Sample records for temporal auditory processing

  1. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System

    PubMed Central

    Anderson, Lucy A.

    2016-01-01

    High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the findings suggest that auditory temporal processing deficits, such as impairments in gap-in-noise detection, could arise from reduced brain sensitivity to sound offsets alone. PMID:26865621

  2. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: a healthy-aging perspective.

    PubMed

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2015-02-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals--over a range of time scales from milliseconds to seconds--renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own 'privileged' temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: A healthy-aging perspective

    PubMed Central

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2014-01-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals - over a range of time scales from milliseconds to seconds - renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own ‚privileged‘ temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. PMID:24956028

  4. Maturation of Visual and Auditory Temporal Processing in School-Aged Children

    ERIC Educational Resources Information Center

    Dawes, Piers; Bishop, Dorothy V. M.

    2008-01-01

    Purpose: To examine development of sensitivity to auditory and visual temporal processes in children and the association with standardized measures of auditory processing and communication. Methods: Normative data on tests of visual and auditory processing were collected on 18 adults and 98 children aged 6-10 years of age. Auditory processes…

  5. Modulation of auditory stimulus processing by visual spatial or temporal cue: an event-related potentials study.

    PubMed

    Tang, Xiaoyu; Li, Chunlin; Li, Qi; Gao, Yulin; Yang, Weiping; Yang, Jingjing; Ishikawa, Soushirou; Wu, Jinglong

    2013-10-11

    Utilizing the high temporal resolution of event-related potentials (ERPs), we examined how visual spatial or temporal cues modulated the auditory stimulus processing. The visual spatial cue (VSC) induces orienting of attention to spatial locations; the visual temporal cue (VTC) induces orienting of attention to temporal intervals. Participants were instructed to respond to auditory targets. Behavioral responses to auditory stimuli following VSC were faster and more accurate than those following VTC. VSC and VTC had the same effect on the auditory N1 (150-170 ms after stimulus onset). The mean amplitude of the auditory P1 (90-110 ms) in VSC condition was larger than that in VTC condition, and the mean amplitude of late positivity (300-420 ms) in VTC condition was larger than that in VSC condition. These findings suggest that modulation of auditory stimulus processing by visually induced spatial or temporal orienting of attention were different, but partially overlapping. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Fragile Spectral and Temporal Auditory Processing in Adolescents with Autism Spectrum Disorder and Early Language Delay

    ERIC Educational Resources Information Center

    Boets, Bart; Verhoeven, Judith; Wouters, Jan; Steyaert, Jean

    2015-01-01

    We investigated low-level auditory spectral and temporal processing in adolescents with autism spectrum disorder (ASD) and early language delay compared to matched typically developing controls. Auditory measures were designed to target right versus left auditory cortex processing (i.e. frequency discrimination and slow amplitude modulation (AM)…

  7. Effect of conductive hearing loss on central auditory function.

    PubMed

    Bayat, Arash; Farhadi, Mohammad; Emamdjomeh, Hesam; Saki, Nader; Mirmomeni, Golshan; Rahim, Fakher

    It has been demonstrated that long-term Conductive Hearing Loss (CHL) may influence the precise detection of the temporal features of acoustic signals or Auditory Temporal Processing (ATP). It can be argued that ATP may be the underlying component of many central auditory processing capabilities such as speech comprehension or sound localization. Little is known about the consequences of CHL on temporal aspects of central auditory processing. This study was designed to assess auditory temporal processing ability in individuals with chronic CHL. During this analytical cross-sectional study, 52 patients with mild to moderate chronic CHL and 52 normal-hearing listeners (control), aged between 18 and 45 year-old, were recruited. In order to evaluate auditory temporal processing, the Gaps-in-Noise (GIN) test was used. The results obtained for each ear were analyzed based on the gap perception threshold and the percentage of correct responses. The average of GIN thresholds was significantly smaller for the control group than for the CHL group for both ears (right: p=0.004; left: p<0.001). Individuals with CHL had significantly lower correct responses than individuals with normal hearing for both sides (p<0.001). No correlation was found between GIN performance and degree of hearing loss in either group (p>0.05). The results suggest reduced auditory temporal processing ability in adults with CHL compared to normal hearing subjects. Therefore, developing a clinical protocol to evaluate auditory temporal processing in this population is recommended. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  8. Auditory Temporal Processing as a Specific Deficit among Dyslexic Readers

    ERIC Educational Resources Information Center

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    The present study focuses on examining the hypothesis that auditory temporal perception deficit is a basic cause for reading disabilities among dyslexics. This hypothesis maintains that reading impairment is caused by a fundamental perceptual deficit in processing rapid auditory or visual stimuli. Since the auditory perception involves a number of…

  9. Auditory Processing, Speech Perception and Phonological Ability in Pre-School Children at High-Risk for Dyslexia: A Longitudinal Study of the Auditory Temporal Processing Theory

    ERIC Educational Resources Information Center

    Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquiere, Pol

    2007-01-01

    This study investigates whether the core bottleneck of literacy-impairment should be situated at the phonological level or at a more basic sensory level, as postulated by supporters of the auditory temporal processing theory. Phonological ability, speech perception and low-level auditory processing were assessed in a group of 5-year-old pre-school…

  10. Fundamental deficits of auditory perception in Wernicke's aphasia.

    PubMed

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Sensitivity and specificity of auditory steady‐state response testing

    PubMed Central

    Rabelo, Camila Maia; Schochat, Eliane

    2011-01-01

    INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady‐state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady‐state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz). The difference between auditory steady‐state response‐estimated thresholds and behavioral thresholds (audiometric evaluation) was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady‐state response‐estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS) lesions has shown that individuals with CANS lesions present a greater difference between ASSR‐estimated thresholds and actual behavioral thresholds; ASSR‐estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR‐estimated thresholds and the behavioral thresholds is impaired temporal resolution. CONCLUSIONS: The overall sensitivity of auditory steady‐state response testing was lower than its overall specificity. Although the overall specificity was high, it was lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. Overall sensitivity was also lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. PMID:21437442

  12. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex.

    PubMed

    Phillips, D P; Farmer, M E

    1990-11-15

    This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.

  13. Auditory temporal processing skills in musicians with dyslexia.

    PubMed

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.

    PubMed

    Wirtssohn, Sarah; Ronacher, Bernhard

    2015-04-01

    Temporal integration in the auditory system of locusts was quantified by presenting single clicks and click pairs while performing intracellular recordings. Auditory neurons were studied at three processing stages, which form a feed-forward network in the metathoracic ganglion. Receptor neurons and most first-order interneurons ("local neurons") encode the signal envelope, while second-order interneurons ("ascending neurons") tend to extract more complex, behaviorally relevant sound features. In different neuron types of the auditory pathway we found three response types: no significant temporal integration (some ascending neurons), leaky energy integration (receptor neurons and some local neurons), and facilitatory processes (some local and ascending neurons). The receptor neurons integrated input over very short time windows (<2 ms). Temporal integration on longer time scales was found at subsequent processing stages, indicative of within-neuron computations and network activity. These different strategies, realized at separate processing stages and in parallel neuronal pathways within one processing stage, could enable the grasshopper's auditory system to evaluate longer time windows and thus to implement temporal filters, while at the same time maintaining a high temporal resolution. Copyright © 2015 the American Physiological Society.

  15. Temporal auditory aspects in children with poor school performance and associated factors.

    PubMed

    Rezende, Bárbara Antunes; Lemos, Stela Maris Aguiar; Medeiros, Adriane Mesquita de

    2016-01-01

    To investigate the auditory temporal aspects in children with poor school performance aged 7-12 years and their association with behavioral aspects, health perception, school and health profiles, and sociodemographic factors. This is an observational, analytical, transversal study including 89 children with poor school performance aged 7-12 years enrolled in the municipal public schools of a municipality in Minas Gerais state, participants of Specialized Educational Assistance. The first stage of the study was conducted with the subjects' parents aiming to collect information on sociodemographic aspects, health profile, and educational records. In addition, the parents responded to the Strengths and Difficulties Questionnaire (SDQ). The second stage was conducted with the children in order to investigate their health self-perception and analyze the auditory assessment, which consisted of meatoscopy, Transient Otoacoustic Emissions, and tests that evaluated the aspects of simple auditory temporal ordering and auditory temporal resolution. Tests assessing the temporal aspects of auditory temporal processing were considered as response variables, and the explanatory variables were grouped for univariate and multivariate logistic regression analyses. The level of significance was set at 5%. Significant statistical correlation was found between the auditory temporal aspects and the variables age, gender, presence of repetition, and health self-perception. Children with poor school performance presented changes in the auditory temporal aspects. The temporal abilities assessed suggest association with different factors such as maturational process, health self-perception, and school records.

  16. Crossmodal attention switching: auditory dominance in temporal discrimination tasks.

    PubMed

    Lukas, Sarah; Philipp, Andrea M; Koch, Iring

    2014-11-01

    Visual stimuli are often processed more efficiently than accompanying stimuli in another modality. In line with this "visual dominance", earlier studies on attentional switching showed a clear benefit for visual stimuli in a bimodal visual-auditory modality-switch paradigm that required spatial stimulus localization in the relevant modality. The present study aimed to examine the generality of this visual dominance effect. The modality appropriateness hypothesis proposes that stimuli in different modalities are differentially effectively processed depending on the task dimension, so that processing of visual stimuli is favored in the dimension of space, whereas processing auditory stimuli is favored in the dimension of time. In the present study, we examined this proposition by using a temporal duration judgment in a bimodal visual-auditory switching paradigm. Two experiments demonstrated that crossmodal interference (i.e., temporal stimulus congruence) was larger for visual stimuli than for auditory stimuli, suggesting auditory dominance when performing temporal judgment tasks. However, attention switch costs were larger for the auditory modality than for visual modality, indicating a dissociation of the mechanisms underlying crossmodal competition in stimulus processing and modality-specific biasing of attentional set. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Temporal lobe networks supporting the comprehension of spoken words.

    PubMed

    Bonilha, Leonardo; Hillis, Argye E; Hickok, Gregory; den Ouden, Dirk B; Rorden, Chris; Fridriksson, Julius

    2017-09-01

    Auditory word comprehension is a cognitive process that involves the transformation of auditory signals into abstract concepts. Traditional lesion-based studies of stroke survivors with aphasia have suggested that neocortical regions adjacent to auditory cortex are primarily responsible for word comprehension. However, recent primary progressive aphasia and normal neurophysiological studies have challenged this concept, suggesting that the left temporal pole is crucial for word comprehension. Due to its vasculature, the temporal pole is not commonly completely lesioned in stroke survivors and this heterogeneity may have prevented its identification in lesion-based studies of auditory comprehension. We aimed to resolve this controversy using a combined voxel-based-and structural connectome-lesion symptom mapping approach, since cortical dysfunction after stroke can arise from cortical damage or from white matter disconnection. Magnetic resonance imaging (T1-weighted and diffusion tensor imaging-based structural connectome), auditory word comprehension and object recognition tests were obtained from 67 chronic left hemisphere stroke survivors. We observed that damage to the inferior temporal gyrus, to the fusiform gyrus and to a white matter network including the left posterior temporal region and its connections to the middle temporal gyrus, inferior temporal gyrus, and cingulate cortex, was associated with word comprehension difficulties after factoring out object recognition. These results suggest that the posterior lateral and inferior temporal regions are crucial for word comprehension, serving as a hub to integrate auditory and conceptual processing. Early processing linking auditory words to concepts is situated in posterior lateral temporal regions, whereas additional and deeper levels of semantic processing likely require more anterior temporal regions.10.1093/brain/awx169_video1awx169media15555638084001. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. [Auditory processing evaluation in children born preterm].

    PubMed

    Gallo, Júlia; Dias, Karin Ziliotto; Pereira, Liliane Desgualdo; Azevedo, Marisa Frasson de; Sousa, Elaine Colombo

    2011-01-01

    To verify the performance of children born preterm on auditory processing evaluation, and to correlate the data with behavioral hearing assessment carried out at 12 months of age, comparing the results to those of auditory processing evaluation of children born full-term. Participants were 30 children with ages between 4 and 7 years, who were divided into two groups: Group 1 (children born preterm), and Group 2 (children born full-term). The auditory processing results of Group 1 were correlated to data obtained from the behavioral auditory evaluation carried out at 12 months of age. The results were compared between groups. Subjects in Group 1 presented at least one risk indicator for hearing loss at birth. In the behavioral auditory assessment carried out at 12 months of age, 38% of the children in Group 1 were at risk for central auditory processing deficits, and 93.75% presented auditory processing deficits on the evaluation. Significant differences were found between the groups for the temporal order test, the PSI test with ipsilateral competitive message, and the speech-in-noise test. The delay in sound localization ability was associated to temporal processing deficits. Children born preterm have worse performance in auditory processing evaluation than children born full-term. Delay in sound localization at 12 months is associated to deficits on the physiological mechanism of temporal processing in the auditory processing evaluation carried out between 4 and 7 years.

  19. Temporal processing and long-latency auditory evoked potential in stutterers.

    PubMed

    Prestes, Raquel; de Andrade, Adriana Neves; Santos, Renata Beatriz Fernandes; Marangoni, Andrea Tortosa; Schiefer, Ana Maria; Gil, Daniela

    Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n=20) and non-stutters (n=21), compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  20. The role of primary auditory and visual cortices in temporal processing: A tDCS approach.

    PubMed

    Mioni, G; Grondin, S; Forgione, M; Fracasso, V; Mapelli, D; Stablum, F

    2016-10-15

    Many studies showed that visual stimuli are frequently experienced as shorter than equivalent auditory stimuli. These findings suggest that timing is distributed across many brain areas and that "different clocks" might be involved in temporal processing. The aim of this study is to investigate, with the application of tDCS over V1 and A1, the specific role of primary sensory cortices (either visual or auditory) in temporal processing. Forty-eight University students were included in the study. Twenty-four participants were stimulated over A1 and 24 participants were stimulated over V1. Participants performed time bisection tasks, in the visual and the auditory modalities, involving standard durations lasting 300ms (short) and 900ms (long). When tDCS was delivered over A1, no effect of stimulation was observed on perceived duration but we observed higher temporal variability under anodic stimulation compared to sham and higher variability in the visual compared to the auditory modality. When tDCS was delivered over V1, an under-estimation of perceived duration and higher variability was observed in the visual compared to the auditory modality. Our results showed more variability of visual temporal processing under tDCS stimulation. These results suggest a modality independent role of A1 in temporal processing and a modality specific role of V1 in the processing of temporal intervals in the visual modality. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Brainstem Correlates of Temporal Auditory Processing in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Basu, Madhavi; Krishnan, Ananthanarayan; Weber-Fox, Christine

    2010-01-01

    Deficits in identification and discrimination of sounds with short inter-stimulus intervals or short formant transitions in children with specific language impairment (SLI) have been taken to reflect an underlying temporal auditory processing deficit. Using the sustained frequency following response (FFR) and the onset auditory brainstem responses…

  2. Passive stimulation and behavioral training differentially transform temporal processing in the inferior colliculus and primary auditory cortex

    PubMed Central

    Beitel, Ralph E.; Schreiner, Christoph E.; Leake, Patricia A.

    2016-01-01

    In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, “passive” ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944–959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423–2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. NEW & NOTEWORTHY Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (AI) in profoundly short-deaf and long-deaf cats. Temporal plasticity in the ICC depends on a critical amount of electric stimulation, independent of its behavioral relevance. In contrast, the AI emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf auditory system. PMID:27733594

  3. Auditory Processing Efficiency and Temporal Resolution in Children and Adults.

    ERIC Educational Resources Information Center

    Hill, Penelope R.; Hartley, Douglas E.H.; Glasberg, Brian R.; Moore, Brian C.J.; Moore, David R.

    2004-01-01

    Children have higher auditory backward masking (BM) thresholds than adults. One explanation for this is poor temporal resolution, resulting in difficulty separating brief or rapidly presented sounds. This implies that the auditory temporal window is broader in children than in adults. Alternatively, elevated BM thresholds in children may indicate…

  4. Temporal lobe stimulation reveals anatomic distinction between auditory naming processes.

    PubMed

    Hamberger, M J; Seidel, W T; Goodman, R R; Perrine, K; McKhann, G M

    2003-05-13

    Language errors induced by cortical stimulation can provide insight into function(s) supported by the area stimulated. The authors observed that some stimulation-induced errors during auditory description naming were characterized by tip-of-the-tongue responses or paraphasic errors, suggesting expressive difficulty, whereas others were qualitatively different, suggesting receptive difficulty. They hypothesized that these two response types reflected disruption at different stages of auditory verbal processing and that these "subprocesses" might be supported by anatomically distinct cortical areas. To explore the topographic distribution of error types in auditory verbal processing. Twenty-one patients requiring left temporal lobe surgery underwent preresection language mapping using direct cortical stimulation. Auditory naming was tested at temporal sites extending from 1 cm from the anterior tip to the parietal operculum. Errors were dichotomized as either "expressive" or "receptive." The topographic distribution of error types was explored. Sites associated with the two error types were topographically distinct from one another. Most receptive sites were located in the middle portion of the superior temporal gyrus (STG), whereas most expressive sites fell outside this region, scattered along lateral temporal and temporoparietal cortex. Results raise clinical questions regarding the inclusion of the STG in temporal lobe epilepsy surgery and suggest that more detailed cortical mapping might enable better prediction of postoperative language decline. From a theoretical perspective, results carry implications regarding the understanding of structure-function relations underlying temporal lobe mediation of auditory language processing.

  5. Intact Spectral but Abnormal Temporal Processing of Auditory Stimuli in Autism

    ERIC Educational Resources Information Center

    Groen, Wouter B.; van Orsouw, Linda; ter Huurne, Niels; Swinkels, Sophie; van der Gaag, Rutger-Jan; Buitelaar, Jan K.; Zwiers, Marcel P.

    2009-01-01

    The perceptual pattern in autism has been related to either a specific localized processing deficit or a pathway-independent, complexity-specific anomaly. We examined auditory perception in autism using an auditory disembedding task that required spectral and temporal integration. 23 children with high-functioning-autism and 23 matched controls…

  6. Visual and auditory perception in preschool children at risk for dyslexia.

    PubMed

    Ortiz, Rosario; Estévez, Adelina; Muñetón, Mercedes; Domínguez, Carolina

    2014-11-01

    Recently, there has been renewed interest in perceptive problems of dyslexics. A polemic research issue in this area has been the nature of the perception deficit. Another issue is the causal role of this deficit in dyslexia. Most studies have been carried out in adult and child literates; consequently, the observed deficits may be the result rather than the cause of dyslexia. This study addresses these issues by examining visual and auditory perception in children at risk for dyslexia. We compared children from preschool with and without risk for dyslexia in auditory and visual temporal order judgment tasks and same-different discrimination tasks. Identical visual and auditory, linguistic and nonlinguistic stimuli were presented in both tasks. The results revealed that the visual as well as the auditory perception of children at risk for dyslexia is impaired. The comparison between groups in auditory and visual perception shows that the achievement of children at risk was lower than children without risk for dyslexia in the temporal tasks. There were no differences between groups in auditory discrimination tasks. The difficulties of children at risk in visual and auditory perceptive processing affected both linguistic and nonlinguistic stimuli. Our conclusions are that children at risk for dyslexia show auditory and visual perceptive deficits for linguistic and nonlinguistic stimuli. The auditory impairment may be explained by temporal processing problems and these problems are more serious for processing language than for processing other auditory stimuli. These visual and auditory perceptive deficits are not the consequence of failing to learn to read, thus, these findings support the theory of temporal processing deficit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Auditory Temporal Information Processing in Preschool Children at Family Risk for Dyslexia: Relations with Phonological Abilities and Developing Literacy Skills

    ERIC Educational Resources Information Center

    Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquiere, Pol

    2006-01-01

    In this project, the hypothesis of an auditory temporal processing deficit in dyslexia was tested by examining auditory processing in relation to phonological skills in two contrasting groups of five-year-old preschool children, a familial high risk and a familial low risk group. Participants were individually matched for gender, age, non-verbal…

  8. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system

    PubMed Central

    Schrode, Katrina M.; Bee, Mark A.

    2015-01-01

    ABSTRACT Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male–male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. PMID:25617467

  9. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia.

    PubMed

    Teki, Sundeep; Barnes, Gareth R; Penny, William D; Iverson, Paul; Woodhead, Zoe V J; Griffiths, Timothy D; Leff, Alexander P

    2013-06-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics' speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired.

  10. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia

    PubMed Central

    Barnes, Gareth R.; Penny, William D.; Iverson, Paul; Woodhead, Zoe V. J.; Griffiths, Timothy D.; Leff, Alexander P.

    2013-01-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics’ speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired. PMID:23715097

  11. Enhanced auditory temporal gap detection in listeners with musical training.

    PubMed

    Mishra, Srikanta K; Panda, Manas R; Herbert, Carolyn

    2014-08-01

    Many features of auditory perception are positively altered in musicians. Traditionally auditory mechanisms in musicians are investigated using the Western-classical musician model. The objective of the present study was to adopt an alternative model-Indian-classical music-to further investigate auditory temporal processing in musicians. This study presents that musicians have significantly lower across-channel gap detection thresholds compared to nonmusicians. Use of the South Indian musician model provides an increased external validity for the prediction, from studies on Western-classical musicians, that auditory temporal coding is enhanced in musicians.

  12. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system.

    PubMed

    Schrode, Katrina M; Bee, Mark A

    2015-03-01

    Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male-male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. © 2015. Published by The Company of Biologists Ltd.

  13. Impaired auditory temporal selectivity in the inferior colliculus of aged Mongolian gerbils.

    PubMed

    Khouri, Leila; Lesica, Nicholas A; Grothe, Benedikt

    2011-07-06

    Aged humans show severe difficulties in temporal auditory processing tasks (e.g., speech recognition in noise, low-frequency sound localization, gap detection). A degradation of auditory function with age is also evident in experimental animals. To investigate age-related changes in temporal processing, we compared extracellular responses to temporally variable pulse trains and human speech in the inferior colliculus of young adult (3 month) and aged (3 years) Mongolian gerbils. We observed a significant decrease of selectivity to the pulse trains in neuronal responses from aged animals. This decrease in selectivity led, on the population level, to an increase in signal correlations and therefore a decrease in heterogeneity of temporal receptive fields and a decreased efficiency in encoding of speech signals. A decrease in selectivity to temporal modulations is consistent with a downregulation of the inhibitory transmitter system in aged animals. These alterations in temporal processing could underlie declines in the aging auditory system, which are unrelated to peripheral hearing loss. These declines cannot be compensated by traditional hearing aids (that rely on amplification of sound) but may rather require pharmacological treatment.

  14. Reversal of age-related neural timing delays with training

    PubMed Central

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-01-01

    Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541

  15. Temporal Information Processing as a Basis for Auditory Comprehension: Clinical Evidence from Aphasic Patients

    ERIC Educational Resources Information Center

    Oron, Anna; Szymaszek, Aneta; Szelag, Elzbieta

    2015-01-01

    Background: Temporal information processing (TIP) underlies many aspects of cognitive functions like language, motor control, learning, memory, attention, etc. Millisecond timing may be assessed by sequencing abilities, e.g. the perception of event order. It may be measured with auditory temporal-order-threshold (TOT), i.e. a minimum time gap…

  16. Perception of temporally modified speech in auditory neuropathy.

    PubMed

    Hassan, Dalia Mohamed

    2011-01-01

    Disrupted auditory nerve activity in auditory neuropathy (AN) significantly impairs the sequential processing of auditory information, resulting in poor speech perception. This study investigated the ability of AN subjects to perceive temporally modified consonant-vowel (CV) pairs and shed light on their phonological awareness skills. Four Arabic CV pairs were selected: /ki/-/gi/, /to/-/do/, /si/-/sti/ and /so/-/zo/. The formant transitions in consonants and the pauses between CV pairs were prolonged. Rhyming, segmentation and blending skills were tested using words at a natural rate of speech and with prolongation of the speech stream. Fourteen adult AN subjects were compared to a matched group of cochlear-impaired patients in their perception of acoustically processed speech. The AN group distinguished the CV pairs at a low speech rate, in particular with modification of the consonant duration. Phonological awareness skills deteriorated in adult AN subjects but improved with prolongation of the speech inter-syllabic time interval. A rehabilitation program for AN should consider temporal modification of speech, training for auditory temporal processing and the use of devices with innovative signal processing schemes. Verbal modifications as well as visual imaging appear to be promising compensatory strategies for remediating the affected phonological processing skills.

  17. Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment.

    PubMed

    Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas

    2010-07-01

    Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Figure-background in dichotic task and their relation to skills untrained.

    PubMed

    Cibian, Aline Priscila; Pereira, Liliane Desgualdo

    2015-01-01

    To evaluate the effectiveness of auditory training in dichotic task and to compare the responses of trained skills with the responses of untrained skills, after 4-8 weeks. Nineteen subjects, aged 12-15 years, underwent an auditory training based on dichotic interaural intensity difference (DIID), organized in eight sessions, each lasting 50 min. The assessment of auditory processing was conducted in three stages: before the intervention, after the intervention, and in the middle and at the end of the training. Data from this evaluation were analyzed as per group of disorder, according to the changes in the auditory processes evaluated: selective attention and temporal processing. Each of them was named selective attention group (SAG) and temporal processing group (TPG), and, for both the processes, selective attention and temporal processing group (SATPG). The training improved both the trained and untrained closing skill, normalizing all individuals. Untrained solving and temporal ordering skills did not reach normality for SATPG and TPG. Individuals reached normality for the trained figure-ground skill and for the untrained closing skill. The untrained solving and temporal ordering skills improved in some individuals but failed to reach normality.

  19. A Novel Functional Magnetic Resonance Imaging Paradigm for the Preoperative Assessment of Auditory Perception in a Musician Undergoing Temporal Lobe Surgery.

    PubMed

    Hale, Matthew D; Zaman, Arshad; Morrall, Matthew C H J; Chumas, Paul; Maguire, Melissa J

    2018-03-01

    Presurgical evaluation for temporal lobe epilepsy routinely assesses speech and memory lateralization and anatomic localization of the motor and visual areas but not baseline musical processing. This is paramount in a musician. Although validated tools exist to assess musical ability, there are no reported functional magnetic resonance imaging (fMRI) paradigms to assess musical processing. We examined the utility of a novel fMRI paradigm in an 18-year-old left-handed pianist who underwent surgery for a left temporal low-grade ganglioglioma. Preoperative evaluation consisted of neuropsychological evaluation, T1-weighted and T2-weighted magnetic resonance imaging, and fMRI. Auditory blood oxygen level-dependent fMRI was performed using a dedicated auditory scanning sequence. Three separate auditory investigations were conducted: listening to, humming, and thinking about a musical piece. All auditory fMRI paradigms activated the primary auditory cortex with varying degrees of auditory lateralization. Thinking about the piece additionally activated the primary visual cortices (bilaterally) and right dorsolateral prefrontal cortex. Humming demonstrated left-sided predominance of auditory cortex activation with activity observed in close proximity to the tumor. This study demonstrated an fMRI paradigm for evaluating musical processing that could form part of preoperative assessment for patients undergoing temporal lobe surgery for epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Maturation of Rapid Auditory Temporal Processing and Subsequent Nonword Repetition Performance in Children

    ERIC Educational Resources Information Center

    Fox, Allison M.; Reid, Corinne L.; Anderson, Mike; Richardson, Cassandra; Bishop, Dorothy V. M.

    2012-01-01

    According to the rapid auditory processing theory, the ability to parse incoming auditory information underpins learning of oral and written language. There is wide variation in this low-level perceptual ability, which appears to follow a protracted developmental course. We studied the development of rapid auditory processing using event-related…

  1. Temporal auditory processing at 17 months of age is associated with preliterate language comprehension and later word reading fluency: an ERP study.

    PubMed

    van Zuijen, Titia L; Plakas, Anna; Maassen, Ben A M; Been, Pieter; Maurits, Natasha M; Krikhaar, Evelien; van Driel, Joram; van der Leij, Aryan

    2012-10-18

    Dyslexia is heritable and associated with auditory processing deficits. We investigate whether temporal auditory processing is compromised in young children at-risk for dyslexia and whether it is associated with later language and reading skills. We recorded EEG from 17 months-old children with or without familial risk for dyslexia to investigate whether their auditory system was able to detect a temporal change in a tone pattern. The children were followed longitudinally and performed an intelligence- and language development test at ages 4 and 4.5 years. Literacy related skills were measured at the beginning of second grade, and word- and pseudo-word reading fluency were measured at the end of second grade. The EEG responses showed that control children could detect the temporal change as indicated by a mismatch response (MMR). The MMR was not observed in at-risk children. Furthermore, the fronto-central MMR amplitude correlated with preliterate language comprehension and with later word reading fluency, but not with phonological awareness. We conclude that temporal auditory processing differentiates young children at risk for dyslexia from controls and is a precursor of preliterate language comprehension and reading fluency. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing

    PubMed Central

    Kurt, Simone; Sausbier, Matthias; Rüttiger, Lukas; Brandt, Niels; Moeller, Christoph K.; Kindler, Jennifer; Sausbier, Ulrike; Zimmermann, Ulrike; van Straaten, Harald; Neuhuber, Winfried; Engel, Jutta; Knipper, Marlies; Ruth, Peter; Schulze, Holger

    2012-01-01

    Large conductance, voltage- and Ca2+-activated K+ (BK) channels in inner hair cells (IHCs) of the cochlea are essential for hearing. However, germline deletion of BKα, the pore-forming subunit KCNMA1 of the BK channel, surprisingly did not affect hearing thresholds in the first postnatal weeks, even though altered IHC membrane time constants, decreased IHC receptor potential alternating current/direct current ratio, and impaired spike timing of auditory fibers were reported in these mice. To investigate the role of IHC BK channels for central auditory processing, we generated a conditional mouse model with hair cell-specific deletion of BKα from postnatal day 10 onward. This had an unexpected effect on temporal coding in the central auditory system: neuronal single and multiunit responses in the inferior colliculus showed higher excitability and greater precision of temporal coding that may be linked to the improved discrimination of temporally modulated sounds observed in behavioral training. The higher precision of temporal coding, however, was restricted to slower modulations of sound and reduced stimulus-driven activity. This suggests a diminished dynamic range of stimulus coding that is expected to impair signal detection in noise. Thus, BK channels in IHCs are crucial for central coding of the temporal fine structure of sound and for detection of signals in a noisy environment.—Kurt, S., Sausbier, M., Rüttiger, L., Brandt, N., Moeller, C. K., Kindler, J., Sausbier, U., Zimmermann, U., van Straaten, H., Neuhuber, W., Engel, J., Knipper, M., Ruth, P., Schulze, H. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing. PMID:22691916

  3. Auditory Temporal Processing Deficits in Chronic Stroke: A Comparison of Brain Damage Lateralization Effect.

    PubMed

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2016-06-01

    There have been a few reports about the effects of chronic stroke on auditory temporal processing abilities and no reports regarding the effects of brain damage lateralization on these abilities. Our study was performed on 2 groups of chronic stroke patients to compare the effects of hemispheric lateralization of brain damage and of age on auditory temporal processing. Seventy persons with normal hearing, including 25 normal controls, 25 stroke patients with damage to the right brain, and 20 stroke patients with damage to the left brain, without aphasia and with an age range of 31-71 years were studied. A gap-in-noise (GIN) test and a duration pattern test (DPT) were conducted for each participant. Significant differences were found between the 3 groups for GIN threshold, overall GIN percent score, and DPT percent score in both ears (P ≤ .001). For all stroke patients, performance in both GIN and DPT was poorer in the ear contralateral to the damaged hemisphere, which was significant in DPT and in 2 measures of GIN (P ≤ .046). Advanced age had a negative relationship with temporal processing abilities for all 3 groups. In cases of confirmed left- or right-side stroke involving auditory cerebrum damage, poorer auditory temporal processing is associated with the ear contralateral to the damaged cerebral hemisphere. Replication of our results and the use of GIN and DPT tests for the early diagnosis of auditory processing deficits and for monitoring the effects of aural rehabilitation interventions are recommended. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. An association between auditory-visual synchrony processing and reading comprehension: Behavioral and electrophysiological evidence

    PubMed Central

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2016-01-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension. PMID:28129060

  5. An Association between Auditory-Visual Synchrony Processing and Reading Comprehension: Behavioral and Electrophysiological Evidence.

    PubMed

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2017-03-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.

  6. Assessing spectral and temporal processing in children and adults using temporal modulation transfer function (TMTF), Iterated Ripple Noise (IRN) perception, and spectral ripple discrimination (SRD).

    PubMed

    Peter, Varghese; Wong, Kogo; Narne, Vijaya Kumar; Sharma, Mridula; Purdy, Suzanne C; McMahon, Catherine

    2014-02-01

    There are many clinically available tests for the assessment of auditory processing skills in children and adults. However, there is limited data available on the maturational effects on the performance on these tests. The current study investigated maturational effects on auditory processing abilities using three psychophysical measures: temporal modulation transfer function (TMTF), iterated ripple noise (IRN) perception, and spectral ripple discrimination (SRD). A cross-sectional study. Three groups of subjects were tested: 10 adults (18-30 yr), 10 older children (12-18 yr), and 10 young children (8-11 yr) Temporal envelope processing was measured by obtaining thresholds for amplitude modulation detection as a function of modulation frequency (TMTF; 4, 8, 16, 32, 64, and 128 Hz). Temporal fine structure processing was measured using IRN, and spectral processing was measured using SRD. The results showed that young children had significantly higher modulation thresholds at 4 Hz (TMTF) compared to the other two groups and poorer SRD scores compared to adults. The results on IRN did not differ across groups. The results suggest that different aspects of auditory processing mature at different age periods and these maturational effects need to be considered while assessing auditory processing in children. American Academy of Audiology.

  7. Spatio-temporal source cluster analysis reveals fronto-temporal auditory change processing differences within a shared autistic and schizotypal trait phenotype.

    PubMed

    Ford, Talitha C; Woods, Will; Crewther, David P

    2017-01-01

    Social Disorganisation (SD) is a shared autistic and schizotypal phenotype that is present in the subclinical population. Auditory processing deficits, particularly in mismatch negativity/field (MMN/F) have been reported across both spectrum disorders. This study investigates differences in MMN/F cortical spatio-temporal source activity between higher and lower quintiles of the SD spectrum. Sixteen low (9 female) and 19 high (9 female) SD subclinical adults (18-40years) underwent magnetoencephalography (MEG) during an MMF paradigm where standard tones (50ms) were interrupted by infrequent duration deviants (100ms). Spatio-temporal source cluster analysis with permutation testing revealed no difference between the groups in source activation to the standard tone. To the deviant tone however, there was significantly reduced right hemisphere fronto-temporal and insular cortex activation for the high SD group ( p = 0.038). The MMF, as a product of the cortical response to the deviant minus that to the standard, did not differ significantly between the high and low Social Disorganisation groups. These data demonstrate a deficit in right fronto-temporal processing of an auditory change for those with more of the shared SD phenotype, indicating that right fronto-temporal auditory processing may be associated with psychosocial functioning.

  8. Bilateral Capacity for Speech Sound Processing in Auditory Comprehension: Evidence from Wada Procedures

    ERIC Educational Resources Information Center

    Hickok, G.; Okada, K.; Barr, W.; Pa, J.; Rogalsky, C.; Donnelly, K.; Barde, L.; Grant, A.

    2008-01-01

    Data from lesion studies suggest that the ability to perceive speech sounds, as measured by auditory comprehension tasks, is supported by temporal lobe systems in both the left and right hemisphere. For example, patients with left temporal lobe damage and auditory comprehension deficits (i.e., Wernicke's aphasics), nonetheless comprehend isolated…

  9. Competing streams at the cocktail party: Exploring the mechanisms of attention and temporal integration

    PubMed Central

    Xiang, Juanjuan; Simon, Jonathan; Elhilali, Mounya

    2010-01-01

    Processing of complex acoustic scenes depends critically on the temporal integration of sensory information as sounds evolve naturally over time. It has been previously speculated that this process is guided by both innate mechanisms of temporal processing in the auditory system, as well as top-down mechanisms of attention, and possibly other schema-based processes. In an effort to unravel the neural underpinnings of these processes and their role in scene analysis, we combine Magnetoencephalography (MEG) with behavioral measures in humans in the context of polyrhythmic tone sequences. While maintaining unchanged sensory input, we manipulate subjects’ attention to one of two competing rhythmic streams in the same sequence. The results reveal that the neural representation of the attended rhythm is significantly enhanced both in its steady-state power and spatial phase coherence relative to its unattended state, closely correlating with its perceptual detectability for each listener. Interestingly, the data reveals a differential efficiency of rhythmic rates of the order of few hertz during the streaming process, closely following known neural and behavioral measures of temporal modulation sensitivity in the auditory system. These findings establish a direct link between known temporal modulation tuning in the auditory system (particularly at the level of auditory cortex) and the temporal integration of perceptual features in a complex acoustic scene, while mediated by processes of attention. PMID:20826671

  10. Effects of sensorineural hearing loss on temporal coding of narrowband and broadband signals in the auditory periphery

    PubMed Central

    Henry, Kenneth S.; Heinz, Michael G.

    2013-01-01

    People with sensorineural hearing loss have substantial difficulty understanding speech under degraded listening conditions. Behavioral studies suggest that this difficulty may be caused by changes in auditory processing of the rapidly-varying temporal fine structure (TFS) of acoustic signals. In this paper, we review the presently known effects of sensorineural hearing loss on processing of TFS and slower envelope modulations in the peripheral auditory system of mammals. Cochlear damage has relatively subtle effects on phase locking by auditory-nerve fibers to the temporal structure of narrowband signals under quiet conditions. In background noise, however, sensorineural loss does substantially reduce phase locking to the TFS of pure-tone stimuli. For auditory processing of broadband stimuli, sensorineural hearing loss has been shown to severely alter the neural representation of temporal information along the tonotopic axis of the cochlea. Notably, auditory-nerve fibers innervating the high-frequency part of the cochlea grow increasingly responsive to low-frequency TFS information and less responsive to temporal information near their characteristic frequency (CF). Cochlear damage also increases the correlation of the response to TFS across fibers of varying CF, decreases the traveling-wave delay between TFS responses of fibers with different CFs, and can increase the range of temporal modulation frequencies encoded in the periphery for broadband sounds. Weaker neural coding of temporal structure in background noise and degraded coding of broadband signals along the tonotopic axis of the cochlea are expected to contribute considerably to speech perception problems in people with sensorineural hearing loss. PMID:23376018

  11. Contribution of Temporal Processing Skills to Reading Comprehension in 8-Year-Olds: Evidence for a Mediation Effect of Phonological Awareness

    ERIC Educational Resources Information Center

    Malenfant, Nathalie; Grondin, Simon; Boivin, Michel; Forget-Dubois, Nadine; Robaey, Philippe; Dionne, Ginette

    2012-01-01

    This study tested whether the association between temporal processing (TP) and reading is mediated by phonological awareness (PA) in a normative sample of 615 eight-year-olds. TP was measured with auditory and bimodal (visual-auditory) temporal order judgment tasks and PA with a phoneme deletion task. PA partially mediated the association between…

  12. Nonverbal auditory agnosia with lesion to Wernicke's area.

    PubMed

    Saygin, Ayse Pinar; Leech, Robert; Dick, Frederic

    2010-01-01

    We report the case of patient M, who suffered unilateral left posterior temporal and parietal damage, brain regions typically associated with language processing. Language function largely recovered since the infarct, with no measurable speech comprehension impairments. However, the patient exhibited a severe impairment in nonverbal auditory comprehension. We carried out extensive audiological and behavioral testing in order to characterize M's unusual neuropsychological profile. We also examined the patient's and controls' neural responses to verbal and nonverbal auditory stimuli using functional magnetic resonance imaging (fMRI). We verified that the patient exhibited persistent and severe auditory agnosia for nonverbal sounds in the absence of verbal comprehension deficits or peripheral hearing problems. Acoustical analyses suggested that his residual processing of a minority of environmental sounds might rely on his speech processing abilities. In the patient's brain, contralateral (right) temporal cortex as well as perilesional (left) anterior temporal cortex were strongly responsive to verbal, but not to nonverbal sounds, a pattern that stands in marked contrast to the controls' data. This substantial reorganization of auditory processing likely supported the recovery of M's speech processing.

  13. Auditory temporal processing in patients with temporal lobe epilepsy.

    PubMed

    Lavasani, Azam Navaei; Mohammadkhani, Ghassem; Motamedi, Mahmoud; Karimi, Leyla Jalilvand; Jalaei, Shohreh; Shojaei, Fereshteh Sadat; Danesh, Ali; Azimi, Hadi

    2016-07-01

    Auditory temporal processing is the main feature of speech processing ability. Patients with temporal lobe epilepsy, despite their normal hearing sensitivity, may present speech recognition disorders. The present study was carried out to evaluate the auditory temporal processing in patients with unilateral TLE. The present study was carried out on 25 patients with epilepsy: 11 patients with right temporal lobe epilepsy and 14 with left temporal lobe epilepsy with a mean age of 31.1years and 18 control participants with a mean age of 29.4years. The two experimental and control groups were evaluated via gap-in-noise and duration pattern sequence tests. One-way ANOVA was run to analyze the data. The mean of the threshold of the GIN test in the control group was observed to be better than that in participants with LTLE and RTLE. Also, it was observed that the percentage of correct responses on the DPS test in the control group and in participants with RTLE was better than that in participants with LTLE. Patients with TLE have difficulties in temporal processing. Difficulties are more significant in patients with LTLE, likely because the left temporal lobe is specialized for the processing of temporal information. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Electrostimulation mapping of comprehension of auditory and visual words.

    PubMed

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Relationship between Auditory Temporal Processing, Phonemic Awareness, and Reading Disability.

    ERIC Educational Resources Information Center

    Bretherton, Lesley; Holmes, V. M.

    2003-01-01

    Investigated the relationship between auditory temporal processing of nonspeech sounds and phonological awareness ability in 8- to 12-year-olds with a reading disability, placed in groups based on performance on Tallal's tone-order judgment task. Found that a tone-order deficit did not relate to performance on order processing of speech sounds, to…

  16. Temporal factors affecting somatosensory–auditory interactions in speech processing

    PubMed Central

    Ito, Takayuki; Gracco, Vincent L.; Ostry, David J.

    2014-01-01

    Speech perception is known to rely on both auditory and visual information. However, sound-specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009). In the present study, we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory–auditory interaction in speech perception. We examined the changes in event-related potentials (ERPs) in response to multisensory synchronous (simultaneous) and asynchronous (90 ms lag and lead) somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the ERP was reliably different from the two unisensory potentials. More importantly, the magnitude of the ERP difference varied as a function of the relative timing of the somatosensory–auditory stimulation. Event-related activity change due to stimulus timing was seen between 160 and 220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory–auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production. PMID:25452733

  17. Perceptual consequences of disrupted auditory nerve activity.

    PubMed

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique contribution of neural synchrony to sensory perception but also provide guidance for translational research in terms of better diagnosis and management of human communication disorders.

  18. Sound envelope processing in the developing human brain: A MEG study.

    PubMed

    Tang, Huizhen; Brock, Jon; Johnson, Blake W

    2016-02-01

    This study investigated auditory cortical processing of linguistically-relevant temporal modulations in the developing brains of young children. Auditory envelope following responses to white noise amplitude modulated at rates of 1-80 Hz in healthy children (aged 3-5 years) and adults were recorded using a paediatric magnetoencephalography (MEG) system and a conventional MEG system, respectively. For children, there were envelope following responses to slow modulations but no significant responses to rates higher than about 25 Hz, whereas adults showed significant envelope following responses to almost the entire range of stimulus rates. Our results show that the auditory cortex of preschool-aged children has a sharply limited capacity to process rapid amplitude modulations in sounds, as compared to the auditory cortex of adults. These neurophysiological results are consistent with previous psychophysical evidence for a protracted maturational time course for auditory temporal processing. The findings are also in good agreement with current linguistic theories that posit a perceptual bias for low frequency temporal information in speech during language acquisition. These insights also have clinical relevance for our understanding of language disorders that are associated with difficulties in processing temporal information in speech. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. A possible role for a paralemniscal auditory pathway in the coding of slow temporal information

    PubMed Central

    Abrams, Daniel A.; Nicol, Trent; Zecker, Steven; Kraus, Nina

    2010-01-01

    Low frequency temporal information present in speech is critical for normal perception, however the neural mechanism underlying the differentiation of slow rates in acoustic signals is not known. Data from the rat trigeminal system suggest that the paralemniscal pathway may be specifically tuned to code low-frequency temporal information. We tested whether this phenomenon occurs in the auditory system by measuring the representation of temporal rate in lemniscal and paralemniscal auditory thalamus and cortex in guinea pig. Similar to the trigeminal system, responses measured in auditory thalamus indicate that slow rates are differentially represented in a paralemniscal pathway. In cortex, both lemniscal and paralemniscal neurons indicated sensitivity to slow rates. We speculate that a paralemniscal pathway in the auditory system may be specifically tuned to code low frequency temporal information present in acoustic signals. These data suggest that somatosensory and auditory modalities have parallel sub-cortical pathways that separately process slow rates and the spatial representation of the sensory periphery. PMID:21094680

  20. Auditory Temporal Processing and Working Memory: Two Independent Deficits for Dyslexia

    ERIC Educational Resources Information Center

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    Dyslexia is a neuro-cognitive disorder with a strong genetic basis, characterized by a difficulty in acquiring reading skills. Several hypotheses have been suggested in an attempt to explain the origin of dyslexia, among which some have suggested that dyslexic readers might have a deficit in auditory temporal processing, while others hypothesized…

  1. Auditory and Speech Processing and Reading Development in Chinese School Children: Behavioural and ERP Evidence

    ERIC Educational Resources Information Center

    Meng, Xiangzhi; Sai, Xiaoguang; Wang, Cixin; Wang, Jue; Sha, Shuying; Zhou, Xiaolin

    2005-01-01

    By measuring behavioural performance and event-related potentials (ERPs) this study investigated the extent to which Chinese school children's reading development is influenced by their skills in auditory, speech, and temporal processing. In Experiment 1, 102 normal school children's performance in pure tone temporal order judgment, tone frequency…

  2. Spatial and temporal relationships of electrocorticographic alpha and gamma activity during auditory processing.

    PubMed

    Potes, Cristhian; Brunner, Peter; Gunduz, Aysegul; Knight, Robert T; Schalk, Gerwin

    2014-08-15

    Neuroimaging approaches have implicated multiple brain sites in musical perception, including the posterior part of the superior temporal gyrus and adjacent perisylvian areas. However, the detailed spatial and temporal relationship of neural signals that support auditory processing is largely unknown. In this study, we applied a novel inter-subject analysis approach to electrophysiological signals recorded from the surface of the brain (electrocorticography (ECoG)) in ten human subjects. This approach allowed us to reliably identify those ECoG features that were related to the processing of a complex auditory stimulus (i.e., continuous piece of music) and to investigate their spatial, temporal, and causal relationships. Our results identified stimulus-related modulations in the alpha (8-12 Hz) and high gamma (70-110 Hz) bands at neuroanatomical locations implicated in auditory processing. Specifically, we identified stimulus-related ECoG modulations in the alpha band in areas adjacent to primary auditory cortex, which are known to receive afferent auditory projections from the thalamus (80 of a total of 15,107 tested sites). In contrast, we identified stimulus-related ECoG modulations in the high gamma band not only in areas close to primary auditory cortex but also in other perisylvian areas known to be involved in higher-order auditory processing, and in superior premotor cortex (412/15,107 sites). Across all implicated areas, modulations in the high gamma band preceded those in the alpha band by 280 ms, and activity in the high gamma band causally predicted alpha activity, but not vice versa (Granger causality, p<1e(-8)). Additionally, detailed analyses using Granger causality identified causal relationships of high gamma activity between distinct locations in early auditory pathways within superior temporal gyrus (STG) and posterior STG, between posterior STG and inferior frontal cortex, and between STG and premotor cortex. Evidence suggests that these relationships reflect direct cortico-cortical connections rather than common driving input from subcortical structures such as the thalamus. In summary, our inter-subject analyses defined the spatial and temporal relationships between music-related brain activity in the alpha and high gamma bands. They provide experimental evidence supporting current theories about the putative mechanisms of alpha and gamma activity, i.e., reflections of thalamo-cortical interactions and local cortical neural activity, respectively, and the results are also in agreement with existing functional models of auditory processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Temporal Organization of Sound Information in Auditory Memory.

    PubMed

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  4. Hearing shapes our perception of time: temporal discrimination of tactile stimuli in deaf people.

    PubMed

    Bolognini, Nadia; Cecchetto, Carlo; Geraci, Carlo; Maravita, Angelo; Pascual-Leone, Alvaro; Papagno, Costanza

    2012-02-01

    Confronted with the loss of one type of sensory input, we compensate using information conveyed by other senses. However, losing one type of sensory information at specific developmental times may lead to deficits across all sensory modalities. We addressed the effect of auditory deprivation on the development of tactile abilities, taking into account changes occurring at the behavioral and cortical level. Congenitally deaf and hearing individuals performed two tactile tasks, the first requiring the discrimination of the temporal duration of touches and the second requiring the discrimination of their spatial length. Compared with hearing individuals, deaf individuals were impaired only in tactile temporal processing. To explore the neural substrate of this difference, we ran a TMS experiment. In deaf individuals, the auditory association cortex was involved in temporal and spatial tactile processing, with the same chronometry as the primary somatosensory cortex. In hearing participants, the involvement of auditory association cortex occurred at a later stage and selectively for temporal discrimination. The different chronometry in the recruitment of the auditory cortex in deaf individuals correlated with the tactile temporal impairment. Thus, early hearing experience seems to be crucial to develop an efficient temporal processing across modalities, suggesting that plasticity does not necessarily result in behavioral compensation.

  5. Syllabic (~2-5 Hz) and fluctuation (~1-10 Hz) ranges in speech and auditory processing

    PubMed Central

    Edwards, Erik; Chang, Edward F.

    2013-01-01

    Given recent interest in syllabic rates (~2-5 Hz) for speech processing, we review the perception of “fluctuation” range (~1-10 Hz) modulations during listening to speech and technical auditory stimuli (AM and FM tones and noises, and ripple sounds). We find evidence that the temporal modulation transfer function (TMTF) of human auditory perception is not simply low-pass in nature, but rather exhibits a peak in sensitivity in the syllabic range (~2-5 Hz). We also address human and animal neurophysiological evidence, and argue that this bandpass tuning arises at the thalamocortical level and is more associated with non-primary regions than primary regions of cortex. The bandpass rather than low-pass TMTF has implications for modeling auditory central physiology and speech processing: this implicates temporal contrast rather than simple temporal integration, with contrast enhancement for dynamic stimuli in the fluctuation range. PMID:24035819

  6. Temporal processing dysfunction in schizophrenia.

    PubMed

    Carroll, Christine A; Boggs, Jennifer; O'Donnell, Brian F; Shekhar, Anantha; Hetrick, William P

    2008-07-01

    Schizophrenia may be associated with a fundamental disturbance in the temporal coordination of information processing in the brain, leading to classic symptoms of schizophrenia such as thought disorder and disorganized and contextually inappropriate behavior. Despite the growing interest and centrality of time-dependent conceptualizations of the pathophysiology of schizophrenia, there remains a paucity of research directly examining overt timing performance in the disorder. Accordingly, the present study investigated timing in schizophrenia using a well-established task of time perception. Twenty-three individuals with schizophrenia and 22 non-psychiatric control participants completed a temporal bisection task, which required participants to make temporal judgments about auditory and visually presented durations ranging from 300 to 600 ms. Both schizophrenia and control groups displayed greater visual compared to auditory timing variability, with no difference between groups in the visual modality. However, individuals with schizophrenia exhibited less temporal precision than controls in the perception of auditory durations. These findings correlated with parameter estimates obtained from a quantitative model of time estimation, and provide evidence of a fundamental deficit in temporal auditory precision in schizophrenia.

  7. [Auditory processing and high frequency audiometry in students of São Paulo].

    PubMed

    Ramos, Cristina Silveira; Pereira, Liliane Desgualdo

    2005-01-01

    Auditory processing and auditory sensibility to high Frequency sounds. To characterize the localization processes, temporal ordering, hearing patterns and detection of high frequency sounds, looking for possible relations between these factors. 32 hearing fourth grade students, born in city of São Paulo, were submitted to: a simplified evaluation of the auditory processing; duration pattern test; high frequency audiometry. Three (9,4%) individuals presented auditory processing disorder (APD) and in one of them there was the coexistence of lower hearing thresholds in high frequency audiometry. APD associated to an auditory sensibility loss in high frequencies should be further investigated.

  8. Neural Correlates of Temporal Auditory Processing in Developmental Dyslexia during German Vowel Length Discrimination: An fMRI Study

    ERIC Educational Resources Information Center

    Steinbrink, Claudia; Groth, Katarina; Lachmann, Thomas; Riecker, Axel

    2012-01-01

    This fMRI study investigated phonological vs. auditory temporal processing in developmental dyslexia by means of a German vowel length discrimination paradigm (Groth, Lachmann, Riecker, Muthmann, & Steinbrink, 2011). Behavioral and fMRI data were collected from dyslexics and controls while performing same-different judgments of vowel duration in…

  9. Auditory Cortex Is Required for Fear Potentiation of Gap Detection

    PubMed Central

    Weible, Aldis P.; Liu, Christine; Niell, Cristopher M.

    2014-01-01

    Auditory cortex is necessary for the perceptual detection of brief gaps in noise, but is not necessary for many other auditory tasks such as frequency discrimination, prepulse inhibition of startle responses, or fear conditioning with pure tones. It remains unclear why auditory cortex should be necessary for some auditory tasks but not others. One possibility is that auditory cortex is causally involved in gap detection and other forms of temporal processing in order to associate meaning with temporally structured sounds. This predicts that auditory cortex should be necessary for associating meaning with gaps. To test this prediction, we developed a fear conditioning paradigm for mice based on gap detection. We found that pairing a 10 or 100 ms gap with an aversive stimulus caused a robust enhancement of gap detection measured 6 h later, which we refer to as fear potentiation of gap detection. Optogenetic suppression of auditory cortex during pairing abolished this fear potentiation, indicating that auditory cortex is critically involved in associating temporally structured sounds with emotionally salient events. PMID:25392510

  10. Auditory processing disorders, verbal disfluency, and learning difficulties: a case study.

    PubMed

    Jutras, Benoît; Lagacé, Josée; Lavigne, Annik; Boissonneault, Andrée; Lavoie, Charlen

    2007-01-01

    This case study reports the findings of auditory behavioral and electrophysiological measures performed on a graduate student (identified as LN) presenting verbal disfluency and learning difficulties. Results of behavioral audiological testing documented the presence of auditory processing disorders, particularly temporal processing and binaural integration. Electrophysiological test results, including middle latency, late latency and cognitive potentials, revealed that LN's central auditory system processes acoustic stimuli differently to a reference group with normal hearing.

  11. Coding of auditory temporal and pitch information by hippocampal individual cells and cell assemblies in the rat.

    PubMed

    Sakurai, Y

    2002-01-01

    This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.

  12. Auditory hallucinations and the temporal cortical response to speech in schizophrenia: a functional magnetic resonance imaging study.

    PubMed

    Woodruff, P W; Wright, I C; Bullmore, E T; Brammer, M; Howard, R J; Williams, S C; Shapleske, J; Rossell, S; David, A S; McGuire, P K; Murray, R M

    1997-12-01

    The authors explored whether abnormal functional lateralization of temporal cortical language areas in schizophrenia was associated with a predisposition to auditory hallucinations and whether the auditory hallucinatory state would reduce the temporal cortical response to external speech. Functional magnetic resonance imaging was used to measure the blood-oxygenation-level-dependent signal induced by auditory perception of speech in three groups of male subjects: eight schizophrenic patients with a history of auditory hallucinations (trait-positive), none of whom was currently hallucinating; seven schizophrenic patients without such a history (trait-negative); and eight healthy volunteers. Seven schizophrenic patients were also examined while they were actually experiencing severe auditory verbal hallucinations and again after their hallucinations had diminished. Voxel-by-voxel comparison of the median power of subjects' responses to periodic external speech revealed that this measure was reduced in the left superior temporal gyrus but increased in the right middle temporal gyrus in the combined schizophrenic groups relative to the healthy comparison group. Comparison of the trait-positive and trait-negative patients revealed no clear difference in the power of temporal cortical activation. Comparison of patients when experiencing severe hallucinations and when hallucinations were mild revealed reduced responsivity of the temporal cortex, especially the right middle temporal gyrus, to external speech during the former state. These results suggest that schizophrenia is associated with a reduced left and increased right temporal cortical response to auditory perception of speech, with little distinction between patients who differ in their vulnerability to hallucinations. The auditory hallucinatory state is associated with reduced activity in temporal cortical regions that overlap with those that normally process external speech, possibly because of competition for common neurophysiological resources.

  13. Auditory temporal processing in healthy aging: a magnetoencephalographic study

    PubMed Central

    Sörös, Peter; Teismann, Inga K; Manemann, Elisabeth; Lütkenhöner, Bernd

    2009-01-01

    Background Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years. Results The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants. Conclusion The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms. PMID:19351410

  14. Hierarchical Processing of Auditory Objects in Humans

    PubMed Central

    Kumar, Sukhbinder; Stephan, Klaas E; Warren, Jason D; Friston, Karl J; Griffiths, Timothy D

    2007-01-01

    This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG), containing the primary auditory cortex, planum temporale (PT), and superior temporal sulcus (STS), and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal “templates” in the PT before further analysis of the abstracted form in anterior temporal lobe areas. PMID:17542641

  15. Speech processing: from peripheral to hemispheric asymmetry of the auditory system.

    PubMed

    Lazard, Diane S; Collette, Jean-Louis; Perrot, Xavier

    2012-01-01

    Language processing from the cochlea to auditory association cortices shows side-dependent specificities with an apparent left hemispheric dominance. The aim of this article was to propose to nonspeech specialists a didactic review of two complementary theories about hemispheric asymmetry in speech processing. Starting from anatomico-physiological and clinical observations of auditory asymmetry and interhemispheric connections, this review then exposes behavioral (dichotic listening paradigm) as well as functional (functional magnetic resonance imaging and positron emission tomography) experiments that assessed hemispheric specialization for speech processing. Even though speech at an early phonological level is regarded as being processed bilaterally, a left-hemispheric dominance exists for higher-level processing. This asymmetry may arise from a segregation of the speech signal, broken apart within nonprimary auditory areas in two distinct temporal integration windows--a fast one on the left and a slower one on the right--modeled through the asymmetric sampling in time theory or a spectro-temporal trade-off, with a higher temporal resolution in the left hemisphere and a higher spectral resolution in the right hemisphere, modeled through the spectral/temporal resolution trade-off theory. Both theories deal with the concept that lower-order tuning principles for acoustic signal might drive higher-order organization for speech processing. However, the precise nature, mechanisms, and origin of speech processing asymmetry are still being debated. Finally, an example of hemispheric asymmetry alteration, which has direct clinical implications, is given through the case of auditory aging that mixes peripheral disorder and modifications of central processing. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  16. Mapping a lateralization gradient within the ventral stream for auditory speech perception.

    PubMed

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory-phonetic to lexico-semantic processing and along the posterior-anterior axis, thus forming a "lateralization" gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe.

  17. Auditory Temporal Structure Processing in Dyslexia: Processing of Prosodic Phrase Boundaries Is Not Impaired in Children with Dyslexia

    ERIC Educational Resources Information Center

    Geiser, Eveline; Kjelgaard, Margaret; Christodoulou, Joanna A.; Cyr, Abigail; Gabrieli, John D. E.

    2014-01-01

    Reading disability in children with dyslexia has been proposed to reflect impairment in auditory timing perception. We investigated one aspect of timing perception--"temporal grouping"--as present in prosodic phrase boundaries of natural speech, in age-matched groups of children, ages 6-8 years, with and without dyslexia. Prosodic phrase…

  18. Articulatory movements modulate auditory responses to speech

    PubMed Central

    Agnew, Z.K.; McGettigan, C.; Banks, B.; Scott, S.K.

    2013-01-01

    Production of actions is highly dependent on concurrent sensory information. In speech production, for example, movement of the articulators is guided by both auditory and somatosensory input. It has been demonstrated in non-human primates that self-produced vocalizations and those of others are differentially processed in the temporal cortex. The aim of the current study was to investigate how auditory and motor responses differ for self-produced and externally produced speech. Using functional neuroimaging, subjects were asked to produce sentences aloud, to silently mouth while listening to a different speaker producing the same sentence, to passively listen to sentences being read aloud, or to read sentences silently. We show that that separate regions of the superior temporal cortex display distinct response profiles to speaking aloud, mouthing while listening, and passive listening. Responses in anterior superior temporal cortices in both hemispheres are greater for passive listening compared with both mouthing while listening, and speaking aloud. This is the first demonstration that articulation, whether or not it has auditory consequences, modulates responses of the dorsolateral temporal cortex. In contrast posterior regions of the superior temporal cortex are recruited during both articulation conditions. In dorsal regions of the posterior superior temporal gyrus, responses to mouthing and reading aloud were equivalent, and in more ventral posterior superior temporal sulcus, responses were greater for reading aloud compared with mouthing while listening. These data demonstrate an anterior–posterior division of superior temporal regions where anterior fields are suppressed during motor output, potentially for the purpose of enhanced detection of the speech of others. We suggest posterior fields are engaged in auditory processing for the guidance of articulation by auditory information. PMID:22982103

  19. Auditory processing efficiency deficits in children with developmental language impairments

    NASA Astrophysics Data System (ADS)

    Hartley, Douglas E. H.; Moore, David R.

    2002-12-01

    The ``temporal processing hypothesis'' suggests that individuals with specific language impairments (SLIs) and dyslexia have severe deficits in processing rapidly presented or brief sensory information, both within the auditory and visual domains. This hypothesis has been supported through evidence that language-impaired individuals have excess auditory backward masking. This paper presents an analysis of masking results from several studies in terms of a model of temporal resolution. Results from this modeling suggest that the masking results can be better explained by an ``auditory efficiency'' hypothesis. If impaired or immature listeners have a normal temporal window, but require a higher signal-to-noise level (poor processing efficiency), this hypothesis predicts the observed small deficits in the simultaneous masking task, and the much larger deficits in backward and forward masking tasks amongst those listeners. The difference in performance on these masking tasks is predictable from the compressive nonlinearity of the basilar membrane. The model also correctly predicts that backward masking (i) is more prone to training effects, (ii) has greater inter- and intrasubject variability, and (iii) increases less with masker level than do other masking tasks. These findings provide a new perspective on the mechanisms underlying communication disorders and auditory masking.

  20. Training in rapid auditory processing ameliorates auditory comprehension in aphasic patients: a randomized controlled pilot study.

    PubMed

    Szelag, Elzbieta; Lewandowska, Monika; Wolak, Tomasz; Seniow, Joanna; Poniatowska, Renata; Pöppel, Ernst; Szymaszek, Aneta

    2014-03-15

    Experimental studies have often reported close associations between rapid auditory processing and language competency. The present study was aimed at improving auditory comprehension in aphasic patients following specific training in the perception of temporal order (TO) of events. We tested 18 aphasic patients showing both comprehension and TO perception deficits. Auditory comprehension was assessed by the Token Test, phonemic awareness and Voice-Onset-Time Test. The TO perception was assessed using auditory Temporal-Order-Threshold, defined as the shortest interval between two consecutive stimuli, necessary to report correctly their before-after relation. Aphasic patients participated in eight 45-minute sessions of either specific temporal training (TT, n=11) aimed to improve sequencing abilities, or control non-temporal training (NT, n=7) focussed on volume discrimination. The TT yielded improved TO perception; moreover, a transfer of improvement was observed from the time domain to the language domain, which was untrained during the training. The NT did not improve either the TO perception or comprehension in any language test. These results are in agreement with previous literature studies which proved ameliorated language competency following the TT in language-learning-impaired or dyslexic children. Our results indicated for the first time such benefits also in aphasic patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The associations between multisensory temporal processing and symptoms of schizophrenia.

    PubMed

    Stevenson, Ryan A; Park, Sohee; Cochran, Channing; McIntosh, Lindsey G; Noel, Jean-Paul; Barense, Morgan D; Ferber, Susanne; Wallace, Mark T

    2017-01-01

    Recent neurobiological accounts of schizophrenia have included an emphasis on changes in sensory processing. These sensory and perceptual deficits can have a cascading effect onto higher-level cognitive processes and clinical symptoms. One form of sensory dysfunction that has been consistently observed in schizophrenia is altered temporal processing. In this study, we investigated temporal processing within and across the auditory and visual modalities in individuals with schizophrenia (SCZ) and age-matched healthy controls. Individuals with SCZ showed auditory and visual temporal processing abnormalities, as well as multisensory temporal processing dysfunction that extended beyond that attributable to unisensory processing dysfunction. Most importantly, these multisensory temporal deficits were associated with the severity of hallucinations. This link between atypical multisensory temporal perception and clinical symptomatology suggests that clinical symptoms of schizophrenia may be at least partly a result of cascading effects from (multi)sensory disturbances. These results are discussed in terms of underlying neural bases and the possible implications for remediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The 5% difference: early sensory processing predicts sarcasm perception in schizophrenia and schizo-affective disorder.

    PubMed

    Kantrowitz, J T; Hoptman, M J; Leitman, D I; Silipo, G; Javitt, D C

    2014-01-01

    Intact sarcasm perception is a crucial component of social cognition and mentalizing (the ability to understand the mental state of oneself and others). In sarcasm, tone of voice is used to negate the literal meaning of an utterance. In particular, changes in pitch are used to distinguish between sincere and sarcastic utterances. Schizophrenia patients show well-replicated deficits in auditory function and functional connectivity (FC) within and between auditory cortical regions. In this study we investigated the contributions of auditory deficits to sarcasm perception in schizophrenia. Auditory measures including pitch processing, auditory emotion recognition (AER) and sarcasm detection were obtained from 76 patients with schizophrenia/schizo-affective disorder and 72 controls. Resting-state FC (rsFC) was obtained from a subsample and was analyzed using seeds placed in both auditory cortex and meta-analysis-defined core-mentalizing regions relative to auditory performance. Patients showed large effect-size deficits across auditory measures. Sarcasm deficits correlated significantly with general functioning and impaired pitch processing both across groups and within the patient group alone. Patients also showed reduced sensitivity to alterations in mean pitch and variability. For patients, sarcasm discrimination correlated exclusively with the level of rsFC within primary auditory regions whereas for controls, correlations were observed exclusively within core-mentalizing regions (the right posterior superior temporal gyrus, anterior superior temporal sulcus and insula, and left posterior medial temporal gyrus). These findings confirm the contribution of auditory deficits to theory of mind (ToM) impairments in schizophrenia, and demonstrate that FC within auditory, but not core-mentalizing, regions is rate limiting with respect to sarcasm detection in schizophrenia.

  3. It's about time: revisiting temporal processing deficits in dyslexia.

    PubMed

    Casini, Laurence; Pech-Georgel, Catherine; Ziegler, Johannes C

    2018-03-01

    Temporal processing in French children with dyslexia was evaluated in three tasks: a word identification task requiring implicit temporal processing, and two explicit temporal bisection tasks, one in the auditory and one in the visual modality. Normally developing children matched on chronological age and reading level served as a control group. Children with dyslexia exhibited robust deficits in temporal tasks whether they were explicit or implicit and whether they involved the auditory or the visual modality. First, they presented larger perceptual variability when performing temporal tasks, whereas they showed no such difficulties when performing the same task on a non-temporal dimension (intensity). This dissociation suggests that their difficulties were specific to temporal processing and could not be attributed to lapses of attention, reduced alertness, faulty anchoring, or overall noisy processing. In the framework of cognitive models of time perception, these data point to a dysfunction of the 'internal clock' of dyslexic children. These results are broadly compatible with the recent temporal sampling theory of dyslexia. © 2017 John Wiley & Sons Ltd.

  4. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    PubMed

    Alais, David; Cass, John

    2010-06-23

    An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be optimised to object-centered rather than viewer-centered constraints.

  5. Combined diffusion-weighted and functional magnetic resonance imaging reveals a temporal-occipital network involved in auditory-visual object processing

    PubMed Central

    Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.

    2013-01-01

    Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860

  6. How do auditory cortex neurons represent communication sounds?

    PubMed

    Gaucher, Quentin; Huetz, Chloé; Gourévitch, Boris; Laudanski, Jonathan; Occelli, Florian; Edeline, Jean-Marc

    2013-11-01

    A major goal in auditory neuroscience is to characterize how communication sounds are represented at the cortical level. The present review aims at investigating the role of auditory cortex in the processing of speech, bird songs and other vocalizations, which all are spectrally and temporally highly structured sounds. Whereas earlier studies have simply looked for neurons exhibiting higher firing rates to particular conspecific vocalizations over their modified, artificially synthesized versions, more recent studies determined the coding capacity of temporal spike patterns, which are prominent in primary and non-primary areas (and also in non-auditory cortical areas). In several cases, this information seems to be correlated with the behavioral performance of human or animal subjects, suggesting that spike-timing based coding strategies might set the foundations of our perceptive abilities. Also, it is now clear that the responses of auditory cortex neurons are highly nonlinear and that their responses to natural stimuli cannot be predicted from their responses to artificial stimuli such as moving ripples and broadband noises. Since auditory cortex neurons cannot follow rapid fluctuations of the vocalizations envelope, they only respond at specific time points during communication sounds, which can serve as temporal markers for integrating the temporal and spectral processing taking place at subcortical relays. Thus, the temporal sparse code of auditory cortex neurons can be considered as a first step for generating high level representations of communication sounds independent of the acoustic characteristic of these sounds. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Audition dominates vision in duration perception irrespective of salience, attention, and temporal discriminability

    PubMed Central

    Ortega, Laura; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2014-01-01

    Whereas the visual modality tends to dominate over the auditory modality in bimodal spatial perception, the auditory modality tends to dominate over the visual modality in bimodal temporal perception. Recent results suggest that the visual modality dominates bimodal spatial perception because spatial discriminability is typically greater for the visual than auditory modality; accordingly, visual dominance is eliminated or reversed when visual-spatial discriminability is reduced by degrading visual stimuli to be equivalent or inferior to auditory spatial discriminability. Thus, for spatial perception, the modality that provides greater discriminability dominates. Here we ask whether auditory dominance in duration perception is similarly explained by factors that influence the relative quality of auditory and visual signals. In contrast to the spatial results, the auditory modality dominated over the visual modality in bimodal duration perception even when the auditory signal was clearly weaker, when the auditory signal was ignored (i.e., the visual signal was selectively attended), and when the temporal discriminability was equivalent for the auditory and visual signals. Thus, unlike spatial perception where the modality carrying more discriminable signals dominates, duration perception seems to be mandatorily linked to auditory processing under most circumstances. PMID:24806403

  8. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys.

    PubMed

    Poremba, Amy; Mishkin, Mortimer

    2007-07-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left-hemisphere "dominance" during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole "dominance" appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys.

  9. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys

    PubMed Central

    Mishkin, Mortimer

    2009-01-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left hemisphere “dominance” during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole “dominance” appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys. PMID:17321703

  10. Auditory conflict and congruence in frontotemporal dementia.

    PubMed

    Clark, Camilla N; Nicholas, Jennifer M; Agustus, Jennifer L; Hardy, Christopher J D; Russell, Lucy L; Brotherhood, Emilie V; Dick, Katrina M; Marshall, Charles R; Mummery, Catherine J; Rohrer, Jonathan D; Warren, Jason D

    2017-09-01

    Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Speech perception in individuals with auditory dys-synchrony.

    PubMed

    Kumar, U A; Jayaram, M

    2011-03-01

    This study aimed to evaluate the effect of lengthening the transition duration of selected speech segments upon the perception of those segments in individuals with auditory dys-synchrony. Thirty individuals with auditory dys-synchrony participated in the study, along with 30 age-matched normal hearing listeners. Eight consonant-vowel syllables were used as auditory stimuli. Two experiments were conducted. Experiment one measured the 'just noticeable difference' time: the smallest prolongation of the speech sound transition duration which was noticeable by the subject. In experiment two, speech sounds were modified by lengthening the transition duration by multiples of the just noticeable difference time, and subjects' speech identification scores for the modified speech sounds were assessed. Subjects with auditory dys-synchrony demonstrated poor processing of temporal auditory information. Lengthening of speech sound transition duration improved these subjects' perception of both the placement and voicing features of the speech syllables used. These results suggest that innovative speech processing strategies which enhance temporal cues may benefit individuals with auditory dys-synchrony.

  12. Perceptual learning in temporal discrimination: asymmetric cross-modal transfer from audition to vision.

    PubMed

    Bratzke, Daniel; Seifried, Tanja; Ulrich, Rolf

    2012-08-01

    This study assessed possible cross-modal transfer effects of training in a temporal discrimination task from vision to audition as well as from audition to vision. We employed a pretest-training-post-test design including a control group that performed only the pretest and the post-test. Trained participants showed better discrimination performance with their trained interval than the control group. This training effect transferred to the other modality only for those participants who had been trained with auditory stimuli. The present study thus demonstrates for the first time that training on temporal discrimination within the auditory modality can transfer to the visual modality but not vice versa. This finding represents a novel illustration of auditory dominance in temporal processing and is consistent with the notion that time is primarily encoded in the auditory system.

  13. Binaural speech processing in individuals with auditory neuropathy.

    PubMed

    Rance, G; Ryan, M M; Carew, P; Corben, L A; Yiu, E; Tan, J; Delatycki, M B

    2012-12-13

    Auditory neuropathy disrupts the neural representation of sound and may therefore impair processes contingent upon inter-aural integration. The aims of this study were to investigate binaural auditory processing in individuals with axonal (Friedreich ataxia) and demyelinating (Charcot-Marie-Tooth disease type 1A) auditory neuropathy and to evaluate the relationship between the degree of auditory deficit and overall clinical severity in patients with neuropathic disorders. Twenty-three subjects with genetically confirmed Friedreich ataxia and 12 subjects with Charcot-Marie-Tooth disease type 1A underwent psychophysical evaluation of basic auditory processing (intensity discrimination/temporal resolution) and binaural speech perception assessment using the Listening in Spatialized Noise test. Age, gender and hearing-level-matched controls were also tested. Speech perception in noise for individuals with auditory neuropathy was abnormal for each listening condition, but was particularly affected in circumstances where binaural processing might have improved perception through spatial segregation. Ability to use spatial cues was correlated with temporal resolution suggesting that the binaural-processing deficit was the result of disordered representation of timing cues in the left and right auditory nerves. Spatial processing was also related to overall disease severity (as measured by the Friedreich Ataxia Rating Scale and Charcot-Marie-Tooth Neuropathy Score) suggesting that the degree of neural dysfunction in the auditory system accurately reflects generalized neuropathic changes. Measures of binaural speech processing show promise for application in the neurology clinic. In individuals with auditory neuropathy due to both axonal and demyelinating mechanisms the assessment provides a measure of functional hearing ability, a biomarker capable of tracking the natural history of progressive disease and a potential means of evaluating the effectiveness of interventions. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Encoding of Natural Sounds at Multiple Spectral and Temporal Resolutions in the Human Auditory Cortex

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Goebel, Rainer; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2014-01-01

    Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3 and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are represented in the human brain. We compare competing models of sound representations and select the model that most accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex. PMID:24391486

  15. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks.

    PubMed

    Erfanian Saeedi, Nafise; Blamey, Peter J; Burkitt, Anthony N; Grayden, David B

    2016-04-01

    Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons' action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.

  16. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks

    PubMed Central

    Erfanian Saeedi, Nafise; Blamey, Peter J.; Burkitt, Anthony N.; Grayden, David B.

    2016-01-01

    Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons’ action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy. PMID:27049657

  17. Visual Timing of Structured Dance Movements Resembles Auditory Rhythm Perception

    PubMed Central

    Su, Yi-Huang; Salazar-López, Elvira

    2016-01-01

    Temporal mechanisms for processing auditory musical rhythms are well established, in which a perceived beat is beneficial for timing purposes. It is yet unknown whether such beat-based timing would also underlie visual perception of temporally structured, ecological stimuli connected to music: dance. In this study, we investigated whether observers extracted a visual beat when watching dance movements to assist visual timing of these movements. Participants watched silent videos of dance sequences and reproduced the movement duration by mental recall. We found better visual timing for limb movements with regular patterns in the trajectories than without, similar to the beat advantage for auditory rhythms. When movements involved both the arms and the legs, the benefit of a visual beat relied only on the latter. The beat-based advantage persisted despite auditory interferences that were temporally incongruent with the visual beat, arguing for the visual nature of these mechanisms. Our results suggest that visual timing principles for dance parallel their auditory counterparts for music, which may be based on common sensorimotor coupling. These processes likely yield multimodal rhythm representations in the scenario of music and dance. PMID:27313900

  18. Visual Timing of Structured Dance Movements Resembles Auditory Rhythm Perception.

    PubMed

    Su, Yi-Huang; Salazar-López, Elvira

    2016-01-01

    Temporal mechanisms for processing auditory musical rhythms are well established, in which a perceived beat is beneficial for timing purposes. It is yet unknown whether such beat-based timing would also underlie visual perception of temporally structured, ecological stimuli connected to music: dance. In this study, we investigated whether observers extracted a visual beat when watching dance movements to assist visual timing of these movements. Participants watched silent videos of dance sequences and reproduced the movement duration by mental recall. We found better visual timing for limb movements with regular patterns in the trajectories than without, similar to the beat advantage for auditory rhythms. When movements involved both the arms and the legs, the benefit of a visual beat relied only on the latter. The beat-based advantage persisted despite auditory interferences that were temporally incongruent with the visual beat, arguing for the visual nature of these mechanisms. Our results suggest that visual timing principles for dance parallel their auditory counterparts for music, which may be based on common sensorimotor coupling. These processes likely yield multimodal rhythm representations in the scenario of music and dance.

  19. Top-down and bottom-up modulation of brain structures involved in auditory discrimination.

    PubMed

    Diekhof, Esther K; Biedermann, Franziska; Ruebsamen, Rudolf; Gruber, Oliver

    2009-11-10

    Auditory deviancy detection comprises both automatic and voluntary processing. Here, we investigated the neural correlates of different components of the sensory discrimination process using functional magnetic resonance imaging. Subliminal auditory processing of deviant events that were not detected led to activation in left superior temporal gyrus. On the other hand, both correct detection of deviancy and false alarms activated a frontoparietal network of attentional processing and response selection, i.e. this network was activated regardless of the physical presence of deviant events. Finally, activation in the putamen, anterior cingulate and middle temporal cortex depended on factual stimulus representations and occurred only during correct deviancy detection. These results indicate that sensory discrimination may rely on dynamic bottom-up and top-down interactions.

  20. Central auditory processing and migraine: a controlled study.

    PubMed

    Agessi, Larissa Mendonça; Villa, Thaís Rodrigues; Dias, Karin Ziliotto; Carvalho, Deusvenir de Souza; Pereira, Liliane Desgualdo

    2014-11-08

    This study aimed to verify and compare central auditory processing (CAP) performance in migraine with and without aura patients and healthy controls. Forty-one volunteers of both genders, aged between 18 and 40 years, diagnosed with migraine with and without aura by the criteria of "The International Classification of Headache Disorders" (ICDH-3 beta) and a control group of the same age range and with no headache history, were included. Gaps-in-noise (GIN), Duration Pattern test (DPT) and Dichotic Digits Test (DDT) tests were used to assess central auditory processing performance. The volunteers were divided into 3 groups: Migraine with aura (11), migraine without aura (15), and control group (15), matched by age and schooling. Subjects with aura and without aura performed significantly worse in GIN test for right ear (p = .006), for left ear (p = .005) and for DPT test (p < .001) when compared with controls without headache, however no significant differences were found in the DDT test for the right ear (p = .362) and for the left ear (p = .190). Subjects with migraine performed worsened in auditory gap detection, in the discrimination of short and long duration. They also presented impairment in the physiological mechanism of temporal processing, especially in temporal resolution and temporal ordering when compared with controls. Migraine could be related to an impaired central auditory processing. Research Ethics Committee (CEP 0480.10) - UNIFESP.

  1. Differential sensory cortical involvement in auditory and visual sensorimotor temporal recalibration: Evidence from transcranial direct current stimulation (tDCS).

    PubMed

    Aytemür, Ali; Almeida, Nathalia; Lee, Kwang-Hyuk

    2017-02-01

    Adaptation to delayed sensory feedback following an action produces a subjective time compression between the action and the feedback (temporal recalibration effect, TRE). TRE is important for sensory delay compensation to maintain a relationship between causally related events. It is unclear whether TRE is a sensory modality-specific phenomenon. In 3 experiments employing a sensorimotor synchronization task, we investigated this question using cathodal transcranial direct-current stimulation (tDCS). We found that cathodal tDCS over the visual cortex, and to a lesser extent over the auditory cortex, produced decreased visual TRE. However, both auditory and visual cortex tDCS did not produce any measurable effects on auditory TRE. Our study revealed different nature of TRE in auditory and visual domains. Visual-motor TRE, which is more variable than auditory TRE, is a sensory modality-specific phenomenon, modulated by the auditory cortex. The robustness of auditory-motor TRE, unaffected by tDCS, suggests the dominance of the auditory system in temporal processing, by providing a frame of reference in the realignment of sensorimotor timing signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Audio-visual temporal perception in children with restored hearing.

    PubMed

    Gori, Monica; Chilosi, Anna; Forli, Francesca; Burr, David

    2017-05-01

    It is not clear how audio-visual temporal perception develops in children with restored hearing. In this study we measured temporal discrimination thresholds with an audio-visual temporal bisection task in 9 deaf children with restored audition, and 22 typically hearing children. In typically hearing children, audition was more precise than vision, with no gain in multisensory conditions (as previously reported in Gori et al. (2012b)). However, deaf children with restored audition showed similar thresholds for audio and visual thresholds and some evidence of gain in audio-visual temporal multisensory conditions. Interestingly, we found a strong correlation between auditory weighting of multisensory signals and quality of language: patients who gave more weight to audition had better language skills. Similarly, auditory thresholds for the temporal bisection task were also a good predictor of language skills. This result supports the idea that the temporal auditory processing is associated with language development. Copyright © 2017. Published by Elsevier Ltd.

  3. Behavioral training enhances cortical temporal processing in neonatally deafened juvenile cats

    PubMed Central

    Vollmer, Maike; Raggio, Marcia W.; Schreiner, Christoph E.

    2011-01-01

    Deaf humans implanted with a cochlear prosthesis depend largely on temporal cues for speech recognition because spectral information processing is severely impaired. Training with a cochlear prosthesis is typically required before speech perception shows improvement, suggesting that relevant experience modifies temporal processing in the central auditory system. We tested this hypothesis in neonatally deafened cats by comparing temporal processing in the primary auditory cortex (AI) of cats that received only chronic passive intracochlear electric stimulation (ICES) with cats that were also trained with ICES to detect temporally challenging trains of electric pulses. After months of chronic passive stimulation and several weeks of detection training in behaviorally trained cats, multineuronal AI responses evoked by temporally modulated ICES were recorded in anesthetized animals. The stimulus repetition rates that produced the maximum number of phase-locked spikes (best repetition rate) and 50% cutoff rate were significantly higher in behaviorally trained cats than the corresponding rates in cats that received only chronic passive ICES. Behavioral training restored neuronal temporal following ability to levels comparable with those recorded in naïve prior normal-hearing adult deafened animals. Importantly, best repetitition rates and cutoff rates were highest for neuronal clusters activated by the electrode configuration used in behavioral training. These results suggest that neuroplasticity in the AI is induced by behavioral training and perceptual learning in animals deprived of ordinary auditory experience during development and indicate that behavioral training can ameliorate or restore temporal processing in the AI of profoundly deaf animals. PMID:21543753

  4. Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing.

    PubMed

    Parthasarathy, Aravindakshan; Bartlett, Edward

    2012-07-01

    Auditory brainstem responses (ABRs), and envelope and frequency following responses (EFRs and FFRs) are widely used to study aberrant auditory processing in conditions such as aging. We have previously reported age-related deficits in auditory processing for rapid amplitude modulation (AM) frequencies using EFRs recorded from a single channel. However, sensitive testing of EFRs along a wide range of modulation frequencies is required to gain a more complete understanding of the auditory processing deficits. In this study, ABRs and EFRs were recorded simultaneously from two electrode configurations in young and old Fischer-344 rats, a common auditory aging model. Analysis shows that the two channels respond most sensitively to complementary AM frequencies. Channel 1, recorded from Fz to mastoid, responds better to faster AM frequencies in the 100-700 Hz range of frequencies, while Channel 2, recorded from the inter-aural line to the mastoid, responds better to slower AM frequencies in the 16-100 Hz range. Simultaneous recording of Channels 1 and 2 using AM stimuli with varying sound levels and modulation depths show that age-related deficits in temporal processing are not present at slower AM frequencies but only at more rapid ones, which would not have been apparent recording from either channel alone. Comparison of EFRs between un-anesthetized and isoflurane-anesthetized recordings in young animals, as well as comparison with previously published ABR waveforms, suggests that the generators of Channel 1 may emphasize more caudal brainstem structures while those of Channel 2 may emphasize more rostral auditory nuclei including the inferior colliculus and the forebrain, with the boundary of separation potentially along the cochlear nucleus/superior olivary complex. Simultaneous two-channel recording of EFRs help to give a more complete understanding of the properties of auditory temporal processing over a wide range of modulation frequencies which is useful in understanding neural representations of sound stimuli in normal, developmental or pathological conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Concurrent temporal channels for auditory processing: Oscillatory neural entrainment reveals segregation of function at different scales

    PubMed Central

    Tian, Xing; Rowland, Jess; Poeppel, David

    2017-01-01

    Natural sounds convey perceptually relevant information over multiple timescales, and the necessary extraction of multi-timescale information requires the auditory system to work over distinct ranges. The simplest hypothesis suggests that temporal modulations are encoded in an equivalent manner within a reasonable intermediate range. We show that the human auditory system selectively and preferentially tracks acoustic dynamics concurrently at 2 timescales corresponding to the neurophysiological theta band (4–7 Hz) and gamma band ranges (31–45 Hz) but, contrary to expectation, not at the timescale corresponding to alpha (8–12 Hz), which has also been found to be related to auditory perception. Listeners heard synthetic acoustic stimuli with temporally modulated structures at 3 timescales (approximately 190-, approximately 100-, and approximately 30-ms modulation periods) and identified the stimuli while undergoing magnetoencephalography recording. There was strong intertrial phase coherence in the theta band for stimuli of all modulation rates and in the gamma band for stimuli with corresponding modulation rates. The alpha band did not respond in a similar manner. Classification analyses also revealed that oscillatory phase reliably tracked temporal dynamics but not equivalently across rates. Finally, mutual information analyses quantifying the relation between phase and cochlear-scaled correlations also showed preferential processing in 2 distinct regimes, with the alpha range again yielding different patterns. The results support the hypothesis that the human auditory system employs (at least) a 2-timescale processing mode, in which lower and higher perceptual sampling scales are segregated by an intermediate temporal regime in the alpha band that likely reflects different underlying computations. PMID:29095816

  6. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke.

    PubMed

    Crinion, Jenny; Price, Cathy J

    2005-12-01

    Previous studies have suggested that recovery of speech comprehension after left hemisphere infarction may depend on a mechanism in the right hemisphere. However, the role that distinct right hemisphere regions play in speech comprehension following left hemisphere stroke has not been established. Here, we used functional magnetic resonance imaging (fMRI) to investigate narrative speech activation in 18 neurologically normal subjects and 17 patients with left hemisphere stroke and a history of aphasia. Activation for listening to meaningful stories relative to meaningless reversed speech was identified in the normal subjects and in each patient. Second level analyses were then used to investigate how story activation changed with the patients' auditory sentence comprehension skills and surprise story recognition memory tests post-scanning. Irrespective of lesion site, performance on tests of auditory sentence comprehension was positively correlated with activation in the right lateral superior temporal region, anterior to primary auditory cortex. In addition, when the stroke spared the left temporal cortex, good performance on tests of auditory sentence comprehension was also correlated with the left posterior superior temporal cortex (Wernicke's area). In distinct contrast to this, good story recognition memory predicted left inferior frontal and right cerebellar activation. The implication of this double dissociation in the effects of auditory sentence comprehension and story recognition memory is that left frontal and left temporal activations are dissociable. Our findings strongly support the role of the right temporal lobe in processing narrative speech and, in particular, auditory sentence comprehension following left hemisphere aphasic stroke. In addition, they highlight the importance of the right anterior superior temporal cortex where the response was dissociated from that in the left posterior temporal lobe.

  7. Synchronization to auditory and visual rhythms in hearing and deaf individuals

    PubMed Central

    Iversen, John R.; Patel, Aniruddh D.; Nicodemus, Brenda; Emmorey, Karen

    2014-01-01

    A striking asymmetry in human sensorimotor processing is that humans synchronize movements to rhythmic sound with far greater precision than to temporally equivalent visual stimuli (e.g., to an auditory vs. a flashing visual metronome). Traditionally, this finding is thought to reflect a fundamental difference in auditory vs. visual processing, i.e., superior temporal processing by the auditory system and/or privileged coupling between the auditory and motor systems. It is unclear whether this asymmetry is an inevitable consequence of brain organization or whether it can be modified (or even eliminated) by stimulus characteristics or by experience. With respect to stimulus characteristics, we found that a moving, colliding visual stimulus (a silent image of a bouncing ball with a distinct collision point on the floor) was able to drive synchronization nearly as accurately as sound in hearing participants. To study the role of experience, we compared synchronization to flashing metronomes in hearing and profoundly deaf individuals. Deaf individuals performed better than hearing individuals when synchronizing with visual flashes, suggesting that cross-modal plasticity enhances the ability to synchronize with temporally discrete visual stimuli. Furthermore, when deaf (but not hearing) individuals synchronized with the bouncing ball, their tapping patterns suggest that visual timing may access higher-order beat perception mechanisms for deaf individuals. These results indicate that the auditory advantage in rhythmic synchronization is more experience- and stimulus-dependent than has been previously reported. PMID:25460395

  8. Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia.

    PubMed

    Albouy, Philippe; Cousineau, Marion; Caclin, Anne; Tillmann, Barbara; Peretz, Isabelle

    2016-01-06

    Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants' performance in discrimination and short-term memory. Our results show that amusics' performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics' pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders.

  9. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    PubMed

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  10. [Low level auditory skills compared to writing skills in school children attending third and fourth grade: evidence for the rapid auditory processing deficit theory?].

    PubMed

    Ptok, M; Meisen, R

    2008-01-01

    The rapid auditory processing defi-cit theory holds that impaired reading/writing skills are not caused exclusively by a cognitive deficit specific to representation and processing of speech sounds but arise due to sensory, mainly auditory, deficits. To further explore this theory we compared different measures of auditory low level skills to writing skills in school children. prospective study. School children attending third and fourth grade. just noticeable differences for intensity and frequency (JNDI, JNDF), gap detection (GD) monaural and binaural temporal order judgement (TOJb and TOJm); grade in writing, language and mathematics. correlation analysis. No relevant correlation was found between any auditory low level processing variable and writing skills. These data do not support the rapid auditory processing deficit theory.

  11. Multisensory connections of monkey auditory cerebral cortex

    PubMed Central

    Smiley, John F.; Falchier, Arnaud

    2009-01-01

    Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628

  12. Towards neural correlates of auditory stimulus processing: A simultaneous auditory evoked potentials and functional magnetic resonance study using an odd-ball paradigm

    PubMed Central

    Milner, Rafał; Rusiniak, Mateusz; Lewandowska, Monika; Wolak, Tomasz; Ganc, Małgorzata; Piątkowska-Janko, Ewa; Bogorodzki, Piotr; Skarżyński, Henryk

    2014-01-01

    Background The neural underpinnings of auditory information processing have often been investigated using the odd-ball paradigm, in which infrequent sounds (deviants) are presented within a regular train of frequent stimuli (standards). Traditionally, this paradigm has been applied using either high temporal resolution (EEG) or high spatial resolution (fMRI, PET). However, used separately, these techniques cannot provide information on both the location and time course of particular neural processes. The goal of this study was to investigate the neural correlates of auditory processes with a fine spatio-temporal resolution. A simultaneous auditory evoked potentials (AEP) and functional magnetic resonance imaging (fMRI) technique (AEP-fMRI), together with an odd-ball paradigm, were used. Material/Methods Six healthy volunteers, aged 20–35 years, participated in an odd-ball simultaneous AEP-fMRI experiment. AEP in response to acoustic stimuli were used to model bioelectric intracerebral generators, and electrophysiological results were integrated with fMRI data. Results fMRI activation evoked by standard stimuli was found to occur mainly in the primary auditory cortex. Activity in these regions overlapped with intracerebral bioelectric sources (dipoles) of the N1 component. Dipoles of the N1/P2 complex in response to standard stimuli were also found in the auditory pathway between the thalamus and the auditory cortex. Deviant stimuli induced fMRI activity in the anterior cingulate gyrus, insula, and parietal lobes. Conclusions The present study showed that neural processes evoked by standard stimuli occur predominantly in subcortical and cortical structures of the auditory pathway. Deviants activate areas non-specific for auditory information processing. PMID:24413019

  13. Can rhythmic auditory cuing remediate language-related deficits in Parkinson's disease?

    PubMed

    Kotz, Sonja A; Gunter, Thomas C

    2015-03-01

    Neurodegenerative changes of the basal ganglia in idiopathic Parkinson's disease (IPD) lead to motor deficits as well as general cognitive decline. Given these impairments, the question arises as to whether motor and nonmotor deficits can be ameliorated similarly. We reason that a domain-general sensorimotor circuit involved in temporal processing may support the remediation of such deficits. Following findings that auditory cuing benefits gait kinematics, we explored whether reported language-processing deficits in IPD can also be remediated via auditory cuing. During continuous EEG measurement, an individual diagnosed with IPD heard two types of temporally predictable but metrically different auditory beat-based cues: a march, which metrically aligned with the speech accent structure, a waltz that did not metrically align, or no cue before listening to naturally spoken sentences that were either grammatically well formed or were semantically or syntactically incorrect. Results confirmed that only the cuing with a march led to improved computation of syntactic and semantic information. We infer that a marching rhythm may lead to a stronger engagement of the cerebello-thalamo-cortical circuit that compensates dysfunctional striato-cortical timing. Reinforcing temporal realignment, in turn, may lead to the timely processing of linguistic information embedded in the temporally variable speech signal. © 2014 New York Academy of Sciences.

  14. On pure word deafness, temporal processing, and the left hemisphere.

    PubMed

    Stefanatos, Gerry A; Gershkoff, Arthur; Madigan, Sean

    2005-07-01

    Pure word deafness (PWD) is a rare neurological syndrome characterized by severe difficulties in understanding and reproducing spoken language, with sparing of written language comprehension and speech production. The pathognomonic disturbance of auditory comprehension appears to be associated with a breakdown in processes involved in mapping auditory input to lexical representations of words, but the functional locus of this disturbance and the localization of the responsible lesion have long been disputed. We report here on a woman with PWD resulting from a circumscribed unilateral infarct involving the left superior temporal lobe who demonstrated significant problems processing transitional spectrotemporal cues in both speech and nonspeech sounds. On speech discrimination tasks, she exhibited poor differentiation of stop consonant-vowel syllables distinguished by voicing onset and brief formant frequency transitions. Isolated formant transitions could be reliably discriminated only at very long durations (> 200 ms). By contrast, click fusion threshold, which depends on millisecond-level resolution of brief auditory events, was normal. These results suggest that the problems with speech analysis in this case were not secondary to general constraints on auditory temporal resolution. Rather, they point to a disturbance of left hemisphere auditory mechanisms that preferentially analyze rapid spectrotemporal variations in frequency. The findings have important implications for our conceptualization of PWD and its subtypes.

  15. Visual and auditory synchronization deficits among dyslexic readers as compared to non-impaired readers: a cross-correlation algorithm analysis

    PubMed Central

    Sela, Itamar

    2014-01-01

    Visual and auditory temporal processing and crossmodal integration are crucial factors in the word decoding process. The speed of processing (SOP) gap (Asynchrony) between these two modalities, which has been suggested as related to the dyslexia phenomenon, is the focus of the current study. Nineteen dyslexic and 17 non-impaired University adult readers were given stimuli in a reaction time (RT) procedure where participants were asked to identify whether the stimulus type was only visual, only auditory or crossmodally integrated. Accuracy, RT, and Event Related Potential (ERP) measures were obtained for each of the three conditions. An algorithm to measure the contribution of the temporal SOP of each modality to the crossmodal integration in each group of participants was developed. Results obtained using this model for the analysis of the current study data, indicated that in the crossmodal integration condition the presence of the auditory modality at the pre-response time frame (between 170 and 240 ms after stimulus presentation), increased processing speed in the visual modality among the non-impaired readers, but not in the dyslexic group. The differences between the temporal SOP of the modalities among the dyslexics and the non-impaired readers give additional support to the theory that an asynchrony between the visual and auditory modalities is a cause of dyslexia. PMID:24959125

  16. Auditory Backward Masking Deficits in Children with Reading Disabilities

    ERIC Educational Resources Information Center

    Montgomery, Christine R.; Morris, Robin D.; Sevcik, Rose A.; Clarkson, Marsha G.

    2005-01-01

    Studies evaluating temporal auditory processing among individuals with reading and other language deficits have yielded inconsistent findings due to methodological problems (Studdert-Kennedy & Mody, 1995) and sample differences. In the current study, seven auditory masking thresholds were measured in fifty-two 7- to 10-year-old children (26…

  17. The role of auditory and cognitive factors in understanding speech in noise by normal-hearing older listeners

    PubMed Central

    Schoof, Tim; Rosen, Stuart

    2014-01-01

    Normal-hearing older adults often experience increased difficulties understanding speech in noise. In addition, they benefit less from amplitude fluctuations in the masker. These difficulties may be attributed to an age-related auditory temporal processing deficit. However, a decline in cognitive processing likely also plays an important role. This study examined the relative contribution of declines in both auditory and cognitive processing to the speech in noise performance in older adults. Participants included older (60–72 years) and younger (19–29 years) adults with normal hearing. Speech reception thresholds (SRTs) were measured for sentences in steady-state speech-shaped noise (SS), 10-Hz sinusoidally amplitude-modulated speech-shaped noise (AM), and two-talker babble. In addition, auditory temporal processing abilities were assessed by measuring thresholds for gap, amplitude-modulation, and frequency-modulation detection. Measures of processing speed, attention, working memory, Text Reception Threshold (a visual analog of the SRT), and reading ability were also obtained. Of primary interest was the extent to which the various measures correlate with listeners' abilities to perceive speech in noise. SRTs were significantly worse for older adults in the presence of two-talker babble but not SS and AM noise. In addition, older adults showed some cognitive processing declines (working memory and processing speed) although no declines in auditory temporal processing. However, working memory and processing speed did not correlate significantly with SRTs in babble. Despite declines in cognitive processing, normal-hearing older adults do not necessarily have problems understanding speech in noise as SRTs in SS and AM noise did not differ significantly between the two groups. Moreover, while older adults had higher SRTs in two-talker babble, this could not be explained by age-related cognitive declines in working memory or processing speed. PMID:25429266

  18. Distinctiveness revisited: unpredictable temporal isolation does not benefit short-term serial recall of heard or seen events.

    PubMed

    Nimmo, Lisa M; Lewandowsky, Stephan

    2006-09-01

    The notion of a link between time and memory is intuitively appealing and forms the core assumption of temporal distinctiveness models. Distinctiveness models predict that items that are temporally isolated from their neighbors at presentation should be recalled better than items that are temporally crowded. By contrast, event-based theories consider time to be incidental to the processes that govern memory, and such theories would not imply a temporal isolation advantage unless participants engaged in a consolidation process (e.g., rehearsal or selective encoding) that exploited the temporal structure of the list. In this report, we examine two studies that assessed the effect of temporal distinctiveness on memory, using auditory (Experiment 1) and auditory and visual (Experiment 2) presentation with unpredictably varying interitem intervals. The results show that with unpredictable intervals temporal isolation does not benefit memory, regardless of presentation modality.

  19. Shared and distinct factors driving attention and temporal processing across modalities

    PubMed Central

    Berry, Anne S.; Li, Xu; Lin, Ziyong; Lustig, Cindy

    2013-01-01

    In addition to the classic finding that “sounds are judged longer than lights,” the timing of auditory stimuli is often more precise and accurate than is the timing of visual stimuli. In cognitive models of temporal processing, these modality differences are explained by positing that auditory stimuli more automatically capture and hold attention, more efficiently closing an attentional switch that allows the accumulation of pulses marking the passage of time (Block & Zakay, 1997; Meck, 1991; Penney, 2003). However, attention is a multifaceted construct, and there has been little attempt to determine which aspects of attention may be related to modality effects. We used visual and auditory versions of the Continuous Temporal Expectancy Task (CTET; O'Connell et al., 2009) a timing task previously linked to behavioral and electrophysiological measures of mind-wandering and attention lapses, and tested participants with or without the presence of a video distractor. Performance in the auditory condition was generally superior to that in the visual condition, replicating standard results in the timing literature. The auditory modality was also less affected by declines in sustained attention indexed by declines in performance over time. In contrast, distraction had an equivalent impact on performance in the two modalities. Analysis of individual differences in performance revealed further differences between the two modalities: Poor performance in the auditory condition was primarily related to boredom whereas poor performance in the visual condition was primarily related to distractibility. These results suggest that: 1) challenges to different aspects of attention reveal both modality-specific and nonspecific effects on temporal processing, and 2) different factors drive individual differences when testing across modalities. PMID:23978664

  20. Central auditory processing and migraine: a controlled study

    PubMed Central

    2014-01-01

    Background This study aimed to verify and compare central auditory processing (CAP) performance in migraine with and without aura patients and healthy controls. Methods Forty-one volunteers of both genders, aged between 18 and 40 years, diagnosed with migraine with and without aura by the criteria of “The International Classification of Headache Disorders” (ICDH-3 beta) and a control group of the same age range and with no headache history, were included. Gaps-in-noise (GIN), Duration Pattern test (DPT) and Dichotic Digits Test (DDT) tests were used to assess central auditory processing performance. Results The volunteers were divided into 3 groups: Migraine with aura (11), migraine without aura (15), and control group (15), matched by age and schooling. Subjects with aura and without aura performed significantly worse in GIN test for right ear (p = .006), for left ear (p = .005) and for DPT test (p < .001) when compared with controls without headache, however no significant differences were found in the DDT test for the right ear (p = .362) and for the left ear (p = .190). Conclusions Subjects with migraine performed worsened in auditory gap detection, in the discrimination of short and long duration. They also presented impairment in the physiological mechanism of temporal processing, especially in temporal resolution and temporal ordering when compared with controls. Migraine could be related to an impaired central auditory processing. Clinical trial registration Research Ethics Committee (CEP 0480.10) – UNIFESP PMID:25380661

  1. An fMRI Study of the Neural Systems Involved in Visually Cued Auditory Top-Down Spatial and Temporal Attention

    PubMed Central

    Li, Chunlin; Chen, Kewei; Han, Hongbin; Chui, Dehua; Wu, Jinglong

    2012-01-01

    Top-down attention to spatial and temporal cues has been thoroughly studied in the visual domain. However, because the neural systems that are important for auditory top-down temporal attention (i.e., attention based on time interval cues) remain undefined, the differences in brain activity between directed attention to auditory spatial location (compared with time intervals) are unclear. Using fMRI (magnetic resonance imaging), we measured the activations caused by cue-target paradigms by inducing the visual cueing of attention to an auditory target within a spatial or temporal domain. Imaging results showed that the dorsal frontoparietal network (dFPN), which consists of the bilateral intraparietal sulcus and the frontal eye field, responded to spatial orienting of attention, but activity was absent in the bilateral frontal eye field (FEF) during temporal orienting of attention. Furthermore, the fMRI results indicated that activity in the right ventrolateral prefrontal cortex (VLPFC) was significantly stronger during spatial orienting of attention than during temporal orienting of attention, while the DLPFC showed no significant differences between the two processes. We conclude that the bilateral dFPN and the right VLPFC contribute to auditory spatial orienting of attention. Furthermore, specific activations related to temporal cognition were confirmed within the superior occipital gyrus, tegmentum, motor area, thalamus and putamen. PMID:23166800

  2. Modulation rate transfer functions from four species of stranded odontocete (Stenella longirostris, Feresa attenuata, Globicephala melas, and Mesoplodon densirostris).

    PubMed

    Smith, Adam B; Pacini, Aude F; Nachtigall, Paul E

    2018-04-01

    Odontocete marine mammals explore the environment by rapidly producing echolocation signals and receiving the corresponding echoes, which likewise return at very rapid rates. Thus, it is important that the auditory system has a high temporal resolution to effectively process and extract relevant information from click echoes. This study used auditory evoked potential methods to investigate auditory temporal resolution of individuals from four different odontocete species, including a spinner dolphin (Stenella longirostris), pygmy killer whale (Feresa attenuata), long-finned pilot whale (Globicephala melas), and Blainville's beaked whale (Mesoplodon densirostris). Each individual had previously stranded and was undergoing rehabilitation. Auditory Brainstem Responses (ABRs) were elicited via acoustic stimuli consisting of a train of broadband tone pulses presented at rates between 300 and 2000 Hz. Similar to other studied species, modulation rate transfer functions (MRTFs) of the studied individuals followed the shape of a low-pass filter, with the ability to process acoustic stimuli at presentation rates up to and exceeding 1250 Hz. Auditory integration times estimated from the bandwidths of the MRTFs ranged between 250 and 333 µs. The results support the hypothesis that high temporal resolution is conserved throughout the diverse range of odontocete species.

  3. Region-specific reduction of auditory sensory gating in older adults.

    PubMed

    Cheng, Chia-Hsiung; Baillet, Sylvain; Lin, Yung-Yang

    2015-12-01

    Aging has been associated with declines in sensory-perceptual processes. Sensory gating (SG), or repetition suppression, refers to the attenuation of neural activity in response to a second stimulus and is considered to be an automatic process to inhibit redundant sensory inputs. It is controversial whether SG deficits, as tested with an auditory paired-stimulus protocol, accompany normal aging in humans. To reconcile the debates arising from event-related potential studies, we recorded auditory neuromagnetic reactivity in 20 young and 19 elderly adult men and determined the neural activation by using minimum-norm estimate (MNE) source modeling. SG of M100 was calculated by the ratio of the response to the second stimulus over that to the first stimulus. MNE results revealed that fronto-temporo-parietal networks were implicated in the M100 SG. Compared to the younger participants, the elderly showed selectively increased SG ratios in the anterior superior temporal gyrus, anterior middle temporal gyrus, temporal pole and orbitofrontal cortex, suggesting an insufficient age-related gating to repetitive auditory stimulation. These findings also highlight the loss of frontal inhibition of the auditory cortex in normal aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. [In Process Citation

    PubMed

    Ackermann; Mathiak

    1999-11-01

    Pure word deafness (auditory verbal agnosia) is characterized by an impairment of auditory comprehension, repetition of verbal material and writing to dictation whereas spontaneous speech production and reading largely remain unaffected. Sometimes, this syndrome is preceded by complete deafness (cortical deafness) of varying duration. Perception of vowels and suprasegmental features of verbal utterances (e.g., intonation contours) seems to be less disrupted than the processing of consonants and, therefore, might mediate residual auditory functions. Often, lip reading and/or slowing of speaking rate allow within some limits to compensate for speech comprehension deficits. Apart from a few exceptions, the available reports of pure word deafness documented a bilateral temporal lesion. In these instances, as a rule, identification of nonverbal (environmental) sounds, perception of music, temporal resolution of sequential auditory cues and/or spatial localization of acoustic events were compromised as well. The observed variable constellation of auditory signs and symptoms in central hearing disorders following bilateral temporal disorders, most probably, reflects the multitude of functional maps at the level of the auditory cortices subserving, as documented in a variety of non-human species, the encoding of specific stimulus parameters each. Thus, verbal/nonverbal auditory agnosia may be considered a paradigm of distorted "auditory scene analysis" (Bregman 1990) affecting both primitive and schema-based perceptual processes. It cannot be excluded, however, that disconnection of the Wernicke-area from auditory input (Geschwind 1965) and/or an impairment of suggested "phonetic module" (Liberman 1996) contribute to the observed deficits as well. Conceivably, these latter mechanisms underly the rare cases of pure word deafness following a lesion restricted to the dominant hemisphere. Only few instances of a rather isolated disruption of the discrimination/identification of nonverbal sound sources, in the presence of uncompromised speech comprehension, have been reported so far (nonverbal auditory agnosia). As a rule, unilateral right-sided damage has been found to be the relevant lesion.

  5. Auditory temporal preparation induced by rhythmic cues during concurrent auditory working memory tasks.

    PubMed

    Cutanda, Diana; Correa, Ángel; Sanabria, Daniel

    2015-06-01

    The present study investigated whether participants can develop temporal preparation driven by auditory isochronous rhythms when concurrently performing an auditory working memory (WM) task. In Experiment 1, participants had to respond to an auditory target presented after a regular or an irregular sequence of auditory stimuli while concurrently performing a Sternberg-type WM task. Results showed that participants responded faster after regular compared with irregular rhythms and that this effect was not affected by WM load; however, the lack of a significant main effect of WM load made it difficult to draw any conclusion regarding the influence of the dual-task manipulation in Experiment 1. In order to enhance dual-task interference, Experiment 2 combined the auditory rhythm procedure with an auditory N-Back task, which required WM updating (monitoring and coding of the information) and was presumably more demanding than the mere rehearsal of the WM task used in Experiment 1. Results now clearly showed dual-task interference effects (slower reaction times [RTs] in the high- vs. the low-load condition). However, such interference did not affect temporal preparation induced by rhythms, with faster RTs after regular than after irregular sequences in the high-load and low-load conditions. These results revealed that secondary tasks demanding memory updating, relative to tasks just demanding rehearsal, produced larger interference effects on overall RTs in the auditory rhythm task. Nevertheless, rhythm regularity exerted a strong temporal preparation effect that survived the interference of the WM task even when both tasks competed for processing resources within the auditory modality. (c) 2015 APA, all rights reserved).

  6. Auditory processing, speech perception and phonological ability in pre-school children at high-risk for dyslexia: a longitudinal study of the auditory temporal processing theory.

    PubMed

    Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquière, Pol

    2007-04-09

    This study investigates whether the core bottleneck of literacy-impairment should be situated at the phonological level or at a more basic sensory level, as postulated by supporters of the auditory temporal processing theory. Phonological ability, speech perception and low-level auditory processing were assessed in a group of 5-year-old pre-school children at high-family risk for dyslexia, compared to a group of well-matched low-risk control children. Based on family risk status and first grade literacy achievement children were categorized in groups and pre-school data were retrospectively reanalyzed. On average, children showing both increased family risk and literacy-impairment at the end of first grade, presented significant pre-school deficits in phonological awareness, rapid automatized naming, speech-in-noise perception and frequency modulation detection. The concurrent presence of these deficits before receiving any formal reading instruction, might suggest a causal relation with problematic literacy development. However, a closer inspection of the individual data indicates that the core of the literacy problem is situated at the level of higher-order phonological processing. Although auditory and speech perception problems are relatively over-represented in literacy-impaired subjects and might possibly aggravate the phonological and literacy problem, it is unlikely that they would be at the basis of these problems. At a neurobiological level, results are interpreted as evidence for dysfunctional processing along the auditory-to-articulation stream that is implied in phonological processing, in combination with a relatively intact or inconsistently impaired functioning of the auditory-to-meaning stream that subserves auditory processing and speech perception.

  7. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus.

    PubMed

    Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D

    2015-09-01

    To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.

  8. Visual activity predicts auditory recovery from deafness after adult cochlear implantation.

    PubMed

    Strelnikov, Kuzma; Rouger, Julien; Demonet, Jean-François; Lagleyre, Sebastien; Fraysse, Bernard; Deguine, Olivier; Barone, Pascal

    2013-12-01

    Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.

  9. Predicting Future Reading Problems Based on Pre-reading Auditory Measures: A Longitudinal Study of Children with a Familial Risk of Dyslexia

    PubMed Central

    Law, Jeremy M.; Vandermosten, Maaike; Ghesquière, Pol; Wouters, Jan

    2017-01-01

    Purpose: This longitudinal study examines measures of temporal auditory processing in pre-reading children with a family risk of dyslexia. Specifically, it attempts to ascertain whether pre-reading auditory processing, speech perception, and phonological awareness (PA) reliably predict later literacy achievement. Additionally, this study retrospectively examines the presence of pre-reading auditory processing, speech perception, and PA impairments in children later found to be literacy impaired. Method: Forty-four pre-reading children with and without a family risk of dyslexia were assessed at three time points (kindergarten, first, and second grade). Auditory processing measures of rise time (RT) discrimination and frequency modulation (FM) along with speech perception, PA, and various literacy tasks were assessed. Results: Kindergarten RT uniquely contributed to growth in literacy in grades one and two, even after controlling for letter knowledge and PA. Highly significant concurrent and predictive correlations were observed with kindergarten RT significantly predicting first grade PA. Retrospective analysis demonstrated atypical performance in RT and PA at all three time points in children who later developed literacy impairments. Conclusions: Although significant, kindergarten auditory processing contributions to later literacy growth lack the power to be considered as a single-cause predictor; thus results support temporal processing deficits' contribution within a multiple deficit model of dyslexia. PMID:28223953

  10. Auditory processing and speech perception in children with specific language impairment: relations with oral language and literacy skills.

    PubMed

    Vandewalle, Ellen; Boets, Bart; Ghesquière, Pol; Zink, Inge

    2012-01-01

    This longitudinal study investigated temporal auditory processing (frequency modulation and between-channel gap detection) and speech perception (speech-in-noise and categorical perception) in three groups of 6 years 3 months to 6 years 8 months-old children attending grade 1: (1) children with specific language impairment (SLI) and literacy delay (n = 8), (2) children with SLI and normal literacy (n = 10) and (3) typically developing children (n = 14). Moreover, the relations between these auditory processing and speech perception skills and oral language and literacy skills in grade 1 and grade 3 were analyzed. The SLI group with literacy delay scored significantly lower than both other groups on speech perception, but not on temporal auditory processing. Both normal reading groups did not differ in terms of speech perception or auditory processing. Speech perception was significantly related to reading and spelling in grades 1 and 3 and had a unique predictive contribution to reading growth in grade 3, even after controlling reading level, phonological ability, auditory processing and oral language skills in grade 1. These findings indicated that speech perception also had a unique direct impact upon reading development and not only through its relation with phonological awareness. Moreover, speech perception seemed to be more associated with the development of literacy skills and less with oral language ability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Plastic brain mechanisms for attaining auditory temporal order judgment proficiency.

    PubMed

    Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas

    2010-04-15

    Accurate perception of the order of occurrence of sensory information is critical for the building up of coherent representations of the external world from ongoing flows of sensory inputs. While some psychophysical evidence reports that performance on temporal perception can improve, the underlying neural mechanisms remain unresolved. Using electrical neuroimaging analyses of auditory evoked potentials (AEPs), we identified the brain dynamics and mechanism supporting improvements in auditory temporal order judgment (TOJ) during the course of the first vs. latter half of the experiment. Training-induced changes in brain activity were first evident 43-76 ms post stimulus onset and followed from topographic, rather than pure strength, AEP modulations. Improvements in auditory TOJ accuracy thus followed from changes in the configuration of the underlying brain networks during the initial stages of sensory processing. Source estimations revealed an increase in the lateralization of initially bilateral posterior sylvian region (PSR) responses at the beginning of the experiment to left-hemisphere dominance at its end. Further supporting the critical role of left and right PSR in auditory TOJ proficiency, as the experiment progressed, responses in the left and right PSR went from being correlated to un-correlated. These collective findings provide insights on the neurophysiologic mechanism and plasticity of temporal processing of sounds and are consistent with models based on spike timing dependent plasticity. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Auditory Temporal Resolution in Individuals with Diabetes Mellitus Type 2.

    PubMed

    Mishra, Rajkishor; Sanju, Himanshu Kumar; Kumar, Prawin

    2016-10-01

    Introduction  "Diabetes mellitus is a group of metabolic disorders characterized by elevated blood sugar and abnormalities in insulin secretion and action" (American Diabetes Association). Previous literature has reported connection between diabetes mellitus and hearing impairment. There is a dearth of literature on auditory temporal resolution ability in individuals with diabetes mellitus type 2. Objective  The main objective of the present study was to assess auditory temporal resolution ability through GDT (Gap Detection Threshold) in individuals with diabetes mellitus type 2 with high frequency hearing loss. Methods  Fifteen subjects with diabetes mellitus type 2 with high frequency hearing loss in the age range of 30 to 40 years participated in the study as the experimental group. Fifteen age-matched non-diabetic individuals with normal hearing served as the control group. We administered the Gap Detection Threshold (GDT) test to all participants to assess their temporal resolution ability. Result  We used the independent t -test to compare between groups. Results showed that the diabetic group (experimental) performed significantly poorer compared with the non-diabetic group (control). Conclusion  It is possible to conclude that widening of auditory filters and changes in the central auditory nervous system contributed to poorer performance for temporal resolution task (Gap Detection Threshold) in individuals with diabetes mellitus type 2. Findings of the present study revealed the deteriorating effect of diabetes mellitus type 2 at the central auditory processing level.

  13. Enhanced pure-tone pitch discrimination among persons with autism but not Asperger syndrome.

    PubMed

    Bonnel, Anna; McAdams, Stephen; Smith, Bennett; Berthiaume, Claude; Bertone, Armando; Ciocca, Valter; Burack, Jacob A; Mottron, Laurent

    2010-07-01

    Persons with Autism spectrum disorders (ASD) display atypical perceptual processing in visual and auditory tasks. In vision, Bertone, Mottron, Jelenic, and Faubert (2005) found that enhanced and diminished visual processing is linked to the level of neural complexity required to process stimuli, as proposed in the neural complexity hypothesis. Based on these findings, Samson, Mottron, Jemel, Belin, and Ciocca (2006) proposed to extend the neural complexity hypothesis to the auditory modality. They hypothesized that persons with ASD should display enhanced performance for simple tones that are processed in primary auditory cortical regions, but diminished performance for complex tones that require additional processing in associative auditory regions, in comparison to typically developing individuals. To assess this hypothesis, we designed four auditory discrimination experiments targeting pitch, non-vocal and vocal timbre, and loudness. Stimuli consisted of spectro-temporally simple and complex tones. The participants were adolescents and young adults with autism, Asperger syndrome, and typical developmental histories, all with IQs in the normal range. Consistent with the neural complexity hypothesis and enhanced perceptual functioning model of ASD (Mottron, Dawson, Soulières, Hubert, & Burack, 2006), the participants with autism, but not with Asperger syndrome, displayed enhanced pitch discrimination for simple tones. However, no discrimination-thresholds differences were found between the participants with ASD and the typically developing persons across spectrally and temporally complex conditions. These findings indicate that enhanced pure-tone pitch discrimination may be a cognitive correlate of speech-delay among persons with ASD. However, auditory discrimination among this group does not appear to be directly contingent on the spectro-temporal complexity of the stimuli. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Audiovisual speech integration in the superior temporal region is dysfunctional in dyslexia.

    PubMed

    Ye, Zheng; Rüsseler, Jascha; Gerth, Ivonne; Münte, Thomas F

    2017-07-25

    Dyslexia is an impairment of reading and spelling that affects both children and adults even after many years of schooling. Dyslexic readers have deficits in the integration of auditory and visual inputs but the neural mechanisms of the deficits are still unclear. This fMRI study examined the neural processing of auditorily presented German numbers 0-9 and videos of lip movements of a German native speaker voicing numbers 0-9 in unimodal (auditory or visual) and bimodal (always congruent) conditions in dyslexic readers and their matched fluent readers. We confirmed results of previous studies that the superior temporal gyrus/sulcus plays a critical role in audiovisual speech integration: fluent readers showed greater superior temporal activations for combined audiovisual stimuli than auditory-/visual-only stimuli. Importantly, such an enhancement effect was absent in dyslexic readers. Moreover, the auditory network (bilateral superior temporal regions plus medial PFC) was dynamically modulated during audiovisual integration in fluent, but not in dyslexic readers. These results suggest that superior temporal dysfunction may underly poor audiovisual speech integration in readers with dyslexia. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. The cortical language circuit: from auditory perception to sentence comprehension.

    PubMed

    Friederici, Angela D

    2012-05-01

    Over the years, a large body of work on the brain basis of language comprehension has accumulated, paving the way for the formulation of a comprehensive model. The model proposed here describes the functional neuroanatomy of the different processing steps from auditory perception to comprehension as located in different gray matter brain regions. It also specifies the information flow between these regions, taking into account white matter fiber tract connections. Bottom-up, input-driven processes proceeding from the auditory cortex to the anterior superior temporal cortex and from there to the prefrontal cortex, as well as top-down, controlled and predictive processes from the prefrontal cortex back to the temporal cortex are proposed to constitute the cortical language circuit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha

    PubMed Central

    Kayser, Stephanie J.; Ince, Robin A.A.; Gross, Joachim

    2015-01-01

    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. SIGNIFICANCE STATEMENT The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our results suggest that delta entrainment is controlled by frontal alpha mechanisms and thus support the notion that rhythmic auditory cortical entrainment is shaped by top-down mechanisms. PMID:26538641

  17. Does the Auditory Saltation Stimulus Distinguish Dyslexic from Competently Reading Adults?

    ERIC Educational Resources Information Center

    Kidd, Joanna C.; Hogben, John H.

    2007-01-01

    Purpose: Where the auditory saltation illusion has been used as a measure of auditory temporal processing (ATP) in dyslexia, conflicting results have been apparent (cf. R. Hari & P. Kiesila, 1996; M. Kronbichler, F. Hutzler, & H. Wimmer, 2002). This study sought to re-examine these findings by investigating whether dyslexia is characterized by…

  18. Do not throw out the baby with the bath water: choosing an effective baseline for a functional localizer of speech processing.

    PubMed

    Stoppelman, Nadav; Harpaz, Tamar; Ben-Shachar, Michal

    2013-05-01

    Speech processing engages multiple cortical regions in the temporal, parietal, and frontal lobes. Isolating speech-sensitive cortex in individual participants is of major clinical and scientific importance. This task is complicated by the fact that responses to sensory and linguistic aspects of speech are tightly packed within the posterior superior temporal cortex. In functional magnetic resonance imaging (fMRI), various baseline conditions are typically used in order to isolate speech-specific from basic auditory responses. Using a short, continuous sampling paradigm, we show that reversed ("backward") speech, a commonly used auditory baseline for speech processing, removes much of the speech responses in frontal and temporal language regions of adult individuals. On the other hand, signal correlated noise (SCN) serves as an effective baseline for removing primary auditory responses while maintaining strong signals in the same language regions. We show that the response to reversed speech in left inferior frontal gyrus decays significantly faster than the response to speech, thus suggesting that this response reflects bottom-up activation of speech analysis followed up by top-down attenuation once the signal is classified as nonspeech. The results overall favor SCN as an auditory baseline for speech processing.

  19. Population responses in primary auditory cortex simultaneously represent the temporal envelope and periodicity features in natural speech.

    PubMed

    Abrams, Daniel A; Nicol, Trent; White-Schwoch, Travis; Zecker, Steven; Kraus, Nina

    2017-05-01

    Speech perception relies on a listener's ability to simultaneously resolve multiple temporal features in the speech signal. Little is known regarding neural mechanisms that enable the simultaneous coding of concurrent temporal features in speech. Here we show that two categories of temporal features in speech, the low-frequency speech envelope and periodicity cues, are processed by distinct neural mechanisms within the same population of cortical neurons. We measured population activity in primary auditory cortex of anesthetized guinea pig in response to three variants of a naturally produced sentence. Results show that the envelope of population responses closely tracks the speech envelope, and this cortical activity more closely reflects wider bandwidths of the speech envelope compared to narrow bands. Additionally, neuronal populations represent the fundamental frequency of speech robustly with phase-locked responses. Importantly, these two temporal features of speech are simultaneously observed within neuronal ensembles in auditory cortex in response to clear, conversation, and compressed speech exemplars. Results show that auditory cortical neurons are adept at simultaneously resolving multiple temporal features in extended speech sentences using discrete coding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. How silent is silent reading? Intracerebral evidence for top-down activation of temporal voice areas during reading.

    PubMed

    Perrone-Bertolotti, Marcela; Kujala, Jan; Vidal, Juan R; Hamame, Carlos M; Ossandon, Tomas; Bertrand, Olivier; Minotti, Lorella; Kahane, Philippe; Jerbi, Karim; Lachaux, Jean-Philippe

    2012-12-05

    As you might experience it while reading this sentence, silent reading often involves an imagery speech component: we can hear our own "inner voice" pronouncing words mentally. Recent functional magnetic resonance imaging studies have associated that component with increased metabolic activity in the auditory cortex, including voice-selective areas. It remains to be determined, however, whether this activation arises automatically from early bottom-up visual inputs or whether it depends on late top-down control processes modulated by task demands. To answer this question, we collaborated with four epileptic human patients recorded with intracranial electrodes in the auditory cortex for therapeutic purposes, and measured high-frequency (50-150 Hz) "gamma" activity as a proxy of population level spiking activity. Temporal voice-selective areas (TVAs) were identified with an auditory localizer task and monitored as participants viewed words flashed on screen. We compared neural responses depending on whether words were attended or ignored and found a significant increase of neural activity in response to words, strongly enhanced by attention. In one of the patients, we could record that response at 800 ms in TVAs, but also at 700 ms in the primary auditory cortex and at 300 ms in the ventral occipital temporal cortex. Furthermore, single-trial analysis revealed a considerable jitter between activation peaks in visual and auditory cortices. Altogether, our results demonstrate that the multimodal mental experience of reading is in fact a heterogeneous complex of asynchronous neural responses, and that auditory and visual modalities often process distinct temporal frames of our environment at the same time.

  1. Aging affects neural precision of speech encoding

    PubMed Central

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2012-01-01

    Older adults frequently report they can hear what is said but cannot understand the meaning, especially in noise. This difficulty may arise from the inability to process rapidly changing elements of speech. Aging is accompanied by a general slowing of neural processing and decreased neural inhibition, both of which likely interfere with temporal processing in auditory and other sensory domains. Age-related reductions in inhibitory neurotransmitter levels and delayed neural recovery can contribute to decreases in the auditory system’s temporal precision. Decreased precision may lead to neural timing delays, reductions in neural response magnitude, and a disadvantage in processing the rapid acoustic changes in speech. The auditory brainstem response (ABR), a scalp-recorded electrical potential, is known for its ability to capture precise neural synchrony within subcortical auditory nuclei; therefore, we hypothesized that a loss of temporal precision results in subcortical timing delays and decreases in response consistency and magnitude. To assess this hypothesis, we recorded ABRs to the speech syllable /da/ in normal hearing younger (ages 18 to 30) and older adult humans (60 to 67). Older adults had delayed ABRs, especially in response to the rapidly changing formant transition, and greater response variability. We also found that older adults had decreased phase locking and smaller response magnitudes than younger adults. Taken together, our results support the theory that older adults have a loss of temporal precision in subcortical encoding of sound, which may account, at least in part, for their difficulties with speech perception. PMID:23055485

  2. Temporal Processing, Attention, and Learning Disorders

    ERIC Educational Resources Information Center

    Landerl, Karin; Willburger, Edith

    2010-01-01

    In a large sample (N = 439) of literacy impaired and unimpaired elementary school children the predictions of the temporal processing theory of dyslexia were tested while controlling for (sub)clininal attentional deficits. Visual and Auditory Temporal Order Judgement were administered as well as three subtests of a standardized attention test. The…

  3. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  4. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise

    PubMed Central

    White-Schwoch, Travis; Davies, Evan C.; Thompson, Elaine C.; Carr, Kali Woodruff; Nicol, Trent; Bradlow, Ann R.; Kraus, Nina

    2015-01-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But learning rarely occurs under ideal listening conditions—children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3–5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features—even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response properties in this age group. These normative metrics may be useful clinically to evaluate auditory processing difficulties during early childhood. PMID:26113025

  5. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.

    PubMed

    Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix

    2015-01-15

    Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing. Copyright © 2015 the American Physiological Society.

  6. Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes.

    PubMed

    Jemel, Boutheina; Achenbach, Christiane; Müller, Bernhard W; Röpcke, Bernd; Oades, Robert D

    2002-01-01

    The event-related potential (ERP) reflecting auditory change detection (mismatch negativity, MMN) registers automatic selective processing of a deviant sound with respect to a working memory template resulting from a series of standard sounds. Controversy remains whether MMN can be generated in the frontal as well as the temporal cortex. Our aim was to see if frontal as well as temporal lobe dipoles could explain MMN recorded after pitch-deviants (Pd-MMN) and duration deviants (Dd-MMN). EEG recordings were taken from 32 sites in 14 healthy subjects during a passive 3-tone oddball presented during a simple visual discrimination and an active auditory discrimination condition. Both conditions were repeated after one month. The Pd-MMN was larger, peaked earlier and correlated better between sessions than the Dd-MMN. Two dipoles in the auditory cortex and two in the frontal lobe (left cingulate and right inferior frontal cortex) were found to be similarly placed for Pd- and Dd-MMN, and were well replicated on retest. This study confirms interactions between activity generated in the frontal and auditory temporal cortices in automatic attention-like processes that resemble initial brain imaging reports of unconscious visual change detection. The lack of interference between sessions shows that the situation is likely to be sensitive to treatment or illness effects on fronto-temporal interactions involving repeated measures.

  7. Identification of environmental sounds and melodies in syndromes of anterior temporal lobe degeneration.

    PubMed

    Golden, Hannah L; Downey, Laura E; Fletcher, Philip D; Mahoney, Colin J; Schott, Jonathan M; Mummery, Catherine J; Crutch, Sebastian J; Warren, Jason D

    2015-05-15

    Recognition of nonverbal sounds in semantic dementia and other syndromes of anterior temporal lobe degeneration may determine clinical symptoms and help to define phenotypic profiles. However, nonverbal auditory semantic function has not been widely studied in these syndromes. Here we investigated semantic processing in two key nonverbal auditory domains - environmental sounds and melodies - in patients with semantic dementia (SD group; n=9) and in patients with anterior temporal lobe atrophy presenting with behavioural decline (TL group; n=7, including four cases with MAPT mutations) in relation to healthy older controls (n=20). We assessed auditory semantic performance in each domain using novel, uniform within-modality neuropsychological procedures that determined sound identification based on semantic classification of sound pairs. Both the SD and TL groups showed comparable overall impairments of environmental sound and melody identification; individual patients generally showed superior identification of environmental sounds than melodies, however relative sparing of melody over environmental sound identification also occurred in both groups. Our findings suggest that nonverbal auditory semantic impairment is a common feature of neurodegenerative syndromes with anterior temporal lobe atrophy. However, the profile of auditory domain involvement varies substantially between individuals. Copyright © 2015. Published by Elsevier B.V.

  8. Adaptation to delayed auditory feedback induces the temporal recalibration effect in both speech perception and production.

    PubMed

    Yamamoto, Kosuke; Kawabata, Hideaki

    2014-12-01

    We ordinarily speak fluently, even though our perceptions of our own voices are disrupted by various environmental acoustic properties. The underlying mechanism of speech is supposed to monitor the temporal relationship between speech production and the perception of auditory feedback, as suggested by a reduction in speech fluency when the speaker is exposed to delayed auditory feedback (DAF). While many studies have reported that DAF influences speech motor processing, its relationship to the temporal tuning effect on multimodal integration, or temporal recalibration, remains unclear. We investigated whether the temporal aspects of both speech perception and production change due to adaptation to the delay between the motor sensation and the auditory feedback. This is a well-used method of inducing temporal recalibration. Participants continually read texts with specific DAF times in order to adapt to the delay. Then, they judged the simultaneity between the motor sensation and the vocal feedback. We measured the rates of speech with which participants read the texts in both the exposure and re-exposure phases. We found that exposure to DAF changed both the rate of speech and the simultaneity judgment, that is, participants' speech gained fluency. Although we also found that a delay of 200 ms appeared to be most effective in decreasing the rates of speech and shifting the distribution on the simultaneity judgment, there was no correlation between these measurements. These findings suggest that both speech motor production and multimodal perception are adaptive to temporal lag but are processed in distinct ways.

  9. Temporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn

    2014-01-01

    Temporal variability of neuronal response characteristics during sensory stimulation is a ubiquitous phenomenon that may reflect processes such as stimulus-driven adaptation, top-down modulation or spontaneous fluctuations. It poses a challenge to functional characterization methods such as the receptive field, since these often assume stationarity. We propose a novel method for estimation of sensory neurons' receptive fields that extends the classic static linear receptive field model to the time-varying case. Here, the long-term estimate of the static receptive field serves as the mean of a probabilistic prior distribution from which the short-term temporally localized receptive field may deviate stochastically with time-varying standard deviation. The derived corresponding generalized linear model permits robust characterization of temporal variability in receptive field structure also for highly non-Gaussian stimulus ensembles. We computed and analyzed short-term auditory spectro-temporal receptive field (STRF) estimates with characteristic temporal resolution 5-30 s based on model simulations and responses from in total 60 single-unit recordings in anesthetized Mongolian gerbil auditory midbrain and cortex. Stimulation was performed with short (100 ms) overlapping frequency-modulated tones. Results demonstrate identification of time-varying STRFs, with obtained predictive model likelihoods exceeding those from baseline static STRF estimation. Quantitative characterization of STRF variability reveals a higher degree thereof in auditory cortex compared to midbrain. Cluster analysis indicates that significant deviations from the long-term static STRF are brief, but reliably estimated. We hypothesize that the observed variability more likely reflects spontaneous or state-dependent internal fluctuations that interact with stimulus-induced processing, rather than experimental or stimulus design.

  10. Idealized Computational Models for Auditory Receptive Fields

    PubMed Central

    Lindeberg, Tony; Friberg, Anders

    2015-01-01

    We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973

  11. Auditory Temporal-Organization Abilities in School-Age Children with Peripheral Hearing Loss

    ERIC Educational Resources Information Center

    Koravand, Amineh; Jutras, Benoit

    2013-01-01

    Purpose: The objective was to assess auditory sequential organization (ASO) ability in children with and without hearing loss. Method: Forty children 9 to 12 years old participated in the study: 12 with sensory hearing loss (HL), 12 with central auditory processing disorder (CAPD), and 16 with normal hearing. They performed an ASO task in which…

  12. Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Valente, Giancarlo; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2017-01-01

    Ethological views of brain functioning suggest that sound representations and computations in the auditory neural system are optimized finely to process and discriminate behaviorally relevant acoustic features and sounds (e.g., spectrotemporal modulations in the songs of zebra finches). Here, we show that modeling of neural sound representations in terms of frequency-specific spectrotemporal modulations enables accurate and specific reconstruction of real-life sounds from high-resolution functional magnetic resonance imaging (fMRI) response patterns in the human auditory cortex. Region-based analyses indicated that response patterns in separate portions of the auditory cortex are informative of distinctive sets of spectrotemporal modulations. Most relevantly, results revealed that in early auditory regions, and progressively more in surrounding regions, temporal modulations in a range relevant for speech analysis (∼2–4 Hz) were reconstructed more faithfully than other temporal modulations. In early auditory regions, this effect was frequency-dependent and only present for lower frequencies (<∼2 kHz), whereas for higher frequencies, reconstruction accuracy was higher for faster temporal modulations. Further analyses suggested that auditory cortical processing optimized for the fine-grained discrimination of speech and vocal sounds underlies this enhanced reconstruction accuracy. In sum, the present study introduces an approach to embed models of neural sound representations in the analysis of fMRI response patterns. Furthermore, it reveals that, in the human brain, even general purpose and fundamental neural processing mechanisms are shaped by the physical features of real-world stimuli that are most relevant for behavior (i.e., speech, voice). PMID:28420788

  13. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    PubMed

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Auditory Frequency Discrimination in Children with Specific Language Impairment: A Longitudinal Study

    ERIC Educational Resources Information Center

    Hill, P. R.; Hogben, J. H.; Bishop, D. M. V.

    2005-01-01

    It has been proposed that specific language impairment (SLI) is caused by an impairment of auditory processing, but it is unclear whether this problem affects temporal processing, frequency discrimination (FD), or both. Furthermore, there are few longitudinal studies in this area, making it hard to establish whether any deficit represents a…

  15. Auditory Neuroscience: Temporal Anticipation Enhances Cortical Processing

    PubMed Central

    Walker, Kerry M. M.; King, Andrew J.

    2015-01-01

    Summary A recent study shows that expectation about the timing of behaviorally-relevant sounds enhances the responses of neurons in the primary auditory cortex and improves the accuracy and speed with which animals respond to those sounds. PMID:21481759

  16. Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane.

    PubMed

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer

    2010-09-29

    Connectional anatomical evidence suggests that the auditory core, containing the tonotopic areas A1, R, and RT, constitutes the first stage of auditory cortical processing, with feedforward projections from core outward, first to the surrounding auditory belt and then to the parabelt. Connectional evidence also raises the possibility that the core itself is serially organized, with feedforward projections from A1 to R and with additional projections, although of unknown feed direction, from R to RT. We hypothesized that area RT together with more rostral parts of the supratemporal plane (rSTP) form the anterior extension of a rostrally directed stimulus quality processing stream originating in the auditory core area A1. Here, we analyzed auditory responses of single neurons in three different sectors distributed caudorostrally along the supratemporal plane (STP): sector I, mainly area A1; sector II, mainly area RT; and sector III, principally RTp (the rostrotemporal polar area), including cortex located 3 mm from the temporal tip. Mean onset latency of excitation responses and stimulus selectivity to monkey calls and other sounds, both simple and complex, increased progressively from sector I to III. Also, whereas cells in sector I responded with significantly higher firing rates to the "other" sounds than to monkey calls, those in sectors II and III responded at the same rate to both stimulus types. The pattern of results supports the proposal that the STP contains a rostrally directed, hierarchically organized auditory processing stream, with gradually increasing stimulus selectivity, and that this stream extends from the primary auditory area to the temporal pole.

  17. Short-Term Memory for Space and Time Flexibly Recruit Complementary Sensory-Biased Frontal Lobe Attention Networks.

    PubMed

    Michalka, Samantha W; Kong, Lingqiang; Rosen, Maya L; Shinn-Cunningham, Barbara G; Somers, David C

    2015-08-19

    The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Auditory post-processing in a passive listening task is deficient in Alzheimer's disease.

    PubMed

    Bender, Stephan; Bluschke, Annet; Dippel, Gabriel; Rupp, André; Weisbrod, Matthias; Thomas, Christine

    2014-01-01

    To investigate whether automatic auditory post-processing is deficient in patients with Alzheimer's disease and is related to sensory gating. Event-related potentials were recorded during a passive listening task to examine the automatic transient storage of auditory information (short click pairs). Patients with Alzheimer's disease were compared to a healthy age-matched control group. A young healthy control group was included to assess effects of physiological aging. A bilateral frontal negativity in combination with deep temporal positivity occurring 500 ms after stimulus offset was reduced in patients with Alzheimer's disease, but was unaffected by physiological aging. Its amplitude correlated with short-term memory capacity, but was independent of sensory gating in healthy elderly controls. Source analysis revealed a dipole pair in the anterior temporal lobes. Results suggest that auditory post-processing is deficient in Alzheimer's disease, but is not typically related to sensory gating. The deficit could neither be explained by physiological aging nor by problems in earlier stages of auditory perception. Correlations with short-term memory capacity and executive control tasks suggested an association with memory encoding and/or overall cognitive control deficits. An auditory late negative wave could represent a marker of auditory working memory encoding deficits in Alzheimer's disease. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Differential cognitive and perceptual correlates of print reading versus braille reading.

    PubMed

    Veispak, Anneli; Boets, Bart; Ghesquière, Pol

    2013-01-01

    The relations between reading, auditory, speech, phonological and tactile spatial processing are investigated in a Dutch speaking sample of blind braille readers as compared to sighted print readers. Performance is assessed in blind and sighted children and adults. Regarding phonological ability, braille readers perform equally well compared to print readers on phonological awareness, better on verbal short-term memory and significantly worse on lexical retrieval. The groups do not differ on speech perception or auditory processing. Braille readers, however, have more sensitive fingers than print readers. Investigation of the relations between these cognitive and perceptual skills and reading performance indicates that in the group of braille readers auditory temporal processing has a longer lasting and stronger impact not only on phonological abilities, which have to satisfy the high processing demands of the strictly serial language input, but also directly on the reading ability itself. Print readers switch between grapho-phonological and lexical reading modes depending on the familiarity of the items. Furthermore, the auditory temporal processing and speech perception, which were substantially interrelated with phonological processing, had no direct associations with print reading measures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Spatio-temporal Dynamics of Audiovisual Speech Processing

    PubMed Central

    Bernstein, Lynne E.; Auer, Edward T.; Wagner, Michael; Ponton, Curtis W.

    2007-01-01

    The cortical processing of auditory-alone, visual-alone, and audiovisual speech information is temporally and spatially distributed, and functional magnetic resonance imaging (fMRI) cannot adequately resolve its temporal dynamics. In order to investigate a hypothesized spatio-temporal organization for audiovisual speech processing circuits, event-related potentials (ERPs) were recorded using electroencephalography (EEG). Stimuli were congruent audiovisual /bα/, incongruent auditory /bα/ synchronized with visual /gα/, auditory-only /bα/, and visual-only /bα/ and /gα/. Current density reconstructions (CDRs) of the ERP data were computed across the latency interval of 50-250 milliseconds. The CDRs demonstrated complex spatio-temporal activation patterns that differed across stimulus conditions. The hypothesized circuit that was investigated here comprised initial integration of audiovisual speech by the middle superior temporal sulcus (STS), followed by recruitment of the intraparietal sulcus (IPS), followed by activation of Broca's area (Miller and d'Esposito, 2005). The importance of spatio-temporally sensitive measures in evaluating processing pathways was demonstrated. Results showed, strikingly, early (< 100 msec) and simultaneous activations in areas of the supramarginal and angular gyrus (SMG/AG), the IPS, the inferior frontal gyrus, and the dorsolateral prefrontal cortex. Also, emergent left hemisphere SMG/AG activation, not predicted based on the unisensory stimulus conditions was observed at approximately 160 to 220 msec. The STS was neither the earliest nor most prominent activation site, although it is frequently considered the sine qua non of audiovisual speech integration. As discussed here, the relatively late activity of the SMG/AG solely under audiovisual conditions is a possible candidate audiovisual speech integration response. PMID:17920933

  1. Temporal integration: intentional sound discrimination does not modulate stimulus-driven processes in auditory event synthesis.

    PubMed

    Sussman, Elyse; Winkler, István; Kreuzer, Judith; Saher, Marieke; Näätänen, Risto; Ritter, Walter

    2002-12-01

    Our previous study showed that the auditory context could influence whether two successive acoustic changes occurring within the temporal integration window (approximately 200ms) were pre-attentively encoded as a single auditory event or as two discrete events (Cogn Brain Res 12 (2001) 431). The aim of the current study was to assess whether top-down processes could influence the stimulus-driven processes in determining what constitutes an auditory event. Electroencepholagram (EEG) was recorded from 11 scalp electrodes to frequently occurring standard and infrequently occurring deviant sounds. Within the stimulus blocks, deviants either occurred only in pairs (successive feature changes) or both singly and in pairs. Event-related potential indices of change and target detection, the mismatch negativity (MMN) and the N2b component, respectively, were compared with the simultaneously measured performance in discriminating the deviants. Even though subjects could voluntarily distinguish the two successive auditory feature changes from each other, which was also indicated by the elicitation of the N2b target-detection response, top-down processes did not modify the event organization reflected by the MMN response. Top-down processes can extract elemental auditory information from a single integrated acoustic event, but the extraction occurs at a later processing stage than the one whose outcome is indexed by MMN. Initial processes of auditory event-formation are fully governed by the context within which the sounds occur. Perception of the deviants as two separate sound events (the top-down effects) did not change the initial neural representation of the same deviants as one event (indexed by the MMN), without a corresponding change in the stimulus-driven sound organization.

  2. Temporal Processing Development in Chinese Primary School-Aged Children with Dyslexia

    ERIC Educational Resources Information Center

    Wang, Li-Chih; Yang, Hsien-Ming

    2018-01-01

    This study aimed to investigate the development of visual and auditory temporal processing among children with and without dyslexia and to examine the roles of temporal processing in reading and reading-related abilities. A total of 362 Chinese children in Grades 1-6 were recruited from Taiwan. Half of the children had dyslexia, and the other half…

  3. Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks?

    PubMed

    Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter

    2006-01-01

    To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material (pure tones) and/or low-level operations (detection, labelling, chord disembedding, detection of pitch changes) show a superior level of performance and shorter ERP latencies. In contrast, tasks involving spectrally- and temporally-dynamic material and/or complex operations (evaluation, attention) are poorly performed by autistics, or generate inferior ERP activity or brain activation. Neural complexity required to perform auditory tasks may therefore explain pattern of performance and activation of autistic individuals during auditory tasks.

  4. Dual-Pitch Processing Mechanisms in Primate Auditory Cortex

    PubMed Central

    Bendor, Daniel; Osmanski, Michael S.

    2012-01-01

    Pitch, our perception of how high or low a sound is on a musical scale, is a fundamental perceptual attribute of sounds and is important for both music and speech. After more than a century of research, the exact mechanisms used by the auditory system to extract pitch are still being debated. Theoretically, pitch can be computed using either spectral or temporal acoustic features of a sound. We have investigated how cues derived from the temporal envelope and spectrum of an acoustic signal are used for pitch extraction in the common marmoset (Callithrix jacchus), a vocal primate species, by measuring pitch discrimination behaviorally and examining pitch-selective neuronal responses in auditory cortex. We find that pitch is extracted by marmosets using temporal envelope cues for lower pitch sounds composed of higher-order harmonics, whereas spectral cues are used for higher pitch sounds with lower-order harmonics. Our data support dual-pitch processing mechanisms, originally proposed by psychophysicists based on human studies, whereby pitch is extracted using a combination of temporal envelope and spectral cues. PMID:23152599

  5. Transcranial alternating current stimulation modulates auditory temporal resolution in elderly people.

    PubMed

    Baltus, Alina; Vosskuhl, Johannes; Boetzel, Cindy; Herrmann, Christoph Siegfried

    2018-05-13

    Recent research provides evidence for a functional role of brain oscillations for perception. For example, auditory temporal resolution seems to be linked to individual gamma frequency of auditory cortex. Individual gamma frequency not only correlates with performance in between-channel gap detection tasks but can be modulated via auditory transcranial alternating current stimulation. Modulation of individual gamma frequency is accompanied by an improvement in gap detection performance. Aging changes electrophysiological frequency components and sensory processing mechanisms. Therefore, we conducted a study to investigate the link between individual gamma frequency and gap detection performance in elderly people using auditory transcranial alternating current stimulation. In a within-subject design, twelve participants were electrically stimulated with two individualized transcranial alternating current stimulation frequencies: 3 Hz above their individual gamma frequency (experimental condition) and 4 Hz below their individual gamma frequency (control condition) while they were performing a between-channel gap detection task. As expected, individual gamma frequencies correlated significantly with gap detection performance at baseline and in the experimental condition, transcranial alternating current stimulation modulated gap detection performance. In the control condition, stimulation did not modulate gap detection performance. In addition, in elderly, the effect of transcranial alternating current stimulation on auditory temporal resolution seems to be dependent on endogenous frequencies in auditory cortex: elderlies with slower individual gamma frequencies and lower auditory temporal resolution profit from auditory transcranial alternating current stimulation and show increased gap detection performance during stimulation. Our results strongly suggest individualized transcranial alternating current stimulation protocols for successful modulation of performance. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Emotional context enhances auditory novelty processing in superior temporal gyrus.

    PubMed

    Domínguez-Borràs, Judith; Trautmann, Sina-Alexa; Erhard, Peter; Fehr, Thorsten; Herrmann, Manfred; Escera, Carles

    2009-07-01

    Visualizing emotionally loaded pictures intensifies peripheral reflexes toward sudden auditory stimuli, suggesting that the emotional context may potentiate responses elicited by novel events in the acoustic environment. However, psychophysiological results have reported that attentional resources available to sounds become depleted, as attention allocation to emotional pictures increases. These findings have raised the challenging question of whether an emotional context actually enhances or attenuates auditory novelty processing at a central level in the brain. To solve this issue, we used functional magnetic resonance imaging to first identify brain activations induced by novel sounds (NOV) when participants made a color decision on visual stimuli containing both negative (NEG) and neutral (NEU) facial expressions. We then measured modulation of these auditory responses by the emotional load of the task. Contrary to what was assumed, activation induced by NOV in superior temporal gyrus (STG) was enhanced when subjects responded to faces with a NEG emotional expression compared with NEU ones. Accordingly, NOV yielded stronger behavioral disruption on subjects' performance in the NEG context. These results demonstrate that the emotional context modulates the excitability of auditory and possibly multimodal novelty cerebral regions, enhancing acoustic novelty processing in a potentially harming environment.

  7. Being First Matters: Topographical Representational Similarity Analysis of ERP Signals Reveals Separate Networks for Audiovisual Temporal Binding Depending on the Leading Sense.

    PubMed

    Cecere, Roberto; Gross, Joachim; Willis, Ashleigh; Thut, Gregor

    2017-05-24

    In multisensory integration, processing in one sensory modality is enhanced by complementary information from other modalities. Intersensory timing is crucial in this process because only inputs reaching the brain within a restricted temporal window are perceptually bound. Previous research in the audiovisual field has investigated various features of the temporal binding window, revealing asymmetries in its size and plasticity depending on the leading input: auditory-visual (AV) or visual-auditory (VA). Here, we tested whether separate neuronal mechanisms underlie this AV-VA dichotomy in humans. We recorded high-density EEG while participants performed an audiovisual simultaneity judgment task including various AV-VA asynchronies and unisensory control conditions (visual-only, auditory-only) and tested whether AV and VA processing generate different patterns of brain activity. After isolating the multisensory components of AV-VA event-related potentials (ERPs) from the sum of their unisensory constituents, we ran a time-resolved topographical representational similarity analysis (tRSA) comparing the AV and VA ERP maps. Spatial cross-correlation matrices were built from real data to index the similarity between the AV and VA maps at each time point (500 ms window after stimulus) and then correlated with two alternative similarity model matrices: AV maps = VA maps versus AV maps ≠ VA maps The tRSA results favored the AV maps ≠ VA maps model across all time points, suggesting that audiovisual temporal binding (indexed by synchrony perception) engages different neural pathways depending on the leading sense. The existence of such dual route supports recent theoretical accounts proposing that multiple binding mechanisms are implemented in the brain to accommodate different information parsing strategies in auditory and visual sensory systems. SIGNIFICANCE STATEMENT Intersensory timing is a crucial aspect of multisensory integration, determining whether and how inputs in one modality enhance stimulus processing in another modality. Our research demonstrates that evaluating synchrony of auditory-leading (AV) versus visual-leading (VA) audiovisual stimulus pairs is characterized by two distinct patterns of brain activity. This suggests that audiovisual integration is not a unitary process and that different binding mechanisms are recruited in the brain based on the leading sense. These mechanisms may be relevant for supporting different classes of multisensory operations, for example, auditory enhancement of visual attention (AV) and visual enhancement of auditory speech (VA). Copyright © 2017 Cecere et al.

  8. Electrophysiological Evidence for the Sources of the Masking Level Difference.

    PubMed

    Fowler, Cynthia G

    2017-08-16

    The purpose of this review article is to review evidence from auditory evoked potential studies to describe the contributions of the auditory brainstem and cortex to the generation of the masking level difference (MLD). A literature review was performed, focusing on the auditory brainstem, middle, and late latency responses used in protocols similar to those used to generate the behavioral MLD. Temporal coding of the signals necessary for generating the MLD occurs in the auditory periphery and brainstem. Brainstem disorders up to wave III of the auditory brainstem response (ABR) can disrupt the MLD. The full MLD requires input to the generators of the auditory late latency potentials to produce all characteristics of the MLD; these characteristics include threshold differences for various binaural signal and noise conditions. Studies using central auditory lesions are beginning to identify the cortical effects on the MLD. The MLD requires auditory processing from the periphery to cortical areas. A healthy auditory periphery and brainstem codes temporal synchrony, which is essential for the ABR. Threshold differences require engaging cortical function beyond the primary auditory cortex. More studies using cortical lesions and evoked potentials or imaging should clarify the specific cortical areas involved in the MLD.

  9. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  10. Inter-subject synchronization of brain responses during natural music listening

    PubMed Central

    Abrams, Daniel A.; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J.; Menon, Vinod

    2015-01-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real-world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. PMID:23578016

  11. Near-Term Fetuses Process Temporal Features of Speech

    ERIC Educational Resources Information Center

    Granier-Deferre, Carolyn; Ribeiro, Aurelie; Jacquet, Anne-Yvonne; Bassereau, Sophie

    2011-01-01

    The perception of speech and music requires processing of variations in spectra and amplitude over different time intervals. Near-term fetuses can discriminate acoustic features, such as frequencies and spectra, but whether they can process complex auditory streams, such as speech sequences and more specifically their temporal variations, fast or…

  12. Temporal Order Processing in Adult Dyslexics.

    ERIC Educational Resources Information Center

    Maxwell, David L.; And Others

    This study investigated the premise that disordered temporal order perception in retarded readers can be seen in the serial processing of both nonverbal auditory and visual information, and examined whether such information processing deficits relate to level of reading ability. The adult subjects included 20 in the dyslexic group, 12 in the…

  13. Mapping a lateralization gradient within the ventral stream for auditory speech perception

    PubMed Central

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory–phonetic to lexico-semantic processing and along the posterior–anterior axis, thus forming a “lateralization” gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe. PMID:24106470

  14. Learning to Encode Timing: Mechanisms of Plasticity in the Auditory Brainstem

    PubMed Central

    Tzounopoulos, Thanos; Kraus, Nina

    2009-01-01

    Mechanisms of plasticity have traditionally been ascribed to higher-order sensory processing areas such as the cortex, whereas early sensory processing centers have been considered largely hard-wired. In agreement with this view, the auditory brainstem has been viewed as a nonplastic site, important for preserving temporal information and minimizing transmission delays. However, recent groundbreaking results from animal models and human studies have revealed remarkable evidence for cellular and behavioral mechanisms for learning and memory in the auditory brainstem. PMID:19477149

  15. Visual form predictions facilitate auditory processing at the N1.

    PubMed

    Paris, Tim; Kim, Jeesun; Davis, Chris

    2017-02-20

    Auditory-visual (AV) events often involve a leading visual cue (e.g. auditory-visual speech) that allows the perceiver to generate predictions about the upcoming auditory event. Electrophysiological evidence suggests that when an auditory event is predicted, processing is sped up, i.e., the N1 component of the ERP occurs earlier (N1 facilitation). However, it is not clear (1) whether N1 facilitation is based specifically on predictive rather than multisensory integration and (2) which particular properties of the visual cue it is based on. The current experiment used artificial AV stimuli in which visual cues predicted but did not co-occur with auditory cues. Visual form cues (high and low salience) and the auditory-visual pairing were manipulated so that auditory predictions could be based on form and timing or on timing only. The results showed that N1 facilitation occurred only for combined form and temporal predictions. These results suggest that faster auditory processing (as indicated by N1 facilitation) is based on predictive processing generated by a visual cue that clearly predicts both what and when the auditory stimulus will occur. Copyright © 2016. Published by Elsevier Ltd.

  16. Intertrial auditory neural stability supports beat synchronization in preschoolers

    PubMed Central

    Carr, Kali Woodruff; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2016-01-01

    The ability to synchronize motor movements along with an auditory beat places stringent demands on the temporal processing and sensorimotor integration capabilities of the nervous system. Links between millisecond-level precision of auditory processing and the consistency of sensorimotor beat synchronization implicate fine auditory neural timing as a mechanism for forming stable internal representations of, and behavioral reactions to, sound. Here, for the first time, we demonstrate a systematic relationship between consistency of beat synchronization and trial-by-trial stability of subcortical speech processing in preschoolers (ages 3 and 4 years old). We conclude that beat synchronization might provide a useful window into millisecond-level neural precision for encoding sound in early childhood, when speech processing is especially important for language acquisition and development. PMID:26760457

  17. Auditory brainstem response to complex sounds: a tutorial

    PubMed Central

    Skoe, Erika; Kraus, Nina

    2010-01-01

    This tutorial provides a comprehensive overview of the methodological approach to collecting and analyzing auditory brainstem responses to complex sounds (cABRs). cABRs provide a window into how behaviorally relevant sounds such as speech and music are processed in the brain. Because temporal and spectral characteristics of sounds are preserved in this subcortical response, cABRs can be used to assess specific impairments and enhancements in auditory processing. Notably, subcortical function is neither passive nor hardwired but dynamically interacts with higher-level cognitive processes to refine how sounds are transcribed into neural code. This experience-dependent plasticity, which can occur on a number of time scales (e.g., life-long experience with speech or music, short-term auditory training, online auditory processing), helps shape sensory perception. Thus, by being an objective and non-invasive means for examining cognitive function and experience-dependent processes in sensory activity, cABRs have considerable utility in the study of populations where auditory function is of interest (e.g., auditory experts such as musicians, persons with hearing loss, auditory processing and language disorders). This tutorial is intended for clinicians and researchers seeking to integrate cABRs into their clinical and/or research programs. PMID:20084007

  18. Neural circuits in Auditory and Audiovisual Memory

    PubMed Central

    Plakke, B.; Romanski, L.M.

    2016-01-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. PMID:26656069

  19. The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills

    PubMed Central

    Tierney, Adam T.; Kraus, Nina

    2013-01-01

    Reading-impaired children have difficulty tapping to a beat. Here we tested whether this relationship between reading ability and synchronized tapping holds in typically-developing adolescents. We also hypothesized that tapping relates to two other abilities. First, since auditory-motor synchronization requires monitoring of the relationship between motor output and auditory input, we predicted that subjects better able to tap to the beat would perform better on attention tests. Second, since auditory-motor synchronization requires fine temporal precision within the auditory system for the extraction of a sound’s onset time, we predicted that subjects better able to tap to the beat would be less affected by backward masking, a measure of temporal precision within the auditory system. As predicted, tapping performance related to reading, attention, and backward masking. These results motivate future research investigating whether beat synchronization training can improve not only reading ability, but potentially executive function and basic auditory processing as well. PMID:23400117

  20. Musicians have enhanced audiovisual multisensory binding: experience-dependent effects in the double-flash illusion.

    PubMed

    Bidelman, Gavin M

    2016-10-01

    Musical training is associated with behavioral and neurophysiological enhancements in auditory processing for both musical and nonmusical sounds (e.g., speech). Yet, whether the benefits of musicianship extend beyond enhancements to auditory-specific skills and impact multisensory (e.g., audiovisual) processing has yet to be fully validated. Here, we investigated multisensory integration of auditory and visual information in musicians and nonmusicians using a double-flash illusion, whereby the presentation of multiple auditory stimuli (beeps) concurrent with a single visual object (flash) induces an illusory perception of multiple flashes. We parametrically varied the onset asynchrony between auditory and visual events (leads and lags of ±300 ms) to quantify participants' "temporal window" of integration, i.e., stimuli in which auditory and visual cues were fused into a single percept. Results show that musically trained individuals were both faster and more accurate at processing concurrent audiovisual cues than their nonmusician peers; nonmusicians had a higher susceptibility for responding to audiovisual illusions and perceived double flashes over an extended range of onset asynchronies compared to trained musicians. Moreover, temporal window estimates indicated that musicians' windows (<100 ms) were ~2-3× shorter than nonmusicians' (~200 ms), suggesting more refined multisensory integration and audiovisual binding. Collectively, findings indicate a more refined binding of auditory and visual cues in musically trained individuals. We conclude that experience-dependent plasticity of intensive musical experience extends beyond simple listening skills, improving multimodal processing and the integration of multiple sensory systems in a domain-general manner.

  1. A selective impairment of perception of sound motion direction in peripheral space: A case study.

    PubMed

    Thaler, Lore; Paciocco, Joseph; Daley, Mark; Lesniak, Gabriella D; Purcell, David W; Fraser, J Alexander; Dutton, Gordon N; Rossit, Stephanie; Goodale, Melvyn A; Culham, Jody C

    2016-01-08

    It is still an open question if the auditory system, similar to the visual system, processes auditory motion independently from other aspects of spatial hearing, such as static location. Here, we report psychophysical data from a patient (female, 42 and 44 years old at the time of two testing sessions), who suffered a bilateral occipital infarction over 12 years earlier, and who has extensive damage in the occipital lobe bilaterally, extending into inferior posterior temporal cortex bilaterally and into right parietal cortex. We measured the patient's spatial hearing ability to discriminate static location, detect motion and perceive motion direction in both central (straight ahead), and right and left peripheral auditory space (50° to the left and right of straight ahead). Compared to control subjects, the patient was impaired in her perception of direction of auditory motion in peripheral auditory space, and the deficit was more pronounced on the right side. However, there was no impairment in her perception of the direction of auditory motion in central space. Furthermore, detection of motion and discrimination of static location were normal in both central and peripheral space. The patient also performed normally in a wide battery of non-spatial audiological tests. Our data are consistent with previous neuropsychological and neuroimaging results that link posterior temporal cortex and parietal cortex with the processing of auditory motion. Most importantly, however, our data break new ground by suggesting a division of auditory motion processing in terms of speed and direction and in terms of central and peripheral space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The effects of context and musical training on auditory temporal-interval discrimination.

    PubMed

    Banai, Karen; Fisher, Shirley; Ganot, Ron

    2012-02-01

    Non sensory factors such as stimulus context and musical experience are known to influence auditory frequency discrimination, but whether the context effect extends to auditory temporal processing remains unknown. Whether individual experiences such as musical training alter the context effect is also unknown. The goal of the present study was therefore to investigate the effects of stimulus context and musical experience on auditory temporal-interval discrimination. In experiment 1, temporal-interval discrimination was compared between fixed context conditions in which a single base temporal interval was presented repeatedly across all trials and variable context conditions in which one of two base intervals was randomly presented on each trial. Discrimination was significantly better in the fixed than in the variable context conditions. In experiment 2 temporal discrimination thresholds of musicians and non-musicians were compared across 3 conditions: a fixed context condition in which the target interval was presented repeatedly across trials, and two variable context conditions differing in the frequencies used for the tones marking the temporal intervals. Musicians outperformed non-musicians on all 3 conditions, but the effects of context were similar for the two groups. Overall, it appears that, like frequency discrimination, temporal-interval discrimination benefits from having a fixed reference. Musical experience, while improving performance, did not alter the context effect, suggesting that improved discrimination skills among musicians are probably not an outcome of more sensitive contextual facilitation or predictive coding mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Distributed Processing and Cortical Specialization for Speech and Environmental Sounds in Human Temporal Cortex

    ERIC Educational Resources Information Center

    Leech, Robert; Saygin, Ayse Pinar

    2011-01-01

    Using functional MRI, we investigated whether auditory processing of both speech and meaningful non-linguistic environmental sounds in superior and middle temporal cortex relies on a complex and spatially distributed neural system. We found that evidence for spatially distributed processing of speech and environmental sounds in a substantial…

  4. Auditory processing deficits in individuals with primary open-angle glaucoma.

    PubMed

    Rance, Gary; O'Hare, Fleur; O'Leary, Stephen; Starr, Arnold; Ly, Anna; Cheng, Belinda; Tomlin, Dani; Graydon, Kelley; Chisari, Donella; Trounce, Ian; Crowston, Jonathan

    2012-01-01

    The high energy demand of the auditory and visual pathways render these sensory systems prone to diseases that impair mitochondrial function. Primary open-angle glaucoma, a neurodegenerative disease of the optic nerve, has recently been associated with a spectrum of mitochondrial abnormalities. This study sought to investigate auditory processing in individuals with open-angle glaucoma. DESIGN/STUDY SAMPLE: Twenty-seven subjects with open-angle glaucoma underwent electrophysiologic (auditory brainstem response), auditory temporal processing (amplitude modulation detection), and speech perception (monosyllabic words in quiet and background noise) assessment in each ear. A cohort of age, gender and hearing level matched control subjects was also tested. While the majority of glaucoma subjects in this study demonstrated normal auditory function, there were a significant number (6/27 subjects, 22%) who showed abnormal auditory brainstem responses and impaired auditory perception in one or both ears. The finding that a significant proportion of subjects with open-angle glaucoma presented with auditory dysfunction provides evidence of systemic neuronal susceptibility. Affected individuals may suffer significant communication difficulties in everyday listening situations.

  5. Auditory Processing and Speech Perception in Children with Specific Language Impairment: Relations with Oral Language and Literacy Skills

    ERIC Educational Resources Information Center

    Vandewalle, Ellen; Boets, Bart; Ghesquiere, Pol; Zink, Inge

    2012-01-01

    This longitudinal study investigated temporal auditory processing (frequency modulation and between-channel gap detection) and speech perception (speech-in-noise and categorical perception) in three groups of 6 years 3 months to 6 years 8 months-old children attending grade 1: (1) children with specific language impairment (SLI) and literacy delay…

  6. Neuronal basis of speech comprehension.

    PubMed

    Specht, Karsten

    2014-01-01

    Verbal communication does not rely only on the simple perception of auditory signals. It is rather a parallel and integrative processing of linguistic and non-linguistic information, involving temporal and frontal areas in particular. This review describes the inherent complexity of auditory speech comprehension from a functional-neuroanatomical perspective. The review is divided into two parts. In the first part, structural and functional asymmetry of language relevant structures will be discus. The second part of the review will discuss recent neuroimaging studies, which coherently demonstrate that speech comprehension processes rely on a hierarchical network involving the temporal, parietal, and frontal lobes. Further, the results support the dual-stream model for speech comprehension, with a dorsal stream for auditory-motor integration, and a ventral stream for extracting meaning but also the processing of sentences and narratives. Specific patterns of functional asymmetry between the left and right hemisphere can also be demonstrated. The review article concludes with a discussion on interactions between the dorsal and ventral streams, particularly the involvement of motor related areas in speech perception processes, and outlines some remaining unresolved issues. This article is part of a Special Issue entitled Human Auditory Neuroimaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Spectral-temporal EEG dynamics of speech discrimination processing in infants during sleep.

    PubMed

    Gilley, Phillip M; Uhler, Kristin; Watson, Kaylee; Yoshinaga-Itano, Christine

    2017-03-22

    Oddball paradigms are frequently used to study auditory discrimination by comparing event-related potential (ERP) responses from a standard, high probability sound and to a deviant, low probability sound. Previous research has established that such paradigms, such as the mismatch response or mismatch negativity, are useful for examining auditory processes in young children and infants across various sleep and attention states. The extent to which oddball ERP responses may reflect subtle discrimination effects, such as speech discrimination, is largely unknown, especially in infants that have not yet acquired speech and language. Mismatch responses for three contrasts (non-speech, vowel, and consonant) were computed as a spectral-temporal probability function in 24 infants, and analyzed at the group level by a modified multidimensional scaling. Immediately following an onset gamma response (30-50 Hz), the emergence of a beta oscillation (12-30 Hz) was temporally coupled with a lower frequency theta oscillation (2-8 Hz). The spectral-temporal probability of this coupling effect relative to a subsequent theta modulation corresponds with discrimination difficulty for non-speech, vowel, and consonant contrast features. The theta modulation effect suggests that unexpected sounds are encoded as a probabilistic measure of surprise. These results support the notion that auditory discrimination is driven by the development of brain networks for predictive processing, and can be measured in infants during sleep. The results presented here have implications for the interpretation of discrimination as a probabilistic process, and may provide a basis for the development of single-subject and single-trial classification in a clinically useful context. An infant's brain is processing information about the environment and performing computations, even during sleep. These computations reflect subtle differences in acoustic feature processing that are necessary for language-learning. Results from this study suggest that brain responses to deviant sounds in an oddball paradigm follow a cascade of oscillatory modulations. This cascade begins with a gamma response that later emerges as a beta synchronization, which is temporally coupled with a theta modulation, and followed by a second, subsequent theta modulation. The difference in frequency and timing of the theta modulations appears to reflect a measure of surprise. These insights into the neurophysiological mechanisms of auditory discrimination provide a basis for exploring the clinically utility of the MMR TF and other auditory oddball responses.

  8. Neural circuits in auditory and audiovisual memory.

    PubMed

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Inter-subject synchronization of brain responses during natural music listening.

    PubMed

    Abrams, Daniel A; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J; Menon, Vinod

    2013-05-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic 'real-world' music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Temporal precision and the capacity of auditory-verbal short-term memory.

    PubMed

    Gilbert, Rebecca A; Hitch, Graham J; Hartley, Tom

    2017-12-01

    The capacity of serially ordered auditory-verbal short-term memory (AVSTM) is sensitive to the timing of the material to be stored, and both temporal processing and AVSTM capacity are implicated in the development of language. We developed a novel "rehearsal-probe" task to investigate the relationship between temporal precision and the capacity to remember serial order. Participants listened to a sub-span sequence of spoken digits and silently rehearsed the items and their timing during an unfilled retention interval. After an unpredictable delay, a tone prompted report of the item being rehearsed at that moment. An initial experiment showed cyclic distributions of item responses over time, with peaks preserving serial order and broad, overlapping tails. The spread of the response distributions increased with additional memory load and correlated negatively with participants' auditory digit spans. A second study replicated the negative correlation and demonstrated its specificity to AVSTM by controlling for differences in visuo-spatial STM and nonverbal IQ. The results are consistent with the idea that a common resource underpins both the temporal precision and capacity of AVSTM. The rehearsal-probe task may provide a valuable tool for investigating links between temporal processing and AVSTM capacity in the context of speech and language abilities.

  11. Slow Cholinergic Modulation of Spike Probability in Ultra-Fast Time-Coding Sensory Neurons

    PubMed Central

    Goyer, David; Kurth, Stefanie; Rübsamen, Rudolf

    2016-01-01

    Abstract Sensory processing in the lower auditory pathway is generally considered to be rigid and thus less subject to modulation than central processing. However, in addition to the powerful bottom-up excitation by auditory nerve fibers, the ventral cochlear nucleus also receives efferent cholinergic innervation from both auditory and nonauditory top–down sources. We thus tested the influence of cholinergic modulation on highly precise time-coding neurons in the cochlear nucleus of the Mongolian gerbil. By combining electrophysiological recordings with pharmacological application in vitro and in vivo, we found 55–72% of spherical bushy cells (SBCs) to be depolarized by carbachol on two time scales, ranging from hundreds of milliseconds to minutes. These effects were mediated by nicotinic and muscarinic acetylcholine receptors, respectively. Pharmacological block of muscarinic receptors hyperpolarized the resting membrane potential, suggesting a novel mechanism of setting the resting membrane potential for SBC. The cholinergic depolarization led to an increase of spike probability in SBCs without compromising the temporal precision of the SBC output in vitro. In vivo, iontophoretic application of carbachol resulted in an increase in spontaneous SBC activity. The inclusion of cholinergic modulation in an SBC model predicted an expansion of the dynamic range of sound responses and increased temporal acuity. Our results thus suggest of a top–down modulatory system mediated by acetylcholine which influences temporally precise information processing in the lower auditory pathway. PMID:27699207

  12. Neural correlates of auditory scene analysis and perception

    PubMed Central

    Cohen, Yale E.

    2014-01-01

    The auditory system is designed to transform acoustic information from low-level sensory representations into perceptual representations. These perceptual representations are the computational result of the auditory system's ability to group and segregate spectral, spatial and temporal regularities in the acoustic environment into stable perceptual units (i.e., sounds or auditory objects). Current evidence suggests that the cortex--specifically, the ventral auditory pathway--is responsible for the computations most closely related to perceptual representations. Here, we discuss how the transformations along the ventral auditory pathway relate to auditory percepts, with special attention paid to the processing of vocalizations and categorization, and explore recent models of how these areas may carry out these computations. PMID:24681354

  13. Sequencing the Cortical Processing of Pitch-Evoking Stimuli using EEG Analysis and Source Estimation

    PubMed Central

    Butler, Blake E.; Trainor, Laurel J.

    2012-01-01

    Cues to pitch include spectral cues that arise from tonotopic organization and temporal cues that arise from firing patterns of auditory neurons. fMRI studies suggest a common pitch center is located just beyond primary auditory cortex along the lateral aspect of Heschl’s gyrus, but little work has examined the stages of processing for the integration of pitch cues. Using electroencephalography, we recorded cortical responses to high-pass filtered iterated rippled noise (IRN) and high-pass filtered complex harmonic stimuli, which differ in temporal and spectral content. The two stimulus types were matched for pitch saliency, and a mismatch negativity (MMN) response was elicited by infrequent pitch changes. The P1 and N1 components of event-related potentials (ERPs) are thought to arise from primary and secondary auditory areas, respectively, and to result from simple feature extraction. MMN is generated in secondary auditory cortex and is thought to act on feature-integrated auditory objects. We found that peak latencies of both P1 and N1 occur later in response to IRN stimuli than to complex harmonic stimuli, but found no latency differences between stimulus types for MMN. The location of each ERP component was estimated based on iterative fitting of regional sources in the auditory cortices. The sources of both the P1 and N1 components elicited by IRN stimuli were located dorsal to those elicited by complex harmonic stimuli, whereas no differences were observed for MMN sources across stimuli. Furthermore, the MMN component was located between the P1 and N1 components, consistent with fMRI studies indicating a common pitch region in lateral Heschl’s gyrus. These results suggest that while the spectral and temporal processing of different pitch-evoking stimuli involves different cortical areas during early processing, by the time the object-related MMN response is formed, these cues have been integrated into a common representation of pitch. PMID:22740836

  14. The role of spatiotemporal and spectral cues in segregating short sound events: evidence from auditory Ternus display.

    PubMed

    Wang, Qingcui; Bao, Ming; Chen, Lihan

    2014-01-01

    Previous studies using auditory sequences with rapid repetition of tones revealed that spatiotemporal cues and spectral cues are important cues used to fuse or segregate sound streams. However, the perceptual grouping was partially driven by the cognitive processing of the periodicity cues of the long sequence. Here, we investigate whether perceptual groupings (spatiotemporal grouping vs. frequency grouping) could also be applicable to short auditory sequences, where auditory perceptual organization is mainly subserved by lower levels of perceptual processing. To find the answer to that question, we conducted two experiments using an auditory Ternus display. The display was composed of three speakers (A, B and C), with each speaker consecutively emitting one sound consisting of two frames (AB and BC). Experiment 1 manipulated both spatial and temporal factors. We implemented three 'within-frame intervals' (WFIs, or intervals between A and B, and between B and C), seven 'inter-frame intervals' (IFIs, or intervals between AB and BC) and two different speaker layouts (inter-distance of speakers: near or far). Experiment 2 manipulated the differentiations of frequencies between two auditory frames, in addition to the spatiotemporal cues as in Experiment 1. Listeners were required to make two alternative forced choices (2AFC) to report the perception of a given Ternus display: element motion (auditory apparent motion from sound A to B to C) or group motion (auditory apparent motion from sound 'AB' to 'BC'). The results indicate that the perceptual grouping of short auditory sequences (materialized by the perceptual decisions of the auditory Ternus display) was modulated by temporal and spectral cues, with the latter contributing more to segregating auditory events. Spatial layout plays a less role in perceptual organization. These results could be accounted for by the 'peripheral channeling' theory.

  15. Temporal Lobe Epilepsy Alters Auditory-motor Integration For Voice Control

    PubMed Central

    Li, Weifeng; Chen, Ziyi; Yan, Nan; Jones, Jeffery A.; Guo, Zhiqiang; Huang, Xiyan; Chen, Shaozhen; Liu, Peng; Liu, Hanjun

    2016-01-01

    Temporal lobe epilepsy (TLE) is the most common drug-refractory focal epilepsy in adults. Previous research has shown that patients with TLE exhibit decreased performance in listening to speech sounds and deficits in the cortical processing of auditory information. Whether TLE compromises auditory-motor integration for voice control, however, remains largely unknown. To address this question, event-related potentials (ERPs) and vocal responses to vocal pitch errors (1/2 or 2 semitones upward) heard in auditory feedback were compared across 28 patients with TLE and 28 healthy controls. Patients with TLE produced significantly larger vocal responses but smaller P2 responses than healthy controls. Moreover, patients with TLE exhibited a positive correlation between vocal response magnitude and baseline voice variability and a negative correlation between P2 amplitude and disease duration. Graphical network analyses revealed a disrupted neuronal network for patients with TLE with a significant increase of clustering coefficients and path lengths as compared to healthy controls. These findings provide strong evidence that TLE is associated with an atypical integration of the auditory and motor systems for vocal pitch regulation, and that the functional networks that support the auditory-motor processing of pitch feedback errors differ between patients with TLE and healthy controls. PMID:27356768

  16. Perception of non-verbal auditory stimuli in Italian dyslexic children.

    PubMed

    Cantiani, Chiara; Lorusso, Maria Luisa; Valnegri, Camilla; Molteni, Massimo

    2010-01-01

    Auditory temporal processing deficits have been proposed as the underlying cause of phonological difficulties in Developmental Dyslexia. The hypothesis was tested in a sample of 20 Italian dyslexic children aged 8-14, and 20 matched control children. Three tasks of auditory processing of non-verbal stimuli, involving discrimination and reproduction of sequences of rapidly presented short sounds were expressly created. Dyslexic subjects performed more poorly than control children, suggesting the presence of a deficit only partially influenced by the duration of the stimuli and of inter-stimulus intervals (ISIs).

  17. Modulation of isochronous movements in a flexible environment: links between motion and auditory experience.

    PubMed

    Bravi, Riccardo; Del Tongo, Claudia; Cohen, Erez James; Dalle Mura, Gabriele; Tognetti, Alessandro; Minciacchi, Diego

    2014-06-01

    The ability to perform isochronous movements while listening to a rhythmic auditory stimulus requires a flexible process that integrates timing information with movement. Here, we explored how non-temporal and temporal characteristics of an auditory stimulus (presence, interval occupancy, and tempo) affect motor performance. These characteristics were chosen on the basis of their ability to modulate the precision and accuracy of synchronized movements. Subjects have participated in sessions in which they performed sets of repeated isochronous wrist's flexion-extensions under various conditions. The conditions were chosen on the basis of the defined characteristics. Kinematic parameters were evaluated during each session, and temporal parameters were analyzed. In order to study the effects of the auditory stimulus, we have minimized all other sensory information that could interfere with its perception or affect the performance of repeated isochronous movements. The present study shows that the distinct characteristics of an auditory stimulus significantly influence isochronous movements by altering their duration. Results provide evidence for an adaptable control of timing in the audio-motor coupling for isochronous movements. This flexibility would make plausible the use of different encoding strategies to adapt audio-motor coupling for specific tasks.

  18. A common perceptual temporal limit of binding synchronous inputs across different sensory attributes and modalities.

    PubMed

    Fujisaki, Waka; Nishida, Shin'ya

    2010-08-07

    The human brain processes different aspects of the surrounding environment through multiple sensory modalities, and each modality can be subdivided into multiple attribute-specific channels. When the brain rebinds sensory content information ('what') across different channels, temporal coincidence ('when') along with spatial coincidence ('where') provides a critical clue. It however remains unknown whether neural mechanisms for binding synchronous attributes are specific to each attribute combination, or universal and central. In human psychophysical experiments, we examined how combinations of visual, auditory and tactile attributes affect the temporal frequency limit of synchrony-based binding. The results indicated that the upper limits of cross-attribute binding were lower than those of within-attribute binding, and surprisingly similar for any combination of visual, auditory and tactile attributes (2-3 Hz). They are unlikely to be the limits for judging synchrony, since the temporal limit of a cross-attribute synchrony judgement was higher and varied with the modality combination (4-9 Hz). These findings suggest that cross-attribute temporal binding is mediated by a slow central process that combines separately processed 'what' and 'when' properties of a single event. While the synchrony performance reflects temporal bottlenecks existing in 'when' processing, the binding performance reflects the central temporal limit of integrating 'when' and 'what' properties.

  19. Being First Matters: Topographical Representational Similarity Analysis of ERP Signals Reveals Separate Networks for Audiovisual Temporal Binding Depending on the Leading Sense

    PubMed Central

    2017-01-01

    In multisensory integration, processing in one sensory modality is enhanced by complementary information from other modalities. Intersensory timing is crucial in this process because only inputs reaching the brain within a restricted temporal window are perceptually bound. Previous research in the audiovisual field has investigated various features of the temporal binding window, revealing asymmetries in its size and plasticity depending on the leading input: auditory–visual (AV) or visual–auditory (VA). Here, we tested whether separate neuronal mechanisms underlie this AV–VA dichotomy in humans. We recorded high-density EEG while participants performed an audiovisual simultaneity judgment task including various AV–VA asynchronies and unisensory control conditions (visual-only, auditory-only) and tested whether AV and VA processing generate different patterns of brain activity. After isolating the multisensory components of AV–VA event-related potentials (ERPs) from the sum of their unisensory constituents, we ran a time-resolved topographical representational similarity analysis (tRSA) comparing the AV and VA ERP maps. Spatial cross-correlation matrices were built from real data to index the similarity between the AV and VA maps at each time point (500 ms window after stimulus) and then correlated with two alternative similarity model matrices: AVmaps = VAmaps versus AVmaps ≠ VAmaps. The tRSA results favored the AVmaps ≠ VAmaps model across all time points, suggesting that audiovisual temporal binding (indexed by synchrony perception) engages different neural pathways depending on the leading sense. The existence of such dual route supports recent theoretical accounts proposing that multiple binding mechanisms are implemented in the brain to accommodate different information parsing strategies in auditory and visual sensory systems. SIGNIFICANCE STATEMENT Intersensory timing is a crucial aspect of multisensory integration, determining whether and how inputs in one modality enhance stimulus processing in another modality. Our research demonstrates that evaluating synchrony of auditory-leading (AV) versus visual-leading (VA) audiovisual stimulus pairs is characterized by two distinct patterns of brain activity. This suggests that audiovisual integration is not a unitary process and that different binding mechanisms are recruited in the brain based on the leading sense. These mechanisms may be relevant for supporting different classes of multisensory operations, for example, auditory enhancement of visual attention (AV) and visual enhancement of auditory speech (VA). PMID:28450537

  20. Pure word deafness following left temporal damage: Behavioral and neuroanatomical evidence from a new case.

    PubMed

    Maffei, Chiara; Capasso, Rita; Cazzolli, Giulia; Colosimo, Cesare; Dell'Acqua, Flavio; Piludu, Francesca; Catani, Marco; Miceli, Gabriele

    2017-12-01

    Pure Word Deafness (PWD) is a rare disorder, characterized by selective loss of speech input processing. Its most common cause is temporal damage to the primary auditory cortex of both hemispheres, but it has been reported also following unilateral lesions. In unilateral cases, PWD has been attributed to the disconnection of Wernicke's area from both right and left primary auditory cortex. Here we report behavioral and neuroimaging evidence from a new case of left unilateral PWD with both cortical and white matter damage due to a relatively small stroke lesion in the left temporal gyrus. Selective impairment in auditory language processing was accompanied by intact processing of nonspeech sounds and normal speech, reading and writing. Performance on dichotic listening was characterized by a reversal of the right-ear advantage typically observed in healthy subjects. Cortical thickness and gyral volume were severely reduced in the left superior temporal gyrus (STG), although abnormalities were not uniformly distributed and residual intact cortical areas were detected, for example in the medial portion of the Heschl's gyrus. Diffusion tractography documented partial damage to the acoustic radiations (AR), callosal temporal connections and intralobar tracts dedicated to single words comprehension. Behavioral and neuroimaging results in this case are difficult to integrate in a pure cortical or disconnection framework, as damage to primary auditory cortex in the left STG was only partial and Wernicke's area was not completely isolated from left or right-hemisphere input. On the basis of our findings we suggest that in this case of PWD, concurrent partial topological (cortical) and disconnection mechanisms have contributed to a selective impairment of speech sounds. The discrepancy between speech and non-speech sounds suggests selective damage to a language-specific left lateralized network involved in phoneme processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Temporal tuning in the bat auditory cortex is sharper when studied with natural echolocation sequences.

    PubMed

    Beetz, M Jerome; Hechavarría, Julio C; Kössl, Manfred

    2016-06-30

    Precise temporal coding is necessary for proper acoustic analysis. However, at cortical level, forward suppression appears to limit the ability of neurons to extract temporal information from natural sound sequences. Here we studied how temporal processing can be maintained in the bats' cortex in the presence of suppression evoked by natural echolocation streams that are relevant to the bats' behavior. We show that cortical neurons tuned to target-distance actually profit from forward suppression induced by natural echolocation sequences. These neurons can more precisely extract target distance information when they are stimulated with natural echolocation sequences than during stimulation with isolated call-echo pairs. We conclude that forward suppression does for time domain tuning what lateral inhibition does for selectivity forms such as auditory frequency tuning and visual orientation tuning. When talking about cortical processing, suppression should be seen as a mechanistic tool rather than a limiting element.

  2. Sex differences in the representation of call stimuli in a songbird secondary auditory area

    PubMed Central

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females. PMID:26578918

  3. Sex differences in the representation of call stimuli in a songbird secondary auditory area.

    PubMed

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females.

  4. It's about time: Presentation in honor of Ira Hirsh

    NASA Astrophysics Data System (ADS)

    Grant, Ken

    2002-05-01

    Over his long and illustrious career, Ira Hirsh has returned time and time again to his interest in the temporal aspects of pattern perception. Although Hirsh has studied and published articles and books pertaining to many aspects of the auditory system, such as sound conduction in the ear, cochlear mechanics, masking, auditory localization, psychoacoustic behavior in animals, speech perception, medical and audiological applications, coupling between psychophysics and physiology, and ecological acoustics, it is his work on auditory timing of simple and complex rhythmic patterns, the backbone of speech and music, that are at the heart of his more recent work. Here, we will focus on several aspects of temporal processing of simple and complex signals, both within and across sensory systems. Data will be reviewed on temporal order judgments of simple tones, and simultaneity judgments and intelligibility of unimodal and bimodal complex stimuli where stimulus components are presented either synchronously or asynchronously. Differences in the symmetry and shape of ``temporal windows'' derived from these data sets will be highlighted.

  5. Auditory psychophysics and perception.

    PubMed

    Hirsh, I J; Watson, C S

    1996-01-01

    In this review of auditory psychophysics and perception, we cite some important books, research monographs, and research summaries from the past decade. Within auditory psychophysics, we have singled out some topics of current importance: Cross-Spectral Processing, Timbre and Pitch, and Methodological Developments. Complex sounds and complex listening tasks have been the subject of new studies in auditory perception. We review especially work that concerns auditory pattern perception, with emphasis on temporal aspects of the patterns and on patterns that do not depend on the cognitive structures often involved in the perception of speech and music. Finally, we comment on some aspects of individual difference that are sufficiently important to question the goal of characterizing auditory properties of the typical, average, adult listener. Among the important factors that give rise to these individual differences are those involved in selective processing and attention.

  6. Behavioural and neuroanatomical correlates of auditory speech analysis in primary progressive aphasias.

    PubMed

    Hardy, Chris J D; Agustus, Jennifer L; Marshall, Charles R; Clark, Camilla N; Russell, Lucy L; Bond, Rebecca L; Brotherhood, Emilie V; Thomas, David L; Crutch, Sebastian J; Rohrer, Jonathan D; Warren, Jason D

    2017-07-27

    Non-verbal auditory impairment is increasingly recognised in the primary progressive aphasias (PPAs) but its relationship to speech processing and brain substrates has not been defined. Here we addressed these issues in patients representing the non-fluent variant (nfvPPA) and semantic variant (svPPA) syndromes of PPA. We studied 19 patients with PPA in relation to 19 healthy older individuals. We manipulated three key auditory parameters-temporal regularity, phonemic spectral structure and prosodic predictability (an index of fundamental information content, or entropy)-in sequences of spoken syllables. The ability of participants to process these parameters was assessed using two-alternative, forced-choice tasks and neuroanatomical associations of task performance were assessed using voxel-based morphometry of patients' brain magnetic resonance images. Relative to healthy controls, both the nfvPPA and svPPA groups had impaired processing of phonemic spectral structure and signal predictability while the nfvPPA group additionally had impaired processing of temporal regularity in speech signals. Task performance correlated with standard disease severity and neurolinguistic measures. Across the patient cohort, performance on the temporal regularity task was associated with grey matter in the left supplementary motor area and right caudate, performance on the phoneme processing task was associated with grey matter in the left supramarginal gyrus, and performance on the prosodic predictability task was associated with grey matter in the right putamen. Our findings suggest that PPA syndromes may be underpinned by more generic deficits of auditory signal analysis, with a distributed cortico-subcortical neuraoanatomical substrate extending beyond the canonical language network. This has implications for syndrome classification and biomarker development.

  7. Relation between brain activation and lexical performance.

    PubMed

    Booth, James R; Burman, Douglas D; Meyer, Joel R; Gitelman, Darren R; Parrish, Todd B; Mesulam, M Marsel

    2003-07-01

    Functional magnetic resonance imaging (fMRI) was used to determine whether performance on lexical tasks was correlated with cerebral activation patterns. We found that such relationships did exist and that their anatomical distribution reflected the neurocognitive processing routes required by the task. Better performance on intramodal tasks (determining if visual words were spelled the same or if auditory words rhymed) was correlated with more activation in unimodal regions corresponding to the modality of sensory input, namely the fusiform gyrus (BA 37) for written words and the superior temporal gyrus (BA 22) for spoken words. Better performance in tasks requiring cross-modal conversions (determining if auditory words were spelled the same or if visual words rhymed), on the other hand, was correlated with more activation in posterior heteromodal regions, including the supramarginal gyrus (BA 40) and the angular gyrus (BA 39). Better performance in these cross-modal tasks was also correlated with greater activation in unimodal regions corresponding to the target modality of the conversion process (i.e., fusiform gyrus for auditory spelling and superior temporal gyrus for visual rhyming). In contrast, performance on the auditory spelling task was inversely correlated with activation in the superior temporal gyrus possibly reflecting a greater emphasis on the properties of the perceptual input rather than on the relevant transmodal conversions. Copyright 2003 Wiley-Liss, Inc.

  8. Functional neuroanatomy of auditory scene analysis in Alzheimer's disease

    PubMed Central

    Golden, Hannah L.; Agustus, Jennifer L.; Goll, Johanna C.; Downey, Laura E.; Mummery, Catherine J.; Schott, Jonathan M.; Crutch, Sebastian J.; Warren, Jason D.

    2015-01-01

    Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known ‘cocktail party effect’ as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory ‘foreground’ and ‘background’. Patients with typical amnestic Alzheimer's disease (n = 13) and age-matched healthy individuals (n = 17) underwent functional 3T-MRI using a sparse acquisition protocol with passive listening to auditory stimulus conditions comprising the participant's own name interleaved with or superimposed on multi-talker babble, and spectrally rotated (unrecognisable) analogues of these conditions. Name identification (conditions containing the participant's own name contrasted with spectrally rotated analogues) produced extensive bilateral activation involving superior temporal cortex in both the AD and healthy control groups, with no significant differences between groups. Auditory object segregation (conditions with interleaved name sounds contrasted with superimposed name sounds) produced activation of right posterior superior temporal cortex in both groups, again with no differences between groups. However, the cocktail party effect (interaction of own name identification with auditory object segregation processing) produced activation of right supramarginal gyrus in the AD group that was significantly enhanced compared with the healthy control group. The findings delineate an altered functional neuroanatomical profile of auditory scene analysis in Alzheimer's disease that may constitute a novel computational signature of this neurodegenerative pathology. PMID:26029629

  9. Prediction and constraint in audiovisual speech perception

    PubMed Central

    Peelle, Jonathan E.; Sommers, Mitchell S.

    2015-01-01

    During face-to-face conversational speech listeners must efficiently process a rapid and complex stream of multisensory information. Visual speech can serve as a critical complement to auditory information because it provides cues to both the timing of the incoming acoustic signal (the amplitude envelope, influencing attention and perceptual sensitivity) and its content (place and manner of articulation, constraining lexical selection). Here we review behavioral and neurophysiological evidence regarding listeners' use of visual speech information. Multisensory integration of audiovisual speech cues improves recognition accuracy, particularly for speech in noise. Even when speech is intelligible based solely on auditory information, adding visual information may reduce the cognitive demands placed on listeners through increasing precision of prediction. Electrophysiological studies demonstrate oscillatory cortical entrainment to speech in auditory cortex is enhanced when visual speech is present, increasing sensitivity to important acoustic cues. Neuroimaging studies also suggest increased activity in auditory cortex when congruent visual information is available, but additionally emphasize the involvement of heteromodal regions of posterior superior temporal sulcus as playing a role in integrative processing. We interpret these findings in a framework of temporally-focused lexical competition in which visual speech information affects auditory processing to increase sensitivity to auditory information through an early integration mechanism, and a late integration stage that incorporates specific information about a speaker's articulators to constrain the number of possible candidates in a spoken utterance. Ultimately it is words compatible with both auditory and visual information that most strongly determine successful speech perception during everyday listening. Thus, audiovisual speech perception is accomplished through multiple stages of integration, supported by distinct neuroanatomical mechanisms. PMID:25890390

  10. Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion.

    PubMed

    Saint-Amour, Dave; De Sanctis, Pierfilippo; Molholm, Sophie; Ritter, Walter; Foxe, John J

    2007-02-01

    Seeing a speaker's facial articulatory gestures powerfully affects speech perception, helping us overcome noisy acoustical environments. One particularly dramatic illustration of visual influences on speech perception is the "McGurk illusion", where dubbing an auditory phoneme onto video of an incongruent articulatory movement can often lead to illusory auditory percepts. This illusion is so strong that even in the absence of any real change in auditory stimulation, it activates the automatic auditory change-detection system, as indexed by the mismatch negativity (MMN) component of the auditory event-related potential (ERP). We investigated the putative left hemispheric dominance of McGurk-MMN using high-density ERPs in an oddball paradigm. Topographic mapping of the initial McGurk-MMN response showed a highly lateralized left hemisphere distribution, beginning at 175 ms. Subsequently, scalp activity was also observed over bilateral fronto-central scalp with a maximal amplitude at approximately 290 ms, suggesting later recruitment of right temporal cortices. Strong left hemisphere dominance was again observed during the last phase of the McGurk-MMN waveform (350-400 ms). Source analysis indicated bilateral sources in the temporal lobe just posterior to primary auditory cortex. While a single source in the right superior temporal gyrus (STG) accounted for the right hemisphere activity, two separate sources were required, one in the left transverse gyrus and the other in STG, to account for left hemisphere activity. These findings support the notion that visually driven multisensory illusory phonetic percepts produce an auditory-MMN cortical response and that left hemisphere temporal cortex plays a crucial role in this process.

  11. Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion

    PubMed Central

    Saint-Amour, Dave; De Sanctis, Pierfilippo; Molholm, Sophie; Ritter, Walter; Foxe, John J.

    2006-01-01

    Seeing a speaker’s facial articulatory gestures powerfully affects speech perception, helping us overcome noisy acoustical environments. One particularly dramatic illustration of visual influences on speech perception is the “McGurk illusion”, where dubbing an auditory phoneme onto video of an incongruent articulatory movement can often lead to illusory auditory percepts. This illusion is so strong that even in the absence of any real change in auditory stimulation, it activates the automatic auditory change-detection system, as indexed by the mismatch negativity (MMN) component of the auditory event-related potential (ERP). We investigated the putative left hemispheric dominance of McGurk-MMN using high-density ERPs in an oddball paradigm. Topographic mapping of the initial McGurk-MMN response showed a highly lateralized left hemisphere distribution, beginning at 175 ms. Subsequently, scalp activity was also observed over bilateral fronto-central scalp with a maximal amplitude at ~290 ms, suggesting later recruitment of right temporal cortices. Strong left hemisphere dominance was again observed during the last phase of the McGurk-MMN waveform (350–400 ms). Source analysis indicated bilateral sources in the temporal lobe just posterior to primary auditory cortex. While a single source in the right superior temporal gyrus (STG) accounted for the right hemisphere activity, two separate sources were required, one in the left transverse gyrus and the other in STG, to account for left hemisphere activity. These findings support the notion that visually driven multisensory illusory phonetic percepts produce an auditory-MMN cortical response and that left hemisphere temporal cortex plays a crucial role in this process. PMID:16757004

  12. Activations in temporal areas using visual and auditory naming stimuli: A language fMRI study in temporal lobe epilepsy.

    PubMed

    Gonzálvez, Gloria G; Trimmel, Karin; Haag, Anja; van Graan, Louis A; Koepp, Matthias J; Thompson, Pamela J; Duncan, John S

    2016-12-01

    Verbal fluency functional MRI (fMRI) is used for predicting language deficits after anterior temporal lobe resection (ATLR) for temporal lobe epilepsy (TLE), but primarily engages frontal lobe areas. In this observational study we investigated fMRI paradigms using visual and auditory stimuli, which predominately involve language areas resected during ATLR. Twenty-three controls and 33 patients (20 left (LTLE), 13 right (RTLE)) were assessed using three fMRI paradigms: verbal fluency, auditory naming with a contrast of auditory reversed speech; picture naming with a contrast of scrambled pictures and blurred faces. Group analysis showed bilateral temporal activations for auditory naming and picture naming. Correcting for auditory and visual input (by subtracting activations resulting from auditory reversed speech and blurred pictures/scrambled faces respectively) resulted in left-lateralised activations for patients and controls, which was more pronounced for LTLE compared to RTLE patients. Individual subject activations at a threshold of T>2.5, extent >10 voxels, showed that verbal fluency activated predominantly the left inferior frontal gyrus (IFG) in 90% of LTLE, 92% of RTLE, and 65% of controls, compared to right IFG activations in only 15% of LTLE and RTLE and 26% of controls. Middle temporal (MTG) or superior temporal gyrus (STG) activations were seen on the left in 30% of LTLE, 23% of RTLE, and 52% of controls, and on the right in 15% of LTLE, 15% of RTLE, and 35% of controls. Auditory naming activated temporal areas more frequently than did verbal fluency (LTLE: 93%/73%; RTLE: 92%/58%; controls: 82%/70% (left/right)). Controlling for auditory input resulted in predominantly left-sided temporal activations. Picture naming resulted in temporal lobe activations less frequently than did auditory naming (LTLE 65%/55%; RTLE 53%/46%; controls 52%/35% (left/right)). Controlling for visual input had left-lateralising effects. Auditory and picture naming activated temporal lobe structures, which are resected during ATLR, more frequently than did verbal fluency. Controlling for auditory and visual input resulted in more left-lateralised activations. We hypothesise that these paradigms may be more predictive of postoperative language decline than verbal fluency fMRI. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Predictive motor control of sensory dynamics in Auditory Active Sensing

    PubMed Central

    Morillon, Benjamin; Hackett, Troy A.; Kajikawa, Yoshinao; Schroeder, Charles E.

    2016-01-01

    Neuronal oscillations present potential physiological substrates for brain operations that require temporal prediction. We review this idea in the context of auditory perception. Using speech as an exemplar, we illustrate how hierarchically organized oscillations can be used to parse and encode complex input streams. We then consider the motor system as a major source of rhythms (temporal priors) in auditory processing, that act in concert with attention to sharpen sensory representations and link them across areas. We discuss the anatomo-functional pathways that could mediate this audio-motor interaction, and notably the potential role of the somatosensory cortex. Finally, we reposition temporal predictions in the context of internal models, discussing how they interact with feature-based or spatial predictions. We argue that complementary predictions interact synergistically according to the organizational principles of each sensory system, forming multidimensional filters crucial to perception. PMID:25594376

  14. Mismatch Negativity in Recent-Onset and Chronic Schizophrenia: A Current Source Density Analysis

    PubMed Central

    Fulham, W. Ross; Michie, Patricia T.; Ward, Philip B.; Rasser, Paul E.; Todd, Juanita; Johnston, Patrick J.; Thompson, Paul M.; Schall, Ulrich

    2014-01-01

    Mismatch negativity (MMN) is a component of the event-related potential elicited by deviant auditory stimuli. It is presumed to index pre-attentive monitoring of changes in the auditory environment. MMN amplitude is smaller in groups of individuals with schizophrenia compared to healthy controls. We compared duration-deviant MMN in 16 recent-onset and 19 chronic schizophrenia patients versus age- and sex-matched controls. Reduced frontal MMN was found in both patient groups, involved reduced hemispheric asymmetry, and was correlated with Global Assessment of Functioning (GAF) and negative symptom ratings. A cortically-constrained LORETA analysis, incorporating anatomical data from each individual's MRI, was performed to generate a current source density model of the MMN response over time. This model suggested MMN generation within a temporal, parietal and frontal network, which was right hemisphere dominant only in controls. An exploratory analysis revealed reduced CSD in patients in superior and middle temporal cortex, inferior and superior parietal cortex, precuneus, anterior cingulate, and superior and middle frontal cortex. A region of interest (ROI) analysis was performed. For the early phase of the MMN, patients had reduced bilateral temporal and parietal response and no lateralisation in frontal ROIs. For late MMN, patients had reduced bilateral parietal response and no lateralisation in temporal ROIs. In patients, correlations revealed a link between GAF and the MMN response in parietal cortex. In controls, the frontal response onset was 17 ms later than the temporal and parietal response. In patients, onset latency of the MMN response was delayed in secondary, but not primary, auditory cortex. However amplitude reductions were observed in both primary and secondary auditory cortex. These latency delays may indicate relatively intact information processing upstream of the primary auditory cortex, but impaired primary auditory cortex or cortico-cortical or thalamo-cortical communication with higher auditory cortices as a core deficit in schizophrenia. PMID:24949859

  15. Adult Plasticity in the Subcortical Auditory Pathway of the Maternal Mouse

    PubMed Central

    Miranda, Jason A.; Shepard, Kathryn N.; McClintock, Shannon K.; Liu, Robert C.

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system – motherhood – is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered. PMID:24992362

  16. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    PubMed

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  17. Neural basis of processing threatening voices in a crowded auditory world

    PubMed Central

    Mothes-Lasch, Martin; Becker, Michael P. I.; Miltner, Wolfgang H. R.

    2016-01-01

    In real world situations, we typically listen to voice prosody against a background crowded with auditory stimuli. Voices and background can both contain behaviorally relevant features and both can be selectively in the focus of attention. Adequate responses to threat-related voices under such conditions require that the brain unmixes reciprocally masked features depending on variable cognitive resources. It is unknown which brain systems instantiate the extraction of behaviorally relevant prosodic features under varying combinations of prosody valence, auditory background complexity and attentional focus. Here, we used event-related functional magnetic resonance imaging to investigate the effects of high background sound complexity and attentional focus on brain activation to angry and neutral prosody in humans. Results show that prosody effects in mid superior temporal cortex were gated by background complexity but not attention, while prosody effects in the amygdala and anterior superior temporal cortex were gated by attention but not background complexity, suggesting distinct emotional prosody processing limitations in different regions. Crucially, if attention was focused on the highly complex background, the differential processing of emotional prosody was prevented in all brain regions, suggesting that in a distracting, complex auditory world even threatening voices may go unnoticed. PMID:26884543

  18. Spectral and Temporal Processing in Rat Posterior Auditory Cortex

    PubMed Central

    Pandya, Pritesh K.; Rathbun, Daniel L.; Moucha, Raluca; Engineer, Navzer D.; Kilgard, Michael P.

    2009-01-01

    The rat auditory cortex is divided anatomically into several areas, but little is known about the functional differences in information processing between these areas. To determine the filter properties of rat posterior auditory field (PAF) neurons, we compared neurophysiological responses to simple tones, frequency modulated (FM) sweeps, and amplitude modulated noise and tones with responses of primary auditory cortex (A1) neurons. PAF neurons have excitatory receptive fields that are on average 65% broader than A1 neurons. The broader receptive fields of PAF neurons result in responses to narrow and broadband inputs that are stronger than A1. In contrast to A1, we found little evidence for an orderly topographic gradient in PAF based on frequency. These neurons exhibit latencies that are twice as long as A1. In response to modulated tones and noise, PAF neurons adapt to repeated stimuli at significantly slower rates. Unlike A1, neurons in PAF rarely exhibit facilitation to rapidly repeated sounds. Neurons in PAF do not exhibit strong selectivity for rate or direction of narrowband one octave FM sweeps. These results indicate that PAF, like nonprimary visual fields, processes sensory information on larger spectral and longer temporal scales than primary cortex. PMID:17615251

  19. Processing of speech temporal and spectral information by users of auditory brainstem implants and cochlear implants.

    PubMed

    Azadpour, Mahan; McKay, Colette M

    2014-01-01

    Auditory brainstem implants (ABI) use the same processing strategy as was developed for cochlear implants (CI). However, the cochlear nucleus (CN), the stimulation site of ABIs, is anatomically and physiologically more complex than the auditory nerve and consists of neurons with differing roles in auditory processing. The aim of this study was to evaluate the hypotheses that ABI users are less able than CI users to access speech spectro-temporal information delivered by the existing strategies and that the sites stimulated by different locations of CI and ABI electrode arrays differ in encoding of temporal patterns in the stimulation. Six CI users and four ABI users of Nucleus implants with ACE processing strategy participated in this study. Closed-set perception of aCa syllables (16 consonants) and bVd words (11 vowels) was evaluated via experimental processing strategies that activated one, two, or four of the electrodes of the array in a CIS manner as well as subjects' clinical strategies. Three single-channel strategies presented the overall temporal envelope variations of the signal on a single-implant electrode located at the high-, medium-, and low-frequency regions of the array. Implantees' ability to discriminate within electrode temporal patterns of stimulation for phoneme perception and their ability to make use of spectral information presented by increased number of active electrodes were assessed in the single- and multiple-channel strategies, respectively. Overall percentages and information transmission of phonetic features were obtained for each experimental program. Phoneme perception performance of three ABI users was within the range of CI users in most of the experimental strategies and improved as the number of active electrodes increased. One ABI user performed close to chance with all the single and multiple electrode strategies. There was no significant difference between apical, basal, and middle CI electrodes in transmitting speech temporal information, except a trend that the voicing feature was the least transmitted by the basal electrode. A similar electrode-location pattern could be observed in most ABI subjects. Although the number of tested ABI subjects was small, their wide range of phoneme perception performance was consistent with previous reports of overall speech perception in ABI patients. The better-performing ABI user participants had access to speech temporal and spectral information that was comparable to that of average CI user. The poor-performing ABI user did not have access to within-channel speech temporal information and did not benefit from an increased number of spectral channels. The within-subject variability between different ABI electrodes was less than the variability across users in transmission of speech temporal information. The difference in the performance of ABI users could be related to the location of their electrode array on the CN, anatomy, and physiology of their CN or the damage to their auditory brainstem due to tumor or surgery.

  20. Change of temporal-order judgment of sounds during long-lasting exposure to large-field visual motion.

    PubMed

    Teramoto, Wataru; Watanabe, Hiroshi; Umemura, Hiroyuki

    2008-01-01

    The perceived temporal order of external successive events does not always follow their physical temporal order. We examined the contribution of self-motion mechanisms in the perception of temporal order in the auditory modality. We measured perceptual biases in the judgment of the temporal order of two short sounds presented successively, while participants experienced visually induced self-motion (yaw-axis circular vection) elicited by viewing long-lasting large-field visual motion. In experiment 1, a pair of white-noise patterns was presented to participants at various stimulus-onset asynchronies through headphones, while they experienced visually induced self-motion. Perceived temporal order of auditory events was modulated by the direction of the visual motion (or self-motion). Specifically, the sound presented to the ear in the direction opposite to the visual motion (ie heading direction) was perceived prior to the sound presented to the ear in the same direction. Experiments 2A and 2B were designed to reduce the contributions of decisional and/or response processes. In experiment 2A, the directional cueing of the background (left or right) and the response dimension (high pitch or low pitch) were not spatially associated. In experiment 2B, participants were additionally asked to report which of the two sounds was perceived 'second'. Almost the same results as in experiment 1 were observed, suggesting that the change in temporal order of auditory events during large-field visual motion reflects a change in perceptual processing. Experiment 3 showed that the biases in the temporal-order judgments of auditory events were caused by concurrent actual self-motion with a rotatory chair. In experiment 4, using a small display, we showed that 'pure' long exposure to visual motion without the sensation of self-motion was not responsible for this phenomenon. These results are consistent with previous studies reporting a change in the perceived temporal order of visual or tactile events depending on the direction of self-motion. Hence, large-field induced (ie optic flow) self-motion can affect the temporal order of successive external events across various modalities.

  1. Structural and functional correlates for language efficiency in auditory word processing.

    PubMed

    Jung, JeYoung; Kim, Sunmi; Cho, Hyesuk; Nam, Kichun

    2017-01-01

    This study aims to provide convergent understanding of the neural basis of auditory word processing efficiency using a multimodal imaging. We investigated the structural and functional correlates of word processing efficiency in healthy individuals. We acquired two structural imaging (T1-weighted imaging and diffusion tensor imaging) and functional magnetic resonance imaging (fMRI) during auditory word processing (phonological and semantic tasks). Our results showed that better phonological performance was predicted by the greater thalamus activity. In contrary, better semantic performance was associated with the less activation in the left posterior middle temporal gyrus (pMTG), supporting the neural efficiency hypothesis that better task performance requires less brain activation. Furthermore, our network analysis revealed the semantic network including the left anterior temporal lobe (ATL), dorsolateral prefrontal cortex (DLPFC) and pMTG was correlated with the semantic efficiency. Especially, this network acted as a neural efficient manner during auditory word processing. Structurally, DLPFC and cingulum contributed to the word processing efficiency. Also, the parietal cortex showed a significate association with the word processing efficiency. Our results demonstrated that two features of word processing efficiency, phonology and semantics, can be supported in different brain regions and, importantly, the way serving it in each region was different according to the feature of word processing. Our findings suggest that word processing efficiency can be achieved by in collaboration of multiple brain regions involved in language and general cognitive function structurally and functionally.

  2. Structural and functional correlates for language efficiency in auditory word processing

    PubMed Central

    Kim, Sunmi; Cho, Hyesuk; Nam, Kichun

    2017-01-01

    This study aims to provide convergent understanding of the neural basis of auditory word processing efficiency using a multimodal imaging. We investigated the structural and functional correlates of word processing efficiency in healthy individuals. We acquired two structural imaging (T1-weighted imaging and diffusion tensor imaging) and functional magnetic resonance imaging (fMRI) during auditory word processing (phonological and semantic tasks). Our results showed that better phonological performance was predicted by the greater thalamus activity. In contrary, better semantic performance was associated with the less activation in the left posterior middle temporal gyrus (pMTG), supporting the neural efficiency hypothesis that better task performance requires less brain activation. Furthermore, our network analysis revealed the semantic network including the left anterior temporal lobe (ATL), dorsolateral prefrontal cortex (DLPFC) and pMTG was correlated with the semantic efficiency. Especially, this network acted as a neural efficient manner during auditory word processing. Structurally, DLPFC and cingulum contributed to the word processing efficiency. Also, the parietal cortex showed a significate association with the word processing efficiency. Our results demonstrated that two features of word processing efficiency, phonology and semantics, can be supported in different brain regions and, importantly, the way serving it in each region was different according to the feature of word processing. Our findings suggest that word processing efficiency can be achieved by in collaboration of multiple brain regions involved in language and general cognitive function structurally and functionally. PMID:28892503

  3. Can Spectro-Temporal Complexity Explain the Autistic Pattern of Performance on Auditory Tasks?

    ERIC Educational Resources Information Center

    Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter

    2006-01-01

    To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material…

  4. The effects of postnatal phthalate exposure on the development of auditory temporal processing in rats.

    PubMed

    Kim, Bong Jik; Kim, Jungyoon; Keoboutdy, Vanhnansy; Kwon, Ho-Jang; Oh, Seung-Ha; Jung, Jae Yun; Park, Il Yong; Paik, Ki Chung

    2017-06-01

    The central auditory pathway is known to continue its development during the postnatal critical periods and is shaped by experience and sensory inputs. Phthalate, a known neurotoxic material, has been reported to be associated with attention deficits in children, impacting many infant neurobehaviors. The objective of this study was to investigate the potential effects of neonatal phthalate exposure on the development of auditory temporal processing. Neonatal Sprague-Dawley rats were randomly assigned into two groups: The phthalate group (n = 6), and the control group (n = 6). Phthalate was given once per day from postnatal day 8 (P8) to P28. Upon completion, at P28, the Auditory Brainstem Response (ABR) and Gap Prepulse Inhibition of Acoustic Startle response (GPIAS) at each gap duration (2, 5, 10, 20, 50 and 80 ms) were measured, and gap detection threshold (GDT) was calculated. These outcomes were compared between the two groups. Hearing thresholds by ABR showed no significant differences at all frequencies between the two groups. Regarding GPIAS, no significant difference was observed, except at a gap duration of 20 ms (p = 0.037). The mean GDT of the phthalate group (44.0 ms) was higher than that of the control group (20.0 ms), but without statistical significance (p = 0.065). Moreover, the phthalate group tended to demonstrate more of a scattered distribution in the GDT group than the in the control group. Neonatal phthalate exposure may disrupt the development of auditory temporal processing in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Testing the dual-pathway model for auditory processing in human cortex.

    PubMed

    Zündorf, Ida C; Lewald, Jörg; Karnath, Hans-Otto

    2016-01-01

    Analogous to the visual system, auditory information has been proposed to be processed in two largely segregated streams: an anteroventral ("what") pathway mainly subserving sound identification and a posterodorsal ("where") stream mainly subserving sound localization. Despite the popularity of this assumption, the degree of separation of spatial and non-spatial auditory information processing in cortex is still under discussion. In the present study, a statistical approach was implemented to investigate potential behavioral dissociations for spatial and non-spatial auditory processing in stroke patients, and voxel-wise lesion analyses were used to uncover their neural correlates. The results generally provided support for anatomically and functionally segregated auditory networks. However, some degree of anatomo-functional overlap between "what" and "where" aspects of processing was found in the superior pars opercularis of right inferior frontal gyrus (Brodmann area 44), suggesting the potential existence of a shared target area of both auditory streams in this region. Moreover, beyond the typically defined posterodorsal stream (i.e., posterior superior temporal gyrus, inferior parietal lobule, and superior frontal sulcus), occipital lesions were found to be associated with sound localization deficits. These results, indicating anatomically and functionally complex cortical networks for spatial and non-spatial auditory processing, are roughly consistent with the dual-pathway model of auditory processing in its original form, but argue for the need to refine and extend this widely accepted hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Neural signatures of lexical tone reading.

    PubMed

    Kwok, Veronica P Y; Wang, Tianfu; Chen, Siping; Yakpo, Kofi; Zhu, Linlin; Fox, Peter T; Tan, Li Hai

    2015-01-01

    Research on how lexical tone is neuroanatomically represented in the human brain is central to our understanding of cortical regions subserving language. Past studies have exclusively focused on tone perception of the spoken language, and little is known as to the lexical tone processing in reading visual words and its associated brain mechanisms. In this study, we performed two experiments to identify neural substrates in Chinese tone reading. First, we used a tone judgment paradigm to investigate tone processing of visually presented Chinese characters. We found that, relative to baseline, tone perception of printed Chinese characters were mediated by strong brain activation in bilateral frontal regions, left inferior parietal lobule, left posterior middle/medial temporal gyrus, left inferior temporal region, bilateral visual systems, and cerebellum. Surprisingly, no activation was found in superior temporal regions, brain sites well known for speech tone processing. In activation likelihood estimation (ALE) meta-analysis to combine results of relevant published studies, we attempted to elucidate whether the left temporal cortex activities identified in Experiment one is consistent with those found in previous studies of auditory lexical tone perception. ALE results showed that only the left superior temporal gyrus and putamen were critical in auditory lexical tone processing. These findings suggest that activation in the superior temporal cortex associated with lexical tone perception is modality-dependent. © 2014 Wiley Periodicals, Inc.

  7. Speech-evoked activation in adult temporal cortex measured using functional near-infrared spectroscopy (fNIRS): Are the measurements reliable?

    PubMed

    Wiggins, Ian M; Anderson, Carly A; Kitterick, Pádraig T; Hartley, Douglas E H

    2016-09-01

    Functional near-infrared spectroscopy (fNIRS) is a silent, non-invasive neuroimaging technique that is potentially well suited to auditory research. However, the reliability of auditory-evoked activation measured using fNIRS is largely unknown. The present study investigated the test-retest reliability of speech-evoked fNIRS responses in normally-hearing adults. Seventeen participants underwent fNIRS imaging in two sessions separated by three months. In a block design, participants were presented with auditory speech, visual speech (silent speechreading), and audiovisual speech conditions. Optode arrays were placed bilaterally over the temporal lobes, targeting auditory brain regions. A range of established metrics was used to quantify the reproducibility of cortical activation patterns, as well as the amplitude and time course of the haemodynamic response within predefined regions of interest. The use of a signal processing algorithm designed to reduce the influence of systemic physiological signals was found to be crucial to achieving reliable detection of significant activation at the group level. For auditory speech (with or without visual cues), reliability was good to excellent at the group level, but highly variable among individuals. Temporal-lobe activation in response to visual speech was less reliable, especially in the right hemisphere. Consistent with previous reports, fNIRS reliability was improved by averaging across a small number of channels overlying a cortical region of interest. Overall, the present results confirm that fNIRS can measure speech-evoked auditory responses in adults that are highly reliable at the group level, and indicate that signal processing to reduce physiological noise may substantially improve the reliability of fNIRS measurements. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Auditory perception of temporal order in centenarians in comparison with young and elderly subjects.

    PubMed

    Kołodziejczyk, Iwona; Szelsg, Elzbieta

    2008-01-01

    Temporal information processing controls many aspects of human mental activity and may be assessed by examining perception of temporal order in the tens of milliseconds time range. Although existing studies suggest an age-related decline in mental abilities, the data on the deterioration of temporal order perception seems inconsistent. Moreover, any evidence on subjects aged over 70 years is lacking. The present experiment aimed to extend the existing data to extremely old people. Temporal order judgment (TOJ) for auditory stimuli was tested across the life span of approx. 80 years, i.e. in young (mean age 22 years) elderly (66 years) and very old (101 years) subjects. Age-related deterioration of performance was observed, with slight changes in elderly subjects and significant deterioration in centenarians which was more distinct in women than in men. The results confirm age-related decrease in temporal resolution which may be explained by slowing of information processing or of a hypothetical internal-timing mechanism. These effects may be influenced by different strategies used in particular age groups.

  9. Spectral context affects temporal processing in awake auditory cortex

    PubMed Central

    Beitel, Ralph E.; Vollmer, Maike; Heiser, Marc A; Schreiner, Christoph E.

    2013-01-01

    Amplitude modulation encoding is critical for human speech perception and complex sound processing in general. The modulation transfer function (MTF) is a staple of auditory psychophysics, and has been shown to predict speech intelligibility performance in a range of adverse listening conditions and hearing impairments, including cochlear implant-supported hearing. Although both tonal and broadband carriers have been employed in psychophysical studies of modulation detection and discrimination, relatively little is known about differences in the cortical representation of such signals. We obtained MTFs in response to sinusoidal amplitude modulation (SAM) for both narrowband tonal carriers and 2-octave bandwidth noise carriers in the auditory core of awake squirrel monkeys. MTFs spanning modulation frequencies from 4 to 512 Hz were obtained using 16 channel linear recording arrays sampling across all cortical laminae. Carrier frequency for tonal SAM and center frequency for noise SAM was set at the estimated best frequency for each penetration. Changes in carrier type affected both rate and temporal MTFs in many neurons. Using spike discrimination techniques, we found that discrimination of modulation frequency was significantly better for tonal SAM than for noise SAM, though the differences were modest at the population level. Moreover, spike trains elicited by tonal and noise SAM could be readily discriminated in most cases. Collectively, our results reveal remarkable sensitivity to the spectral content of modulated signals, and indicate substantial interdependence between temporal and spectral processing in neurons of the core auditory cortex. PMID:23719811

  10. Neural Dynamics of Audiovisual Synchrony and Asynchrony Perception in 6-Month-Old Infants

    PubMed Central

    Kopp, Franziska; Dietrich, Claudia

    2013-01-01

    Young infants are sensitive to multisensory temporal synchrony relations, but the neural dynamics of temporal interactions between vision and audition in infancy are not well understood. We investigated audiovisual synchrony and asynchrony perception in 6-month-old infants using event-related brain potentials (ERP). In a prior behavioral experiment (n = 45), infants were habituated to an audiovisual synchronous stimulus and tested for recovery of interest by presenting an asynchronous test stimulus in which the visual stream was delayed with respect to the auditory stream by 400 ms. Infants who behaviorally discriminated the change in temporal alignment were included in further analyses. In the EEG experiment (final sample: n = 15), synchronous and asynchronous stimuli (visual delay of 400 ms) were presented in random order. Results show latency shifts in the auditory ERP components N1 and P2 as well as the infant ERP component Nc. Latencies in the asynchronous condition were significantly longer than in the synchronous condition. After video onset but preceding the auditory onset, amplitude modulations propagating from posterior to anterior sites and related to the Pb component of infants’ ERP were observed. Results suggest temporal interactions between the two modalities. Specifically, they point to the significance of anticipatory visual motion for auditory processing, and indicate young infants’ predictive capacities for audiovisual temporal synchrony relations. PMID:23346071

  11. Functional mapping of the primate auditory system.

    PubMed

    Poremba, Amy; Saunders, Richard C; Crane, Alison M; Cook, Michelle; Sokoloff, Louis; Mishkin, Mortimer

    2003-01-24

    Cerebral auditory areas were delineated in the awake, passively listening, rhesus monkey by comparing the rates of glucose utilization in an intact hemisphere and in an acoustically isolated contralateral hemisphere of the same animal. The auditory system defined in this way occupied large portions of cerebral tissue, an extent probably second only to that of the visual system. Cortically, the activated areas included the entire superior temporal gyrus and large portions of the parietal, prefrontal, and limbic lobes. Several auditory areas overlapped with previously identified visual areas, suggesting that the auditory system, like the visual system, contains separate pathways for processing stimulus quality, location, and motion.

  12. Early enhanced processing and delayed habituation to deviance sounds in autism spectrum disorder.

    PubMed

    Hudac, Caitlin M; DesChamps, Trent D; Arnett, Anne B; Cairney, Brianna E; Ma, Ruqian; Webb, Sara Jane; Bernier, Raphael A

    2018-06-01

    Children with autism spectrum disorder (ASD) exhibit difficulties processing and encoding sensory information in daily life. Cognitive response to environmental change in control individuals is naturally dynamic, meaning it habituates or reduces over time as one becomes accustomed to the deviance. The origin of atypical response to deviance in ASD may relate to differences in this dynamic habituation. The current study of 133 children and young adults with and without ASD examined classic electrophysiological responses (MMN and P3a), as well as temporal patterns of habituation (i.e., N1 and P3a change over time) in response to a passive auditory oddball task. Individuals with ASD showed an overall heightened sensitivity to change as exhibited by greater P3a amplitude to novel sounds. Moreover, youth with ASD showed dynamic ERP differences, including slower attenuation of the N1 response to infrequent tones and the P3a response to novel sounds. Dynamic ERP responses were related to parent ratings of auditory sensory-seeking behaviors, but not general cognition. As the first large-scale study to characterize temporal dynamics of auditory ERPs in ASD, our results provide compelling evidence that heightened response to auditory deviance in ASD is largely driven by early sensitivity and prolonged processing of auditory deviance. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Speech Evoked Auditory Brainstem Response in Stuttering

    PubMed Central

    Tahaei, Ali Akbar; Ashayeri, Hassan; Pourbakht, Akram; Kamali, Mohammad

    2014-01-01

    Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS) at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency. PMID:25215262

  14. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex.

    PubMed

    Fritz, Jonathan; Elhilali, Mounya; Shamma, Shihab

    2005-08-01

    Listening is an active process in which attentive focus on salient acoustic features in auditory tasks can influence receptive field properties of cortical neurons. Recent studies showing rapid task-related changes in neuronal spectrotemporal receptive fields (STRFs) in primary auditory cortex of the behaving ferret are reviewed in the context of current research on cortical plasticity. Ferrets were trained on spectral tasks, including tone detection and two-tone discrimination, and on temporal tasks, including gap detection and click-rate discrimination. STRF changes could be measured on-line during task performance and occurred within minutes of task onset. During spectral tasks, there were specific spectral changes (enhanced response to tonal target frequency in tone detection and discrimination, suppressed response to tonal reference frequency in tone discrimination). However, only in the temporal tasks, the STRF was changed along the temporal dimension by sharpening temporal dynamics. In ferrets trained on multiple tasks, distinctive and task-specific STRF changes could be observed in the same cortical neurons in successive behavioral sessions. These results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands.

  15. Mate choice in the eye and ear of the beholder? Female multimodal sensory configuration influences her preferences.

    PubMed

    Ronald, Kelly L; Fernández-Juricic, Esteban; Lucas, Jeffrey R

    2018-05-16

    A common assumption in sexual selection studies is that receivers decode signal information similarly. However, receivers may vary in how they rank signallers if signal perception varies with an individual's sensory configuration. Furthermore, receivers may vary in their weighting of different elements of multimodal signals based on their sensory configuration. This could lead to complex levels of selection on signalling traits. We tested whether multimodal sensory configuration could affect preferences for multimodal signals. We used brown-headed cowbird ( Molothrus ater ) females to examine how auditory sensitivity and auditory filters, which influence auditory spectral and temporal resolution, affect song preferences, and how visual spatial resolution and visual temporal resolution, which influence resolution of a moving visual signal, affect visual display preferences. Our results show that multimodal sensory configuration significantly affects preferences for male displays: females with better auditory temporal resolution preferred songs that were shorter, with lower Wiener entropy, and higher frequency; and females with better visual temporal resolution preferred males with less intense visual displays. Our findings provide new insights into mate-choice decisions and receiver signal processing. Furthermore, our results challenge a long-standing assumption in animal communication which can affect how we address honest signalling, assortative mating and sensory drive. © 2018 The Author(s).

  16. A common perceptual temporal limit of binding synchronous inputs across different sensory attributes and modalities

    PubMed Central

    Fujisaki, Waka; Nishida, Shin'ya

    2010-01-01

    The human brain processes different aspects of the surrounding environment through multiple sensory modalities, and each modality can be subdivided into multiple attribute-specific channels. When the brain rebinds sensory content information (‘what’) across different channels, temporal coincidence (‘when’) along with spatial coincidence (‘where’) provides a critical clue. It however remains unknown whether neural mechanisms for binding synchronous attributes are specific to each attribute combination, or universal and central. In human psychophysical experiments, we examined how combinations of visual, auditory and tactile attributes affect the temporal frequency limit of synchrony-based binding. The results indicated that the upper limits of cross-attribute binding were lower than those of within-attribute binding, and surprisingly similar for any combination of visual, auditory and tactile attributes (2–3 Hz). They are unlikely to be the limits for judging synchrony, since the temporal limit of a cross-attribute synchrony judgement was higher and varied with the modality combination (4–9 Hz). These findings suggest that cross-attribute temporal binding is mediated by a slow central process that combines separately processed ‘what’ and ‘when’ properties of a single event. While the synchrony performance reflects temporal bottlenecks existing in ‘when’ processing, the binding performance reflects the central temporal limit of integrating ‘when’ and ‘what’ properties. PMID:20335212

  17. Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses

    PubMed Central

    Molloy, Katharine; Griffiths, Timothy D.; Lavie, Nilli

    2015-01-01

    Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying “inattentional deafness”—the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 “awareness” response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. SIGNIFICANCE STATEMENT The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory stimuli, resulting in inattentional deafness. The dynamic “push–pull” pattern of load effects on visual and auditory processing furthers our understanding of both the neural mechanisms of attention and of cross-modal effects across visual and auditory processing. These results also offer an explanation for many previous failures to find cross-modal effects in experiments where the visual load effects may not have coincided directly with auditory sensory processing. PMID:26658858

  18. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise.

    PubMed

    Yeend, Ingrid; Beach, Elizabeth Francis; Sharma, Mridula; Dillon, Harvey

    2017-09-01

    Recent animal research has shown that exposure to single episodes of intense noise causes cochlear synaptopathy without affecting hearing thresholds. It has been suggested that the same may occur in humans. If so, it is hypothesized that this would result in impaired encoding of sound and lead to difficulties hearing at suprathreshold levels, particularly in challenging listening environments. The primary aim of this study was to investigate the effect of noise exposure on auditory processing, including the perception of speech in noise, in adult humans. A secondary aim was to explore whether musical training might improve some aspects of auditory processing and thus counteract or ameliorate any negative impacts of noise exposure. In a sample of 122 participants (63 female) aged 30-57 years with normal or near-normal hearing thresholds, we conducted audiometric tests, including tympanometry, audiometry, acoustic reflexes, otoacoustic emissions and medial olivocochlear responses. We also assessed temporal and spectral processing, by determining thresholds for detection of amplitude modulation and temporal fine structure. We assessed speech-in-noise perception, and conducted tests of attention, memory and sentence closure. We also calculated participants' accumulated lifetime noise exposure and administered questionnaires to assess self-reported listening difficulty and musical training. The results showed no clear link between participants' lifetime noise exposure and performance on any of the auditory processing or speech-in-noise tasks. Musical training was associated with better performance on the auditory processing tasks, but not the on the speech-in-noise perception tasks. The results indicate that sentence closure skills, working memory, attention, extended high frequency hearing thresholds and medial olivocochlear suppression strength are important factors that are related to the ability to process speech in noise. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Voice processing in monkey and human brains.

    PubMed

    Scott, Sophie K

    2008-09-01

    Studies in humans have indicated that the anterior superior temporal sulcus has an important role in the processing of information about human voices, especially the identification of talkers from their voice. A new study using functional magnetic resonance imaging (fMRI) with macaques provides strong evidence that anterior auditory fields, part of the auditory 'what' pathway, preferentially respond to changes in the identity of conspecifics, rather than specific vocalizations from the same individual.

  20. Processing of voices in deafness rehabilitation by auditory brainstem implant.

    PubMed

    Coez, Arnaud; Zilbovicius, Monica; Ferrary, Evelyne; Bouccara, Didier; Mosnier, Isabelle; Ambert-Dahan, Emmanuèle; Kalamarides, Michel; Bizaguet, Eric; Syrota, André; Samson, Yves; Sterkers, Olivier

    2009-10-01

    The superior temporal sulcus (STS) is specifically involved in processing the human voice. Profound acquired deafness by post-meningitis ossified cochlea and by bilateral vestibular schwannoma in neurofibromatosis type 2 patients are two indications for auditory brainstem implantation (ABI). In order to objectively measure the cortical voice processing of a group of ABI patients, we studied the activation of the human temporal voice areas (TVA) by PET H(2)(15)O, performed in a group of implanted deaf adults (n=7) with more than two years of auditory brainstem implant experience, with an intelligibility score average of 17%+/-17 [mean+/-SD]. Relative cerebral blood flow (rCBF) was measured in the three following conditions: during silence, while passive listening to human voice, and to non-voice stimuli. Compared to silence, the activations induced by voice and non-voice stimuli were bilaterally located in the superior temporal regions. However, compared to non-voice stimuli, the voice stimuli did not induce specific supplementary activation of the TVA along the STS. The comparison of ABI group with a normal-hearing controls group (n=7) showed that TVA activations were significantly enhanced among controls group. ABI allowed the transmission of sound stimuli to temporal brain regions but lacked transmitting the specific cues of the human voice to the TVA. Moreover, among groups, during silent condition, brain visual regions showed higher rCBF in ABI group, although temporal brain regions had higher rCBF in the controls group. ABI patients had consequently developed enhanced visual strategies to keep interacting with their environment.

  1. The Relationship between Brainstem Temporal Processing and Performance on Tests of Central Auditory Function in Children with Reading Disorders

    ERIC Educational Resources Information Center

    Billiet, Cassandra R.; Bellis, Teri James

    2011-01-01

    Purpose: Studies using speech stimuli to elicit electrophysiologic responses have found approximately 30% of children with language-based learning problems demonstrate abnormal brainstem timing. Research is needed regarding how these responses relate to performance on behavioral tests of central auditory function. The purpose of the study was to…

  2. Auditory Temporal Acuity Probed With Cochlear Implant Stimulation and Cortical Recording

    PubMed Central

    Kirby, Alana E.

    2010-01-01

    Cochlear implants stimulate the auditory nerve with amplitude-modulated (AM) electric pulse trains. Pulse rates >2,000 pulses per second (pps) have been hypothesized to enhance transmission of temporal information. Recent studies, however, have shown that higher pulse rates impair phase locking to sinusoidal AM in the auditory cortex and impair perceptual modulation detection. Here, we investigated the effects of high pulse rates on the temporal acuity of transmission of pulse trains to the auditory cortex. In anesthetized guinea pigs, signal-detection analysis was used to measure the thresholds for detection of gaps in pulse trains at rates of 254, 1,017, and 4,069 pps and in acoustic noise. Gap-detection thresholds decreased by an order of magnitude with increases in pulse rate from 254 to 4,069 pps. Such a pulse-rate dependence would likely influence speech reception through clinical speech processors. To elucidate the neural mechanisms of gap detection, we measured recovery from forward masking after a 196.6-ms pulse train. Recovery from masking was faster at higher carrier pulse rates and masking increased linearly with current level. We fit the data with a dual-exponential recovery function, consistent with a peripheral and a more central process. High-rate pulse trains evoked less central masking, possibly due to adaptation of the response in the auditory nerve. Neither gap detection nor forward masking varied with cortical depth, indicating that these processes are likely subcortical. These results indicate that gap detection and modulation detection are mediated by two separate neural mechanisms. PMID:19923242

  3. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    PubMed Central

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  4. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution.

    PubMed

    Hertz, Uri; Amedi, Amir

    2015-08-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.

  5. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS)

    PubMed Central

    Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom sound perception and potentially serve as an objective measure of central neural pathology. PMID:28604786

  6. Tuning in to the Voices: A Multisite fMRI Study of Auditory Hallucinations

    PubMed Central

    Ford, Judith M.; Roach, Brian J.; Jorgensen, Kasper W.; Turner, Jessica A.; Brown, Gregory G.; Notestine, Randy; Bischoff-Grethe, Amanda; Greve, Douglas; Wible, Cynthia; Lauriello, John; Belger, Aysenil; Mueller, Bryon A.; Calhoun, Vincent; Preda, Adrian; Keator, David; O'Leary, Daniel S.; Lim, Kelvin O.; Glover, Gary; Potkin, Steven G.; Mathalon, Daniel H.

    2009-01-01

    Introduction: Auditory hallucinations or voices are experienced by 75% of people diagnosed with schizophrenia. We presumed that auditory cortex of schizophrenia patients who experience hallucinations is tonically “tuned” to internal auditory channels, at the cost of processing external sounds, both speech and nonspeech. Accordingly, we predicted that patients who hallucinate would show less auditory cortical activation to external acoustic stimuli than patients who did not. Methods: At 9 Functional Imaging Biomedical Informatics Research Network (FBIRN) sites, whole-brain images from 106 patients and 111 healthy comparison subjects were collected while subjects performed an auditory target detection task. Data were processed with the FBIRN processing stream. A region of interest analysis extracted activation values from primary (BA41) and secondary auditory cortex (BA42), auditory association cortex (BA22), and middle temporal gyrus (BA21). Patients were sorted into hallucinators (n = 66) and nonhallucinators (n = 40) based on symptom ratings done during the previous week. Results: Hallucinators had less activation to probe tones in left primary auditory cortex (BA41) than nonhallucinators. This effect was not seen on the right. Discussion: Although “voices” are the anticipated sensory experience, it appears that even primary auditory cortex is “turned on” and “tuned in” to process internal acoustic information at the cost of processing external sounds. Although this study was not designed to probe cortical competition for auditory resources, we were able to take advantage of the data and find significant effects, perhaps because of the power afforded by such a large sample. PMID:18987102

  7. Visual and auditory socio-cognitive perception in unilateral temporal lobe epilepsy in children and adolescents: a prospective controlled study.

    PubMed

    Laurent, Agathe; Arzimanoglou, Alexis; Panagiotakaki, Eleni; Sfaello, Ignacio; Kahane, Philippe; Ryvlin, Philippe; Hirsch, Edouard; de Schonen, Scania

    2014-12-01

    A high rate of abnormal social behavioural traits or perceptual deficits is observed in children with unilateral temporal lobe epilepsy. In the present study, perception of auditory and visual social signals, carried by faces and voices, was evaluated in children or adolescents with temporal lobe epilepsy. We prospectively investigated a sample of 62 children with focal non-idiopathic epilepsy early in the course of the disorder. The present analysis included 39 children with a confirmed diagnosis of temporal lobe epilepsy. Control participants (72), distributed across 10 age groups, served as a control group. Our socio-perceptual evaluation protocol comprised three socio-visual tasks (face identity, facial emotion and gaze direction recognition), two socio-auditory tasks (voice identity and emotional prosody recognition), and three control tasks (lip reading, geometrical pattern and linguistic intonation recognition). All 39 patients also benefited from a neuropsychological examination. As a group, children with temporal lobe epilepsy performed at a significantly lower level compared to the control group with regards to recognition of facial identity, direction of eye gaze, and emotional facial expressions. We found no relationship between the type of visual deficit and age at first seizure, duration of epilepsy, or the epilepsy-affected cerebral hemisphere. Deficits in socio-perceptual tasks could be found independently of the presence of deficits in visual or auditory episodic memory, visual non-facial pattern processing (control tasks), or speech perception. A normal FSIQ did not exempt some of the patients from an underlying deficit in some of the socio-perceptual tasks. Temporal lobe epilepsy not only impairs development of emotion recognition, but can also impair development of perception of other socio-perceptual signals in children with or without intellectual deficiency. Prospective studies need to be designed to evaluate the results of appropriate re-education programs in children presenting with deficits in social cue processing.

  8. Selective verbal recognition memory impairments are associated with atrophy of the language network in non-semantic variants of primary progressive aphasia.

    PubMed

    Nilakantan, Aneesha S; Voss, Joel L; Weintraub, Sandra; Mesulam, M-Marsel; Rogalski, Emily J

    2017-06-01

    Primary progressive aphasia (PPA) is clinically defined by an initial loss of language function and preservation of other cognitive abilities, including episodic memory. While PPA primarily affects the left-lateralized perisylvian language network, some clinical neuropsychological tests suggest concurrent initial memory loss. The goal of this study was to test recognition memory of objects and words in the visual and auditory modality to separate language-processing impairments from retentive memory in PPA. Individuals with non-semantic PPA had longer reaction times and higher false alarms for auditory word stimuli compared to visual object stimuli. Moreover, false alarms for auditory word recognition memory were related to cortical thickness within the left inferior frontal gyrus and left temporal pole, while false alarms for visual object recognition memory was related to cortical thickness within the right-temporal pole. This pattern of results suggests that specific vulnerability in processing verbal stimuli can hinder episodic memory in PPA, and provides evidence for differential contributions of the left and right temporal poles in word and object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Rise time and formant transition duration in the discrimination of speech sounds: the Ba-Wa distinction in developmental dyslexia.

    PubMed

    Goswami, Usha; Fosker, Tim; Huss, Martina; Mead, Natasha; Szucs, Dénes

    2011-01-01

    Across languages, children with developmental dyslexia have a specific difficulty with the neural representation of the sound structure (phonological structure) of speech. One likely cause of their difficulties with phonology is a perceptual difficulty in auditory temporal processing (Tallal, 1980). Tallal (1980) proposed that basic auditory processing of brief, rapidly successive acoustic changes is compromised in dyslexia, thereby affecting phonetic discrimination (e.g. discriminating /b/ from /d/) via impaired discrimination of formant transitions (rapid acoustic changes in frequency and intensity). However, an alternative auditory temporal hypothesis is that the basic auditory processing of the slower amplitude modulation cues in speech is compromised (Goswami et al., 2002). Here, we contrast children's perception of a synthetic speech contrast (ba/wa) when it is based on the speed of the rate of change of frequency information (formant transition duration) versus the speed of the rate of change of amplitude modulation (rise time). We show that children with dyslexia have excellent phonetic discrimination based on formant transition duration, but poor phonetic discrimination based on envelope cues. The results explain why phonetic discrimination may be allophonic in developmental dyslexia (Serniclaes et al., 2004), and suggest new avenues for the remediation of developmental dyslexia. © 2010 Blackwell Publishing Ltd.

  10. Functional connectivity in task-negative network of the Deaf: effects of sign language experience

    PubMed Central

    Talavage, Thomas M.; Wilbur, Ronnie B.

    2014-01-01

    Prior studies investigating cortical processing in Deaf signers suggest that life-long experience with sign language and/or auditory deprivation may alter the brain’s anatomical structure and the function of brain regions typically recruited for auditory processing (Emmorey et al., 2010; Pénicaud et al., 2013 inter alia). We report the first investigation of the task-negative network in Deaf signers and its functional connectivity—the temporal correlations among spatially remote neurophysiological events. We show that Deaf signers manifest increased functional connectivity between posterior cingulate/precuneus and left medial temporal gyrus (MTG), but also inferior parietal lobe and medial temporal gyrus in the right hemisphere- areas that have been found to show functional recruitment specifically during sign language processing. These findings suggest that the organization of the brain at the level of inter-network connectivity is likely affected by experience with processing visual language, although sensory deprivation could be another source of the difference. We hypothesize that connectivity alterations in the task negative network reflect predictive/automatized processing of the visual signal. PMID:25024915

  11. Different forms of effective connectivity in primate frontotemporal pathways.

    PubMed

    Petkov, Christopher I; Kikuchi, Yukiko; Milne, Alice E; Mishkin, Mortimer; Rauschecker, Josef P; Logothetis, Nikos K

    2015-01-23

    It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex.

  12. Different forms of effective connectivity in primate frontotemporal pathways

    PubMed Central

    Petkov, Christopher I.; Kikuchi, Yukiko; Milne, Alice E.; Mishkin, Mortimer; Rauschecker, Josef P.; Logothetis, Nikos K.

    2015-01-01

    It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex. PMID:25613079

  13. Psycho acoustical Measures in Individuals with Congenital Visual Impairment.

    PubMed

    Kumar, Kaushlendra; Thomas, Teenu; Bhat, Jayashree S; Ranjan, Rajesh

    2017-12-01

    In congenital visual impaired individuals one modality is impaired (visual modality) this impairment is compensated by other sensory modalities. There is evidence that visual impaired performed better in different auditory task like localization, auditory memory, verbal memory, auditory attention, and other behavioural tasks when compare to normal sighted individuals. The current study was aimed to compare the temporal resolution, frequency resolution and speech perception in noise ability in individuals with congenital visual impaired and normal sighted. Temporal resolution, frequency resolution, and speech perception in noise were measured using MDT, GDT, DDT, SRDT, and SNR50 respectively. Twelve congenital visual impaired participants with age range of 18 to 40 years were taken and equal in number with normal sighted participants. All the participants had normal hearing sensitivity with normal middle ear functioning. Individual with visual impairment showed superior threshold in MDT, SRDT and SNR50 as compared to normal sighted individuals. This may be due to complexity of the tasks; MDT, SRDT and SNR50 are complex tasks than GDT and DDT. Visual impairment showed superior performance in auditory processing and speech perception with complex auditory perceptual tasks.

  14. Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study.

    PubMed

    Westerhausen, René; Grüner, Renate; Specht, Karsten; Hugdahl, Kenneth

    2009-06-01

    The midsagittal corpus callosum is topographically organized, that is, with regard to their cortical origin several subtracts can be distinguished within the corpus callosum that belong to specific functional brain networks. Recent diffusion tensor tractography studies have also revealed remarkable interindividual differences in the size and exact localization of these tracts. To examine the functional relevance of interindividual variability in callosal tracts, 17 right-handed male participants underwent structural and diffusion tensor magnetic resonance imaging. Probabilistic tractography was carried out to identify the callosal subregions that interconnect left and right temporal lobe auditory processing areas, and the midsagittal size of this tract was seen as indicator of the (anatomical) strength of this connection. Auditory information transfer was assessed applying an auditory speech perception task with dichotic presentations of consonant-vowel syllables (e.g., /ba-ga/). The frequency of correct left ear reports in this task served as a functional measure of interhemispheric transfer. Statistical analysis showed that a stronger anatomical connection between the superior temporal lobe areas supports a better information transfer. This specific structure-function association in the auditory modality supports the general notion that interindividual differences in callosal topography possess functional relevance.

  15. Psychophysical and Neural Correlates of Auditory Attraction and Aversion

    NASA Astrophysics Data System (ADS)

    Patten, Kristopher Jakob

    This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids auditory parsing and functional representation of acoustic objects and was found to be a principal feature of pleasing auditory stimuli.

  16. Crossmodal association of auditory and visual material properties in infants.

    PubMed

    Ujiie, Yuta; Yamashita, Wakayo; Fujisaki, Waka; Kanazawa, So; Yamaguchi, Masami K

    2018-06-18

    The human perceptual system enables us to extract visual properties of an object's material from auditory information. In monkeys, the neural basis underlying such multisensory association develops through experience of exposure to a material; material information could be processed in the posterior inferior temporal cortex, progressively from the high-order visual areas. In humans, however, the development of this neural representation remains poorly understood. Here, we demonstrated for the first time the presence of a mapping of the auditory material property with visual material ("Metal" and "Wood") in the right temporal region in preverbal 4- to 8-month-old infants, using near-infrared spectroscopy (NIRS). Furthermore, we found that infants acquired the audio-visual mapping for a property of the "Metal" material later than for the "Wood" material, since infants form the visual property of "Metal" material after approximately 6 months of age. These findings indicate that multisensory processing of material information induces the activation of brain areas related to sound symbolism. Our findings also indicate that the material's familiarity might facilitate the development of multisensory processing during the first year of life.

  17. Tracing the neural basis of auditory entrainment.

    PubMed

    Lehmann, Alexandre; Arias, Diana Jimena; Schönwiesner, Marc

    2016-11-19

    Neurons in the auditory cortex synchronize their responses to temporal regularities in sound input. This coupling or "entrainment" is thought to facilitate beat extraction and rhythm perception in temporally structured sounds, such as music. As a consequence of such entrainment, the auditory cortex responds to an omitted (silent) sound in a regular sequence. Although previous studies suggest that the auditory brainstem frequency-following response (FFR) exhibits some of the beat-related effects found in the cortex, it is unknown whether omissions of sounds evoke a brainstem response. We simultaneously recorded cortical and brainstem responses to isochronous and irregular sequences of consonant-vowel syllable /da/ that contained sporadic omissions. The auditory cortex responded strongly to omissions, but we found no evidence of evoked responses to omitted stimuli from the auditory brainstem. However, auditory brainstem responses in the isochronous sound sequence were more consistent across trials than in the irregular sequence. These results indicate that the auditory brainstem faithfully encodes short-term acoustic properties of a stimulus and is sensitive to sequence regularity, but does not entrain to isochronous sequences sufficiently to generate overt omission responses, even for sequences that evoke such responses in the cortex. These findings add to our understanding of the processing of sound regularities, which is an important aspect of human cognitive abilities like rhythm, music and speech perception. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Primitive Auditory Memory Is Correlated with Spatial Unmasking That Is Based on Direct-Reflection Integration

    PubMed Central

    Li, Huahui; Kong, Lingzhi; Wu, Xihong; Li, Liang

    2013-01-01

    In reverberant rooms with multiple-people talking, spatial separation between speech sources improves recognition of attended speech, even though both the head-shadowing and interaural-interaction unmasking cues are limited by numerous reflections. It is the perceptual integration between the direct wave and its reflections that bridges the direct-reflection temporal gaps and results in the spatial unmasking under reverberant conditions. This study further investigated (1) the temporal dynamic of the direct-reflection-integration-based spatial unmasking as a function of the reflection delay, and (2) whether this temporal dynamic is correlated with the listeners’ auditory ability to temporally retain raw acoustic signals (i.e., the fast decaying primitive auditory memory, PAM). The results showed that recognition of the target speech against the speech-masker background is a descending exponential function of the delay of the simulated target reflection. In addition, the temporal extent of PAM is frequency dependent and markedly longer than that for perceptual fusion. More importantly, the temporal dynamic of the speech-recognition function is significantly correlated with the temporal extent of the PAM of low-frequency raw signals. Thus, we propose that a chain process, which links the earlier-stage PAM with the later-stage correlation computation, perceptual integration, and attention facilitation, plays a role in spatially unmasking target speech under reverberant conditions. PMID:23658664

  19. Maturation of the auditory t-complex brain response across adolescence.

    PubMed

    Mahajan, Yatin; McArthur, Genevieve

    2013-02-01

    Adolescence is a time of great change in the brain in terms of structure and function. It is possible to track the development of neural function across adolescence using auditory event-related potentials (ERPs). This study tested if the brain's functional processing of sound changed across adolescence. We measured passive auditory t-complex peaks to pure tones and consonant-vowel (CV) syllables in 90 children and adolescents aged 10-18 years, as well as 10 adults. Across adolescence, Na amplitude increased to tones and speech at the right, but not left, temporal site. Ta amplitude decreased at the right temporal site for tones, and at both sites for speech. The Tb remained constant at both sites. The Na and Ta appeared to mature later in the right than left hemisphere. The t-complex peaks Na and Tb exhibited left lateralization and Ta showed right lateralization. Thus, the functional processing of sound continued to develop across adolescence and into adulthood. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Auditory Cortical Processing in Real-World Listening: The Auditory System Going Real

    PubMed Central

    Bizley, Jennifer; Shamma, Shihab A.; Wang, Xiaoqin

    2014-01-01

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. PMID:25392481

  1. Auditory cortical processing in real-world listening: the auditory system going real.

    PubMed

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. Copyright © 2014 the authors 0270-6474/14/3415135-04$15.00/0.

  2. Electrophysiologic Assessment of Auditory Training Benefits in Older Adults

    PubMed Central

    Anderson, Samira; Jenkins, Kimberly

    2015-01-01

    Older adults often exhibit speech perception deficits in difficult listening environments. At present, hearing aids or cochlear implants are the main options for therapeutic remediation; however, they only address audibility and do not compensate for central processing changes that may accompany aging and hearing loss or declines in cognitive function. It is unknown whether long-term hearing aid or cochlear implant use can restore changes in central encoding of temporal and spectral components of speech or improve cognitive function. Therefore, consideration should be given to auditory/cognitive training that targets auditory processing and cognitive declines, taking advantage of the plastic nature of the central auditory system. The demonstration of treatment efficacy is an important component of any training strategy. Electrophysiologic measures can be used to assess training-related benefits. This article will review the evidence for neuroplasticity in the auditory system and the use of evoked potentials to document treatment efficacy. PMID:27587912

  3. A Case of Generalized Auditory Agnosia with Unilateral Subcortical Brain Lesion

    PubMed Central

    Suh, Hyee; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon

    2012-01-01

    The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia. PMID:23342322

  4. Synchronisation signatures in the listening brain: a perspective from non-invasive neuroelectrophysiology.

    PubMed

    Weisz, Nathan; Obleser, Jonas

    2014-01-01

    Human magneto- and electroencephalography (M/EEG) are capable of tracking brain activity at millisecond temporal resolution in an entirely non-invasive manner, a feature that offers unique opportunities to uncover the spatiotemporal dynamics of the hearing brain. In general, precise synchronisation of neural activity within as well as across distributed regions is likely to subserve any cognitive process, with auditory cognition being no exception. Brain oscillations, in a range of frequencies, are a putative hallmark of this synchronisation process. Embedded in a larger effort to relate human cognition to brain oscillations, a field of research is emerging on how synchronisation within, as well as between, brain regions may shape auditory cognition. Combined with much improved source localisation and connectivity techniques, it has become possible to study directly the neural activity of auditory cortex with unprecedented spatio-temporal fidelity and to uncover frequency-specific long-range connectivities across the human cerebral cortex. In the present review, we will summarise recent contributions mainly of our laboratories to this emerging domain. We present (1) a more general introduction on how to study local as well as interareal synchronisation in human M/EEG; (2) how these networks may subserve and influence illusory auditory perception (clinical and non-clinical) and (3) auditory selective attention; and (4) how oscillatory networks further reflect and impact on speech comprehension. This article is part of a Special Issue entitled Human Auditory Neuroimaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A Dynamic Compressive Gammachirp Auditory Filterbank

    PubMed Central

    Irino, Toshio; Patterson, Roy D.

    2008-01-01

    It is now common to use knowledge about human auditory processing in the development of audio signal processors. Until recently, however, such systems were limited by their linearity. The auditory filter system is known to be level-dependent as evidenced by psychophysical data on masking, compression, and two-tone suppression. However, there were no analysis/synthesis schemes with nonlinear filterbanks. This paper describe18300060s such a scheme based on the compressive gammachirp (cGC) auditory filter. It was developed to extend the gammatone filter concept to accommodate the changes in psychophysical filter shape that are observed to occur with changes in stimulus level in simultaneous, tone-in-noise masking. In models of simultaneous noise masking, the temporal dynamics of the filtering can be ignored. Analysis/synthesis systems, however, are intended for use with speech sounds where the glottal cycle can be long with respect to auditory time constants, and so they require specification of the temporal dynamics of auditory filter. In this paper, we describe a fast-acting level control circuit for the cGC filter and show how psychophysical data involving two-tone suppression and compression can be used to estimate the parameter values for this dynamic version of the cGC filter (referred to as the “dcGC” filter). One important advantage of analysis/synthesis systems with a dcGC filterbank is that they can inherit previously refined signal processing algorithms developed with conventional short-time Fourier transforms (STFTs) and linear filterbanks. PMID:19330044

  6. Psychoacoustics

    NASA Astrophysics Data System (ADS)

    Moore, Brian C. J.

    Psychoacoustics psychological is concerned with the relationships between the physical characteristics of sounds and their perceptual attributes. This chapter describes: the absolute sensitivity of the auditory system for detecting weak sounds and how that sensitivity varies with frequency; the frequency selectivity of the auditory system (the ability to resolve or hear out the sinusoidal components in a complex sound) and its characterization in terms of an array of auditory filters; the processes that influence the masking of one sound by another; the range of sound levels that can be processed by the auditory system; the perception and modeling of loudness; level discrimination; the temporal resolution of the auditory system (the ability to detect changes over time); the perception and modeling of pitch for pure and complex tones; the perception of timbre for steady and time-varying sounds; the perception of space and sound localization; and the mechanisms underlying auditory scene analysis that allow the construction of percepts corresponding to individual sounds sources when listening to complex mixtures of sounds.

  7. Temporal characteristics of audiovisual information processing.

    PubMed

    Fuhrmann Alpert, Galit; Hein, Grit; Tsai, Nancy; Naumer, Marcus J; Knight, Robert T

    2008-05-14

    In complex natural environments, auditory and visual information often have to be processed simultaneously. Previous functional magnetic resonance imaging (fMRI) studies focused on the spatial localization of brain areas involved in audiovisual (AV) information processing, but the temporal characteristics of AV information flow in these regions remained unclear. In this study, we used fMRI and a novel information-theoretic approach to study the flow of AV sensory information. Subjects passively perceived sounds and images of objects presented either alone or simultaneously. Applying the measure of mutual information, we computed for each voxel the latency in which the blood oxygenation level-dependent signal had the highest information content about the preceding stimulus. The results indicate that, after AV stimulation, the earliest informative activity occurs in right Heschl's gyrus, left primary visual cortex, and the posterior portion of the superior temporal gyrus, which is known as a region involved in object-related AV integration. Informative activity in the anterior portion of superior temporal gyrus, middle temporal gyrus, right occipital cortex, and inferior frontal cortex was found at a later latency. Moreover, AV presentation resulted in shorter latencies in multiple cortical areas compared with isolated auditory or visual presentation. The results provide evidence for bottom-up processing from primary sensory areas into higher association areas during AV integration in humans and suggest that AV presentation shortens processing time in early sensory cortices.

  8. Early neural disruption and auditory processing outcomes in rodent models: implications for developmental language disability

    PubMed Central

    Fitch, R. Holly; Alexander, Michelle L.; Threlkeld, Steven W.

    2013-01-01

    Most researchers in the field of neural plasticity are familiar with the “Kennard Principle,” which purports a positive relationship between age at brain injury and severity of subsequent deficits (plateauing in adulthood). As an example, a child with left hemispherectomy can recover seemingly normal language, while an adult with focal injury to sub-regions of left temporal and/or frontal cortex can suffer dramatic and permanent language loss. Here we present data regarding the impact of early brain injury in rat models as a function of type and timing, measuring long-term behavioral outcomes via auditory discrimination tasks varying in temporal demand. These tasks were created to model (in rodents) aspects of human sensory processing that may correlate—both developmentally and functionally—with typical and atypical language. We found that bilateral focal lesions to the cortical plate in rats during active neuronal migration led to worse auditory outcomes than comparable lesions induced after cortical migration was complete. Conversely, unilateral hypoxic-ischemic (HI) injuries (similar to those seen in premature infants and term infants with birth complications) led to permanent auditory processing deficits when induced at a neurodevelopmental point comparable to human “term,” but only transient deficits (undetectable in adulthood) when induced in a “preterm” window. Convergent evidence suggests that regardless of when or how disruption of early neural development occurs, the consequences may be particularly deleterious to rapid auditory processing (RAP) outcomes when they trigger developmental alterations that extend into subcortical structures (i.e., lower sensory processing stations). Collective findings hold implications for the study of behavioral outcomes following early brain injury as well as genetic/environmental disruption, and are relevant to our understanding of the neurologic risk factors underlying developmental language disability in human populations. PMID:24155699

  9. Bilingual language processing after a lesion in the left thalamic and temporal regions. A case report with early childhood onset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Lieshout, P.; Renier, W.; Eling, P.

    1990-02-01

    This case study concerns an 18-year-old bilingual girl who suffered a radiation lesion in the left (dominant) thalamic and temporal region when she was 4 years old. Language and memory assessment revealed deficits in auditory short-term memory, auditory word comprehension, nonword repetition, syntactic processing, word fluency, and confrontation naming tasks. Both languages (English and Dutch) were found to be affected in a similar manner, despite the fact that one language (English) was acquired before and the other (Dutch) after the period of lesion onset. Most of the deficits appear to be related to verbal (short-term) memory dysfunction. Several hypotheses ofmore » subcortical involvement in memory processes are discussed with reference to existing theories in this area.« less

  10. Encoding frequency contrast in primate auditory cortex

    PubMed Central

    Scott, Brian H.; Semple, Malcolm N.

    2014-01-01

    Changes in amplitude and frequency jointly determine much of the communicative significance of complex acoustic signals, including human speech. We have previously described responses of neurons in the core auditory cortex of awake rhesus macaques to sinusoidal amplitude modulation (SAM) signals. Here we report a complementary study of sinusoidal frequency modulation (SFM) in the same neurons. Responses to SFM were analogous to SAM responses in that changes in multiple parameters defining SFM stimuli (e.g., modulation frequency, modulation depth, carrier frequency) were robustly encoded in the temporal dynamics of the spike trains. For example, changes in the carrier frequency produced highly reproducible changes in shapes of the modulation period histogram, consistent with the notion that the instantaneous probability of discharge mirrors the moment-by-moment spectrum at low modulation rates. The upper limit for phase locking was similar across SAM and SFM within neurons, suggesting shared biophysical constraints on temporal processing. Using spike train classification methods, we found that neural thresholds for modulation depth discrimination are typically far lower than would be predicted from frequency tuning to static tones. This “dynamic hyperacuity” suggests a substantial central enhancement of the neural representation of frequency changes relative to the auditory periphery. Spike timing information was superior to average rate information when discriminating among SFM signals, and even when discriminating among static tones varying in frequency. This finding held even when differences in total spike count across stimuli were normalized, indicating both the primacy and generality of temporal response dynamics in cortical auditory processing. PMID:24598525

  11. Prediction and constraint in audiovisual speech perception.

    PubMed

    Peelle, Jonathan E; Sommers, Mitchell S

    2015-07-01

    During face-to-face conversational speech listeners must efficiently process a rapid and complex stream of multisensory information. Visual speech can serve as a critical complement to auditory information because it provides cues to both the timing of the incoming acoustic signal (the amplitude envelope, influencing attention and perceptual sensitivity) and its content (place and manner of articulation, constraining lexical selection). Here we review behavioral and neurophysiological evidence regarding listeners' use of visual speech information. Multisensory integration of audiovisual speech cues improves recognition accuracy, particularly for speech in noise. Even when speech is intelligible based solely on auditory information, adding visual information may reduce the cognitive demands placed on listeners through increasing the precision of prediction. Electrophysiological studies demonstrate that oscillatory cortical entrainment to speech in auditory cortex is enhanced when visual speech is present, increasing sensitivity to important acoustic cues. Neuroimaging studies also suggest increased activity in auditory cortex when congruent visual information is available, but additionally emphasize the involvement of heteromodal regions of posterior superior temporal sulcus as playing a role in integrative processing. We interpret these findings in a framework of temporally-focused lexical competition in which visual speech information affects auditory processing to increase sensitivity to acoustic information through an early integration mechanism, and a late integration stage that incorporates specific information about a speaker's articulators to constrain the number of possible candidates in a spoken utterance. Ultimately it is words compatible with both auditory and visual information that most strongly determine successful speech perception during everyday listening. Thus, audiovisual speech perception is accomplished through multiple stages of integration, supported by distinct neuroanatomical mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.

    PubMed

    Berezutskaya, Julia; Freudenburg, Zachary V; Güçlü, Umut; van Gerven, Marcel A J; Ramsey, Nick F

    2017-08-16

    Despite a large body of research, we continue to lack a detailed account of how auditory processing of continuous speech unfolds in the human brain. Previous research showed the propagation of low-level acoustic features of speech from posterior superior temporal gyrus toward anterior superior temporal gyrus in the human brain (Hullett et al., 2016). In this study, we investigate what happens to these neural representations past the superior temporal gyrus and how they engage higher-level language processing areas such as inferior frontal gyrus. We used low-level sound features to model neural responses to speech outside of the primary auditory cortex. Two complementary imaging techniques were used with human participants (both males and females): electrocorticography (ECoG) and fMRI. Both imaging techniques showed tuning of the perisylvian cortex to low-level speech features. With ECoG, we found evidence of propagation of the temporal features of speech sounds along the ventral pathway of language processing in the brain toward inferior frontal gyrus. Increasingly coarse temporal features of speech spreading from posterior superior temporal cortex toward inferior frontal gyrus were associated with linguistic features such as voice onset time, duration of the formant transitions, and phoneme, syllable, and word boundaries. The present findings provide the groundwork for a comprehensive bottom-up account of speech comprehension in the human brain. SIGNIFICANCE STATEMENT We know that, during natural speech comprehension, a broad network of perisylvian cortical regions is involved in sound and language processing. Here, we investigated the tuning to low-level sound features within these regions using neural responses to a short feature film. We also looked at whether the tuning organization along these brain regions showed any parallel to the hierarchy of language structures in continuous speech. Our results show that low-level speech features propagate throughout the perisylvian cortex and potentially contribute to the emergence of "coarse" speech representations in inferior frontal gyrus typically associated with high-level language processing. These findings add to the previous work on auditory processing and underline a distinctive role of inferior frontal gyrus in natural speech comprehension. Copyright © 2017 the authors 0270-6474/17/377906-15$15.00/0.

  13. Temporal resolution in individuals with neurological disorders

    PubMed Central

    Rabelo, Camila Maia; Weihing, Jeffrey A; Schochat, Eliane

    2015-01-01

    OBJECTIVE: Temporal processing refers to the ability of the central auditory nervous system to encode and detect subtle changes in acoustic signals. This study aims to investigate the temporal resolution ability of individuals with mesial temporal sclerosis and to determine the sensitivity and specificity of the gaps-in-noise test in identifying this type of lesion. METHOD: This prospective study investigated differences in temporal resolution between 30 individuals with normal hearing and without neurological lesions (G1) and 16 individuals with both normal hearing and mesial temporal sclerosis (G2). Test performances were compared, and the sensitivity and specificity were calculated. RESULTS: There was no difference in gap detection thresholds between the two groups, although G1 revealed better average thresholds than G2 did. The sensitivity and specificity of the gaps-in-noise test for neurological lesions were 68% and 98%, respectively. CONCLUSIONS: Temporal resolution ability is compromised in individuals with neurological lesions caused by mesial temporal sclerosis. The gaps-in-noise test was shown to be a sensitive and specific measure of central auditory dysfunction in these patients. PMID:26375561

  14. Dynamic Correlations between Intrinsic Connectivity and Extrinsic Connectivity of the Auditory Cortex in Humans.

    PubMed

    Cui, Zhuang; Wang, Qian; Gao, Yayue; Wang, Jing; Wang, Mengyang; Teng, Pengfei; Guan, Yuguang; Zhou, Jian; Li, Tianfu; Luan, Guoming; Li, Liang

    2017-01-01

    The arrival of sound signals in the auditory cortex (AC) triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC) and extrinsic functional connectivity (eFC) of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices). Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.

  15. Neural networks supporting audiovisual integration for speech: A large-scale lesion study.

    PubMed

    Hickok, Gregory; Rogalsky, Corianne; Matchin, William; Basilakos, Alexandra; Cai, Julia; Pillay, Sara; Ferrill, Michelle; Mickelsen, Soren; Anderson, Steven W; Love, Tracy; Binder, Jeffrey; Fridriksson, Julius

    2018-06-01

    Auditory and visual speech information are often strongly integrated resulting in perceptual enhancements for audiovisual (AV) speech over audio alone and sometimes yielding compelling illusory fusion percepts when AV cues are mismatched, the McGurk-MacDonald effect. Previous research has identified three candidate regions thought to be critical for AV speech integration: the posterior superior temporal sulcus (STS), early auditory cortex, and the posterior inferior frontal gyrus. We assess the causal involvement of these regions (and others) in the first large-scale (N = 100) lesion-based study of AV speech integration. Two primary findings emerged. First, behavioral performance and lesion maps for AV enhancement and illusory fusion measures indicate that classic metrics of AV speech integration are not necessarily measuring the same process. Second, lesions involving superior temporal auditory, lateral occipital visual, and multisensory zones in the STS are the most disruptive to AV speech integration. Further, when AV speech integration fails, the nature of the failure-auditory vs visual capture-can be predicted from the location of the lesions. These findings show that AV speech processing is supported by unimodal auditory and visual cortices as well as multimodal regions such as the STS at their boundary. Motor related frontal regions do not appear to play a role in AV speech integration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Atypical vertical sound localization and sound-onset sensitivity in people with autism spectrum disorders.

    PubMed

    Visser, Eelke; Zwiers, Marcel P; Kan, Cornelis C; Hoekstra, Liesbeth; van Opstal, A John; Buitelaar, Jan K

    2013-11-01

    Autism spectrum disorders (ASDs) are associated with auditory hyper- or hyposensitivity; atypicalities in central auditory processes, such as speech-processing and selective auditory attention; and neural connectivity deficits. We sought to investigate whether the low-level integrative processes underlying sound localization and spatial discrimination are affected in ASDs. We performed 3 behavioural experiments to probe different connecting neural pathways: 1) horizontal and vertical localization of auditory stimuli in a noisy background, 2) vertical localization of repetitive frequency sweeps and 3) discrimination of horizontally separated sound stimuli with a short onset difference (precedence effect). Ten adult participants with ASDs and 10 healthy control listeners participated in experiments 1 and 3; sample sizes for experiment 2 were 18 adults with ASDs and 19 controls. Horizontal localization was unaffected, but vertical localization performance was significantly worse in participants with ASDs. The temporal window for the precedence effect was shorter in participants with ASDs than in controls. The study was performed with adult participants and hence does not provide insight into the developmental aspects of auditory processing in individuals with ASDs. Changes in low-level auditory processing could underlie degraded performance in vertical localization, which would be in agreement with recently reported changes in the neuroanatomy of the auditory brainstem in individuals with ASDs. The results are further discussed in the context of theories about abnormal brain connectivity in individuals with ASDs.

  17. Congenital amusia: a cognitive disorder limited to resolved harmonics and with no peripheral basis.

    PubMed

    Cousineau, Marion; Oxenham, Andrew J; Peretz, Isabelle

    2015-01-01

    Pitch plays a fundamental role in audition, from speech and music perception to auditory scene analysis. Congenital amusia is a neurogenetic disorder that appears to affect primarily pitch and melody perception. Pitch is normally conveyed by the spectro-temporal fine structure of low harmonics, but some pitch information is available in the temporal envelope produced by the interactions of higher harmonics. Using 10 amusic subjects and 10 matched controls, we tested the hypothesis that amusics suffer exclusively from impaired processing of spectro-temporal fine structure. We also tested whether the inability of amusics to process acoustic temporal fine structure extends beyond pitch by measuring sensitivity to interaural time differences, which also rely on temporal fine structure. Further tests were carried out on basic intensity and spectral resolution. As expected, pitch perception based on spectro-temporal fine structure was impaired in amusics; however, no significant deficits were observed in amusics' ability to perceive the pitch conveyed via temporal-envelope cues. Sensitivity to interaural time differences was also not significantly different between the amusic and control groups, ruling out deficits in the peripheral coding of temporal fine structure. Finally, no significant differences in intensity or spectral resolution were found between the amusic and control groups. The results demonstrate a pitch-specific deficit in fine spectro-temporal information processing in amusia that seems unrelated to temporal or spectral coding in the auditory periphery. These results are consistent with the view that there are distinct mechanisms dedicated to processing resolved and unresolved harmonics in the general population, the former being altered in congenital amusia while the latter is spared. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. On the definition and interpretation of voice selective activation in the temporal cortex

    PubMed Central

    Bethmann, Anja; Brechmann, André

    2014-01-01

    Regions along the superior temporal sulci and in the anterior temporal lobes have been found to be involved in voice processing. It has even been argued that parts of the temporal cortices serve as voice-selective areas. Yet, evidence for voice-selective activation in the strict sense is still missing. The current fMRI study aimed at assessing the degree of voice-specific processing in different parts of the superior and middle temporal cortices. To this end, voices of famous persons were contrasted with widely different categories, which were sounds of animals and musical instruments. The argumentation was that only brain regions with statistically proven absence of activation by the control stimuli may be considered as candidates for voice-selective areas. Neural activity was found to be stronger in response to human voices in all analyzed parts of the temporal lobes except for the middle and posterior STG. More importantly, the activation differences between voices and the other environmental sounds increased continuously from the mid-posterior STG to the anterior MTG. Here, only voices but not the control stimuli excited an increase of the BOLD response above a resting baseline level. The findings are discussed with reference to the function of the anterior temporal lobes in person recognition and the general question on how to define selectivity of brain regions for a specific class of stimuli or tasks. In addition, our results corroborate recent assumptions about the hierarchical organization of auditory processing building on a processing stream from the primary auditory cortices to anterior portions of the temporal lobes. PMID:25071527

  19. Temporal Ventriloquism Reveals Intact Audiovisual Temporal Integration in Amblyopia.

    PubMed

    Richards, Michael D; Goltz, Herbert C; Wong, Agnes M F

    2018-02-01

    We have shown previously that amblyopia involves impaired detection of asynchrony between auditory and visual events. To distinguish whether this impairment represents a defect in temporal integration or nonintegrative multisensory processing (e.g., cross-modal matching), we used the temporal ventriloquism effect in which visual temporal order judgment (TOJ) is normally enhanced by a lagging auditory click. Participants with amblyopia (n = 9) and normally sighted controls (n = 9) performed a visual TOJ task. Pairs of clicks accompanied the two lights such that the first click preceded the first light, or second click lagged the second light by 100, 200, or 450 ms. Baseline audiovisual synchrony and visual-only conditions also were tested. Within both groups, just noticeable differences for the visual TOJ task were significantly reduced compared with baseline in the 100- and 200-ms click lag conditions. Within the amblyopia group, poorer stereo acuity and poorer visual acuity in the amblyopic eye were significantly associated with greater enhancement in visual TOJ performance in the 200-ms click lag condition. Audiovisual temporal integration is intact in amblyopia, as indicated by perceptual enhancement in the temporal ventriloquism effect. Furthermore, poorer stereo acuity and poorer visual acuity in the amblyopic eye are associated with a widened temporal binding window for the effect. These findings suggest that previously reported abnormalities in audiovisual multisensory processing may result from impaired cross-modal matching rather than a diminished capacity for temporal audiovisual integration.

  20. Reduced temporal processing in older, normal-hearing listeners evident from electrophysiological responses to shifts in interaural time difference.

    PubMed

    Ozmeral, Erol J; Eddins, David A; Eddins, Ann C

    2016-12-01

    Previous electrophysiological studies of interaural time difference (ITD) processing have demonstrated that ITDs are represented by a nontopographic population rate code. Rather than narrow tuning to ITDs, neural channels have broad tuning to ITDs in either the left or right auditory hemifield, and the relative activity between the channels determines the perceived lateralization of the sound. With advancing age, spatial perception weakens and poor temporal processing contributes to declining spatial acuity. At present, it is unclear whether age-related temporal processing deficits are due to poor inhibitory controls in the auditory system or degraded neural synchrony at the periphery. Cortical processing of spatial cues based on a hemifield code are susceptible to potential age-related physiological changes. We consider two distinct predictions of age-related changes to ITD sensitivity: declines in inhibitory mechanisms would lead to increased excitation and medial shifts to rate-azimuth functions, whereas a general reduction in neural synchrony would lead to reduced excitation and shallower slopes in the rate-azimuth function. The current study tested these possibilities by measuring an evoked response to ITD shifts in a narrow-band noise. Results were more in line with the latter outcome, both from measured latencies and amplitudes of the global field potentials and source-localized waveforms in the left and right auditory cortices. The measured responses for older listeners also tended to have reduced asymmetric distribution of activity in response to ITD shifts, which is consistent with other sensory and cognitive processing models of aging. Copyright © 2016 the American Physiological Society.

  1. Functional overlap between regions involved in speech perception and in monitoring one's own voice during speech production.

    PubMed

    Zheng, Zane Z; Munhall, Kevin G; Johnsrude, Ingrid S

    2010-08-01

    The fluency and the reliability of speech production suggest a mechanism that links motor commands and sensory feedback. Here, we examined the neural organization supporting such links by using fMRI to identify regions in which activity during speech production is modulated according to whether auditory feedback matches the predicted outcome or not and by examining the overlap with the network recruited during passive listening to speech sounds. We used real-time signal processing to compare brain activity when participants whispered a consonant-vowel-consonant word ("Ted") and either heard this clearly or heard voice-gated masking noise. We compared this to when they listened to yoked stimuli (identical recordings of "Ted" or noise) without speaking. Activity along the STS and superior temporal gyrus bilaterally was significantly greater if the auditory stimulus was (a) processed as the auditory concomitant of speaking and (b) did not match the predicted outcome (noise). The network exhibiting this Feedback Type x Production/Perception interaction includes a superior temporal gyrus/middle temporal gyrus region that is activated more when listening to speech than to noise. This is consistent with speech production and speech perception being linked in a control system that predicts the sensory outcome of speech acts and that processes an error signal in speech-sensitive regions when this and the sensory data do not match.

  2. Temporal Integration of Auditory Information Is Invariant to Temporal Grouping Cues

    PubMed

    Liu, Andrew S K; Tsunada, Joji; Gold, Joshua I; Cohen, Yale E

    2015-01-01

    Auditory perception depends on the temporal structure of incoming acoustic stimuli. Here, we examined whether a temporal manipulation that affects the perceptual grouping also affects the time dependence of decisions regarding those stimuli. We designed a novel discrimination task that required human listeners to decide whether a sequence of tone bursts was increasing or decreasing in frequency. We manipulated temporal perceptual-grouping cues by changing the time interval between the tone bursts, which led to listeners hearing the sequences as a single sound for short intervals or discrete sounds for longer intervals. Despite these strong perceptual differences, this manipulation did not affect the efficiency of how auditory information was integrated over time to form a decision. Instead, the grouping manipulation affected subjects' speed-accuracy trade-offs. These results indicate that the temporal dynamics of evidence accumulation for auditory perceptual decisions can be invariant to manipulations that affect the perceptual grouping of the evidence.

  3. The time course of auditory-visual processing of speech and body actions: evidence for the simultaneous activation of an extended neural network for semantic processing.

    PubMed

    Meyer, Georg F; Harrison, Neil R; Wuerger, Sophie M

    2013-08-01

    An extensive network of cortical areas is involved in multisensory object and action recognition. This network draws on inferior frontal, posterior temporal, and parietal areas; activity is modulated by familiarity and the semantic congruency of auditory and visual component signals even if semantic incongruences are created by combining visual and auditory signals representing very different signal categories, such as speech and whole body actions. Here we present results from a high-density ERP study designed to examine the time-course and source location of responses to semantically congruent and incongruent audiovisual speech and body actions to explore whether the network involved in action recognition consists of a hierarchy of sequentially activated processing modules or a network of simultaneously active processing sites. We report two main results:1) There are no significant early differences in the processing of congruent and incongruent audiovisual action sequences. The earliest difference between congruent and incongruent audiovisual stimuli occurs between 240 and 280 ms after stimulus onset in the left temporal region. Between 340 and 420 ms, semantic congruence modulates responses in central and right frontal areas. Late differences (after 460 ms) occur bilaterally in frontal areas.2) Source localisation (dipole modelling and LORETA) reveals that an extended network encompassing inferior frontal, temporal, parasaggital, and superior parietal sites are simultaneously active between 180 and 420 ms to process auditory–visual action sequences. Early activation (before 120 ms) can be explained by activity in mainly sensory cortices. . The simultaneous activation of an extended network between 180 and 420 ms is consistent with models that posit parallel processing of complex action sequences in frontal, temporal and parietal areas rather than models that postulate hierarchical processing in a sequence of brain regions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Temporal information processing as a basis for auditory comprehension: clinical evidence from aphasic patients.

    PubMed

    Oron, Anna; Szymaszek, Aneta; Szelag, Elzbieta

    2015-01-01

    Temporal information processing (TIP) underlies many aspects of cognitive functions like language, motor control, learning, memory, attention, etc. Millisecond timing may be assessed by sequencing abilities, e.g. the perception of event order. It may be measured with auditory temporal-order-threshold (TOT), i.e. a minimum time gap separating two successive stimuli necessary for a subject to report their temporal order correctly, thus the relation 'before-after'. Neuropsychological evidence has indicated elevated TOT values (corresponding to deteriorated time perception) in different clinical groups, such as aphasic patients, dyslexic subjects or children with specific language impairment. To test relationships between elevated TOT and declined cognitive functions in brain-injured patients suffering from post-stroke aphasia. We tested 30 aphasic patients (13 male, 17 female), aged between 50 and 81 years. TIP comprised assessment of TOT. Auditory comprehension was assessed with the selected language tests, i.e. Token Test, Phoneme Discrimination Test (PDT) and Voice-Onset-Time Test (VOT), while two aspects of attentional resources (i.e. alertness and vigilance) were measured using the Test of Attentional Performance (TAP) battery. Significant correlations were indicated between elevated values of TOT and deteriorated performance on all applied language tests. Moreover, significant correlations were evidenced between elevated TOT and alertness. Finally, positive correlations were found between particular language tests, i.e. (1) Token Test and PDT; (2) Token Test and VOT Test; and (3) PDT and VOT Test, as well as between PDT and both attentional tasks. These results provide further clinical evidence supporting the thesis that TIP constitutes the core process incorporated in both language and attentional resources. The novel value of the present study is the indication for the first time in Slavic language users a clear coexistence of the 'timing-auditory comprehension-attention' relationships. © 2015 Royal College of Speech and Language Therapists.

  5. Multimodal lexical processing in auditory cortex is literacy skill dependent.

    PubMed

    McNorgan, Chris; Awati, Neha; Desroches, Amy S; Booth, James R

    2014-09-01

    Literacy is a uniquely human cross-modal cognitive process wherein visual orthographic representations become associated with auditory phonological representations through experience. Developmental studies provide insight into how experience-dependent changes in brain organization influence phonological processing as a function of literacy. Previous investigations show a synchrony-dependent influence of letter presentation on individual phoneme processing in superior temporal sulcus; others demonstrate recruitment of primary and associative auditory cortex during cross-modal processing. We sought to determine whether brain regions supporting phonological processing of larger lexical units (monosyllabic words) over larger time windows is sensitive to cross-modal information, and whether such effects are literacy dependent. Twenty-two children (age 8-14 years) made rhyming judgments for sequentially presented word and pseudoword pairs presented either unimodally (auditory- or visual-only) or cross-modally (audiovisual). Regression analyses examined the relationship between literacy and congruency effects (overlapping orthography and phonology vs. overlapping phonology-only). We extend previous findings by showing that higher literacy is correlated with greater congruency effects in auditory cortex (i.e., planum temporale) only for cross-modal processing. These skill effects were specific to known words and occurred over a large time window, suggesting that multimodal integration in posterior auditory cortex is critical for fluent reading. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Cell-assembly coding in several memory processes.

    PubMed

    Sakurai, Y

    1998-01-01

    The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.

  7. Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex.

    PubMed

    Albouy, Philippe; Mattout, Jérémie; Bouet, Romain; Maby, Emmanuel; Sanchez, Gaëtan; Aguera, Pierre-Emmanuel; Daligault, Sébastien; Delpuech, Claude; Bertrand, Olivier; Caclin, Anne; Tillmann, Barbara

    2013-05-01

    Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a melodic contour task and an easier transposition task); they had to indicate whether sequences of six tones (presented in pairs) were the same or different. Behavioural data indicated that in comparison with control participants, amusics' short-term memory was impaired for the melodic contour task, but not for the transposition task. The major finding was that pitch processing and short-term memory deficits can be traced down to amusics' early brain responses during encoding of the melodic information. Temporal and frontal generators of the N100m evoked by each note of the melody were abnormally recruited in the amusic brain. Dynamic causal modelling of the N100m further revealed decreased intrinsic connectivity in both auditory cortices, increased lateral connectivity between auditory cortices as well as a decreased right fronto-temporal backward connectivity in amusics relative to control subjects. Abnormal functioning of this fronto-temporal network was also shown during the retention interval and the retrieval of melodic information. In particular, induced gamma oscillations in right frontal areas were decreased in amusics during the retention interval. Using voxel-based morphometry, we confirmed morphological brain anomalies in terms of white and grey matter concentration in the right inferior frontal gyrus and the right superior temporal gyrus in the amusic brain. The convergence between functional and structural brain differences strengthens the hypothesis of abnormalities in the fronto-temporal pathway of the amusic brain. Our data provide first evidence of altered functioning of the auditory cortices during pitch perception and memory in congenital amusia. They further support the hypothesis that in neurodevelopmental disorders impacting high-level functions (here musical abilities), abnormalities in cerebral processing can be observed in early brain responses.

  8. The use of listening devices to ameliorate auditory deficit in children with autism.

    PubMed

    Rance, Gary; Saunders, Kerryn; Carew, Peter; Johansson, Marlin; Tan, Johanna

    2014-02-01

    To evaluate both monaural and binaural processing skills in a group of children with autism spectrum disorder (ASD) and to determine the degree to which personal frequency modulation (radio transmission) (FM) listening systems could ameliorate their listening difficulties. Auditory temporal processing (amplitude modulation detection), spatial listening (integration of binaural difference cues), and functional hearing (speech perception in background noise) were evaluated in 20 children with ASD. Ten of these subsequently underwent a 6-week device trial in which they wore the FM system for up to 7 hours per day. Auditory temporal processing and spatial listening ability were poorer in subjects with ASD than in matched controls (temporal: P = .014 [95% CI -6.4 to -0.8 dB], spatial: P = .003 [1.0 to 4.4 dB]), and performance on both of these basic processing measures was correlated with speech perception ability (temporal: r = -0.44, P = .022; spatial: r = -0.50, P = .015). The provision of FM listening systems resulted in improved discrimination of speech in noise (P < .001 [11.6% to 21.7%]). Furthermore, both participant and teacher questionnaire data revealed device-related benefits across a range of evaluation categories including Effect of Background Noise (P = .036 [-60.7% to -2.8%]) and Ease of Communication (P = .019 [-40.1% to -5.0%]). Eight of the 10 participants who undertook the 6-week device trial remained consistent FM users at study completion. Sustained use of FM listening devices can enhance speech perception in noise, aid social interaction, and improve educational outcomes in children with ASD. Copyright © 2014 Mosby, Inc. All rights reserved.

  9. Neural pathways for visual speech perception

    PubMed Central

    Bernstein, Lynne E.; Liebenthal, Einat

    2014-01-01

    This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA. PMID:25520611

  10. Inhibitory Network Interactions Shape the Auditory Processing of Natural Communication Signals in the Songbird Auditory Forebrain

    PubMed Central

    Pinaud, Raphael; Terleph, Thomas A.; Tremere, Liisa A.; Phan, Mimi L.; Dagostin, André A.; Leão, Ricardo M.; Mello, Claudio V.; Vicario, David S.

    2008-01-01

    The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABAA-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABAA-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABAA receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABAA-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks. PMID:18480371

  11. Integration and segregation in auditory streaming

    NASA Astrophysics Data System (ADS)

    Almonte, Felix; Jirsa, Viktor K.; Large, Edward W.; Tuller, Betty

    2005-12-01

    We aim to capture the perceptual dynamics of auditory streaming using a neurally inspired model of auditory processing. Traditional approaches view streaming as a competition of streams, realized within a tonotopically organized neural network. In contrast, we view streaming to be a dynamic integration process which resides at locations other than the sensory specific neural subsystems. This process finds its realization in the synchronization of neural ensembles or in the existence of informational convergence zones. Our approach uses two interacting dynamical systems, in which the first system responds to incoming acoustic stimuli and transforms them into a spatiotemporal neural field dynamics. The second system is a classification system coupled to the neural field and evolves to a stationary state. These states are identified with a single perceptual stream or multiple streams. Several results in human perception are modelled including temporal coherence and fission boundaries [L.P.A.S. van Noorden, Temporal coherence in the perception of tone sequences, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 1975], and crossing of motions [A.S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound, MIT Press, 1990]. Our model predicts phenomena such as the existence of two streams with the same pitch, which cannot be explained by the traditional stream competition models. An experimental study is performed to provide proof of existence of this phenomenon. The model elucidates possible mechanisms that may underlie perceptual phenomena.

  12. Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness.

    PubMed

    Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui

    2015-09-01

    Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness < 2 years) and 40 age- and gender-matched hearing controls underwent functional magnetic resonance imaging during a visuo-spatial delayed recognition task that consisted of encoding, maintenance and recognition stages. The early deaf subjects exhibited faster reaction times on the spatial working memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were positively correlated with the age of onset of hearing aid use and were negatively correlated with the percentage of lifetime hearing aid use in deaf subjects. These findings suggest that earlier and longer hearing aid use may inhibit cross-modal reorganization in early deaf subjects. Granger causality analysis revealed that, compared to the hearing controls, the deaf subjects had an enhanced net causal flow from the frontal eye field to the superior temporal gyrus. These findings indicate that a top-down mechanism may better account for the cross-modal activation of auditory regions in early deaf subjects.See MacSweeney and Cardin (doi:10/1093/awv197) for a scientific commentary on this article. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Noise-induced hearing loss increases the temporal precision of complex envelope coding by auditory-nerve fibers

    PubMed Central

    Henry, Kenneth S.; Kale, Sushrut; Heinz, Michael G.

    2014-01-01

    While changes in cochlear frequency tuning are thought to play an important role in the perceptual difficulties of people with sensorineural hearing loss (SNHL), the possible role of temporal processing deficits remains less clear. Our knowledge of temporal envelope coding in the impaired cochlea is limited to two studies that examined auditory-nerve fiber responses to narrowband amplitude modulated stimuli. In the present study, we used Wiener-kernel analyses of auditory-nerve fiber responses to broadband Gaussian noise in anesthetized chinchillas to quantify changes in temporal envelope coding with noise-induced SNHL. Temporal modulation transfer functions (TMTFs) and temporal windows of sensitivity to acoustic stimulation were computed from 2nd-order Wiener kernels and analyzed to estimate the temporal precision, amplitude, and latency of envelope coding. Noise overexposure was associated with slower (less negative) TMTF roll-off with increasing modulation frequency and reduced temporal window duration. The results show that at equal stimulus sensation level, SNHL increases the temporal precision of envelope coding by 20–30%. Furthermore, SNHL increased the amplitude of envelope coding by 50% in fibers with CFs from 1–2 kHz and decreased mean response latency by 0.4 ms. While a previous study of envelope coding demonstrated a similar increase in response amplitude, the present study is the first to show enhanced temporal precision. This new finding may relate to the use of a more complex stimulus with broad frequency bandwidth and a dynamic temporal envelope. Exaggerated neural coding of fast envelope modulations may contribute to perceptual difficulties in people with SNHL by acting as a distraction from more relevant acoustic cues, especially in fluctuating background noise. Finally, the results underscore the value of studying sensory systems with more natural, real-world stimuli. PMID:24596545

  14. Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment

    PubMed Central

    Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  15. Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing.

    PubMed

    Impey, Danielle; de la Salle, Sara; Knott, Verner

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite (anodal stimulation) or inhibit (cathodal stimulation) activity in the brain area of interest via small electrodes placed on the scalp. Currently, tDCS of the frontal cortex is being used as a tool to investigate cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. tDCS has been found to facilitate cognitive performance on measures of attention, memory, and frontal-executive functions. Recently, a short session of anodal tDCS over the temporal lobe has been shown to increase auditory sensory processing as indexed by the Mismatch Negativity (MMN) event-related potential (ERP). This preliminary pilot study examined the separate and interacting effects of both anodal and cathodal tDCS on MMN-indexed auditory pitch discrimination. In a randomized, double blind design, the MMN was assessed before (baseline) and after tDCS (2mA, 20min) in 2 separate sessions, one involving 'sham' stimulation (the device is turned off), followed by anodal stimulation (to temporarily excite cortical activity locally), and one involving cathodal stimulation (to temporarily decrease cortical activity locally), followed by anodal stimulation. Results demonstrated that anodal tDCS over the temporal cortex increased MMN-indexed auditory detection of pitch deviance, and while cathodal tDCS decreased auditory discrimination in baseline-stratified groups, subsequent anodal stimulation did not significantly alter MMN amplitudes. These findings strengthen the position that tDCS effects on cognition extend to the neural processing of sensory input and raise the possibility that this neuromodulatory technique may be useful for investigating sensory processing deficits in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey.

    PubMed

    Scott, Brian H; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-11-01

    In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory-related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ∼45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ∼25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1-5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory-related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs. © 2017 Wiley Periodicals, Inc.

  17. Temporal and identity prediction in visual-auditory events: Electrophysiological evidence from stimulus omissions.

    PubMed

    van Laarhoven, Thijs; Stekelenburg, Jeroen J; Vroomen, Jean

    2017-04-15

    A rare omission of a sound that is predictable by anticipatory visual information induces an early negative omission response (oN1) in the EEG during the period of silence where the sound was expected. It was previously suggested that the oN1 was primarily driven by the identity of the anticipated sound. Here, we examined the role of temporal prediction in conjunction with identity prediction of the anticipated sound in the evocation of the auditory oN1. With incongruent audiovisual stimuli (a video of a handclap that is consistently combined with the sound of a car horn) we demonstrate in Experiment 1 that a natural match in identity between the visual and auditory stimulus is not required for inducing the oN1, and that the perceptual system can adapt predictions to unnatural stimulus events. In Experiment 2 we varied either the auditory onset (relative to the visual onset) or the identity of the sound across trials in order to hamper temporal and identity predictions. Relative to the natural stimulus with correct auditory timing and matching audiovisual identity, the oN1 was abolished when either the timing or the identity of the sound could not be predicted reliably from the video. Our study demonstrates the flexibility of the perceptual system in predictive processing (Experiment 1) and also shows that precise predictions of timing and content are both essential elements for inducing an oN1 (Experiment 2). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evaluation of Domain-Specific Collaboration Interfaces for Team Command and Control Tasks

    DTIC Science & Technology

    2012-05-01

    Technologies 1.1.1. Virtual Whiteboard Cognitive theories relating the utilization, storage, and retrieval of verbal and spatial information, such as...AE Spatial emergent SE Auditory linguistic AL Spatial positional SP Facial figural FF Spatial quantitative SQ Facial motive FM Tactile figural...driven by the auditory linguistic (AL), short-term memory (STM), spatial attentive (SA), visual temporal (VT), and vocal process (V) subscales. 0

  19. Relating binaural pitch perception to the individual listener's auditory profile.

    PubMed

    Santurette, Sébastien; Dau, Torsten

    2012-04-01

    The ability of eight normal-hearing listeners and fourteen listeners with sensorineural hearing loss to detect and identify pitch contours was measured for binaural-pitch stimuli and salience-matched monaurally detectable pitches. In an effort to determine whether impaired binaural pitch perception was linked to a specific deficit, the auditory profiles of the individual listeners were characterized using measures of loudness perception, cognitive ability, binaural processing, temporal fine structure processing, and frequency selectivity, in addition to common audiometric measures. Two of the listeners were found not to perceive binaural pitch at all, despite a clear detection of monaural pitch. While both binaural and monaural pitches were detectable by all other listeners, identification scores were significantly lower for binaural than for monaural pitch. A total absence of binaural pitch sensation coexisted with a loss of a binaural signal-detection advantage in noise, without implying reduced cognitive function. Auditory filter bandwidths did not correlate with the difference in pitch identification scores between binaural and monaural pitches. However, subjects with impaired binaural pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization.

  20. Cross-modal detection using various temporal and spatial configurations.

    PubMed

    Schirillo, James A

    2011-01-01

    To better understand temporal and spatial cross-modal interactions, two signal detection experiments were conducted in which an auditory target was sometimes accompanied by an irrelevant flash of light. In the first, a psychometric function for detecting a unisensory auditory target in varying signal-to-noise ratios (SNRs) was derived. Then auditory target detection was measured while an irrelevant light was presented with light/sound stimulus onset asynchronies (SOAs) between 0 and ±700 ms. When the light preceded the sound by 100 ms or was coincident, target detection (d') improved for low SNR conditions. In contrast, for larger SOAs (350 and 700 ms), the behavioral gain resulted from a change in both d' and response criterion (β). However, when the light followed the sound, performance changed little. In the second experiment, observers detected multimodal target sounds at eccentricities of ±8°, and ±24°. Sensitivity benefits occurred at both locations, with a larger change at the more peripheral location. Thus, both temporal and spatial factors affect signal detection measures, effectively parsing sensory and decision-making processes.

  1. Electrophysiological evidence for a self-processing advantage during audiovisual speech integration.

    PubMed

    Treille, Avril; Vilain, Coriandre; Kandel, Sonia; Sato, Marc

    2017-09-01

    Previous electrophysiological studies have provided strong evidence for early multisensory integrative mechanisms during audiovisual speech perception. From these studies, one unanswered issue is whether hearing our own voice and seeing our own articulatory gestures facilitate speech perception, possibly through a better processing and integration of sensory inputs with our own sensory-motor knowledge. The present EEG study examined the impact of self-knowledge during the perception of auditory (A), visual (V) and audiovisual (AV) speech stimuli that were previously recorded from the participant or from a speaker he/she had never met. Audiovisual interactions were estimated by comparing N1 and P2 auditory evoked potentials during the bimodal condition (AV) with the sum of those observed in the unimodal conditions (A + V). In line with previous EEG studies, our results revealed an amplitude decrease of P2 auditory evoked potentials in AV compared to A + V conditions. Crucially, a temporal facilitation of N1 responses was observed during the visual perception of self speech movements compared to those of another speaker. This facilitation was negatively correlated with the saliency of visual stimuli. These results provide evidence for a temporal facilitation of the integration of auditory and visual speech signals when the visual situation involves our own speech gestures.

  2. Effects of Frequency Separation and Diotic/Dichotic Presentations on the Alternation Frequency Limits in Audition Derived from a Temporal Phase Discrimination Task.

    PubMed

    Kanaya, Shoko; Fujisaki, Waka; Nishida, Shin'ya; Furukawa, Shigeto; Yokosawa, Kazuhiko

    2015-02-01

    Temporal phase discrimination is a useful psychophysical task to evaluate how sensory signals, synchronously detected in parallel, are perceptually bound by human observers. In this task two stimulus sequences synchronously alternate between two states (say, A-B-A-B and X-Y-X-Y) in either of two temporal phases (ie A and B are respectively paired with X and Y, or vice versa). The critical alternation frequency beyond which participants cannot discriminate the temporal phase is measured as an index characterizing the temporal property of the underlying binding process. This task has been used to reveal the mechanisms underlying visual and cross-modal bindings. To directly compare these binding mechanisms with those in another modality, this study used the temporal phase discrimination task to reveal the processes underlying auditory bindings. The two sequences were alternations between two pitches. We manipulated the distance between the two sequences by changing intersequence frequency separation, or presentation ears (diotic vs dichotic). Results showed that the alternation frequency limit ranged from 7 to 30 Hz, becoming higher as the intersequence distance decreased, as is the case with vision. However, unlike vision, auditory phase discrimination limits were higher and more variable across participants. © 2015 SAGE Publications.

  3. Auditory Cortical Plasticity Drives Training-Induced Cognitive Changes in Schizophrenia

    PubMed Central

    Dale, Corby L.; Brown, Ethan G.; Fisher, Melissa; Herman, Alexander B.; Dowling, Anne F.; Hinkley, Leighton B.; Subramaniam, Karuna; Nagarajan, Srikantan S.; Vinogradov, Sophia

    2016-01-01

    Schizophrenia is characterized by dysfunction in basic auditory processing, as well as higher-order operations of verbal learning and executive functions. We investigated whether targeted cognitive training of auditory processing improves neural responses to speech stimuli, and how these changes relate to higher-order cognitive functions. Patients with schizophrenia performed an auditory syllable identification task during magnetoencephalography before and after 50 hours of either targeted cognitive training or a computer games control. Healthy comparison subjects were assessed at baseline and after a 10 week no-contact interval. Prior to training, patients (N = 34) showed reduced M100 response in primary auditory cortex relative to healthy participants (N = 13). At reassessment, only the targeted cognitive training patient group (N = 18) exhibited increased M100 responses. Additionally, this group showed increased induced high gamma band activity within left dorsolateral prefrontal cortex immediately after stimulus presentation, and later in bilateral temporal cortices. Training-related changes in neural activity correlated with changes in executive function scores but not verbal learning and memory. These data suggest that computerized cognitive training that targets auditory and verbal learning operations enhances both sensory responses in auditory cortex as well as engagement of prefrontal regions, as indexed during an auditory processing task with low demands on working memory. This neural circuit enhancement is in turn associated with better executive function but not verbal memory. PMID:26152668

  4. Species-specific calls evoke asymmetric activity in the monkey's temporal poles.

    PubMed

    Poremba, Amy; Malloy, Megan; Saunders, Richard C; Carson, Richard E; Herscovitch, Peter; Mishkin, Mortimer

    2004-01-29

    It has often been proposed that the vocal calls of monkeys are precursors of human speech, in part because they provide critical information to other members of the species who rely on them for survival and social interactions. Both behavioural and lesion studies suggest that monkeys, like humans, use the auditory system of the left hemisphere preferentially to process vocalizations. To investigate the pattern of neural activity that might underlie this particular form of functional asymmetry in monkeys, we measured local cerebral metabolic activity while the animals listened passively to species-specific calls compared with a variety of other classes of sound. Within the superior temporal gyrus, significantly greater metabolic activity occurred on the left side than on the right, only in the region of the temporal pole and only in response to monkey calls. This functional asymmetry was absent when these regions were separated by forebrain commissurotomy, suggesting that the perception of vocalizations elicits concurrent interhemispheric interactions that focus the auditory processing within a specialized area of one hemisphere.

  5. Anatomical Correlates of Non-Verbal Perception in Dementia Patients

    PubMed Central

    Lin, Pin-Hsuan; Chen, Hsiu-Hui; Chen, Nai-Ching; Chang, Wen-Neng; Huang, Chi-Wei; Chang, Ya-Ting; Hsu, Shih-Wei; Hsu, Che-Wei; Chang, Chiung-Chih

    2016-01-01

    Purpose: Patients with dementia who have dissociations in verbal and non-verbal sound processing may offer insights into the anatomic basis for highly related auditory modes. Methods: To determine the neuronal networks on non-verbal perception, 16 patients with Alzheimer’s dementia (AD), 15 with behavior variant fronto-temporal dementia (bv-FTD), 14 with semantic dementia (SD) were evaluated and compared with 15 age-matched controls. Neuropsychological and auditory perceptive tasks were included to test the ability to compare pitch changes, scale-violated melody and for naming and associating with environmental sound. The brain 3D T1 images were acquired and voxel-based morphometry (VBM) was used to compare and correlated the volumetric measures with task scores. Results: The SD group scored the lowest among 3 groups in pitch or scale-violated melody tasks. In the environmental sound test, the SD group also showed impairment in naming and also in associating sound with pictures. The AD and bv-FTD groups, compared with the controls, showed no differences in all tests. VBM with task score correlation showed that atrophy in the right supra-marginal and superior temporal gyri was strongly related to deficits in detecting violated scales, while atrophy in the bilateral anterior temporal poles and left medial temporal structures was related to deficits in environmental sound recognition. Conclusions: Auditory perception of pitch, scale-violated melody or environmental sound reflects anatomical degeneration in dementia patients and the processing of non-verbal sounds are mediated by distinct neural circuits. PMID:27630558

  6. Anatomical Correlates of Non-Verbal Perception in Dementia Patients.

    PubMed

    Lin, Pin-Hsuan; Chen, Hsiu-Hui; Chen, Nai-Ching; Chang, Wen-Neng; Huang, Chi-Wei; Chang, Ya-Ting; Hsu, Shih-Wei; Hsu, Che-Wei; Chang, Chiung-Chih

    2016-01-01

    Patients with dementia who have dissociations in verbal and non-verbal sound processing may offer insights into the anatomic basis for highly related auditory modes. To determine the neuronal networks on non-verbal perception, 16 patients with Alzheimer's dementia (AD), 15 with behavior variant fronto-temporal dementia (bv-FTD), 14 with semantic dementia (SD) were evaluated and compared with 15 age-matched controls. Neuropsychological and auditory perceptive tasks were included to test the ability to compare pitch changes, scale-violated melody and for naming and associating with environmental sound. The brain 3D T1 images were acquired and voxel-based morphometry (VBM) was used to compare and correlated the volumetric measures with task scores. The SD group scored the lowest among 3 groups in pitch or scale-violated melody tasks. In the environmental sound test, the SD group also showed impairment in naming and also in associating sound with pictures. The AD and bv-FTD groups, compared with the controls, showed no differences in all tests. VBM with task score correlation showed that atrophy in the right supra-marginal and superior temporal gyri was strongly related to deficits in detecting violated scales, while atrophy in the bilateral anterior temporal poles and left medial temporal structures was related to deficits in environmental sound recognition. Auditory perception of pitch, scale-violated melody or environmental sound reflects anatomical degeneration in dementia patients and the processing of non-verbal sounds are mediated by distinct neural circuits.

  7. Multi-voxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    PubMed Central

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350

  8. Linguistic processing in visual and modality-nonspecific brain areas: PET recordings during selective attention.

    PubMed

    Vorobyev, Victor A; Alho, Kimmo; Medvedev, Svyatoslav V; Pakhomov, Sergey V; Roudas, Marina S; Rutkovskaya, Julia M; Tervaniemi, Mari; Van Zuijen, Titia L; Näätänen, Risto

    2004-07-01

    Positron emission tomography (PET) was used to investigate the neural basis of selective processing of linguistic material during concurrent presentation of multiple stimulus streams ("cocktail-party effect"). Fifteen healthy right-handed adult males were to attend to one of three simultaneously presented messages: one presented visually, one to the left ear, and one to the right ear. During the control condition, subjects attended to visually presented consonant letter strings and ignored auditory messages. This paper reports the modality-nonspecific language processing and visual word-form processing, whereas the auditory attention effects have been reported elsewhere [Cogn. Brain Res. 17 (2003) 201]. The left-hemisphere areas activated by both the selective processing of text and speech were as follows: the inferior prefrontal (Brodmann's area, BA 45, 47), anterior temporal (BA 38), posterior insular (BA 13), inferior (BA 20) and middle temporal (BA 21), occipital (BA 18/30) cortices, the caudate nucleus, and the amygdala. In addition, bilateral activations were observed in the medial occipito-temporal cortex and the cerebellum. Decreases of activation during both text and speech processing were found in the parietal (BA 7, 40), frontal (BA 6, 8, 44) and occipito-temporal (BA 37) regions of the right hemisphere. Furthermore, the present data suggest that the left occipito-temporal cortex (BA 18, 20, 37, 21) can be subdivided into three functionally distinct regions in the posterior-anterior direction on the basis of their activation during attentive processing of sublexical orthography, visual word form, and supramodal higher-level aspects of language.

  9. Diminished Auditory Responses during NREM Sleep Correlate with the Hierarchy of Language Processing

    PubMed Central

    Furman-Haran, Edna; Arzi, Anat; Levkovitz, Yechiel; Malach, Rafael

    2016-01-01

    Natural sleep provides a powerful model system for studying the neuronal correlates of awareness and state changes in the human brain. To quantitatively map the nature of sleep-induced modulations in sensory responses we presented participants with auditory stimuli possessing different levels of linguistic complexity. Ten participants were scanned using functional magnetic resonance imaging (fMRI) during the waking state and after falling asleep. Sleep staging was based on heart rate measures validated independently on 20 participants using concurrent EEG and heart rate measurements and the results were confirmed using permutation analysis. Participants were exposed to three types of auditory stimuli: scrambled sounds, meaningless word sentences and comprehensible sentences. During non-rapid eye movement (NREM) sleep, we found diminishing brain activation along the hierarchy of language processing, more pronounced in higher processing regions. Specifically, the auditory thalamus showed similar activation levels during sleep and waking states, primary auditory cortex remained activated but showed a significant reduction in auditory responses during sleep, and the high order language-related representation in inferior frontal gyrus (IFG) cortex showed a complete abolishment of responses during NREM sleep. In addition to an overall activation decrease in language processing regions in superior temporal gyrus and IFG, those areas manifested a loss of semantic selectivity during NREM sleep. Our results suggest that the decreased awareness to linguistic auditory stimuli during NREM sleep is linked to diminished activity in high order processing stations. PMID:27310812

  10. Diminished Auditory Responses during NREM Sleep Correlate with the Hierarchy of Language Processing.

    PubMed

    Wilf, Meytal; Ramot, Michal; Furman-Haran, Edna; Arzi, Anat; Levkovitz, Yechiel; Malach, Rafael

    2016-01-01

    Natural sleep provides a powerful model system for studying the neuronal correlates of awareness and state changes in the human brain. To quantitatively map the nature of sleep-induced modulations in sensory responses we presented participants with auditory stimuli possessing different levels of linguistic complexity. Ten participants were scanned using functional magnetic resonance imaging (fMRI) during the waking state and after falling asleep. Sleep staging was based on heart rate measures validated independently on 20 participants using concurrent EEG and heart rate measurements and the results were confirmed using permutation analysis. Participants were exposed to three types of auditory stimuli: scrambled sounds, meaningless word sentences and comprehensible sentences. During non-rapid eye movement (NREM) sleep, we found diminishing brain activation along the hierarchy of language processing, more pronounced in higher processing regions. Specifically, the auditory thalamus showed similar activation levels during sleep and waking states, primary auditory cortex remained activated but showed a significant reduction in auditory responses during sleep, and the high order language-related representation in inferior frontal gyrus (IFG) cortex showed a complete abolishment of responses during NREM sleep. In addition to an overall activation decrease in language processing regions in superior temporal gyrus and IFG, those areas manifested a loss of semantic selectivity during NREM sleep. Our results suggest that the decreased awareness to linguistic auditory stimuli during NREM sleep is linked to diminished activity in high order processing stations.

  11. Atypical vertical sound localization and sound-onset sensitivity in people with autism spectrum disorders

    PubMed Central

    Visser, Eelke; Zwiers, Marcel P.; Kan, Cornelis C.; Hoekstra, Liesbeth; van Opstal, A. John; Buitelaar, Jan K.

    2013-01-01

    Background Autism spectrum disorders (ASDs) are associated with auditory hyper- or hyposensitivity; atypicalities in central auditory processes, such as speech-processing and selective auditory attention; and neural connectivity deficits. We sought to investigate whether the low-level integrative processes underlying sound localization and spatial discrimination are affected in ASDs. Methods We performed 3 behavioural experiments to probe different connecting neural pathways: 1) horizontal and vertical localization of auditory stimuli in a noisy background, 2) vertical localization of repetitive frequency sweeps and 3) discrimination of horizontally separated sound stimuli with a short onset difference (precedence effect). Results Ten adult participants with ASDs and 10 healthy control listeners participated in experiments 1 and 3; sample sizes for experiment 2 were 18 adults with ASDs and 19 controls. Horizontal localization was unaffected, but vertical localization performance was significantly worse in participants with ASDs. The temporal window for the precedence effect was shorter in participants with ASDs than in controls. Limitations The study was performed with adult participants and hence does not provide insight into the developmental aspects of auditory processing in individuals with ASDs. Conclusion Changes in low-level auditory processing could underlie degraded performance in vertical localization, which would be in agreement with recently reported changes in the neuroanatomy of the auditory brainstem in individuals with ASDs. The results are further discussed in the context of theories about abnormal brain connectivity in individuals with ASDs. PMID:24148845

  12. Motor contributions to the temporal precision of auditory attention.

    PubMed

    Morillon, Benjamin; Schroeder, Charles E; Wyart, Valentin

    2014-10-15

    In temporal-or dynamic-attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory 'active sensing'.

  13. Transformation of temporal sequences in the zebra finch auditory system

    PubMed Central

    Lim, Yoonseob; Lagoy, Ryan; Shinn-Cunningham, Barbara G; Gardner, Timothy J

    2016-01-01

    This study examines how temporally patterned stimuli are transformed as they propagate from primary to secondary zones in the thalamorecipient auditory pallium in zebra finches. Using a new class of synthetic click stimuli, we find a robust mapping from temporal sequences in the primary zone to distinct population vectors in secondary auditory areas. We tested whether songbirds could discriminate synthetic click sequences in an operant setup and found that a robust behavioral discrimination is present for click sequences composed of intervals ranging from 11 ms to 40 ms, but breaks down for stimuli composed of longer inter-click intervals. This work suggests that the analog of the songbird auditory cortex transforms temporal patterns to sequence-selective population responses or ‘spatial codes', and that these distinct population responses contribute to behavioral discrimination of temporally complex sounds. DOI: http://dx.doi.org/10.7554/eLife.18205.001 PMID:27897971

  14. Cognitive effects of rhythmic auditory stimulation in Parkinson's disease: A P300 study.

    PubMed

    Lei, Juan; Conradi, Nadine; Abel, Cornelius; Frisch, Stefan; Brodski-Guerniero, Alla; Hildner, Marcel; Kell, Christian A; Kaiser, Jochen; Schmidt-Kassow, Maren

    2018-05-16

    Rhythmic auditory stimulation (RAS) may compensate dysfunctions of the basal ganglia (BG), involved with intrinsic evaluation of temporal intervals and action initiation or continuation. In the cognitive domain, RAS containing periodically presented tones facilitates young healthy participants' attention allocation to anticipated time points, indicated by better performance and larger P300 amplitudes to periodic compared to random stimuli. Additionally, active auditory-motor synchronization (AMS) leads to a more precise temporal encoding of stimuli via embodied timing encoding than stimulus presentation adapted to the participants' actual movements. Here we investigated the effect of RAS and AMS in Parkinson's disease (PD). 23 PD patients and 23 healthy age-matched controls underwent an auditory oddball task. We manipulated the timing (periodic/random/adaptive) and setting (pedaling/sitting still) of stimulation. While patients elicited a general timing effect, i.e., larger P300 amplitudes for periodic versus random tones for both, sitting and pedaling conditions, controls showed a timing effect only for the sitting but not for the pedaling condition. However, a correlation between P300 amplitudes and motor variability in the periodic pedaling condition was obtained in control participants only. We conclude that RAS facilitates attentional processing of temporally predictable external events in PD patients as well as healthy controls, but embodied timing encoding via body movement does not affect stimulus processing due to BG impairment in patients. Moreover, even with intact embodied timing encoding, such as healthy elderly, the effect of AMS depends on the degree of movement synchronization performance, which is very low in the current study. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Realigning thunder and lightning: temporal adaptation to spatiotemporally distant events.

    PubMed

    Navarra, Jordi; Fernández-Prieto, Irune; Garcia-Morera, Joel

    2013-01-01

    The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants' SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events).

  16. Temporal Integration of Auditory Information Is Invariant to Temporal Grouping Cues1,2,3

    PubMed Central

    Tsunada, Joji

    2015-01-01

    Abstract Auditory perception depends on the temporal structure of incoming acoustic stimuli. Here, we examined whether a temporal manipulation that affects the perceptual grouping also affects the time dependence of decisions regarding those stimuli. We designed a novel discrimination task that required human listeners to decide whether a sequence of tone bursts was increasing or decreasing in frequency. We manipulated temporal perceptual-grouping cues by changing the time interval between the tone bursts, which led to listeners hearing the sequences as a single sound for short intervals or discrete sounds for longer intervals. Despite these strong perceptual differences, this manipulation did not affect the efficiency of how auditory information was integrated over time to form a decision. Instead, the grouping manipulation affected subjects’ speed−accuracy trade-offs. These results indicate that the temporal dynamics of evidence accumulation for auditory perceptual decisions can be invariant to manipulations that affect the perceptual grouping of the evidence. PMID:26464975

  17. Music and language: relations and disconnections.

    PubMed

    Kraus, Nina; Slater, Jessica

    2015-01-01

    Music and language provide an important context in which to understand the human auditory system. While they perform distinct and complementary communicative functions, music and language are both rooted in the human desire to connect with others. Since sensory function is ultimately shaped by what is biologically important to the organism, the human urge to communicate has been a powerful driving force in both the evolution of auditory function and the ways in which it can be changed by experience within an individual lifetime. This chapter emphasizes the highly interactive nature of the auditory system as well as the depth of its integration with other sensory and cognitive systems. From the origins of music and language to the effects of auditory expertise on the neural encoding of sound, we consider key themes in auditory processing, learning, and plasticity. We emphasize the unique role of the auditory system as the temporal processing "expert" in the brain, and explore relationships between communication and cognition. We demonstrate how experience with music and language can have a significant impact on underlying neural function, and that auditory expertise strengthens some of the very same aspects of sound encoding that are deficient in impaired populations. © 2015 Elsevier B.V. All rights reserved.

  18. Representations of temporal information in short-term memory: Are they modality-specific?

    PubMed

    Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M

    2016-10-01

    Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The neuromechanics of hearing

    NASA Astrophysics Data System (ADS)

    Araya, Mussie K.; Brownell, William E.

    2015-12-01

    Hearing requires precise detection and coding of acoustic signals by the inner ear and equally precise communication of the information through the auditory brainstem. A membrane based motor in the outer hair cell lateral wall contributes to the transformation of sound into a precise neural code. Structural, molecular and energetic similarities between the outer hair cell and auditory brainstem neurons suggest that a similar membrane based motor may contribute to signal processing in the auditory CNS. Cooperative activation of voltage gated ion channels enhances neuronal temporal processing and increases the upper frequency limit for phase locking. We explore the possibility that membrane mechanics contribute to ion channel cooperativity as a consequence of the nearly instantaneous speed of electromechanical signaling and the fact that membrane composition and mechanics modulate ion channel function.

  20. Left Superior Temporal Gyrus Is Coupled to Attended Speech in a Cocktail-Party Auditory Scene.

    PubMed

    Vander Ghinst, Marc; Bourguignon, Mathieu; Op de Beeck, Marc; Wens, Vincent; Marty, Brice; Hassid, Sergio; Choufani, Georges; Jousmäki, Veikko; Hari, Riitta; Van Bogaert, Patrick; Goldman, Serge; De Tiège, Xavier

    2016-02-03

    Using a continuous listening task, we evaluated the coupling between the listener's cortical activity and the temporal envelopes of different sounds in a multitalker auditory scene using magnetoencephalography and corticovocal coherence analysis. Neuromagnetic signals were recorded from 20 right-handed healthy adult humans who listened to five different recorded stories (attended speech streams), one without any multitalker background (No noise) and four mixed with a "cocktail party" multitalker background noise at four signal-to-noise ratios (5, 0, -5, and -10 dB) to produce speech-in-noise mixtures, here referred to as Global scene. Coherence analysis revealed that the modulations of the attended speech stream, presented without multitalker background, were coupled at ∼0.5 Hz to the activity of both superior temporal gyri, whereas the modulations at 4-8 Hz were coupled to the activity of the right supratemporal auditory cortex. In cocktail party conditions, with the multitalker background noise, the coupling was at both frequencies stronger for the attended speech stream than for the unattended Multitalker background. The coupling strengths decreased as the Multitalker background increased. During the cocktail party conditions, the ∼0.5 Hz coupling became left-hemisphere dominant, compared with bilateral coupling without the multitalker background, whereas the 4-8 Hz coupling remained right-hemisphere lateralized in both conditions. The brain activity was not coupled to the multitalker background or to its individual talkers. The results highlight the key role of listener's left superior temporal gyri in extracting the slow ∼0.5 Hz modulations, likely reflecting the attended speech stream within a multitalker auditory scene. When people listen to one person in a "cocktail party," their auditory cortex mainly follows the attended speech stream rather than the entire auditory scene. However, how the brain extracts the attended speech stream from the whole auditory scene and how increasing background noise corrupts this process is still debated. In this magnetoencephalography study, subjects had to attend a speech stream with or without multitalker background noise. Results argue for frequency-dependent cortical tracking mechanisms for the attended speech stream. The left superior temporal gyrus tracked the ∼0.5 Hz modulations of the attended speech stream only when the speech was embedded in multitalker background, whereas the right supratemporal auditory cortex tracked 4-8 Hz modulations during both noiseless and cocktail-party conditions. Copyright © 2016 the authors 0270-6474/16/361597-11$15.00/0.

  1. Auditory and motor imagery modulate learning in music performance

    PubMed Central

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of auditory interference. Motor imagery aided pitch accuracy overall when interference conditions were manipulated at encoding (Experiment 1) but not at retrieval (Experiment 2). Thus, skilled performers' imagery abilities had distinct influences on encoding and retrieval of musical sequences. PMID:23847495

  2. Local and Global Auditory Processing: Behavioral and ERP Evidence

    PubMed Central

    Sanders, Lisa D.; Poeppel, David

    2007-01-01

    Differential processing of local and global visual features is well established. Global precedence effects, differences in event-related potentials (ERPs) elicited when attention is focused on local versus global levels, and hemispheric specialization for local and global features all indicate that relative scale of detail is an important distinction in visual processing. Observing analogous differential processing of local and global auditory information would suggest that scale of detail is a general organizational principle of the brain. However, to date the research on auditory local and global processing has primarily focused on music perception or on the perceptual analysis of relatively higher and lower frequencies. The study described here suggests that temporal aspects of auditory stimuli better capture the local-global distinction. By combining short (40 ms) frequency modulated tones in series to create global auditory patterns (500 ms), we independently varied whether pitch increased or decreased over short time spans (local) and longer time spans (global). Accuracy and reaction time measures revealed better performance for global judgments and asymmetric interference that were modulated by amount of pitch change. ERPs recorded while participants listened to identical sounds and indicated the direction of pitch change at the local or global levels provided evidence for differential processing similar to that found in ERP studies employing hierarchical visual stimuli. ERP measures failed to provide evidence for lateralization of local and global auditory perception, but differences in distributions suggest preferential processing in more ventral and dorsal areas respectively. PMID:17113115

  3. Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory.

    PubMed

    Guo, Zhiqiang; Wu, Xiuqin; Li, Weifeng; Jones, Jeffery A; Yan, Nan; Sheft, Stanley; Liu, Peng; Liu, Hanjun

    2017-10-25

    Although working memory (WM) is considered as an emergent property of the speech perception and production systems, the role of WM in sensorimotor integration during speech processing is largely unknown. We conducted two event-related potential experiments with female and male young adults to investigate the contribution of WM to the neurobehavioural processing of altered auditory feedback during vocal production. A delayed match-to-sample task that required participants to indicate whether the pitch feedback perturbations they heard during vocalizations in test and sample sequences matched, elicited significantly larger vocal compensations, larger N1 responses in the left middle and superior temporal gyrus, and smaller P2 responses in the left middle and superior temporal gyrus, inferior parietal lobule, somatosensory cortex, right inferior frontal gyrus, and insula compared with a control task that did not require memory retention of the sequence of pitch perturbations. On the other hand, participants who underwent extensive auditory WM training produced suppressed vocal compensations that were correlated with improved auditory WM capacity, and enhanced P2 responses in the left middle frontal gyrus, inferior parietal lobule, right inferior frontal gyrus, and insula that were predicted by pretraining auditory WM capacity. These findings indicate that WM can enhance the perception of voice auditory feedback errors while inhibiting compensatory vocal behavior to prevent voice control from being excessively influenced by auditory feedback. This study provides the first evidence that auditory-motor integration for voice control can be modulated by top-down influences arising from WM, rather than modulated exclusively by bottom-up and automatic processes. SIGNIFICANCE STATEMENT One outstanding question that remains unsolved in speech motor control is how the mismatch between predicted and actual voice auditory feedback is detected and corrected. The present study provides two lines of converging evidence, for the first time, that working memory cannot only enhance the perception of vocal feedback errors but also exert inhibitory control over vocal motor behavior. These findings represent a major advance in our understanding of the top-down modulatory mechanisms that support the detection and correction of prediction-feedback mismatches during sensorimotor control of speech production driven by working memory. Rather than being an exclusively bottom-up and automatic process, auditory-motor integration for voice control can be modulated by top-down influences arising from working memory. Copyright © 2017 the authors 0270-6474/17/3710324-11$15.00/0.

  4. Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex.

    PubMed

    Shetake, Jai A; Engineer, Navzer D; Vrana, Will A; Wolf, Jordan T; Kilgard, Michael P

    2012-01-01

    The selectivity of neurons in sensory cortex can be modified by pairing neuromodulator release with sensory stimulation. Repeated pairing of electrical stimulation of the cholinergic nucleus basalis, for example, induces input specific plasticity in primary auditory cortex (A1). Pairing nucleus basalis stimulation (NBS) with a tone increases the number of A1 neurons that respond to the paired tone frequency. Pairing NBS with fast or slow tone trains can respectively increase or decrease the ability of A1 neurons to respond to rapidly presented tones. Pairing vagus nerve stimulation (VNS) with a single tone alters spectral tuning in the same way as NBS-tone pairing without the need for brain surgery. In this study, we tested whether pairing VNS with tone trains can change the temporal response properties of A1 neurons. In naïve rats, A1 neurons respond strongly to tones repeated at rates up to 10 pulses per second (pps). Repeatedly pairing VNS with 15 pps tone trains increased the temporal following capacity of A1 neurons and repeatedly pairing VNS with 5 pps tone trains decreased the temporal following capacity of A1 neurons. Pairing VNS with tone trains did not alter the frequency selectivity or tonotopic organization of auditory cortex neurons. Since VNS is well tolerated by patients, VNS-tone train pairing represents a viable method to direct temporal plasticity in a variety of human conditions associated with temporal processing deficits. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Infant discrimination of rapid auditory cues predicts later language impairment.

    PubMed

    Benasich, April A; Tallal, Paula

    2002-10-17

    The etiology and mechanisms of specific language impairment (SLI) in children are unknown. Differences in basic auditory processing abilities have been suggested to underlie their language deficits. Studies suggest that the neuropathology, such as atypical patterns of cerebral lateralization and cortical cellular anomalies, implicated in such impairments likely occur early in life. Such anomalies may play a part in the rapid processing deficits seen in this disorder. However, prospective, longitudinal studies in infant populations that are critical to examining these hypotheses have not been done. In the study described, performance on brief, rapidly-presented, successive auditory processing and perceptual-cognitive tasks were assessed in two groups of infants: normal control infants with no family history of language disorders and infants from families with a positive family history for language impairment. Initial assessments were obtained when infants were 6-9 months of age (M=7.5 months) and the sample was then followed through age 36 months. At the first visit, infants' processing of rapid auditory cues as well as global processing speed and memory were assessed. Significant differences in mean thresholds were seen in infants born into families with a history of SLI as compared with controls. Examination of relations between infant processing abilities and emerging language through 24 months-of-age revealed that threshold for rapid auditory processing at 7.5 months was the single best predictor of language outcome. At age 3, rapid auditory processing threshold and being male, together predicted 39-41% of the variance in language outcome. Thus, early deficits in rapid auditory processing abilities both precede and predict subsequent language delays. These findings support an essential role for basic nonlinguistic, central auditory processes, particularly rapid spectrotemporal processing, in early language development. Further, these findings provide a temporal diagnostic window during which future language impairments may be addressed.

  6. Functional Topography of Human Auditory Cortex

    PubMed Central

    Rauschecker, Josef P.

    2016-01-01

    Functional and anatomical studies have clearly demonstrated that auditory cortex is populated by multiple subfields. However, functional characterization of those fields has been largely the domain of animal electrophysiology, limiting the extent to which human and animal research can inform each other. In this study, we used high-resolution functional magnetic resonance imaging to characterize human auditory cortical subfields using a variety of low-level acoustic features in the spectral and temporal domains. Specifically, we show that topographic gradients of frequency preference, or tonotopy, extend along two axes in human auditory cortex, thus reconciling historical accounts of a tonotopic axis oriented medial to lateral along Heschl's gyrus and more recent findings emphasizing tonotopic organization along the anterior–posterior axis. Contradictory findings regarding topographic organization according to temporal modulation rate in acoustic stimuli, or “periodotopy,” are also addressed. Although isolated subregions show a preference for high rates of amplitude-modulated white noise (AMWN) in our data, large-scale “periodotopic” organization was not found. Organization by AM rate was correlated with dominant pitch percepts in AMWN in many regions. In short, our data expose early auditory cortex chiefly as a frequency analyzer, and spectral frequency, as imposed by the sensory receptor surface in the cochlea, seems to be the dominant feature governing large-scale topographic organization across human auditory cortex. SIGNIFICANCE STATEMENT In this study, we examine the nature of topographic organization in human auditory cortex with fMRI. Topographic organization by spectral frequency (tonotopy) extended in two directions: medial to lateral, consistent with early neuroimaging studies, and anterior to posterior, consistent with more recent reports. Large-scale organization by rates of temporal modulation (periodotopy) was correlated with confounding spectral content of amplitude-modulated white-noise stimuli. Together, our results suggest that the organization of human auditory cortex is driven primarily by its response to spectral acoustic features, and large-scale periodotopy spanning across multiple regions is not supported. This fundamental information regarding the functional organization of early auditory cortex will inform our growing understanding of speech perception and the processing of other complex sounds. PMID:26818527

  7. The anterior temporal lobes support residual comprehension in Wernicke's aphasia.

    PubMed

    Robson, Holly; Zahn, Roland; Keidel, James L; Binney, Richard J; Sage, Karen; Lambon Ralph, Matthew A

    2014-03-01

    Wernicke's aphasia occurs after a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory-verbal comprehension is significantly impaired in Wernicke's aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used functional magnetic resonance imaging to investigate the neural basis of written word and picture semantic processing in Wernicke's aphasia, with the wider aim of examining how the semantic system is altered after damage to the classical comprehension regions. Twelve participants with chronic Wernicke's aphasia and 12 control participants performed semantic animate-inanimate judgements and a visual height judgement baseline task. Whole brain and region of interest analysis in Wernicke's aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke's aphasia group displayed an 'over-activation' in comparison with control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke's aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results provide support for models in which the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions.

  8. Evidence for a basal temporal visual language center: cortical stimulation producing pure alexia.

    PubMed

    Mani, J; Diehl, B; Piao, Z; Schuele, S S; Lapresto, E; Liu, P; Nair, D R; Dinner, D S; Lüders, H O

    2008-11-11

    Dejerine and Benson and Geschwind postulated disconnection of the dominant angular gyrus from both visual association cortices as the basis for pure alexia, emphasizing disruption of white matter tracts in the dominant temporooccipital region. Recently functional imaging studies provide evidence for direct participation of basal temporal and occipital cortices in the cognitive process of reading. The exact location and function of these areas remain a matter of debate. To confirm the participation of the basal temporal region in reading. Extraoperative electrical stimulation of the dominant hemisphere was performed in three subjects using subdural electrodes, as part of presurgical evaluation for refractory epilepsy. Pure alexia was reproduced during cortical stimulation of the dominant posterior fusiform and inferior temporal gyri in all three patients. Stimulation resulted in selective reading difficulty with intact auditory comprehension and writing. Reading difficulty involved sentences and words with intact letter by letter reading. Picture naming difficulties were also noted at some electrodes. This region is located posterior to and contiguous with the basal temporal language area (BTLA) where stimulation resulted in global language dysfunction in visual and auditory realms. The location corresponded with the visual word form area described on functional MRI. These observations support the existence of a visual language area in the dominant fusiform and occipitotemporal gyri, contiguous with basal temporal language area. A portion of visual language area was exclusively involved in lexical processing while the other part of this region processed both lexical and nonlexical symbols.

  9. Processing of spectral and amplitude envelope of animal vocalizations in the human auditory cortex.

    PubMed

    Altmann, Christian F; Gomes de Oliveira Júnior, Cícero; Heinemann, Linda; Kaiser, Jochen

    2010-08-01

    In daily life, we usually identify sounds effortlessly and efficiently. Two properties are particularly salient and of importance for sound identification: the sound's overall spectral envelope and its temporal amplitude envelope. In this study, we aimed at investigating the representation of these two features in the human auditory cortex by using a functional magnetic resonance imaging adaptation paradigm. We presented pairs of sound stimuli derived from animal vocalizations that preserved the time-averaged frequency spectrum of the animal vocalizations and the amplitude envelope. We presented the pairs in four different conditions: (a) pairs with the same amplitude envelope and mean spectral envelope, (b) same amplitude envelope, but different mean spectral envelope, (c) different amplitude envelope, but same mean spectral envelope and (d) both different amplitude envelope and mean spectral envelope. We found fMRI adaptation effects for both the mean spectral envelope and the amplitude envelope of animal vocalizations in overlapping cortical areas in the bilateral superior temporal gyrus posterior to Heschl's gyrus. Areas sensitive to the amplitude envelope extended further anteriorly along the lateral superior temporal gyrus in the left hemisphere, while areas sensitive to the spectral envelope extended further anteriorly along the right lateral superior temporal gyrus. Posterior tonotopic areas within the left superior temporal lobe displayed sensitivity for the mean spectrum. Our findings suggest involvement of primary auditory areas in the representation of spectral cues and encoding of general spectro-temporal features of natural sounds in non-primary posterior and lateral superior temporal cortex. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Bilateral capacity for speech sound processing in auditory comprehension: evidence from Wada procedures.

    PubMed

    Hickok, G; Okada, K; Barr, W; Pa, J; Rogalsky, C; Donnelly, K; Barde, L; Grant, A

    2008-12-01

    Data from lesion studies suggest that the ability to perceive speech sounds, as measured by auditory comprehension tasks, is supported by temporal lobe systems in both the left and right hemisphere. For example, patients with left temporal lobe damage and auditory comprehension deficits (i.e., Wernicke's aphasics), nonetheless comprehend isolated words better than one would expect if their speech perception system had been largely destroyed (70-80% accuracy). Further, when comprehension fails in such patients their errors are more often semantically-based, than-phonemically based. The question addressed by the present study is whether this ability of the right hemisphere to process speech sounds is a result of plastic reorganization following chronic left hemisphere damage, or whether the ability exists in undamaged language systems. We sought to test these possibilities by studying auditory comprehension in acute left versus right hemisphere deactivation during Wada procedures. A series of 20 patients undergoing clinically indicated Wada procedures were asked to listen to an auditorily presented stimulus word, and then point to its matching picture on a card that contained the target picture, a semantic foil, a phonemic foil, and an unrelated foil. This task was performed under three conditions, baseline, during left carotid injection of sodium amytal, and during right carotid injection of sodium amytal. Overall, left hemisphere injection led to a significantly higher error rate than right hemisphere injection. However, consistent with lesion work, the majority (75%) of these errors were semantic in nature. These findings suggest that auditory comprehension deficits are predominantly semantic in nature, even following acute left hemisphere disruption. This, in turn, supports the hypothesis that the right hemisphere is capable of speech sound processing in the intact brain.

  11. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.

    PubMed

    Chambers, Anna R; Salazar, Juan J; Polley, Daniel B

    2016-01-01

    Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB) of awake mice. Sound driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory plasticity at the level of the auditory thalamus was less robust overall than previous observations in cortex or midbrain. Hierarchical differences in compensatory plasticity following sensorineural hearing loss may reflect differences in GABA circuit organization within the MGB, as compared to the ACtx or IC.

  12. Delays in auditory processing identified in preschool children with FASD

    PubMed Central

    Stephen, Julia M.; Kodituwakku, Piyadasa W.; Kodituwakku, Elizabeth L.; Romero, Lucinda; Peters, Amanda M.; Sharadamma, Nirupama Muniswamy; Caprihan, Arvind; Coffman, Brian A.

    2012-01-01

    Background Both sensory and cognitive deficits have been associated with prenatal exposure to alcohol; however, very few studies have focused on sensory deficits in preschool aged children. Since sensory skills develop early, characterization of sensory deficits using novel imaging methods may reveal important neural markers of prenatal alcohol exposure. Materials and Methods Participants in this study were 10 children with a fetal alcohol spectrum disorder (FASD) and 15 healthy control children aged 3-6 years. All participants had normal hearing as determined by clinical screens. We measured their neurophysiological responses to auditory stimuli (1000 Hz, 72 dB tone) using magnetoencephalography (MEG). We used a multi-dipole spatio-temporal modeling technique (CSST – Ranken et al. 2002) to identify the location and timecourse of cortical activity in response to the auditory tones. The timing and amplitude of the left and right superior temporal gyrus sources associated with activation of left and right primary/secondary auditory cortices were compared across groups. Results There was a significant delay in M100 and M200 latencies for the FASD children relative to the HC children (p = 0.01), when including age as a covariate. The within-subjects effect of hemisphere was not significant. A comparable delay in M100 and M200 latencies was observed in children across the FASD subtypes. Discussion Auditory delay revealed by MEG in children with FASD may prove to be a useful neural marker of information processing difficulties in young children with prenatal alcohol exposure. The fact that delayed auditory responses were observed across the FASD spectrum suggests that it may be a sensitive measure of alcohol-induced brain damage. Therefore, this measure in conjunction with other clinical tools may prove useful for early identification of alcohol affected children, particularly those without dysmorphia. PMID:22458372

  13. Delays in auditory processing identified in preschool children with FASD.

    PubMed

    Stephen, Julia M; Kodituwakku, Piyadasa W; Kodituwakku, Elizabeth L; Romero, Lucinda; Peters, Amanda M; Sharadamma, Nirupama M; Caprihan, Arvind; Coffman, Brian A

    2012-10-01

    Both sensory and cognitive deficits have been associated with prenatal exposure to alcohol; however, very few studies have focused on sensory deficits in preschool-aged children. As sensory skills develop early, characterization of sensory deficits using novel imaging methods may reveal important neural markers of prenatal alcohol exposure. Participants in this study were 10 children with a fetal alcohol spectrum disorder (FASD) and 15 healthy control (HC) children aged 3 to 6 years. All participants had normal hearing as determined by clinical screens. We measured their neurophysiological responses to auditory stimuli (1,000 Hz, 72 dB tone) using magnetoencephalography (MEG). We used a multidipole spatio-temporal modeling technique to identify the location and timecourse of cortical activity in response to the auditory tones. The timing and amplitude of the left and right superior temporal gyrus sources associated with activation of left and right primary/secondary auditory cortices were compared across groups. There was a significant delay in M100 and M200 latencies for the FASD children relative to the HC children (p = 0.01), when including age as a covariate. The within-subjects effect of hemisphere was not significant. A comparable delay in M100 and M200 latencies was observed in children across the FASD subtypes. Auditory delay revealed by MEG in children with FASDs may prove to be a useful neural marker of information processing difficulties in young children with prenatal alcohol exposure. The fact that delayed auditory responses were observed across the FASD spectrum suggests that it may be a sensitive measure of alcohol-induced brain damage. Therefore, this measure in conjunction with other clinical tools may prove useful for early identification of alcohol affected children, particularly those without dysmorphia. Copyright © 2012 by the Research Society on Alcoholism.

  14. Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses

    PubMed Central

    Scheidt, Ryan E.; Kale, Sushrut; Heinz, Michael G.

    2010-01-01

    Auditory-nerve fibers demonstrate dynamic response properties in that they adapt to rapid changes in sound level, both at the onset and offset of a sound. These dynamic response properties affect temporal coding of stimulus modulations that are perceptually relevant for many sounds such as speech and music. Temporal dynamics have been well characterized in auditory-nerve fibers from normal-hearing animals, but little is known about the effects of sensorineural hearing loss on these dynamics. This study examined the effects of noise-induced hearing loss on the temporal dynamics in auditory-nerve fiber responses from anesthetized chinchillas. Post-stimulus time histograms were computed from responses to 50-ms tones presented at characteristic frequency and 30 dB above fiber threshold. Several response metrics related to temporal dynamics were computed from post-stimulus-time histograms and were compared between normal-hearing and noise-exposed animals. Results indicate that noise-exposed auditory-nerve fibers show significantly reduced response latency, increased onset response and percent adaptation, faster adaptation after onset, and slower recovery after offset. The decrease in response latency only occurred in noise-exposed fibers with significantly reduced frequency selectivity. These changes in temporal dynamics have important implications for temporal envelope coding in hearing-impaired ears, as well as for the design of dynamic compression algorithms for hearing aids. PMID:20696230

  15. Revisiting the "enigma" of musicians with dyslexia: Auditory sequencing and speech abilities.

    PubMed

    Zuk, Jennifer; Bishop-Liebler, Paula; Ozernov-Palchik, Ola; Moore, Emma; Overy, Katie; Welch, Graham; Gaab, Nadine

    2017-04-01

    Previous research has suggested a link between musical training and auditory processing skills. Musicians have shown enhanced perception of auditory features critical to both music and speech, suggesting that this link extends beyond basic auditory processing. It remains unclear to what extent musicians who also have dyslexia show these specialized abilities, considering often-observed persistent deficits that coincide with reading impairments. The present study evaluated auditory sequencing and speech discrimination in 52 adults comprised of musicians with dyslexia, nonmusicians with dyslexia, and typical musicians. An auditory sequencing task measuring perceptual acuity for tone sequences of increasing length was administered. Furthermore, subjects were asked to discriminate synthesized syllable continua varying in acoustic components of speech necessary for intraphonemic discrimination, which included spectral (formant frequency) and temporal (voice onset time [VOT] and amplitude envelope) features. Results indicate that musicians with dyslexia did not significantly differ from typical musicians and performed better than nonmusicians with dyslexia for auditory sequencing as well as discrimination of spectral and VOT cues within syllable continua. However, typical musicians demonstrated superior performance relative to both groups with dyslexia for discrimination of syllables varying in amplitude information. These findings suggest a distinct profile of speech processing abilities in musicians with dyslexia, with specific weaknesses in discerning amplitude cues within speech. Because these difficulties seem to remain persistent in adults with dyslexia despite musical training, this study only partly supports the potential for musical training to enhance the auditory processing skills known to be crucial for literacy in individuals with dyslexia. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Realigning Thunder and Lightning: Temporal Adaptation to Spatiotemporally Distant Events

    PubMed Central

    Navarra, Jordi; Fernández-Prieto, Irune; Garcia-Morera, Joel

    2013-01-01

    The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants’ SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events). PMID:24391928

  17. Statistical learning of multisensory regularities is enhanced in musicians: An MEG study.

    PubMed

    Paraskevopoulos, Evangelos; Chalas, Nikolas; Kartsidis, Panagiotis; Wollbrink, Andreas; Bamidis, Panagiotis

    2018-07-15

    The present study used magnetoencephalography (MEG) to identify the neural correlates of audiovisual statistical learning, while disentangling the differential contributions of uni- and multi-modal statistical mismatch responses in humans. The applied paradigm was based on a combination of a statistical learning paradigm and a multisensory oddball one, combining an audiovisual, an auditory and a visual stimulation stream, along with the corresponding deviances. Plasticity effects due to musical expertise were investigated by comparing the behavioral and MEG responses of musicians to non-musicians. The behavioral results indicated that the learning was successful for both musicians and non-musicians. The unimodal MEG responses are consistent with previous studies, revealing the contribution of Heschl's gyrus for the identification of auditory statistical mismatches and the contribution of medial temporal and visual association areas for the visual modality. The cortical network underlying audiovisual statistical learning was found to be partly common and partly distinct from the corresponding unimodal networks, comprising right temporal and left inferior frontal sources. Musicians showed enhanced activation in superior temporal and superior frontal gyrus. Connectivity and information processing flow amongst the sources comprising the cortical network of audiovisual statistical learning, as estimated by transfer entropy, was reorganized in musicians, indicating enhanced top-down processing. This neuroplastic effect showed a cross-modal stability between the auditory and audiovisual modalities. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Brainstem auditory-evoked potentials as an objective tool for evaluating hearing dysfunction in traumatic brain injury.

    PubMed

    Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F

    2004-03-01

    Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.

  19. A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system.

    PubMed

    Dicke, Ulrike; Ewert, Stephan D; Dau, Torsten; Kollmeier, Birger

    2007-01-01

    Periodic amplitude modulations (AMs) of an acoustic stimulus are presumed to be encoded in temporal activity patterns of neurons in the cochlear nucleus. Physiological recordings indicate that this temporal AM code is transformed into a rate-based periodicity code along the ascending auditory pathway. The present study suggests a neural circuit for the transformation from the temporal to the rate-based code. Due to the neural connectivity of the circuit, bandpass shaped rate modulation transfer functions are obtained that correspond to recorded functions of inferior colliculus (IC) neurons. In contrast to previous modeling studies, the present circuit does not employ a continuously changing temporal parameter to obtain different best modulation frequencies (BMFs) of the IC bandpass units. Instead, different BMFs are yielded from varying the number of input units projecting onto different bandpass units. In order to investigate the compatibility of the neural circuit with a linear modulation filterbank analysis as proposed in psychophysical studies, complex stimuli such as tones modulated by the sum of two sinusoids, narrowband noise, and iterated rippled noise were processed by the model. The model accounts for the encoding of AM depth over a large dynamic range and for modulation frequency selective processing of complex sounds.

  20. Temporal processing of audiovisual stimuli is enhanced in musicians: evidence from magnetoencephalography (MEG).

    PubMed

    Lu, Yao; Paraskevopoulos, Evangelos; Herholz, Sibylle C; Kuchenbuch, Anja; Pantev, Christo

    2014-01-01

    Numerous studies have demonstrated that the structural and functional differences between professional musicians and non-musicians are not only found within a single modality, but also with regard to multisensory integration. In this study we have combined psychophysical with neurophysiological measurements investigating the processing of non-musical, synchronous or various levels of asynchronous audiovisual events. We hypothesize that long-term multisensory experience alters temporal audiovisual processing already at a non-musical stage. Behaviorally, musicians scored significantly better than non-musicians in judging whether the auditory and visual stimuli were synchronous or asynchronous. At the neural level, the statistical analysis for the audiovisual asynchronous response revealed three clusters of activations including the ACC and the SFG and two bilaterally located activations in IFG and STG in both groups. Musicians, in comparison to the non-musicians, responded to synchronous audiovisual events with enhanced neuronal activity in a broad left posterior temporal region that covers the STG, the insula and the Postcentral Gyrus. Musicians also showed significantly greater activation in the left Cerebellum, when confronted with an audiovisual asynchrony. Taken together, our MEG results form a strong indication that long-term musical training alters the basic audiovisual temporal processing already in an early stage (direct after the auditory N1 wave), while the psychophysical results indicate that musical training may also provide behavioral benefits in the accuracy of the estimates regarding the timing of audiovisual events.

  1. In-Vivo Animation of Auditory-Language-Induced Gamma-Oscillations in Children with Intractable Focal Epilepsy

    PubMed Central

    Brown, Erik C.; Rothermel, Robert; Nishida, Masaaki; Juhász, Csaba; Muzik, Otto; Hoechstetter, Karsten; Sood, Sandeep; Chugani, Harry T.; Asano, Eishi

    2008-01-01

    We determined if high-frequency gamma-oscillations (50- to 150-Hz) were induced by simple auditory communication over the language network areas in children with focal epilepsy. Four children (ages: 7, 9, 10 and 16 years) with intractable left-hemispheric focal epilepsy underwent extraoperative electrocorticography (ECoG) as well as language mapping using neurostimulation and auditory-language-induced gamma-oscillations on ECoG. The audible communication was recorded concurrently and integrated with ECoG recording to allow for accurate time-lock upon ECoG analysis. In three children, who successfully completed the auditory-language task, high-frequency gamma-augmentation sequentially involved: i) the posterior superior temporal gyrus when listening to the question, ii) the posterior lateral temporal region and the posterior frontal region in the time interval between question completion and the patient’s vocalization, and iii) the pre- and post-central gyri immediately preceding and during the patient’s vocalization. The youngest child, with attention deficits, failed to cooperate during the auditory-language task, and high-frequency gamma-augmentation was noted only in the posterior superior temporal gyrus when audible questions were given. The size of language areas suggested by statistically-significant high-frequency gamma-augmentation was larger than that defined by neurostimulation. The present method can provide in-vivo imaging of electrophysiological activities over the language network areas during language processes. Further studies are warranted to determine whether recording of language-induced gamma-oscillations can supplement language mapping using neurostimulation in presurgical evaluation of children with focal epilepsy. PMID:18455440

  2. Automatic Activation of Phonological Templates for Native but Not Nonnative Phonemes: An Investigation of the Temporal Dynamics of Mu Activation

    ERIC Educational Resources Information Center

    Santos-Oliveira, Daniela Cristina

    2017-01-01

    Models of speech perception suggest a dorsal stream connecting the temporal and inferior parietal lobe with the inferior frontal gyrus. This stream is thought to involve an auditory motor loop that translates acoustic information into motor/articulatory commands and is further influenced by decision making processes that involve maintenance of…

  3. Low-Frequency Cortical Oscillations Entrain to Subthreshold Rhythmic Auditory Stimuli

    PubMed Central

    Schroeder, Charles E.; Poeppel, David; van Atteveldt, Nienke

    2017-01-01

    Many environmental stimuli contain temporal regularities, a feature that can help predict forthcoming input. Phase locking (entrainment) of ongoing low-frequency neuronal oscillations to rhythmic stimuli is proposed as a potential mechanism for enhancing neuronal responses and perceptual sensitivity, by aligning high-excitability phases to events within a stimulus stream. Previous experiments show that rhythmic structure has a behavioral benefit even when the rhythm itself is below perceptual detection thresholds (ten Oever et al., 2014). It is not known whether this “inaudible” rhythmic sound stream also induces entrainment. Here we tested this hypothesis using magnetoencephalography and electrocorticography in humans to record changes in neuronal activity as subthreshold rhythmic stimuli gradually became audible. We found that significant phase locking to the rhythmic sounds preceded participants' detection of them. Moreover, no significant auditory-evoked responses accompanied this prethreshold entrainment. These auditory-evoked responses, distinguished by robust, broad-band increases in intertrial coherence, only appeared after sounds were reported as audible. Taken together with the reduced perceptual thresholds observed for rhythmic sequences, these findings support the proposition that entrainment of low-frequency oscillations serves a mechanistic role in enhancing perceptual sensitivity for temporally predictive sounds. This framework has broad implications for understanding the neural mechanisms involved in generating temporal predictions and their relevance for perception, attention, and awareness. SIGNIFICANCE STATEMENT The environment is full of rhythmically structured signals that the nervous system can exploit for information processing. Thus, it is important to understand how the brain processes such temporally structured, regular features of external stimuli. Here we report the alignment of slowly fluctuating oscillatory brain activity to external rhythmic structure before its behavioral detection. These results indicate that phase alignment is a general mechanism of the brain to process rhythmic structure and can occur without the perceptual detection of this temporal structure. PMID:28411273

  4. Short- and long-term rhythmic interventions: perspectives for language rehabilitation.

    PubMed

    Schön, Daniele; Tillmann, Barbara

    2015-03-01

    This paper brings together different perspectives on the investigation and understanding of temporal processing and temporal expectations. We aim to bridge different temporal deficit hypotheses in dyslexia, dysphasia, or deafness in a larger framework, taking into account multiple nested temporal scales. We present data testing the hypothesis that temporal attention can be influenced by external rhythmic auditory stimulation (i.e., musical rhythm) and benefits subsequent language processing, including syntax processing and speech production. We also present data testing the hypothesis that phonological awareness can be influenced by several months of musical training and, more particularly, rhythmic training, which in turn improves reading skills. Together, our data support the hypothesis of a causal role of rhythm-based processing for language processing and acquisition. These results open new avenues for music-based remediation of language and hearing impairment. © 2015 New York Academy of Sciences.

  5. [Computed tomography of the temporal bone in diagnosis of chronic exudative otitis media].

    PubMed

    Zelikovich, E I

    2005-01-01

    Computed tomography (CT) of the temporal bone was made in 37 patients aged 2 to 55 years with chronic exudative otitis media (CEOM). In 21 of them the pathology was bilateral. The analysis of 58 CT images has identified CT signs of chronic exudative otitis media. They include partial (17 temporary bones) or complete (38 temporal bones) block of the bone opening of the auditory tube, pneumatic defects of the tympanic cavity (58 temporal bones), pneumatic defects of the mastoid process and antrum (47 temporal bones), pathologic retraction of the tympanic membrane. The examination of the temporal bone detected both CT-signs of CEOM and other causes of hearing disorders in 14 patients (26 temporal bones) with CEOM symptoms and inadequately high hypoacusis. Among these causes were malformation of the auditory ossicula (n=5), malformation of the labynthine window (n=2), malformation of the middle and internal ear (n=4), a wide aqueduct of the vestibule, labyrinthine anomaly of Mondini's type (n=1), cochlear hypoplasia (n=4), stenosis of the internal acoustic meatuses (n=2). Sclerotic fibrous dysplasia was suggested in 2 temporal bones (by CT data). CT was repeated after surgical treatment of 10 patients (14 temporal bones) and visual assessment of tympanostomy results was made.

  6. Moving in time: Bayesian causal inference explains movement coordination to auditory beats

    PubMed Central

    Elliott, Mark T.; Wing, Alan M.; Welchman, Andrew E.

    2014-01-01

    Many everyday skilled actions depend on moving in time with signals that are embedded in complex auditory streams (e.g. musical performance, dancing or simply holding a conversation). Such behaviour is apparently effortless; however, it is not known how humans combine auditory signals to support movement production and coordination. Here, we test how participants synchronize their movements when there are potentially conflicting auditory targets to guide their actions. Participants tapped their fingers in time with two simultaneously presented metronomes of equal tempo, but differing in phase and temporal regularity. Synchronization therefore depended on integrating the two timing cues into a single-event estimate or treating the cues as independent and thereby selecting one signal over the other. We show that a Bayesian inference process explains the situations in which participants choose to integrate or separate signals, and predicts motor timing errors. Simulations of this causal inference process demonstrate that this model provides a better description of the data than other plausible models. Our findings suggest that humans exploit a Bayesian inference process to control movement timing in situations where the origin of auditory signals needs to be resolved. PMID:24850915

  7. Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex

    PubMed Central

    Ainsworth, Matthew; Lee, Shane; Cunningham, Mark O.; Roopun, Anita K.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2013-01-01

    Rhythmic activity in populations of cortical neurons accompanies, and may underlie, many aspects of primary sensory processing and short-term memory. Activity in the gamma band (30 Hz up to > 100 Hz) is associated with such cognitive tasks and is thought to provide a substrate for temporal coupling of spatially separate regions of the brain. However, such coupling requires close matching of frequencies in co-active areas, and because the nominal gamma band is so spectrally broad, it may not constitute a single underlying process. Here we show that, for inhibition-based gamma rhythms in vitro in rat neocortical slices, mechanistically distinct local circuit generators exist in different laminae of rat primary auditory cortex. A persistent, 30 – 45 Hz, gap-junction-dependent gamma rhythm dominates rhythmic activity in supragranular layers 2/3, whereas a tonic depolarization-dependent, 50 – 80 Hz, pyramidal/interneuron gamma rhythm is expressed in granular layer 4 with strong glutamatergic excitation. As a consequence, altering the degree of excitation of the auditory cortex causes bifurcation in the gamma frequency spectrum and can effectively switch temporal control of layer 5 from supragranular to granular layers. Computational modeling predicts the pattern of interlaminar connections may help to stabilize this bifurcation. The data suggest that different strategies are used by primary auditory cortex to represent weak and strong inputs, with principal cell firing rate becoming increasingly important as excitation strength increases. PMID:22114273

  8. The role of auditory cortex in retention of rhythmic patterns as studied in patients with temporal lobe removals including Heschl's gyrus.

    PubMed

    Penhune, V B; Zatorre, R J; Feindel, W H

    1999-03-01

    This experiment examined the participation of the auditory cortex of the temporal lobe in the perception and retention of rhythmic patterns. Four patient groups were tested on a paradigm contrasting reproduction of auditory and visual rhythms: those with right or left anterior temporal lobe removals which included Heschl's gyrus (HG), the region of primary auditory cortex (RT-A and LT-A); and patients with right or left anterior temporal lobe removals which did not include HG (RT-a and LT-a). Estimation of lesion extent in HG using an MRI-based probabilistic map indicated that, in the majority of subjects, the lesion was confined to the anterior secondary auditory cortex located on the anterior-lateral extent of HG. On the rhythm reproduction task, RT-A patients were impaired in retention of auditory but not visual rhythms, particularly when accurate reproduction of stimulus durations was required. In contrast, LT-A patients as well as both RT-a and LT-a patients were relatively unimpaired on this task. None of the patient groups was impaired in the ability to make an adequate motor response. Further, they were unimpaired when using a dichotomous response mode, indicating that they were able to adequately differentiate the stimulus durations and, when given an alternative method of encoding, to retain them. Taken together, these results point to a specific role for the right anterior secondary auditory cortex in the retention of a precise analogue representation of auditory tonal patterns.

  9. Cerebral Processing of Voice Gender Studied Using a Continuous Carryover fMRI Design

    PubMed Central

    Pernet, Cyril; Latinus, Marianne; Crabbe, Frances; Belin, Pascal

    2013-01-01

    Normal listeners effortlessly determine a person's gender by voice, but the cerebral mechanisms underlying this ability remain unclear. Here, we demonstrate 2 stages of cerebral processing during voice gender categorization. Using voice morphing along with an adaptation-optimized functional magnetic resonance imaging design, we found that secondary auditory cortex including the anterior part of the temporal voice areas in the right hemisphere responded primarily to acoustical distance with the previously heard stimulus. In contrast, a network of bilateral regions involving inferior prefrontal and anterior and posterior cingulate cortex reflected perceived stimulus ambiguity. These findings suggest that voice gender recognition involves neuronal populations along the auditory ventral stream responsible for auditory feature extraction, functioning in pair with the prefrontal cortex in voice gender perception. PMID:22490550

  10. Auditory motion processing after early blindness

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Fine, Ione

    2014-01-01

    Studies showing that occipital cortex responds to auditory and tactile stimuli after early blindness are often interpreted as demonstrating that early blind subjects “see” auditory and tactile stimuli. However, it is not clear whether these occipital responses directly mediate the perception of auditory/tactile stimuli, or simply modulate or augment responses within other sensory areas. We used fMRI pattern classification to categorize the perceived direction of motion for both coherent and ambiguous auditory motion stimuli. In sighted individuals, perceived motion direction was accurately categorized based on neural responses within the planum temporale (PT) and right lateral occipital cortex (LOC). Within early blind individuals, auditory motion decisions for both stimuli were successfully categorized from responses within the human middle temporal complex (hMT+), but not the PT or right LOC. These findings suggest that early blind responses within hMT+ are associated with the perception of auditory motion, and that these responses in hMT+ may usurp some of the functions of nondeprived PT. Thus, our results provide further evidence that blind individuals do indeed “see” auditory motion. PMID:25378368

  11. Central Presbycusis: A Review and Evaluation of the Evidence

    PubMed Central

    Humes, Larry E.; Dubno, Judy R.; Gordon-Salant, Sandra; Lister, Jennifer J.; Cacace, Anthony T.; Cruickshanks, Karen J.; Gates, George A.; Wilson, Richard H.; Wingfield, Arthur

    2018-01-01

    Background The authors reviewed the evidence regarding the existence of age-related declines in central auditory processes and the consequences of any such declines for everyday communication. Purpose This report summarizes the review process and presents its findings. Data Collection and Analysis The authors reviewed 165 articles germane to central presbycusis. Of the 165 articles, 132 articles with a focus on human behavioral measures for either speech or nonspeech stimuli were selected for further analysis. Results For 76 smaller-scale studies of speech understanding in older adults reviewed, the following findings emerged: (1) the three most commonly studied behavioral measures were speech in competition, temporally distorted speech, and binaural speech perception (especially dichotic listening); (2) for speech in competition and temporally degraded speech, hearing loss proved to have a significant negative effect on performance in most of the laboratory studies; (3) significant negative effects of age, unconfounded by hearing loss, were observed in most of the studies of speech in competing speech, time-compressed speech, and binaural speech perception; and (4) the influence of cognitive processing on speech understanding has been examined much less frequently, but when included, significant positive associations with speech understanding were observed. For 36 smaller-scale studies of the perception of nonspeech stimuli by older adults reviewed, the following findings emerged: (1) the three most frequently studied behavioral measures were gap detection, temporal discrimination, and temporal-order discrimination or identification; (2) hearing loss was seldom a significant factor; and (3) negative effects of age were almost always observed. For 18 studies reviewed that made use of test batteries and medium-to-large sample sizes, the following findings emerged: (1) all studies included speech-based measures of auditory processing; (2) 4 of the 18 studies included nonspeech stimuli; (3) for the speech-based measures, monaural speech in a competing-speech background, dichotic speech, and monaural time-compressed speech were investigated most frequently; (4) the most frequently used tests were the Synthetic Sentence Identification (SSI) test with Ipsilateral Competing Message (ICM), the Dichotic Sentence Identification (DSI) test, and time-compressed speech; (5) many of these studies using speech-based measures reported significant effects of age, but most of these studies were confounded by declines in hearing, cognition, or both; (6) for nonspeech auditory-processing measures, the focus was on measures of temporal processing in all four studies; (7) effects of cognition on nonspeech measures of auditory processing have been studied less frequently, with mixed results, whereas the effects of hearing loss on performance were minimal due to judicious selection of stimuli; and (8) there is a paucity of observational studies using test batteries and longitudinal designs. Conclusions Based on this review of the scientific literature, there is insufficient evidence to confirm the existence of central presbycusis as an isolated entity. On the other hand, recent evidence has been accumulating in support of the existence of central presbycusis as a multifactorial condition that involves age- and/or disease-related changes in the auditory system and in the brain. Moreover, there is a clear need for additional research in this area. PMID:22967738

  12. Aging effects on functional auditory and visual processing using fMRI with variable sensory loading.

    PubMed

    Cliff, Michael; Joyce, Dan W; Lamar, Melissa; Dannhauser, Thomas; Tracy, Derek K; Shergill, Sukhwinder S

    2013-05-01

    Traditionally, studies investigating the functional implications of age-related structural brain alterations have focused on higher cognitive processes; by increasing stimulus load, these studies assess behavioral and neurophysiological performance. In order to understand age-related changes in these higher cognitive processes, it is crucial to examine changes in visual and auditory processes that are the gateways to higher cognitive functions. This study provides evidence for age-related functional decline in visual and auditory processing, and regional alterations in functional brain processing, using non-invasive neuroimaging. Using functional magnetic resonance imaging (fMRI), younger (n=11; mean age=31) and older (n=10; mean age=68) adults were imaged while observing flashing checkerboard images (passive visual stimuli) and hearing word lists (passive auditory stimuli) across varying stimuli presentation rates. Younger adults showed greater overall levels of temporal and occipital cortical activation than older adults for both auditory and visual stimuli. The relative change in activity as a function of stimulus presentation rate showed differences between young and older participants. In visual cortex, the older group showed a decrease in fMRI blood oxygen level dependent (BOLD) signal magnitude as stimulus frequency increased, whereas the younger group showed a linear increase. In auditory cortex, the younger group showed a relative increase as a function of word presentation rate, while older participants showed a relatively stable magnitude of fMRI BOLD response across all rates. When analyzing participants across all ages, only the auditory cortical activation showed a continuous, monotonically decreasing BOLD signal magnitude as a function of age. Our preliminary findings show an age-related decline in demand-related, passive early sensory processing. As stimulus demand increases, visual and auditory cortex do not show increases in activity in older compared to younger people. This may negatively impact on the fidelity of information available to higher cognitive processing. Such evidence may inform future studies focused on cognitive decline in aging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Motor contributions to the temporal precision of auditory attention

    PubMed Central

    Morillon, Benjamin; Schroeder, Charles E.; Wyart, Valentin

    2014-01-01

    In temporal—or dynamic—attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory ‘active sensing’. PMID:25314898

  14. Human Time-Frequency Acuity Beats the Fourier Uncertainty Principle

    NASA Astrophysics Data System (ADS)

    Oppenheim, Jacob N.; Magnasco, Marcelo O.

    2013-01-01

    The time-frequency uncertainty principle states that the product of the temporal and frequency extents of a signal cannot be smaller than 1/(4π). We study human ability to simultaneously judge the frequency and the timing of a sound. Our subjects often exceeded the uncertainty limit, sometimes by more than tenfold, mostly through remarkable timing acuity. Our results establish a lower bound for the nonlinearity and complexity of the algorithms employed by our brains in parsing transient sounds, rule out simple “linear filter” models of early auditory processing, and highlight timing acuity as a central feature in auditory object processing.

  15. Cost-Effective Prediction of Reading Difficulties.

    ERIC Educational Resources Information Center

    Heath, Steve M.; Hogben, John H.

    2004-01-01

    This study addressed 2 questions: (a) Can preschoolers who will fail at reading be more efficiently identified by targeting those at highest risk for reading problems? and (b) will auditory temporal processing (ATP) improve the accuracy of identification derived from phonological processing and oral language ability? A sample of 227 preschoolers…

  16. Auditory Frequency Discrimination in Children with Dyslexia

    ERIC Educational Resources Information Center

    Halliday, Lorna F.; Bishop, Dorothy V. M.

    2006-01-01

    A popular hypothesis holds that developmental dyslexia is caused by phonological processing problems and is therefore linked to difficulties in the analysis of spoken as well as written language. It has been suggested that these phonological deficits might be attributable to low-level problems in processing the temporal fine structure of auditory…

  17. Complex auditory behaviour emerges from simple reactive steering

    NASA Astrophysics Data System (ADS)

    Hedwig, Berthold; Poulet, James F. A.

    2004-08-01

    The recognition and localization of sound signals is fundamental to acoustic communication. Complex neural mechanisms are thought to underlie the processing of species-specific sound patterns even in animals with simple auditory pathways. In female crickets, which orient towards the male's calling song, current models propose pattern recognition mechanisms based on the temporal structure of the song. Furthermore, it is thought that localization is achieved by comparing the output of the left and right recognition networks, which then directs the female to the pattern that most closely resembles the species-specific song. Here we show, using a highly sensitive method for measuring the movements of female crickets, that when walking and flying each sound pulse of the communication signal releases a rapid steering response. Thus auditory orientation emerges from reactive motor responses to individual sound pulses. Although the reactive motor responses are not based on the song structure, a pattern recognition process may modulate the gain of the responses on a longer timescale. These findings are relevant to concepts of insect auditory behaviour and to the development of biologically inspired robots performing cricket-like auditory orientation.

  18. Neural mechanisms underlying auditory feedback control of speech

    PubMed Central

    Reilly, Kevin J.; Guenther, Frank H.

    2013-01-01

    The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech, and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 135 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech. PMID:18035557

  19. Opposite patterns of hemisphere dominance for early auditory processing of lexical tones and consonants

    PubMed Central

    Luo, Hao; Ni, Jing-Tian; Li, Zhi-Hao; Li, Xiao-Ou; Zhang, Da-Ren; Zeng, Fan-Gang; Chen, Lin

    2006-01-01

    In tonal languages such as Mandarin Chinese, a lexical tone carries semantic information and is preferentially processed in the left brain hemisphere of native speakers as revealed by the functional MRI or positron emission tomography studies, which likely measure the temporally aggregated neural events including those at an attentive stage of auditory processing. Here, we demonstrate that early auditory processing of a lexical tone at a preattentive stage is actually lateralized to the right hemisphere. We frequently presented to native Mandarin Chinese speakers a meaningful auditory word with a consonant-vowel structure and infrequently varied either its lexical tone or initial consonant using an odd-ball paradigm to create a contrast resulting in a change in word meaning. The lexical tone contrast evoked a stronger preattentive response, as revealed by whole-head electric recordings of the mismatch negativity, in the right hemisphere than in the left hemisphere, whereas the consonant contrast produced an opposite pattern. Given the distinct acoustic features between a lexical tone and a consonant, this opposite lateralization pattern suggests the dependence of hemisphere dominance mainly on acoustic cues before speech input is mapped into a semantic representation in the processing stream. PMID:17159136

  20. Multistability in auditory stream segregation: a predictive coding view

    PubMed Central

    Winkler, István; Denham, Susan; Mill, Robert; Bőhm, Tamás M.; Bendixen, Alexandra

    2012-01-01

    Auditory stream segregation involves linking temporally separate acoustic events into one or more coherent sequences. For any non-trivial sequence of sounds, many alternative descriptions can be formed, only one or very few of which emerge in awareness at any time. Evidence from studies showing bi-/multistability in auditory streaming suggest that some, perhaps many of the alternative descriptions are represented in the brain in parallel and that they continuously vie for conscious perception. Here, based on a predictive coding view, we consider the nature of these sound representations and how they compete with each other. Predictive processing helps to maintain perceptual stability by signalling the continuation of previously established patterns as well as the emergence of new sound sources. It also provides a measure of how well each of the competing representations describes the current acoustic scene. This account of auditory stream segregation has been tested on perceptual data obtained in the auditory streaming paradigm. PMID:22371621

  1. Oxytocin Enables Maternal Behavior by Balancing Cortical Inhibition

    PubMed Central

    Marlin, Bianca J.; Mitre, Mariela; D’amour, James A.; Chao, Moses V.; Froemke, Robert C.

    2015-01-01

    Oxytocin is important for social interactions and maternal behavior. However, little is known about when, where, and how oxytocin modulates neural circuits to improve social cognition. Here we show how oxytocin enables pup retrieval behavior in female mice by enhancing auditory cortical pup call responses. Retrieval behavior required left but not right auditory cortex, was accelerated by oxytocin in left auditory cortex, and oxytocin receptors were preferentially expressed in left auditory cortex. Neural responses to pup calls were lateralized, with co-tuned and temporally-precise excitatory and inhibitory responses in left cortex of maternal but not pup-naive adults. Finally, pairing calls with oxytocin enhanced responses by balancing the magnitude and timing of inhibition with excitation. Our results describe fundamental synaptic mechanisms by which oxytocin increases the salience of acoustic social stimuli. Furthermore, oxytocin-induced plasticity provides a biological basis for lateralization of auditory cortical processing. PMID:25874674

  2. Domain-specific impairment of source memory following a right posterior medial temporal lobe lesion.

    PubMed

    Peters, Jan; Koch, Benno; Schwarz, Michael; Daum, Irene

    2007-01-01

    This single case analysis of memory performance in a patient with an ischemic lesion affecting posterior but not anterior right medial temporal lobe (MTL) indicates that source memory can be disrupted in a domain-specific manner. The patient showed normal recognition memory for gray-scale photos of objects (visual condition) and spoken words (auditory condition). While memory for visual source (texture/color of the background against which pictures appeared) was within the normal range, auditory source memory (male/female speaker voice) was at chance level, a performance pattern significantly different from the control group. This dissociation is consistent with recent fMRI evidence of anterior/posterior MTL dissociations depending upon the nature of source information (visual texture/color vs. auditory speaker voice). The findings are in good agreement with the view of dissociable memory processing by the perirhinal cortex (anterior MTL) and parahippocampal cortex (posterior MTL), depending upon the neocortical input that these regions receive. (c) 2007 Wiley-Liss, Inc.

  3. Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues

    PubMed Central

    Zheng, Y.

    2013-01-01

    Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues. PMID:23636724

  4. Auditory and Cognitive Factors Associated with Speech-in-Noise Complaints following Mild Traumatic Brain Injury.

    PubMed

    Hoover, Eric C; Souza, Pamela E; Gallun, Frederick J

    2017-04-01

    Auditory complaints following mild traumatic brain injury (MTBI) are common, but few studies have addressed the role of auditory temporal processing in speech recognition complaints. In this study, deficits understanding speech in a background of speech noise following MTBI were evaluated with the goal of comparing the relative contributions of auditory and nonauditory factors. A matched-groups design was used in which a group of listeners with a history of MTBI were compared to a group matched in age and pure-tone thresholds, as well as a control group of young listeners with normal hearing (YNH). Of the 33 listeners who participated in the study, 13 were included in the MTBI group (mean age = 46.7 yr), 11 in the Matched group (mean age = 49 yr), and 9 in the YNH group (mean age = 20.8 yr). Speech-in-noise deficits were evaluated using subjective measures as well as monaural word (Words-in-Noise test) and sentence (Quick Speech-in-Noise test) tasks, and a binaural spatial release task. Performance on these measures was compared to psychophysical tasks that evaluate monaural and binaural temporal fine-structure tasks and spectral resolution. Cognitive measures of attention, processing speed, and working memory were evaluated as possible causes of differences between MTBI and Matched groups that might contribute to speech-in-noise perception deficits. A high proportion of listeners in the MTBI group reported difficulty understanding speech in noise (84%) compared to the Matched group (9.1%), and listeners who reported difficulty were more likely to have abnormal results on objective measures of speech in noise. No significant group differences were found between the MTBI and Matched listeners on any of the measures reported, but the number of abnormal tests differed across groups. Regression analysis revealed that a combination of auditory and auditory processing factors contributed to monaural speech-in-noise scores, but the benefit of spatial separation was related to a combination of working memory and peripheral auditory factors across all listeners in the study. The results of this study are consistent with previous findings that a subset of listeners with MTBI has objective auditory deficits. Speech-in-noise performance was related to a combination of auditory and nonauditory factors, confirming the important role of audiology in MTBI rehabilitation. Further research is needed to evaluate the prevalence and causal relationship of auditory deficits following MTBI. American Academy of Audiology

  5. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control

    PubMed Central

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A.; Larson, Charles R.

    2015-01-01

    The answer to the question of how the brain incorporates sensory feedback and links it with motor function to achieve goal-directed movement during vocalization remains unclear. We investigated the mechanisms of voice pitch motor control by examining the spectro-temporal dynamics of EEG signals when non-musicians (NM), relative pitch (RP), and absolute pitch (AP) musicians maintained vocalizations of a vowel sound and received randomized ± 100 cents pitch-shift stimuli in their auditory feedback. We identified a phase-synchronized (evoked) fronto-central activation within the theta band (5–8 Hz) that temporally overlapped with compensatory vocal responses to pitch-shifted auditory feedback and was significantly stronger in RP and AP musicians compared with non-musicians. A second component involved a non-phase-synchronized (induced) frontal activation within the delta band (1–4 Hz) that emerged at approximately 1 s after the stimulus onset. The delta activation was significantly stronger in the NM compared with RP and AP groups and correlated with the pitch rebound error (PRE), indicating the degree to which subjects failed to re-adjust their voice pitch to baseline after the stimulus offset. We propose that the evoked theta is a neurophysiological marker of enhanced pitch processing in musicians and reflects mechanisms by which humans incorporate auditory feedback to control their voice pitch. We also suggest that the delta activation reflects adaptive neural processes by which vocal production errors are monitored and used to update the state of sensory-motor networks for driving subsequent vocal behaviors. This notion is corroborated by our findings showing that larger PREs were associated with greater delta band activity in the NM compared with RP and AP groups. These findings provide new insights into the neural mechanisms of auditory feedback processing for vocal pitch motor control. PMID:25873858

  6. Spatial gradient for unique-feature detection in patients with unilateral neglect: evidence from auditory and visual search.

    PubMed

    Eramudugolla, Ranmalee; Mattingley, Jason B

    2008-01-01

    Patients with unilateral spatial neglect following right hemisphere damage are impaired in detecting contralesional targets in both visual and haptic search tasks, and often show a graded improvement in detection performance for more ipsilesional spatial locations. In audition, multiple simultaneous sounds are most effectively perceived if they are distributed along the frequency dimension. Thus, attention to spectro-temporal features alone can allow detection of a target sound amongst multiple simultaneous distracter sounds, regardless of whether these sounds are spatially separated. Spatial bias in attention associated with neglect should not affect auditory search based on spectro-temporal features of a sound target. We report that a right brain damaged patient with neglect demonstrated a significant gradient favouring the ipsilesional side on a visual search task as well as an auditory search task in which the target was a frequency modulated tone amongst steady distractor tones. No such asymmetry was apparent in the auditory search performance of a control patient with a right hemisphere lesion but no neglect. The results suggest that the spatial bias in attention exhibited by neglect patients affects stimulus processing even when spatial information is irrelevant to the task.

  7. Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection.

    PubMed

    Lappe, Claudia; Steinsträter, Olaf; Pantev, Christo

    2013-01-01

    The mismatch negativity (MMN), an event-related potential (ERP) representing the violation of an acoustic regularity, is considered as a pre-attentive change detection mechanism at the sensory level on the one hand and as a prediction error signal on the other hand, suggesting that bottom-up as well as top-down processes are involved in its generation. Rhythmic and melodic deviations within a musical sequence elicit a MMN in musically trained subjects, indicating that acquired musical expertise leads to better discrimination accuracy of musical material and better predictions about upcoming musical events. Expectation violations to musical material could therefore recruit neural generators that reflect top-down processes that are based on musical knowledge. We describe the neural generators of the musical MMN for rhythmic and melodic material after a short-term sensorimotor-auditory (SA) training. We compare the localization of musical MMN data from two previous MEG studies by applying beamformer analysis. One study focused on the melodic harmonic progression whereas the other study focused on rhythmic progression. The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG), inferior frontal cortex (IFC), and the superior frontal (SFG) and orbitofrontal (OFG) gyri. IFC and SFG activation was also observed in the left hemisphere. In contrast, beamformer analysis of the data from the rhythm study revealed bilateral activation within the vicinity of auditory cortices and in the inferior parietal lobule (IPL), an area that has recently been implied in temporal processing. We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the dual-pathway model of auditory processing.

  8. Auditory hallucinations: A review of the ERC “VOICE” project

    PubMed Central

    Hugdahl, Kenneth

    2015-01-01

    In this invited review I provide a selective overview of recent research on brain mechanisms and cognitive processes involved in auditory hallucinations. The review is focused on research carried out in the “VOICE” ERC Advanced Grant Project, funded by the European Research Council, but I also review and discuss the literature in general. Auditory hallucinations are suggested to be perceptual phenomena, with a neuronal origin in the speech perception areas in the temporal lobe. The phenomenology of auditory hallucinations is conceptualized along three domains, or dimensions; a perceptual dimension, experienced as someone speaking to the patient; a cognitive dimension, experienced as an inability to inhibit, or ignore the voices, and an emotional dimension, experienced as the “voices” having primarily a negative, or sinister, emotional tone. I will review cognitive, imaging, and neurochemistry data related to these dimensions, primarily the first two. The reviewed data are summarized in a model that sees auditory hallucinations as initiated from temporal lobe neuronal hyper-activation that draws attentional focus inward, and which is not inhibited due to frontal lobe hypo-activation. It is further suggested that this is maintained through abnormal glutamate and possibly gamma-amino-butyric-acid transmitter mediation, which could point towards new pathways for pharmacological treatment. A final section discusses new methods of acquiring quantitative data on the phenomenology and subjective experience of auditory hallucination that goes beyond standard interview questionnaires, by suggesting an iPhone/iPod app. PMID:26110121

  9. A Double Dissociation between Anterior and Posterior Superior Temporal Gyrus for Processing Audiovisual Speech Demonstrated by Electrocorticography.

    PubMed

    Ozker, Muge; Schepers, Inga M; Magnotti, John F; Yoshor, Daniel; Beauchamp, Michael S

    2017-06-01

    Human speech can be comprehended using only auditory information from the talker's voice. However, comprehension is improved if the talker's face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl's gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech.

  10. Evidence for Neural Computations of Temporal Coherence in an Auditory Scene and Their Enhancement during Active Listening.

    PubMed

    O'Sullivan, James A; Shamma, Shihab A; Lalor, Edmund C

    2015-05-06

    The human brain has evolved to operate effectively in highly complex acoustic environments, segregating multiple sound sources into perceptually distinct auditory objects. A recent theory seeks to explain this ability by arguing that stream segregation occurs primarily due to the temporal coherence of the neural populations that encode the various features of an individual acoustic source. This theory has received support from both psychoacoustic and functional magnetic resonance imaging (fMRI) studies that use stimuli which model complex acoustic environments. Termed stochastic figure-ground (SFG) stimuli, they are composed of a "figure" and background that overlap in spectrotemporal space, such that the only way to segregate the figure is by computing the coherence of its frequency components over time. Here, we extend these psychoacoustic and fMRI findings by using the greater temporal resolution of electroencephalography to investigate the neural computation of temporal coherence. We present subjects with modified SFG stimuli wherein the temporal coherence of the figure is modulated stochastically over time, which allows us to use linear regression methods to extract a signature of the neural processing of this temporal coherence. We do this under both active and passive listening conditions. Our findings show an early effect of coherence during passive listening, lasting from ∼115 to 185 ms post-stimulus. When subjects are actively listening to the stimuli, these responses are larger and last longer, up to ∼265 ms. These findings provide evidence for early and preattentive neural computations of temporal coherence that are enhanced by active analysis of an auditory scene. Copyright © 2015 the authors 0270-6474/15/357256-08$15.00/0.

  11. Rapid change in articulatory lip movement induced by preceding auditory feedback during production of bilabial plosives.

    PubMed

    Mochida, Takemi; Gomi, Hiroaki; Kashino, Makio

    2010-11-08

    There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified. This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested. The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context-dependent effects of feedback alteration suggest that the sensory error detection works in a temporally asymmetric window where acoustic features of the syllable to be produced may be coded.

  12. Neural signature of the conscious processing of auditory regularities

    PubMed Central

    Bekinschtein, Tristan A.; Dehaene, Stanislas; Rohaut, Benjamin; Tadel, François; Cohen, Laurent; Naccache, Lionel

    2009-01-01

    Can conscious processing be inferred from neurophysiological measurements? Some models stipulate that the active maintenance of perceptual representations across time requires consciousness. Capitalizing on this assumption, we designed an auditory paradigm that evaluates cerebral responses to violations of temporal regularities that are either local in time or global across several seconds. Local violations led to an early response in auditory cortex, independent of attention or the presence of a concurrent visual task, whereas global violations led to a late and spatially distributed response that was only present when subjects were attentive and aware of the violations. We could detect the global effect in individual subjects using functional MRI and both scalp and intracerebral event-related potentials. Recordings from 8 noncommunicating patients with disorders of consciousness confirmed that only conscious individuals presented a global effect. Taken together these observations suggest that the presence of the global effect is a signature of conscious processing, although it can be absent in conscious subjects who are not aware of the global auditory regularities. This simple electrophysiological marker could thus serve as a useful clinical tool. PMID:19164526

  13. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex.

    PubMed

    Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.

  14. Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex

    PubMed Central

    Li, Xiao; Yu, Kai; Zhang, Zicong; Sun, Wenjian; Yang, Zhou; Feng, Jingyu; Chen, Xi; Liu, Chun-Hua; Wang, Haitao; Guo, Yi Ping; He, Jufang

    2014-01-01

    Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex. PMID:24343575

  15. Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse

    PubMed Central

    Moser, Tobias; Neef, Andreas; Khimich, Darina

    2006-01-01

    Our auditory system is capable of perceiving the azimuthal location of a low frequency sound source with a precision of a few degrees. This requires the auditory system to detect time differences in sound arrival between the two ears down to tens of microseconds. The detection of these interaural time differences relies on network computation by auditory brainstem neurons sharpening the temporal precision of the afferent signals. Nevertheless, the system requires the hair cell synapse to encode sound with the highest possible temporal acuity. In mammals, each auditory nerve fibre receives input from only one inner hair cell (IHC) synapse. Hence, this single synapse determines the temporal precision of the fibre. As if this was not enough of a challenge, the auditory system is also capable of maintaining such high temporal fidelity with acoustic signals that vary greatly in their intensity. Recent research has started to uncover the cellular basis of sound coding. Functional and structural descriptions of synaptic vesicle pools and estimates for the number of Ca2+ channels at the ribbon synapse have been obtained, as have insights into how the receptor potential couples to the release of synaptic vesicles. Here, we review current concepts about the mechanisms that control the timing of transmitter release in inner hair cells of the cochlea. PMID:16901948

  16. Gender effect on pre-attentive change detection in major depressive disorder patients revealed by auditory MMN.

    PubMed

    Qiao, Zhengxue; Yang, Aiying; Qiu, Xiaohui; Yang, Xiuxian; Zhang, Congpei; Zhu, Xiongzhao; He, Jincai; Wang, Lin; Bai, Bing; Sun, Hailian; Zhao, Lun; Yang, Yanjie

    2015-10-30

    Gender differences in rates of major depressive disorder (MDD) are well established, but gender differences in cognitive function have been little studied. Auditory mismatch negativity (MMN) was used to investigate gender differences in pre-attentive information processing in first episode MDD. In the deviant-standard reverse oddball paradigm, duration auditory MMN was obtained in 30 patients (15 males) and 30 age-/education-matched controls. Over frontal-central areas, mean amplitude of increment MMN (to a 150-ms deviant tone) was smaller in female than male patients; there was no sex difference in decrement MMN (to a 50-ms deviant tone). Neither increment nor decrement MMN differed between female and male patients over temporal areas. Frontal-central MMN and temporal MMN did not differ between male and female controls in any condition. Over frontal-central areas, mean amplitude of increment MMN was smaller in female patients than female controls; there was no difference in decrement MMN. Neither increment nor decrement MMN differed between female patients and female controls over temporal areas. Frontal-central MMN and temporal MMN did not differ between male patients and male controls. Mean amplitude of increment MMN in female patients did not correlate with symptoms, suggesting this sex-specific deficit is a trait- not a state-dependent phenomenon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Auditory Attentional Control and Selection during Cocktail Party Listening

    PubMed Central

    Hill, Kevin T.

    2010-01-01

    In realistic auditory environments, people rely on both attentional control and attentional selection to extract intelligible signals from a cluttered background. We used functional magnetic resonance imaging to examine auditory attention to natural speech under such high processing-load conditions. Participants attended to a single talker in a group of 3, identified by the target talker's pitch or spatial location. A catch-trial design allowed us to distinguish activity due to top-down control of attention versus attentional selection of bottom-up information in both the spatial and spectral (pitch) feature domains. For attentional control, we found a left-dominant fronto-parietal network with a bias toward spatial processing in dorsal precentral sulcus and superior parietal lobule, and a bias toward pitch in inferior frontal gyrus. During selection of the talker, attention modulated activity in left intraparietal sulcus when using talker location and in bilateral but right-dominant superior temporal sulcus when using talker pitch. We argue that these networks represent the sources and targets of selective attention in rich auditory environments. PMID:19574393

  18. ERP Correlates of Pitch Error Detection in Complex Tone and Voice Auditory Feedback with Missing Fundamental

    PubMed Central

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R.

    2012-01-01

    Previous studies have shown that the pitch of a sound is perceived in the absence of its fundamental frequency (F0), suggesting that a distinct mechanism may resolve pitch based on a pattern that exists between harmonic frequencies. The present study investigated whether such a mechanism is active during voice pitch control. ERPs were recorded in response to +200 cents pitch shifts in the auditory feedback of self-vocalizations and complex tones with and without the F0. The absence of the fundamental induced no difference in ERP latencies. However, a right-hemisphere difference was found in the N1 amplitudes with larger responses to complex tones that included the fundamental compared to when it was missing. The P1 and N1 latencies were shorter in the left hemisphere, and the N1 and P2 amplitudes were larger bilaterally for pitch shifts in voice and complex tones compared with pure tones. These findings suggest hemispheric differences in neural encoding of pitch in sounds with missing fundamental. Data from the present study suggest that the right cortical auditory areas, thought to be specialized for spectral processing, may utilize different mechanisms to resolve pitch in sounds with missing fundamental. The left hemisphere seems to perform faster processing to resolve pitch based on the rate of temporal variations in complex sounds compared with pure tones. These effects indicate that the differential neural processing of pitch in the left and right hemispheres may enable the audio-vocal system to detect temporal and spectral variations in the auditory feedback for vocal pitch control. PMID:22386045

  19. Neuroanatomical and resting state EEG power correlates of central hearing loss in older adults.

    PubMed

    Giroud, Nathalie; Hirsiger, Sarah; Muri, Raphaela; Kegel, Andrea; Dillier, Norbert; Meyer, Martin

    2018-01-01

    To gain more insight into central hearing loss, we investigated the relationship between cortical thickness and surface area, speech-relevant resting state EEG power, and above-threshold auditory measures in older adults and younger controls. Twenty-three older adults and 13 younger controls were tested with an adaptive auditory test battery to measure not only traditional pure-tone thresholds, but also above individual thresholds of temporal and spectral processing. The participants' speech recognition in noise (SiN) was evaluated, and a T1-weighted MRI image obtained for each participant. We then determined the cortical thickness (CT) and mean cortical surface area (CSA) of auditory and higher speech-relevant regions of interest (ROIs) with FreeSurfer. Further, we obtained resting state EEG from all participants as well as data on the intrinsic theta and gamma power lateralization, the latter in accordance with predictions of the Asymmetric Sampling in Time hypothesis regarding speech processing (Poeppel, Speech Commun 41:245-255, 2003). Methodological steps involved the calculation of age-related differences in behavior, anatomy and EEG power lateralization, followed by multiple regressions with anatomical ROIs as predictors for auditory performance. We then determined anatomical regressors for theta and gamma lateralization, and further constructed all regressions to investigate age as a moderator variable. Behavioral results indicated that older adults performed worse in temporal and spectral auditory tasks, and in SiN, despite having normal peripheral hearing as signaled by the audiogram. These behavioral age-related distinctions were accompanied by lower CT in all ROIs, while CSA was not different between the two age groups. Age modulated the regressions specifically in right auditory areas, where a thicker cortex was associated with better auditory performance in older adults. Moreover, a thicker right supratemporal sulcus predicted more rightward theta lateralization, indicating the functional relevance of the right auditory areas in older adults. The question how age-related cortical thinning and intrinsic EEG architecture relates to central hearing loss has so far not been addressed. Here, we provide the first neuroanatomical and neurofunctional evidence that cortical thinning and lateralization of speech-relevant frequency band power relates to the extent of age-related central hearing loss in older adults. The results are discussed within the current frameworks of speech processing and aging.

  20. Oscillatory support for rapid frequency change processing in infants.

    PubMed

    Musacchia, Gabriella; Choudhury, Naseem A; Ortiz-Mantilla, Silvia; Realpe-Bonilla, Teresa; Roesler, Cynthia P; Benasich, April A

    2013-11-01

    Rapid auditory processing and auditory change detection abilities are crucial aspects of speech and language development, particularly in the first year of life. Animal models and adult studies suggest that oscillatory synchrony, and in particular low-frequency oscillations play key roles in this process. We hypothesize that infant perception of rapid pitch and timing changes is mediated, at least in part, by oscillatory mechanisms. Using event-related potentials (ERPs), source localization and time-frequency analysis of event-related oscillations (EROs), we examined the neural substrates of rapid auditory processing in 4-month-olds. During a standard oddball paradigm, infants listened to tone pairs with invariant standard (STD, 800-800 Hz) and variant deviant (DEV, 800-1200 Hz) pitch. STD and DEV tone pairs were first presented in a block with a short inter-stimulus interval (ISI) (Rapid Rate: 70 ms ISI), followed by a block of stimuli with a longer ISI (Control Rate: 300 ms ISI). Results showed greater ERP peak amplitude in response to the DEV tone in both conditions and later and larger peaks during Rapid Rate presentation, compared to the Control condition. Sources of neural activity, localized to right and left auditory regions, showed larger and faster activation in the right hemisphere for both rate conditions. Time-frequency analysis of the source activity revealed clusters of theta band enhancement to the DEV tone in right auditory cortex for both conditions. Left auditory activity was enhanced only during Rapid Rate presentation. These data suggest that local low-frequency oscillatory synchrony underlies rapid processing and can robustly index auditory perception in young infants. Furthermore, left hemisphere recruitment during rapid frequency change discrimination suggests a difference in the spectral and temporal resolution of right and left hemispheres at a very young age. © 2013 Elsevier Ltd. All rights reserved.

  1. Plasticity of white matter connectivity in phonetics experts.

    PubMed

    Vandermosten, Maaike; Price, Cathy J; Golestani, Narly

    2016-09-01

    Phonetics experts are highly trained to analyze and transcribe speech, both with respect to faster changing, phonetic features, and to more slowly changing, prosodic features. Previously we reported that, compared to non-phoneticians, phoneticians had greater local brain volume in bilateral auditory cortices and the left pars opercularis of Broca's area, with training-related differences in the grey-matter volume of the left pars opercularis in the phoneticians group (Golestani et al. 2011). In the present study, we used diffusion MRI to examine white matter microstructure, indexed by fractional anisotropy, in (1) the long segment of arcuate fasciculus (AF_long), which is a well-known language tract that connects Broca's area, including left pars opercularis, to the temporal cortex, and in (2) the fibers arising from the auditory cortices. Most of these auditory fibers belong to three validated language tracts, namely to the AF_long, the posterior segment of the arcuate fasciculus and the middle longitudinal fasciculus. We found training-related differences in phoneticians in left AF_long, as well as group differences relative to non-experts in the auditory fibers (including the auditory fibers belonging to the left AF_long). Taken together, the results of both studies suggest that grey matter structural plasticity arising from phonetic transcription training in Broca's area is accompanied by changes to the white matter fibers connecting this very region to the temporal cortex. Our findings suggest expertise-related changes in white matter fibers connecting fronto-temporal functional hubs that are important for phonetic processing. Further studies can pursue this hypothesis by examining the dynamics of these expertise related grey and white matter changes as they arise during phonetic training.

  2. Auditory Spatial Layout

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  3. Sensory-to-motor integration during auditory repetition: a combined fMRI and lesion study

    PubMed Central

    Parker Jones, ‘Ōiwi; Prejawa, Susan; Hope, Thomas M. H.; Oberhuber, Marion; Seghier, Mohamed L.; Leff, Alex P.; Green, David W.; Price, Cathy J.

    2014-01-01

    The aim of this paper was to investigate the neurological underpinnings of auditory-to-motor translation during auditory repetition of unfamiliar pseudowords. We tested two different hypotheses. First we used functional magnetic resonance imaging in 25 healthy subjects to determine whether a functionally defined area in the left temporo-parietal junction (TPJ), referred to as Sylvian-parietal-temporal region (Spt), reflected the demands on auditory-to-motor integration during the repetition of pseudowords relative to a semantically mediated nonverbal sound-naming task. The experiment also allowed us to test alternative accounts of Spt function, namely that Spt is involved in subvocal articulation or auditory processing that can be driven either bottom-up or top-down. The results did not provide convincing evidence that activation increased in either Spt or any other cortical area when non-semantic auditory inputs were being translated into motor outputs. Instead, the results were most consistent with Spt responding to bottom up or top down auditory processing, independent of the demands on auditory-to-motor integration. Second, we investigated the lesion sites in eight patients who had selective difficulties repeating heard words but with preserved word comprehension, picture naming and verbal fluency (i.e., conduction aphasia). All eight patients had white-matter tract damage in the vicinity of the arcuate fasciculus and only one of the eight patients had additional damage to the Spt region, defined functionally in our fMRI data. Our results are therefore most consistent with the neurological tradition that emphasizes the importance of the arcuate fasciculus in the non-semantic integration of auditory and motor speech processing. PMID:24550807

  4. The auditory processing battery: survey of common practices.

    PubMed

    Emanuel, Diana C

    2002-02-01

    A survey of auditory processing (AP) diagnostic practices was mailed to all licensed audiologists in the State of Maryland and sent as an electronic mail attachment to the American Speech-Language-Hearing Association and Educational Audiology Association Internet forums. Common AP protocols (25 from the Internet, 28 from audiologists in Maryland) included requiring basic audiologic testing, using questionnaires, and administering dichotic listening, monaural low-redundancy speech, temporal processing, and electrophysiologic tests. Some audiologists also administer binaural interaction, attention, memory, and speech-language/psychological/educational tests and incorporate a classroom observation. The various AP batteries presently administered appear to be based on the availability of AP tests with well-documented normative data. Resources for obtaining AP tests are listed.

  5. A Meta-Analytic Study of the Neural Systems for Auditory Processing of Lexical Tones.

    PubMed

    Kwok, Veronica P Y; Dan, Guo; Yakpo, Kofi; Matthews, Stephen; Fox, Peter T; Li, Ping; Tan, Li-Hai

    2017-01-01

    The neural systems of lexical tone processing have been studied for many years. However, previous findings have been mixed with regard to the hemispheric specialization for the perception of linguistic pitch patterns in native speakers of tonal language. In this study, we performed two activation likelihood estimation (ALE) meta-analyses, one on neuroimaging studies of auditory processing of lexical tones in tonal languages (17 studies), and the other on auditory processing of lexical information in non-tonal languages as a control analysis for comparison (15 studies). The lexical tone ALE analysis showed significant brain activations in bilateral inferior prefrontal regions, bilateral superior temporal regions and the right caudate, while the control ALE analysis showed significant cortical activity in the left inferior frontal gyrus and left temporo-parietal regions. However, we failed to obtain significant differences from the contrast analysis between two auditory conditions, which might be caused by the limited number of studies available for comparison. Although the current study lacks evidence to argue for a lexical tone specific activation pattern, our results provide clues and directions for future investigations on this topic, more sophisticated methods are needed to explore this question in more depth as well.

  6. A Meta-Analytic Study of the Neural Systems for Auditory Processing of Lexical Tones

    PubMed Central

    Kwok, Veronica P. Y.; Dan, Guo; Yakpo, Kofi; Matthews, Stephen; Fox, Peter T.; Li, Ping; Tan, Li-Hai

    2017-01-01

    The neural systems of lexical tone processing have been studied for many years. However, previous findings have been mixed with regard to the hemispheric specialization for the perception of linguistic pitch patterns in native speakers of tonal language. In this study, we performed two activation likelihood estimation (ALE) meta-analyses, one on neuroimaging studies of auditory processing of lexical tones in tonal languages (17 studies), and the other on auditory processing of lexical information in non-tonal languages as a control analysis for comparison (15 studies). The lexical tone ALE analysis showed significant brain activations in bilateral inferior prefrontal regions, bilateral superior temporal regions and the right caudate, while the control ALE analysis showed significant cortical activity in the left inferior frontal gyrus and left temporo-parietal regions. However, we failed to obtain significant differences from the contrast analysis between two auditory conditions, which might be caused by the limited number of studies available for comparison. Although the current study lacks evidence to argue for a lexical tone specific activation pattern, our results provide clues and directions for future investigations on this topic, more sophisticated methods are needed to explore this question in more depth as well. PMID:28798670

  7. Perception and psychological evaluation for visual and auditory environment based on the correlation mechanisms

    NASA Astrophysics Data System (ADS)

    Fujii, Kenji

    2002-06-01

    In this dissertation, the correlation mechanism in modeling the process in the visual perception is introduced. It has been well described that the correlation mechanism is effective for describing subjective attributes in auditory perception. The main result is that it is possible to apply the correlation mechanism to the process in temporal vision and spatial vision, as well as in audition. (1) The psychophysical experiment was performed on subjective flicker rates for complex waveforms. A remarkable result is that the phenomenon of missing fundamental is found in temporal vision as analogous to the auditory pitch perception. This implies the existence of correlation mechanism in visual system. (2) For spatial vision, the autocorrelation analysis provides useful measures for describing three primary perceptual properties of visual texture: contrast, coarseness, and regularity. Another experiment showed that the degree of regularity is a salient cue for texture preference judgment. (3) In addition, the autocorrelation function (ACF) and inter-aural cross-correlation function (IACF) were applied for analysis of the temporal and spatial properties of environmental noise. It was confirmed that the acoustical properties of aircraft noise and traffic noise are well described. These analyses provided useful parameters extracted from the ACF and IACF in assessing the subjective annoyance for noise. Thesis advisor: Yoichi Ando Copies of this thesis written in English can be obtained from Junko Atagi, 6813 Mosonou, Saijo-cho, Higashi-Hiroshima 739-0024, Japan. E-mail address: atagi\\@urban.ne.jp.

  8. Acute auditory agnosia as the presenting hearing disorder in MELAS.

    PubMed

    Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella

    2008-12-01

    MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.

  9. Temporal Processing of Audiovisual Stimuli Is Enhanced in Musicians: Evidence from Magnetoencephalography (MEG)

    PubMed Central

    Lu, Yao; Paraskevopoulos, Evangelos; Herholz, Sibylle C.; Kuchenbuch, Anja; Pantev, Christo

    2014-01-01

    Numerous studies have demonstrated that the structural and functional differences between professional musicians and non-musicians are not only found within a single modality, but also with regard to multisensory integration. In this study we have combined psychophysical with neurophysiological measurements investigating the processing of non-musical, synchronous or various levels of asynchronous audiovisual events. We hypothesize that long-term multisensory experience alters temporal audiovisual processing already at a non-musical stage. Behaviorally, musicians scored significantly better than non-musicians in judging whether the auditory and visual stimuli were synchronous or asynchronous. At the neural level, the statistical analysis for the audiovisual asynchronous response revealed three clusters of activations including the ACC and the SFG and two bilaterally located activations in IFG and STG in both groups. Musicians, in comparison to the non-musicians, responded to synchronous audiovisual events with enhanced neuronal activity in a broad left posterior temporal region that covers the STG, the insula and the Postcentral Gyrus. Musicians also showed significantly greater activation in the left Cerebellum, when confronted with an audiovisual asynchrony. Taken together, our MEG results form a strong indication that long-term musical training alters the basic audiovisual temporal processing already in an early stage (direct after the auditory N1 wave), while the psychophysical results indicate that musical training may also provide behavioral benefits in the accuracy of the estimates regarding the timing of audiovisual events. PMID:24595014

  10. Atypical right hemisphere response to slow temporal modulations in children with developmental dyslexia.

    PubMed

    Cutini, Simone; Szűcs, Dénes; Mead, Natasha; Huss, Martina; Goswami, Usha

    2016-12-01

    Phase entrainment of neuronal oscillations is thought to play a central role in encoding speech. Children with developmental dyslexia show impaired phonological processing of speech, proposed theoretically to be related to atypical phase entrainment to slower temporal modulations in speech (<10Hz). While studies of children with dyslexia have found atypical phase entrainment in the delta band (~2Hz), some studies of adults with developmental dyslexia have shown impaired entrainment in the low gamma band (~35-50Hz). Meanwhile, studies of neurotypical adults suggest asymmetric temporal sensitivity in auditory cortex, with preferential processing of slower modulations by right auditory cortex, and faster modulations processed bilaterally. Here we compared neural entrainment to slow (2Hz) versus faster (40Hz) amplitude-modulated noise using fNIRS to study possible hemispheric asymmetry effects in children with developmental dyslexia. We predicted atypical right hemisphere responding to 2Hz modulations for the children with dyslexia in comparison to control children, but equivalent responding to 40Hz modulations in both hemispheres. Analyses of HbO concentration revealed a right-lateralised region focused on the supra-marginal gyrus that was more active in children with dyslexia than in control children for 2Hz stimulation. We discuss possible links to linguistic prosodic processing, and interpret the data with respect to a neural 'temporal sampling' framework for conceptualizing the phonological deficits that characterise children with developmental dyslexia across languages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Cortical activity associated with the perception of temporal asymmetry in ramped and damped noises.

    PubMed

    Rupp, André; Spachmann, André; Dettlaff, Anna; Patterson, Roy D

    2013-01-01

    Human listeners are very sensitive to the asymmetry of time-reversed pairs of ramped and damped sounds. When the carrier is noise, the hiss -component of the perception is stronger in ramped sounds and the drumming component is stronger in damped sounds (Akeroyd and Patterson 1995). In the current study, a paired comparison technique was used to establish the relative "hissiness" of these noises, and the ratings were correlated with (a) components of the auditory evoked field (AEF) produced by these noises and (b) the magnitude of a hissiness feature derived from a model of the internal auditory images produced by these noises (Irino and Patterson 1998). An earlier AEF report indicated that the peak magnitude of the transient N100m response mirrors the perceived salience of the tonal perception (Rupp et al. 2005). The AEFs of 14 subjects were recorded in response to damped/ramped noises with half-lives between 1 and 64 ms and repetition rates between 12.5 and 100 ms. Spatio-temporal source analysis was used to fit the P50m, the P200m, and the sustained field (SF). These noise stimuli did not produce a reliable N100m. The hissiness feature from the auditory model was extracted from a time-averaged sequence of summary auditory images as in Patterson and Irino (1998). The results show that the perceptual measure of hissiness is highly correlated with the hissiness feature from the summary auditory image, and both are highly correlated with the magnitude of the transient P200m. There is a significant but weaker correlation with the SF and a nonsignificant correlation with the P50m. The results suggest that regularity in the carrier effects branching at an early stage of auditory processing with tonal and noisy sounds following separate spatio-temporal routes through the system.

  12. Auditory mismatch impairments are characterized by core neural dysfunctions in schizophrenia

    PubMed Central

    Gaebler, Arnim Johannes; Mathiak, Klaus; Koten, Jan Willem; König, Andrea Anna; Koush, Yury; Weyer, David; Depner, Conny; Matentzoglu, Simeon; Edgar, James Christopher; Willmes, Klaus; Zvyagintsev, Mikhail

    2015-01-01

    Major theories on the neural basis of schizophrenic core symptoms highlight aberrant salience network activity (insula and anterior cingulate cortex), prefrontal hypoactivation, sensory processing deficits as well as an impaired connectivity between temporal and prefrontal cortices. The mismatch negativity is a potential biomarker of schizophrenia and its reduction might be a consequence of each of these mechanisms. In contrast to the previous electroencephalographic studies, functional magnetic resonance imaging may disentangle the involved brain networks at high spatial resolution and determine contributions from localized brain responses and functional connectivity to the schizophrenic impairments. Twenty-four patients and 24 matched control subjects underwent functional magnetic resonance imaging during an optimized auditory mismatch task. Haemodynamic responses and functional connectivity were compared between groups. These data sets further entered a diagnostic classification analysis to assess impairments on the individual patient level. In the control group, mismatch responses were detected in the auditory cortex, prefrontal cortex and the salience network (insula and anterior cingulate cortex). Furthermore, mismatch processing was associated with a deactivation of the visual system and the dorsal attention network indicating a shift of resources from the visual to the auditory domain. The patients exhibited reduced activation in all of the respective systems (right auditory cortex, prefrontal cortex, and the salience network) as well as reduced deactivation of the visual system and the dorsal attention network. Group differences were most prominent in the anterior cingulate cortex and adjacent prefrontal areas. The latter regions also exhibited a reduced functional connectivity with the auditory cortex in the patients. In the classification analysis, haemodynamic responses yielded a maximal accuracy of 83% based on four features; functional connectivity data performed similarly or worse for up to about 10 features. However, connectivity data yielded a better performance when including more than 10 features yielding up to 90% accuracy. Among others, the most discriminating features represented functional connections between the auditory cortex and the anterior cingulate cortex as well as adjacent prefrontal areas. Auditory mismatch impairments incorporate major neural dysfunctions in schizophrenia. Our data suggest synergistic effects of sensory processing deficits, aberrant salience attribution, prefrontal hypoactivation as well as a disrupted connectivity between temporal and prefrontal cortices. These deficits are associated with subsequent disturbances in modality-specific resource allocation. Capturing different schizophrenic core dysfunctions, functional magnetic resonance imaging during this optimized mismatch paradigm reveals processing impairments on the individual patient level, rendering it a potential biomarker of schizophrenia. PMID:25743635

  13. Information flow in the auditory cortical network

    PubMed Central

    Hackett, Troy A.

    2011-01-01

    Auditory processing in the cerebral cortex is comprised of an interconnected network of auditory and auditory-related areas distributed throughout the forebrain. The nexus of auditory activity is located in temporal cortex among several specialized areas, or fields, that receive dense inputs from the medial geniculate complex. These areas are collectively referred to as auditory cortex. Auditory activity is extended beyond auditory cortex via connections with auditory-related areas elsewhere in the cortex. Within this network, information flows between areas to and from countless targets, but in a manner that is characterized by orderly regional, areal and laminar patterns. These patterns reflect some of the structural constraints that passively govern the flow of information at all levels of the network. In addition, the exchange of information within these circuits is dynamically regulated by intrinsic neurochemical properties of projecting neurons and their targets. This article begins with an overview of the principal circuits and how each is related to information flow along major axes of the network. The discussion then turns to a description of neurochemical gradients along these axes, highlighting recent work on glutamate transporters in the thalamocortical projections to auditory cortex. The article concludes with a brief discussion of relevant neurophysiological findings as they relate to structural gradients in the network. PMID:20116421

  14. Hearing loss in older adults affects neural systems supporting speech comprehension.

    PubMed

    Peelle, Jonathan E; Troiani, Vanessa; Grossman, Murray; Wingfield, Arthur

    2011-08-31

    Hearing loss is one of the most common complaints in adults over the age of 60 and a major contributor to difficulties in speech comprehension. To examine the effects of hearing ability on the neural processes supporting spoken language processing in humans, we used functional magnetic resonance imaging to monitor brain activity while older adults with age-normal hearing listened to sentences that varied in their linguistic demands. Individual differences in hearing ability predicted the degree of language-driven neural recruitment during auditory sentence comprehension in bilateral superior temporal gyri (including primary auditory cortex), thalamus, and brainstem. In a second experiment, we examined the relationship of hearing ability to cortical structural integrity using voxel-based morphometry, demonstrating a significant linear relationship between hearing ability and gray matter volume in primary auditory cortex. Together, these results suggest that even moderate declines in peripheral auditory acuity lead to a systematic downregulation of neural activity during the processing of higher-level aspects of speech, and may also contribute to loss of gray matter volume in primary auditory cortex. More generally, these findings support a resource-allocation framework in which individual differences in sensory ability help define the degree to which brain regions are recruited in service of a particular task.

  15. Hearing loss in older adults affects neural systems supporting speech comprehension

    PubMed Central

    Peelle, Jonathan E.; Troiani, Vanessa; Grossman, Murray; Wingfield, Arthur

    2011-01-01

    Hearing loss is one of the most common complaints in adults over the age of 60 and a major contributor to difficulties in speech comprehension. To examine the effects of hearing ability on the neural processes supporting spoken language processing in humans, we used functional magnetic resonance imaging (fMRI) to monitor brain activity while older adults with age-normal hearing listened to sentences that varied in their linguistic demands. Individual differences in hearing ability predicted the degree of language-driven neural recruitment during auditory sentence comprehension in bilateral superior temporal gyri (including primary auditory cortex), thalamus, and brainstem. In a second experiment we examined the relationship of hearing ability to cortical structural integrity using voxel-based morphometry (VBM), demonstrating a significant linear relationship between hearing ability and gray matter volume in primary auditory cortex. Together, these results suggest that even moderate declines in peripheral auditory acuity lead to a systematic downregulation of neural activity during the processing of higher-level aspects of speech, and may also contribute to loss of gray matter volume in primary auditory cortex. More generally these findings support a resource-allocation framework in which individual differences in sensory ability help define the degree to which brain regions are recruited in service of a particular task. PMID:21880924

  16. Brief Report: Which Came First? Exploring Crossmodal Temporal Order Judgements and Their Relationship with Sensory Reactivity in Autism and Neurotypicals

    ERIC Educational Resources Information Center

    Poole, Daniel; Gowen, Emma; Warren, Paul A.; Poliakoff, Ellen

    2017-01-01

    Previous studies have indicated that visual-auditory temporal acuity is reduced in children with autism spectrum conditions (ASC) in comparison to neurotypicals. In the present study we investigated temporal acuity for all possible bimodal pairings of visual, tactile and auditory information in adults with ASC (n = 18) and a matched control group…

  17. Functional specialization of medial auditory belt cortex in the alert rhesus monkey.

    PubMed

    Kusmierek, Pawel; Rauschecker, Josef P

    2009-09-01

    Responses of neural units in two areas of the medial auditory belt (middle medial area [MM] and rostral medial area [RM]) were tested with tones, noise bursts, monkey calls (MC), and environmental sounds (ES) in microelectrode recordings from two alert rhesus monkeys. For comparison, recordings were also performed from two core areas (primary auditory area [A1] and rostral area [R]) of the auditory cortex. All four fields showed cochleotopic organization, with best (center) frequency [BF(c)] gradients running in opposite directions in A1 and MM than in R and RM. The medial belt was characterized by a stronger preference for band-pass noise than for pure tones found medially to the core areas. Response latencies were shorter for the two more posterior (middle) areas MM and A1 than for the two rostral areas R and RM, reaching values as low as 6 ms for high BF(c) in MM and A1, and strongly depended on BF(c). The medial belt areas exhibited a higher selectivity to all stimuli, in particular to noise bursts, than the core areas. An increased selectivity to tones and noise bursts was also found in the anterior fields; the opposite was true for highly temporally modulated ES. Analysis of the structure of neural responses revealed that neurons were driven by low-level acoustic features in all fields. Thus medial belt areas RM and MM have to be considered early stages of auditory cortical processing. The anteroposterior difference in temporal processing indices suggests that R and RM may belong to a different hierarchical level or a different computational network than A1 and MM.

  18. Dynamic speech representations in the human temporal lobe.

    PubMed

    Leonard, Matthew K; Chang, Edward F

    2014-09-01

    Speech perception requires rapid integration of acoustic input with context-dependent knowledge. Recent methodological advances have allowed researchers to identify underlying information representations in primary and secondary auditory cortex and to examine how context modulates these representations. We review recent studies that focus on contextual modulations of neural activity in the superior temporal gyrus (STG), a major hub for spectrotemporal encoding. Recent findings suggest a highly interactive flow of information processing through the auditory ventral stream, including influences of higher-level linguistic and metalinguistic knowledge, even within individual areas. Such mechanisms may give rise to more abstract representations, such as those for words. We discuss the importance of characterizing representations of context-dependent and dynamic patterns of neural activity in the approach to speech perception research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The musical brain: brain waves reveal the neurophysiological basis of musicality in human subjects.

    PubMed

    Tervaniemi, M; Ilvonen, T; Karma, K; Alho, K; Näätänen, R

    1997-04-18

    To reveal neurophysiological prerequisites of musicality, auditory event-related potentials (ERPs) were recorded from musical and non-musical subjects, musicality being here defined as the ability to temporally structure auditory information. Instructed to read a book and to ignore sounds, subjects were presented with a repetitive sound pattern with occasional changes in its temporal structure. The mismatch negativity (MMN) component of ERPs, indexing the cortical preattentive detection of change in these stimulus patterns, was larger in amplitude in musical than non-musical subjects. This amplitude enhancement, indicating more accurate sensory memory function in musical subjects, suggests that even the cognitive component of musicality, traditionally regarded as depending on attention-related brain processes, in fact, is based on neural mechanisms present already at the preattentive level.

  20. Neural correlates of auditory recognition memory in the primate dorsal temporal pole

    PubMed Central

    Ng, Chi-Wing; Plakke, Bethany

    2013-01-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324

  1. Impact of mild traumatic brain injury on auditory brain stem dysfunction in mouse model.

    PubMed

    Amanipour, Reza M; Frisina, Robert D; Cresoe, Samantha A; Parsons, Teresa J; Xiaoxia Zhu; Borlongan, Cesario V; Walton, Joseph P

    2016-08-01

    The auditory brainstem response (ABR) is an electrophysiological test that examines the functionality of the auditory nerve and brainstem. Traumatic brain injury (TBI) can be detected if prolonged peak latency is observed in ABR measurements, since latency measures the neural conduction time in the brainstem, and an increase in latency can be a sign of pathological lesion at the auditory brainstem level. The ABR is elicited by brief sounds that can be used to measure hearing sensitivity as well as temporal processing. Reduction in peak amplitudes and increases in latency are indicative of dysfunction in the auditory nerve and/or central auditory pathways. In this study we used sixteen young adult mice that were divided into two groups: sham and mild traumatic brain injury (mTBI), with ABR measurements obtained prior to, and at 2, 6, and 14 weeks after injury. Abnormal ABRs were observed for the nine TBI cases as early as two weeks after injury and the deficits lasted for fourteen weeks after injury. Results indicated a significant reduction in the Peak 1 (P1) and Peak 4 (P4) amplitudes to the first noise burst, as well as an increase in latency response for P1 and P4 following mTBI. These results are the first to demonstrate auditory sound processing deficits in a rodent model of mild TBI.

  2. Audio-tactile integration and the influence of musical training.

    PubMed

    Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C; Pantev, Christo

    2014-01-01

    Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG) to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training.

  3. LANGUAGE EXPERIENCE SHAPES PROCESSING OF PITCH RELEVANT INFORMATION IN THE HUMAN BRAINSTEM AND AUDITORY CORTEX: ELECTROPHYSIOLOGICAL EVIDENCE.

    PubMed

    Krishnan, Ananthanarayan; Gandour, Jackson T

    2014-12-01

    Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long-term experience shapes this adaptive process wherein the top-down connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural responses to specific behaviorally-relevant attributes of the stimulus. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-dependent enhancement of pitch representations at multiple levels of the auditory pathway. The ability to record brainstem and cortical pitch relevant responses concurrently may provide a new window to evaluate the online interplay between feedback, feedforward, and local intrinsic components in the hierarchical processing of pitch relevant information.

  4. LANGUAGE EXPERIENCE SHAPES PROCESSING OF PITCH RELEVANT INFORMATION IN THE HUMAN BRAINSTEM AND AUDITORY CORTEX: ELECTROPHYSIOLOGICAL EVIDENCE

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.

    2015-01-01

    Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long-term experience shapes this adaptive process wherein the top-down connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural responses to specific behaviorally-relevant attributes of the stimulus. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-dependent enhancement of pitch representations at multiple levels of the auditory pathway. The ability to record brainstem and cortical pitch relevant responses concurrently may provide a new window to evaluate the online interplay between feedback, feedforward, and local intrinsic components in the hierarchical processing of pitch relevant information. PMID:25838636

  5. Temporal pattern processing in songbirds.

    PubMed

    Comins, Jordan A; Gentner, Timothy Q

    2014-10-01

    Understanding how the brain perceives, organizes and uses patterned information is directly related to the neurobiology of language. Given the present limitations, such knowledge at the scale of neurons, neural circuits and neural populations can only come from non-human models, focusing on shared capacities that are relevant to language processing. Here we review recent advances in the behavioral and neural basis of temporal pattern processing of natural auditory communication signals in songbirds, focusing on European starlings. We suggest a general inhibitory circuit for contextual modulation that can act to control sensory representations based on patterning rules. Copyright © 2014. Published by Elsevier Ltd.

  6. Functional overlap between regions involved in speech perception and in monitoring one’s own voice during speech production

    PubMed Central

    Zheng, Zane Z.; Munhall, Kevin G; Johnsrude, Ingrid S

    2009-01-01

    The fluency and reliability of speech production suggests a mechanism that links motor commands and sensory feedback. Here, we examine the neural organization supporting such links by using fMRI to identify regions in which activity during speech production is modulated according to whether auditory feedback matches the predicted outcome or not, and examining the overlap with the network recruited during passive listening to speech sounds. We use real-time signal processing to compare brain activity when participants whispered a consonant-vowel-consonant word (‘Ted’) and either heard this clearly, or heard voice-gated masking noise. We compare this to when they listened to yoked stimuli (identical recordings of ‘Ted’ or noise) without speaking. Activity along the superior temporal sulcus (STS) and superior temporal gyrus (STG) bilaterally was significantly greater if the auditory stimulus was a) processed as the auditory concomitant of speaking and b) did not match the predicted outcome (noise). The network exhibiting this Feedback type by Production/Perception interaction includes an STG/MTG region that is activated more when listening to speech than to noise. This is consistent with speech production and speech perception being linked in a control system that predicts the sensory outcome of speech acts, and that processes an error signal in speech-sensitive regions when this and the sensory data do not match. PMID:19642886

  7. Neuronal correlates of perception, imagery, and memory for familiar tunes.

    PubMed

    Herholz, Sibylle C; Halpern, Andrea R; Zatorre, Robert J

    2012-06-01

    We used fMRI to investigate the neuronal correlates of encoding and recognizing heard and imagined melodies. Ten participants were shown lyrics of familiar verbal tunes; they either heard the tune along with the lyrics, or they had to imagine it. In a subsequent surprise recognition test, they had to identify the titles of tunes that they had heard or imagined earlier. The functional data showed substantial overlap during melody perception and imagery, including secondary auditory areas. During imagery compared with perception, an extended network including pFC, SMA, intraparietal sulcus, and cerebellum showed increased activity, in line with the increased processing demands of imagery. Functional connectivity of anterior right temporal cortex with frontal areas was increased during imagery compared with perception, indicating that these areas form an imagery-related network. Activity in right superior temporal gyrus and pFC was correlated with the subjective rating of imagery vividness. Similar to the encoding phase, the recognition task recruited overlapping areas, including inferior frontal cortex associated with memory retrieval, as well as left middle temporal gyrus. The results present new evidence for the cortical network underlying goal-directed auditory imagery, with a prominent role of the right pFC both for the subjective impression of imagery vividness and for on-line mental monitoring of imagery-related activity in auditory areas.

  8. Representations of pitch and slow modulation in auditory cortex

    PubMed Central

    Barker, Daphne; Plack, Christopher J.; Hall, Deborah A.

    2013-01-01

    Iterated ripple noise (IRN) is a type of pitch-evoking stimulus that is commonly used in neuroimaging studies of pitch processing. When contrasted with a spectrally matched Gaussian noise, it is known to produce a consistent response in a region of auditory cortex that includes an area antero-lateral to the primary auditory fields (lateral Heschl's gyrus). The IRN-related response has often been attributed to pitch, although recent evidence suggests that it is more likely driven by slowly varying spectro-temporal modulations not related to pitch. The present functional magnetic resonance imaging (fMRI) study showed that both pitch-related temporal regularity and slow modulations elicited a significantly greater response than a baseline Gaussian noise in an area that has been pre-defined as pitch-responsive. The region was sensitive to both pitch salience and slow modulation salience. The responses to pitch and spectro-temporal modulations interacted in a saturating manner, suggesting that there may be an overlap in the populations of neurons coding these features. However, the interaction may have been influenced by the fact that the two pitch stimuli used (IRN and unresolved harmonic complexes) differed in terms of pitch salience. Finally, the results support previous findings suggesting that the cortical response to IRN is driven in part by slow modulations, not by pitch. PMID:24106464

  9. Altered retrieval of melodic information in congenital amusia: insights from dynamic causal modeling of MEG data.

    PubMed

    Albouy, Philippe; Mattout, Jérémie; Sanchez, Gaëtan; Tillmann, Barbara; Caclin, Anne

    2015-01-01

    Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and short-term memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the short-term memory retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in "Different" trials and to its equivalent (original) tone in "Same" trials were compared between groups using Dynamic Causal Modeling (DCM). DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with notably an increase in "Same" trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain.

  10. Short-term memory stores organized by information domain.

    PubMed

    Noyce, Abigail L; Cestero, Nishmar; Shinn-Cunningham, Barbara G; Somers, David C

    2016-04-01

    Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigated the relationships among the visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations) or time (the sequence of inter item intervals) and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (Sequence 1 visual, Sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: Spatial performance was best on unimodal visual trials, whereas temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, no cost was attributable to crossmodal comparison: In both tasks, performance on crossmodal trials was as good as or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that the temporal or spatial organization of STM may supersede sensory-specific organization.

  11. Auditory evoked potentials to abrupt pitch and timbre change of complex tones: electrophysiological evidence of 'streaming'?

    PubMed

    Jones, S J; Longe, O; Vaz Pato, M

    1998-03-01

    Examination of the cortical auditory evoked potentials to complex tones changing in pitch and timbre suggests a useful new method for investigating higher auditory processes, in particular those concerned with 'streaming' and auditory object formation. The main conclusions were: (i) the N1 evoked by a sudden change in pitch or timbre was more posteriorly distributed than the N1 at the onset of the tone, indicating at least partial segregation of the neuronal populations responsive to sound onset and spectral change; (ii) the T-complex was consistently larger over the right hemisphere, consistent with clinical and PET evidence for particular involvement of the right temporal lobe in the processing of timbral and musical material; (iii) responses to timbral change were relatively unaffected by increasing the rate of interspersed changes in pitch, suggesting a mechanism for detecting the onset of a new voice in a constantly modulated sound stream; (iv) responses to onset, offset and pitch change of complex tones were relatively unaffected by interfering tones when the latter were of a different timbre, suggesting these responses must be generated subsequent to auditory stream segregation.

  12. The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis

    PubMed Central

    Patel, Aniruddh D.; Iversen, John R.

    2013-01-01

    Every human culture has some form of music with a beat: a perceived periodic pulse that structures the perception of musical rhythm and which serves as a framework for synchronized movement to music. What are the neural mechanisms of musical beat perception, and how did they evolve? One view, which dates back to Darwin and implicitly informs some current models of beat perception, is that the relevant neural mechanisms are relatively general and are widespread among animal species. On the basis of recent neural and cross-species data on musical beat processing, this paper argues for a different view. Here we argue that beat perception is a complex brain function involving temporally-precise communication between auditory regions and motor planning regions of the cortex (even in the absence of overt movement). More specifically, we propose that simulation of periodic movement in motor planning regions provides a neural signal that helps the auditory system predict the timing of upcoming beats. This “action simulation for auditory prediction” (ASAP) hypothesis leads to testable predictions. We further suggest that ASAP relies on dorsal auditory pathway connections between auditory regions and motor planning regions via the parietal cortex, and suggest that these connections may be stronger in humans than in non-human primates due to the evolution of vocal learning in our lineage. This suggestion motivates cross-species research to determine which species are capable of human-like beat perception, i.e., beat perception that involves accurate temporal prediction of beat times across a fairly broad range of tempi. PMID:24860439

  13. A Double Dissociation between Anterior and Posterior Superior Temporal Gyrus for Processing Audiovisual Speech Demonstrated by Electrocorticography

    PubMed Central

    Ozker, Muge; Schepers, Inga M.; Magnotti, John F.; Yoshor, Daniel; Beauchamp, Michael S.

    2017-01-01

    Human speech can be comprehended using only auditory information from the talker’s voice. However, comprehension is improved if the talker’s face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl’s gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech. PMID:28253074

  14. Interhemispheric transfer time in patients with auditory hallucinations: an auditory event-related potential study.

    PubMed

    Henshall, Katherine R; Sergejew, Alex A; McKay, Colette M; Rance, Gary; Shea, Tracey L; Hayden, Melissa J; Innes-Brown, Hamish; Copolov, David L

    2012-05-01

    Central auditory processing in schizophrenia patients with a history of auditory hallucinations has been reported to be impaired, and abnormalities of interhemispheric transfer have been implicated in these patients. This study examined interhemispheric functional connectivity between auditory cortical regions, using temporal information obtained from latency measures of the auditory N1 evoked potential. Interhemispheric Transfer Times (IHTTs) were compared across 3 subject groups: schizophrenia patients who had experienced auditory hallucinations, schizophrenia patients without a history of auditory hallucinations, and normal controls. Pure tones and single-syllable words were presented monaurally to each ear, while EEG was recorded continuously. IHTT was calculated for each stimulus type by comparing the latencies of the auditory N1 evoked potential recorded contralaterally and ipsilaterally to the ear of stimulation. The IHTTs for pure tones did not differ between groups. For word stimuli, the IHTT was significantly different across the 3 groups: the IHTT was close to zero in normal controls, was highest in the AH group, and was negative (shorter latencies ipsilaterally) in the nonAH group. Differences in IHTTs may be attributed to transcallosal dysfunction in the AH group, but altered or reversed cerebral lateralization in nonAH participants is also possible. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Auditory training and challenges associated with participation and compliance.

    PubMed

    Sweetow, Robert W; Sabes, Jennifer Henderson

    2010-10-01

    When individuals have hearing loss, physiological changes in their brain interact with relearning of sound patterns. Some individuals utilize compensatory strategies that may result in successful hearing aid use. Others, however, are not so fortunate. Modern hearing aids can provide audibility but may not rectify spectral and temporal resolution, susceptibility to noise interference, or degradation of cognitive skills, such as declining auditory memory and slower speed of processing associated with aging. Frequently, these deficits are not identified during a typical "hearing aid evaluation." Aural rehabilitation has long been advocated to enhance communication but has not been considered time or cost-effective. Home-based, interactive adaptive computer therapy programs are available that are designed to engage the adult hearing-impaired listener in the hearing aid fitting process, provide listening strategies, build confidence, and address cognitive changes. Despite the availability of these programs, many patients and professionals are reluctant to engage in and complete therapy. The purposes of this article are to discuss the need for identifying auditory and nonauditory factors that may adversely affect the overall audiological rehabilitation process, to discuss important features that should be incorporated into training, and to examine reasons for the lack of compliance with therapeutic options. Possible solutions to maximizing compliance are explored. Only a small portion of audiologists (fewer than 10%) offer auditory training to patients with hearing impairment, even though auditory training appears to lower the rate of hearing aid returns for credit. Patients to whom auditory training programs are recommended often do not complete the training, however. Compliance for a cohort of home-based auditory therapy trainees was less than 30%. Activities to increase patient compliance to auditory training protocols are proposed. American Academy of Audiology.

  16. T-complex measures in bilingual Spanish-English and Turkish-German children and monolingual peers.

    PubMed

    Rinker, Tanja; Shafer, Valerie L; Kiefer, Markus; Vidal, Nancy; Yu, Yan H

    2017-01-01

    Lateral temporal neural measures (Na and T-complex Ta and Tb) of the auditory evoked potential (AEP) index maturation of auditory/speech processing. These measures are also sensitive to language experience in adults. This paper examined neural responses to a vowel sound at temporal electrodes in four- to five-year-old Spanish-English bilinguals and English monolinguals and in five- to six-year-old Turkish-German bilinguals and German monolinguals. The goal was to determine whether obligatory AEPs at temporal electrode sites were modulated by language experience. Language experience was defined in terms of monolingual versus bilingual status as well as the amount and quality of the bilingual language experience. AEPs were recorded at left and right temporal electrode sites to a 250-ms vowel [Ɛ] from 20 monolingual (American)-English and 18 Spanish-English children from New York City, and from 11 Turkish-German and 13 monolingual German children from Ulm, Germany. Language background information and standardized verbal and non-verbal test scores were obtained for the children. The results revealed differences in temporal AEPs (Na and Ta of the T-complex) between monolingual and bilingual children. Specifically, bilingual children showed smaller and/or later peak amplitudes than the monolingual groups. Ta-amplitude distinguished monolingual and bilingual children best at right electrode sites for both the German and American groups. Amount of experience and type of experience with the target language (English and German) influenced processing. The finding of reduced amplitudes at the Ta latency for bilingual compared to monolingual children indicates that language specific experience, and not simply maturational factors, influences development of the neural processes underlying the Ta AEP, and suggests that lateral temporal cortex has an important role in language-specific speech perception development.

  17. T-complex measures in bilingual Spanish-English and Turkish-German children and monolingual peers

    PubMed Central

    Rinker, Tanja; Shafer, Valerie L.; Kiefer, Markus; Vidal, Nancy; Yu, Yan H.

    2017-01-01

    Background Lateral temporal neural measures (Na and T-complex Ta and Tb) of the auditory evoked potential (AEP) index maturation of auditory/speech processing. These measures are also sensitive to language experience in adults. This paper examined neural responses to a vowel sound at temporal electrodes in four- to five-year-old Spanish-English bilinguals and English monolinguals and in five- to six-year-old Turkish-German bilinguals and German monolinguals. The goal was to determine whether obligatory AEPs at temporal electrode sites were modulated by language experience. Language experience was defined in terms of monolingual versus bilingual status as well as the amount and quality of the bilingual language experience. Method AEPs were recorded at left and right temporal electrode sites to a 250-ms vowel [Ɛ] from 20 monolingual (American)-English and 18 Spanish-English children from New York City, and from 11 Turkish-German and 13 monolingual German children from Ulm, Germany. Language background information and standardized verbal and non-verbal test scores were obtained for the children. Results The results revealed differences in temporal AEPs (Na and Ta of the T-complex) between monolingual and bilingual children. Specifically, bilingual children showed smaller and/or later peak amplitudes than the monolingual groups. Ta-amplitude distinguished monolingual and bilingual children best at right electrode sites for both the German and American groups. Amount of experience and type of experience with the target language (English and German) influenced processing. Conclusions The finding of reduced amplitudes at the Ta latency for bilingual compared to monolingual children indicates that language specific experience, and not simply maturational factors, influences development of the neural processes underlying the Ta AEP, and suggests that lateral temporal cortex has an important role in language-specific speech perception development. PMID:28267801

  18. Increased Automaticity and Altered Temporal Preparation Following Sleep Deprivation.

    PubMed

    Kong, Danyang; Asplund, Christopher L; Ling, Aiqing; Chee, Michael W L

    2015-08-01

    Temporal expectation enables us to focus limited processing resources, thereby optimizing perceptual and motor processing for critical upcoming events. We investigated the effects of total sleep deprivation (TSD) on temporal expectation by evaluating the foreperiod and sequential effects during a psychomotor vigilance task (PVT). We also examined how these two measures were modulated by vulnerability to TSD. Three 10-min visual PVT sessions using uniformly distributed foreperiods were conducted in the wake-maintenance zone the evening before sleep deprivation (ESD) and three more in the morning following approximately 22 h of TSD. TSD vulnerable and nonvulnerable groups were determined by a tertile split of participants based on the change in the number of behavioral lapses recorded during ESD and TSD. A subset of participants performed six additional 10-min modified auditory PVTs with exponentially distributed foreperiods during rested wakefulness (RW) and TSD to test the effect of temporal distribution on foreperiod and sequential effects. Sleep laboratory. There were 172 young healthy participants (90 males) with regular sleep patterns. Nineteen of these participants performed the modified auditory PVT. Despite behavioral lapses and slower response times, sleep deprived participants could still perceive the conditional probability of temporal events and modify their level of preparation accordingly. Both foreperiod and sequential effects were magnified following sleep deprivation in vulnerable individuals. Only the foreperiod effect increased in nonvulnerable individuals. The preservation of foreperiod and sequential effects suggests that implicit time perception and temporal preparedness are intact during total sleep deprivation. Individuals appear to reallocate their depleted preparatory resources to more probable event timings in ongoing trials, whereas vulnerable participants also rely more on automatic processes. © 2015 Associated Professional Sleep Societies, LLC.

  19. Reorganization in processing of spectral and temporal input in the rat posterior auditory field induced by environmental enrichment

    PubMed Central

    Jakkamsetti, Vikram; Chang, Kevin Q.

    2012-01-01

    Environmental enrichment induces powerful changes in the adult cerebral cortex. Studies in primary sensory cortex have observed that environmental enrichment modulates neuronal response strength, selectivity, speed of response, and synchronization to rapid sensory input. Other reports suggest that nonprimary sensory fields are more plastic than primary sensory cortex. The consequences of environmental enrichment on information processing in nonprimary sensory cortex have yet to be studied. Here we examine physiological effects of enrichment in the posterior auditory field (PAF), a field distinguished from primary auditory cortex (A1) by wider receptive fields, slower response times, and a greater preference for slowly modulated sounds. Environmental enrichment induced a significant increase in spectral and temporal selectivity in PAF. PAF neurons exhibited narrower receptive fields and responded significantly faster and for a briefer period to sounds after enrichment. Enrichment increased time-locking to rapidly successive sensory input in PAF neurons. Compared with previous enrichment studies in A1, we observe a greater magnitude of reorganization in PAF after environmental enrichment. Along with other reports observing greater reorganization in nonprimary sensory cortex, our results in PAF suggest that nonprimary fields might have a greater capacity for reorganization compared with primary fields. PMID:22131375

  20. The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information

    PubMed Central

    Bendor, Daniel

    2015-01-01

    In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843

  1. Preservation of perceptual integration improves temporal stability of bimanual coordination in the elderly: an evidence of age-related brain plasticity.

    PubMed

    Blais, Mélody; Martin, Elodie; Albaret, Jean-Michel; Tallet, Jessica

    2014-12-15

    Despite the apparent age-related decline in perceptual-motor performance, recent studies suggest that the elderly people can improve their reaction time when relevant sensory information are available. However, little is known about which sensory information may improve motor behaviour itself. Using a synchronization task, the present study investigates how visual and/or auditory stimulations could increase accuracy and stability of three bimanual coordination modes produced by elderly and young adults. Neurophysiological activations are recorded with ElectroEncephaloGraphy (EEG) to explore neural mechanisms underlying behavioural effects. Results reveal that the elderly stabilize all coordination modes when auditory or audio-visual stimulations are available, compared to visual stimulation alone. This suggests that auditory stimulations are sufficient to improve temporal stability of rhythmic coordination, even more in the elderly. This behavioural effect is primarily associated with increased attentional and sensorimotor-related neural activations in the elderly but similar perceptual-related activations in elderly and young adults. This suggests that, despite a degradation of attentional and sensorimotor neural processes, perceptual integration of auditory stimulations is preserved in the elderly. These results suggest that perceptual-related brain plasticity is, at least partially, conserved in normal aging. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence

    PubMed Central

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D.; Chait, Maria

    2016-01-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence—the coincidence of sound elements in and across time—is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals (“stochastic figure-ground”: SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as “figures” popping out of a stochastic “ground.” Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the “figure” from the randomly varying “ground.” Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the “classic” auditory system, is also involved in the early stages of auditory scene analysis.” PMID:27325682

  3. Temporal plasticity in auditory cortex improves neural discrimination of speech sounds

    PubMed Central

    Engineer, Crystal T.; Shetake, Jai A.; Engineer, Navzer D.; Vrana, Will A.; Wolf, Jordan T.; Kilgard, Michael P.

    2017-01-01

    Background Many individuals with language learning impairments exhibit temporal processing deficits and degraded neural responses to speech sounds. Auditory training can improve both the neural and behavioral deficits, though significant deficits remain. Recent evidence suggests that vagus nerve stimulation (VNS) paired with rehabilitative therapies enhances both cortical plasticity and recovery of normal function. Objective/Hypothesis We predicted that pairing VNS with rapid tone trains would enhance the primary auditory cortex (A1) response to unpaired novel speech sounds. Methods VNS was paired with tone trains 300 times per day for 20 days in adult rats. Responses to isolated speech sounds, compressed speech sounds, word sequences, and compressed word sequences were recorded in A1 following the completion of VNS-tone train pairing. Results Pairing VNS with rapid tone trains resulted in stronger, faster, and more discriminable A1 responses to speech sounds presented at conversational rates. Conclusion This study extends previous findings by documenting that VNS paired with rapid tone trains altered the neural response to novel unpaired speech sounds. Future studies are necessary to determine whether pairing VNS with appropriate auditory stimuli could potentially be used to improve both neural responses to speech sounds and speech perception in individuals with receptive language disorders. PMID:28131520

  4. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence.

    PubMed

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D; Chait, Maria

    2016-09-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence-the coincidence of sound elements in and across time-is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals ("stochastic figure-ground": SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as "figures" popping out of a stochastic "ground." Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the "figure" from the randomly varying "ground." Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the "classic" auditory system, is also involved in the early stages of auditory scene analysis." © The Author 2016. Published by Oxford University Press.

  5. Comparing the information conveyed by envelope modulation for speech intelligibility, speech quality, and music quality.

    PubMed

    Kates, James M; Arehart, Kathryn H

    2015-10-01

    This paper uses mutual information to quantify the relationship between envelope modulation fidelity and perceptual responses. Data from several previous experiments that measured speech intelligibility, speech quality, and music quality are evaluated for normal-hearing and hearing-impaired listeners. A model of the auditory periphery is used to generate envelope signals, and envelope modulation fidelity is calculated using the normalized cross-covariance of the degraded signal envelope with that of a reference signal. Two procedures are used to describe the envelope modulation: (1) modulation within each auditory frequency band and (2) spectro-temporal processing that analyzes the modulation of spectral ripple components fit to successive short-time spectra. The results indicate that low modulation rates provide the highest information for intelligibility, while high modulation rates provide the highest information for speech and music quality. The low-to-mid auditory frequencies are most important for intelligibility, while mid frequencies are most important for speech quality and high frequencies are most important for music quality. Differences between the spectral ripple components used for the spectro-temporal analysis were not significant in five of the six experimental conditions evaluated. The results indicate that different modulation-rate and auditory-frequency weights may be appropriate for indices designed to predict different types of perceptual relationships.

  6. Specialization of the auditory processing in harbor porpoise, characterized by brain-stem potentials

    NASA Astrophysics Data System (ADS)

    Bibikov, Nikolay G.

    2002-05-01

    Brain-stem auditory evoked potentials (BAEPs) were recorded from the head surface of the three awaked harbor porpoises (Phocoena phocoena). Silver disk placed on the skin surface above the vertex bone was used as an active electrode. The experiments were performed at the Karadag biological station (the Crimea peninsula). Clicks and tone bursts were used as stimuli. The temporal and frequency selectivity of the auditory system was estimated using the methods of simultaneous and forward masking. An evident minimum of the BAEPs thresholds was observed in the range of 125-135 kHz, where the main spectral component of species-specific echolocation signal is located. In this frequency range the tonal forward masking demonstrated a strong frequency selectivity. Off-response to such tone bursts was a typical observation. An evident BAEP could be recorded up to the frequencies 190-200 kHz, however, outside the acoustical fovea the frequency selectivity was rather poor. Temporal resolution was estimated by measuring BAER recovery functions for double clicks, double tone bursts, and double noise bursts. The half-time of BAERs recovery was in the range of 0.1-0.2 ms. The data indicate that the porpoise auditory system is strongly adapted to detect ultrasonic closely spaced sounds like species-specific locating signals and echoes.

  7. Seasonal Plasticity of Precise Spike Timing in the Avian Auditory System

    PubMed Central

    Sen, Kamal; Rubel, Edwin W; Brenowitz, Eliot A.

    2015-01-01

    Vertebrate audition is a dynamic process, capable of exhibiting both short- and long-term adaptations to varying listening conditions. Precise spike timing has long been known to play an important role in auditory encoding, but its role in sensory plasticity remains largely unexplored. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a songbird that shows pronounced seasonal fluctuations in circulating levels of sex-steroid hormones, which are known to be potent neuromodulators of auditory function. We recorded extracellular single-unit activity in the auditory forebrain of males and females under different breeding conditions and used a computational approach to explore two potential strategies for the neural discrimination of sound level: one based on spike counts and one based on spike timing reliability. We report that breeding condition has robust sex-specific effects on spike timing. Specifically, in females, breeding condition increases the proportion of cells that rely solely on spike timing information and increases the temporal resolution required for optimal intensity encoding. Furthermore, in a functionally distinct subset of cells that are particularly well suited for amplitude encoding, female breeding condition enhances spike timing-based discrimination accuracy. No effects of breeding condition were observed in males. Our results suggest that high-resolution temporal discharge patterns may provide a plastic neural substrate for sensory coding. PMID:25716843

  8. Comparing the information conveyed by envelope modulation for speech intelligibility, speech quality, and music quality

    PubMed Central

    Kates, James M.; Arehart, Kathryn H.

    2015-01-01

    This paper uses mutual information to quantify the relationship between envelope modulation fidelity and perceptual responses. Data from several previous experiments that measured speech intelligibility, speech quality, and music quality are evaluated for normal-hearing and hearing-impaired listeners. A model of the auditory periphery is used to generate envelope signals, and envelope modulation fidelity is calculated using the normalized cross-covariance of the degraded signal envelope with that of a reference signal. Two procedures are used to describe the envelope modulation: (1) modulation within each auditory frequency band and (2) spectro-temporal processing that analyzes the modulation of spectral ripple components fit to successive short-time spectra. The results indicate that low modulation rates provide the highest information for intelligibility, while high modulation rates provide the highest information for speech and music quality. The low-to-mid auditory frequencies are most important for intelligibility, while mid frequencies are most important for speech quality and high frequencies are most important for music quality. Differences between the spectral ripple components used for the spectro-temporal analysis were not significant in five of the six experimental conditions evaluated. The results indicate that different modulation-rate and auditory-frequency weights may be appropriate for indices designed to predict different types of perceptual relationships. PMID:26520329

  9. Non-linear processing of a linear speech stream: The influence of morphological structure on the recognition of spoken Arabic words.

    PubMed

    Gwilliams, L; Marantz, A

    2015-08-01

    Although the significance of morphological structure is established in visual word processing, its role in auditory processing remains unclear. Using magnetoencephalography we probe the significance of the root morpheme for spoken Arabic words with two experimental manipulations. First we compare a model of auditory processing that calculates probable lexical outcomes based on whole-word competitors, versus a model that only considers the root as relevant to lexical identification. Second, we assess violations to the root-specific Obligatory Contour Principle (OCP), which disallows root-initial consonant gemination. Our results show root prediction to significantly correlate with neural activity in superior temporal regions, independent of predictions based on whole-word competitors. Furthermore, words that violated the OCP constraint were significantly easier to dismiss as valid words than probability-matched counterparts. The findings suggest that lexical auditory processing is dependent upon morphological structure, and that the root forms a principal unit through which spoken words are recognised. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Gap Detection and Temporal Modulation Transfer Function as Behavioral Estimates of Auditory Temporal Acuity Using Band-Limited Stimuli in Young and Older Adults

    PubMed Central

    Shen, Yi

    2015-01-01

    Purpose Gap detection and the temporal modulation transfer function (TMTF) are 2 common methods to obtain behavioral estimates of auditory temporal acuity. However, the agreement between the 2 measures is not clear. This study compares results from these 2 methods and their dependencies on listener age and hearing status. Method Gap detection thresholds and the parameters that describe the TMTF (sensitivity and cutoff frequency) were estimated for young and older listeners who were naive to the experimental tasks. Stimuli were 800-Hz-wide noises with upper frequency limits of 2400 Hz, presented at 85 dB SPL. A 2-track procedure (Shen & Richards, 2013) was used for the efficient estimation of the TMTF. Results No significant correlation was found between gap detection threshold and the sensitivity or the cutoff frequency of the TMTF. No significant effect of age and hearing loss on either the gap detection threshold or the TMTF cutoff frequency was found, while the TMTF sensitivity improved with increasing hearing threshold and worsened with increasing age. Conclusion Estimates of temporal acuity using gap detection and TMTF paradigms do not seem to provide a consistent description of the effects of listener age and hearing status on temporal envelope processing. PMID:25087722

  11. Disentangling syntax and intelligibility in auditory language comprehension.

    PubMed

    Friederici, Angela D; Kotz, Sonja A; Scott, Sophie K; Obleser, Jonas

    2010-03-01

    Studies of the neural basis of spoken language comprehension typically focus on aspects of auditory processing by varying signal intelligibility, or on higher-level aspects of language processing such as syntax. Most studies in either of these threads of language research report brain activation including peaks in the superior temporal gyrus (STG) and/or the superior temporal sulcus (STS), but it is not clear why these areas are recruited in functionally different studies. The current fMRI study aims to disentangle the functional neuroanatomy of intelligibility and syntax in an orthogonal design. The data substantiate functional dissociations between STS and STG in the left and right hemispheres: first, manipulations of speech intelligibility yield bilateral mid-anterior STS peak activation, whereas syntactic phrase structure violations elicit strongly left-lateralized mid STG and posterior STS activation. Second, ROI analyses indicate all interactions of speech intelligibility and syntactic correctness to be located in the left frontal and temporal cortex, while the observed right-hemispheric activations reflect less specific responses to intelligibility and syntax. Our data demonstrate that the mid-to-anterior STS activation is associated with increasing speech intelligibility, while the mid-to-posterior STG/STS is more sensitive to syntactic information within the speech. 2009 Wiley-Liss, Inc.

  12. Functional MRI of the vocalization-processing network in the macaque brain

    PubMed Central

    Ortiz-Rios, Michael; Kuśmierek, Paweł; DeWitt, Iain; Archakov, Denis; Azevedo, Frederico A. C.; Sams, Mikko; Jääskeläinen, Iiro P.; Keliris, Georgios A.; Rauschecker, Josef P.

    2015-01-01

    Using functional magnetic resonance imaging in awake behaving monkeys we investigated how species-specific vocalizations are represented in auditory and auditory-related regions of the macaque brain. We found clusters of active voxels along the ascending auditory pathway that responded to various types of complex sounds: inferior colliculus (IC), medial geniculate nucleus (MGN), auditory core, belt, and parabelt cortex, and other parts of the superior temporal gyrus (STG) and sulcus (STS). Regions sensitive to monkey calls were most prevalent in the anterior STG, but some clusters were also found in frontal and parietal cortex on the basis of comparisons between responses to calls and environmental sounds. Surprisingly, we found that spectrotemporal control sounds derived from the monkey calls (“scrambled calls”) also activated the parietal and frontal regions. Taken together, our results demonstrate that species-specific vocalizations in rhesus monkeys activate preferentially the auditory ventral stream, and in particular areas of the antero-lateral belt and parabelt. PMID:25883546

  13. The Potential Role of the cABR in Assessment and Management of Hearing Impairment

    PubMed Central

    Anderson, Samira; Kraus, Nina

    2013-01-01

    Hearing aid technology has improved dramatically in the last decade, especially in the ability to adaptively respond to dynamic aspects of background noise. Despite these advancements, however, hearing aid users continue to report difficulty hearing in background noise and having trouble adjusting to amplified sound quality. These difficulties may arise in part from current approaches to hearing aid fittings, which largely focus on increased audibility and management of environmental noise. These approaches do not take into account the fact that sound is processed all along the auditory system from the cochlea to the auditory cortex. Older adults represent the largest group of hearing aid wearers; yet older adults are known to have deficits in temporal resolution in the central auditory system. Here we review evidence that supports the use of the auditory brainstem response to complex sounds (cABR) in the assessment of hearing-in-noise difficulties and auditory training efficacy in older adults. PMID:23431313

  14. Central Auditory Processing of Temporal and Spectral-Variance Cues in Cochlear Implant Listeners

    PubMed Central

    Pham, Carol Q.; Bremen, Peter; Shen, Weidong; Yang, Shi-Ming; Middlebrooks, John C.; Zeng, Fan-Gang; Mc Laughlin, Myles

    2015-01-01

    Cochlear implant (CI) listeners have difficulty understanding speech in complex listening environments. This deficit is thought to be largely due to peripheral encoding problems arising from current spread, which results in wide peripheral filters. In normal hearing (NH) listeners, central processing contributes to segregation of speech from competing sounds. We tested the hypothesis that basic central processing abilities are retained in post-lingually deaf CI listeners, but processing is hampered by degraded input from the periphery. In eight CI listeners, we measured auditory nerve compound action potentials to characterize peripheral filters. Then, we measured psychophysical detection thresholds in the presence of multi-electrode maskers placed either inside (peripheral masking) or outside (central masking) the peripheral filter. This was intended to distinguish peripheral from central contributions to signal detection. Introduction of temporal asynchrony between the signal and masker improved signal detection in both peripheral and central masking conditions for all CI listeners. Randomly varying components of the masker created spectral-variance cues, which seemed to benefit only two out of eight CI listeners. Contrastingly, the spectral-variance cues improved signal detection in all five NH listeners who listened to our CI simulation. Together these results indicate that widened peripheral filters significantly hamper central processing of spectral-variance cues but not of temporal cues in post-lingually deaf CI listeners. As indicated by two CI listeners in our study, however, post-lingually deaf CI listeners may retain some central processing abilities similar to NH listeners. PMID:26176553

  15. Perception of audio-visual speech synchrony in Spanish-speaking children with and without specific language impairment

    PubMed Central

    PONS, FERRAN; ANDREU, LLORENC.; SANZ-TORRENT, MONICA; BUIL-LEGAZ, LUCIA; LEWKOWICZ, DAVID J.

    2014-01-01

    Speech perception involves the integration of auditory and visual articulatory information and, thus, requires the perception of temporal synchrony between this information. There is evidence that children with Specific Language Impairment (SLI) have difficulty with auditory speech perception but it is not known if this is also true for the integration of auditory and visual speech. Twenty Spanish-speaking children with SLI, twenty typically developing age-matched Spanish-speaking children, and twenty Spanish-speaking children matched for MLU-w participated in an eye-tracking study to investigate the perception of audiovisual speech synchrony. Results revealed that children with typical language development perceived an audiovisual asynchrony of 666ms regardless of whether the auditory or visual speech attribute led the other one. Children with SLI only detected the 666 ms asynchrony when the auditory component followed the visual component. None of the groups perceived an audiovisual asynchrony of 366ms. These results suggest that the difficulty of speech processing by children with SLI would also involve difficulties in integrating auditory and visual aspects of speech perception. PMID:22874648

  16. Perception of audio-visual speech synchrony in Spanish-speaking children with and without specific language impairment.

    PubMed

    Pons, Ferran; Andreu, Llorenç; Sanz-Torrent, Monica; Buil-Legaz, Lucía; Lewkowicz, David J

    2013-06-01

    Speech perception involves the integration of auditory and visual articulatory information, and thus requires the perception of temporal synchrony between this information. There is evidence that children with specific language impairment (SLI) have difficulty with auditory speech perception but it is not known if this is also true for the integration of auditory and visual speech. Twenty Spanish-speaking children with SLI, twenty typically developing age-matched Spanish-speaking children, and twenty Spanish-speaking children matched for MLU-w participated in an eye-tracking study to investigate the perception of audiovisual speech synchrony. Results revealed that children with typical language development perceived an audiovisual asynchrony of 666 ms regardless of whether the auditory or visual speech attribute led the other one. Children with SLI only detected the 666 ms asynchrony when the auditory component preceded [corrected] the visual component. None of the groups perceived an audiovisual asynchrony of 366 ms. These results suggest that the difficulty of speech processing by children with SLI would also involve difficulties in integrating auditory and visual aspects of speech perception.

  17. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.

    PubMed

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2013-02-16

    We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system.

    PubMed

    Shamma, Shihab; Lorenzi, Christian

    2013-05-01

    There is much debate on how the spectrotemporal modulations of speech (or its spectrogram) are encoded in the responses of the auditory nerve, and whether speech intelligibility is best conveyed via the "envelope" (E) or "temporal fine-structure" (TFS) of the neural responses. Wide use of vocoders to resolve this question has commonly assumed that manipulating the amplitude-modulation and frequency-modulation components of the vocoded signal alters the relative importance of E or TFS encoding on the nerve, thus facilitating assessment of their relative importance to intelligibility. Here we argue that this assumption is incorrect, and that the vocoder approach is ineffective in differentially altering the neural E and TFS. In fact, we demonstrate using a simplified model of early auditory processing that both neural E and TFS encode the speech spectrogram with constant and comparable relative effectiveness regardless of the vocoder manipulations. However, we also show that neural TFS cues are less vulnerable than their E counterparts under severe noisy conditions, and hence should play a more prominent role in cochlear stimulation strategies.

  19. Neural Correlates of Auditory Perceptual Awareness and Release from Informational Masking Recorded Directly from Human Cortex: A Case Study.

    PubMed

    Dykstra, Andrew R; Halgren, Eric; Gutschalk, Alexander; Eskandar, Emad N; Cash, Sydney S

    2016-01-01

    In complex acoustic environments, even salient supra-threshold sounds sometimes go unperceived, a phenomenon known as informational masking. The neural basis of informational masking (and its release) has not been well-characterized, particularly outside auditory cortex. We combined electrocorticography in a neurosurgical patient undergoing invasive epilepsy monitoring with trial-by-trial perceptual reports of isochronous target-tone streams embedded in random multi-tone maskers. Awareness of such masker-embedded target streams was associated with a focal negativity between 100 and 200 ms and high-gamma activity (HGA) between 50 and 250 ms (both in auditory cortex on the posterolateral superior temporal gyrus) as well as a broad P3b-like potential (between ~300 and 600 ms) with generators in ventrolateral frontal and lateral temporal cortex. Unperceived target tones elicited drastically reduced versions of such responses, if at all. While it remains unclear whether these responses reflect conscious perception, itself, as opposed to pre- or post-perceptual processing, the results suggest that conscious perception of target sounds in complex listening environments may engage diverse neural mechanisms in distributed brain areas.

  20. Differential Effects of Alcohol on Working Memory: Distinguishing Multiple Processes

    PubMed Central

    Saults, J. Scott; Cowan, Nelson; Sher, Kenneth J.; Moreno, Matthew V.

    2008-01-01

    We assessed effects of alcohol consumption on different types of working memory (WM) tasks in an attempt to characterize the nature of alcohol effects on cognition. The WM tasks varied in two properties of materials to be retained in a two-stimulus comparison procedure. Conditions included (1) spatial arrays of colors, (2) temporal sequences of colors, (3) spatial arrays of spoken digits, and (4) temporal sequences of spoken digits. Alcohol consumption impaired memory for auditory and visual sequences, but not memory for simultaneous arrays of auditory or visual stimuli. These results suggest that processes needed to encode and maintain stimulus sequences, such as rehearsal, are more sensitive to alcohol intoxication than other WM mechanisms needed to maintain multiple concurrent items, such as focusing attention on them. These findings help to resolve disparate findings from prior research into alcohol’s effect on WM and on divided attention. The results suggest that moderate doses of alcohol impair WM by affecting certain mnemonic strategies and executive processes rather than by shrinking the basic holding capacity of WM. PMID:18179311

  1. Differential effects of alcohol on working memory: distinguishing multiple processes.

    PubMed

    Saults, J Scott; Cowan, Nelson; Sher, Kenneth J; Moreno, Matthew V

    2007-12-01

    The authors assessed effects of alcohol consumption on different types of working memory (WM) tasks in an attempt to characterize the nature of alcohol effects on cognition. The WM tasks varied in 2 properties of materials to be retained in a 2-stimulus comparison procedure. Conditions included (a) spatial arrays of colors, (b) temporal sequences of colors, (c) spatial arrays of spoken digits, and (d) temporal sequences of spoken digits. Alcohol consumption impaired memory for auditory and visual sequences but not memory for simultaneous arrays of auditory or visual stimuli. These results suggest that processes needed to encode and maintain stimulus sequences, such as rehearsal, are more sensitive to alcohol intoxication than other WM mechanisms needed to maintain multiple concurrent items, such as focusing attention on them. These findings help to resolve disparate findings from prior research on alcohol's effect on WM and on divided attention. The results suggest that moderate doses of alcohol impair WM by affecting certain mnemonic strategies and executive processes rather than by shrinking the basic holding capacity of WM. (c) 2008 APA, all rights reserved.

  2. Human brain regions involved in recognizing environmental sounds.

    PubMed

    Lewis, James W; Wightman, Frederic L; Brefczynski, Julie A; Phinney, Raymond E; Binder, Jeffrey R; DeYoe, Edgar A

    2004-09-01

    To identify the brain regions preferentially involved in environmental sound recognition (comprising portions of a putative auditory 'what' pathway), we collected functional imaging data while listeners attended to a wide range of sounds, including those produced by tools, animals, liquids and dropped objects. These recognizable sounds, in contrast to unrecognizable, temporally reversed control sounds, evoked activity in a distributed network of brain regions previously associated with semantic processing, located predominantly in the left hemisphere, but also included strong bilateral activity in posterior portions of the middle temporal gyri (pMTG). Comparisons with earlier studies suggest that these bilateral pMTG foci partially overlap cortex implicated in high-level visual processing of complex biological motion and recognition of tools and other artifacts. We propose that the pMTG foci process multimodal (or supramodal) information about objects and object-associated motion, and that this may represent 'action' knowledge that can be recruited for purposes of recognition of familiar environmental sound-sources. These data also provide a functional and anatomical explanation for the symptoms of pure auditory agnosia for environmental sounds reported in human lesion studies.

  3. Audiovisual Temporal Perception in Aging: The Role of Multisensory Integration and Age-Related Sensory Loss

    PubMed Central

    Brooks, Cassandra J.; Chan, Yu Man; Anderson, Andrew J.; McKendrick, Allison M.

    2018-01-01

    Within each sensory modality, age-related deficits in temporal perception contribute to the difficulties older adults experience when performing everyday tasks. Since perceptual experience is inherently multisensory, older adults also face the added challenge of appropriately integrating or segregating the auditory and visual cues present in our dynamic environment into coherent representations of distinct objects. As such, many studies have investigated how older adults perform when integrating temporal information across audition and vision. This review covers both direct judgments about temporal information (the sound-induced flash illusion, temporal order, perceived synchrony, and temporal rate discrimination) and judgments regarding stimuli containing temporal information (the audiovisual bounce effect and speech perception). Although an age-related increase in integration has been demonstrated on a variety of tasks, research specifically investigating the ability of older adults to integrate temporal auditory and visual cues has produced disparate results. In this short review, we explore what factors could underlie these divergent findings. We conclude that both task-specific differences and age-related sensory loss play a role in the reported disparity in age-related effects on the integration of auditory and visual temporal information. PMID:29867415

  4. Audiovisual Temporal Perception in Aging: The Role of Multisensory Integration and Age-Related Sensory Loss.

    PubMed

    Brooks, Cassandra J; Chan, Yu Man; Anderson, Andrew J; McKendrick, Allison M

    2018-01-01

    Within each sensory modality, age-related deficits in temporal perception contribute to the difficulties older adults experience when performing everyday tasks. Since perceptual experience is inherently multisensory, older adults also face the added challenge of appropriately integrating or segregating the auditory and visual cues present in our dynamic environment into coherent representations of distinct objects. As such, many studies have investigated how older adults perform when integrating temporal information across audition and vision. This review covers both direct judgments about temporal information (the sound-induced flash illusion, temporal order, perceived synchrony, and temporal rate discrimination) and judgments regarding stimuli containing temporal information (the audiovisual bounce effect and speech perception). Although an age-related increase in integration has been demonstrated on a variety of tasks, research specifically investigating the ability of older adults to integrate temporal auditory and visual cues has produced disparate results. In this short review, we explore what factors could underlie these divergent findings. We conclude that both task-specific differences and age-related sensory loss play a role in the reported disparity in age-related effects on the integration of auditory and visual temporal information.

  5. Poor supplementary motor area activation differentiates auditory verbal hallucination from imagining the hallucination☆

    PubMed Central

    Raij, Tuukka T.; Riekki, Tapani J.J.

    2012-01-01

    Neuronal underpinnings of auditory verbal hallucination remain poorly understood. One suggested mechanism is brain activation that is similar to verbal imagery but occurs without the proper activation of the neuronal systems that are required to tag the origins of verbal imagery in one's mind. Such neuronal systems involve the supplementary motor area. The supplementary motor area has been associated with awareness of intention to make a hand movement, but whether this region is related to the sense of ownership of one's verbal thought remains poorly known. We hypothesized that the supplementary motor area is related to the distinction between one's own mental processing (auditory verbal imagery) and similar processing that is attributed to non-self author (auditory verbal hallucination). To test this hypothesis, we asked patients to signal the onset and offset of their auditory verbal hallucinations during functional magnetic resonance imaging. During non-hallucination periods, we asked the same patients to imagine the hallucination they had previously experienced. In addition, healthy control subjects signaled the onset and offset of self-paced imagery of similar voices. Both hallucinations and the imagery of hallucinations were associated with similar activation strengths of the fronto-temporal language-related circuitries, but the supplementary motor area was activated more strongly during the imagery than during hallucination. These findings suggest that auditory verbal hallucination resembles verbal imagery in language processing, but without the involvement of the supplementary motor area, which may subserve the sense of ownership of one's own verbal imagery. PMID:24179739

  6. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain.

    PubMed

    Higgins, Irina; Stringer, Simon; Schnupp, Jan

    2017-01-01

    The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable.

  7. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain

    PubMed Central

    Stringer, Simon

    2017-01-01

    The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable. PMID:28797034

  8. Revisiting place and temporal theories of pitch

    PubMed Central

    2014-01-01

    The nature of pitch and its neural coding have been studied for over a century. A popular debate has revolved around the question of whether pitch is coded via “place” cues in the cochlea, or via timing cues in the auditory nerve. In the most recent incarnation of this debate, the role of temporal fine structure has been emphasized in conveying important pitch and speech information, particularly because the lack of temporal fine structure coding in cochlear implants might explain some of the difficulties faced by cochlear implant users in perceiving music and pitch contours in speech. In addition, some studies have postulated that hearing-impaired listeners may have a specific deficit related to processing temporal fine structure. This article reviews some of the recent literature surrounding the debate, and argues that much of the recent evidence suggesting the importance of temporal fine structure processing can also be accounted for using spectral (place) or temporal-envelope cues. PMID:25364292

  9. Information fusion via isocortex-based Area 37 modeling

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-08-01

    A simplified model of information processing in the brain can be constructed using primary sensory input from two modalities (auditory and visual) and recurrent connections to the limbic subsystem. Information fusion would then occur in Area 37 of the temporal cortex. The creation of meta concepts from the low order primary inputs is managed by models of isocortex processing. Isocortex algorithms are used to model parietal (auditory), occipital (visual), temporal (polymodal fusion) cortex and the limbic system. Each of these four modules is constructed out of five cortical stacks in which each stack consists of three vertically oriented six layer isocortex models. The input to output training of each cortical model uses the OCOS (on center - off surround) and FFP (folded feedback pathway) circuitry of (Grossberg, 1) which is inherently a recurrent network type of learning characterized by the identification of perceptual groups. Models of this sort are thus closely related to cognitive models as it is difficult to divorce the sensory processing subsystems from the higher level processing in the associative cortex. The overall software architecture presented is biologically based and is presented as a potential architectural prototype for the development of novel sensory fusion strategies. The algorithms are motivated to some degree by specific data from projects on musical composition and autonomous fine art painting programs, but only in the sense that these projects use two specific types of auditory and visual cortex data. Hence, the architectures are presented for an artificial information processing system which utilizes two disparate sensory sources. The exact nature of the two primary sensory input streams is irrelevant.

  10. Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex.

    PubMed

    Tiitinen, Hannu; Salminen, Nelli H; Palomäki, Kalle J; Mäkinen, Ville T; Alku, Paavo; May, Patrick J C

    2006-03-20

    In an attempt to delineate the assumed 'what' and 'where' processing streams, we studied the processing of spatial sound in the human cortex by using magnetoencephalography in the passive and active recording conditions and two kinds of spatial stimuli: individually constructed, highly realistic spatial (3D) stimuli and stimuli containing interaural time difference (ITD) cues only. The auditory P1m, N1m, and P2m responses of the event-related field were found to be sensitive to the direction of sound source in the azimuthal plane. In general, the right-hemispheric responses to spatial sounds were more prominent than the left-hemispheric ones. The right-hemispheric P1m and N1m responses peaked earlier for sound sources in the contralateral than for sources in the ipsilateral hemifield and the peak amplitudes of all responses reached their maxima for contralateral sound sources. The amplitude of the right-hemispheric P2m response reflected the degree of spatiality of sound, being twice as large for the 3D than ITD stimuli. The results indicate that the right hemisphere is specialized in the processing of spatial cues in the passive recording condition. Minimum current estimate (MCE) localization revealed that temporal areas were activated both in the active and passive condition. This initial activation, taking place at around 100 ms, was followed by parietal and frontal activity at 180 and 200 ms, respectively. The latter activations, however, were specific to attentional engagement and motor responding. This suggests that parietal activation reflects active responding to a spatial sound rather than auditory spatial processing as such.

  11. Losing the beat: deficits in temporal coordination.

    PubMed

    Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle

    2014-12-19

    Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961-969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception-action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals.

  12. Losing the beat: deficits in temporal coordination

    PubMed Central

    Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle

    2014-01-01

    Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961–969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception–action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals. PMID:25385783

  13. Auditory function in children with Charcot-Marie-Tooth disease.

    PubMed

    Rance, Gary; Ryan, Monique M; Bayliss, Kristen; Gill, Kathryn; O'Sullivan, Caitlin; Whitechurch, Marny

    2012-05-01

    The peripheral manifestations of the inherited neuropathies are increasingly well characterized, but their effects upon cranial nerve function are not well understood. Hearing loss is recognized in a minority of children with this condition, but has not previously been systemically studied. A clear understanding of the prevalence and degree of auditory difficulties in this population is important as hearing impairment can impact upon speech/language development, social interaction ability and educational progress. The aim of this study was to investigate auditory pathway function, speech perception ability and everyday listening and communication in a group of school-aged children with inherited neuropathies. Twenty-six children with Charcot-Marie-Tooth disease confirmed by genetic testing and physical examination participated. Eighteen had demyelinating neuropathies (Charcot-Marie-Tooth type 1) and eight had the axonal form (Charcot-Marie-Tooth type 2). While each subject had normal or near-normal sound detection, individuals in both disease groups showed electrophysiological evidence of auditory neuropathy with delayed or low amplitude auditory brainstem responses. Auditory perception was also affected, with >60% of subjects with Charcot-Marie-Tooth type 1 and >85% of Charcot-Marie-Tooth type 2 suffering impaired processing of auditory temporal (timing) cues and/or abnormal speech understanding in everyday listening conditions.

  14. Electrophysiological correlates of predictive coding of auditory location in the perception of natural audiovisual events.

    PubMed

    Stekelenburg, Jeroen J; Vroomen, Jean

    2012-01-01

    In many natural audiovisual events (e.g., a clap of the two hands), the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have reported that there are distinct neural correlates of temporal (when) versus phonetic/semantic (which) content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where) in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual parts. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical sub-additive amplitude reductions (AV - V < A) were found for the auditory N1 and P2 for spatially congruent and incongruent conditions. The new finding is that this N1 suppression was greater for the spatially congruent stimuli. A very early audiovisual interaction was also found at 40-60 ms (P50) in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.

  15. Touch activates human auditory cortex.

    PubMed

    Schürmann, Martin; Caetano, Gina; Hlushchuk, Yevhen; Jousmäki, Veikko; Hari, Riitta

    2006-05-01

    Vibrotactile stimuli can facilitate hearing, both in hearing-impaired and in normally hearing people. Accordingly, the sounds of hands exploring a surface contribute to the explorer's haptic percepts. As a possible brain basis of such phenomena, functional brain imaging has identified activations specific to audiotactile interaction in secondary somatosensory cortex, auditory belt area, and posterior parietal cortex, depending on the quality and relative salience of the stimuli. We studied 13 subjects with non-invasive functional magnetic resonance imaging (fMRI) to search for auditory brain areas that would be activated by touch. Vibration bursts of 200 Hz were delivered to the subjects' fingers and palm and tactile pressure pulses to their fingertips. Noise bursts served to identify auditory cortex. Vibrotactile-auditory co-activation, addressed with minimal smoothing to obtain a conservative estimate, was found in an 85-mm3 region in the posterior auditory belt area. This co-activation could be related to facilitated hearing at the behavioral level, reflecting the analysis of sound-like temporal patterns in vibration. However, even tactile pulses (without any vibration) activated parts of the posterior auditory belt area, which therefore might subserve processing of audiotactile events that arise during dynamic contact between hands and environment.

  16. Cortical pitch regions in humans respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior auditory cortex.

    PubMed

    Norman-Haignere, Sam; Kanwisher, Nancy; McDermott, Josh H

    2013-12-11

    Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce "resolved" peaks of excitation in the cochlea, whereas others are "unresolved," providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior.

  17. Cortical Pitch Regions in Humans Respond Primarily to Resolved Harmonics and Are Located in Specific Tonotopic Regions of Anterior Auditory Cortex

    PubMed Central

    Kanwisher, Nancy; McDermott, Josh H.

    2013-01-01

    Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce “resolved” peaks of excitation in the cochlea, whereas others are “unresolved,” providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior. PMID:24336712

  18. Temporal coherence for pure tones in budgerigars (Melopsittacus undulatus) and humans (Homo sapiens).

    PubMed

    Neilans, Erikson G; Dent, Micheal L

    2015-02-01

    Auditory scene analysis has been suggested as a universal process that exists across all animals. Relative to humans, however, little work has been devoted to how animals perceptually isolate different sound sources. Frequency separation of sounds is arguably the most common parameter studied in auditory streaming, but it is not the only factor contributing to how the auditory scene is perceived. Researchers have found that in humans, even at large frequency separations, synchronous tones are heard as a single auditory stream, whereas asynchronous tones with the same frequency separations are perceived as 2 distinct sounds. These findings demonstrate how both the timing and frequency separation of sounds are important for auditory scene analysis. It is unclear how animals, such as budgerigars (Melopsittacus undulatus), perceive synchronous and asynchronous sounds. In this study, budgerigars and humans (Homo sapiens) were tested on their perception of synchronous, asynchronous, and partially overlapping pure tones using the same psychophysical procedures. Species differences were found between budgerigars and humans in how partially overlapping sounds were perceived, with budgerigars more likely to segregate overlapping sounds and humans more apt to fuse the 2 sounds together. The results also illustrated that temporal cues are particularly important for stream segregation of overlapping sounds. Lastly, budgerigars were found to segregate partially overlapping sounds in a manner predicted by computational models of streaming, whereas humans were not. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  19. Visual Processing Recruits the Auditory Cortices in Prelingually Deaf Children and Influences Cochlear Implant Outcomes.

    PubMed

    Liang, Maojin; Chen, Yuebo; Zhao, Fei; Zhang, Junpeng; Liu, Jiahao; Zhang, Xueyuan; Cai, Yuexin; Chen, Suijun; Li, Xianghui; Chen, Ling; Zheng, Yiqing

    2017-09-01

    Although visual processing recruitment of the auditory cortices has been reported previously in prelingually deaf children who have a rapidly developing brain and no auditory processing, the visual processing recruitment of auditory cortices might be different in processing different visual stimuli and may affect cochlear implant (CI) outcomes. Ten prelingually deaf children, 4 to 6 years old, were recruited for the study. Twenty prelingually deaf subjects, 4 to 6 years old with CIs for 1 year, were also recruited; 10 with well-performing CIs, 10 with poorly performing CIs. Ten age and sex-matched normal-hearing children were recruited as controls. Visual ("sound" photo [photograph with imaginative sound] and "nonsound" photo [photograph without imaginative sound]) evoked potentials were measured in all subjects. P1 at Oz and N1 at the bilateral temporal-frontal areas (FC3 and FC4) were compared. N1 amplitudes were strongest in the deaf children, followed by those with poorly performing CIs, controls and those with well-performing CIs. There was no significant difference between controls and those with well-performing CIs. "Sound" photo stimuli evoked a stronger N1 than "nonsound" photo stimuli. Further analysis showed that only at FC4 in deaf subjects and those with poorly performing CIs were the N1 responses to "sound" photo stimuli stronger than those to "nonsound" photo stimuli. No significant difference was found for the FC3 and FC4 areas. No significant difference was found in N1 latencies and P1 amplitudes or latencies. The results indicate enhanced visual recruitment of the auditory cortices in prelingually deaf children. Additionally, the decrement in visual recruitment of auditory cortices was related to good CI outcomes.

  20. Psychophysics and Neuronal Bases of Sound Localization in Humans

    PubMed Central

    Ahveninen, Jyrki; Kopco, Norbert; Jääskeläinen, Iiro P.

    2013-01-01

    Localization of sound sources is a considerable computational challenge for the human brain. Whereas the visual system can process basic spatial information in parallel, the auditory system lacks a straightforward correspondence between external spatial locations and sensory receptive fields. Consequently, the question how different acoustic features supporting spatial hearing are represented in the central nervous system is still open. Functional neuroimaging studies in humans have provided evidence for a posterior auditory “where” pathway that encompasses non-primary auditory cortex areas, including the planum temporale (PT) and posterior superior temporal gyrus (STG), which are strongly activated by horizontal sound direction changes, distance changes, and movement. However, these areas are also activated by a wide variety of other stimulus features, posing a challenge for the interpretation that the underlying areas are purely spatial. This review discusses behavioral and neuroimaging studies on sound localization, and some of the competing models of representation of auditory space in humans. PMID:23886698

  1. Behavioural evidence for separate mechanisms of audiovisual temporal binding as a function of leading sensory modality.

    PubMed

    Cecere, Roberto; Gross, Joachim; Thut, Gregor

    2016-06-01

    The ability to integrate auditory and visual information is critical for effective perception and interaction with the environment, and is thought to be abnormal in some clinical populations. Several studies have investigated the time window over which audiovisual events are integrated, also called the temporal binding window, and revealed asymmetries depending on the order of audiovisual input (i.e. the leading sense). When judging audiovisual simultaneity, the binding window appears narrower and non-malleable for auditory-leading stimulus pairs and wider and trainable for visual-leading pairs. Here we specifically examined the level of independence of binding mechanisms when auditory-before-visual vs. visual-before-auditory input is bound. Three groups of healthy participants practiced audiovisual simultaneity detection with feedback, selectively training on auditory-leading stimulus pairs (group 1), visual-leading stimulus pairs (group 2) or both (group 3). Subsequently, we tested for learning transfer (crossover) from trained stimulus pairs to non-trained pairs with opposite audiovisual input. Our data confirmed the known asymmetry in size and trainability for auditory-visual vs. visual-auditory binding windows. More importantly, practicing one type of audiovisual integration (e.g. auditory-visual) did not affect the other type (e.g. visual-auditory), even if trainable by within-condition practice. Together, these results provide crucial evidence that audiovisual temporal binding for auditory-leading vs. visual-leading stimulus pairs are independent, possibly tapping into different circuits for audiovisual integration due to engagement of different multisensory sampling mechanisms depending on leading sense. Our results have implications for informing the study of multisensory interactions in healthy participants and clinical populations with dysfunctional multisensory integration. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Differential effects of rhythmic auditory stimulation and neurodevelopmental treatment/Bobath on gait patterns in adults with cerebral palsy: a randomized controlled trial.

    PubMed

    Kim, Soo Ji; Kwak, Eunmi E; Park, Eun Sook; Cho, Sung-Rae

    2012-10-01

    To investigate the effects of rhythmic auditory stimulation (RAS) on gait patterns in comparison with changes after neurodevelopmental treatment (NDT/Bobath) in adults with cerebral palsy. A repeated-measures analysis between the pretreatment and posttreatment tests and a comparison study between groups. Human gait analysis laboratory. Twenty-eight cerebral palsy patients with bilateral spasticity participated in this study. The subjects were randomly allocated to either neurodevelopmental treatment (n = 13) or rhythmic auditory stimulation (n = 15). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment was performed three sessions per week for three weeks. Temporal and kinematic data were analysed before and after the intervention. Rhythmic auditory stimulation was provided using a combination of a metronome beat set to the individual's cadence and rhythmic cueing from a live keyboard, while neurodevelopmental treatment was implemented following the traditional method. Temporal data, kinematic parameters and gait deviation index as a measure of overall gait pathology were assessed. Temporal gait measures revealed that rhythmic auditory stimulation significantly increased cadence, walking velocity, stride length, and step length (P < 0.05). Kinematic data demonstrated that anterior tilt of the pelvis and hip flexion during a gait cycle was significantly ameliorated after rhythmic auditory stimulation (P < 0.05). Gait deviation index also showed modest improvement in cerebral palsy patients treated with rhythmic auditory stimulation (P < 0.05). However, neurodevelopmental treatment showed that internal and external rotations of hip joints were significantly improved, whereas rhythmic auditory stimulation showed aggravated maximal internal rotation in the transverse plane (P < 0.05). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment elicited differential effects on gait patterns in adults with cerebral palsy.

  3. Temporal Influence on Awareness

    DTIC Science & Technology

    1995-12-01

    43 38. Test Setup Timing: Measured vs Expected Modal Delays (in ms) ............. 46 39. Experiment I: visual and auditory stimuli...presented simultaneously; visual- auditory delay=Oms, visual-visual delay=0ms ....... .......................... 47 40. Experiment II: visual and auditory ...stimuli presented in order; visual- auditory de- lay=Oms, visual-visual delay=variable ................................ 48 41. Experiment II: visual and

  4. Reproduction of auditory and visual standards in monochannel cochlear implant users.

    PubMed

    Kanabus, Magdalena; Szelag, Elzbieta; Kolodziejczyk, Iwona; Szuchnik, Joanna

    2004-01-01

    The temporal reproduction of standard durations ranging from 1 to 9 seconds was investigated in monochannel cochlear implant (CI) users and in normally hearing subjects for the auditory and visual modality. The results showed that the pattern of performance in patients depended on their level of auditory comprehension. Results for CI users, who displayed relatively good auditory comprehension, did not differ from that of normally hearing subjects for both modalities. Patients with poor auditory comprehension significantly overestimated shorter auditory standards (1, 1.5 and 2.5 s), compared to both patients with good comprehension and controls. For the visual modality the between-group comparisons were not significant. These deficits in the reproduction of auditory standards were explained in accordance with both the attentional-gate model and the role of working memory in prospective time judgment. The impairments described above can influence the functioning of the temporal integration mechanism that is crucial for auditory speech comprehension on the level of words and phrases. We postulate that the deficits in time reproduction of short standards may be one of the possible reasons for poor speech understanding in monochannel CI users.

  5. Object representation in the human auditory system

    PubMed Central

    Winkler, István; van Zuijen, Titia L.; Sussman, Elyse; Horváth, János; Näätänen, Risto

    2010-01-01

    One important principle of object processing is exclusive allocation. Any part of the sensory input, including the border between two objects, can only belong to one object at a time. We tested whether tones forming a spectro-temporal border between two sound patterns can belong to both patterns at the same time. Sequences were composed of low-, intermediate- and high-pitched tones. Tones were delivered with short onset-to-onset intervals causing the high and low tones to automatically form separate low and high sound streams. The intermediate-pitch tones could be perceived as part of either one or the other stream, but not both streams at the same time. Thus these tones formed a pitch ’border’ between the two streams. The tones were presented in a fixed, cyclically repeating order. Linking the intermediate-pitch tones with the high or the low tones resulted in the perception of two different repeating tonal patterns. Participants were instructed to maintain perception of one of the two tone patterns throughout the stimulus sequences. Occasional changes violated either the selected or the alternative tone pattern, but not both at the same time. We found that only violations of the selected pattern elicited the mismatch negativity event-related potential, indicating that only this pattern was represented in the auditory system. This result suggests that individual sounds are processed as part of only one auditory pattern at a time. Thus tones forming a spectro-temporal border are exclusively assigned to one sound object at any given time, as are spatio-temporal borders in vision. PMID:16836636

  6. Auditory and visual modulation of temporal lobe neurons in voice-sensitive and association cortices.

    PubMed

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K; Petkov, Christopher I

    2014-02-12

    Effective interactions between conspecific individuals can depend upon the receiver forming a coherent multisensory representation of communication signals, such as merging voice and face content. Neuroimaging studies have identified face- or voice-sensitive areas (Belin et al., 2000; Petkov et al., 2008; Tsao et al., 2008), some of which have been proposed as candidate regions for face and voice integration (von Kriegstein et al., 2005). However, it was unclear how multisensory influences occur at the neuronal level within voice- or face-sensitive regions, especially compared with classically defined multisensory regions in temporal association cortex (Stein and Stanford, 2008). Here, we characterize auditory (voice) and visual (face) influences on neuronal responses in a right-hemisphere voice-sensitive region in the anterior supratemporal plane (STP) of Rhesus macaques. These results were compared with those in the neighboring superior temporal sulcus (STS). Within the STP, our results show auditory sensitivity to several vocal features, which was not evident in STS units. We also newly identify a functionally distinct neuronal subpopulation in the STP that appears to carry the area's sensitivity to voice identity related features. Audiovisual interactions were prominent in both the STP and STS. However, visual influences modulated the responses of STS neurons with greater specificity and were more often associated with congruent voice-face stimulus pairings than STP neurons. Together, the results reveal the neuronal processes subserving voice-sensitive fMRI activity patterns in primates, generate hypotheses for testing in the visual modality, and clarify the position of voice-sensitive areas within the unisensory and multisensory processing hierarchies.

  7. Auditory and Visual Modulation of Temporal Lobe Neurons in Voice-Sensitive and Association Cortices

    PubMed Central

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K.

    2014-01-01

    Effective interactions between conspecific individuals can depend upon the receiver forming a coherent multisensory representation of communication signals, such as merging voice and face content. Neuroimaging studies have identified face- or voice-sensitive areas (Belin et al., 2000; Petkov et al., 2008; Tsao et al., 2008), some of which have been proposed as candidate regions for face and voice integration (von Kriegstein et al., 2005). However, it was unclear how multisensory influences occur at the neuronal level within voice- or face-sensitive regions, especially compared with classically defined multisensory regions in temporal association cortex (Stein and Stanford, 2008). Here, we characterize auditory (voice) and visual (face) influences on neuronal responses in a right-hemisphere voice-sensitive region in the anterior supratemporal plane (STP) of Rhesus macaques. These results were compared with those in the neighboring superior temporal sulcus (STS). Within the STP, our results show auditory sensitivity to several vocal features, which was not evident in STS units. We also newly identify a functionally distinct neuronal subpopulation in the STP that appears to carry the area's sensitivity to voice identity related features. Audiovisual interactions were prominent in both the STP and STS. However, visual influences modulated the responses of STS neurons with greater specificity and were more often associated with congruent voice-face stimulus pairings than STP neurons. Together, the results reveal the neuronal processes subserving voice-sensitive fMRI activity patterns in primates, generate hypotheses for testing in the visual modality, and clarify the position of voice-sensitive areas within the unisensory and multisensory processing hierarchies. PMID:24523543

  8. Segregation and Integration of Auditory Streams when Listening to Multi-Part Music

    PubMed Central

    Ragert, Marie; Fairhurst, Merle T.; Keller, Peter E.

    2014-01-01

    In our daily lives, auditory stream segregation allows us to differentiate concurrent sound sources and to make sense of the scene we are experiencing. However, a combination of segregation and the concurrent integration of auditory streams is necessary in order to analyze the relationship between streams and thus perceive a coherent auditory scene. The present functional magnetic resonance imaging study investigates the relative role and neural underpinnings of these listening strategies in multi-part musical stimuli. We compare a real human performance of a piano duet and a synthetic stimulus of the same duet in a prioritized integrative attention paradigm that required the simultaneous segregation and integration of auditory streams. In so doing, we manipulate the degree to which the attended part of the duet led either structurally (attend melody vs. attend accompaniment) or temporally (asynchronies vs. no asynchronies between parts), and thus the relative contributions of integration and segregation used to make an assessment of the leader-follower relationship. We show that perceptually the relationship between parts is biased towards the conventional structural hierarchy in western music in which the melody generally dominates (leads) the accompaniment. Moreover, the assessment varies as a function of both cognitive load, as shown through difficulty ratings and the interaction of the temporal and the structural relationship factors. Neurally, we see that the temporal relationship between parts, as one important cue for stream segregation, revealed distinct neural activity in the planum temporale. By contrast, integration used when listening to both the temporally separated performance stimulus and the temporally fused synthetic stimulus resulted in activation of the intraparietal sulcus. These results support the hypothesis that the planum temporale and IPS are key structures underlying the mechanisms of segregation and integration of auditory streams, respectively. PMID:24475030

  9. Segregation and integration of auditory streams when listening to multi-part music.

    PubMed

    Ragert, Marie; Fairhurst, Merle T; Keller, Peter E

    2014-01-01

    In our daily lives, auditory stream segregation allows us to differentiate concurrent sound sources and to make sense of the scene we are experiencing. However, a combination of segregation and the concurrent integration of auditory streams is necessary in order to analyze the relationship between streams and thus perceive a coherent auditory scene. The present functional magnetic resonance imaging study investigates the relative role and neural underpinnings of these listening strategies in multi-part musical stimuli. We compare a real human performance of a piano duet and a synthetic stimulus of the same duet in a prioritized integrative attention paradigm that required the simultaneous segregation and integration of auditory streams. In so doing, we manipulate the degree to which the attended part of the duet led either structurally (attend melody vs. attend accompaniment) or temporally (asynchronies vs. no asynchronies between parts), and thus the relative contributions of integration and segregation used to make an assessment of the leader-follower relationship. We show that perceptually the relationship between parts is biased towards the conventional structural hierarchy in western music in which the melody generally dominates (leads) the accompaniment. Moreover, the assessment varies as a function of both cognitive load, as shown through difficulty ratings and the interaction of the temporal and the structural relationship factors. Neurally, we see that the temporal relationship between parts, as one important cue for stream segregation, revealed distinct neural activity in the planum temporale. By contrast, integration used when listening to both the temporally separated performance stimulus and the temporally fused synthetic stimulus resulted in activation of the intraparietal sulcus. These results support the hypothesis that the planum temporale and IPS are key structures underlying the mechanisms of segregation and integration of auditory streams, respectively.

  10. Auditory Temporal Conditioning in Neonates.

    ERIC Educational Resources Information Center

    Franz, W. K.; And Others

    Twenty normal newborns, approximately 36 hours old, were tested using an auditory temporal conditioning paradigm which consisted of a slow rise, 75 db tone played for five seconds every 25 seconds, ten times. Responses to the tones were measured by instantaneous, beat-to-beat heartrate; and the test trial was designated as the 2 1/2-second period…

  11. From bird to sparrow: Learning-induced modulations in fine-grained semantic discrimination.

    PubMed

    De Meo, Rosanna; Bourquin, Nathalie M-P; Knebel, Jean-François; Murray, Micah M; Clarke, Stephanie

    2015-09-01

    Recognition of environmental sounds is believed to proceed through discrimination steps from broad to more narrow categories. Very little is known about the neural processes that underlie fine-grained discrimination within narrow categories or about their plasticity in relation to newly acquired expertise. We investigated how the cortical representation of birdsongs is modulated by brief training to recognize individual species. During a 60-minute session, participants learned to recognize a set of birdsongs; they improved significantly their performance for trained (T) but not control species (C), which were counterbalanced across participants. Auditory evoked potentials (AEPs) were recorded during pre- and post-training sessions. Pre vs. post changes in AEPs were significantly different between T and C i) at 206-232ms post stimulus onset within a cluster on the anterior part of the left superior temporal gyrus; ii) at 246-291ms in the left middle frontal gyrus; and iii) 512-545ms in the left middle temporal gyrus as well as bilaterally in the cingulate cortex. All effects were driven by weaker activity for T than C species. Thus, expertise in discriminating T species modulated early stages of semantic processing, during and immediately after the time window that sustains the discrimination between human vs. animal vocalizations. Moreover, the training-induced plasticity is reflected by the sharpening of a left lateralized semantic network, including the anterior part of the temporal convexity and the frontal cortex. Training to identify birdsongs influenced, however, also the processing of C species, but at a much later stage. Correct discrimination of untrained sounds seems to require an additional step which results from lower-level features analysis such as apperception. We therefore suggest that the access to objects within an auditory semantic category is different and depends on subject's level of expertise. More specifically, correct intra-categorical auditory discrimination for untrained items follows the temporal hierarchy and transpires in a late stage of semantic processing. On the other hand, correct categorization of individually trained stimuli occurs earlier, during a period contemporaneous with human vs. animal vocalization discrimination, and involves a parallel semantic pathway requiring expertise. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Neurobehavioral Mechanisms of Temporal Processing Deficits In Parkinson’s Disease

    DTIC Science & Technology

    2011-01-01

    Foam padding was used to limit head motion. Auditory stimuli were delivered binaurally through a headphone that together with earplugs attenuated...core timer.’ Specifically, by the striatal beat frequency (SBF) model, Figure 5. Percent signal change in regions showing abnormal activation OFF

  13. Audiovisual integration of emotional signals in voice and face: an event-related fMRI study.

    PubMed

    Kreifelts, Benjamin; Ethofer, Thomas; Grodd, Wolfgang; Erb, Michael; Wildgruber, Dirk

    2007-10-01

    In a natural environment, non-verbal emotional communication is multimodal (i.e. speech melody, facial expression) and multifaceted concerning the variety of expressed emotions. Understanding these communicative signals and integrating them into a common percept is paramount to successful social behaviour. While many previous studies have focused on the neurobiology of emotional communication in the auditory or visual modality alone, far less is known about multimodal integration of auditory and visual non-verbal emotional information. The present study investigated this process using event-related fMRI. Behavioural data revealed that audiovisual presentation of non-verbal emotional information resulted in a significant increase in correctly classified stimuli when compared with visual and auditory stimulation. This behavioural gain was paralleled by enhanced activation in bilateral posterior superior temporal gyrus (pSTG) and right thalamus, when contrasting audiovisual to auditory and visual conditions. Further, a characteristic of these brain regions, substantiating their role in the emotional integration process, is a linear relationship between the gain in classification accuracy and the strength of the BOLD response during the bimodal condition. Additionally, enhanced effective connectivity between audiovisual integration areas and associative auditory and visual cortices was observed during audiovisual stimulation, offering further insight into the neural process accomplishing multimodal integration. Finally, we were able to document an enhanced sensitivity of the putative integration sites to stimuli with emotional non-verbal content as compared to neutral stimuli.

  14. Auditory Gap-in-Noise Detection Behavior in Ferrets and Humans

    PubMed Central

    2015-01-01

    The precise encoding of temporal features of auditory stimuli by the mammalian auditory system is critical to the perception of biologically important sounds, including vocalizations, speech, and music. In this study, auditory gap-detection behavior was evaluated in adult pigmented ferrets (Mustelid putorius furo) using bandpassed stimuli designed to widely sample the ferret’s behavioral and physiological audiogram. Animals were tested under positive operant conditioning, with psychometric functions constructed in response to gap-in-noise lengths ranging from 3 to 270 ms. Using a modified version of this gap-detection task, with the same stimulus frequency parameters, we also tested a cohort of normal-hearing human subjects. Gap-detection thresholds were computed from psychometric curves transformed according to signal detection theory, revealing that for both ferrets and humans, detection sensitivity was worse for silent gaps embedded within low-frequency noise compared with high-frequency or broadband stimuli. Additional psychometric function analysis of ferret behavior indicated effects of stimulus spectral content on aspects of behavioral performance related to decision-making processes, with animals displaying improved sensitivity for broadband gap-in-noise detection. Reaction times derived from unconditioned head-orienting data and the time from stimulus onset to reward spout activation varied with the stimulus frequency content and gap length, as well as the approach-to-target choice and reward location. The present study represents a comprehensive evaluation of gap-detection behavior in ferrets, while similarities in performance with our human subjects confirm the use of the ferret as an appropriate model of temporal processing. PMID:26052794

  15. Stereotactically-guided Ablation of the Rat Auditory Cortex, and Localization of the Lesion in the Brain.

    PubMed

    Lamas, Verónica; Estévez, Sheila; Pernía, Marianni; Plaza, Ignacio; Merchán, Miguel A

    2017-10-11

    The rat auditory cortex (AC) is becoming popular among auditory neuroscience investigators who are interested in experience-dependence plasticity, auditory perceptual processes, and cortical control of sound processing in the subcortical auditory nuclei. To address new challenges, a procedure to accurately locate and surgically expose the auditory cortex would expedite this research effort. Stereotactic neurosurgery is routinely used in pre-clinical research in animal models to engraft a needle or electrode at a pre-defined location within the auditory cortex. In the following protocol, we use stereotactic methods in a novel way. We identify four coordinate points over the surface of the temporal bone of the rat to define a window that, once opened, accurately exposes both the primary (A1) and secondary (Dorsal and Ventral) cortices of the AC. Using this method, we then perform a surgical ablation of the AC. After such a manipulation is performed, it is necessary to assess the localization, size, and extension of the lesions made in the cortex. Thus, we also describe a method to easily locate the AC ablation postmortem using a coordinate map constructed by transferring the cytoarchitectural limits of the AC to the surface of the brain.The combination of the stereotactically-guided location and ablation of the AC with the localization of the injured area in a coordinate map postmortem facilitates the validation of information obtained from the animal, and leads to a better analysis and comprehension of the data.

  16. Cross-modal reorganization in cochlear implant users: Auditory cortex contributes to visual face processing.

    PubMed

    Stropahl, Maren; Plotz, Karsten; Schönfeld, Rüdiger; Lenarz, Thomas; Sandmann, Pascale; Yovel, Galit; De Vos, Maarten; Debener, Stefan

    2015-11-01

    There is converging evidence that the auditory cortex takes over visual functions during a period of auditory deprivation. A residual pattern of cross-modal take-over may prevent the auditory cortex to adapt to restored sensory input as delivered by a cochlear implant (CI) and limit speech intelligibility with a CI. The aim of the present study was to investigate whether visual face processing in CI users activates auditory cortex and whether this has adaptive or maladaptive consequences. High-density electroencephalogram data were recorded from CI users (n=21) and age-matched normal hearing controls (n=21) performing a face versus house discrimination task. Lip reading and face recognition abilities were measured as well as speech intelligibility. Evaluation of event-related potential (ERP) topographies revealed significant group differences over occipito-temporal scalp regions. Distributed source analysis identified significantly higher activation in the right auditory cortex for CI users compared to NH controls, confirming visual take-over. Lip reading skills were significantly enhanced in the CI group and appeared to be particularly better after a longer duration of deafness, while face recognition was not significantly different between groups. However, auditory cortex activation in CI users was positively related to face recognition abilities. Our results confirm a cross-modal reorganization for ecologically valid visual stimuli in CI users. Furthermore, they suggest that residual takeover, which can persist even after adaptation to a CI is not necessarily maladaptive. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Evolutionary diversification of the auditory organ sensilla in Neoconocephalus katydids (Orthoptera: Tettigoniidae) correlates with acoustic signal diversification over phylogenetic relatedness and life history.

    PubMed

    Strauß, J; Alt, J A; Ekschmitt, K; Schul, J; Lakes-Harlan, R

    2017-06-01

    Neoconocephalus Tettigoniidae are a model for the evolution of acoustic signals as male calls have diversified in temporal structure during the radiation of the genus. The call divergence and phylogeny in Neoconocephalus are established, but in tettigoniids in general, accompanying evolutionary changes in hearing organs are not studied. We investigated anatomical changes of the tympanal hearing organs during the evolutionary radiation and divergence of intraspecific acoustic signals. We compared the neuroanatomy of auditory sensilla (crista acustica) from nine Neoconocephalus species for the number of auditory sensilla and the crista acustica length. These parameters were correlated with differences in temporal call features, body size, life histories and different phylogenetic positions. By this, adaptive responses to shifting frequencies of male calls and changes in their temporal patterns can be evaluated against phylogenetic constraints and allometry. All species showed well-developed auditory sensilla, on average 32-35 between species. Crista acustica length and sensillum numbers correlated with body size, but not with phylogenetic position or life history. Statistically significant correlations existed also with specific call patterns: a higher number of auditory sensilla occurred in species with continuous calls or slow pulse rates, and a longer crista acustica occurred in species with double pulses or slow pulse rates. The auditory sensilla show significant differences between species despite their recent radiation, and morphological and ecological similarities. This indicates the responses to natural and sexual selection, including divergence of temporal and spectral signal properties. Phylogenetic constraints are unlikely to limit these changes of the auditory systems. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  18. Methodological challenges and solutions in auditory functional magnetic resonance imaging

    PubMed Central

    Peelle, Jonathan E.

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies involve substantial acoustic noise. This review covers the difficulties posed by such noise for auditory neuroscience, as well as a number of possible solutions that have emerged. Acoustic noise can affect the processing of auditory stimuli by making them inaudible or unintelligible, and can result in reduced sensitivity to auditory activation in auditory cortex. Equally importantly, acoustic noise may also lead to increased listening effort, meaning that even when auditory stimuli are perceived, neural processing may differ from when the same stimuli are presented in quiet. These and other challenges have motivated a number of approaches for collecting auditory fMRI data. Although using a continuous echoplanar imaging (EPI) sequence provides high quality imaging data, these data may also be contaminated by background acoustic noise. Traditional sparse imaging has the advantage of avoiding acoustic noise during stimulus presentation, but at a cost of reduced temporal resolution. Recently, three classes of techniques have been developed to circumvent these limitations. The first is Interleaved Silent Steady State (ISSS) imaging, a variation of sparse imaging that involves collecting multiple volumes following a silent period while maintaining steady-state longitudinal magnetization. The second involves active noise control to limit the impact of acoustic scanner noise. Finally, novel MRI sequences that reduce the amount of acoustic noise produced during fMRI make the use of continuous scanning a more practical option. Together these advances provide unprecedented opportunities for researchers to collect high-quality data of hemodynamic responses to auditory stimuli using fMRI. PMID:25191218

  19. A bilateral cortical network responds to pitch perturbations in speech feedback

    PubMed Central

    Kort, Naomi S.; Nagarajan, Srikantan S.; Houde, John F.

    2014-01-01

    Auditory feedback is used to monitor and correct for errors in speech production, and one of the clearest demonstrations of this is the pitch perturbation reflex. During ongoing phonation, speakers respond rapidly to shifts of the pitch of their auditory feedback, altering their pitch production to oppose the direction of the applied pitch shift. In this study, we examine the timing of activity within a network of brain regions thought to be involved in mediating this behavior. To isolate auditory feedback processing relevant for motor control of speech, we used magnetoencephalography (MEG) to compare neural responses to speech onset and to transient (400ms) pitch feedback perturbations during speaking with responses to identical acoustic stimuli during passive listening. We found overlapping, but distinct bilateral cortical networks involved in monitoring speech onset and feedback alterations in ongoing speech. Responses to speech onset during speaking were suppressed in bilateral auditory and left ventral supramarginal gyrus/posterior superior temporal sulcus (vSMG/pSTS). In contrast, during pitch perturbations, activity was enhanced in bilateral vSMG/pSTS, bilateral premotor cortex, right primary auditory cortex, and left higher order auditory cortex. We also found speaking-induced delays in responses to both unaltered and altered speech in bilateral primary and secondary auditory regions, the left vSMG/pSTS and right premotor cortex. The network dynamics reveal the cortical processing involved in both detecting the speech error and updating the motor plan to create the new pitch output. These results implicate vSMG/pSTS as critical in both monitoring auditory feedback and initiating rapid compensation to feedback errors. PMID:24076223

  20. Neurophysiological aspects of brainstem processing of speech stimuli in audiometric-normal geriatric population.

    PubMed

    Ansari, M S; Rangasayee, R; Ansari, M A H

    2017-03-01

    Poor auditory speech perception in geriatrics is attributable to neural de-synchronisation due to structural and degenerative changes of ageing auditory pathways. The speech-evoked auditory brainstem response may be useful for detecting alterations that cause loss of speech discrimination. Therefore, this study aimed to compare the speech-evoked auditory brainstem response in adult and geriatric populations with normal hearing. The auditory brainstem responses to click sounds and to a 40 ms speech sound (the Hindi phoneme |da|) were compared in 25 young adults and 25 geriatric people with normal hearing. The latencies and amplitudes of transient peaks representing neural responses to the onset, offset and sustained portions of the speech stimulus in quiet and noisy conditions were recorded. The older group had significantly smaller amplitudes and longer latencies for the onset and offset responses to |da| in noisy conditions. Stimulus-to-response times were longer and the spectral amplitude of the sustained portion of the stimulus was reduced. The overall stimulus level caused significant shifts in latency across the entire speech-evoked auditory brainstem response in the older group. The reduction in neural speech processing in older adults suggests diminished subcortical responsiveness to acoustically dynamic spectral cues. However, further investigations are needed to encode temporal cues at the brainstem level and determine their relationship to speech perception for developing a routine tool for clinical decision-making.

  1. At what time is the cocktail party? A late locus of selective attention to natural speech.

    PubMed

    Power, Alan J; Foxe, John J; Forde, Emma-Jane; Reilly, Richard B; Lalor, Edmund C

    2012-05-01

    Distinguishing between speakers and focusing attention on one speaker in multi-speaker environments is extremely important in everyday life. Exactly how the brain accomplishes this feat and, in particular, the precise temporal dynamics of this attentional deployment are as yet unknown. A long history of behavioral research using dichotic listening paradigms has debated whether selective attention to speech operates at an early stage of processing based on the physical characteristics of the stimulus or at a later stage during semantic processing. With its poor temporal resolution fMRI has contributed little to the debate, while EEG-ERP paradigms have been hampered by the need to average the EEG in response to discrete stimuli which are superimposed onto ongoing speech. This presents a number of problems, foremost among which is that early attention effects in the form of endogenously generated potentials can be so temporally broad as to mask later attention effects based on the higher level processing of the speech stream. Here we overcome this issue by utilizing the AESPA (auditory evoked spread spectrum analysis) method which allows us to extract temporally detailed responses to two concurrently presented speech streams in natural cocktail-party-like attentional conditions without the need for superimposed probes. We show attentional effects on exogenous stimulus processing in the 200-220 ms range in the left hemisphere. We discuss these effects within the context of research on auditory scene analysis and in terms of a flexible locus of attention that can be deployed at a particular processing stage depending on the task. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Human brain detects short-time nonlinear predictability in the temporal fine structure of deterministic chaotic sounds

    NASA Astrophysics Data System (ADS)

    Itoh, Kosuke; Nakada, Tsutomu

    2013-04-01

    Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.

  3. In search of an auditory engram.

    PubMed

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C

    2005-06-28

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that monkeys may be unable to place representations of auditory stimuli into a long-term store and thus question whether the monkey's cerebral memory mechanisms in audition are intrinsically different from those in other sensory modalities. Furthermore, it raises the possibility that language is unique to humans not only because it depends on speech but also because it requires long-term auditory memory.

  4. The effect of synesthetic associations between the visual and auditory modalities on the Colavita effect.

    PubMed

    Stekelenburg, Jeroen J; Keetels, Mirjam

    2016-05-01

    The Colavita effect refers to the phenomenon that when confronted with an audiovisual stimulus, observers report more often to have perceived the visual than the auditory component. The Colavita effect depends on low-level stimulus factors such as spatial and temporal proximity between the unimodal signals. Here, we examined whether the Colavita effect is modulated by synesthetic congruency between visual size and auditory pitch. If the Colavita effect depends on synesthetic congruency, we expect a larger Colavita effect for synesthetically congruent size/pitch (large visual stimulus/low-pitched tone; small visual stimulus/high-pitched tone) than synesthetically incongruent (large visual stimulus/high-pitched tone; small visual stimulus/low-pitched tone) combinations. Participants had to identify stimulus type (visual, auditory or audiovisual). The study replicated the Colavita effect because participants reported more often the visual than auditory component of the audiovisual stimuli. Synesthetic congruency had, however, no effect on the magnitude of the Colavita effect. EEG recordings to congruent and incongruent audiovisual pairings showed a late frontal congruency effect at 400-550 ms and an occipitoparietal effect at 690-800 ms with neural sources in the anterior cingulate and premotor cortex for the 400- to 550-ms window and premotor cortex, inferior parietal lobule and the posterior middle temporal gyrus for the 690- to 800-ms window. The electrophysiological data show that synesthetic congruency was probably detected in a processing stage subsequent to the Colavita effect. We conclude that-in a modality detection task-the Colavita effect can be modulated by low-level structural factors but not by higher-order associations between auditory and visual inputs.

  5. Elevated audiovisual temporal interaction in patients with migraine without aura

    PubMed Central

    2014-01-01

    Background Photophobia and phonophobia are the most prominent symptoms in patients with migraine without aura. Hypersensitivity to visual stimuli can lead to greater hypersensitivity to auditory stimuli, which suggests that the interaction between visual and auditory stimuli may play an important role in the pathogenesis of migraine. However, audiovisual temporal interactions in migraine have not been well studied. Therefore, our aim was to examine auditory and visual interactions in migraine. Methods In this study, visual, auditory, and audiovisual stimuli with different temporal intervals between the visual and auditory stimuli were randomly presented to the left or right hemispace. During this time, the participants were asked to respond promptly to target stimuli. We used cumulative distribution functions to analyze the response times as a measure of audiovisual integration. Results Our results showed that audiovisual integration was significantly elevated in the migraineurs compared with the normal controls (p < 0.05); however, audiovisual suppression was weaker in the migraineurs compared with the normal controls (p < 0.05). Conclusions Our findings further objectively support the notion that migraineurs without aura are hypersensitive to external visual and auditory stimuli. Our study offers a new quantitative and objective method to evaluate hypersensitivity to audio-visual stimuli in patients with migraine. PMID:24961903

  6. Reduced variability of auditory alpha activity in chronic tinnitus.

    PubMed

    Schlee, Winfried; Schecklmann, Martin; Lehner, Astrid; Kreuzer, Peter M; Vielsmeier, Veronika; Poeppl, Timm B; Langguth, Berthold

    2014-01-01

    Subjective tinnitus is characterized by the conscious perception of a phantom sound which is usually more prominent under silence. Resting state recordings without any auditory stimulation demonstrated a decrease of cortical alpha activity in temporal areas of subjects with an ongoing tinnitus perception. This is often interpreted as an indicator for enhanced excitability of the auditory cortex in tinnitus. In this study we want to further investigate this effect by analysing the moment-to-moment variability of the alpha activity in temporal areas. Magnetoencephalographic resting state recordings of 21 tinnitus subjects and 21 healthy controls were analysed with respect to the mean and the variability of spectral power in the alpha frequency band over temporal areas. A significant decrease of auditory alpha activity was detected for the low alpha frequency band (8-10 Hz) but not for the upper alpha band (10-12 Hz). Furthermore, we found a significant decrease of alpha variability for the tinnitus group. This result was significant for the lower alpha frequency range and not significant for the upper alpha frequencies. Tinnitus subjects with a longer history of tinnitus showed less variability of their auditory alpha activity which might be an indicator for reduced adaptability of the auditory cortex in chronic tinnitus.

  7. On the cyclic nature of perception in vision versus audition

    PubMed Central

    VanRullen, Rufin; Zoefel, Benedikt; Ilhan, Barkin

    2014-01-01

    Does our perceptual awareness consist of a continuous stream, or a discrete sequence of perceptual cycles, possibly associated with the rhythmic structure of brain activity? This has been a long-standing question in neuroscience. We review recent psychophysical and electrophysiological studies indicating that part of our visual awareness proceeds in approximately 7–13 Hz cycles rather than continuously. On the other hand, experimental attempts at applying similar tools to demonstrate the discreteness of auditory awareness have been largely unsuccessful. We argue and demonstrate experimentally that visual and auditory perception are not equally affected by temporal subsampling of their respective input streams: video sequences remain intelligible at sampling rates of two to three frames per second, whereas audio inputs lose their fine temporal structure, and thus all significance, below 20–30 samples per second. This does not mean, however, that our auditory perception must proceed continuously. Instead, we propose that audition could still involve perceptual cycles, but the periodic sampling should happen only after the stage of auditory feature extraction. In addition, although visual perceptual cycles can follow one another at a spontaneous pace largely independent of the visual input, auditory cycles may need to sample the input stream more flexibly, by adapting to the temporal structure of the auditory inputs. PMID:24639585

  8. Auditory Temporal Order Discrimination and Backward Recognition Masking in Adults with Dyslexia

    ERIC Educational Resources Information Center

    Griffiths, Yvonne M.; Hill, Nicholas I.; Bailey, Peter J.; Snowling, Margaret J.

    2003-01-01

    The ability of 20 adult dyslexic readers to extract frequency information from successive tone pairs was compared with that of IQ-matched controls using temporal order discrimination and auditory backward recognition masking (ABRM) tasks. In both paradigms, the interstimulus interval (ISI) between tones in a pair was either short (20 ms) or long…

  9. Auditory/visual Duration Bisection in Patients with Left or Right Medial-Temporal Lobe Resection

    ERIC Educational Resources Information Center

    Melgire, Manuela; Ragot, Richard; Samson, Severine; Penney, Trevor B.; Meck, Warren H.; Pouthas, Viviane

    2005-01-01

    Patients with unilateral (left or right) medial temporal lobe lesions and normal control (NC) volunteers participated in two experiments, both using a duration bisection procedure. Experiment 1 assessed discrimination of auditory and visual signal durations ranging from 2 to 8 s, in the same test session. Patients and NC participants judged…

  10. The Efficacy of Fast ForWord-Language Intervention in School-Age Children with Language Impairment: A Randomized Controlled Trial

    PubMed Central

    Gillam, Ronald B.; Loeb, Diane Frome; Hoffman, LaVae M.; Bohman, Thomas; Champlin, Craig A.; Thibodeau, Linda; Widen, Judith; Brandel, Jayne; Friel-Patti, Sandy

    2008-01-01

    Purpose A randomized controlled trial (RCT) was conducted to compare the language and auditory processing outcomes of children assigned to Fast ForWord-Language (FFW-L) to the outcomes of children assigned to nonspecific or specific language intervention comparison treatments that did not contain modified speech. Method Two hundred and sixteen children between the ages of 6 and 9 years with language impairments were randomly assigned to one of four arms: Fast ForWord-Language (FFW-L), academic enrichment (AE), computer-assisted language intervention (CALI), or individualized language intervention (ILI) provided by a speech-language pathologist. All children received 1 hour and 40 minutes of treatment, 5 days per week, for 6 weeks. Language and auditory processing measures were administered to the children by blinded examiners before treatment, immediately after treatment, 3 months after treatment, and 6 months after treatment. Results The children in all four arms improved significantly on a global language test and a test of backward masking. Children with poor backward masking scores who were randomized to the FFW-L arm did not present greater improvement on the language measures than children with poor backward masking scores who were randomized to the other three arms. Effect sizes, analyses of standard error of measurement, and normalization percentages supported the clinical significance of the improvements on the CASL. There was a treatment effect for the Blending Words subtest on the Comprehensive Test of Phonological Processing (Wagner, Torgesen, & Rashotte, 1999). Participants in the FFW-L and CALI arms earned higher phonological awareness scores than children in the ILI and AE arms at the six-month follow-up testing. Conclusion Fast ForWord-Language, the language intervention that provided modified speech to address a hypothesized underlying auditory processing deficit, was not more effective at improving general language skills or temporal processing skills than a nonspecific comparison treatment (AE) or specific language intervention comparison treatments (CALI and ILI) that did not contain modified speech stimuli. These findings call into question the temporal processing hypothesis of language impairment and the hypothesized benefits of using acoustically modified speech to improve language skills. The finding that children in the three treatment arms and the active comparison arm made clinically relevant gains on measures of language and temporal auditory processing informs our understanding of the variety of intervention activities that can facilitate development. PMID:18230858

  11. Cross-modal interactions during perception of audiovisual speech and nonspeech signals: an fMRI study.

    PubMed

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2011-01-01

    During speech communication, visual information may interact with the auditory system at various processing stages. Most noteworthy, recent magnetoencephalography (MEG) data provided first evidence for early and preattentive phonetic/phonological encoding of the visual data stream--prior to its fusion with auditory phonological features [Hertrich, I., Mathiak, K., Lutzenberger, W., & Ackermann, H. Time course of early audiovisual interactions during speech and non-speech central-auditory processing: An MEG study. Journal of Cognitive Neuroscience, 21, 259-274, 2009]. Using functional magnetic resonance imaging, the present follow-up study aims to further elucidate the topographic distribution of visual-phonological operations and audiovisual (AV) interactions during speech perception. Ambiguous acoustic syllables--disambiguated to /pa/ or /ta/ by the visual channel (speaking face)--served as test materials, concomitant with various control conditions (nonspeech AV signals, visual-only and acoustic-only speech, and nonspeech stimuli). (i) Visual speech yielded an AV-subadditive activation of primary auditory cortex and the anterior superior temporal gyrus (STG), whereas the posterior STG responded both to speech and nonspeech motion. (ii) The inferior frontal and the fusiform gyrus of the right hemisphere showed a strong phonetic/phonological impact (differential effects of visual /pa/ vs. /ta/) upon hemodynamic activation during presentation of speaking faces. Taken together with the previous MEG data, these results point at a dual-pathway model of visual speech information processing: On the one hand, access to the auditory system via the anterior supratemporal “what" path may give rise to direct activation of "auditory objects." On the other hand, visual speech information seems to be represented in a right-hemisphere visual working memory, providing a potential basis for later interactions with auditory information such as the McGurk effect.

  12. Sensory-motor interactions for vocal pitch monitoring in non-primary human auditory cortex.

    PubMed

    Greenlee, Jeremy D W; Behroozmand, Roozbeh; Larson, Charles R; Jackson, Adam W; Chen, Fangxiang; Hansen, Daniel R; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A

    2013-01-01

    The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (-100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70-150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control.

  13. Sensory-Motor Interactions for Vocal Pitch Monitoring in Non-Primary Human Auditory Cortex

    PubMed Central

    Larson, Charles R.; Jackson, Adam W.; Chen, Fangxiang; Hansen, Daniel R.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.

    2013-01-01

    The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (−100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70–150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control. PMID:23577157

  14. Macrophage-Mediated Glial Cell Elimination in the Postnatal Mouse Cochlea

    PubMed Central

    Brown, LaShardai N.; Xing, Yazhi; Noble, Kenyaria V.; Barth, Jeremy L.; Panganiban, Clarisse H.; Smythe, Nancy M.; Bridges, Mary C.; Zhu, Juhong; Lang, Hainan

    2017-01-01

    Hearing relies on the transmission of auditory information from sensory hair cells (HCs) to the brain through the auditory nerve. This relay of information requires HCs to be innervated by spiral ganglion neurons (SGNs) in an exclusive manner and SGNs to be ensheathed by myelinating and non-myelinating glial cells. In the developing auditory nerve, mistargeted SGN axons are retracted or pruned and excessive cells are cleared in a process referred to as nerve refinement. Whether auditory glial cells are eliminated during auditory nerve refinement is unknown. Using early postnatal mice of either sex, we show that glial cell numbers decrease after the first postnatal week, corresponding temporally with nerve refinement in the developing auditory nerve. Additionally, expression of immune-related genes was upregulated and macrophage numbers increase in a manner coinciding with the reduction of glial cell numbers. Transient depletion of macrophages during early auditory nerve development, using transgenic CD11bDTR/EGFP mice, resulted in the appearance of excessive glial cells. Macrophage depletion caused abnormalities in myelin formation and transient edema of the stria vascularis. Macrophage-depleted mice also showed auditory function impairment that partially recovered in adulthood. These findings demonstrate that macrophages contribute to the regulation of glial cell number during postnatal development of the cochlea and that glial cells play a critical role in hearing onset and auditory nerve maturation. PMID:29375297

  15. Magnetic resonance imaging abnormalities in familial temporal lobe epilepsy with auditory auras.

    PubMed

    Kobayashi, Eliane; Santos, Neide F; Torres, Fabio R; Secolin, Rodrigo; Sardinha, Luiz A C; Lopez-Cendes, Iscia; Cendes, Fernando

    2003-11-01

    Two forms of familial temporal lobe epilepsy (FTLE) have been described: mesial FTLE and FTLE with auditory auras. The gene responsible for mesial FTLE has not been mapped yet, whereas mutations in the LGI1 (leucine-rich, glioma-inactivated 1) gene, localized on chromosome 10q, have been found in FTLE with auditory auras. To describe magnetic resonance imaging (MRI) findings in patients with FTLE with auditory auras. We performed detailed clinical and molecular studies as well as MRI evaluation (including volumetry) in all available individuals from one family, segregating FTLE from auditory auras. We evaluated 18 of 23 possibly affected individuals, and 13 patients reported auditory auras. In one patient, auditory auras were associated with déjà vu; in one patient, with ictal aphasia; and in 2 patients, with visual misperception. Most patients were not taking medication at the time, although all of them reported sporadic auras. Two-point lod scores were positive for 7 genotyped markers on chromosome 10q, and a Zmax of 6.35 was achieved with marker D10S185 at a recombination fraction of 0.0. Nucleotide sequence analysis of the LGI1 gene showed a point mutation, VIIIS7(-2)A-G, in all affected individuals. Magnetic resonance imaging was performed in 22 individuals (7 asymptomatic, 4 of them carriers of the affected haplotype on chromosome 10q and the VIIIS7[-2]A-G mutation). Lateral temporal lobe malformations were identified by visual analysis in 10 individuals, 2 of them with global enlargement demonstrated by volumetry. Mildly reduced hippocampi were observed in 4 individuals. In this family with FTLE with auditory auras, we found developmental abnormalities in the lateral cortex of the temporal lobes in 53% of the affected individuals. In contrast with mesial FTLE, none of the affected individuals had MRI evidence of hippocampal sclerosis.

  16. White matter microstructural properties correlate with sensorimotor synchronization abilities.

    PubMed

    Blecher, Tal; Tal, Idan; Ben-Shachar, Michal

    2016-09-01

    Sensorimotor synchronization (SMS) to an external auditory rhythm is a developed ability in humans, particularly evident in dancing and singing. This ability is typically measured in the lab via a simple task of finger tapping to an auditory beat. While simplistic, there is some evidence that poor performance on this task could be related to impaired phonological and reading abilities in children. Auditory-motor synchronization is hypothesized to rely on a tight coupling between auditory and motor neural systems, but the specific pathways that mediate this coupling have not been identified yet. In this study, we test this hypothesis and examine the contribution of fronto-temporal and callosal connections to specific measures of rhythmic synchronization. Twenty participants went through SMS and diffusion magnetic resonance imaging (dMRI) measurements. We quantified the mean asynchrony between an auditory beat and participants' finger taps, as well as the time to resynchronize (TTR) with an altered meter, and examined the correlations between these behavioral measures and diffusivity in a small set of predefined pathways. We found significant correlations between asynchrony and fractional anisotropy (FA) in the left (but not right) arcuate fasciculus and in the temporal segment of the corpus callosum. On the other hand, TTR correlated with FA in the precentral segment of the callosum. To our knowledge, this is the first demonstration that relates these particular white matter tracts with performance on an auditory-motor rhythmic synchronization task. We propose that left fronto-temporal and temporal-callosal fibers are involved in prediction and constant comparison between auditory inputs and motor commands, while inter-hemispheric connections between the motor/premotor cortices contribute to successful resynchronization of motor responses with a new external rhythm, perhaps via inhibition of tapping to the previous rhythm. Our results indicate that auditory-motor synchronization skills are associated with anatomical pathways that have been previously related to phonological awareness, thus offering a possible anatomical basis for the behavioral covariance between these abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Beta phase synchronization in the frontal-temporal-cerebellar network during auditory-to-motor rhythm learning.

    PubMed

    Edagawa, Kouki; Kawasaki, Masahiro

    2017-02-22

    Rhythm is an essential element of dancing and music. To investigate the neural mechanisms underlying how rhythm is learned, we recorded electroencephalographic (EEG) data during a rhythm-reproducing task that asked participants to memorize an auditory stimulus and reproduce it via tapping. Based on the behavioral results, we divided the participants into Learning and No-learning groups. EEG analysis showed that error-related negativity (ERN) in the Learning group was larger than in the No-learning group. Time-frequency analysis of the EEG data showed that the beta power in right and left temporal area at the late learning stage was smaller than at the early learning stage in the Learning group. Additionally, the beta power in the temporal and cerebellar areas in the Learning group when learning to reproduce the rhythm were larger than in the No Learning group. Moreover, phase synchronization between frontal and temporal regions and between temporal and cerebellar regions at late stages of learning were larger than at early stages. These results indicate that the frontal-temporal-cerebellar beta neural circuits might be related to auditory-motor rhythm learning.

  18. Cerebral activation associated with speech sound discrimination during the diotic listening task: an fMRI study.

    PubMed

    Ikeda, Yumiko; Yahata, Noriaki; Takahashi, Hidehiko; Koeda, Michihiko; Asai, Kunihiko; Okubo, Yoshiro; Suzuki, Hidenori

    2010-05-01

    Comprehending conversation in a crowd requires appropriate orienting and sustainment of auditory attention to and discrimination of the target speaker. While a multitude of cognitive functions such as voice perception and language processing work in concert to subserve this ability, it is still unclear which cognitive components critically determine successful discrimination of speech sounds under constantly changing auditory conditions. To investigate this, we present a functional magnetic resonance imaging (fMRI) study of changes in cerebral activities associated with varying challenge levels of speech discrimination. Subjects participated in a diotic listening paradigm that presented them with two news stories read simultaneously but independently by a target speaker and a distracting speaker of incongruent or congruent sex. We found that the voice of distracter of congruent rather than incongruent sex made the listening more challenging, resulting in enhanced activities mainly in the left temporal and frontal gyri. Further, the activities at the left inferior, left anterior superior and right superior loci in the temporal gyrus were shown to be significantly correlated with accuracy of the discrimination performance. The present results suggest that the subregions of bilateral temporal gyri play a key role in the successful discrimination of speech under constantly changing auditory conditions as encountered in daily life. 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  19. Impact of Morphometry, Myelinization and Synaptic Current Strength on Spike Conduction in Human and Cat Spiral Ganglion Neurons

    PubMed Central

    Rattay, Frank; Potrusil, Thomas; Wenger, Cornelia; Wise, Andrew K.; Glueckert, Rudolf; Schrott-Fischer, Anneliese

    2013-01-01

    Background Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction. Methodology/Principal Findings Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs) along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA) synaptic stimuli. Conclusions/Significance Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat cochlea. PMID:24260179

  20. Linguistic and auditory temporal processing in children with specific language impairment.

    PubMed

    Fortunato-Tavares, Talita; Rocha, Caroline Nunes; Andrade, Claudia Regina Furquim de; Befi-Lopes, Débora Maria; Schochat, Eliane; Hestvik, Arild; Schwartz, Richard G

    2009-01-01

    Several studies suggest the association of specific language impairment (SLI) to deficits in auditory processing. It has been evidenced that children with SLI present deficit in brief stimuli discrimination. Such deficit would lead to difficulties in developing phonological abilities necessary to map phonemes and to effectively and automatically code and decode words and sentences. However, the correlation between temporal processing (TP) and specific deficits in language disorders--such as syntactic comprehension abilities--has received little or no attention. To analyze the correlation between: TP (through the Frequency Pattern Test--FPT) and Syntactic Complexity Comprehension (through a Sentence Comprehension Task). Sixteen children with typical language development (8;9 +/- 1;1 years) and seven children with SLI (8;1 +/- 1;2 years) participated on the study. Accuracy of both groups decreased with the increase on syntactic complexity (both p < 0.01). On the between groups comparison, performance difference on the Test of Syntactic Complexity Comprehension (TSCC) was statistically significant (p = 0.02).As expected, children with SLI presented FPT performance outside reference values. On the SLI group, correlations between TSCC and FPT were positive and higher for high syntactic complexity (r = 0.97) than for low syntactic complexity (r = 0.51). Results suggest that FPT is positively correlated to syntactic complexity comprehension abilities.The low performance on FPT could serve as an additional indicator of deficits in complex linguistic processing. Future studies should consider, besides the increase of the sample, longitudinal studies that investigate the effect of frequency pattern auditory training on performance in high syntactic complexity comprehension tasks.

Top