quantum mechanical tunneling.

  12. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Xu, Bin; Jia, Mengqiu; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu

    2015-03-01

    A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO3 templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g-1 at a current load of 0.1 A g-1 with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors.

  13. Structural basis for antibody-mediated neutralization of Lassa virus.

    PubMed

    Hastie, Kathryn M; Zandonatti, Michelle A; Kleinfelter, Lara M; Heinrich, Megan L; Rowland, Megan M; Chandran, Kartik; Branco, Luis M; Robinson, James E; Garry, Robert F; Saphire, Erica Ollmann

    2017-06-02

    The arenavirus Lassa causes severe hemorrhagic fever and a significant disease burden in West Africa every year. The glycoprotein, GPC, is the sole antigen expressed on the viral surface and the critical target for antibody-mediated neutralization. Here we present the crystal structure of the trimeric, prefusion ectodomain of Lassa GP bound to a neutralizing antibody from a human survivor at 3.2-angstrom resolution. The antibody extensively anchors two monomers together at the base of the trimer, and biochemical analysis suggests that it neutralizes by inhibiting conformational changes required for entry. This work illuminates pH-driven conformational changes in both receptor-binding and fusion subunits of Lassa virus, illustrates the unique assembly of the arenavirus glycoprotein spike, and provides a much-needed template for vaccine design against these threats to global health. Copyright © 2017, American Association for the Advancement of Science.

  14. Designing of MIP based QCM sensor having thymine recognition sites based on biomimicking DNA approach.

    PubMed

    Diltemiz, S Emir; Hür, D; Ersöz, A; Denizli, A; Say, R

    2009-11-15

    Quartz crystal microbalance (QCM) sensors coated with molecular imprinted polymers (MIP) have been developed for the determination of thymine. In this method, methacryloylamidoadenine (MA-Ade) have used as a new monomer and thymine template for inspiration of DNA nucleobases interaction. The thymine can be simultaneously hydrogen binding to MA-Ade and fit into the shape-selective cavities. Thus, the interaction between nucleobases has an effect on the binding ability of the QCM sensors. The binding affinity of the thymine imprinted sensors has investigated by using the Langmuir isotherm. The thymine imprinted QCM electrodes have shown homogeneous binding sites for thymine (K(a): 1.0 x 10(5)M(-1)) while heterogeneous binding sites for uracil. On the other hand, recognition selectivity of the QCM sensor based on thymine imprinted polymer toward to uracil, ssDNA and ssRNA has been reported in this work.

  15. Bioinspired Thermoresponsive Photonic Polymers with Hierarchical Structures and Their Unique Properties.

    PubMed

    Lu, Tao; Zhu, Shenmin; Ma, Jun; Lin, Jinyou; Wang, Wanlin; Pan, Hui; Tian, Feng; Zhang, Wang; Zhang, Di

    2015-10-01

    Thermoresponsive photonic materials having hierarchical structures are created by combining a template of Morpho butterfly wings with poly(N-isopropylacrylamide) (PNIPAM) through a chemical bonding and polymerization route. These materials show temperature-induced color tunability. Through reacting with both NIPAM monomers and the amino groups of chitosan in wing scales, glutaraldehyde workes as a bridge by creating chemical bonding between the biotemplate and the PNIPAM. The corresponding reflection peaks red-shift with increase in temperature-an opposite phenomenon to previous studies, demonstrating a thermoresponsive photonic property. This unique phenomenon is caused by the refractive index change due to the volume change of PNIPAM during the temperature rising. This work sets up an efficient strategy for the fabrication of stimuli-responsive photonic materials with hierarchical structures toward extensive applications in science and technology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure

    NASA Astrophysics Data System (ADS)

    Zhu, Zhu; Chen, Feng; Xu, Chunxiang; Yang, Guangcan; Zhu, Ye; Luo, Zhaoxu

    2017-12-01

    Monitoring the nucleation and growth of nanomaterials is a key technique for material synthesis design and control. An efficient fabrication method can be realized deeply understanding the growth mechanisms. Here, noble metal nanostructures, gold (Au) nanoparticles, silver nanostructures (Ag nanoparticles/Ag nanowires) and gold-silver alloy nanoparticles were prepared in a facile method at room temperature. The growth processes of the Au nanoparticles, Ag nanowires and Au-Ag alloy nanoparticles can be monitored real-timely through the ultraviolet visible absorption (UV-vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is found that the whole formation involved Digestive ripening and Ostwald ripening cooperative mechanism. Furthermore, the self-assembly growth is noticed in the oriented attachment of precursor Ag monomers into nanowires under the same synthetic conditions without external templates or rigorous conditions. This result can provide a platform to discover the underlying growth mechanism of wet-chemistry methods for metal nanostructure fabrication.

  17. Synthesis of Photocrosslinkable and Amine Containing Multifunctional Nanoparticles via Polymerization-Induced Self-Assembly.

    PubMed

    Huang, Jianbing; Li, Decai; Liang, Hui; Lu, Jiang

    2017-08-01

    Photo-crosslinkable and amine-containing block copolymer nanoparticles are synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly of a multifunctional core-forming monomer, 2-((3-(4-(diethylamino)phenyl)acryloyl)oxy)ethyl methacrylate (DEMA), using poly(2-hydroxypropyl methacrylate) macromolecular chain transfer agent as a steric stabilizer in methanol at 65 °C. By tuning the chain length of PDEMA, a range of nanoparticle morphologies (sphere, worm, and vesicle) can be obtained. Since cinnamate groups can easily undergo a [2 + 2] cycloaddition of the carbon-carbon double bonds upon UV irradiation, the as-prepared block copolymer nanoparticles are readily stabilized by photo-crosslinking to produce anisotropic nanoparticles. The crosslinked block copolymer nanoparticles can be used as templates for in situ formation polymer/gold hybrid nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Molecular contacts in the transmembrane c-subunit oligomer of F-ATPases identified by tryptophan substitution mutagenesis.

    PubMed

    Schnick, C; Forrest, L R; Sansom, M S; Groth, G

    2000-07-20

    When isolated in its monomeric form, subunit c of the proton transporting ATP synthase of Escherichia coli was shown to fold in a hairpin-like structure consisting of two hydrophobic membrane spanning helices and a short connecting hydrophilic loop. In the plasma membrane of Escherichia coli, however, about 9-12 c-subunit monomers form an oligomeric complex that functions in transmembrane proton conduction and in energy transduction to the catalytic F1 domain. The arrangement of the monomers and the molecular architecture of the complex were studied by tryptophan scanning mutagenesis and restrained MD simulations. Residues 12-24 of the N-terminal transmembrane segment of subunit c were individually substituted by the large and moderately hydrophobic tryptophan side chain. Effects on the activity of the mutant proteins were studied in selective growth experiments and various ATP synthase specific activity assays. The results identify potential intersubunit contacts and structurally non-distorted, accessible residues in the c-oligomer and add constraints to the arrangement of monomers in the oligomeric complex. Results from our mutagenesis experiments were interpreted in structural models of the c-oligomer that have been obtained by restrained MD simulations. Different stoichiometries and monomer orientations were applied in these calculations. A cylindrical complex consisting of 10 monomers that are arranged in two concentric rings with the N-terminal helices of the monomers located at the periphery shows the best match with the experimental data.

  19. A spectroscopic and thermodynamic study of porphyrin/DNA supramolecular assemblies.

    PubMed Central

    Pasternack, R F; Goldsmith, J I; Szép, S; Gibbs, E J

    1998-01-01

    Assemblies of trans-bis(N-methylpyridinium-4-yl)diphenylporphine ions on the surface of calf thymus DNA have been studied using several spectroscopic techniques: absorbance, circular dichroism, and resonance light scattering. The aggregation equilibrium can be treated as a two-state system-monomer and assembly-each bound to the nucleic acid template. The aggregate absorption spectrum in the Soret region is resolved into two bands of Lorentzian line shape, while the DNA-bound monomer spectrum in this region is composed of two Gaussian bands. The Beer-Lambert law is obeyed by both porphyrin forms. The assembly is also characterized by an extremely large, bisignate induced circular dichroism (CD) profile and by enhanced resonance light scattering (RLS). Both the CD and RLS intensities depend linearly on aggregate concentration. The RLS result is consistent with a model for the aggregates as being either of a characteristic size or of a fixed distribution of sizes, independent of total porphyrin concentration or ionic strength. Above threshold values of concentration and ionic strength, the mass action expression for the equilibrium has a particularly simple form: K' = cac-1; where cac is defined as the "critical assembly concentration."offe dependence of the cac upon temperature and ionic strength (NaCl) has been investigated at a fixed DNA concentration. The value of the cac scales as the inverse square of the sodium chloride concentration and, from temperature dependence studies, the aggregation process is shown to be exothermic. PMID:9675203

  20. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein.

    PubMed

    Liu, Yanjin; Wang, Yuzhi; Dai, Qingzhou; Zhou, Yigang

    2016-09-14

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Qmax) and dissociation constant (KL) were analyzed by Langmuir isotherms (R(2) = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

Top