Sample records for temporal bone area

  1. Multi-material 3D Models for Temporal Bone Surgical Simulation.

    PubMed

    Rose, Austin S; Kimbell, Julia S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Buchman, Craig A

    2015-07-01

    A simulated, multicolor, multi-material temporal bone model can be created using 3-dimensional (3D) printing that will prove both safe and beneficial in training for actual temporal bone surgical cases. As the process of additive manufacturing, or 3D printing, has become more practical and affordable, a number of applications for the technology in the field of Otolaryngology-Head and Neck Surgery have been considered. One area of promise is temporal bone surgical simulation. Three-dimensional representations of human temporal bones were created from temporal bone computed tomography (CT) scans using biomedical image processing software. Multi-material models were then printed and dissected in a temporal bone laboratory by attending and resident otolaryngologists. A 5-point Likert scale was used to grade the models for their anatomical accuracy and suitability as a simulation of cadaveric and operative temporal bone drilling. The models produced for this study demonstrate significant anatomic detail and a likeness to human cadaver specimens for drilling and dissection. Simulated temporal bones created by this process have potential benefit in surgical training, preoperative simulation for challenging otologic cases, and the standardized testing of temporal bone surgical skills. © The Author(s) 2015.

  2. Epitympanum volume and tympanic isthmus area in temporal bones with retraction pockets.

    PubMed

    Monsanto, Rafael da Costa; Pauna, Henrique Furlan; Kaya, Serdar; Hızlı, Ömer; Kwon, Geeyoun; Paparella, Michael M; Cureoglu, Sebahattin

    2016-11-01

    To compare the volume of the epitympanic space, as well as the area of the tympanic isthmus, in human temporal bones with retraction pockets to those with chronic otitis media without retraction pockets and to those with neither condition. Comparative human temporal bone study. We generated a three-dimensional model of the bony epitympanum and measured the epitympanic space. We also compared the area of the tympanic isthmus. The mean total volume of the epitympanum was 40.55 ± 7.14 mm 3 in the retraction pocket group, 50.03 ± 8.49 mm 3 in the chronic otitis media group, and 48.03 ± 9.16 mm 3 in the neither condition group. The mean volume of the anterior, lateral, and medial compartments in temporal bones in the retraction pocket group was significantly smaller than in the two control groups (P < 0.05). Total epitympanic volume was also significantly smaller in the retraction pocket group than in both control groups (P < 0.05). The mean area of the tympanic isthmus was significantly smaller in the retraction pocket group (8.11 ± 2.44 mm 2 ) than in the chronic otitis media group (9.82 ± 2.06 mm 2 ) or the neither condition group (10.66 ± 1.78 mm 2 ) (P < 0.05). Our data indicate that temporal bones with retraction pockets have a smaller volume bony epitympanum and a smaller tympanic isthmus area as compared with temporal bones from both control groups. The smaller volume tympanic isthmus in the retraction pocket group may suggest that a blockage in the aeration pathways to the epitympanum could create dysventilation, resulting in negative pressure and ultimately in retraction pockets and cholesteatomas. NA Laryngoscope, 126:E369-E374, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Virtual temporal bone dissection system: OSU virtual temporal bone system: development and testing.

    PubMed

    Wiet, Gregory J; Stredney, Don; Kerwin, Thomas; Hittle, Bradley; Fernandez, Soledad A; Abdel-Rasoul, Mahmoud; Welling, D Bradley

    2012-03-01

    The objective of this project was to develop a virtual temporal bone dissection system that would provide an enhanced educational experience for the training of otologic surgeons. A randomized, controlled, multi-institutional, single-blinded validation study. The project encompassed four areas of emphasis: structural data acquisition, integration of the system, dissemination of the system, and validation. Structural acquisition was performed on multiple imaging platforms. Integration achieved a cost-effective system. Dissemination was achieved on different levels including casual interest, downloading of software, and full involvement in development and validation studies. A validation study was performed at eight different training institutions across the country using a two-arm randomized trial where study subjects were randomized to a 2-week practice session using either the virtual temporal bone or standard cadaveric temporal bones. Eighty subjects were enrolled and randomized to one of the two treatment arms; 65 completed the study. There was no difference between the two groups using a blinded rating tool to assess performance after training. A virtual temporal bone dissection system has been developed and compared to cadaveric temporal bones for practice using a multicenter trial. There was no statistical difference between practice on the current simulator compared to practice on human cadaveric temporal bones. Further refinements in structural acquisition and interface design have been identified, which can be implemented prior to full incorporation into training programs and used for objective skills assessment. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  4. Integration of High-resolution Data for Temporal Bone Surgical Simulations

    PubMed Central

    Wiet, Gregory J.; Stredney, Don; Powell, Kimerly; Hittle, Brad; Kerwin, Thomas

    2016-01-01

    Purpose To report on the state of the art in obtaining high-resolution 3D data of the microanatomy of the temporal bone and to process that data for integration into a surgical simulator. Specifically, we report on our experience in this area and discuss the issues involved to further the field. Data Sources Current temporal bone image acquisition and image processing established in the literature as well as in house methodological development. Review Methods We reviewed the current English literature for the techniques used in computer-based temporal bone simulation systems to obtain and process anatomical data for use within the simulation. Search terms included “temporal bone simulation, surgical simulation, temporal bone.” Articles were chosen and reviewed that directly addressed data acquisition and processing/segmentation and enhancement with emphasis given to computer based systems. We present the results from this review in relationship to our approach. Conclusions High-resolution CT imaging (≤100μm voxel resolution), along with unique image processing and rendering algorithms, and structure specific enhancement are needed for high-level training and assessment using temporal bone surgical simulators. Higher resolution clinical scanning and automated processes that run in efficient time frames are needed before these systems can routinely support pre-surgical planning. Additionally, protocols such as that provided in this manuscript need to be disseminated to increase the number and variety of virtual temporal bones available for training and performance assessment. PMID:26762105

  5. A review of simulation platforms in surgery of the temporal bone.

    PubMed

    Bhutta, M F

    2016-10-01

    Surgery of the temporal bone is a high-risk activity in an anatomically complex area. Simulation enables rehearsal of such surgery. The traditional simulation platform is the cadaveric temporal bone, but in recent years other simulation platforms have been created, including plastic and virtual reality platforms. To undertake a review of simulation platforms for temporal bone surgery, specifically assessing their educational value in terms of validity and in enabling transition to surgery. Systematic qualitative review. Search of the Pubmed, CINAHL, BEI and ERIC databases. Assessment of reported outcomes in terms of educational value. A total of 49 articles were included, covering cadaveric, animal, plastic and virtual simulation platforms. Cadaveric simulation is highly rated as an educational tool, but there may be a ceiling effect on educational outcomes after drilling 8-10 temporal bones. Animal models show significant anatomical variation from man. Plastic temporal bone models offer much potential, but at present lack sufficient anatomical or haptic validity. Similarly, virtual reality platforms lack sufficient anatomical or haptic validity, but with technological improvements they are advancing rapidly. At present, cadaveric simulation remains the best platform for training in temporal bone surgery. Technological advances enabling improved materials or modelling mean that in the future plastic or virtual platforms may become comparable to cadaveric platforms, and also offer additional functionality including patient-specific simulation from CT data. © 2015 John Wiley & Sons Ltd.

  6. Pre-operative simulation of pediatric mastoid surgery with 3D-printed temporal bone models.

    PubMed

    Rose, Austin S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Rawal, Rounak B; Iseli, Claire E

    2015-05-01

    As the process of additive manufacturing, or three-dimensional (3D) printing, has become more practical and affordable, a number of applications for the technology in the field of pediatric otolaryngology have been considered. One area of promise is temporal bone surgical simulation. Having previously developed a model for temporal bone surgical training using 3D printing, we sought to produce a patient-specific model for pre-operative simulation in pediatric otologic surgery. Our hypothesis was that the creation and pre-operative dissection of such a model was possible, and would demonstrate potential benefits in cases of abnormal temporal bone anatomy. In the case presented, an 11-year-old boy underwent a planned canal-wall-down (CWD) tympano-mastoidectomy for recurrent cholesteatoma preceded by a pre-operative surgical simulation using 3D-printed models of the temporal bone. The models were based on the child's pre-operative clinical CT scan and printed using multiple materials to simulate both bone and soft tissue structures. To help confirm the models as accurate representations of the child's anatomy, distances between various anatomic landmarks were measured and compared to the temporal bone CT scan and the 3D model. The simulation allowed the surgical team to appreciate the child's unusual temporal bone anatomy as well as any challenges that might arise in the safety of the temporal bone laboratory, prior to actual surgery in the operating room (OR). There was minimal variability, in terms of absolute distance (mm) and relative distance (%), in measurements between anatomic landmarks obtained from the patient intra-operatively, the pre-operative CT scan and the 3D-printed models. Accurate 3D temporal bone models can be rapidly produced based on clinical CT scans for pre-operative simulation of specific challenging otologic cases in children, potentially reducing medical errors and improving patient safety. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Temporal bone fracture following blunt trauma caused by a flying fish.

    PubMed

    Goldenberg, D; Karam, M; Danino, J; Flax-Goldenberg, R; Joachims, H Z

    1998-10-01

    Blunt trauma to the temporal region can cause fracture of the skull base, loss of hearing, vestibular symptoms and otorrhoea. The most common causes of blunt trauma to the ear and surrounding area are motor vehicle accidents, violent encounters, and sports-related accidents. We present an obscure case of a man who was struck in the ear by a flying fish while wading in the sea with resulting temporal bone fracture, sudden deafness, vertigo, cerebrospinal fluid otorrhoea, and pneumocephalus.

  8. Inner ear changes in mucopolysaccharidosis type I/Hurler syndrome.

    PubMed

    Kariya, Shin; Schachern, Patricia A; Nishizaki, Kazunori; Paparella, Michael M; Cureoglu, Sebahattin

    2012-10-01

    Mucopolysaccharidosis type I/Hurler syndrome is an autosomal recessive disease caused by a deficiency of α-L-iduronidase activity. Recurrent middle ear infections and hearing loss are common complications in Hurler syndrome. Although sensorineural and conductive components occur, the mechanism of sensorineural hearing loss has not been determined. The purpose of this study is to evaluate the quantitative inner ear histopathology of the temporal bones of patients with Hurler syndrome. Eleven temporal bones from 6 patients with Hurler syndrome were examined. Age-matched healthy control samples consisted of 14 temporal bones from 7 cases. Temporal bones were serially sectioned in the horizontal plane and stained with hematoxylin and eosin. The number of spiral ganglion cells, loss of cochlear hair cells, area of stria vascularis, and cell density of spiral ligament were evaluated using light microscopy. There was no significant difference between Hurler syndrome and healthy controls in the number of spiral ganglion cells, area of stria vascularis, or cell density of spiral ligament. The number of cochlear hair cells in Hurler syndrome was significantly decreased compared with healthy controls. Auditory pathophysiology in the central nerve system in Hurler syndrome remains unknown; however, decreased cochlear hair cells may be one of the important factors for the sensorineural component of hearing loss.

  9. Variability of the temporal bone surface's topography: implications for otologic surgery

    NASA Astrophysics Data System (ADS)

    Lecoeur, Jérémy; Noble, Jack H.; Balachandran, Ramya; Labadie, Robert F.; Dawant, Benoit M.

    2012-02-01

    Otologic surgery is performed for a variety of reasons including treatment of recurrent ear infections, alleviation of dizziness, and restoration of hearing loss. A typical ear surgery consists of a tympanomastoidectomy in which both the middle ear is explored via a tympanic membrane flap and the bone behind the ear is removed via mastoidectomy to treat disease and/or provide additional access. The mastoid dissection is performed using a high-speed drill to excavate bone based on a pre-operative CT scan. Intraoperatively, the surface of the mastoid component of the temporal bone provides visual feedback allowing the surgeon to guide their dissection. Dissection begins in "safe areas" which, based on surface topography, are believed to be correlated with greatest distance from surface to vital anatomy thus decreasing the chance of injury to the brain, large blood vessels (e.g. the internal jugular vein and internal carotid artery), the inner ear, and the facial nerve. "Safe areas" have been identified based on surgical experience with no identifiable studies showing correlation of the surface with subsurface anatomy. The purpose of our study was to investigate whether such a correlation exists. Through a three-step registration process, we defined a correspondence between each of twenty five clinically-applicable temporal bone CT scans of patients and an atlas and explored displacement and angular differences of surface topography and depth of critical structures from the surface of the skull. The results of this study reflect current knowledge of osteogenesis and anatomy. Based on two features (distance and angular difference), two regions (suprahelical and posterior) of the temporal bone show the least variability between surface and subsurface anatomy.

  10. A Novel Temporal Bone Simulation Model Using 3D Printing Techniques.

    PubMed

    Mowry, Sarah E; Jammal, Hachem; Myer, Charles; Solares, Clementino Arturo; Weinberger, Paul

    2015-09-01

    An inexpensive temporal bone model for use in a temporal bone dissection laboratory setting can be made using a commercially available, consumer-grade 3D printer. Several models for a simulated temporal bone have been described but use commercial-grade printers and materials to produce these models. The goal of this project was to produce a plastic simulated temporal bone on an inexpensive 3D printer that recreates the visual and haptic experience associated with drilling a human temporal bone. Images from a high-resolution CT of a normal temporal bone were converted into stereolithography files via commercially available software, with image conversion and print settings adjusted to achieve optimal print quality. The temporal bone model was printed using acrylonitrile butadiene styrene (ABS) plastic filament on a MakerBot 2x 3D printer. Simulated temporal bones were drilled by seven expert temporal bone surgeons, assessing the fidelity of the model as compared with a human cadaveric temporal bone. Using a four-point scale, the simulated bones were assessed for haptic experience and recreation of the temporal bone anatomy. The created model was felt to be an accurate representation of a human temporal bone. All raters felt strongly this would be a good training model for junior residents or to simulate difficult surgical anatomy. Material cost for each model was $1.92. A realistic, inexpensive, and easily reproducible temporal bone model can be created on a consumer-grade desktop 3D printer.

  11. Comparison of temporal bone fractures in children and adults.

    PubMed

    Kang, Ho Min; Kim, Myung Gu; Hong, Seok Min; Lee, Ho Yun; Kim, Tae Hyun; Yeo, Seung Geun

    2013-05-01

    Contrary to our expectation, that the clinical characteristics of temporal bone fracture would differ in children and adults, we found that the two groups were similar. Most studies of temporal bone fractures have been performed in adults. To our knowledge, no study has investigated differences in temporal bone fractures in children and adults. We therefore investigated differences in temporal bone fractures in adults and children by examining the manifestations and clinical symptoms of temporal bone fractures in pediatric patients. The demographic and clinical characteristics were assessed in 32 children and 186 adults with temporal bone fractures. All patients underwent computed tomography of the temporal bone. Causes of fracture, gender distribution, manifestations of temporal bone fracture, and clinical symptoms were similar in adults and children (p > 0.05 each). Petrous fracture, ear fullness, dizziness, and tinnitus were significantly more frequent in adults than in children (p < 0.05 each).

  12. 3D Printed Pediatric Temporal Bone: A Novel Training Model.

    PubMed

    Longfield, Evan A; Brickman, Todd M; Jeyakumar, Anita

    2015-06-01

    Temporal bone dissection is a fundamental element of otologic training. Cadaveric temporal bones (CTB) are the gold standard surgical training model; however, many institutions do not have ready access to them and their cost can be significant: $300 to $500. Furthermore, pediatric cadaveric temporal bones are not readily available. Our objective is to develop a pediatric temporal bone model. Temporal bone model. Tertiary Children's Hospital. Pediatric patient model. We describe the novel use of a 3D printer for the generation of a plaster training model from a pediatric high- resolution CT temporal bone scan of a normal pediatric temporal bone. Three models were produced and were evaluated. The models utilized multiple colors (white for bone, yellow for the facial nerve) and were of high quality. Two models were drilled as a proof of concept and found to be an acceptable facsimile of the patient's anatomy, rendering all necessary surgical landmarks accurately. The only negative comments pertaining to the 3D printed temporal bone as a training model were the lack of variation in hardness between cortical and cancellous bone, noting a tactile variation from cadaveric temporal bones. Our novel pediatric 3D temporal bone training model is a viable, low-cost training option for previously inaccessible pediatric temporal bone training. Our hope is that, as 3D printers become commonplace, these models could be rapidly reproduced, allowing for trainees to print models of patients before performing surgery on the living patient.

  13. Postnatal temporal bone ontogeny in Pan, Gorilla, and Homo, and the implications for temporal bone ontogeny in Australopithecus afarensis.

    PubMed

    Terhune, Claire E; Kimbel, William H; Lockwood, Charles A

    2013-08-01

    Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three-dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non-human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three-dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. Copyright © 2013 Wiley Periodicals, Inc.

  14. Face and content validation of a novel three-dimensional printed temporal bone for surgical skills development.

    PubMed

    Da Cruz, M J; Francis, H W

    2015-07-01

    To assess the face and content validity of a novel synthetic, three-dimensional printed temporal bone for surgical skills development and training. A synthetic temporal bone was printed using composite materials and three-dimensional printing technology. Surgical trainees were asked to complete three structured temporal bone dissection exercises. Attitudes and impressions were then assessed using a semi-structured questionnaire. Previous cadaver and real operating experiences were used as a reference. Trainees' experiences of the synthetic temporal bone were analysed in terms of four domains: anatomical realism, usefulness as a training tool, task-based usefulness and overall reactions. Responses across all domains indicated a high degree of acceptance, suggesting that the three-dimensional printed temporal bone was a useful tool in skills development. A sophisticated three-dimensional printed temporal bone that demonstrates face and content validity was developed. The efficiency in cost savings coupled with low associated biohazards make it likely that the printed temporal bone will be incorporated into traditional temporal bone skills development programmes in the near future.

  15. Primary pericranial Ewing's sarcoma on the temporal bone: A case report.

    PubMed

    Kawano, Hiroto; Nitta, Naoki; Ishida, Mitsuaki; Fukami, Tadateru; Nozaki, Kazuhiko

    2016-01-01

    Primary Ewing's sarcoma originating in the pericranium is an extremely rare disease entity. A 9-year-old female patient was admitted to our department due to a left temporal subcutaneous mass. The mass was localized under the left temporal muscle and attached to the surface of the temporal bone. Head computed tomography revealed a mass with bony spicule formation on the temporal bone, however, it did not show bone destruction or intracranial invasion. F-18 fluorodeoxyglucose positron emission tomography showed no lesions other than the mass on the temporal bone. Magnetic resonance imaging showed that the mass was located between the temporal bone and the pericranium. The mass was completely resected with the underlying temporal bone and the overlying deep layer of temporal muscle, and was diagnosed as primary Ewing's sarcoma. Because the tumor was located in the subpericranium, we created a new classification, "pericranial Ewing's sarcoma," and diagnosed the present tumor as pericranial Ewing's sarcoma. We herein present an extremely rare case of primary pericranial Ewing's sarcoma that developed on the temporal bone.

  16. [Computed tomography of the temporal bone in diagnosis of chronic exudative otitis media].

    PubMed

    Zelikovich, E I

    2005-01-01

    Computed tomography (CT) of the temporal bone was made in 37 patients aged 2 to 55 years with chronic exudative otitis media (CEOM). In 21 of them the pathology was bilateral. The analysis of 58 CT images has identified CT signs of chronic exudative otitis media. They include partial (17 temporary bones) or complete (38 temporal bones) block of the bone opening of the auditory tube, pneumatic defects of the tympanic cavity (58 temporal bones), pneumatic defects of the mastoid process and antrum (47 temporal bones), pathologic retraction of the tympanic membrane. The examination of the temporal bone detected both CT-signs of CEOM and other causes of hearing disorders in 14 patients (26 temporal bones) with CEOM symptoms and inadequately high hypoacusis. Among these causes were malformation of the auditory ossicula (n=5), malformation of the labynthine window (n=2), malformation of the middle and internal ear (n=4), a wide aqueduct of the vestibule, labyrinthine anomaly of Mondini's type (n=1), cochlear hypoplasia (n=4), stenosis of the internal acoustic meatuses (n=2). Sclerotic fibrous dysplasia was suggested in 2 temporal bones (by CT data). CT was repeated after surgical treatment of 10 patients (14 temporal bones) and visual assessment of tympanostomy results was made.

  17. Epileptic phenotype of FGFR3-related bilateral medial temporal lobe dysgenesis.

    PubMed

    Okazaki, Tetsuya; Saito, Yoshiaki; Ueda, Riyo; Awashima, Takeya; Nishimura, Yoko; Yuasa, Isao; Shinohara, Yuki; Adachi, Kaori; Sasaki, Masayuki; Nanba, Eiji; Maegaki, Yoshihiro

    2017-01-01

    Hypochondroplasia (HCH) is a skeletal dysplasia, characterized by short stature and macrocephaly. Clinical symptoms and radiological and histopathological features of HCH are similar, but milder than those seen in achondroplasia. Particularly, HCH patients with Asn540Lys mutation in the FGFR3 gene are reported to have medial temporal lobe dysgenesis and epilepsy. We report a 3-year-old girl who developed recurrent epileptic apnea, which started immediately after birth. The apneic seizures were refractory to antiepileptic medications; ictal electroencephalography showed rhythmic activity originating from the left or right temporal areas and rarely from the right frontal area. Macrocephaly was noted since birth. Neuroimaging revealed bilateral dysgenesis and hypometabolism of the medial temporal structures as well as perfusion changes in the left lateral temporofrontal areas during the ictal period. Clonazepam was initiated and acetazolamide dosage was increased at 6months, resulting in complete seizure control after 8months of age. Genetic analysis identified an Asn540Lys (c.1620 C>A) mutation in the FGFR3 gene. Characteristic bone findings on the lumbar spine, iliac bone, and femur were retrospectively confirmed on X-rays during infancy. This was the first report that delineated the epilepsy phenotype in FGFR3-related bilateral medial temporal lobe dysgenesis; such findings would lead to an early diagnosis and better epilepsy management. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  18. Botulinum toxin in masticatory muscles of the adult rat induces bone loss at the condyle and alveolar regions of the mandible associated with a bone proliferation at a muscle enthesis.

    PubMed

    Kün-Darbois, Jean-Daniel; Libouban, Hélène; Chappard, Daniel

    2015-08-01

    In man, botulinum toxin type A (BTX) is injected in masticatory muscles for several indications such as trismus, bruxism, or masseter hypertrophy. Bone changes in the mandible following BTX injections in adult animal have therefore became a subject of interest. The aim of this study was to analyze condylar and alveolar bone changes following BTX unilateral injections in masseter and temporal muscles in adult rats. Mature male rats (n = 15) were randomized into 2 groups: control (CTRL; n = 6) and BTX group (n= 9). Rats of the BTX group received a single injection of BTX into right masseter and temporal muscles. Rats of the CTRL group were similarly injected with saline solution. Rats were sacrificed 4 weeks after injections. Masticatory muscles examination and microcomputed tomography (microCT) were performed. A significant difference of weight was found between the 2 groups at weeks 2, 3 and 4 (p < 0.05). Atrophy of the right masseter and temporal muscles was observed in all BTX rats. MicroCT analysis showed significant bone loss in the right alveolar and condylar areas in BTX rats. Decrease in bone volume reached -20% for right alveolar bone and -35% for right condylar bone. A hypertrophic bone metaplasia at the digastric muscle enthesis was found on every right hemimandible in the BTX group and none in the CTRL group. BTX injection in masticatory muscles leads to a significant and major mandible bone loss. These alterations can represent a risk factor for fractures in human. The occurrence of a hypertrophic bone metaplasia at the Mus Digastricus enthesis may constitute an etiological factor for tori. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone

    PubMed Central

    Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof

    2013-01-01

    The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant’s location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map (n = 10) with conventional surgery without assistance (n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient’s safety during BAP surgery in the temporal bone. PMID:28788390

  20. A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone.

    PubMed

    Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof

    2013-11-19

    The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant's location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map ( n = 10) with conventional surgery without assistance ( n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient's safety during BAP surgery in the temporal bone.

  1. Is Routine Use of High Resolution Computerized Tomography of Temporal Bone in Patients of Atticoantral Chronic Suppurative Otitis Media without Intracranial Complications Justified?

    PubMed

    Bathla, Meeta; Doshi, Hiren; Kansara, Atul

    2018-03-01

    Role of high resolution computerized tomography (HRCT) of temporal bone is established in cases of atticoantral chronic suppurative otitis media (CSOM) with intracranial complications. Routine use of HRCT in management of patients of atticoantral CSOM without intracranial complications has been an issue of debate. The aim of this study was to evaluate the routine use of HRCT of temporal bone in such cases. This study was a prospective study done at LG hospital, AMC MET Medical College, Ahmedabad to evaluate and compare the temporal bone findings in HRCT and intraoperative findings in 100 patients with atticoantral CSOM. All patients underwent HRCT screening followed by surgical exploration of middle ear cleft. In extent of disease HRCT showed very high sensitivity and specificity for epitympanum (100, 94%) and mesotympanum (98, 98%) areas. It gave valuable information of disease extent in hidden areas like sinus tympani and facial recess of mesotympanum. HRCT satisfactorily delineated malleus and incus erosion but had 75% sensitivity for detecting erosion of stapes suprastructure, though specificity was of 97%. For bony anatomical landmarks HRCT showed very high sensitivity and specificity for detecting erosion of lateral semicircular canal, tegmen tympani and sinus plate. Detection of facial canal erosion on HRCT had moderate sensitivity of 75%. We concluded that routine use of HRCT is justified as a reliable preoperative tool in patients with atticoantral CSOM without intracranial complications and it helps to plan type of surgical intervention. HRCT has limited role to distinguish between granulations and cholesteatoma and also to delineate stapes supra structure and facial nerve canal.

  2. Subtemporal-anterior transtentoral approach to middle cranial fossa microsurgical anatomy.

    PubMed

    Xu, Zhiming; Wang, Weimin; Zhang, Jingjing; Liu, Wei; Feng, Yugong; Li, Gang

    2014-11-01

    This study aimed to describe the topography of inferior and external dura mater of the middle cranial fossa through subtemporal-anterior transpetrosal approach and discuss the feasibility of improving the approach. Eight formalin-fixed adult cadaveric heads were studied, with the bones milled away in the lateral triangle region of the petrous bone, Kawase rhombus region, and inner triangle region of the petrous apex. The distances between the targets in these regions, as well as the angles after the dissection of zygomatic arch, were measured, and then the exposed petroclival and retrochiasmatic areas were observed under the microscope. There were significant variations in the distances between targets in the 3 milled regions among the specimens. After the dissection of zygomatic arch, the surgical view got an average increase of 12 degrees. The subtemporal anterior transpetrosal approach, as an improved subtemporal approach, can expose the lesions optimally, causing no injury to the hearing and reducing injuries to temporal lobe. On the other hand, the lateral bone of the petrous parts of the temporal bone is removed so as to improve the view to the retrochiasmatic area and expand the operative field.

  3. Prevalence of Temporal Bone Fractures in Patients with Mandibular Fractures Using Multidetector-Row CT.

    PubMed

    Ogura, I; Kaneda, T; Sasaki, Y; Buch, K; Sakai, O

    2015-06-01

    Temporal bone fracture after mandibular trauma is thought to be rare, and its prevalence has not been reported in the literature. The purpose of this study was to investigate the prevalence of temporal bone fractures in patients with mandibular fractures and the relationship between temporal bone fractures and the mandibular fracture location using multidetector-row computed tomography (MDCT). A prospective study was performed in 201 patients with mandibular fractures who underwent 64-MDCT scans. The mandibular fracture locations were classified as median, paramedian, angle, and condylar types. Statistical analysis for the relationship between prevalence of temporal bone fractures and mandibular fracture locations was performed using χ(2) test with Fisher's exact test. A P-value < 0.05 was considered statistically significant. The percentage of cases with temporal bone fracture was 3.0 % of all patients with mandibular fractures and 19.0 % of those with multiple mandibular fractures of paramedian and condylar type. There was a significant relationship between the incidence of temporal bone fracture and the paramedian- and condylar-type mandibular fracture (P = 0.001). Multiple mandibular fractures of paramedian and condylar type may be a stronger indicator for temporal bone fractures. This study suggests that patients with mandibular fracture, especially the paramedian and condylar type, should be examined for coexisting temporal bone fracture using MDCT.

  4. Role of mastoid pneumatization in temporal bone fractures.

    PubMed

    Ilea, A; Butnaru, A; Sfrângeu, S A; Hedeşiu, M; Dudescu, C M; Berce, P; Chezan, H; Hurubeanu, L; Trombiţaş, V E; Câmpian, R S; Albu, S

    2014-07-01

    The mastoid portion of the temporal bone has multiple functional roles in the organism, including regulation of pressure in the middle ear and protection of the inner ear. We investigated whether mastoid pneumatization plays a role in the protection of vital structures in the temporal bone during direct lateral trauma. The study was performed on 20 human temporal bones isolated from cadavers. In the study group formed by 10 temporal bone samples, mastoid cells were removed and the resulting neocavities were filled. The mastoids were maintained intact in the control group. All samples were impacted at the same speed and kinetic energy. The resultant temporal bone fractures were evaluated by CT. Temporal squama fractures were 2.88 times more frequent, and mastoid fractures were 2.76 times more frequent in the study group. Facial nerve canal fractures were 6 times more frequent in the study group and involved all the segments of the facial nerve. Carotid canal fractures and jugular foramen fractures were 2.33 and 2.5 times, respectively, more frequent in the study group. The mastoid portion of the temporal bone plays a role in the absorption and dispersion of kinetic energy during direct lateral trauma to the temporal bone, reducing the incidence of fracture in the setting of direct trauma. © 2014 by American Journal of Neuroradiology.

  5. Clinical Importance of Temporal Bone Features for the Efficacy of Contrast-Enhanced Sonothrombolysis: a Retrospective Analysis of the NOR-SASS Trial.

    PubMed

    Novotny, Vojtech; Nacu, Aliona; Kvistad, Christopher E; Fromm, Annette; Neckelmann, Gesche F; Khanevski, Andrej N; Tobro, Haakon; Waje-Andreassen, Ulrike; Naess, Halvor; Thomassen, Lars; Logallo, Nicola

    2017-11-08

    Contrast-enhanced sonothrombolysis (CEST) seems to be a safe and promising treatment in acute ischemic stroke. It remains unknown if temporal bone features may influence the efficacy of CEST. We investigated the association between different temporal bone features on admission computed tomography (CT) scan and the outcome in acute ischemic stroke patients included in the randomized Norwegian Sonothrombolysis in Acute Stroke Study (NOR-SASS). Patients diagnosed as stroke mimics and those with infratentorial stroke or with incorrect insonation were excluded. We retrospectively assessed temporal bone heterogeneity (presence of diploë), diploë ratio, thickness, and density on admission CT scans. National institute of Health Stroke Scale (NIHSS) at 24 h and modified Rankin Scale (mRS) at 3 months were correlated with CT findings both in CEST and sham CEST patients. A total of 99 patients were included of which 52 were assigned to CEST and 47 to sham CEST. Approximately 20% patients had a heterogeneous temporal bone in both the CEST and sham CEST group. All temporal bone CT features studied were associated with female sex. In the CEST group, temporal bone heterogeneity (p = 0.006) and higher temporal bone diploë ratio (p = 0.002) were associated with higher NIHSS at 24 h. There was no association between temporal bone features and mRS at 3 months. Approximately 20% of acute ischemic stroke patients have heterogeneous temporal bone and may be resistant to standard 2-MHz transcranial Doppler ultrasound treatment. Sonothrombolysis resistance may easily be predicted by admission CT for better selection.

  6. Temporal lobe sulcal pattern and the bony impressions in the middle cranial fossa: the case of the el Sidrón (Spain) neandertal sample.

    PubMed

    Rosas, Antonio; Peña-Melián, Angel; García-Tabernero, Antonio; Bastir, Markus; De La Rasilla, Marco

    2014-12-01

    Correspondence between temporal lobe sulcal pattern and bony impressions on the middle cranial fossae (MCF) was analyzed. MCF bone remains (SD-359, SD-315, and SD-1219) from the El Sidrón (Spain) neandertal site are analyzed in this context. Direct comparison of the soft and hard tissues from the same individual was studied by means of: 1) dissection of two human heads; 2) optic (white light) surface scans; 3) computed tomography and magnetic resonance of the same head. The inferior temporal sulcus and gyrus are the features most strongly influencing MCF bone surface. The Superior temporal sulcus and middle temporal and fusiform gyri also leave imprints. Temporal lobe form differs between Homo sapiens and neandertals. A wider and larger post-arcuate fossa (posterior limit of Brodmann area 20 and the anterior portion of area 37) is present in modern humans as compared to neandertals. However other traits of the MCF surface are similar in these two large-brained human groups. A conspicuous variation is appreciated in the more vertical location of the inferior temporal gyrus in H. sapiens. In parallel, structures of the lower surface of the temporal lobe are more sagittally orientated. Grooves accommodating the fusiform and the lower temporal sulci become grossly parallel to the temporal squama. These differences can be understood within the context of a supero-lateral deployment of the lobe in H. sapiens, a pattern previously identified (Bastir et al., Nat Commun 2 (2011) 588-595). Regarding dural sinus pattern, a higher incidence of petrosquamous sinus is detected in neandertal samples. © 2014 Wiley Periodicals, Inc.

  7. Otosclerosis: Temporal Bone Pathology.

    PubMed

    Quesnel, Alicia M; Ishai, Reuven; McKenna, Michael J

    2018-04-01

    Otosclerosis is pathologically characterized by abnormal bony remodeling, which includes bone resorption, new bone deposition, and vascular proliferation in the temporal bone. Sensorineural hearing loss in otosclerosis is associated with extension of otosclerosis to the cochlear endosteum and deposition of collagen throughout the spiral ligament. Persistent or recurrent conductive hearing loss after stapedectomy has been associated with incomplete footplate fenestration, poor incus-prosthesis connection, and incus resorption in temporal bone specimens. Human temporal bone pathology has helped to define the role of computed tomography imaging for otosclerosis, confirming that computed tomography is highly sensitive for diagnosis, yet limited in assessing cochlear endosteal involvement. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Cranial base morphology and temporal bone pneumatization in Asian Homo erectus.

    PubMed

    Balzeau, Antoine; Grimaud-Hervé, Dominique

    2006-10-01

    The external morphological features of the temporal bone are used frequently to determine taxonomic affinities of fossils of the genus Homo. Temporal bone pneumatization has been widely studied in great apes and in early hominids. However, this feature is rarely examined in the later hominids, particularly in Asian Homo erectus. We provide a comparative morphological and quantitative analysis of Asian Homo erectus from the sites of Ngandong, Sambungmacan, and Zhoukoudian, and of Neandertals and anatomically modern Homo sapiens in order to discuss causes and modalities of temporal bone pneumatization during hominid evolution. The evolution of temporal bone pneumatization in the genus Homo is more complex than previously described. Indeed, the Zhoukoudian fossils have a unique pattern of temporal bone pneumatization, whereas Ngandong and Sambungmacan fossils, as well as the Neandertals, more closely resemble the modern human pattern. Moreover, these Chinese fossils are characterized by a wide midvault and a relatively narrow occipital bone. Our results support the point of view that cell development does not play an active role in determining cranial base morphology. Instead, pneumatization is related to available space and to temporal bone morphology, and its development is related to correlated morphology and the relative disposition of the bones and cerebral lobes. Because variation in pneumatization is extensive within the same species, the phyletic implications of pneumatization are limited in the taxa considered here.

  9. Late radiation side-effects in three patients undergoing parotid irradiation for benign disease.

    PubMed

    Armour, A; Ghanna, P; O'Rielly, B; Habeshaw, T; Symonds, P

    2000-01-01

    We report three patients in whom standard radiation therapy was given and serious late radiation damage was seen. The first patient suffered recurrent parotiditis and a parotid fistula. He was treated initially with 20 Gy in ten fractions via a 300 kV field. Further irradiation was required 1 year later and 40 Gy was given in 2 Gy fractions by an oblique anterior and posterior wedged photon pair. Ten years later he developed localized temporal bone necrosis. The second patient, with pleomorphic salivary adenoma, developed localized temporal bone necrosis 6 years after 60 Gy had been given using standard fractionation and technique. The third patient received 55 Gy in 25 fractions for a pleomorphic salivary adenoma and after 3 years developed temporal bone necrosis. Sixteen years later the same patient developed cerebellar and brainstem necrosis. All patients developed chronic persistent infection during or shortly after the radiation therapy, which increased local tissue sensitivity to late radiation damage. As a result, severe bone, cerebellar and brainstem necrosis was observed at doses that are normally considered safe. We therefore strongly recommend that any infection in a proposed irradiated area should be treated aggressively, with surgical debridement if necessary, before radiotherapy is administered, or that infection developing during or after irradiation is treated promptly.

  10. Cochlear Implantation after Bilateral Transverse Temporal Bone Fractures

    PubMed Central

    Shin, Jong-Heon; Park, SooChan; Baek, Sam-Hyun

    2008-01-01

    Patients deafened by a severe head injury are rarely encountered. We report a case of a 65-yr-old man with bilateral transverse temporal bone fractures due to head injury. He underwent cochlear implant and achieved a satisfactory auditory rehabilitation. Imaging studies of temporal bone before performing a cochlear implantation provide important information on a patient with bilateral temporal bone fractures. Cochlear implantations with careful planning in such a patient may be a very effective method for aural rehabilitation. PMID:19434252

  11. Content Validity of Temporal Bone Models Printed Via Inexpensive Methods and Materials.

    PubMed

    Bone, T Michael; Mowry, Sarah E

    2016-09-01

    Computed tomographic (CT) scans of the 3-D printed temporal bone models will be within 15% accuracy of the CT scans of the cadaveric temporal bones. Previous studies have evaluated the face validity of 3-D-printed temporal bone models designed to train otolaryngology residents. The purpose of the study was to determine the content validity of temporal bone models printed using inexpensive printers and materials. Four cadaveric temporal bones were randomly selected and clinical temporal bone CT scans were obtained. Models were generated using previously described methods in acrylonitrile butadiene styrene (ABS) plastic using the Makerbot Replicator 2× and Hyrel printers. Models were radiographically scanned using the same protocol as the cadaveric bones. Four images from each cadaveric CT series and four corresponding images from the model CT series were selected, and voxel values were normalized to black or white. Scan slices were compared using PixelDiff software. Gross anatomic structures were evaluated in the model scans by four board certified otolaryngologists on a 4-point scale. Mean pixel difference between the cadaver and model scans was 14.25 ± 2.30% at the four selected CT slices. Mean cortical bone width difference and mean external auditory canal width difference were 0.58 ± 0.66 mm and 0.55 ± 0.46 mm, respectively. Expert raters felt the mastoid air cells were well represented (2.5 ± 0.5), while middle ear and otic capsule structures were not accurately rendered (all averaged <1.8). These results suggest that these models would be sufficient adjuncts to cadaver temporal bones for training residents in cortical mastoidectomies, but less effective for middle ear procedures.

  12. Microsurgical and Endoscopic Anatomy for Intradural Temporal Bone Drilling and Applications of the Electromagnetic Navigation System: Various Extensions of the Retrosigmoid Approach.

    PubMed

    Matsushima, Ken; Komune, Noritaka; Matsuo, Satoshi; Kohno, Michihiro

    2017-07-01

    The use of the retrosigmoid approach has recently been expanded by several modifications, including the suprameatal, transmeatal, suprajugular, and inframeatal extensions. Intradural temporal bone drilling without damaging vital structures inside or beside the bone, such as the internal carotid artery and jugular bulb, is a key step for these extensions. This study aimed to examine the microsurgical and endoscopic anatomy of the extensions of the retrosigmoid approach and to evaluate the clinical feasibility of an electromagnetic navigation system during intradural temporal bone drilling. Five temporal bones and 8 cadaveric cerebellopontine angles were examined to clarify the anatomy of retrosigmoid intradural temporal bone drilling. Twenty additional cerebellopontine angles were dissected in a clinical setting with an electromagnetic navigation system while measuring the target registration errors at 8 surgical landmarks on and inside the temporal bone. Retrosigmoid intradural temporal bone drilling expanded the surgical exposure to allow access to the petroclival and parasellar regions (suprameatal), internal acoustic meatus (transmeatal), upper jugular foramen (suprajugular), and petrous apex (inframeatal). The electromagnetic navigation continuously guided the drilling without line of sight limitation, and its small devices were easily manipulated in the deep and narrow surgical field in the posterior fossa. Mean target registration error was less than 0.50 mm during these procedures. The combination of endoscopic and microsurgical techniques aids in achieving optimal exposure for retrosigmoid intradural temporal bone drilling. The electromagnetic navigation system had clear advantages with acceptable accuracy including the usability of small devices without line of sight limitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Assessment of skills using a virtual reality temporal bone surgery simulator.

    PubMed

    Linke, R; Leichtle, A; Sheikh, F; Schmidt, C; Frenzel, H; Graefe, H; Wollenberg, B; Meyer, J E

    2013-08-01

    Surgery on the temporal bone is technically challenging due to its complex anatomy. Precise anatomical dissection of the human temporal bone is essential and is fundamental for middle ear surgery. We assessed the possible application of a virtual reality temporal bone surgery simulator to the education of ear surgeons. Seventeen ENT physicians with different levels of surgical training and 20 medical students performed an antrotomy with a computer-based virtual temporal bone surgery simulator. The ease, accuracy and timing of the simulated temporal bone surgery were assessed using the automatic assessment software provided by the simulator device and additionally with a modified Final Product Analysis Scale. Trained ENT surgeons, physicians without temporal bone surgical training and medical students were all able to perform the antrotomy. However, the highly trained ENT surgeons were able to complete the surgery in approximately half the time, with better handling and accuracy as assessed by the significant reduction in injury to important middle ear structures. Trained ENT surgeons achieved significantly higher scores using both dissection analysis methods. Surprisingly, there were no significant differences in the results between medical students and physicians without experience in ear surgery. The virtual temporal bone training system can stratify users of known levels of experience. This system can be used not only to improve the surgical skills of trained ENT surgeons for more successful and injury-free surgeries, but also to train inexperienced physicians/medical students in developing their surgical skills for the ear.

  14. Face and content validation of a virtual reality temporal bone simulator.

    PubMed

    Arora, Asit; Khemani, Sam; Tolley, Neil; Singh, Arvind; Budge, James; Varela, David A Diaz Voss; Francis, Howard W; Darzi, Ara; Bhatti, Nasir I

    2012-03-01

    To validate the VOXEL-MAN TempoSurg simulator for temporal bone dissection. Prospective international study. Otolaryngology departments of 2 academic health care institutions in the United Kingdom and United States. Eighty-five subjects were recruited consisting of an experienced and referent group. Participants performed a standardized familiarization session and temporal bone dissection task. Realism, training effectiveness, and global impressions were evaluated across 21 domains using a 5-point Likert-type scale. A score of 4 was the minimum threshold for acceptability. The experienced group comprised 25 otolaryngology trainers who had performed 150 mastoid operations. The referent group comprised 60 trainees (mean otolaryngology experience of 2.9 years). Familiarization took longer in the experienced group (P = .01). User-friendliness was positively rated (mean score 4.1). Seventy percent of participants rated anatomical appearance as acceptable. Trainers rated drill ergonomics worse than did trainees (P = .01). Simulation temporal bone training scored highly (mean score 4.3). Surgical anatomy, drill navigation, and hand-eye coordination accounted for this. Trainees were more likely to recommend temporal bone simulation to a colleague than were trainers (P = .01). Transferability of skills to the operating room was undecided (mean score 3.5). Realism of the VOXEL-MAN virtual reality temporal bone simulator is suboptimal in its current version. Nonetheless, it represents a useful adjunct to existing training methods and is particularly beneficial for novice surgeons before performing cadaveric temporal bone dissection. Improvements in realism, specifically drill ergonomics and visual-spatial perception during deeper temporal bone dissection, are warranted.

  15. Correlations of External Landmarks With Internal Structures of the Temporal Bone.

    PubMed

    Piromchai, Patorn; Wijewickrema, Sudanthi; Smeds, Henrik; Kennedy, Gregor; O'Leary, Stephen

    2015-09-01

    The internal anatomy of a temporal bone could be inferred from external landmarks. Mastoid surgery is an important skill that ENT surgeons need to acquire. Surgeons commonly use CT scans as a guide to understanding anatomical variations before surgery. Conversely, in cases where CT scans are not available, or in the temporal bone laboratory where residents are usually not provided with CT scans, it would be beneficial if the internal anatomy of a temporal bone could be inferred from external landmarks. We explored correlations between internal anatomical variations and metrics established to quantify the position of external landmarks that are commonly exposed in the operating room, or the temporal bone laboratory, before commencement of drilling. Mathematical models were developed to predict internal anatomy based on external structures. From an operating room view, the distances between the following external landmarks were observed to have statistically significant correlations with the internal anatomy of a temporal bone: temporal line, external auditory canal, mastoid tip, occipitomastoid suture, and Henle's spine. These structures can be used to infer a low lying dura mater (p = 0.002), an anteriorly located sigmoid sinus (p = 0.006), and a more lateral course of the facial nerve (p < 0.001). In the temporal bone laboratory view, the mastoid tegmen and sigmoid sinus were also regarded as external landmarks. The distances between these two landmarks and the operating view external structures were able to further infer the laterality of the facial nerve (p < 0.001) and a sclerotic mastoid (p < 0.001). Two nonlinear models were developed that predicted the distances between the following internal structures with a high level of accuracy: the distance from the sigmoid sinus to the posterior external auditory canal (p < 0.001) and the diameter of the round window niche (p < 0.001). The prospect of encountering some of the more technically challenging anatomical variants encountered in temporal bone dissection can be inferred from the distance between external landmarks found on the temporal bone. These relationships could be used as a guideline to predict challenges during drilling and choosing appropriate temporal bones for dissection.

  16. Undecalcified temporal bone morphology: a methodology useful for gross to fine observation and three-dimensional reconstruction.

    PubMed

    Fujiyoshi, T; Mogi, G; Watanabe, T; Matsushita, F

    1992-01-01

    Using a novel method of cutting undecalcified temporal bone specimens, quantitative structural analysis in the human and the Japanese monkey was undertaken. One millimeter thick serial slices made from unembedded temporal bones retained fine structure. Therefore, gross to fine observation could be performed systematically at the macroscopic, light, scanning, and transmission electron microscopic levels. The entire temporal bone three-dimensional reconstruction was completed from embedded sections; consequently, the volume of the tubotympanum and air cell system could be calculated. Available methods by embedding, tungsten carbide sectioning, grinding, and microwave irradiation for decalcification were also examined. These morphologic studies suggest that these novel methods offer timesaving advantages over any presently available techniques, and allow for elucidation of temporal bone morphology with only a few specimens.

  17. Hydroxyapatite granules used in the obliteration of mastoid cavities in rats.

    PubMed

    Hamerschmidt, Rogério; Santos, Rafael Francisco dos; Araújo, João Cândido; Stahlke, Henrique Jorge; Agulham, Miguel Angelo; Moreira, Ana Tereza Ramos; Mocellin, Marcos

    2011-06-01

    Prospective experimental study in which we created a bony defect in the mastoids of rats and filled it up with hydroxyapatite to evaluate bone regeneration, to solve the problems of open cavities after mastoidectomies that frequently present with otorrhea, infection, granulation tissue and hearing loss. The aim was to evaluate bone regeneration in defects created in the mastoids of rats, using hydroxyapatite, to see how much of the cavity we could reduce. Twelve rats Wistar-Furth were used. A 0.5 x 0.5 cm bone defect was created in both temporal bones of the rats, and filled with 15 micrograms of hydroxyapatite. The left side was used as control. The animals were slaughtered 40 days afterwards and histology analyses were carried out. In the hydroxyapatite group, the new bone growth involved an area of 68.53% of the total; and in the control group it was only of 15.97%. It was observed a very good hydroxyapatite integration to the temporal bone in this experimental model. The microscopic results were superior with the use of hydroxyapatite when compared to the control group. It is a safe method and easy to apply to solve the problems of open cavities with chronic discharge and difficult to clean.

  18. Tympanic plate fractures in temporal bone trauma: prevalence and associated injuries.

    PubMed

    Wood, C P; Hunt, C H; Bergen, D C; Carlson, M L; Diehn, F E; Schwartz, K M; McKenzie, G A; Morreale, R F; Lane, J I

    2014-01-01

    The prevalence of tympanic plate fractures, which are associated with an increased risk of external auditory canal stenosis following temporal bone trauma, is unknown. A review of posttraumatic high-resolution CT temporal bone examinations was performed to determine the prevalence of tympanic plate fractures and to identify any associated temporal bone injuries. A retrospective review was performed to evaluate patients with head trauma who underwent emergent high-resolution CT examinations of the temporal bone from July 2006 to March 2012. Fractures were identified and assessed for orientation; involvement of the tympanic plate, scutum, bony labyrinth, facial nerve canal, and temporomandibular joint; and ossicular chain disruption. Thirty-nine patients (41.3 ± 17.2 years of age) had a total of 46 temporal bone fractures (7 bilateral). Tympanic plate fractures were identified in 27 (58.7%) of these 46 fractures. Ossicular disruption occurred in 17 (37.0%). Fractures involving the scutum occurred in 25 (54.4%). None of the 46 fractured temporal bones had a mandibular condyle dislocation or fracture. Of the 27 cases of tympanic plate fractures, 14 (51.8%) had ossicular disruption (P = .016) and 18 (66.6%) had a fracture of the scutum (P = .044). Temporomandibular joint gas was seen in 15 (33%) but was not statistically associated with tympanic plate fracture (P = .21). Tympanic plate fractures are commonly seen on high-resolution CT performed for evaluation of temporal bone trauma. It is important to recognize these fractures to avoid the preventable complication of external auditory canal stenosis and the potential for conductive hearing loss due to a fracture involving the scutum or ossicular chain.

  19. [Study of radiation dose to the eye lens by multi-detector row computed tomography of the temporal bone].

    PubMed

    Hirakuri, Ayaka; Numasawa, Kanako; Takeishi, Hideki; Satomura, Minato; Takeda, Hiromitsu; Harada, Kuniaki; Asanuma, Osamu; Sakata, Motomichi

    2012-01-01

    The exposure of the eye lens caused by multi-detector row computed tomography (MDCT) of the temporal bone is a serious problem. Our aim was to evaluate the radiation dose to the eye lens by different scan baselines (orbitomeatal line; OML, acanthiomeatal line; AML) and examine the difference of the depiction of the temporal bone structures. Measurement of the exposure to the eye lens was performed by means of MDCT of the temporal bone with a radio-photoluminescence glass dosimeter using a rand phantom. Moreover, we studied only one volunteer (58-year-old male) who had no symptom and was not suspected of having any ear abnormalities with a two scan baseline. Visualization of the major anatomical structures of the temporal bone (the tympanic portion of the facial nerve canal, the body of the incus, stapes superstructures, vestibule etc.) was performed on the volunteer. The average absorbed dose was 6.42 mGy by the OML and 1.59 mGy by the AML, respectively. With regard to visualization of the temporal bone structures, all structures were of equal quality with the two scan baseline. With the AML line, the radiation dose to the eye lens was reduced to 75%. Therefore, the authors recommended an AML for use for MDCT of the temporal bone. In clinical practice, the optimization of scanning factor (kVp, mAs etc.) and the use of the radio-protection should be implemented for radiation dose reduction of the eye lens by MDCT of the temporal bone.

  20. Detailed anatomy knowledge: first step to approach petroclival meningiomas through the petrous apex. Anatomy lab experience and surgical series.

    PubMed

    Altieri, Roberto; Sameshima, Tetsuro; Pacca, Paolo; Crobeddu, Emanuela; Garbossa, Diego; Ducati, Alessandro; Zenga, Francesco

    2017-04-01

    Petroclival meningiomas are a challenge for neurosurgeons due to the complex anatomy of the region that is rich of vessels and nerves. A perfect and detailed knowledge of the anatomy is very demanding in neurosurgery, especially in skull base surgery. The authors describe the microsurgical anatomy to perform an anterior petrosectomy based on their anatomical and surgical experience and perform a literature review. The temporal bone is the most complex and fascinating bone of skull base. The apex is located in the angle between the greater wing of the sphenoid and the occipital bone. Removing the petrous apex exposes the clivus. The approach directed through the temporal bone in this anatomical area is referred to as an anterior petrosectomy. The area that must be drilled is the rhomboid fossa that is defined by the Kawase, premeatal, and postmeatal triangles. In Division of Neurosurgery - University of Turin, 130 patients, from August 2013 to September 2015, underwent surgical resection of intracranial meningiomas. In this group, we have operated 7 PCMs and 5 of these were approached performing an anterior petrosectomy with good results. In our conclusions, we feel that this surgery require an advanced knowledge of human anatomy and a specialized training in interpretation of radiological and microsurgical anatomy both in the dissection lab and in the operating room.

  1. Hematogenous Renal Cell Carcinoma Metastasis in the Postoperative Temporal Bone

    PubMed Central

    Konishi, Masaya; Suzuki, Kensuke; Iwai, Hiroshi

    2017-01-01

    Metastatic renal cell carcinoma (RCC) involving the temporal bone is a rare entity. It is usually asymptomatic and misdiagnosis as acute otitis media, mastoiditis, and Ramsay-Hunt syndrome in early onset is not uncommon. We report a case of RCC metastasis to the postoperative temporal bone in the middle of molecular targeted therapy. A 60-year-old man presented left facial palsy with severe retro-auricular pain and he also underwent left middle ear surgery for cholesteatoma more than 30 years before and had been aware of discontinuous otorrhea; therefore, initially we speculated that facial palsy was derived from recurrent cholesteatoma or Ramsay-Hunt syndrome. Exploratory tympanotomy revealed RCC metastasis and postoperative MR indicated hematogenous metastasis. To the best of our knowledge, no report was obtained on temporal bone metastasis in the middle of chemotherapy or hematogenous metastasis in the postoperative middle ear. Metastasis in the temporal bone is still a possible pathological condition despite the development of present cancer therapy. Besides, this case indicates that hematogenous metastasis can occur in the postoperative state of the temporal bone. PMID:28611633

  2. Treatment of Temporal Bone Fractures

    PubMed Central

    Diaz, Rodney C.; Cervenka, Brian; Brodie, Hilary A.

    2016-01-01

    Traumatic injury to the temporal bone can lead to significant morbidity or mortality and knowledge of the pertinent anatomy, pathophysiology of injury, and appropriate management strategies is critical for successful recovery and rehabilitation of such injured patients. Most temporal bone fractures are caused by motor vehicle accidents. Temporal bone fractures are best classified as either otic capsule sparing or otic capsule disrupting-type fractures, as such classification correlates well with risk of concomitant functional complications. The most common complications of temporal bone fractures are facial nerve injury, cerebrospinal fluid (CSF) leak, and hearing loss. Assessment of facial nerve function as soon as possible following injury greatly facilitates clinical decision making. Use of prophylactic antibiotics in the setting of CSF leak is controversial; however, following critical analysis and interpretation of the existing classic and contemporary literature, we believe its use is absolutely warranted. PMID:27648399

  3. Treatment of Temporal Bone Fractures.

    PubMed

    Diaz, Rodney C; Cervenka, Brian; Brodie, Hilary A

    2016-10-01

    Traumatic injury to the temporal bone can lead to significant morbidity or mortality and knowledge of the pertinent anatomy, pathophysiology of injury, and appropriate management strategies is critical for successful recovery and rehabilitation of such injured patients. Most temporal bone fractures are caused by motor vehicle accidents. Temporal bone fractures are best classified as either otic capsule sparing or otic capsule disrupting-type fractures, as such classification correlates well with risk of concomitant functional complications. The most common complications of temporal bone fractures are facial nerve injury, cerebrospinal fluid (CSF) leak, and hearing loss. Assessment of facial nerve function as soon as possible following injury greatly facilitates clinical decision making. Use of prophylactic antibiotics in the setting of CSF leak is controversial; however, following critical analysis and interpretation of the existing classic and contemporary literature, we believe its use is absolutely warranted.

  4. External ear canal exostosis and otitis media in temporal bones of prehistoric and historic chilean populations. A paleopathological and paleoepidemiological study.

    PubMed

    Castro, Mario; Goycoolea, Marcos; Silva-Pinto, Verónica

    2017-04-01

    External ear canal exostosis is more prevalent in northern coastal groups than in the highlands, suggesting that ocean activities facilitate the appearance of exostosis. However, southern coastal groups exposed to colder ocean water have a lesser incidence of exostosis, possibly due to less duration of exposure. There was a high incidence of otitis media in all groups of native population in Chile. One coastal group had a higher incidence, presumably due to racial factors. This is a paleopathological and paleoepidemiological study in temporal bones which assesses external ear canal exostosis and otitis media in prehistoric and historic native populations in Chile. A total of 460 temporal bones were evaluated for exostosis (ex) and 542 temporal bones were evaluated for otitis media (om). The study involved four groups: (1) Prehistoric Coastal (400-1000 AD) populations in Northern Chile (Pisagua-Tiwanaku) (22 temporal bones ex; 28 om); (2) Prehistoric Highland (400-1000 AD) populations in Northern Chile (292 temporal bones ex; 334 om); (3) Pisagua-Regional Developments (coastal) in Northern Chile (1000-1450 AD) (66 temporal bones ex; 82 om); and (4) Historic (1500-1800 AD) coastal populations in Southern Chile (80 temporal bones ex: 18 Chonos, 62 Fuegians. 98 om: 22 Chonos, 76 Fuegians). Skulls were evaluated visually and with an operating microscope. In addition, the otitis media group was evaluated with Temporal bone radiology - -lateral XRays-Schuller view - to assess pneumatization as evidence of previous middle ear disease. Prehistoric northern coastal groups had an incidence of exostosis of 15.91%, the northern highlands group 1.37%, and the southern coastal group 1.25%. There were changes suggestive of otitis media in: Pisagua/Tiwanaku 53.57%; Pisagua/Regional Developments 70.73%; Northern Highlands population 47.90%; Chonos 63.64%; and Fuegian tribes 64.47%.

  5. Gustatory otalgia and wet ear syndrome: a possible cross-innervation after ear surgery.

    PubMed

    Saito, H

    1999-04-01

    The chorda tympani and Arnold's nerves have close approximation to each other and their cross-innervation is possible after ear surgery. A retrospective study was performed with a temporal bone pathology case and two clinical cases as representatives of such a possibility. Patients had severe otalgia and wet ear during gustatory stimulation. A temporal bone pathology case was studied under a light microscope. Earache and/or wet ear were provoked during gustatory stimulation. Wet ear was tested with iodine-starch reaction after the subject tasted lemon juice. The temporal bone specimen has clusters of regenerated fibers in the tympanic cavity in the area of the chorda tympani and Arnold's nerves, suggesting a possibility of mixing. There are regenerated fibers in the iter chordae anterius, showing successful bridging of the chorda tympani nerves across a long gap. Detachment of the skin over the operated mastoid bowl obscured signs in one clinical case. Another clinical case of gustatory wet ear showed objective evidence of cross-innervation with iodine-starch reaction. The detachment procedure and iodine-starch reaction were the proofs that the signs were related to regenerated fibers. This is the first report of gustatory otalgia and wet ear after ear surgery.

  6. PubMed Central

    LINKE, R.; LEICHTLE, A.; SHEIKH, F.; SCHMIDT, C.; FRENZEL, H.; GRAEFE, H.; WOLLENBERG, B.; MEYER, J.E.

    2013-01-01

    SUMMARY Surgery on the temporal bone is technically challenging due to its complex anatomy. Precise anatomical dissection of the human temporal bone is essential and is fundamental for middle ear surgery. We assessed the possible application of a virtual reality temporal bone surgery simulator to the education of ear surgeons. Seventeen ENT physicians with different levels of surgical training and 20 medical students performed an antrotomy with a computer-based virtual temporal bone surgery simulator. The ease, accuracy and timing of the simulated temporal bone surgery were assessed using the automatic assessment software provided by the simulator device and additionally with a modified Final Product Analysis Scale. Trained ENT surgeons, physicians without temporal bone surgical training and medical students were all able to perform the antrotomy. However, the highly trained ENT surgeons were able to complete the surgery in approximately half the time, with better handling and accuracy as assessed by the significant reduction in injury to important middle ear structures. Trained ENT surgeons achieved significantly higher scores using both dissection analysis methods. Surprisingly, there were no significant differences in the results between medical students and physicians without experience in ear surgery. The virtual temporal bone training system can stratify users of known levels of experience. This system can be used not only to improve the surgical skills of trained ENT surgeons for more successful and injury-free surgeries, but also to train inexperienced physicians/medical students in developing their surgical skills for the ear. PMID:24043916

  7. Anatomic and Quantitative Temporal Bone CT for Preoperative Assessment of Branchio-Oto-Renal Syndrome.

    PubMed

    Ginat, D T; Ferro, L; Gluth, M B

    2016-12-01

    We describe the temporal bone computed tomography (CT) findings of an unusual case of branchio-oto-renal syndrome with ectopic ossicles that are partially located in the middle cranial fossa. We also describe quantitative temporal bone CT assessment pertaining to cochlear implantation in the setting of anomalous cochlear anatomy associated with this syndrome.

  8. Locating the scala media in the fixed human temporal bone for therapeutic access: a preliminary study.

    PubMed

    Pau, H; Fagan, P; Oleskevich, S

    2006-11-01

    To investigate the location of the scala media in relation to the round window niche in human temporal bones. Ten human temporal bones were investigated by radical mastoidectomy and promontory drill-out. Temporal bone laboratory. The distance from the scala media to the anterior edge of the round window niche, measured by Fisch's stapedectomy measuring cylinders. The scala media was identified at the transection point of a vertical line 1.6 to 2.2 mm (mean=1.8 mm; standard deviation=0.2) anterior to the anterior edge of the round window niche and a horizontal line 0.2 mm inferior to the lower border of the oval window. This report demonstrates the point of entry into the scala media via the promontory in fixed temporal bone models, which may provide a site of entry for stem cells and gene therapy insertion.

  9. [Multi-center study of the Jenaer model of the temporal bone].

    PubMed

    Schneider, G; Müller, A

    2004-06-01

    Preparing exercises at the temporal bone are a prerequisite for the knowledge of the anatomical special features of this region and for learning the fundamentals of the tympanic cavity surgery. Since however fewer human temporal bones are available, the search for back-up models already took place in the last years. Based on the experiences of the handling and visualization of CT data for the 3D-implant construction in the ent department Jena a temporal bone model was developed. The model was sent away to surgeons of different training. On the basis of identification of anatomical structures and evaluation of general parameters by means of a point system the model was evaluated. The Jenaer temporal bone model is suitable as entrance into the preparing exercises. The anatomical structures are good to identify for the beginner. The handling with drill and chisel can be learned.

  10. Facial paralysis caused by metastasis of breast carcinoma to the temporal bone.

    PubMed

    Lan, Ming-Ying; Shiao, An-Suey; Li, Wing-Yin

    2004-11-01

    Metastatic tumors to the temporal bone are very rare. The most common sites of origin of temporal bone metastases are breast, lung, kidney, gastrointestinal tract, larynx, prostate gland, and thyroid gland. The pathogenesis of spread to the temporal bone is most commonly by the hematogenous route. The common otologic symptoms that manifest with facial nerve paralysis are often thought to be due to a mastoid infection. Here is a report on a case of breast carcinoma presenting with otalgia, otorrhea, and facial paralysis for 2 months. The patient was initially diagnosed as mastoiditis, and later the clinical impression was revised to metastatic breast carcinoma to temporal bone, based on the pathologic findings. Metastatic disease should be considered as a possible etiology in patients with a clinical history of malignant neoplasms presenting with common otologic or vestibular symptoms, especially with facial nerve paralysis.

  11. Tendon entheses of the human masticatory muscles.

    PubMed

    Hems, T; Tillmann, B

    2000-09-01

    Tendons attach to the limb skeleton via chondral-apophysary or periosteal-diaphysary entheses. It was the aim of the present study to investigate the tendon entheses of the temporal, the masseter, as well as the medial and lateral pterygoid muscles, considering the biomechanics and the mode of osteogenesis at the attachment sites. The origin and insertion zones of the four masticatory muscles were studied histologically and by polarization light microscopy in six halves of human heads. Contrary to the limb skeleton no causal relationship between the histological structure of the tendon entheses and the osteogenic mode of the bone areas involved was observed in the masticatory muscles that were studied. Based on the histological findings, a purely structural classification of the tendon attachments irrespective of the osteogenesis is therefore proposed that is applicable to the entire skeleton. It is possible to distinguish between tendon entheses inserting into periosteum, into bone or into fibrocartilage. Tendon attachments with periosteal insertion are found at the temporal plane, the retromolar triangle, zygomatic arch, lateral pterygoid plate, in the caudal zone of the pterygoid fovea of the neck of mandible as well as major portions of the ramus and angle of the mandible. The attachment zones in which collagen fibrils of tendons insert into the bone via the periosteum correspond in their structure to plane periosteal-diaphysary insertions into the diaphyses of long bones. Attachment zones to the bone are present at the inferior temporal line, the base of the coronoid process, the caudal surface of the zygomatic arch, the cranial zones of the pterygoid fovea of the neck of the mandible as well as at circumscribed areas of the ramus and angle of the mandible. In these zones the collagen fibers of the tendon insert immediately into the bone without any mediation of other tissues. The entheses resemble those of circumscribed periosteal-diaphysary attachments to long bones. Fibrocartilaginous entheses occur at the coronoid process, the cranialmost portions of the pterygoid fovea of the neck of the mandible as well as in circumscribed areas of the medial and lateral facets of the angle of the mandible. The structures of these attachment sites are comparable to chondral-apophysary tendon attachments. As for masticatory muscles, the described forms of tendon entheses occur at the same time in the majority of the attachment sites. From the structure of the three types of tendon entheses it is possible to conclude that they fulfill a biomechanical function similar to that of the limb skeleton, namely adapting the different elasticity moduli of bone and tendon tissues. From a technical perspective they can be considered to act as an "angle and stretching brake".

  12. Evaluating the Effect of Virtual Reality Temporal Bone Simulation on Mastoidectomy Performance: A Meta-analysis.

    PubMed

    Lui, Justin T; Hoy, Monica Y

    2017-06-01

    Background The increasing prevalence of virtual reality simulation in temporal bone surgery warrants an investigation to assess training effectiveness. Objectives To determine if temporal bone simulator use improves mastoidectomy performance. Data Sources Ovid Medline, Embase, and PubMed databases were systematically searched per the PRISMA guidelines. Review Methods Inclusion criteria were peer-reviewed publications that utilized quantitative data of mastoidectomy performance following the use of a temporal bone simulator. The search was restricted to human studies published in English. Studies were excluded if they were in non-peer-reviewed format, were descriptive in nature, or failed to provide surgical performance outcomes. Meta-analysis calculations were then performed. Results A meta-analysis based on the random-effects model revealed an improvement in overall mastoidectomy performance following training on the temporal bone simulator. A standardized mean difference of 0.87 (95% CI, 0.38-1.35) was generated in the setting of a heterogeneous study population ( I 2 = 64.3%, P < .006). Conclusion In the context of a diverse population of virtual reality simulation temporal bone surgery studies, meta-analysis calculations demonstrate an improvement in trainee mastoidectomy performance with virtual simulation training.

  13. Anatomical study of the pigs temporal bone by microdissection.

    PubMed

    Garcia, Leandro de Borborema; Andrade, José Santos Cruz de; Testa, José Ricardo Gurgel

    2014-01-01

    Initial study of the pig`s temporal bone anatomy in order to enable a new experimental model in ear surgery. Dissection of five temporal bones of Sus scrofa pigs obtained from UNIFESP - Surgical Skills Laboratory, removed with hole saw to avoid any injury and stored in formaldehyde 10% for better conservation. The microdissection in all five temporal bone had the following steps: inspection of the outer part, external canal and tympanic membrane microscopy, mastoidectomy, removal of external ear canal and tympanic membrane, inspection of ossicular chain and middle ear. Anatomically it is located at the same position than in humans. Some landmarks usually found in humans are missing. The tympanic membrane of the pig showed to be very similar to the human, separating the external and the middle ear. The middle ear`s appearance is very similar than in humans. The ossicular chain is almost exactly the same, as well as the facial nerve, showing the same relationship with the lateral semicircular canal. The temporal bone of the pigs can be used as an alternative for training in ear surgery, especially due the facility to find it and its similarity with temporal bone of the humans.

  14. Supporting skill acquisition in cochlear implant surgery through virtual reality simulation.

    PubMed

    Copson, Bridget; Wijewickrema, Sudanthi; Zhou, Yun; Piromchai, Patorn; Briggs, Robert; Bailey, James; Kennedy, Gregor; O'Leary, Stephen

    2017-03-01

    To evaluate the effectiveness of a virtual reality (VR) temporal bone simulator in training cochlear implant surgery. We compared the performance of 12 otolaryngology registrars conducting simulated cochlear implant surgery before (pre-test) and after (post-tests) receiving training on a VR temporal bone surgery simulator with automated performance feedback. The post-test tasks were two temporal bones, one that was a mirror image of the temporal bone used as a pre-test and the other, a novel temporal bone. Participant performances were assessed by an otologist with a validated cochlear implant competency assessment tool. Structural damage was derived from an automatically generated simulator metric and compared between time points. Wilcoxon signed-rank test showed that there was a significant improvement with a large effect size in the total performance scores between the pre-test (PT) and both the first and second post-tests (PT1, PT2) (PT-PT1: P = 0.007, r = 0.78, PT-PT2: P = 0.005, r = 0.82). The results of the study indicate that VR simulation with automated guidance can effectively be used to train surgeons in training complex temporal bone surgeries such as cochlear implantation.

  15. Primary Ewing's Sarcoma of the Temporal Bone: A Rare Case Report and Literature Review.

    PubMed

    Gupta, Divya; Gulati, Achal; Purnima

    2017-09-01

    Ewing's sarcoma is a malignant, round cell tumor arising from the bones and primarily affecting children and adolescent, accounting for 3 % of all childhood malignancies. Although the long bones and the trunk are typically affected, rare cases of it involving isolated bones throughout the body have been reported. Involvement of the skull bones is rare, constituting 1-6 % of the total Ewing's sarcoma cases but those affecting the cranial bones are rarer still, constituting only 1 %. We describe an 8 months old infant having Ewing sarcoma, of the petrous and mastoid parts of temporal bone along with the occipital bone, whose clinical presentation mimicked mastoiditis with facial nerve palsy. We discuss the clinical and therapeutic course of an extensive primary Ewing sarcoma of the temporal bone, which was treated without performing surgery and review this entity's literature in detail.

  16. CT findings of the temporal bone in CHARGE syndrome: aspects of importance in cochlear implant surgery.

    PubMed

    Vesseur, A C; Verbist, B M; Westerlaan, H E; Kloostra, F J J; Admiraal, R J C; van Ravenswaaij-Arts, C M A; Free, R H; Mylanus, E A M

    2016-12-01

    To provide an overview of anomalies of the temporal bone in CHARGE syndrome relevant to cochlear implantation (CI), anatomical structures of the temporal bone and the respective genotypes were analysed. In this retrospective study, 42 CTs of the temporal bone of 42 patients with CHARGE syndrome were reviewed in consensus by two head-and-neck radiologists and two otological surgeons. Anatomical structures of the temporal bone were evaluated and correlated with genetic data. Abnormalities that might affect CI surgery were seen, such as a vascular structure, a petrosquamosal sinus (13 %), an underdeveloped mastoid (8 %) and an aberrant course of the facial nerve crossing the round window (9 %) and/or the promontory (18 %). The appearance of the inner ear varied widely: in 77 % of patients all semicircular canals were absent and the cochlea varied from normal to hypoplastic. A stenotic cochlear aperture was observed in 37 %. The middle ear was often affected with a stenotic round (14 %) or oval window (71 %). More anomalies were observed in patients with truncating mutations than with non-truncating mutations. Temporal bone findings in CHARGE syndrome vary widely. Vascular variants, aberrant route of the facial nerve, an underdeveloped mastoid, aplasia of the semicircular canals, and stenotic round window may complicate cochlear implantation.

  17. Progression of changes in the sensorial elements of the cochlear and peripheral vestibular systems: The otitis media continuum.

    PubMed

    Monsanto, Rafael da Costa; Schachern, Patricia; Paparella, Michael M; Cureoglu, Sebahattin; Penido, Norma de Oliveira

    2017-08-01

    Our study aimed to evaluate pathologic changes in the cochlear (inner and outer hair cells and stria vascularis) and vestibular (vestibular hair cells, dark, and transitional cells) sensorial elements in temporal bones from donors who had otitis media. We studied 40 temporal bones from such donors, which were categorized in serous otitis media (SOM), serous-purulent otitis media (SPOM), mucoid/mucoid-purulent otitis media (MOM/MPOM), and chronic otitis media (COM); control group comprised 10 nondiseased temporal bones. We found significant loss of inner and outer cochlear hair cells in the basal turn of the SPOM, MOM/MPOM and COM groups; significant loss of vestibular hair cells was observed in the MOM/MPOM and COM groups. All otitis media groups had smaller mean area of the stria vascularis in the basal turn of the cochlea when compared to controls. In conclusion, our study demonstrated more severe pathologic changes in the later stages of the continuum of otitis media (MOM/MPOM and COM). Those changes seem to progress from the basal turn of the cochlea (stria vascularis, then inner and outer hair cells) to the middle turn of the cochlea and to the saccule and utricle in the MOM/MPOM and COM stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Auditory properties in the parabelt regions of the superior temporal gyrus in the awake macaque monkey: an initial survey.

    PubMed

    Kajikawa, Yoshinao; Frey, Stephen; Ross, Deborah; Falchier, Arnaud; Hackett, Troy A; Schroeder, Charles E

    2015-03-11

    The superior temporal gyrus (STG) is on the inferior-lateral brain surface near the external ear. In macaques, 2/3 of the STG is occupied by an auditory cortical region, the "parabelt," which is part of a network of inferior temporal areas subserving communication and social cognition as well as object recognition and other functions. However, due to its location beneath the squamous temporal bone and temporalis muscle, the STG, like other inferior temporal regions, has been a challenging target for physiological studies in awake-behaving macaques. We designed a new procedure for implanting recording chambers to provide direct access to the STG, allowing us to evaluate neuronal properties and their topography across the full extent of the STG in awake-behaving macaques. Initial surveys of the STG have yielded several new findings. Unexpectedly, STG sites in monkeys that were listening passively responded to tones with magnitudes comparable to those of responses to 1/3 octave band-pass noise. Mapping results showed longer response latencies in more rostral sites and possible tonotopic patterns parallel to core and belt areas, suggesting the reversal of gradients between caudal and rostral parabelt areas. These results will help further exploration of parabelt areas. Copyright © 2015 the authors 0270-6474/15/354140-11$15.00/0.

  19. Intracochlear pressure measurements to study bone conduction transmission: State-of-the art and proof of concept of the experimental Procedure

    NASA Astrophysics Data System (ADS)

    Borgers, Charlotte; van Wieringen, Astrid; D'hondt, Christiane; Verhaert, Nicolas

    2018-05-01

    The cochlea is the main contributor in bone conduction perception. Measurements of differential pressure in the cochlea give a good estimation of the cochlear input provided by bone conduction stimulation. Recent studies have proven the feasibility of intracochlear pressure measurements in chinchillas and in human temporal bones to study bone conduction. However, similar measurements in fresh-frozen whole human cadaveric heads could give a more realistic representation of the five different transmission pathways of bone conduction to the cochlea compared to human temporal bones. The aim of our study is to develop and validate a framework for intracochlear pressure measurements to evaluate different aspects of bone conduction in whole human cadaveric heads. A proof of concept describing our experimental setup is provided together with the procedure. Additionally, we also present a method to fix the stapes footplate in order to simulate otosclerosis in human temporal bones. The effectiveness of this method is verified by some preliminary results.

  20. Middle cranial fossa approach to repair tegmen defects assisted by three-dimensionally printed temporal bone models.

    PubMed

    Ahmed, Sameer; VanKoevering, Kyle K; Kline, Stephanie; Green, Glenn E; Arts, H Alexander

    2017-10-01

    To explore the perioperative utility of three-dimensionally (3D)-printed temporal bone models of patients undergoing repair of lateral skull base defects and spontaneous cerebrospinal fluid leaks with the middle cranial fossa approach. Case series. 3D-printed temporal bone models-based on patient-specific, high-resolution computed tomographic imaging-were constructed using inexpensive polymer materials. Preoperatively, the models demonstrated the extent of temporal lobe retraction necessary to visualize the proposed defects in the lateral skull base. Also preoperatively, Silastic sheeting was arranged across the modeled tegmen, marked, and cut to cover all of the proposed defect sites. The Silastic sheeting was then sterilized and subsequently served as a precise intraoperative template for a synthetic dural replacement graft. Of note, these grafts were customized without needing to retract the temporal lobe. Five patients underwent the middle cranial fossa approach assisted by 3D-printed temporal bone models to repair tegmen defects and spontaneous cerebrospinal fluid leaks. No complications were encountered. The prefabricated dural repair grafts were easily placed and fit precisely onto the middle fossa floor without any additional modifications. All defects were covered as predicted by the 3D temporal bone models. At their postoperative visits, all five patients maintained resolution of their spontaneous cerebrospinal fluid leaks. Inexpensive 3D-printed temporal bone models of tegmen defects can serve as beneficial adjuncts during lateral skull base repair. The models provide a panoramic preoperative view of all tegmen defects and allow for custom templating of dural grafts without temporal lobe retraction. 4 Laryngoscope, 127:2347-2351, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Bone Density Development of the Temporal Bone Assessed by Computed Tomography.

    PubMed

    Takahashi, Kuniyuki; Morita, Yuka; Ohshima, Shinsuke; Izumi, Shuji; Kubota, Yamato; Horii, Arata

    2017-12-01

    The temporal bone shows regional differences in bone development. The spreading pattern of acute mastoiditis shows age-related differences. In infants, it spreads laterally and causes retroauricular swelling, whereas in older children, it tends to spread medially and causes intracranial complications. We hypothesized that bone maturation may influence the spreading pattern of acute mastoiditis. Eighty participants with normal hearing, aged 3 months to 42 years, participated in this study. Computed tomography (CT) values (Hounsfield unit [HU]) in various regions of the temporal bone, such as the otic capsule (OC), lateral surface of the mastoid cavity (LS), posterior cranial fossa (PCF), and middle cranial fossa (MCF), were measured as markers of bone density. Bone density development curves, wherein CT values were plotted against age, were created for each region. The age at which the CT value exceeded 1000 HU, which is used as an indicator of bone maturation, was calculated from the development curves and compared between the regions. The OC showed mature bone at birth, whereas the LS, PCF, and MCF showed rapid maturation in early childhood. However, there were significant regional differences in the ages of maturation: 1.7, 3.9, and 10.8 years for the LS, PCF, and MCF, respectively. To our knowledge, this is the first report to show regional differences in the maturation of temporal bone, which could partly account for the differences in the spreading pattern of acute mastoiditis in individuals of different ages.

  2. Direct radiocarbon dating and DNA analysis of the Darra-i-Kur (Afghanistan) human temporal bone.

    PubMed

    Douka, Katerina; Slon, Viviane; Stringer, Chris; Potts, Richard; Hübner, Alexander; Meyer, Matthias; Spoor, Fred; Pääbo, Svante; Higham, Tom

    2017-06-01

    The temporal bone discovered in the 1960s from the Darra-i-Kur cave in Afghanistan is often cited as one of the very few Pleistocene human fossils from Central Asia. Here we report the first direct radiocarbon date for the specimen and the genetic analyses of DNA extracted and sequenced from two areas of the bone. The new radiocarbon determination places the find to ∼4500 cal BP (∼2500 BCE) contradicting an assumed Palaeolithic age of ∼30,000 years, as originally suggested. The DNA retrieved from the specimen originates from a male individual who carried mitochondrial DNA of the modern human type. The petrous part yielded more endogenous ancient DNA molecules than the squamous part of the same bone. Molecular dating of the Darra-i-Kur mitochondrial DNA sequence corroborates the radiocarbon date and suggests that the specimen is younger than previously thought. Taken together, the results consolidate the fact that the human bone is not associated with the Pleistocene-age deposits of Darra-i-Kur; instead it is intrusive, possibly re-deposited from upper levels dating to much later periods (Neolithic). Despite its Holocene age, the Darra-i-Kur specimen is, so far, the first and only ancient human from Afghanistan whose DNA has been sequenced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Finite element modeling of sound transmission with perforations of tympanic membrane

    PubMed Central

    Gan, Rong Z.; Cheng, Tao; Dai, Chenkai; Yang, Fan; Wood, Mark W.

    2009-01-01

    A three-dimensional finite element (FE) model of human ear with structures of the external ear canal, middle ear, and cochlea has been developed recently. In this paper, the FE model was used to predict the effect of tympanic membrane (TM) perforations on sound transmission through the middle ear. Two perforations were made in the posterior-inferior quadrant and inferior site of the TM in the model with areas of 1.33 and 0.82 mm2, respectively. These perforations were also created in human temporal bones with the same size and location. The vibrations of the TM (umbo) and stapes footplate were calculated from the model and measured from the temporal bones using laser Doppler vibrometers. The sound pressure in the middle ear cavity was derived from the model and measured from the bones. The results demonstrate that the TM perforations can be simulated in the FE model with geometrical visualization. The FE model provides reasonable predictions on effects of perforation size and location on middle ear transfer function. The middle ear structure-function relationship can be revealed with multi-field coupled FE analysis. PMID:19603881

  4. The Transplantation of hBM-MSCs Increases Bone Neo-Formation and Preserves Hearing Function in the Treatment of Temporal Bone Defects - on the Experience of Two Month Follow Up.

    PubMed

    Školoudík, Lukáš; Chrobok, Viktor; Kočí, Zuzana; Popelář, Jiří; Syka, Josef; Laco, Jan; Filipová, Alžběta; Syková, Eva; Filip, Stanislav

    2018-06-03

    Temporal bone reconstruction is a persisting problem following middle ear cholesteatoma surgery. Seeking to advance the clinical transfer of stem cell therapy we attempted the reconstruction of temporal bone using a composite bioartificial graft based on a hydroxyapatite bone scaffold combined with human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). The aim of this study was to evaluate the effect of the combined biomaterial on the healing of postoperative temporal bone defects and the preservation of physiological hearing functions in a guinea pig model. The treatment's effect could be observed at 1 and 2 months after implantation of the biomaterial, as opposed to the control group. The clinical evaluation of our results included animal survival, clinical signs of an inflammatory response, and exploration of the tympanic bulla. Osteogenesis, angiogenesis, and inflammation were evaluated by histopathological analyses, whereas hBM-MSCs survival was evaluated by immunofluorescence assays. Hearing capacity was evaluated by objective audiometric methods, i.e. auditory brainstem responses and otoacoustic emission. Our study shows that hBM-MSCs, in combination with hydroxyapatite scaffolds, improves the repair of bone defects providing a safe and effective alternative in their treatment following middle ear surgery due to cholesteatoma.

  5. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.

    PubMed

    Montufar, E B; Casas-Luna, M; Horynová, M; Tkachenko, S; Fohlerová, Z; Diaz-de-la-Torre, S; Dvořák, K; Čelko, L; Kaiser, J

    2018-04-01

    In this work alpha tricalcium phosphate (α-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 μm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of α-TCP areas rather than β-TCP areas, suggesting that α-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures. Biodegradable alpha-tricalcium phosphate/iron (α-TCP/Fe) composites are promising candidates for the fabrication of temporal osteosynthesis devices. Similar to biodegradable metals, these composites can avoid implant removal after bone fracture healing, particularly in young patients. In this work, α-TCP/Fe composites are studied for the first time in a wide range of compositions, showing not only higher degradation rate in vitro than pure components, but also good cytocompatibility and mechanical properties controllable with the Fe content. Ceramic matrix composites show high specific strength and low elastic modulus, thus better fulfilling the requirements for bone fractures fixation. A significant advance over previous works on the topic is the use of pulsed electric current assisted sintering together with α-TCP, convenient to improve the mechanical performance and degradation rate, respectively. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Intraoperative cone-beam computed tomography and multi-slice computed tomography in temporal bone imaging for surgical treatment.

    PubMed

    Erovic, Boban M; Chan, Harley H L; Daly, Michael J; Pothier, David D; Yu, Eugene; Coulson, Chris; Lai, Philip; Irish, Jonathan C

    2014-01-01

    Conventional computed tomography (CT) imaging is the standard imaging technique for temporal bone diseases, whereas cone-beam CT (CBCT) imaging is a very fast imaging tool with a significant less radiation dose compared with conventional CT. We hypothesize that a system for intraoperative cone-beam CT provides comparable image quality to diagnostic CT for identifying temporal bone anatomical landmarks in cadaveric specimens. Cross-sectional study. University tertiary care facility. Twenty cadaveric temporal bones were affixed into a head phantom and scanned with both a prototype cone-beam CT C-arm and multislice helical CT. Imaging performance was evaluated by 3 otologic surgeons and 1 head and neck radiologist. Participants were presented images in a randomized order and completed landmark identification questionnaires covering 21 structures. CBCT and multislice CT have comparable performance in identifying temporal structures. Three otologic surgeons indicated that CBCT provided statistically equivalent performance for 19 of 21 landmarks, with CBCT superior to CT for the chorda tympani and inferior for the crura of the stapes. Subgroup analysis showed that CBCT performed superiorly for temporal bone structures compared with CT. The radiologist rated CBCT and CT as statistically equivalent for 18 of 21 landmarks, with CT superior to CBCT for the crura of stapes, chorda tympani, and sigmoid sinus. CBCT provides comparable image quality to conventional CT for temporal bone anatomical sites in cadaveric specimens. Clinical applications of low-dose CBCT imaging in surgical planning, intraoperative guidance, and postoperative assessment are promising but require further investigation.

  7. The temporal bones from Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain). A phylogenetic approach.

    PubMed

    Martínez, I; Arsuaga, J L

    1997-01-01

    Three well-preserved crania and 22 temporal bones were recovered from the Sima de los Huesos Middle Pleistocene site up to and including the 1994 field season. This is the largest sample of hominid temporal bones known from a single Middle Pleistocene site and it offers the chance to characterize the temporal bone morphology of an European Middle Pleistocene population and to study the phylogenetic relationships of the SH sample with other Upper and Middle Pleistocene hominids. We have carried out a cladistic analysis based on nine traits commonly used in phylogenetic analysis of Middle and Late Pleistocene hominids: shape of the temporal squama superior border, articular eminence morphology, contribution of the sphenoid bone to the median glenoid wall, postglenoid process projection, tympanic plate orientation, presence of the styloid process, mastoid process projection, digastric groove morphology and anterior mastoid tubercle. We have found two autapomorphies on the Home erectus temporal bone: strong reduction of the postglenoid process and absence of the styloid process. Modern humans, Neandertals and the Middle Pleistocene fossils from Europe and Africa constitute a clade characterized by a convex superior border of the temporal squama. The European Middle Pleistocene fossils from Sima de los Huesos, Petralona, Steinheim, Bilzingsleben and Castel di Guido share a Neandertal apomorphy: a relatively flat articular eminence. The fossils from Ehringsdorf, La Chaise Suardi and Biache-Saint-Vaast also display another Neandertal derived trait: an anteriorly obliterated digastric groove. Modern humans and the African Middle Pleistocene fossils share a synapomorphy: a sagittally orientated tympanic plate.

  8. The Pitfalls and Important Distances in Temporal Bone HRCT of the Subjects with High Jugular Bulbs - Preliminary Report.

    PubMed

    Inal, Mikail; Muluk, Nuray B; Dağ, Ersel; Arıkan, Osman K; Kara, Simay A

    2015-01-01

    High jugular bulb (HJB) may be detected unilaterally or bilaterally in temporal bone high resolution computerized tomography (HRCT). In this retrospective study, we investigated the pitfalls and important surgical distances in patients with unilateral and bilateral HJB via temporal bone HRCT. In this preliminary report, the study group consisted of 20 adult patients (12 male, 8 female), or 40 ears, all of which underwent temporal bone HRCT. We divided them into groups that consisted of bilateral HJB (14 ears), unilateral HJB (13 ears), and control (No HJB, 13 ears). The anotomical relationships of the sigmoid sinus, jugular bulb, and carotid artery with several landmarks in the temporal bone were studied via temporal bone axial and coronal HRCT. The shortest distances between certain points were measured. These measurements were analyzed in respect to pneumatization. Dehiscence on the jugular bulb (JB) and internal carotid artery (ICA) and the dominance of JB were also evaluated for all of the groups. In the axial sections of the temporal bone HRCTs, the sigmois sinus (SS)-external auditory canal (EAC) distance of the bilateral HJB group (14.00±1.17 mm) was significantly lower than that of the control group (16.46±2.14 mm). The JB-posteromedial points of the umbo on the ear drum (ED) distance of the bilateral HJB (6.28±1.72 mm) and the unilateral HJB groups (7.23±2.00 mm) were significantly lower than that of the control group (11.15±2.30 mm). In the coronal sections of the temporal bone HRCT, the JB-F distance of the bilateral HJB group (5.42±2.10 mm) was significantly lower than that of the control group (8.30±2.28 mm). As the mastoid pneumatisation and mastoid volume increased, the percentage of ICA-dehiscence and the percentage of JB-dehiscence increased. In subjects with well-pneumatised mastoids, the doctors should be aware of the increased risk of ICA-dehiscence and JB-dehiscence. These measurements should be done in greater series to yield more thorough knowledge.

  9. Clinical features and radiological evaluation of otic capsule sparing temporal bone fractures.

    PubMed

    Song, S W; Jun, B C; Kim, H

    2017-03-01

    To evaluate the clinical and radiological aspects of otic capsule sparing temporal bone fractures. Using medical records, 188 temporal bones of 173 patients with otic capsule sparing temporal bone fractures were evaluated. Otoscopic findings and symptoms, facial paralysis, and hearing loss were assessed. Using regional analysis, 7 fractures were classified as type I, 85 as type II, 169 as type III and 114 as type IV. Fourteen of the 17 facial paralysis cases improved to House-Brackmann grade II or lower at an average of 57.6 days after the initial evaluation. Thirty-one patients underwent initial and follow-up pure tone audiometry examinations. The air-bone gap closed significantly from 27.2 dB at an average of 21.8 days post-trauma to 19.6 dB at an average of 79.9 days post-trauma, without the need for surgical intervention. Initial conservative treatment for facial paralysis or conductive hearing loss is possible in otic capsule sparing fracture cases after careful evaluation of the patient.

  10. Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training.

    PubMed

    Fang, Te-Yung; Wang, Pa-Chun; Liu, Chih-Hsien; Su, Mu-Chun; Yeh, Shih-Ching

    2014-02-01

    Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students. Copyright © 2013. Published by Elsevier Ireland Ltd.

  11. Pediatric temporal bone fractures: A case series.

    PubMed

    Waissbluth, S; Ywakim, R; Al Qassabi, B; Torabi, B; Carpineta, L; Manoukian, J; Nguyen, L H P

    2016-05-01

    Temporal bone fractures are relatively common findings in patients with head trauma. The aim of this study was to evaluate the characteristics of temporal bone fractures in the pediatric population. Retrospective case series. Tertiary care pediatric academic medical center. The medical records of patients aged 18 years or less diagnosed with a temporal bone fracture at the Montreal Children's Hospital from January 2000 to August 2014 were reviewed. Patient demographics, clinical presentation, mechanism of injury and complications were analyzed. Imaging studies and audiograms were also evaluated. Out of 323 patients presenting to the emergency department with a skull fracture, 61 presented with a temporal bone fracture. Of these, 5 presented with bilateral fractures. 47 patients had associated fractures, and 3 patients deceased. We observed a male to female ratio of 2.8:1, and the average age was 9.5 years. Motor vehicle accidents were the primary mechanism of injury (53%), followed by falls (21%) and bicycle or skateboard accidents (10%). The most common presenting signs included hemotympanum, decreased or loss of consciousness, facial swelling and nausea and vomiting. 8 patients had otic involvement on computed tomography scans, and 30 patients had documented hearing loss near the time of accident with a majority being conductive hearing loss. 17 patients underwent surgical management of intracranial pressure. In children, fractures of the temporal bone were most often caused by motor vehicle accidents and falls. It is common for these patients to have associated fractures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Transparent model of temporal bone and vestibulocochlear organ made by 3D printing.

    PubMed

    Suzuki, Ryoji; Taniguchi, Naoto; Uchida, Fujio; Ishizawa, Akimitsu; Kanatsu, Yoshinori; Zhou, Ming; Funakoshi, Kodai; Akashi, Hideo; Abe, Hiroshi

    2018-01-01

    The vestibulocochlear organ is composed of tiny complex structures embedded in the petrous part of the temporal bone. Landmarks on the temporal bone surface provide the only orientation guide for dissection, but these need to be removed during the course of dissection, making it difficult to grasp the underlying three-dimensional structures, especially for beginners during gross anatomy classes. We report herein an attempt to produce a transparent three-dimensional-printed model of the human ear. En bloc samples of the temporal bone from donated cadavers were subjected to computed tomography (CT) scanning, and on the basis of the data, the surface temporal bone was reconstructed with transparent resin and the vestibulocochlear organ with white resin to create a 1:1.5 scale model. The carotid canal was stuffed with red cotton, and the sigmoid sinus and internal jugular vein were filled with blue clay. In the inner ear, the internal acoustic meatus, cochlea, and semicircular canals were well reconstructed in detail with white resin. The three-dimensional relationships of the semicircular canals, spiral turns of the cochlea, and internal acoustic meatus were well recognizable from every direction through the transparent surface resin. The anterior semicircular canal was obvious immediately beneath the arcuate eminence, and the topographical relationships of the vestibulocochlear organ and adjacent great vessels were easily discernible. We consider that this transparent temporal bone model will be a very useful aid for better understanding of the gross anatomy of the vestibulocochlear organ.

  13. Temporal bone changes in patients with Goldenhar syndrome with special emphasis on inner ear abnormalities.

    PubMed

    Hennersdorf, Florian; Friese, Natascha; Löwenheim, Hubert; Tropitzsch, Anke; Ernemann, Ulrike; Bisdas, Sotirios

    2014-06-01

    Goldenhar syndrome is a developmental disorder presenting with orofacial and vertebral anomalies, which are also accompanied by abnormalities in other organs. We examined temporal bone changes with special emphasis on inner ear abnormalities in these patients. A retrospective review of 7 new cases in addition to a previously published series of 14 cases with clinically diagnosed Goldenhar syndrome was carried out to search for inner ear anomalies. In addition, temporal bone imaging studies from the literature were summarized and compared with our results. Departments of Neuroradiology and Otorhinolaryngology at a university hospital. In addition to the previous series of 14 patients, 7 new patients with Goldenhar syndrome were identified. Patients underwent otologic examination, audiometric studies, and high-resolution computed tomography (CT) or magnetic resonance imaging (MRI) of the temporal bone. Temporal bone changes and specifically inner ear malformations. Nineteen of 21 patients showed changes of the external and middle ear correlating with the literature. Seven of 21 patients showed inner ear abnormalities constituting one-third of all patients. These ranged from mild such as vestibular enlargement to severe defects such as cochlear hypoplasia and common cavity. Inner ear abnormalities were present in one-third of patients. Although in some cases, these might not be of clinical significance, some patients show severe defects of the inner ear requiring more complex hearing loss therapy. Therefore, imaging of the temporal bone structures is important in the care of these patients.

  14. Increased frequency of temporal acoustic window failure in rheumatoid arthritis: a manifestation of altered bone metabolism?

    PubMed

    Kardos, Zsófia; Oláh, Csaba; Sepsi, Mariann; Sas, Attila; Kostyál, László; Bóta, Tünde; Bhattoa, Harjit Pal; Hodosi, Katalin; Kerekes, György; Tamási, László; Bereczki, Dániel; Szekanecz, Zoltán

    2018-05-01

    Assessment of intracranial vessels includes transcranial Doppler (TCD). TCD performance requires intact temporal acoustic windows (TAW). Failure of TAW (TAWF) is present in 8-20% of people. There have been no reports on TAWF in rheumatoid arthritis (RA). Altogether, 62 female RA patients were included. Among them, 20 were MTX-treated and biologic-free, 20 received infliximab, and 22 tocilizumab. The controls included 60 non-RA women. TAWF, temporal bone thickness, and texture were determined by ultrasound and CT. BMD and T-scores of multiple bones were determined by DEXA. Several bone biomarkers were assessed by ELISA. In RA, 54.8% of the patients had TAWF on at least one side. Neither TAW could be identified in 34% of RA subjects. In contrast, only 20.0% of control subjects had TAWF on either or both sides (p < 0.001). In RA vs controls, 53.0 vs 2.9% of subjects exerted the trilayer, "sandwich-like" structure of TAW (p < 0.001). Finally, in RA vs controls, the mean temporal bone thickness values of the right TAW were 3.58 ± 1.43 vs 2.92 ± 1.22 mm (p = NS), while those of the left TAW were 4.16 ± 1.56 vs 2.90 ± 1.16 mm (p = 0.001). There was close association between TAWF, bone thickness, and texture (p < 0.05). These TAW parameters all correlated with age; however, TAW failure and texture also correlated with serum osteoprotegerin. TAW bone thickness inversely correlated with hip BMD (p < 0.05). TAWF, thicker, and heterogeneous temporal bones were associated with RA. These features have been associated with bone loss and OPG production. Bone loss seen in RA may result in OPG release and stimulation of bone formation around TAW.

  15. Anatomical variants of tympanic compartments and their aeration pathways involved in the pathogenesis of middle ear inflammatory disease

    PubMed Central

    MANIU, ALMA; CATANA, IULIU V.; HARABAGIU, OANA; PETRI, MARIA; COSGAREA, MARCEL

    2013-01-01

    Aim The aim of this article is to review the anatomy of middle ear compartments and folds and to demonstrate through anatomical evidence their presence at birth. Additionally, their role in the obstructions of middle ear ventilatory pathway is highlighted. Methods Ninety-eight adult temporal bones, with no history of auricular disease and fifteen newborn temporal bones were studied by micro dissection. Documentation was done by color photography using the operation microscope Results Our micro-dissections have showed that mucosal folds from the middle ear are steadily present since birth, given that they were found in all newborn temporal bones. The mucosal folds in our normal adult material, showed some variations including membrane defects but they were constantly present. Our micro dissections showed that the epitympanic diaphragm consisted, in addition to malleal ligamental folds and ossicles, of only two constantly present folds: the tensor tympani fold and the incudomalleal fold. When the tensor fold is complete the only ventilation pathway to the anterior epitympanic space is through the isthmus, whereas its absence creates an efficient additional aeration route from the Eustachian tube to the epitympanum. Conclusions The goal of surgery in the chronic pathology of the middle ear should be restoration of normal ventilation of the attical-mastoid area. This is possible by removing the tensor fold and restoring the functionality of the isthmus tympani. PMID:26527977

  16. Evidence against the mucosal traction theory in cholesteatoma.

    PubMed

    Pauna, Henrique F; Monsanto, Rafael C; Schachern, Patricia; Paparella, Michael M; Chole, Richard A; Cureoglu, Sebahattin

    2017-10-08

    To investigate the distribution of ciliated epithelium in the human middle ear and its potential role in the formation of cholesteatoma. Comparative human temporal bone study. We selected temporal bones from 14 donors with a diagnosis of cholesteatoma, 15 with chronic otitis media without retraction pockets, 14 with chronic otitis media with retraction pockets, 14 with cystic fibrosis (CF), and 16 controls. We mapped the distribution of the ciliated cells in the mucosal lining of the middle ear and tympanic membrane using three-dimensional reconstruction analysis, and counted the number of ciliated cells in the middle ear mucosa. Ciliated cells are extremely sparse in the epithelial lining of the lateral surface of the ossicles in the epitympanum and the medial surface of the tympanic membrane. Furthermore, there is a significant decrease in the number of ciliated cells in these areas in temporal bones with cholesteatoma, chronic otitis media, chronic otitis media with retraction pockets, and CF compared to controls. Ciliated cells most commonly are located at the hypotympanum and the Eustachian tube opening but not the tympanic membrane or epitympanum. The paucity of ciliated epithelial cells on the medial side of the tympanic membrane and the lateral surface of the ossicles in the epitympanum in cases with cholesteatoma and/or chronic otitis media do not support the mucosal migration theory of cholesteatoma formation. NA. Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  17. A randomized, blinded study of canal wall up versus canal wall down mastoidectomy determining the differences in viewing middle ear anatomy and pathology.

    PubMed

    Hulka, G F; McElveen, J T

    1998-09-01

    Canal wall down and intact canal wall tympanomastoidectomy represent two surgical approaches to middle ear pathology. The authors hypothesize that there is a difference in the ability to view structures in the middle ear between these two methods. Depending on the individual, many surgeons have used the two different techniques of intact canal wall and canal wall down tympanomastoidectomy for approaching the middle ear. However, opinions conflict as to which approach provides the best visualization of different locations in the middle ear. This study prospectively evaluated temporal bones to determine the differences in visualizing structures of the middle ear using these two approaches. Twelve temporal bones underwent a standardized canal wall down tympanomastoidectomy using a reversible canal wall down technique. All bones were viewed in two dissections: intact canal wall and canal wall down preparations. Four points previously had been marked on each temporal bone in randomly assigned colors. These points include the sinus tympani, posterior crus of stapes, lateral epitympanum, and the Eustachian tube orifice. An observer blinded to the purpose of the study, color, and number of locations recorded the color and location of marks observed within the temporal bones. Randomized bones of two separate settings were viewed such that each bone was viewed in both the canal wall down and the intact canal wall preparations. A significant difference was noted in the ability to observe middle ear pathology between the intact canal wall versus canal wall down tympanomastoidectomy, with the latter showing superiority (p < 0.001). Of the four subsites, the sinus tympani, posterior crus of stapes, and lateral epitympanum were observed more frequently with the canal wall down. There was no significant difference in the ability to observe the Eustachian tube orifice between the two techniques. Statistical analysis shows good reproducibility and randomization of this study. The canal wall down tympanomastoidectomy allowed for superior viewing of the three locations, sinus tympanic, posterior crus of stapes, and lateral at the tympanum, as they were marked in the study. This study shows the potential for improved visualization via the canal wall down tympanomastoidectomy. A significant amount of literature written by individuals and otology group practices is available retrospectively comparing the advantages and disadvantages of intact canal wall versus canal wall down mastoidectomy procedures for approaching middle ear pathology. In the interest of objectively evaluating the differences between these two approaches, we have studied temporal bones in a prospective randomized, blinded study comparing the two. Twelve bones were used and observed twice, once in each of 2 sessions. All bones were viewed in two dissections: intact canal wall and canal wall down mastoidectomy. Four points were marked on each temporal bone in three different colors applied in a randomized order to eliminate observer expectation. The four points marked include sinus tympani, posterior crus of the stapes footplate, lateral epitympanum, and Eustachian tube orifice. Both intact canal wall and canal wall down bones were provided randomly to the observer at each viewing session. Before the observer was allowed to see the dissections, those requiring replacement of the canal for the first session of the study had this done in a method using native posterior bony canal. Temporal bones were presented to an expert otologist in a randomized fashion with each temporal bone being placed in a temporal bone bowl holder and specialized framework, allowing for rotation and repositioning approximating the experience in an operating room setting. For each temporal bone, the observer filled in a questionnaire describing his or her observations by denoting both location and color of marks observed. (ABSTRACT TRUNCATED)

  18. Bone characteristics of late-term embryonic and hatchling broilers: bone development under extreme growth rate.

    PubMed

    Yair, R; Uni, Z; Shahar, R

    2012-10-01

    The development of broilers is an extreme example of rapid growth, increasing in weight from 40 g at hatch to 2,000 g 5 to 6 wk later. Such rapid growth requires a correspondingly fast development of the skeleton. Bone development is a genetically programmed process that is modified by epigenetic factors, mainly muscle-induced stresses and strains. In this study, we describe the temporal changes in bone morphology and material properties during the prehatch period [embryonic day (E) 14, E17, E19, E21] and posthatch d 3 and 7. The bones were examined for their weight, length, ash content, mechanical properties, and cortical structure. We show that the cross-sectional shape of the tibia and femur changes during the examination period from circular to elliptical. Additionally, the changes in bone properties are time-dependent and nonuniform: from E14 to E17 and from d 3 to 7, fast bone growth was noted, with major increases in both mechanical properties (stiffness, ultimate load, and energy to fracture) and geometric properties (cross-sectional area and thickness, medullary area, and moment of inertia). On the other hand, during the last days of incubation, most mechanical and geometric properties remain unchanged or even decrease. The reasons for this finding may relate to the hatching process but also to mineral shortage during the last days of incubation. This study leads to better understanding of bone development in ovo and posthatch in fast-growing broilers.

  19. The viability of cryopreserved onlay cranial bone allografts: a comparative experimental study versus fresh autografts.

    PubMed

    Sanz, J; Elejabeitia, J; Bazán, A; García-Tutor, E; Paloma, V

    1996-04-01

    It is well known that calvarial bone autografts are the bone grafts that are the least reabsorbent and have the best long-term evolution in craniofacial surgery. However, they do have certain limitations: (1) reabsorption results in repeated surgery and the need for new donor areas, (2) a limited amount of autogenous cranial bone is available (due to avoiding areas close to cranial sutures and venous sinuses, and because the temporal bone is very fragile and the cranium has not fully developed in children), and (3) graft extraction increases surgical time and morbidity. Because of this, we present an alternative to calvarial bone autografts: cryopreserved allografts. This paper is an experimental prospective study carried out on sheep with the following goals: (1) to assess the behavior of calvarial onlay bone grafts cryopreserved at -80 degrees C, using fresh autografts implanted under the same conditions as controls; (2) to compare reabsorption percentages statistically over time; and (3) to study qualitatively any histological variations. The results obtained are (1) more reabsorption of allografts when compared to autografts (at 90 days, 21.97% versus 20.21% of grafted volume), although this difference is not statistically significant; (2) a reduction in height in all onlay grafts as a consequence of the loss of the diplöe; (3) the absence of any type of inflammation caused by a reaction to cryopreserved allografts; and (4) bone substitution performed using frozen allografts is histologically similar to that using fresh autografts.

  20. Cerebrospinal otorrhoea--a temporal bone report.

    PubMed

    Walby, A P

    1988-05-01

    Spontaneous cerebrospinal otorrhoea is a rare complication of a cholesteatoma. The histological findings in a temporal bone from such a case are reported. The cholesteatoma had eroded deeply through the vestibule into the internal auditory meatus.

  1. Hearing and Mortality Outcomes following Temporal Bone Fractures.

    PubMed

    Honeybrook, Adam; Patki, Aniruddha; Chapurin, Nikita; Woodard, Charles

    2017-12-01

    The aim of this article is to determine hearing and mortality outcomes following temporal bone fractures. Retrospective chart review was performed of 152 patients diagnosed with a temporal bone fracture presenting to the emergency room at a tertiary care referral center over a 10-year period. Utilizing Patients' previously obtained temporal bone computed tomographic scans and audiograms, fractures were classified based on several classification schemes. Correlations between fracture patterns, mortality, and hearing outcomes were analyzed using χ 2 tests. Ossicular chain disruption was seen in 11.8% of patients, and otic capsule violation was seen in 5.9%; 22.7% of patients presented for audiologic follow-up. Seventeen patients with conductive hearing loss had air-bone gaps of 26 ± 7.5 dB (500 Hz), 27 ± 6.8 dB (1,000 Hz), 18 ± 6.2 dB (2,000 Hz), and 32 ± 7.7 dB (4,000 Hz). Two cases of profound sensorineural hearing loss were associated with otic capsule violation. No fracture classification scheme was predictive of hearing loss, although longitudinal fractures were statistically associated with ossicular chain disruption ( p  < 0.01). Temporal bone fractures in patients older than 60 years carried a relative risk of death of 3.15 compared with those younger than 60 years. The average magnitude of conductive hearing loss resulting from temporal bone fracture ranged from 18 to 32 dB in this cohort. Classification of fracture type was not predictive of hearing loss, despite the statistical association between ossicular chain disruption and longitudinal fractures. This finding may be due to the low follow-up rates of this patient population. Physicians should make a concerted effort to ensure that audiological monitoring is executed to prevent and manage long-term hearing impairment.

  2. Facial nerve palsy associated with a cystic lesion of the temporal bone.

    PubMed

    Kim, Na Hyun; Shin, Seung-Ho

    2014-03-01

    Facial nerve palsy results in the loss of facial expression and is most commonly caused by a benign, self-limiting inflammatory condition known as Bell palsy. However, there are other conditions that may cause facial paralysis, such as neoplastic conditions of the facial nerve, traumatic nerve injury, and temporal bone lesions. We present a case of facial nerve palsy concurrent with a benign cystic lesion of the temporal bone, adjacent to the tympanic segment of the facial nerve. The patient's symptoms subsided after facial nerve decompression via a transmastoid approach.

  3. Cost effective use of audiograms after pediatric temporal bone fractures.

    PubMed

    Frisenda, Julia L; Schroeder, James W; Ryan, Maura E; Valika, Taher S; Billings, Kathleen R

    2015-11-01

    To identify the relationship of pediatric temporal fractures to the incidence and type of hearing loss present. To analyze the timing and utility of audiometric testing in children with temporal bone fractures. Retrospective case series of 50 pediatric patients with temporal bone fractures who were treated at an urban, tertiary care children's hospital from 2008 to 2014. A statistical analysis of predictors of hearing loss after temporal bone fracture was performed. Fifty-three fractures (69.7%) in 50 patients involved the petrous portion of the temporal bone. The mean age of patients was 7.13 years, and 39 (73.6%) were male. A fall was the most common mechanism of injury in 28 (52.8%) patients, followed by crush injury (n=14, 26.2%), and vehicular trauma (n=10, 18.9%). All otic capsule violating fractures were associated with a sensorineural hearing loss (n=4, 7.5%, p=0.002). Three of four otic capsule sparing fractures were associated with ossicular dislocation, with a corresponding mixed or conductive hearing loss on follow up audiometric testing. The majority of otic capsule sparing fracture patients (n=19/43, 44.2%) who had follow up audiograms had normal hearing, and those with otic capsule violating fractures were statistically more likely to have persistent hearing loss than those with otic capsule sparing fractures (p=0.01). Patients with otic capsule violating fractures or those with ossicular disruption are at higher risk for persistent hearing loss. Cost-saving may be accrued by selecting only those patients at high risk for persistent hearing loss for audiometric testing after temporal bone fractures. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. An Evaluation of the Surgical Trauma to Intracochlear Structures After Insertion of Cochlear Implant Electrode Arrays: A Comparison by Round Window and Antero-Inferior Cochleostomy Techniques.

    PubMed

    Sikka, Kapil; Kairo, Arvind; Singh, Chirom Amit; Roy, T S; Lalwani, Sanjeev; Kumar, Rakesh; Thakar, Alok; Sharma, Suresh C

    2017-09-01

    To evaluate the extent of intracochlear damage by histologic assessment of cadaveric temporal bones after insertion of cochlear implants by: round window approach and cochleostomy approach. Cochlear implantation was performed by transmastoid facial recess approach in 10 human cadaveric temporal bones. In 5 temporal bones, electrode insertion was acheieved by round window approach and in the remaining 5 bones, by cochleostomy approach. The bones were fixed, decalcified, sectioned and studied histologically. Grading of insertion trauma was assessed. In the round window insertion group, 2 bones had to be excluded from the study: one was damaged during handling with electrode extrusion and another bone did not show any demonstrable identifiable cochlear structure. Out of the 3 temporal bones, a total of 35 sections were examined: 24 demonstrated normal cochlea, 4 had basilar membrane bulging and 7 had fracture of bony spiral lamina. In the cochleostomy group, histology of 2 bones had to be discarded due to lack of any identifiable inner ear structures. Out of the 3 bones studied, 18 sections were examined: only 3 were normal, 4 sections had some bulge in spiral lamina and 11 had fracture of bony spiral lamina. The fracture of spiral lamina and bulge of basement membrane proportion is relatively higher if we perform cochleostomy as compared to round window approach. Therefore, round window insertion is relatively less traumatic as compared to cochleostomy. However, our sample size was very small and a study with a larger sample is required to further validate these findings.

  5. Utility of 3D printed temporal bones in pre-surgical planning for complex BoneBridge cases.

    PubMed

    Mukherjee, Payal; Cheng, Kai; Flanagan, Sean; Greenberg, Simon

    2017-08-01

    With the advent of single-sided hearing loss increasingly being treated with cochlear implantation, bone conduction implants are reserved for cases of conductive and mixed hearing loss with greater complexity. The BoneBridge (BB, MED-EL, Innsbruck, Austria) is an active fully implantable device with no attenuation of sound energy through soft tissue. However, the floating mass transducer (FMT) part of the device is very bulky, which limits insertion in complicated ears. In this study, 3D printed temporal bones of patients were used to study its utility in preoperative planning on complicated cases. Computed tomography (CT) scans of 16 ears were used to 3D print their temporal bones. Three otologists graded the use of routine preoperative planning provided by MED-EL and that of operating on the 3D printed bone of the patient. Data were collated to assess the advantage and disadvantage of the technology. There was a statistically significant benefit in using 3D printed temporal bones to plan surgery for difficult cases of BoneBridge surgery compared to the current standard. Surgeons preferred to have the printed bones in theatre to plan their drill sites and make the transition of the planning to the patient's operation more precise. 3D printing is an innovative use of technology in the use of preoperative planning for complex ear surgery. Surgical planning can be done on the patient's own anatomy which may help to decrease operating time, reduce cost, increase surgical precision and thus reduce complications.

  6. Cetuximab with radiotherapy as an alternative treatment for advanced squamous cell carcinoma of the temporal bone.

    PubMed

    Ebisumoto, Koji; Okami, Kenji; Hamada, Masashi; Maki, Daisuke; Sakai, Akihiro; Saito, Kosuke; Shimizu, Fukuko; Kaneda, Shoji; Iida, Masahiro

    2018-06-01

    The prognosis of advanced temporal bone cancer is poor, because complete surgical resection is difficult to achieve. Chemoradiotherapy is one of the available curative treatment options; however, its systemic effects on the patient restrict the use of this treatment. A 69-year-old female (who needed peritoneal dialysis) presented at our clinic with T4 left external auditory canal cancer and was treated with cetuximab plus radiotherapy (RT). The primary lesion showed complete response. The patient is currently alive with no evidence of disease two years after completion of the treatment and does not show any late toxicity. This is the first advanced temporal bone cancer patient treated with RT plus cetuximab. Cetuximab plus RT might be a treatment alternative for patients with advanced temporal bone cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Virtual reality case-specific rehearsal in temporal bone surgery: a preliminary evaluation.

    PubMed

    Arora, Asit; Swords, Chloe; Khemani, Sam; Awad, Zaid; Darzi, Ara; Singh, Arvind; Tolley, Neil

    2014-01-01

    1. To investigate the feasibility of performing case-specific surgical rehearsal using a virtual reality temporal bone simulator. 2. To identify potential clinical applications in temporal bone surgery. Prospective assessment study. St Mary's Hospital, Imperial College NHS Trust, London UK. Sixteen participants consisting of a trainer and trainee group. Twenty-four cadaver temporal bones were CT-scanned and uploaded onto the Voxelman simulator. Sixteen participants performed a 90-min temporal bone dissection on the generic simulation model followed by 3 dissection tasks on the case simulation and cadaver models. Case rehearsal was assessed for feasibility. Clinical applications and usefulness were evaluated using a 5-point Likert-type scale. The upload process required a semi-automated system. Average time for upload was 20 min. Suboptimal reconstruction occurred in 21% of cases arising when the mastoid process and ossicular chain were not captured (n = 2) or when artefact was generated (n = 3). Case rehearsal rated highly (Likert score >4) for confidence (75%), facilitating planning (75%) and training (94%). Potential clinical applications for case rehearsal include ossicular chain surgery, cochlear implantation and congenital anomalies. Case rehearsal of cholesteatoma surgery is not possible on the current platform due to suboptimal soft tissue representation. The process of uploading CT data onto a virtual reality temporal bone simulator to perform surgical rehearsal is feasible using a semi-automated system. Further clinical evaluation is warranted to assess the benefit of performing patient-specific surgical rehearsal in selected procedures. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Facial nerve stimulation associated with cochlear implant use following temporal bone fractures.

    PubMed

    Espahbodi, Mana; Sweeney, Alex D; Lennon, Kristen J; Wanna, George B

    2015-01-01

    To describe the incidence and management of patients with facial nerve stimulation (FNS) associated with cochlear implant (CI) use in the setting of a prior temporal bone fracture. One adult CI recipient is reported who experienced implant associated FNS with a history of a temporal bone fracture. Additionally, a literature search was performed to identify similar patients from previous descriptions of CI related FNS. Presence of FNS after implantation and ability to modify implant programming to avoid FNS. The patient in the present report experienced FNS for middle and basal electrodes during intraoperative neural response telemetry (NRT) in the absence of any surgical exposure or manipulation of the facial nerve. FNS was absent during device activation, but it recurred during follow-up programming sessions. However, additional programming has prevented further FNS during regular implant use. Four other patients with FNS after temporal bone fracture were identified from the literature, and the present case represents the one of two cases in which reprogramming allowed for implant use without FNS. CI associated FNS is uncommon in patients with a history of a temporal bone fracture, but it is likely that fracture lines provide a lower impedance pathway to the adjacent facial nerve and thus reduce the threshold for FNS. The present report suggests that, in the setting of a prior temporal bone fracture, NRT is not always a reliable predictor of FNS during implant use, and programming changes can help to mitigate FNS when it occurs. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The Surgical Challenge of Carotid Artery and Fallopian Canal Dehiscence in Chronic Ear Disease: A Pitfall for Endoscopic Approach

    PubMed Central

    Pauna, Henrique F.; Monsanto, Rafael C.; Schachern, Patricia A.; Costa, Sady S.; Kwon, Geeyoun; Paparella, Michael M.; Cureoglu, Sebahattin

    2016-01-01

    Objective Endoscopic procedures are becoming common in middle ear surgery. Inflammation due to chronic ear disease can cause bony erosion of the carotid artery and Fallopian canals, making them more vulnerable during surgery. The objective of this study was to determine whether or not chronic ear disease increases dehiscence of the carotid artery and Fallopian canals. Design Comparative human temporal bone study. Setting Otopathology laboratory. Participants We selected 78 temporal bones from 55 deceased donors with chronic otitis media or cholesteatoma, and then compared those 2 groups with a control group of 27 temporal bones from 19 deceased donors with no middle ear disease. Main outcome measures We analyzed the middle ear, carotid artery canal, and Fallopian canal, looking for signs of dehiscence of its bony coverage, using light microscopy. Results We found an increased incidence in dehiscence of the carotid artery and Fallopian canals in temporal bones with chronic middle ear disease. The size of the carotid artery canal dehiscence was larger in the middle ear diseased groups, and its bony coverage, when present, was also thinner compared to the control group. Dehiscence of the carotid artery canal was more frequently located closer to the promontory. The incidence of Fallopian canal dehiscence was significantly higher in temporal bones from donors older than 18 years with chronic middle ear disease. Conclusion The increased incidence of the carotid artery and Fallopian canal dehiscence in temporal bones with chronic middle ear disease elevates the risk of adverse events during middle ear surgery. Level of Evidence N/A. PMID:27455393

  10. Immunolocalization of Myostatin (GDF-8) Following Musculoskeletal Injury and the Effects of Exogenous Myostatin on Muscle and Bone Healing

    PubMed Central

    Elkasrawy, Moataz; Immel, David; Wen, Xuejun; Liu, Xiaoyan; Liang, Li-Fang

    2012-01-01

    The time course and cellular localization of myostatin expression following musculoskeletal injury are not well understood; therefore, the authors evaluated the temporal and spatial localization of myostatin during muscle and bone repair following deep penetrant injury in a mouse model. They then used hydrogel delivery of exogenous myostatin in the same injury model to determine the effects of myostatin exposure on muscle and bone healing. Results showed that a “pool” of intense myostatin staining was observed among injured skeletal muscle fibers 12–24 hr postsurgery and that myostatin was also expressed in the soft callus chondrocytes 4 days following osteotomy. Hydrogel delivery of 10 or 100 µg/ml recombinant myostatin decreased fracture callus cartilage area relative to total callus area in a dose-dependent manner by 41% and 80% (p<0.05), respectively, compared to vehicle treatment. Myostatin treatment also decreased fracture callus total bone volume by 30.6% and 38.8% (p<0.05), with the higher dose of recombinant myostatin yielding the greatest decrease in callus bone volume. Finally, exogenous myostatin treatment caused a significant dose-dependent increase in fibrous tissue formation in skeletal muscle. Together, these findings suggest that early pharmacological inhibition of myostatin is likely to improve the regenerative potential of both muscle and bone following deep penetrant musculoskeletal injury. PMID:22205678

  11. Immunolocalization of myostatin (GDF-8) following musculoskeletal injury and the effects of exogenous myostatin on muscle and bone healing.

    PubMed

    Elkasrawy, Moataz; Immel, David; Wen, Xuejun; Liu, Xiaoyan; Liang, Li-Fang; Hamrick, Mark W

    2012-01-01

    The time course and cellular localization of myostatin expression following musculoskeletal injury are not well understood; therefore, the authors evaluated the temporal and spatial localization of myostatin during muscle and bone repair following deep penetrant injury in a mouse model. They then used hydrogel delivery of exogenous myostatin in the same injury model to determine the effects of myostatin exposure on muscle and bone healing. Results showed that a "pool" of intense myostatin staining was observed among injured skeletal muscle fibers 12-24 hr postsurgery and that myostatin was also expressed in the soft callus chondrocytes 4 days following osteotomy. Hydrogel delivery of 10 or 100 µg/ml recombinant myostatin decreased fracture callus cartilage area relative to total callus area in a dose-dependent manner by 41% and 80% (p<0.05), respectively, compared to vehicle treatment. Myostatin treatment also decreased fracture callus total bone volume by 30.6% and 38.8% (p<0.05), with the higher dose of recombinant myostatin yielding the greatest decrease in callus bone volume. Finally, exogenous myostatin treatment caused a significant dose-dependent increase in fibrous tissue formation in skeletal muscle. Together, these findings suggest that early pharmacological inhibition of myostatin is likely to improve the regenerative potential of both muscle and bone following deep penetrant musculoskeletal injury. © The Author(s) 2012

  12. Virtual reality simulation training in Otolaryngology.

    PubMed

    Arora, Asit; Lau, Loretta Y M; Awad, Zaid; Darzi, Ara; Singh, Arvind; Tolley, Neil

    2014-01-01

    To conduct a systematic review of the validity data for the virtual reality surgical simulator platforms available in Otolaryngology. Ovid and Embase databases searched July 13, 2013. Four hundred and nine abstracts were independently reviewed by 2 authors. Thirty-six articles which fulfilled the search criteria were retrieved and viewed in full text. These articles were assessed for quantitative data on at least one aspect of face, content, construct or predictive validity. Papers were stratified by simulator, sub-specialty and further classified by the validation method used. There were 21 articles reporting applications for temporal bone surgery (n = 12), endoscopic sinus surgery (n = 6) and myringotomy (n = 3). Four different simulator platforms were validated for temporal bone surgery and two for each of the other surgical applications. Face/content validation represented the most frequent study type (9/21). Construct validation studies performed on temporal bone and endoscopic sinus surgery simulators showed that performance measures reliably discriminated between different experience levels. Simulation training improved cadaver temporal bone dissection skills and operating room performance in sinus surgery. Several simulator platforms particularly in temporal bone surgery and endoscopic sinus surgery are worthy of incorporation into training programmes. Standardised metrics are necessary to guide curriculum development in Otolaryngology. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  13. Feasibility of endoscopic laser speckle imaging modality in the evaluation of auditory disorder: study in bone-tissue phantom

    NASA Astrophysics Data System (ADS)

    Yu, Sungkon; Jang, Seulki; Lee, Sangyeob; Park, Jihoon; Ha, Myungjin; Radfar, Edalat; Jung, Byungjo

    2016-03-01

    This study investigates the feasibility of an endoscopic laser speckle imaging modality (ELSIM) in the measurement of perfusion of flowing fluid in optical bone tissue phantom(OBTP). Many studies suggested that the change of cochlear blood flow was correlated with auditory disorder. Cochlear microcirculation occurs under the 200μm thickness bone which is the part of the internal structure of the temporal bone. Concern has been raised regarding of getting correct optical signal from hard tissue. In order to determine the possibility of the measurement of cochlear blood flow under bone tissue using the ELSIM, optical tissue phantom (OTP) mimicking optical properties of temporal bone was applied.

  14. Creation of a 3D printed temporal bone model from clinical CT data.

    PubMed

    Cohen, Joss; Reyes, Samuel A

    2015-01-01

    Generate and describe the process of creating a 3D printed, rapid prototype temporal bone model from clinical quality CT images. We describe a technique to create an accurate, alterable, and reproducible rapid prototype temporal bone model using freely available software to segment clinical CT data and generate three different 3D models composed of ABS plastic. Each model was evaluated based on the appearance and size of anatomical structures and response to surgical drilling. Mastoid air cells had retained scaffolding material in the initial versions. This required modifying the model to allow drainage of the scaffolding material. External auditory canal dimensions were similar to those measured from the clinical data. Malleus, incus, oval window, round window, promontory, horizontal semicircular canal, and mastoid segment of the facial nerve canal were identified in all models. The stapes was only partially formed in two models and absent in the third. Qualitative feel of the ABS plastic was softer than bone. The pate produced by drilling was similar to bone dust when appropriate irrigation was used. We present a rapid prototype temporal bone model made based on clinical CT data using 3D printing technology. The model can be made quickly and inexpensively enough to have potential applications for educational training. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. [Headache as a manifestation of SAPHO syndrome with a lesion extending to the dura mater, parietal bone, and temporal muscle].

    PubMed

    Uematsu, Miho; Tobisawa, Shinsuke; Nagao, Masahiro; Matsubara, Shiro; Mizutani, Toshio; Shibuya, Makoto

    2012-01-01

    A 50-year-old woman with a history of palmoplantar pustulosis, femur osteomyelitis, and sterno-costo-clavicular hyperostosis presented with a chronic severe left temporal headache that had progressed during the previous year. Her CRP level was elevated. Cranial images showed Gadolinium-enhancement of the left temporal muscle, left parietal bone and dura mater. (99m)Tc-HMDP scintigram showed increased uptake in the left parietal bone, left sterno-costo-clavicular joint, right femoral head and intervertebral joints. Biopsy of the lesion demonstrated 1) proliferation of connective tissue in both perimysium and endomysium of the temporal muscle with mild inflammatory cell infiltration within the interstitium, 2) marked infiltration of granulocytes to the bone marrow of the parietal bone, 3) necrosis and moderate fibrosis in the interstitium with inflammatory cell infiltration in the parietal bone, and 4) moderate fibrosis and slight infiltration of inflammatory cells in the dura mater. The patient was diagnosed with a cranial lesion of synovitis-acne-pustulosis-hyperostosis-osteitis (SAPHO) syndrome. There was a moderate response to treatment with intravenous steroid pulse therapy and subsequent methotrexate. In a case of headache accompanied by inflammatory response, palmoplantar pustulosis and joint lesions such as hyperostosis, the possibility of a rare cranial manifestation of SAPHO syndrome should be considered.

  16. Intra-temporal facial nerve centerline segmentation for navigated temporal bone surgery

    NASA Astrophysics Data System (ADS)

    Voormolen, Eduard H. J.; van Stralen, Marijn; Woerdeman, Peter A.; Pluim, Josien P. W.; Noordmans, Herke J.; Regli, Luca; Berkelbach van der Sprenkel, Jan W.; Viergever, Max A.

    2011-03-01

    Approaches through the temporal bone require surgeons to drill away bone to expose a target skull base lesion while evading vital structures contained within it, such as the sigmoid sinus, jugular bulb, and facial nerve. We hypothesize that an augmented neuronavigation system that continuously calculates the distance to these structures and warns if the surgeon drills too close, will aid in making safe surgical approaches. Contemporary image guidance systems are lacking an automated method to segment the inhomogeneous and complexly curved facial nerve. Therefore, we developed a segmentation method to delineate the intra-temporal facial nerve centerline from clinically available temporal bone CT images semi-automatically. Our method requires the user to provide the start- and end-point of the facial nerve in a patient's CT scan, after which it iteratively matches an active appearance model based on the shape and texture of forty facial nerves. Its performance was evaluated on 20 patients by comparison to our gold standard: manually segmented facial nerve centerlines. Our segmentation method delineates facial nerve centerlines with a maximum error along its whole trajectory of 0.40+/-0.20 mm (mean+/-standard deviation). These results demonstrate that our model-based segmentation method can robustly segment facial nerve centerlines. Next, we can investigate whether integration of this automated facial nerve delineation with a distance calculating neuronavigation interface results in a system that can adequately warn surgeons during temporal bone drilling, and effectively diminishes risks of iatrogenic facial nerve palsy.

  17. Primary aneurysmal bone cyst of coronoid process

    PubMed Central

    Goyal, Amit; Tyagi, Isha; Syal, Rajan; Agrawal, Tanu; Jain, Manoj

    2006-01-01

    Background Aneurysmal bone cysts are relatively uncommon in the facial skeleton. These usually affect the mandible but origin from the coronoid process is even rarer. To the best of our knowledge, this is the first reported case of a coronoid process aneurysmal bone cyst presenting as temporal fossa swelling. Case presentation A 17 year old boy presented with a progressively increasing swelling in the left temporal region developed over the previous 8 months. An expansile lytic cystic lesion originating from the coronoid process of the left mandible and extending into the infratemporal and temporal fossa regions was found on CT scan. It was removed by a superior approach to the infratemporal fossa. Conclusion Aneurysmal bone cyst of the coronoid process can attain enormous dimensions until the temporal region is also involved. A superior approach to the infratemporal fossa is a reasonable approach for such cases, providing wide exposure and access to all parts of the lesion and ensuring better control and complete excision. PMID:16533409

  18. Measurements of Human Middle- and Inner-Ear Mechanics With Dehiscence of the Superior Semicircular Canal

    PubMed Central

    Chien, Wade; Ravicz, Michael E.; Rosowski, John J.; Merchant, Saumil N.

    2008-01-01

    Objectives (1) To develop a cadaveric temporal-bone preparation to study the mechanism of hearing loss resulting from superior semicircular canal dehiscence (SCD) and (2) to assess the potential usefulness of clinical measurements of umbo velocity for the diagnosis of SCD. Background The syndrome of dehiscence of the superior semicircular canal is a clinical condition encompassing a variety of vestibular and auditory symptoms, including an air-bone gap at low frequencies. It has been hypothesized that the dehiscence acts as a “third window” into the inner ear that shunts acoustic energy away from the cochlea at low frequencies, causing hearing loss. Methods Sound-induced stapes, umbo, and round-window velocities were measured in prepared temporal bones (n = 8) using laser-Doppler vibrometry (1) with the superior semicircular canal intact, (2) after creation of a dehiscence in the superior canal, and (3) with the dehiscence patched. Clinical measurements of umbo velocity in live SCD ears (n = 29) were compared with similar data from our cadaveric temporal-bone preparations. Results An SCD caused a significant reduction in sound-induced round-window velocity at low frequencies, small but significant increases in sound-induced stapes and umbo velocities, and a measurable fluid velocity inside the dehiscence. The increase in sound-induced umbo velocity in temporal bones was also found to be similar to that measured in the 29 live ears with SCD. Conclusion Findings from the cadaveric temporal-bone preparation were consistent with the third-window hypothesis. In addition, measurement of umbo velocity in live ears is helpful in distinguishing SCD from other otologic pathologies presenting with an air-bone gap (e.g., otosclerosis). PMID:17255894

  19. Using a virtual reality temporal bone simulator to assess otolaryngology trainees.

    PubMed

    Zirkle, Molly; Roberson, David W; Leuwer, Rudolf; Dubrowski, Adam

    2007-02-01

    The objective of this study is to determine the feasibility of computerized evaluation of resident performance using hand motion analysis on a virtual reality temporal bone (VR TB) simulator. We hypothesized that both computerized analysis and expert ratings would discriminate the performance of novices from experienced trainees. We also hypothesized that performance on the virtual reality temporal bone simulator (VR TB) would differentiate based on previous drilling experience. The authors conducted a randomized, blind assessment study. Nineteen volunteers from the Otolaryngology-Head and Neck Surgery training program at the University of Toronto drilled both a cadaveric TB and a simulated VR TB. Expert reviewers were asked to assess operative readiness of the trainee based on a blind video review of their performance. Computerized hand motion analysis of each participant's performance was conducted. Expert raters were able to discriminate novices from experienced trainees (P < .05) on cadaveric temporal bones, and there was a trend toward discrimination on VR TB performance. Hand motion analysis showed that experienced trainees had better movement economy than novices (P < .05) on the VR TB. Performance, as measured by hand motion analysis on the VR TB simulator, reflects trainees' previous drilling experience. This study suggests that otolaryngology trainees could accomplish initial temporal bone training on a VR TB simulator, which can provide feedback to the trainee, and may reduce the need for constant faculty supervision and evaluation.

  20. Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems

    PubMed Central

    Omar, Omar; Simonsson, Hanna; Palmquist, Anders; Thomsen, Peter

    2016-01-01

    Osseointegrated implants inserted in the temporal bone are a vital component of bone-anchored hearing systems (BAHS). Despite low implant failure levels, early loading protocols and simplified procedures necessitate the application of implants which promote bone formation, bone bonding and biomechanical stability. Here, screw-shaped, commercially pure titanium implants were selectively laser ablated within the thread valley using an Nd:YAG laser to produce a microtopography with a superimposed nanotexture and a thickened surface oxide layer. State-of-the-art machined implants served as controls. After eight weeks’ implantation in rabbit tibiae, resonance frequency analysis (RFA) values increased from insertion to retrieval for both implant types, while removal torque (RTQ) measurements showed 153% higher biomechanical anchorage of the laser-modified implants. Comparably high bone area (BA) and bone-implant contact (BIC) were recorded for both implant types but with distinctly different failure patterns following biomechanical testing. Fracture lines appeared within the bone ~30–50 μm from the laser-modified surface, while separation occurred at the bone-implant interface for the machined surface. Strong correlations were found between RTQ and BIC and between RFA at retrieval and BA. In the endosteal threads, where all the bone had formed de novo, the extracellular matrix composition, the mineralised bone area and osteocyte densities were comparable for the two types of implant. Using resin cast etching, osteocyte canaliculi were observed directly approaching the laser-modified implant surface. Transmission electron microscopy showed canaliculi in close proximity to the laser-modified surface, in addition to a highly ordered arrangement of collagen fibrils aligned parallel to the implant surface contour. It is concluded that the physico-chemical surface properties of laser-modified surfaces (thicker oxide, micro- and nanoscale texture) promote bone bonding which may be of benefit in situations where large demands are imposed on biomechanically stable interfaces, such as in early loading and in compromised conditions. PMID:27299883

  1. The development of inter-strain variation in cortical and trabecular traits during growth of the mouse lumbar vertebral body.

    PubMed

    Ramcharan, M A; Faillace, M E; Guengerich, Z; Williams, V A; Jepsen, K J

    2017-03-01

    How cortical and trabecular bone co-develop to establish a mechanically functional structure is not well understood. Comparing early postnatal differences in morphology of lumbar vertebral bodies for three inbred mouse strains identified coordinated changes within and between cortical and trabecular traits. These early coordinate changes defined the phenotypic differences among the inbred mouse strains. Age-related changes in cortical and trabecular traits have been well studied; however, very little is known about how these bone tissues co-develop from day 1 of postnatal growth to establish functional structures by adulthood. In this study, we aimed to establish how cortical and trabecular tissues within the lumbar vertebral body change during growth for three inbred mouse strains that express wide variation in adult bone structure and function. Bone traits were quantified for lumbar vertebral bodies of female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse strains from 1 to 105 days of age (n = 6-10 mice/age/strain). Inter-strain differences in external bone size were observed as early as 1 day of age. Reciprocal and rapid changes in the trabecular bone volume fraction and alignment in the direction of axial compression were observed by 7 days of age. Importantly, the inter-strain difference in adult trabecular bone volume fraction was established by 7 days of age. Early variation in external bone size and trabecular architecture was followed by progressive increases in cortical area between 28 and 105 days of age, with the greatest increases in cortical area seen in the mouse strain with the lowest trabecular mass. Establishing the temporal changes in bone morphology for three inbred mouse strains revealed that genetic variation in adult trabecular traits were established early in postnatal development. Early variation in trabecular architecture preceded strain-specific increases in cortical area and changes in cortical thickness. This study established the sequence of how cortical and trabecular traits co-develop during growth, which is important for identifying critical early ages to further focus on intervention studies that optimize adult bone strength.

  2. Tuberculous otitis in infants: temporal bone histopathology and clinical extrapolation.

    PubMed

    Nicolau, Yamileth; Northrop, Clarinda; Eavey, Roland

    2006-08-01

    The study of infant temporal bones with tuberculosis (TB) of the middle ear and mastoid could provide information to assist with clinical diagnosis in this population. The TB pandemic has become a critical global public health problem. With the rising incidence of the disease, otolaryngologists might encounter an increased frequency of otologic TB. Pediatric temporal bone reports of TB are rare. Light microscopic examination was performed on both temporal bones from an infant who died as a result of miliary TB. The tympanic membranes were thickened with dilated blood vessels, yet were intact without perforations. Purulence, granulation tissue, and classic tubercles were observed in the middle ears and mastoids. Serous labyrinthitis and inflammatory cells surrounding the Cranial Nerve VIII in the internal auditory canal were observed in the inner ear. The histological findings suggest that a clinical presentation of infantile tuberculous otitis media and mastoiditis could be a patient with otoscopic findings consistent with common otitis media with an intact tympanic membrane, likely in conjunction with inner ear symptoms. Lacking the classic finding of multiple tympanic membrane perforations, tuberculous otitis might be underappreciated in this population.

  3. Patterns of anomalies of structures of the middle ear and the facial nerve as revealed in newborn temporal bones.

    PubMed

    Tóth, Miklós; Sirirattanapan, Jarinratn; Mann, Wolf

    2013-08-01

    The purpose of this study is to offer new data about facial nerve malformations in the tympanic cavity. Prospective anatomic study of newborns to demonstrate the submacroscopic anatomy of the intratympanic facial nerve and its surrounding structures by malformations. Step-by-step microdissection of 12 newborn temporal bones and histologic evaluation of 4 middle ears showing multiple malformations. Four of 12 temporal bones presented malformation in the middle ear. All 4 temporal bones showed developmental failures of the stapes, and 3 of them had malposition of the tympanic portion of the facial nerve. In 3 cases, there was an oval window atresia, and in 1 case, the rim of the oval window was not ossified and was positioned medial to the stapes. Malformation or displacement of the stapes can be an indirect sign for facial nerve malformation. The most common site for facial nerve malformation is the tympanic portion. The tympanic segment of the nerve is devoid of bony covering in association with these anomalies of the stapes.

  4. Enhancement pattern of the normal facial nerve at 3.0 T temporal MRI.

    PubMed

    Hong, H S; Yi, B-H; Cha, J-G; Park, S-J; Kim, D H; Lee, H K; Lee, J-D

    2010-02-01

    The purpose of this study was to evaluate the enhancement pattern of the normal facial nerve at 3.0 T temporal MRI. We reviewed the medical records of 20 patients and evaluated 40 clinically normal facial nerves demonstrated by 3.0 T temporal MRI. The grade of enhancement of the facial nerve was visually scaled from 0 to 3. The patients comprised 11 men and 9 women, and the mean age was 39.7 years. The reasons for the MRI were sudden hearing loss (11 patients), Méniàre's disease (6) and tinnitus (7). Temporal MR scans were obtained by fluid-attenuated inversion-recovery (FLAIR) and diffusion-weighted imaging of the brain; three-dimensional (3D) fast imaging employing steady-state acquisition (FIESTA) images of the temporal bone with a 0.77 mm thickness, and pre-contrast and contrast-enhanced 3D spoiled gradient record acquisition in the steady state (SPGR) of the temporal bone with a 1 mm thickness, were obtained with 3.0 T MR scanning. 40 nerves (100%) were visibly enhanced along at least one segment of the facial nerve. The enhanced segments included the geniculate ganglion (77.5%), tympanic segment (37.5%) and mastoid segment (100%). Even the facial nerve in the internal auditory canal (15%) and labyrinthine segments (5%) showed mild enhancement. The use of high-resolution, high signal-to-noise ratio (with 3 T MRI), thin-section contrast-enhanced 3D SPGR sequences showed enhancement of the normal facial nerve along the whole course of the nerve; however, only mild enhancement was observed in areas associated with acute neuritis, namely the canalicular and labyrinthine segment.

  5. Papercraft temporal bone in the first step of anatomy education.

    PubMed

    Hiraumi, Harukazu; Sato, Hiroaki; Ito, Juichi

    2017-06-01

    (1) To compare temporal bone anatomy comprehension taught to speech therapy students with or without a papercraft model. (2) To explore the effect of papercraft simulation on the understanding of surgical approaches in first-year residents. (1) One-hundred and ten speech therapy students were divided into three classes. The first class was taught with a lecture only. The students in the second class were given a lecture and a papercraft modeling task without instruction. The third class modeled a papercraft with instruction after the lecture. The students were tested on their understanding of temporal bone anatomy. (2) A questionnaire on the understanding of surgical approaches was completed by 10 residents before and after the papercraft modeling. The papercraft models were cut with scissors to simulate surgical approaches. (1) The average scores were 4.4/8 for the first class, 4.3/8 for the second class, and 6.3/8 for the third class. The third class had significantly better results than the other classes (p<0.01, Kruskal-Wallis test). (2) The average scores before and after the papercraft modeling and cutting were 2.6/7 and 4.9/7, respectively. The numerical rating scale score significantly improved (p<0.01, Wilcoxon signed-rank test). The instruction of the anatomy using a papercraft temporal bone model is effective in the first step of learning temporal bone anatomy and surgical approaches. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Mechanistic, Mathematical Model to Predict the Dynamics of Tissue Genesis in Bone Defects via Mechanical Feedback and Mediation of Biochemical Factors

    PubMed Central

    Moore, Shannon R.; Saidel, Gerald M.; Knothe, Ulf; Knothe Tate, Melissa L.

    2014-01-01

    The link between mechanics and biology in the generation and the adaptation of bone has been well studied in context of skeletal development and fracture healing. Yet, the prediction of tissue genesis within - and the spatiotemporal healing of - postnatal defects, necessitates a quantitative evaluation of mechano-biological interactions using experimental and clinical parameters. To address this current gap in knowledge, this study aims to develop a mechanistic mathematical model of tissue genesis using bone morphogenetic protein (BMP) to represent of a class of factors that may coordinate bone healing. Specifically, we developed a mechanistic, mathematical model to predict the dynamics of tissue genesis by periosteal progenitor cells within a long bone defect surrounded by periosteum and stabilized via an intramedullary nail. The emergent material properties and mechanical environment associated with nascent tissue genesis influence the strain stimulus sensed by progenitor cells within the periosteum. Using a mechanical finite element model, periosteal surface strains are predicted as a function of emergent, nascent tissue properties. Strains are then input to a mechanistic mathematical model, where mechanical regulation of BMP-2 production mediates rates of cellular proliferation, differentiation and tissue production, to predict healing outcomes. A parametric approach enables the spatial and temporal prediction of endochondral tissue regeneration, assessed as areas of cartilage and mineralized bone, as functions of radial distance from the periosteum and time. Comparing model results to histological outcomes from two previous studies of periosteum-mediated bone regeneration in a common ovine model, it was shown that mechanistic models incorporating mechanical feedback successfully predict patterns (spatial) and trends (temporal) of bone tissue regeneration. The novel model framework presented here integrates a mechanistic feedback system based on the mechanosensitivity of periosteal progenitor cells, which allows for modeling and prediction of tissue regeneration on multiple length and time scales. Through combination of computational, physical and engineering science approaches, the model platform provides a means to test new hypotheses in silico and to elucidate conditions conducive to endogenous tissue genesis. Next generation models will serve to unravel intrinsic differences in bone genesis by endochondral and intramembranous mechanisms. PMID:24967742

  7. Closure of the middle ear with special reference to the development of the tegmen tympani of the temporal bone

    PubMed Central

    Rodríguez-Vázquez, José Francisco; Murakami, Gen; Verdugo-López, Samuel; Abe, Shin-ichi; Fujimiya, Mineko

    2011-01-01

    Closure of the middle ear is believed to be closely related to the evolutionary development of the mammalian jaw. However, few comprehensive descriptions are available on fetal development. We examined paraffin-embedded specimens of 20 mid-term human fetuses at 8–25 weeks of ovulation age (crown-rump length or CRL, 38–220 mm). After 9 weeks, the tympanic bone and the squamous part of the temporal bone, each of which was cranial or caudal to Meckel's cartilage, grew to close the lateral part of the tympanosquamosal fissure. At the same time, the cartilaginous tegmen tympani appeared independently of the petrous part of the temporal bone and resulted in the petrosquamosal fissure. Subsequently, the medial part of the tympanosquamosal fissure was closed by the descent of a cartilaginous inferior process of the tegmen tympani. When Meckel's cartilage changed into the sphenomandibular ligament and the anterior ligament of the malleus, the inferior process of the tegmen tympani interposed between the tympanic bone and the squamous part of the temporal bone, forming the petrotympanic fissure for the chorda tympani nerve and the discomalleolar ligament. Therefore, we hypothesize that, in accordance with the regression of Meckel's cartilage, the rapidly growing temporomandibular joint provided mechanical stress that accelerated the growth and descent of the inferior process of the tegmen tympani via the discomalleolar ligament. The usual diagram showing bony fissures around the tegmen tympani may overestimate the role of the tympanic bone in the fetal middle-ear closure. PMID:21477146

  8. Temporal bone dissection simulator for training pediatric otolaryngology surgeons

    NASA Astrophysics Data System (ADS)

    Tabrizi, Pooneh R.; Sang, Hongqiang; Talari, Hadi F.; Preciado, Diego; Monfaredi, Reza; Reilly, Brian; Arikatla, Sreekanth; Enquobahrie, Andinet; Cleary, Kevin

    2017-03-01

    Cochlear implantation is the standard of care for infants born with severe hearing loss. Current guidelines approve the surgical placement of implants as early as 12 months of age. Implantation at a younger age poses a greater surgical challenge since the underdeveloped mastoid tip, along with thin calvarial bone, creates less room for surgical navigation and can result in increased surgical risk. We have been developing a temporal bone dissection simulator based on actual clinical cases for training otolaryngology fellows in this delicate procedure. The simulator system is based on pre-procedure CT (Computed Tomography) images from pediatric infant cases (<12 months old) at our hospital. The simulator includes: (1) simulation engine to provide the virtual reality of the temporal bone surgery environment, (2) a newly developed haptic interface for holding the surgical drill, (3) an Oculus Rift to provide a microscopic-like view of the temporal bone surgery, and (4) user interface to interact with the simulator through the Oculus Rift and the haptic device. To evaluate the system, we have collected 10 representative CT data sets and segmented the key structures: cochlea, round window, facial nerve, and ossicles. The simulator will present these key structures to the user and warn the user if needed by continuously calculating the distances between the tip of surgical drill and the key structures.

  9. Improving depiction of temporal bone anatomy with low-radiation dose CT by an integrated circuit detector in pediatric patients: a preliminary study.

    PubMed

    He, Jingzhen; Zu, Yuliang; Wang, Qing; Ma, Xiangxing

    2014-12-01

    The purpose of this study was to determine the performance of low-dose computed tomography (CT) scanning with integrated circuit (IC) detector in defining fine structures of temporal bone in children by comparing with the conventional detector. The study was performed with the approval of our institutional review board and the patients' anonymity was maintained. A total of 86 children<3 years of age underwent imaging of temporal bone with low-dose CT (80 kV/150 mAs) equipped with either IC detector or conventional discrete circuit (DC) detector. The image noise was measured for quantitative analysis. Thirty-five structures of temporal bone were further assessed and rated by 2 radiologists for qualitative analysis. κ Statistics were performed to determine the agreement reached between the 2 radiologists on each image. Mann-Whitney U test was used to determine the difference in image quality between the 2 detector systems. Objective analysis showed that the image noise was significantly lower (P<0.001) with the IC detector than with the DC detector. The κ values for qualitative assessment of the 35 fine anatomical structures revealed high interobserver agreement. The delineation for 30 of the 35 landmarks (86%) with the IC detector was superior to that with the conventional DC detector (P<0.05) although there were no differences in the delineation of the remaining 5 structures (P>0.05). The low-dose CT images acquired with the IC detector provide better depiction of fine osseous structures of temporal bone than that with the conventional DC detector.

  10. Treatment outcomes of temporal bone osteoradionecrosis.

    PubMed

    Kammeijer, Quinten; van Spronsen, Erik; Mirck, Piet G B; Dreschler, Wouter A

    2015-04-01

    To investigate the clinical relevance of the classification systems used for temporal bone osteoradionecrosis (ORN) and to define a treatment protocol for temporal bone ORN. Retrospective case series. Amsterdam, department of otorhinolaryngology and head and neck surgery. Classification of temporal bone ORN was performed through use of clinical data and radiologic imaging. Outcomes of conservative and surgical treatment were investigated and compared for different grades of ORN. Of the 49 ears included in this study, 35 were primarily treated conservatively. At start of conservative treatment, 23 were classified as a localized and 8 as a diffuse form of ORN; 4 could not be classified. There was a significant difference in clinical outcome between the localized and diffuse forms of ORN (χ(2) = 5.862, P = .015), and mastoid air cell destruction on preoperative computed tomography scan was found to be a significant predictor for a negative outcome of conservative treatment (χ(2) = 4.34, P = .037). Fourteen ears with diffuse ORN were primarily treated surgically, and 11 were secondarily treated surgically following a period of conservative treatment. Twenty-two patients were treated with subtotal petrosectomy, of which 20 were cured. Three patients were treated with canal wall down mastoidectomy, and 2 had recurrence of disease. Ramsden's classification system is clinically relevant in predicting conservative treatment outcomes. Mastoid air cell destruction on computed tomography differentiates between the localized and diffuse forms of ORN. Given our results and experience with treating temporal bone ORN, we propose a treatment protocol. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  11. [Prediction of round window visibility in cochlear implantation with temporal bone high resolution computed tomography].

    PubMed

    Sun, S P; Lu, W; Lei, Y B; Men, X M; Zuo, B; Ding, S G

    2017-08-07

    Objective: To discuss the prediction of round window(RW) visibility in cochlear implantation(CI) with temporal bone high resolution computed tomography(HRCT). Methods: From January 2013 to January 2017, 130 cases underwent both HRCT and CI in our hospital were analyzed. The distance from facial nerve to posterior canal wall(FWD), the angle between facial nerve and inner margin of round window(FRA), and the angle between facial nerve and tympanic anulus to inner margin of round window(FRAA) were detected at the level of round window on axial temporal bone HRCT. A line parallel to the posterior wall of ear canal was drawn from the anterior wall of facial nerve at the level of round window on axial temporal bone HRCT and its relationship with round window was detected (facial-round window line, FRL): type0-posterior to the round window, type1-between the round window, type2-anterior to the round window. Their(FWD, FRA, FRAA, FRL) relationships with intra-operative round window visibility were analyzed by SPSS 17.0 software. Results: FWD( F =18.76, P =0.00), FRA( F =34.57, P =0.00), FRAA ( F =14.24, P =0.00) could affect the intra-operative RW visibility significantly. RW could be exposed completely during CI when preoperative HRCT showing type0 FRL. RW might be partly exposed and not exposed when preoperative HRCT showing type1 and type2 FRL respectively. Conclusion: FWD, FRA, FRAA and FRL of temporal bone HRCT can predict intra-operative round window visibility effectively in CI surgery.

  12. Pneumatic processes in the temporal bone of chimpanzee (Pan troglodytes) and gorilla (Gorilla gorilla).

    PubMed

    Sherwood, R J

    1999-08-01

    The ontogeny of human temporal bone pneumatization has been well studied from both comparative and clinical perspectives. While a difference in the extent of air cell distribution has been noted in our closest living relatives, chimpanzees and gorillas, the processes responsible have been relatively unexplored. To examine these processes, a large, age-graded series of hominoid skulls was radiographed and the progress of pneumatization recorded. Additionally, a subsample of 30 chimpanzees and 12 gorillas was subjected to high-resolution CT scanning. Neonatal specimens show a well-developed mastoid antrum, as well as a capacious hypotympanum extending into the petrous apex. In African apes, as in humans, the mastoid antrum serves as the focus for air cell expansion into the mastoid and immediately adjacent areas. In chimpanzees and gorillas, however, a pronounced lateral structure, described as the squamous antrum, serves as the focus of pneumatization for anterior structures such as the squamous and zygomatic. The diminution of this structure in Homo sapiens explains the difference in air cell distribution in these regions. Copyright 1999 Wiley-Liss, Inc.

  13. Cosmetic and functional reconstruction achieved using a split myofascial bone flap for pterional craniotomy. Technical note.

    PubMed

    Matsumoto, K; Akagi, K; Abekura, M; Ohkawa, M; Tasaki, O; Tomishima, T

    2001-04-01

    Cosmetic deformities that appear following pterional craniotomy are usually caused by temporal muscle atrophy, injury to the frontotemporal branch of the facial nerve, or bone pits in the craniotomy line. To resolve these problems during pterional craniotomy, an alternative method was developed in which a split myofascial bone flap and a free bone flap are used. The authors have used this method in the treatment of 40 patients over the last 3 years. Excellent cosmetic and functional results have been obtained. This method can provide wide exposure similar to that achieved using Yaşargil's interfascial pterional craniotomy, without limiting the operative field with a bulky temporal muscle flap.

  14. Brainstem auditory-evoked potentials as an objective tool for evaluating hearing dysfunction in traumatic brain injury.

    PubMed

    Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F

    2004-03-01

    Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.

  15. Temporal bone radiography using the orthopantomograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatezawa, T.

    1981-09-01

    Temporal bone radiographs obtained with an Orthopantomograph were compared with conventional radiographs. In acoustic neurinoma, cholesteatoma, otitis media, and middle fossa tumors, both methods demonstrated the abnormalities well. In two cases with lesions extending beyond the range of conventional projections, the broad orthopantomographic coverage was very valuable. Mastoid air cells, the mastoid process, petrous ridge, and internal auditory meatus were well demonstrated by both techniques. Orthopantomography was found to be superior in the demonstration of the petrous apex, while the superior semicircular canal was better demonstrated on the conventional views. Bilateral symmetry was particularly good and because of fewer films,more » radiation exposure was considerably less with orthopantomography. For many applications, orthopantomography is an adequate convenient substitute for conventional methods of examining the temporal bones.« less

  16. Combination of hindlimb suspension and immobilization by casting exaggerates sarcopenia by stimulating autophagy but does not worsen osteopenia.

    PubMed

    Speacht, Toni L; Krause, Andrew R; Steiner, Jennifer L; Lang, Charles H; Donahue, Henry J

    2018-05-01

    Astronauts in space experience a unique environment that causes the concomitant loss of bone and muscle. However, the interaction between these tissues and how osteopenia and sarcopenia affect each other is unclear. We explored this relationship by exaggerating unloading-induced muscle loss using a unilateral casting model in conjunction with hindlimb suspension (HLS). Five-month-old, male C57Bl/6J mice subjected to HLS for 2 weeks displayed a significant decrease in gastrocnemius and quadriceps weight (-9-10%), with a two-fold greater decrease in muscle mass observed in the HLS + casted limb. However, muscle from casted limbs had a higher rate of protein synthesis (+16%), compared to HLS alone, with coordinated increases in S6K1 (+50%) and 4E-BP1 (+110%) phosphorylation. Increased protein content for surrogate markers of autophagy, including LC3-II (+75%), Atg7 (+10%), and Atg5-12 complex (+20%) was only detected in muscle from the casted limb. In proximal tibias, HLS resulted in significant decreases in bone volume fraction (-24% vs -8%), trabecular number (-6% vs +0.3%), trabecular thickness (-10% vs -2%), and trabecular spacing (+8.4% vs +2%) compared to ground controls. There was no further bone loss in casted limbs compared to HLS alone. In tibia midshafts, HLS resulted in decreased total area (-2% vs +1%) and increased bone mineral density (+1% vs -0.3%) compared to ground controls. Cortical bone from casted limbs showed an increase in cortical thickness (+9% vs +2%) and cortical area/total area (+1% vs -0.6%) compared to HLS alone. Our results suggest that casting exacerbates unloading-induced muscle loss via activation of autophagy. Casting did not exacerbate bone loss suggesting that the unloading-induced loss of muscle and bone can be temporally dissociated and the effect of reduced muscle activity plays a relatively minor role compared to reduced load bearing on trabecular bone structure. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Radiation dose and image conspicuity comparison between conventional 120 kVp and 150 kVp with spectral beam shaping for temporal bone CT.

    PubMed

    Kim, Chang Rae; Jeon, Ji Young

    2018-05-01

    The purpose of this article is to compare radiation doses and conspicuity of anatomic landmarks of the temporal bone between the CT technique using spectral beam shaping at 150 kVp with a dedicated tin filter (150 kVp-Sn) and the conventional protocol at 120 kVp. 25 patients (mean age, 46.8 ± 21.2 years) were examined using the 150-kVp Sn protocol (200 reference mAs using automated tube current modulation, 64 × 0.6 mm collimation, 0.6 mm slice thickness, pitch 0.8), whereas 30 patients (mean age, 54.5 ± 17.8 years) underwent the 120-kVp protocol (180 mAs, 128 × 0.6 mm collimation, 0.6 mm slice thickness, pitch 0.8). Radiation doses were compared between the two acquisition techniques, and dosimetric data from the literature were reviewed for comparison of radiation dose reduction. Subjective conspicuity of 23 anatomic landmarks of the temporal bone, expressed by 5-point rating scale and objective conspicuity by signal-to-noise ratio (SNR) which measured in 4 different regions of interest (ROI), were compared between 150-kVp Sn and 120-kVp acquisitions. The mean dose-length-product (DLP) and effective dose were significantly lower for the 150-kVp Sn scans (0.26 ± 0.26 mSv) compared with the 120-kVp scans (0.92 ± 0.10 mSv, p < 0.001). The lowest effective dose from the literature-based protocols was 0.31 ± 0.12 mSv, which proposed as a low-dose protocol in the setting of spiral multislice temporal bone CT. SNR was slightly superior for 120-kVp images, however analyzability of the 23 anatomic structures did not differ significantly between 150-kVp Sn and 120-kVp scans. Temporal bone CT performed at 150 kVp with an additional tin filter for spectral shaping markedly reduced radiation exposure when compared with conventional temporal bone CT at 120 kVp while maintaining anatomic conspicuity. The decreased radiation dose of the 150-kVp Sn was also lower in comparison to the previous literature-based low-dose temporal bone CT protocol. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Solitary juvenile xanthogranuloma of the temporal muscle and bone penetrating the dura mater in a 2-month-old boy.

    PubMed

    Cornips, Erwin M J; Cox, Kimberly E M; Creytens, David H K V; Granzen, Bernd; Weber, Jacobiene W; Ter Laak-Poort, Mariel P

    2009-12-01

    Juvenile xanthogranuloma (JXG) is a rare histiocytic disorder primarily observed during the first 2 years of life. Most patients present with a solitary cutaneous lesion; however, others present with extracutaneous manifestations or even with systemic involvement. The authors describe a 2-month-old boy in whom was diagnosed a unifocal extracutaneous JXG involving the temporal bone. Unlike 3 other cases of solitary JXGs of the temporal bone in the literature, the present case involved destruction of the dura mater and leptomeningeal enhancement surrounding the entire temporal lobe. The lesion did not regress after an initial biopsy procedure and had to be removed more radically because of progressive mass effect on the brain. The child recently underwent a reconstructive skull procedure and is doing well almost 2 years postoperatively without evidence of disease. This case demonstrates that even in instances of extensive disease a favorable outcome is possible without chemotherapy.

  19. Stria Vascularis and Cochlear Hair Cell Changes in Syphilis: A Human Temporal Bone Study

    PubMed Central

    Hızlı, Ömer; Kaya, Serdar; Hızlı, Pelin; Paparella, Michael M.; Cureoglu, Sebahattin

    2016-01-01

    Objective To observe any changes in stria vascularis and cochlear hair cells in patients with syphilis Materials and Methods We examined 13 human temporal bone samples from 8 patients with syphilis (our syphilis group), as well as 12 histopathologically normal samples from 9 age-matched patients without syphilis (our control group). We compared, between the 2 groups, the mean area of the stria vascularis (measured with conventional light microscopy connected to a personal computer) and the mean percentage of cochlear hair cell loss (obtained from cytocochleograms). Results In our syphilis group, only 1 (7.7%) of the 13 samples had precipitate in the endolymphatic or perilymphatic spaces; 8 (61.5%) of the samples revealed the presence of endolymphatic hydrops (4 cochlear, 4 saccular). The mean area of the stria vascularis area did not significantly differ, in any turn of the cochlea, between the 2 groups (P > 0.1). However, we did find significant differences between the 2 groups in the mean percentage of outer hair cells in the apical turn (P < 0.026) and in the mean percentage of inner hair cells in the basal (P = 0.001), middle (P = 0.004), and apical (P = 0.018) turns. In 7 samples in our syphilis group, we observed either complete loss of the organ of Corti or a flattened organ of Corti without any cells in addition to the absence of both outer and inner hair cells. Conclusion In this study, syphilis led either to complete loss of the organ of Corti or to significant loss of cochlear hair cells, in addition to cochleosaccular hydrops. But the area of the stria vascularis did not change. PMID:26860231

  20. Image quality improvement in three-dimensional time-of-flight magnetic resonance angiography using the subtraction method for brain and temporal bone diseases.

    PubMed

    Peng, Shu-Hui; Shen, Chao-Yu; Wu, Ming-Chi; Lin, Yue-Der; Huang, Chun-Huang; Kang, Ruei-Jin; Tyan, Yeu-Sheng; Tsao, Teng-Fu

    2013-08-01

    Time-of-flight (TOF) magnetic resonance (MR) angiography is based on flow-related enhancement using the T1-weighted spoiled gradient echo, or the fast low-angle shot gradient echo sequence. However, materials with short T1 relaxation times may show hyperintensity signals and contaminate the TOF images. The objective of our study was to determine whether subtraction three-dimensional (3D) TOF MR angiography improves image quality in brain and temporal bone diseases with unwanted contaminations with short T1 relaxation times. During the 12-month study period, patients who had masses with short T1 relaxation times noted on precontrast T1-weighted brain MR images and 24 healthy volunteers were scanned using conventional and subtraction 3D TOF MR angiography. The qualitative evaluation of each MR angiogram was based on signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and scores in three categories, namely, (1) presence of misregistration artifacts, (2) ability to display arterial anatomy selectively (without contamination by materials with short T1 relaxation times), and (3) arterial flow-related enhancement. We included 12 patients with intracranial hematomas, brain tumors, or middle-ear cholesterol granulomas. Subtraction 3D TOF MR angiography yielded higher CNRs between the area of the basilar artery (BA) and normal-appearing parenchyma of the brain and lower SNRs in the area of the BA compared with the conventional technique (147.7 ± 77.6 vs. 130.6 ± 54.2, p < 0.003 and 162.5 ± 79.9 vs. 194.3 ± 62.3, p < 0.001, respectively) in all 36 cases. The 3D subtraction angiography did not deteriorate image quality with misregistration artifacts and showed a better selective display of arteries (p < 0.0001) and arterial flow-related enhancement (p < 0.044) than the conventional method. Subtraction 3D TOF MR angiography is more appropriate than the conventional method in improving the image quality in brain and temporal bone diseases with unwanted contaminations with short T1 relaxation times. Copyright © 2013. Published by Elsevier B.V.

  1. Neutrophil Extracellular Traps and Fibrin in Otitis Media: Analysis of Human and Chinchilla Temporal Bones.

    PubMed

    Schachern, Patricia A; Kwon, Geeyoun; Briles, David E; Ferrieri, Patricia; Juhn, Steven; Cureoglu, Sebahattin; Paparella, Michael M; Tsuprun, Vladimir

    2017-10-01

    Bacterial resistance in acute otitis can result in bacterial persistence and biofilm formation, triggering chronic and recurrent infections. To investigate the middle ear inflammatory response to bacterial infection in human and chinchilla temporal bones. Six chinchillas underwent intrabullar inoculations with 0.5 mL of 106 colony-forming units (CFUs) of Streptococcus pneumoniae, serotype 2. Two days later, we counted bacteria in middle ear effusions postmortem. One ear from each chinchilla was processed in paraffin and sectioned at 5 µm. The opposite ear was embedded in epoxy resin, sectioned at a thickness of 1 µm, and stained with toluidine blue. In addition, we examined human temporal bones from 2 deceased donors with clinical histories of otitis media (1 with acute onset otitis media, 1 with recurrent infection). Temporal bones had been previously removed at autopsy, processed, embedded in celloidin, and cut at a thickness of 20 µm. Sections of temporal bones from both chinchillas and humans were stained with hematoxylin-eosin and immunolabeled with antifibrin and antihistone H4 antibodies. Histopatological and imminohistochemical changes owing to otitis media. Bacterial counts in chinchilla middle ear effusions 2 days after inoculation were approximately 2 logs above initial inoculum counts. Both human and chinchilla middle ear effusions contained bacteria embedded in a fibrous matrix. Some fibers in the matrix showed positive staining with antifibrin antibody, others with antihistone H4 antibody. In acute and recurrent otitis media, fibrin and neutrophil extracellular traps (NETs) are part of the host inflammatory response to bacterial infection. In the early stages of otitis media the host defense system uses fibrin to entrap bacteria, and NETs function to eliminate bacteria. In chronic otitis media, fibrin and NETs appear to persist.

  2. Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging.

    PubMed

    Meyer, Mathias; Haubenreisser, Holger; Raupach, Rainer; Schmidt, Bernhard; Lietzmann, Florian; Leidecker, Christianne; Allmendinger, Thomas; Flohr, Thomas; Schad, Lothar R; Schoenberg, Stefan O; Henzler, Thomas

    2015-01-01

    To prospectively evaluate radiation dose and image quality of a third generation dual-source CT (DSCT) without z-axis filter behind the patient for temporal bone CT. Forty-five patients were either examined on a first, second, or third generation DSCT in an ultra-high-resolution (UHR) temporal bone-imaging mode. On the third generation DSCT system, the tighter focal spot of 0.2 mm(2) removes the necessity for an additional z-axis-filter, leading to an improved z-axis radiation dose efficiency. Images of 0.4 mm were reconstructed using standard filtered-back-projection or iterative reconstruction (IR) technique for previous generations of DSCT and a novel IR algorithm for the third generation DSCT. Radiation dose and image quality were compared between the three DSCT systems. The statistically significantly highest subjective and objective image quality was evaluated for the third generation DSCT when compared to the first or second generation DSCT systems (all p < 0.05). Total effective dose was 63%/39% lower for the third generation examination as compared to the first and second generation DSCT. Temporal bone imaging without z-axis-UHR-filter and a novel third generation IR algorithm allows for significantly higher image quality while lowering effective dose when compared to the first two generations of DSCTs. • Omitting the z-axis-filter allows a reduction in radiation dose of 50% • A smaller focal spot of 0.2 mm (2) significantly improves spatial resolution • Ultra-high-resolution temporal-bone-CT helps to gain diagnostic information of the middle/inner ear.

  3. Inverting papilloma of the temporal bone: Report of four new cases and systematic review of the literature.

    PubMed

    Carlson, Matthew L; Sweeney, Alex D; Modest, Mara C; Van Gompel, Jamie J; Haynes, David S; Neff, Brian A

    2015-11-01

    Inverting papillomas (IPs) are benign locally invasive tumors that most commonly present within the sinonasal cavity. Temporal bone involvement is exceedingly rare, with fewer than 30 cases reported within the English literature to date. Case series and systematic review of the literature. Four consecutive subjects with temporal bone inverting papilloma (TBIP) were treated, and an additional 28 previously published cases were identified in the literature. Main outcome measures were disease presentation, diagnostic evaluation, management strategy, and outcome. A total of 32 cases were analyzed. The median age at diagnosis was 54 years (mean 54.1; range 19-81 years). Nineteen (59%) patients had synchronous or metachronous sinonasal IP, whereas 13 (41%) had isolated temporal bone disease without sinus involvement. Over half of the patients undergoing microsurgical resection experienced at least one recurrence. Compared to patients with a history of sinus IP, subjects with primary TBIP were younger at time of presentation (44 vs. 58 years; P=0.012); were more commonly female (62% vs. 32%; P=0.15); and were less likely to have intracranial spread (8% vs. 26%; P=0.36), cranial neuropathy (8% vs. 26%; P=0.36), human papillomavirus positivity (11% vs. 57%; P=0.11), or associated carcinoma (0% vs. 47%; P=0.004). Inverting papilloma of the lateral skull base is rare and can pose a significant therapeutic challenge. Primary lesions of the temporal bone appear to follow a less aggressive clinical course when compared to those arising in association with sinonasal disease. Gross total resection is the preferred method of treatment, when feasible, given the high rate of recurrence with subtotal resection and risk of associated malignancy. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  4. Lamb Temporal Bone as a Surgical Training Model of Round Window Cochlear Implant Electrode Insertion.

    PubMed

    Mantokoudis, Georgios; Huth, Markus E; Weisstanner, Christian; Friedrich, Hergen M; Nauer, Claude; Candreia, Claudia; Caversaccio, Marco D; Senn, Pascal

    2016-01-01

    The preservation of residual hearing in cochlear implantation opens the door for optimal functional results. This atraumatic surgical technique requires training; however, the traditional human cadaveric temporal bones have become less available or unattainable in some institutions. This study investigates the suitability of an alternative model, using cadaveric lamb temporal bone, for surgical training of atraumatic round window electrode insertion. A total of 14 lamb temporal bones were dissected for cochlear implantation by four surgeons. After mastoidectomy, visualization, and drilling of the round window niche, an atraumatic round window insertion of a Medel Flex24 electrode was performed. Electrode insertion depth and position were verified by computed tomography scans. All cochleas were successfully implanted using the atraumatic round window approach; however, surgical access through the mastoid was substantially different when compared human anatomy. The mean number of intracochlear electrode contacts was 6.5 (range, 4-11) and the mean insertion depth 10.4 mm (range, 4-20 mm), which corresponds to a mean angular perimodiolar insertion depth of 229 degrees (range 67-540°). Full insertion of the electrode was not possible because of the smaller size of the lamb cochlea in comparison to that of the human. The lamb temporal bone model is well suited as a training model for atraumatic cochlear implantation at the level of the round window. The minimally pneumatized mastoid as well as the smaller cochlea can help prepare a surgeon for difficult cochlear implantations. Because of substantial differences to human anatomy, it is not an adequate training model for other surgical techniques such as mastoidectomy and posterior tympanotomy as well as full electrode insertion.

  5. Pediatric Temporal Bone Fractures: A 10-Year Experience.

    PubMed

    Wexler, Sonya; Poletto, Erica; Chennupati, Sri Kiran

    2017-11-01

    The aim of the study was to compare the traditional and newer temporal bone fracture classification systems and their reliability in predicting serious outcomes of hearing loss and facial nerve (FN) injury. We queried the medical record database for hospital visits from 2002 to 2013 related to the search term temporal. A total of 1144 records were identified, and of these, 46 records with documented temporal bone fractures were reviewed for patient age, etiology and classification of the temporal bone fracture, FN examination, and hearing status. Of these records, radiology images were available for 38 patients and 40 fractures. Thirty-eight patients with accessible radiologic studies, aged 10 months to 16 years, were identified as having 40 temporal bone fractures for which the otolaryngology service was consulted. Twenty fractures (50.0%) were classified as longitudinal, 5 (12.5%) as transverse, and 15 (37.5%) as mixed. Using the otic capsule sparing (OCS)/violating nomenclature, 32 (80.0%) of fractures were classified as OCS, 2 (5.0%) otic capsule violating (OCV), and 6 (15.0%) could not be classified using this system. The otic capsule was involved in 1 (5%) of the longitudinal fractures, none of the transverse fractures, and 1 (6.7%) of the mixed fractures. Sensorineural hearing loss was found in only 2 fractures (5.0%) and conductive hearing loss (CHL) in 6 fractures (15.0%). Two fractures (5.0%) had ipsilateral facial palsy but no visualized fracture through the course of the FN canal. Neither the longitudinal/transverse/mixed nor OCS/OCV classifications were predictors of sensorineural hearing loss (SNHL), CHL, or FN involvement by Fisher exact statistical analysis (for SNHL: P = 0.37 vs 0.16; for CHL: P = 0.71 vs 0.33; for FN: P = 0.62 vs 0.94, respectively). In this large pediatric series, neither classification system of longitudinal/transverse/mixed nor OCS/OCV was predictive of SNHL, CHL, or FN palsy. A more robust database of audiologic results would be helpful in demonstrating this relationship.

  6. Case analysis of temporal bone lesions with facial paralysis as main manifestation and literature review.

    PubMed

    Chen, Wen-Jing; Ye, Jing-Ying; Li, Xin; Xu, Jia; Yi, Hai-Jin

    2017-08-23

    This study aims to discuss clinical characteristics, image manifestation and treatment methods of temporal bone lesions with facial paralysis as the main manifestation for deepening the understanding of such type of lesions and reducing erroneous and missed diagnosis. The clinical data of 16 patients with temporal bone lesions and facial paralysis as main manifestation, who were diagnosed and treated from 2009 to 2016, were retrospectively analyzed. Among these patients, six patients had congenital petrous bone cholesteatoma (PBC), nine patients had facial nerve schwannoma, and one patient had facial nerve hemangioma. All the patients had an experience of long-term erroneous diagnosis. The lesions were completely excised by surgery. PBC and primary facial nerve tumors were pathologically confirmed. Facial-hypoglossal nerve anastomosis was performed on two patients. HB grade VI was recovered to HB grade V in one patient. The anastomosis failed due to severe facial nerve fibrosis in one patient. Hence, HB remained at grade VI. Postoperative recovery was good for all patients. No lesion recurrence was observed after 1-6 years of follow-up. For the patients with progressive or complete facial paralysis, imaging examination should be perfected in a timely manner. Furthermore, PBC, primary facial nerve tumors and other temporal bone space-occupying lesions should be eliminated. Lesions should be timely detected and proper intervention should be conducted, in order to reduce operation difficulty and complications, and increase the opportunity of facial nerve function reconstruction.

  7. A metastatic glomus jugulare tumor. A temporal bone report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Fiky, F.M.; Paparella, M.M.

    The clinicopathologic findings in the temporal bone of a patient with a highly malignant metastasizing glomus jugulare tumor are reported. The patient exhibited all the symptoms of primary malignant tumors of the ear, including facial paralysis, otorrhea, pain, hearing loss, tinnitus, dizziness, and vertigo. He was treated with cobalt irradiation followed by radium implant in the ear canal for a residual tumor; then a left-sided radical mastoidectomy was performed.

  8. Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection.

    PubMed

    Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F

    2010-01-01

    If muscle force is a primary source for triggering bone adaptation, with disuse and reloading, bone changes should follow muscle changes. We examined the timing and magnitude of changes in muscle cross-sectional area (MCSA) and bone architecture in response to muscle inactivity following botulinum toxin (BTX) injection. We hypothesized that MCSA would return to baseline levels sooner than bone properties following BTX injection. Female BALB mice (15 weeks old) were injected with 20 muL of BTX (1 U/100 g body mass, n=18) or saline (SAL, n=18) into the posterior calf musculature of one limb. The contralateral limb (CON) served as an internal control. MCSA and bone properties were assessed at baseline, 2, 4, 8, 12, and 16 weeks post-injection using in vivo micro-CT at the tibia proximal metaphysis (bone only) and diaphysis. Muscles were dissected and weighed after sacrifice. Significant GroupxLegxTime interactions indicated that the maximal decrease in MCSA (56%), proximal metaphyseal BV/TV (38%) and proximal diaphyseal Ct.Ar (7%) occurred 4 weeks after injection. There was no delay prior to bone recovery as both muscle and bone properties began to recover after this time, but MCSA and BV/TV remained 15% and 20% lower, respectively, in the BTX-injected leg than the BTX-CON leg 16 weeks post-injection. Gastrocnemius mass (primarily fast-twitch) was 14% lower in the BTX-injected leg than the SAL-injected leg, while soleus mass (primarily slow-twitch) was 15% greater in the BTX group than the SAL group. Our finding that muscle size and bone began to recover at similar times after BTX injection was unexpected. This suggested that partial weight-bearing and/or return of slow-twitch muscle activity in the BTX leg may have been sufficient to stimulate bone recovery. Alternatively, muscle function may have recovered sooner than MCSA. Our results indicated that muscle cross-sectional area, while important, may not be the primary factor associated with bone loss and recovery when muscle atrophy is induced through BTX injection. To understand the nature of the interaction between muscle and bone, future work should focus on the functional recovery of individual muscles in relation to bone. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  9. [Effect size on resonance of the outer ear canal by simulation of middle ear lesions using a temporal bone preparation].

    PubMed

    Scheinpflug, L; Vorwerk, U; Begall, K

    1995-01-01

    By means of a model of the external and the middle ear it is possible to simulate various, exactly defined pathological conditions of the middle ear and to describe their influence on ear canal resonance. Starting point of the investigations are fresh postmortem preparations of 8 human temporal bones with an intact ear drum and a retained skin of the ear canal. The compliance of the middle ear does not significantly differ from the clinical data of probands with healthy ears. After antrotomy it is possible to simulate pathological conditions of the middle ear one after the other at the same temporal bone. The influence of the changed middle ear conditions on ear drum compliance, ear canal volume and on the resonance curve of the external ear canal was investigated. For example, the middle ear was filled with water to create approximately the same conditions as in acute serous otitis media. In this middle ear condition a significant increase of the sound pressure amplification was found, on an average by 4 decibels compared to the unchanged temporal bone model. A small increase in resonance frequency was also measured. The advantages of this model are the approximately physiological conditions and the constant dimensions of the external and middle ear.

  10. A high-resolution imaging technique using a whole-body, research photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-03-01

    A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.

  11. Primary Ewing's Sarcoma of the temporal bone in an infant.

    PubMed

    Goudarzipour, Kourosh; Shamsian, Shahin; Alavi, Samin; Nourbakhsh, Kazem; Aghakhani, Roxana; Eydian, Zahra; Arzanian, Mohammad Taghi

    2015-04-01

    Introduction : Ewing's sarcoma is the second most common primary malignant tumor of bone found in children after Osteosarcoma. It accounts for 4-9% of primary malignant bone tumors and it affects bones of the skull or face in only 1-4% of cases. Hence it rarely affects the head and neck. Subject and Method : In this case report, we describe a case of primary Ewing's sarcoma occurring in the temporal bone. The tumor was surgically excised, and the patient underwent chemotherapy for ten months. Results : Neither recurrence nor distant metastasis was noted in these 10 months after surgery but about 18 months after surgery our patient was expired. Conclusion : Although the prognosis of Ewing's sarcoma is generally poor because of early metastasis to the lungs and to other bones, a review of the article suggested that Ewing's sarcoma occurring in the skull can often be successfully managed by intensive therapy with radical excision and chemotherapy. This result was supported by the case reported here.

  12. Cochlear pathology in chronic suppurative otitis media.

    PubMed

    Walby, A P; Barrera, A; Schuknecht, H F

    1983-01-01

    Chronic suppurative otitis media (COM) is reported to cause elevation of bone-conduction thresholds either by damage to cochlear sensorineural structures or by alteration in the mechanics of sound transmission in the ear. A retrospective study was made of the medical records of 87 patients with unilateral uncomplicated COM to document that abnormality in bone conduction does exist. In a separate study the cochlear pathology in 12 pairs of temporal bones with unilateral COM was studied by light microscopy. Infected ears showed higher than normal mean bone-conduction thresholds by amounts ranging from 1 dB at 500 Hz to 9.5 dB at 4,000 Hz. The temporal bones showed no greater loss of specialized sensorineural structures in infected ears than in normal control ears. Because there is no evidence that COM caused destruction of hair cells or cochlear neurons, alteration in the mechanics of sound transmission becomes a more plausible explanation for the hearing losses.

  13. Bone Area Histomorphometry.

    PubMed

    Andronowski, Janna M; Crowder, Christian

    2018-05-21

    Quantifying the amount of cortical bone loss is one variable used in histological methods of adult age estimation. Measurements of cortical area tend to be subjective and additional information regarding bone loss is not captured considering cancellous bone is disregarded. We describe whether measuring bone area (cancellous + cortical area) rather than cortical area may improve histological age estimation for the sixth rib. Mid-shaft rib cross-sections (n = 114) with a skewed sex distribution were analyzed. Ages range from 16 to 87 years. Variables included: total cross-sectional area, cortical area, bone area, relative bone area, relative cortical area, and endosteal area. Males have larger mean total cross-sectional area, bone area, and cortical area than females. Females display a larger mean endosteal area and greater mean relative measure values. Relative bone area significantly correlates with age. The relative bone area variable will provide researchers with a less subjective and more accurate measure than cortical area. © 2018 American Academy of Forensic Sciences.

  14. Life and extinction of megafauna in the ice-age Arctic

    PubMed Central

    Mann, Daniel H.; Groves, Pamela; Reanier, Richard E.; Gaglioti, Benjamin V.; Kunz, Michael L.; Shapiro, Beth

    2015-01-01

    Understanding the population dynamics of megafauna that inhabited the mammoth steppe provides insights into the causes of extinctions during both the terminal Pleistocene and today. Our study area is Alaska's North Slope, a place where humans were rare when these extinctions occurred. After developing a statistical approach to remove the age artifacts caused by radiocarbon calibration from a large series of dated megafaunal bones, we compare the temporal patterns of bone abundance with climate records. Megafaunal abundance tracked ice age climate, peaking during transitions from cold to warm periods. These results suggest that a defining characteristic of the mammoth steppe was its temporal instability and imply that regional extinctions followed by population reestablishment from distant refugia were characteristic features of ice-age biogeography at high latitudes. It follows that long-distance dispersal was crucial for the long-term persistence of megafaunal species living in the Arctic. Such dispersal was only possible when their rapidly shifting range lands were geographically interconnected. The end of the last ice age was fatally unique because the geographic ranges of arctic megafauna became permanently fragmented after stable, interglacial climate engendered the spread of peatlands at the same time that rising sea level severed former dispersal routes. PMID:26578776

  15. Architectural and biochemical adaptations in skeletal muscle and bone following rotator cuff injury in a rat model.

    PubMed

    Sato, Eugene J; Killian, Megan L; Choi, Anthony J; Lin, Evie; Choo, Alexander D; Rodriguez-Soto, Ana E; Lim, Chanteak T; Thomopoulos, Stavros; Galatz, Leesa M; Ward, Samuel R

    2015-04-01

    Injury to the rotator cuff can cause irreversible changes to the structure and function of the associated muscles and bones. The temporal progression and pathomechanisms associated with these adaptations are unclear. The purpose of this study was to investigate the time course of structural muscle and osseous changes in a rat model of a massive rotator cuff tear. Supraspinatus and infraspinatus muscle architecture and biochemistry and humeral and scapular morphological parameters were measured three days, eight weeks, and sixteen weeks after dual tenotomy with and without chemical paralysis via botulinum toxin A (BTX). Muscle mass and physiological cross-sectional area increased over time in the age-matched control animals, decreased over time in the tenotomy+BTX group, and remained nearly the same in the tenotomy-alone group. Tenotomy+BTX led to increased extracellular collagen in the muscle. Changes in scapular bone morphology were observed in both experimental groups, consistent with reductions in load transmission across the joint. These data suggest that tenotomy alone interferes with normal age-related muscle growth. The addition of chemical paralysis yielded profound structural changes to the muscle and bone, potentially leading to impaired muscle function, increased muscle stiffness, and decreased bone strength. Structural musculoskeletal changes occur after tendon injury, and these changes are severely exacerbated with the addition of neuromuscular compromise. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  16. Middle ear tuberculosis: diagnostic criteria.

    PubMed

    Jesić, Snezana; Stosić, Svetlana; Milenković, Branislava; Nesić, Vladimir; Dudvarski, Zoran; Jotić, Ana; Slijepcević, Nikola

    2009-01-01

    Tuberculous otitis is a diagnostic problem due to the difficulty to obtain microbiological, histomorphological and cytological confirmation of the disease. Our objective was to compare clinical and radiological characteristic and development of otogenic complications in patients with tuberculous otitis and otitis with cholesteatoma as the most destructive form of chronic nonspecific otitis in the purpose of establishing the diagnostic criteria for tuberculous otitis. Medical records of 12 patients with tuberculous otitis and 163 patients with cholesteatoma treated at the Institute of Otorhinolaryngology and Maxillofacial Surgery in Belgrade during the eight-year period were analyzed. All of the patients underwent otomicroscopic, audiological and radiological examination of the thorax and temporal bone, microbiological examination of the secretion and histomorphological examination of the tissue taken during middle ear surgery. Statistical analysis was done using chi2 test with Yates correction. Otogenic complication as facial palsy and sensorineural hearing loss were more frequent in tuberculous otitis patients, than in cholesteatoma. Also, fistulas of the labyrinth and facial canal bone destruction were also more frequent in tuberculous otitis than in cholesteatoma. A larger extent of temporal bone destruction was noticed on CT scans of the temporal bone in half of the patents with tuberculous otitis. Coexistence with miliary pulmonary tuberculosis was detected in one third of the patients. There were no microbiological or histomorphological confirmations of the disease, except in one case with positive ZiehI-Neelsen staining. Tuberculous otitis media should be considered in patients with serious otogenic complications and with shorter duration of ear discharge, and in association with diagnosed miliary pulmonary tuberculosis and extensive temporal bone destruction. Polymerase chain reaction still is not reliable for diagnosis.

  17. A Histological Study of Scala Communis with Radiological Implications

    PubMed Central

    Makary, Chadi; Shin, Jennifer; Caruso, Paul; Curtin, Hugh; Merchant, Saumil

    2010-01-01

    Objectives Scala communis or interscalar septum (IS) defect is a developmental abnormality of the inner ear characterized by a dehiscence in the partition separating the turns of the cochlea. The goals of the present study were to (1) study this anomaly and describe its characteristics compared to control ears using a histological analysis of temporal bones, (2) discuss radiological implications regarding its diagnosis, and (3) describe its embryological derivation. Methods Out of 1775 temporal bones assessed, 22 specimens were found to have scala communis in cochleae containing all 3 turns (basal, middle and apical). These 22 ears were studied in detail by qualitative and quantitative methods using light microscopy. Results Scala communis occurred as an isolated inner ear anomaly, or in association with other congenital cochlear and/or vestibular anomalies. The defect occurred most often between the middle and apical turns of the cochlea. Compared to control ears, scala communis ears were found to have a smaller modiolar area (p < 0.0001) and flattening of the interscalar ridge (point of attachment of the IS to the inner lumen of the cochlea; p < 0.0001). Scala communis was compatible with normal hearing. Conclusions Flattening of the interscalar ridge has the potential to improve the diagnosis of scala communis in patients using CT scanning. The anomaly may result from a mesodermal defect such as excessive resorption of mesenchyme during the formation of the scalae, an error in the formation of bone, or both. PMID:20389062

  18. A histological study of scala communis with radiological implications.

    PubMed

    Makary, Chadi; Shin, Jennifer; Caruso, Paul; Curtin, Hugh; Merchant, Saumil

    2010-01-01

    Scala communis or interscalar septum (IS) defect is a developmental abnormality of the inner ear characterized by a dehiscence in the partition separating the turns of the cochlea. The goals of the present study were to (1) study this anomaly and describe its characteristics compared to control ears using a histological analysis of temporal bones, (2) discuss radiological implications regarding its diagnosis, and (3) describe its embryological derivation. Out of 1775 temporal bones assessed, 22 specimens were found to have scala communis in cochleae containing all 3 turns (basal, middle and apical). These 22 ears were studied in detail by qualitative and quantitative methods using light microscopy. Scala communis occurred as an isolated inner ear anomaly, or in association with other congenital cochlear and/or vestibular anomalies. The defect occurred most often between the middle and apical turns of the cochlea. Compared to control ears, scala communis ears were found to have a smaller modiolar area (p < 0.0001) and flattening of the interscalar ridge (point of attachment of the IS to the inner lumen of the cochlea; p < 0.0001). Scala communis was compatible with normal hearing. Flattening of the interscalar ridge has the potential to improve the diagnosis of scala communis in patients using CT scanning. The anomaly may result from a mesodermal defect such as excessive resorption of mesenchyme during the formation of the scalae, an error in the formation of bone, or both. Copyright © 2010 S. Karger AG, Basel.

  19. Ultrasound-induced hyperthermia for the spatio-temporal control of gene expression in bone repair

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher; Padilla, Frédéric; Zhang, Man; Vilaboa, Nuria; Kripfgans, Oliver; Fowlkes, Brian; Franceschi, Renny

    2012-10-01

    Spatial and temporal control over the expression of growth/differentiation factors is of great interest for regeneration of bone, but technologies capable of providing tight and active control over gene expression remain elusive. We propose the use of focused ultrasound for the targeted activation of heat shock-sensitive expression systems in engineered bone. We report in vitro results with cells that express firefly luciferase (fLuc) under the control of a heat shock protein promoter. Cells were embedded in fibrin scaffolds and exposed to focused ultrasound, using a custom 3.3MHz transducer (focal length 4", f-number 1.33", focal dimension 1.2mm lateral FWHM) in CW mode for 2-20 minutes at intensities ISPTA=120-440 W/cm2. The kinetics of ultrasound-mediated activation of the cells was compared with that of strictly thermal activation. Bioluminescence imaging revealed fLuc expression in an area ≥2.5mm in diameter at the position of the ultrasound focus, and the diameter and intensity of the signal increased with the amplitude of the acoustic energy. We also found that ultrasound activated fLuc expression with substantially shorter exposures than thermal activation. Our results demonstrate the potential for focused ultrasound to selectively activate the expression of a gene of interest in an engineered tissue and suggest that focused ultrasound activates the heat shock pathway by a combination of thermal and non-thermal mechanisms.

  20. Combined flaps based on the superficial temporal vascular system for reconstruction of facial defects.

    PubMed

    Zhou, Renpeng; Wang, Chen; Qian, Yunliang; Wang, Danru

    2015-09-01

    Facial defects are multicomponent deficiencies rather than simple soft-tissue defects. Based on different branches of the superficial temporal vascular system, various tissue components can be obtained to reconstruct facial defects individually. From January 2004 to December 2013, 31 patients underwent reconstruction of facial defects with composite flaps based on the superficial temporal vascular system. Twenty cases of nasal defects were repaired with skin and cartilage components, six cases of facial defects were treated with double island flaps of the skin and fascia, three patients underwent eyebrow and lower eyelid reconstruction with hairy and hairless flaps simultaneously, and two patients underwent soft-tissue repair with auricular combined flaps and cranial bone grafts. All flaps survived completely. Donor-site morbidity is minimal, closed primarily. Donor areas healed with acceptable cosmetic results. The final outcome was satisfactory. Combined flaps based on the superficial temporal vascular system are a useful and versatile option in facial soft-tissue reconstruction. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometrics.

    PubMed

    Lockwood, Charles A; Lynch, John M; Kimbel, William H

    2002-12-01

    The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade.

  2. Mastoidectomy performance assessment of virtual simulation training using final-product analysis.

    PubMed

    Andersen, Steven A W; Cayé-Thomasen, Per; Sørensen, Mads S

    2015-02-01

    The future development of integrated automatic assessment in temporal bone virtual surgical simulators calls for validation against currently established assessment tools. This study aimed to explore the relationship between mastoidectomy final-product performance assessment in virtual simulation and traditional dissection training. Prospective trial with blinding. A total of 34 novice residents performed a mastoidectomy on the Visible Ear Simulator and on a cadaveric temporal bone. Two blinded senior otologists assessed the final-product performance using a modified Welling scale. The simulator gathered basic metrics on time, steps, and volumes in relation to the on-screen tutorial and collisions with vital structures. Substantial inter-rater reliability (kappa = 0.77) for virtual simulation and moderate inter-rater reliability (kappa = 0.59) for dissection final-product assessment was found. The simulation and dissection performance scores had significant correlation (P = .014). None of the basic simulator metrics correlated significantly with the final-product score except for number of steps completed in the simulator. A modified version of a validated final-product performance assessment tool can be used to assess mastoidectomy on virtual temporal bones. Performance assessment of virtual mastoidectomy could potentially save the use of cadaveric temporal bones for more advanced training when a basic level of competency in simulation has been achieved. NA. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Experimental flat-panel high-spatial-resolution volume CT of the temporal bone.

    PubMed

    Gupta, Rajiv; Bartling, Soenke H; Basu, Samit K; Ross, William R; Becker, Hartmut; Pfoh, Armin; Brady, Thomas; Curtin, Hugh D

    2004-09-01

    A CT scanner employing a digital flat-panel detector is capable of very high spatial resolution as compared with a multi-section CT (MSCT) scanner. Our purpose was to determine how well a prototypical volume CT (VCT) scanner with a flat-panel detector system defines fine structures in temporal bone. Four partially manipulated temporal-bone specimens were imaged by use of a prototypical cone-beam VCT scanner with a flat-panel detector system at an isometric resolution of 150 microm at the isocenter. These specimens were also depicted by state-of-the-art multisection CT (MSCT). Forty-two structures imaged by both scanners were qualitatively assessed and rated, and scores assigned to VCT findings were compared with those of MSCT. Qualitative assessment of anatomic structures, lesions, cochlear implants, and middle-ear hearing aids indicated that image quality was significantly better with VCT (P < .001). Structures near the spatial-resolution limit of MSCT (e.g., bony covering of the tympanic segment of the facial canal, the incudo-stapedial joint, the proximal vestibular aqueduct, the interscalar septum, and the modiolus) had higher contrast and less partial-volume effect with VCT. The flat-panel prototype provides better definition of fine osseous structures of temporal bone than that of currently available MSCT scanners. This study provides impetus for further research in increasing spatial resolution beyond that offered by the current state-of-the-art scanners.

  4. Freely-available, true-color volume rendering software and cryohistology data sets for virtual exploration of the temporal bone anatomy.

    PubMed

    Kahrs, Lüder Alexander; Labadie, Robert Frederick

    2013-01-01

    Cadaveric dissection of temporal bone anatomy is not always possible or feasible in certain educational environments. Volume rendering using CT and/or MRI helps understanding spatial relationships, but they suffer in nonrealistic depictions especially regarding color of anatomical structures. Freely available, nonstained histological data sets and software which are able to render such data sets in realistic color could overcome this limitation and be a very effective teaching tool. With recent availability of specialized public-domain software, volume rendering of true-color, histological data sets is now possible. We present both feasibility as well as step-by-step instructions to allow processing of publicly available data sets (Visible Female Human and Visible Ear) into easily navigable 3-dimensional models using free software. Example renderings are shown to demonstrate the utility of these free methods in virtual exploration of the complex anatomy of the temporal bone. After exploring the data sets, the Visible Ear appears more natural than the Visible Human. We provide directions for an easy-to-use, open-source software in conjunction with freely available histological data sets. This work facilitates self-education of spatial relationships of anatomical structures inside the human temporal bone as well as it allows exploration of surgical approaches prior to cadaveric testing and/or clinical implementation. Copyright © 2013 S. Karger AG, Basel.

  5. Optimization of 3D Print Material for the Recreation of Patient-Specific Temporal Bone Models.

    PubMed

    Haffner, Max; Quinn, Austin; Hsieh, Tsung-Yen; Strong, E Bradley; Steele, Toby

    2018-05-01

    Identify the 3D printed material that most accurately recreates the visual, tactile, and kinesthetic properties of human temporal bone Subjects and Methods: Fifteen study participants with an average of 3.6 years of postgraduate training and 56.5 temporal bone (TB) procedures participated. Each participant performed a mastoidectomy on human cadaveric TB and five 3D printed TBs of different materials. After drilling each unique material, participants completed surveys to assess each model's appearance and physical likeness on a Likert scale from 0 to 10 (0 = poorly representative, 10 = completely life-like). The 3D models were acquired by computed tomography (CT) imaging and segmented using 3D Slicer software. Polyethylene terephthalate (PETG) had the highest average survey response for haptic feedback (HF) and appearance, scoring 8.3 (SD = 1.7) and 7.6 (SD = 1.5), respectively. The remaining plastics scored as follows for HF and appearance: polylactic acid (PLA) averaged 7.4 and 7.6, acrylonitrile butadiene styrene (ABS) 7.1 and 7.2, polycarbonate (PC) 7.4 and 3.9, and nylon 5.6 and 6.7. A PETG 3D printed temporal bone models performed the best for realistic appearance and HF as compared with PLA, ABS, PC, and nylon. The PLA and ABS were reliable alternatives that also performed well with both measures.

  6. Outcomes and special considerations of cochlear implantation in waardenburg syndrome.

    PubMed

    Kontorinis, Georgios; Lenarz, Thomas; Giourgas, Alexandros; Durisin, Martin; Lesinski-Schiedat, Anke

    2011-08-01

    The objective of this study was a state-of-the-art analysis of cochlear implantation in patients with Waardenburg syndrome (WS). Twenty-five patients with WS treated with cochlear implants in our department from 1990 to 2010. The 25 patients with WS underwent 35 cochlear implantations. Hearing outcome was evaluated using HSM sentence test in 65 dB in quiet, Freiburg Monosyllabic Test, and categories of auditory performance for children and compared with that of a control group. Anatomic abnormalities of the inner ear were examined using magnetic resonance imaging and computed tomography of the temporal bones. The mean follow-up time was 8.3 years (range, 0.3-18.3 yr). The majority achieved favorable postimplantation performance with mean HSM scores of 75.3% (range, 22.6%-99%) and Freiburg Monosyllabic Test scores of 67.8% (range, 14%-95%). However, in 4 cases, the results were less satisfactory. The comparison with the control group did not reveal any statistical significance (p = 0.56). In 6 patients (24%), behavioral disorders caused temporary difficulties during the rehabilitation procedure. Except of isolated large vestibule in 1 patient, the radiological assessment of the 50 temporal bones did not reveal any temporal bone abnormalities. Most patients with WS performed well with cochlear implants. However, WS is related to behavioral disorders that may cause temporary rehabilitation difficulties. Finally, temporal bone malformations that could affect cochlear implantation are notcharacteristic of WS.

  7. Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery.

    PubMed

    Kockro, Ralf A; Hwang, Peter Y K

    2009-05-01

    We have developed an interactive virtual model of the temporal bone for the training and teaching of cranial base surgery. The virtual model was based on the tomographic data of the Visible Human Project. The male Visible Human's computed tomographic data were volumetrically reconstructed as virtual bone tissue, and the individual photographic slices provided the basis for segmentation of the middle and inner ear structures, cranial nerves, vessels, and brainstem. These structures were created by using outlining and tube editing tools, allowing structural modeling either directly on the basis of the photographic data or according to information from textbooks and cadaver dissections. For training and teaching, the virtual model was accessed in the previously described 3-dimensional workspaces of the Dextroscope or Dextrobeam (Volume Interactions Pte, Ltd., Singapore), whose interfaces enable volumetric exploration from any perspective and provide virtual tools for drilling and measuring. We have simulated several cranial base procedures including approaches via the floor of the middle fossa and the lateral petrous bone. The virtual model suitably illustrated the core facts of anatomic spatial relationships while simulating different stages of bone drilling along a variety of surgical corridors. The system was used for teaching during training courses to plan and discuss operative anatomy and strategies. The Virtual Temporal Bone and its surrounding 3-dimensional workspace provide an effective way to study the essential surgical anatomy of this complex region and to teach and train operative strategies, especially when used as an adjunct to cadaver dissections.

  8. Scala tympani cochleostomy II: topography and histology.

    PubMed

    Adunka, Oliver F; Radeloff, Andreas; Gstoettner, Wolfgang K; Pillsbury, Harold C; Buchman, Craig A

    2007-12-01

    To assess intracochlear trauma using two different round window-related cochleostomy techniques in human temporal bones. Twenty-eight human temporal bones were included in this study. In 21 specimens, cochleostomies were initiated inferior to the round window (RW) annulus. In seven bones, cochleostomies were drilled anterior-inferior to the RW annulus. Limited cochlear implant electrode insertions were performed in 19 bones. In each specimen, promontory anatomy and cochleostomy drilling were photographically documented. Basal cochlear damage was assessed histologically and electrode insertion properties were documented in implanted bones. All implanted specimens showed clear scala tympani electrode placements regardless of cochleostomy technique. All 21 inferior cochleostomies were atraumatic. Anterior-inferior cochleostomies resulted in various degrees of intracochlear trauma in all seven bones. For atraumatic opening of the scala tympani using a cochleostomy approach, initiation of drilling should proceed from inferior to the round window annulus, with gradual progression toward the undersurface of the lumen. While cochleostomies initiated anterior-inferior to the round window annulus resulted in scala tympani opening, many of these bones displayed varying degrees of intracochlear trauma that may result in hearing loss. When intracochlear drilling is avoided, the anterior bony margin of the cochleostomy remains a significant intracochlear impediment to in-line electrode insertion.

  9. Does microtia predict severity of temporal bone CT abnormalities in children with persistent conductive hearing loss?

    PubMed

    Tekes, Aylin; Ishman, Stacey L; Baugher, Katherine M; Brown, David J; Lin, Sandra Y; Tunkel, David E; Unalp-Arida, Aynur; Huisman, Thierry A G M

    2013-07-01

    This study aimed to determine the spectrum of temporal bone computed tomography (CT) abnormalities in children with conductive hearing loss (CHL) with and without microtia. From 1993 to 2008, a total of 3396 pediatric records including CHL were reviewed at our institution and revealed 180 cases of persistent CHL, 46 of whom had diagnostic temporal bone CT examinations. All of these examinations were systematically reviewed by two pediatric neuroradiologists, working in consensus, who had 5 and 18 years, respectively, of dedicated pediatric neuroradiology experience. Of the 46 children, 16 were boys and 30 were girls (age: 0.2-16 years; mean: 5 years). Also, 21 (46%) children had microtia and 25 (54%) children did not, as determined by clinical evaluation. External auditory canal atresia/stenosis (EAC-A/S) was the most common anomaly in both microtia and non-microtia groups. Two or more anomalies were observed in 18/21 children with microtia. The frequency of EAC-A/S was greater in children with microtia versus those without it (86% versus 32%, respectively; P = 0.0003). Syndromic diagnoses were also significantly more frequently made in children with microtia versus those without microtia (76% versus 20%, respectively; P = 0.0001). Temporal bone CT scans were normal in 10 children (22%) with persistent CHL. Microtia is an important finding in children with CHL. EAC and middle ear/ossicle anomalies were significantly more frequently seen in children with microtia, and multiple anomalies and bilateral microtia were more common in children with syndromic associations. These findings highlight the importance of understanding the embryological development of the temporal bone. The presence of one anomaly should raise suspicion of the possibility of other anomalies, especially in the setting of microtia. Bilateral microtia and multiple anomalies should also raise suspicion of genetic syndromes. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Stria vascularis and cochlear hair cell changes in syphilis: A human temporal bone study.

    PubMed

    Hızlı, Ömer; Kaya, Serdar; Hızlı, Pelin; Paparella, Michael M; Cureoglu, Sebahattin

    2016-12-01

    To observe any changes in stria vascularis and cochlear hair cells in patients with syphilis. We examined 13 human temporal bone samples from 8 patients with syphilis (our syphilis group), as well as 12 histopathologically normal samples from 9 age-matched patients without syphilis (our control group). We compared, between the two groups, the mean area of the stria vascularis (measured with conventional light microscopy connected to a personal computer) and the mean percentage of cochlear hair cell loss (obtained from cytocochleograms). In our syphilis group, only 1 (7.7%) of the 13 samples had precipitate in the endolymphatic or perilymphatic spaces; 8 (61.5%) of the samples revealed the presence of endolymphatic hydrops (4 cochlear, 4 saccular). The mean area of the stria vascularis did not significantly differ, in any turn of the cochlea, between the 2 groups (P>0.1). However, we did find significant differences between the 2 groups in the mean percentage of outer hair cells in the apical turn (P<0.026) and in the mean percentage of inner hair cells in the basal (P=0.001), middle (P=0.004), and apical (P=0.018) turns. In 7 samples in our syphilis group, we observed either complete loss of the organ of Corti or a flattened organ of Corti without any cells in addition to the absence of both outer and inner hair cells. In this study, syphilis led either to complete loss of the organ of Corti or to significant loss of cochlear hair cells, in addition to cochleosaccular hydrops. But the area of the stria vascularis did not change. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Less-lethal hybrid ammunition wounds: a forensic assessment introducing bullet-skin-bone entity.

    PubMed

    de Freminville, Humbert; Prat, Nicolas; Rongieras, Frederic; Voiglio, Eric J

    2010-09-01

    Agencies all around the world now use less-lethal weapons with homogeneous missiles such as bean bag or rubber bullets. Contusions and sometimes significant morbidity have been reported. This study focuses on wounds caused by hybrid ammunition with the pathologists' flap-by-flap procedure. Twenty-four postmortem human subjects were used, and lesions caused on frontal, temporal, sternal, and left tibial regions by a 40-mm hybrid ammunition (33 g weight) were evaluated on various distance range. The 50% risk of fractures occurred at 79.2 m/sec on the forehead, 72.9 m/sec on the temporal, 72.5 m/sec on the sternum, and 76.7 m/sec on the tibia. Skin lesions were not predictors of bone fracture. There was no correlation between soft and bone tissue observed lesions and impact velocity (correlated to distance range). Lesions observed with hybrid ammunition were the result of bullet-skin-bone entity as the interaction of the projectile on skin and bone tissues.

  12. [Unifocal eosinophilic granuloma of the temporal bone].

    PubMed

    Rodríguez Fernández-Freire, A; Porras Alonso, E; Benito Navarro, J R; Rodríguez Pérez, M; Hervás Núñez, M J

    2007-01-01

    We present a case of a twelve year old child with a eosinophilic granuloma of the temporal bone. The eosinophilic granuloma is the most frecuent and most benign form of the histiocytosis of the Langerhans cells. The frecuency of the othological manifestations of this condition varies between 15-60 percent and radiologically, the images are characterized by litho-lesions with sharp edges. The diagnosis is histological and the treatment includes surgical intervention accompanied by inter-lesion corticoid-therapy and/or radiotherapy.

  13. The ear: Diagnostic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vignaud, J.; Jardin, C.; Rosen, L.

    1986-01-01

    This is an English translation of volume 17-1 of Traite de radiodiagnostic and represents a reasonably complete documentation of the diseases of the temporal bone that have imaging manifestations. The book begins with chapters on embryology, anatomy and radiography anatomy; it continues with blood supply and an overview of temporal bone pathology. Subsequent chapters cover malformations, trauma, infections, tumors, postoperative changes, glomus tumors, vertebasilar insufficiency, and facial nerve canal lesions. A final chapter demonstrates and discusses magnetic resonance images of the ear and cerebellopontine angle.

  14. Gradenigo's syndrome--surgical management in a child.

    PubMed

    Humayun, Hassan Nabeel; Akhtar, Shabbir; Ahmed, Shakeel

    2011-04-01

    Otits media is a common problem. Some of its complications that were seen frequently in the preantibiotic era are rare today. We report a case of an 8 year boy who presented with earache, retro-orbital pain and diplopia secondary to a sixth nerve palsy--Gradenigo's syndrome. In this syndrome infection from the middle ear spreads medially to the petrous apex of the temporal bone. Work-up includes CT scan of the temporal bones. Timely management with intravenous antibiotics (+ surgery) is needed to prevent intra-cranial complications.

  15. Post-marketing surveillance of CustomBone Service implanted in children under 7 years old.

    PubMed

    Frassanito, Paolo; Tamburrini, Gianpiero; Massimi, Luca; Di Rocco, Concezio; Nataloni, Angelo; Fabbri, Greta; Caldarelli, Massimo

    2015-01-01

    The CustomBone Service is a bioceramic implant suitable for cranial repair in both adults and children, although there are no clinical data about its use in children under 7 years of age. This surveillance study investigates the outcome in this age group. Twenty-eight children under 7 years old (range, 2.5-6 years) received CustomBone Service from July 2006 to May 2013 in 16 international hospitals. Data of 23 children (12 males and 11 females), harboring 24 prosthesis, were available with a minimum follow-up of 1 year. Sites of the cranial defect were frontal or parietal (20.8 % each), parieto-temporal (16.7 %), fronto-parietal or occipital (12.5 % each), fronto-parieto-temporal or fronto-temporal (8.3 % each). Initial diseases were trauma (54.2 %), malformation (37.5 %), or tumor of the bone/skin (8.3 %). Rupture of the implant occurred in a single case during the implant (1/26 surgeries, 3.8 %) and the cranial repair was achieved by means of the back-up prosthesis. Five adverse events were registered during the follow-up period consisting of three cases of fracture and two of exposure/infection of the prosthesis. All cases required the removal of the device (20.8 %). The failure rate of CustomBone Service under 7 years of age was higher than reported in adults and children over 7 years old (20.8 vs. 3.8 %), However, CustomBone Service may be considered a valid option under 7 years old since other materials are burdened by more significant rates of complications in the long-term period. Due to specific properties of this material, indication to CustomBone Service in toddlers should be carefully evaluated by the surgeon on a case-by-case basis.

  16. The cell biology of bone growth.

    PubMed

    Price, J S; Oyajobi, B O; Russell, R G

    1994-02-01

    The field of bone cell biology is clearly of relevance to the problem of stunting in children, as in the final analysis the cells of the growing long bone are the ultimate 'regulators'. It is the alterations in the functions of these cells that manifests as a reduction in height. Normal longitudinal growth is achieved by the coordinated recruitment, proliferation, differentiation, maturation and eventual death of the cells of growth plate and bone. Cellular activity is closely regulated by endocrine factors acting directly or indirectly, with factors produced locally and stored within the bone and cartilage microenvironment having a critical role in intercellular communication. Disruption of any of these processes can lead to growth disturbances, since it only requires a defect in a single gene to have profound effects. Studies in recent years have shed light on the biochemical and molecular effects of cytokines and growth factors and have shown that these regulatory molecules may mediate the effects of certain hormones important in controlling growth. However, the complex interrelationship of these molecules is still not clear. Notwithstanding, understanding of the mechanisms involved in bone remodelling is increasing, as this area attracts much research because of the high incidence of metabolic bone disease in Western society. Although studies of adult bone remodelling are of relevance, there is a requirement for increased research directed specifically at the mechanisms of endochondral ossification and its regulation. Longitudinal bone growth is a challenge to the cell biologist, since it is an accelerated cycle of cellular division and differentiation, within which it is not easy to separate events temporally and spatially. In addition, different regulatory mechanisms are probably important at different stages of growth. Another difficulty impeding progress in this field is the lack of appropriate animal models for research. Much information has come from studies involving rodents, and species differences must always be taken into account. Larger mammals such as the growing piglet or the calf are probably more appropriate for the study of postnatal longitudinal growth in man. If the mechanisms of stunting are to be established at a cellular level, a number of approaches need to be considered. Studies need to be designed using more appropriate animal models, and conditions such as nutritional intake, immunological challenges, chronic intestinal diseases and mechanical loading need to be manipulated. Any effects on longitudinal growth may then be studied temporally and correlated with non-invasive measurements including assays of hormones, cytokines, growth factors and proteins known to regulate their activity.(ABSTRACT TRUNCATED AT 400 WORDS)

  17. Experimental assessment of energy requirements and tool tip visibility for photoacoustic-guided endonasal surgery

    NASA Astrophysics Data System (ADS)

    Lediju Bell, Muyinatu A.; Dagle, Alicia B.; Kazanzides, Peter; Boctor, Emad M.

    2016-03-01

    Endonasal transsphenoidal surgery is an effective approach for pituitary adenoma resection, yet it poses the serious risk of internal carotid artery injury. We propose to visualize these carotid arteries, which are hidden by bone, with an optical fiber attached to a surgical tool and a transcranial ultrasound probe placed on the patient's temple (i.e. intraoperative photoacoustic imaging). To investigate energy requirements for vessel visualization, experiments were conducted with a phantom containing ex vivo sheep brain, ex vivo bovine blood, and 0.5-2.5 mm thick human cadaveric skull specimens. Photoacoustic images were acquired with 1.2-9.3 mJ laser energy, and the resulting vessel contrast was measured at each energy level. The distal vessel boundary was difficult to distinguish at the chosen contrast threshold for visibility (4.5 dB), which was used to determine the minimum energies for vessel visualization. The blood vessel was successfully visualized in the presence of the 0-2.0 mm thick sphenoid and temporal bones with up to 19.2 dB contrast. The minimum energy required ranged from 1.2-5.0 mJ, 4.2-5.9 mJ, and 4.6-5.2 mJ for the 1.0 temporal and 0-1.5 mm sphenoid bones, 1.5 mm temporal and 0-0.5 mm sphenoid bones, and 2.0 mm temporal and 0-0.5 mm sphenoid bones, respectively, which corresponds to a fluence range of 4-21 mJ/cm2. These results hold promise for vessel visualization within safety limits. In a separate experiment, a mock tool tip was placed, providing satisfactory preliminary evidence that surgical tool tips can be visualized simultaneously with blood vessels.

  18. Cerebrospinal fluid leaks and encephaloceles of temporal bone origin: nuances to diagnosis and management.

    PubMed

    Jeevan, Dhruve S; Ormond, D Ryan; Kim, Ana H; Meiteles, Lawrence Z; Stidham, Katrina R; Linstrom, Christopher; Murali, Raj

    2015-04-01

    Temporal bone encephalocele has become less common as the incidence of chronic mastoid infection and surgery for this condition has decreased. As a result, the diagnosis is often delayed, and the encephalocele is often an incidental finding. This situation can result in serious neurologic complications with patients presenting with cerebrospinal fluid leak and meningitis. We review the occurrence of, characteristics of, and repair experience with temporal encephaloceles from 2000-2012. We conducted a retrospective review of 32 patients undergoing combined mastoidectomy and middle cranial fossa craniotomy for the treatment of temporal encephalocele. The diagnosis of temporal encephalocele was made in all patients using high-resolution temporal bone computed tomography and magnetic resonance imaging. At the time of diagnosis, 12 patients had confirmed cerebrospinal fluid leak; other common presenting symptoms included hearing loss and ear fullness. Tegmen defect was most commonly due to chronic otitis media (n = 14). Of these patients, 8 had undergone prior mastoidectomy, suggesting an iatrogenic cause. Other etiologies included radiation exposure, congenital defects, and spontaneous defects. Additionally, 2 patients presented with meningitis; 1 patient had serious neurologic deficits resulting from venous infarction. The risk of severe neurologic complications after the herniation of intracranial contents through a tegmen defect necessitates prompt recognition and appropriate management. Computed tomography and magnetic resonance imaging aid in definitive diagnosis. A combined mastoid/middle fossa approach allows for sustainable repair with adequate exposure of defects and support of intracranial contents. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Modeling Analysis of Biomechanical Changes of Middle Ear and Cochlea in Otitis Media

    NASA Astrophysics Data System (ADS)

    Gan, Rong Z.; Zhang, Xiangming; Guan, Xiying

    2011-11-01

    A comprehensive finite element (FE) model of the human ear including the ear canal, middle ear, and spiral cochlea was developed using histological sections of human temporal bone. The cochlea was modeled with three chambers separated by the basilar membrane and Reissner's membrane and filled with perilymphatic fluid. The viscoelastic material behavior was applied to middle ear soft tissues based on dynamic measurements of tissues in our lab. The model was validated using the experimental data obtained in human temporal bones and then used to simulate various stages of otitis media (OM) including the changes of morphology, mechanical properties, pressure, and fluid level in the middle ear. Function alterations of the middle ear and cochlea in OM were derived from the model and compared with the measurements from temporal bones. This study indicates that OM can be simulated in the FE model to predict the hearing loss induced by biomechanical changes of the middle ear and cochlea.

  20. Of Brain and Bone: The Unusual Case of Dr. A

    PubMed Central

    Narvid, J; Gorno-Tempini, ML; Slavotinek, A; DeArmond, SJ; Cha, YH; Miller, BL; Rankin, K.P

    2009-01-01

    Frontotemporal dementia (FTD) is a clinical syndrome characterized by progressive decline in social conduct and a focal pattern of frontal and temporal lobe damage. Its biological basis is still poorly understood but the focality of the brain degeneration provides a powerful model to study the cognitive and anatomical basis of social cognition. Here, we present Dr. A, a patient with a rare hereditary bone disease (hereditary multiple exostoses) and FTD (pathologically characterized as Pick’s disease), who presented with a profound behavioral disturbance characterized by acquired sociopathy. We conducted a detailed genetic, pathological, neuroimaging and cognitive study, including a battery of tests designed to investigate Dr. A’s abilities to understand emotional cues and to infer mental states and intentions to others (theory of mind). Dr. A’s genetic profile suggests the possibility that a mutation causing hereditary multiple exostoses, Ext2, may play a role in the pattern of neurodegeneration in frontotemporal dementia since knockout mice deficient in the Ext gene family member, Ext1, show severe CNS defects including loss of olfactory bulbs and abnormally small cerebral cortex. Dr. A showed significant impairment in emotion comprehension, second order theory of mind, attribution of intentions, and empathy despite preserved general cognitive abilities. Voxel-based morphometry on structural MRI images showed significant atrophy in the medial and right orbital frontal and anterior temporal regions with sparing of dorsolateral frontal cortex. This case demonstrates that social and emotional dysfunction in FTD can dissociate from preserved performance on classic executive functioning tasks. The specific pattern of anatomical damage shown by VBM emphasizes the importance of the network including the superior medial frontal gyrus as well as temporal polar areas, in regulation of social cognition and theory of mind. This case provides new evidence regarding the neural basis of social cognition and suggests a possible genetic link between bone disease and FTD. PMID:20183548

  1. Mastoid Cavity Dimensions and Shape: Method of Measurement and Virtual Fitting of Implantable Devices

    PubMed Central

    Handzel, Ophir; Wang, Haobing; Fiering, Jason; Borenstein, Jeffrey T.; Mescher, Mark J.; Leary Swan, Erin E.; Murphy, Brian A.; Chen, Zhiqiang; Peppi, Marcello; Sewell, William F.; Kujawa, Sharon G.; McKenna, Michael J.

    2009-01-01

    Temporal bone implants can be used to electrically stimulate the auditory nerve, to amplify sound, to deliver drugs to the inner ear and potentially for other future applications. The implants require storage space and access to the middle or inner ears. The most acceptable space is the cavity created by a canal wall up mastoidectomy. Detailed knowledge of the available space for implantation and pathways to access the middle and inner ears is necessary for the design of implants and successful implantation. Based on temporal bone CT scans a method for three-dimensional reconstruction of a virtual canal wall up mastoidectomy space is described. Using Amira® software the area to be removed during such surgery is marked on axial CT slices, and a three-dimensional model of that space is created. The average volume of 31 reconstructed models is 12.6 cm3 with standard deviation of 3.69 cm3, ranging from 7.97 to 23.25 cm3. Critical distances were measured directly from the model and their averages were calculated: height 3.69 cm, depth 2.43 cm, length above the external auditory canal (EAC) 4.45 cm and length posterior to EAC 3.16 cm. These linear measurements did not correlate well with volume measurements. The shape of the models was variable to a significant extent making the prediction of successful implantation for a given design based on linear and volumetric measurement unreliable. Hence, to assure successful implantation, preoperative assessment should include a virtual fitting of an implant into the intended storage space. The above-mentioned three-dimensional models were exported from Amira to a Solidworks application where virtual fitting was performed. Our results are compared to other temporal bone implant virtual fitting studies. Virtual fitting has been suggested for other human applications. PMID:19372649

  2. The suborbicularis oculi fat (SOOF) and the fascial planes: has everything already been explained?

    PubMed

    Andretto Amodeo, Chiara; Casasco, Andrea; Icaro Cornaglia, Antonia; Kang, Robert; Keller, Gregory S

    2014-01-01

    During anatomic and surgical dissections, a connection was seen between the superficial layer of the deep temporal fascia and the prezygomatic area. These findings were in contrast to previous evaluations. This study defines this connection, which is important to understand from both surgical and anatomic standpoints. To define the connection between the superficial layer of the deep temporal fascia and the prezygomatic area and demonstrate the presence of a deep fascial layer in the midface. Anatomical study performed at the Laboratoire d'Anatomie de la Faculté de Médecine de Nice, Sophia Antipolis, France; at the Centre du Don des Corps de l'Université Paris Descartes, Paris, France; and at the Department of Experimental Medicine, Histology, and Embryology Unit of the University of Pavia, Pavia, Italy. Twenty-four hemifaces of 14 white cadavers were dissected to define the relationship between deep temporal fascia and the midface. Four biopsy samples were harvested for histologic analysis. Dissection of 24 hemifaces from the fresh cadavers revealed the following findings. There is a connection of the deep fascia of the temple (superficial layer of deep temporal fascia) to the midface that divides the fat deep to the orbicularis muscle into 2 layers. One layer of fat is the so-called suborbicularis oculi fat (SOOF), which is superficial to the deep fascia, and the other layer of fat (preperiosteal) is deep to the deep fascia and adherent to malar bone. These findings are in contrast to previous anatomical findings. RESULTS In 12 hemifaces, the superficial layer of the deep temporal fascia directly reached the prezygomatic area as a continuous fascial layer. In 16 hemifaces, the superficial sheet of the deep temporal fascia inserted at the level of the zygomatic and lateral orbital rim and continued as a deep fascial layer over the prezygomatic area. In all specimens, a deep fascial layer was present in the prezygomatic-infraorbital area. This deep fascial layer is adherent to the muscles of the infraorbital area, and it divided the fat located deep to the orbicularis oculi muscle into 2 layers: the SOOF and a deeper layer. Histologic examination of the biopsy samples confirmed these findings. This study demonstrates the existence of a deep fascial layer in the midface. This fascia is connected to the superficial layer of the deep temporal fascia, and it divides the fat deep to the orbicularis oculi muscle into 2 layers. This new finding carries interesting implications related to the classic concept of the superficial musculoaponeurotic system. NA.

  3. Modifying cochlear implant design: advantages of placing a return electrode in the modiolus.

    PubMed

    Ho, Steven Y; Wiet, Richard J; Richter, Claus-Peter

    2004-07-01

    A modiolar return electrode significantly increases the current flow across spiral ganglion cells into the modiolus, and may decrease the cochlear implant's power requirements. Ideal cochlear implants should maximize current flow into the modiolus to stimulate auditory neurons. Previous efforts to facilitate current flow through the modiolus included the fabrication and use of precurved electrodes designed to "hug" the modiolus and silastic positioners designed to place the electrodes closer to the modiolus. In contrast to earlier efforts, this study explores the effects of return electrode placement on current distributions in the modiolus. The effects of return electrode positioning on current flow in the modiolus were studied in a Plexiglas model of the cochlea. Results of model measurements were confirmed by measurements in the modiolus of human temporal bones. The return electrode was placed either within the modiolus, or remotely, outside the temporal bone, simulating contemporary cochlear implant configurations using monopolar stimulation. Cochlear model results clearly show that modiolar current amplitudes can be influenced significantly by the location of the return electrode, being larger when placed into the modiolus. Temporal bone data show similar findings. Voltages recorded in the modiolus are, on average, 2.8 times higher with the return electrode in the modiolus compared with return electrode locations outside the temporal bone. Placing a cochlear implant's return electrode in the modiolus should significantly reduce its power consumption. Reducing power requirements should lead to improved efficiency, safer long-term use, and longer device life.

  4. Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometrics

    PubMed Central

    Lockwood, Charles A; Lynch, John M; Kimbel, William H

    2002-01-01

    The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade. PMID:12489757

  5. Vestibular evoked myogenic potentials (VEMP) can detect asymptomatic saccular hydrops.

    PubMed

    Lin, Ming-Yee; Timmer, Ferdinand C A; Oriel, Brad S; Zhou, Guangwei; Guinan, John J; Kujawa, Sharon G; Herrmann, Barbara S; Merchant, Saumil N; Rauch, Steven D

    2006-06-01

    The objective of this study was to explore the useful of vestibular evoked myogenic potential (VEMP) testing for detecting endolymphatic hydrops, especially in the second ear of patients with unilateral Ménière disease (MD). This study was performed at a tertiary care academic medical center. Part I consisted of postmortem temporal bone specimens from the temporal bone collection of the Massachusetts Eye & Ear Infirmary; part II consisted of consecutive consenting adult patients (n = 82) with unilateral MD by American Academy of Otolaryngology-Head and Neck Surgery criteria case histories. Outcome measures consisted of VEMP thresholds in patients and histologic saccular endolymphatic hydrops in postmortem temporal bones. Saccular hydrops was observed in the asymptomatic ear in six of 17 (35%) of temporal bones from donors with unilateral MD. Clinic patients with unilateral MD showed elevated mean VEMP thresholds and altered VEMP tuning in their symptomatic ears and, to a lesser degree, in their asymptomatic ears. Specific VEMP frequency and tuning criteria were used to define a "Ménière-like" response. This "Ménière-like" response was seen in 27% of asymptomatic ears of our patients with unilateral MD. Bilateral involvement is seen in approximately one third of MD cases. Saccular hydrops appears to precede symptoms in bilateral MD. Changes in VEMP threshold and tuning appear to be sensitive to these structural changes in the saccule. If so, then VEMP may be useful as a detector of asymptomatic saccular hydrops and as a predictor of evolving bilateral MD.

  6. Improving temporal bone dissection using self-directed virtual reality simulation: results of a randomized blinded control trial.

    PubMed

    Zhao, Yi Chen; Kennedy, Gregor; Yukawa, Kumiko; Pyman, Brian; O'Leary, Stephen

    2011-03-01

    A significant benefit of virtual reality (VR) simulation is the ability to provide self-direct learning for trainees. This study aims to determine whether there are any differences in performance of cadaver temporal bone dissections between novices who received traditional teaching methods and those who received unsupervised self-directed learning in a VR temporal bone simulator. Randomized blinded control trial. Royal Victorian Eye and Ear Hospital. Twenty novice trainees. After receiving an hour lecture, participants were randomized into 2 groups to receive an additional 2 hours of training via traditional teaching methods or self-directed learning using a VR simulator with automated guidance. The simulation environment presented participants with structured training tasks, which were accompanied by real-time computer-generated feedback as well as real operative videos and photos. After the training, trainees were asked to perform a cortical mastoidectomy on a cadaveric temporal bone. The dissection was videotaped and assessed by 3 otologists blinded to participants' teaching group. The overall performance scores of the simulator-based training group were significantly higher than those of the traditional training group (67% vs 29%; P < .001), with an intraclass correlation coefficient of 0.93, indicating excellent interrater reliability. Using other assessments of performance, such as injury size, the VR simulator-based training group also performed better than the traditional group. This study indicates that self-directed learning on VR simulators can be used to improve performance on cadaver dissection in novice trainees compared with traditional teaching methods alone.

  7. Antlers on the Arctic Refuge: capturing multi-generational patterns of calving ground use from bones on the landscape.

    PubMed

    Miller, Joshua H; Druckenmiller, Patrick; Bahn, Volker

    2013-05-22

    Bone accumulations faithfully record historical ecological data on animal communities, and owing to millennial-scale bone survival on high-latitude landscapes, have exceptional potential for extending records on arctic ecosystems. For the Porcupine Caribou Herd, maintaining access to calving grounds on the Arctic National Wildlife Refuge (ANWR, Alaska) is a central management concern. However, variability in calving ground geography over the 30+ years of monitoring suggests establishing the impacts of climate change and potential petroleum development on future calving success could benefit from extended temporal perspectives. Using accumulations of female antlers (shed within days of calving) and neonatal skeletons, we test if caribou calving grounds develop measureable and characteristic bone accumulations and if skeletal data may be helpful in establishing a fuller, historically integrated understanding of landscape and habitat needs. Bone surveys of an important ANWR calving area reveal abundant shed antlers (reaching 10(3) km(-2)) and high proportional abundance of newborn skeletal individuals (up to 60% neonate). Openly vegetated riparian terraces, which compose less than 10 per cent of ANWR calving grounds, yield significantly higher antler concentrations than more abundant habitats traditionally viewed as primary calving terrain. Differences between habitats appear robust to potential differences in bone visibility. The distribution of antler weathering stages mirrors known multi-decadal calving histories and highlights portions of the antler accumulation that probably significantly extends records of calving activity. Death assemblages offer historically integrated ecological data valuable for the management and conservation of faunas across polar latitudes.

  8. Wise Regulates Bone Deposition through Genetic Interactions with Lrp5

    PubMed Central

    Ellies, Debra L.; Economou, Androulla; Viviano, Beth; Rey, Jean-Philippe; Paine-Saunders, Stephenie; Krumlauf, Robb; Saunders, Scott

    2014-01-01

    In this study using genetic approaches in mouse we demonstrate that the secreted protein Wise plays essential roles in regulating early bone formation through its ability to modulate Wnt signaling via interactions with the Lrp5 co-receptor. In Wise−/− mutant mice we find an increase in the rate of osteoblast proliferation and a transient increase in bone mineral density. This change in proliferation is dependent upon Lrp5, as Wise;Lrp5 double mutants have normal bone mass. This suggests that Wise serves as a negative modulator of Wnt signaling in active osteoblasts. Wise and the closely related protein Sclerostin (Sost) are expressed in osteoblast cells during temporally distinct early and late phases in a manner consistent with the temporal onset of their respective increased bone density phenotypes. These data suggest that Wise and Sost may have common roles in regulating bone development through their ability to control the balance of Wnt signaling. We find that Wise is also required to potentiate proliferation in chondrocytes, serving as a potential positive modulator of Wnt activity. Our analyses demonstrate that Wise plays a key role in processes that control the number of osteoblasts and chondrocytes during bone homeostasis and provide important insight into mechanisms regulating the Wnt pathway during skeletal development. PMID:24789067

  9. Wise regulates bone deposition through genetic interactions with Lrp5.

    PubMed

    Ellies, Debra L; Economou, Androulla; Viviano, Beth; Rey, Jean-Philippe; Paine-Saunders, Stephenie; Krumlauf, Robb; Saunders, Scott

    2014-01-01

    In this study using genetic approaches in mouse we demonstrate that the secreted protein Wise plays essential roles in regulating early bone formation through its ability to modulate Wnt signaling via interactions with the Lrp5 co-receptor. In Wise-/- mutant mice we find an increase in the rate of osteoblast proliferation and a transient increase in bone mineral density. This change in proliferation is dependent upon Lrp5, as Wise;Lrp5 double mutants have normal bone mass. This suggests that Wise serves as a negative modulator of Wnt signaling in active osteoblasts. Wise and the closely related protein Sclerostin (Sost) are expressed in osteoblast cells during temporally distinct early and late phases in a manner consistent with the temporal onset of their respective increased bone density phenotypes. These data suggest that Wise and Sost may have common roles in regulating bone development through their ability to control the balance of Wnt signaling. We find that Wise is also required to potentiate proliferation in chondrocytes, serving as a potential positive modulator of Wnt activity. Our analyses demonstrate that Wise plays a key role in processes that control the number of osteoblasts and chondrocytes during bone homeostasis and provide important insight into mechanisms regulating the Wnt pathway during skeletal development.

  10. Bilateral cochlear implantation in a patient with bilateral temporal bone fractures.

    PubMed

    Chung, Jae Ho; Shin, Myung Chul; Min, Hyun Jung; Park, Chul Won; Lee, Seung Hwan

    2011-01-01

    With the emphasis on bilateral hearing nowadays, bilateral cochlear implantation has been tried out for bilateral aural rehabilitation. Bilateral sensorineural hearing loss caused by head trauma can get help from cochlear implantation. We present the case of a 44-year-old man with bilateral otic capsule violating temporal bone fractures due to head trauma. The patient demonstrated much improved audiometric and psychoacoustic performance after bilateral cochlear implantation. We believe bilateral cochlear implantation in such patient can be a very effective tool for rehabilitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Anatomical study of the facial nerve canal in comparison to the site of the lesion in Bell's palsy.

    PubMed

    Dawidowsky, Krsto; Branica, Srećko; Batelja, Lovorka; Dawidowsky, Barbara; Kovać-Bilić, Lana; Simunić-Veselić, Anamarija

    2011-03-01

    The term Bell's palsy is used for the peripheral paresis of the facial nerve and is of unknown origin. Many studies have been performed to find the cause of the disease, but none has given certain evidence of the etiology. However, the majority of investigators agree that the pathophysiology of the palsy starts with the edema of the facial nerve and consequent entrapment of the nerve in the narrow facial canal in the temporal bone. In this study the authors wanted to find why the majority of the paresis are suprastapedial, i.e. why the entrapment of the nerve mainly occurs in the proximal part of the canal. For this reason they carried out anatomical measurements of the facial canal diameter in 12 temporal bones. By use of a computer program which measures the cross-sectional area from the diameter, they proved that the width of the canal is smaller at its proximal part. Since the nerve is thicker at that point because it contains more nerve fibers, the authors conclude that the discrepancy between the nerve diameter and the surrounding bony walls in the suprastapedial part of the of the canal would, in cases of a swollen nerve after inflammation, cause the facial palsy.

  12. Generalized arteriosclerosis and changes of the cochlea in young adults.

    PubMed

    Nomiya, Rie; Nomiya, Shigenobu; Kariya, Shin; Okano, Mitsuhiro; Morita, Norimasa; Cureoglu, Sebahattin; Schachern, Patricia A; Nishizaki, Kazunori; Paparella, Michael M

    2008-12-01

    To disclose the histopathologic findings of the cochlea in young adults with generalized arteriosclerosis. It is well known that arteriosclerosis begins and progresses during childhood. Although the relationship between arteriosclerosis and auditory function in elderly people was examined in many reports, the histopathologic effect of arteriosclerosis on the cochlea in young adults has not been studied. This study involved quantitative analysis, including the number of spiral ganglion cells, the loss of cochlear outer hair cells, and the areas of stria vascularis and spiral ligament. It included 10 temporal bones from 6 subjects with generalized arteriosclerosis and 10 age-matched normal control temporal bones from 7 subjects. The mean number of spiral ganglion cells in the cochlea with generalized arteriosclerosis was significantly lower than that in normal controls in the basal turn. The mean loss of outer hair cells in the cochlea with generalized arteriosclerosis was significantly greater than that of normal controls in the basal and apical turns. The stria vascularis and spiral ligament were severely atrophic, with generalized arteriosclerosis in the basal turn. There was no significant difference in the thickness of the spiral modiolar artery between generalized arteriosclerosis and normal controls. Degeneration of the cochlea, especially in the basal turn, was already apparent in young adults with generalized arteriosclerosis.

  13. Polyester Wax: A New Embedding Medium for the Histopathologic Study of Human Temporal Bones

    PubMed Central

    Merchant, Saumil N.; Burgess, Barbara; O'Malley, Jennifer; Jones, Diane; Adams, Joe C.

    2007-01-01

    Background Celloidin and paraffin are the two common embedding mediums used for histopathologic study of the human temporal bone by light microscopy. Although celloidin embedding permits excellent morphologic assessment, celloidin is difficult to remove, and there are significant restrictions on success with immunostaining. Embedding in paraffin allows immunostaining to be performed, but preservation of cellular detail within the membranous labyrinth is relatively poor. Objectives/Hypothesis Polyester wax is an embedding medium that has a low melting point (37°C), is soluble in most organic solvents, is water tolerant, and sections easily. We hypothesized that embedding in polyester wax would permit good preservation of the morphology of the membranous labyrinth and, at the same time, allow the study of proteins by immunostaining. Methods Nine temporal bones from individuals aged 1 to 94 years removed 2 to 31 hours postmortem, from subjects who had no history of otologic disease, were used. The bones were fixed using 10% formalin, decal-cified using EDTA, embedded in polyester wax, and serially sectioned at a thickness of 8 to 12 μm on a rotary microtome. The block and knife were cooled with frozen CO2 (dry ice) held in a funnel above the block. Sections were placed on glass slides coated with a solution of 1% fish gelatin and 1% bovine albumin, followed by staining of selected sections with hematoxylin and eosin (H&E). Immunostaining was also performed on selected sections using antibodies to 200 kD neurofilament and Na-K-ATPase. Results Polyester wax–embedded sections demonstrated good preservation of cellular detail of the organ of Corti and other structures of the membranous labyrinth, as well as the surrounding otic capsule. The protocol described in this paper was reliable and consistently yielded sections of good quality. Immuno-staining was successful with both antibodies. Conclusion The use of polyester wax as an embedding medium for human temporal bones offers the advantage of good preservation of morphology and ease of immunostaining. We anticipate that in the future, polyester wax embedding will also permit other molecular biologic assays on temporal bone sections such as the retrieval of nucleic acids and the study of proteins using mass spectrometry–based proteomic analysis. PMID:16467713

  14. Change of urinary fluoride and bone metabolism indicators in the endemic fluorosis areas of southern china after supplying low fluoride public water

    PubMed Central

    2013-01-01

    Background Few studies have evaluated health impacts, especially biomarker changes, following implementation of a new environmental policy. This study examined changes in water fluoride, urinary fluoride (UF), and bone metabolism indicators in children after supplying low fluoride public water in endemic fluorosis areas of Southern China. We also assessed the relationship between UF and serum osteocalcin (BGP), calcitonin (CT), alkaline phosphatase (ALP), and bone mineral density to identify the most sensitive bone metabolism indicators related to fluoride exposure. Methods Four fluorosis-endemic villages (intervention villages) in Guangdong, China were randomly selected to receive low-fluoride water. One non-endemic fluorosis village with similar socio-economic status, living conditions, and health care access, was selected as the control group. 120 children aged 6-12 years old were randomly chosen from local schools in each village for the study. Water and urinary fluoride content as well as serum BGP, CT, ALP and bone mineral density were measured by the standard methods and compared between the children residing in the intervention villages and the control village. Benchmark dose (BMD) and benchmark dose lower limit (BMDL) were calculated for each bone damage indicator. Results Our study found that after water source change, fluoride concentrations in drinking water in all intervention villages (A-D) were significantly reduced to 0.11 mg/l, similar to that in the control village (E). Except for Village A where water change has only been taken place for 6 years, urinary fluoride concentrations in children of the intervention villages were lower or comparable to those in the control village after 10 years of supplying new public water. The values of almost all bone indicators in children living in Villages B-D and ALP in Village A were either lower or similar to those in the control village after the intervention. CT and BGP are sensitive bone metabolism indicators related to UF. While assessing the temporal trend of different abnormal bone indicators after the intervention, bone mineral density showed the most stable and the lowest abnormal rates over time. Conclusions Our results suggest that supplying low fluoride public water in Southern China is successful as measured by the reduction of fluoride in water and urine, and changes in various bone indicators to normal levels. A comparison of four bone indicators showed CT and BGP to be the most sensitive indicators. PMID:23425550

  15. [Motor nerves of the face. Surgical and radiologic anatomy of facial paralysis and their surgical repair].

    PubMed

    Vacher, C; Cyna-Gorse, F

    2015-10-01

    Motor innervation of the face depends on the facial nerve for the mobility of the face, on the mandibular nerve, third branch of the trigeminal nerve, which gives the motor innervation of the masticator muscles, and the hypoglossal nerve for the tongue. In case of facial paralysis, the most common palliative surgical techniques are the lengthening temporalis myoplasty (the temporal is innervated by the mandibular nerve) and the hypoglossal-facial anastomosis. The aim of this work is to describe the surgical anatomy of these three nerves and the radiologic anatomy of the facial nerve inside the temporal bone. Then the facial nerve penetrates inside the parotid gland giving a plexus. Four branches of the facial nerve leave the parotid gland: they are called temporal, zygomatic, buccal and marginal which give innervation to the cutaneous muscles of the face. Mandibular nerve gives three branches to the temporal muscles: the anterior, intermediate and posterior deep temporal nerves which penetrate inside the deep aspect of the temporal muscle in front of the infratemporal line. The hypoglossal nerve is only the motor nerve to the tongue. The ansa cervicalis, which is coming from the superficial cervical plexus and joins the hypoglossal nerve in the submandibular area is giving the motor innervation to subhyoid muscles and to the geniohyoid muscle. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Remote optical configuration of pigmented lesion detection and diagnosis of bone fractures

    NASA Astrophysics Data System (ADS)

    Ozana, Nisan; Bishitz, Yael; Beiderman, Yevgeny; Garcia, Javier; Zalevsky, Zeev; Schwarz, Ariel

    2016-02-01

    In this paper we present a novel approach of realizing a safe, simple, and inexpensive sensor applicable to bone fractures and pigmented lesions detection. The approach is based on temporal tracking of back-reflected secondary speckle pattern generated while illuminating the affected area with a laser and applying periodic pressure to the surface via a controlled vibration. The use of such a concept was already demonstrated for non-contact monitoring of various bio-medical parameters such as heart rate, blood pulse pressure, concentration of alcohol and glucose in the blood stream and intraocular pressure. The presented technique is a safe and effective method of detecting bone fractures in populations at risk. When applied to pigmented lesions, the technique is superior to visual examination in avoiding many false positives and resultant unnecessary biopsies. Applying a series of different vibration frequencies at the examined tissue and analyzing the 2-D speckle pattern trajectory in response to the applied periodic pressure creates a unique signature for each and different pigmented lesion. Analyzing these signatures is the first step toward detection of malignant melanoma. In this paper we present preliminary experiments that show the validity of the developed sensor for both applications: the detection of damaged bones as well as the classification of pigmented lesions.

  17. Modifications to a 3D-printed temporal bone model for augmented stapes fixation surgery teaching.

    PubMed

    Nguyen, Yann; Mamelle, Elisabeth; De Seta, Daniele; Sterkers, Olivier; Bernardeschi, Daniele; Torres, Renato

    2017-07-01

    Functional outcomes and complications in otosclerosis surgery are governed by the surgeon's experience. Thus, teaching the procedure to residents to guide them through the learning process as quickly as possible is challenging. Artificial 3D-printed temporal bones are replacing cadaver specimens in many institutions to learn mastoidectomy, but these are not suitable for middle ear surgery training. The goal of this work was to adapt such an artificial temporal bone to aid the teaching of otosclerosis surgery and to evaluate this tool. We have modified a commercially available 3D-printed temporal bone by replacing the incus and stapes of the model with in-house 3D-printed ossicles. The incus could be attached to a 6-axis force sensor. The stapes footplate was fenestrated and attached to a 1-axis force sensor. Six junior surgeons (residents) and seven senior surgeons (fellows or consultants) were enrolled to perform piston prosthesis placement and crimping as performed during otosclerosis surgery. The time required to perform the tasks and the forces applied to the incus and stapes were collected and analyzed. No statistically significant differences were observed between the junior and senior groups for time taken to perform the tasks and the forces applied to the incus during crimping and placement of the prosthesis. However, significantly lower forces were applied to the stapes by the senior surgeons in comparison with the junior surgeons during prosthesis placement (junior vs senior group, 328 ± 202.9 vs 80 ± 99.6 mN, p = 0.008) and during prosthesis crimping (junior vs senior group, 565 ± 233 vs 66 ± 48.6 mN, p = 0.02). We have described a new teaching tool for otosclerosis surgery based on the modification of a 3D-printed temporal bone to implement force sensors on the incus and stapes. This tool could be used as a training tool to help the residents to self-evaluate their progress with recording of objective measurements.

  18. Evaluation of haptic interfaces for simulation of drill vibration in virtual temporal bone surgery.

    PubMed

    Ghasemloonia, Ahmad; Baxandall, Shalese; Zareinia, Kourosh; Lui, Justin T; Dort, Joseph C; Sutherland, Garnette R; Chan, Sonny

    2016-11-01

    Surgical training is evolving from an observership model towards a new paradigm that includes virtual-reality (VR) simulation. In otolaryngology, temporal bone dissection has become intimately linked with VR simulation as the complexity of anatomy demands a high level of surgeon aptitude and confidence. While an adequate 3D visualization of the surgical site is available in current simulators, the force feedback rendered during haptic interaction does not convey vibrations. This lack of vibration rendering limits the simulation fidelity of a surgical drill such as that used in temporal bone dissection. In order to develop an immersive simulation platform capable of haptic force and vibration feedback, the efficacy of hand controllers for rendering vibration in different drilling circumstances needs to be investigated. In this study, the vibration rendering ability of four different haptic hand controllers were analyzed and compared to find the best commercial haptic hand controller. A test-rig was developed to record vibrations encountered during temporal bone dissection and a software was written to render the recorded signals without adding hardware to the system. An accelerometer mounted on the end-effector of each device recorded the rendered vibration signals. The newly recorded vibration signal was compared with the input signal in both time and frequency domains by coherence and cross correlation analyses to quantitatively measure the fidelity of these devices in terms of rendering vibrotactile drilling feedback in different drilling conditions. This method can be used to assess the vibration rendering ability in VR simulation systems and selection of ideal haptic devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. RNA analysis of inner ear cells from formalin fixed paraffin embedded (FFPE) archival human temporal bone section using laser microdissection--a technical report.

    PubMed

    Kimura, Yurika; Kubo, Sachiho; Koda, Hiroko; Shigemoto, Kazuhiro; Sawabe, Motoji; Kitamura, Ken

    2013-08-01

    Molecular analysis using archival human inner ear specimens is challenging because of the anatomical complexity, long-term fixation, and decalcification. However, this method may provide great benefit for elucidation of otological diseases. Here, we extracted mRNA for RT-PCR from tissues dissected from archival FFPE human inner ears by laser microdissection. Three human temporal bones obtained at autopsy were fixed in formalin, decalcified by EDTA, and embedded in paraffin. The samples were isolated into spiral ligaments, outer hair cells, spiral ganglion cells, and stria vascularis by laser microdissection. RNA was extracted and heat-treated in 10 mM citrate buffer to remove the formalin-derived modification. To identify the sites where COCH and SLC26A5 mRNA were expressed, semi-nested RT-PCR was performed. We also examined how long COCH mRNA could be amplified by semi-nested RT-PCR in archival temporal bone. COCH was expressed in the spiral ligament and stria vascularis. However, SLC26A5 was expressed only in outer hair cells. The maximum base length of COCH mRNA amplified by RT-PCR was 98 bp in 1 case and 123 bp in 2 cases. We detected COCH and SLC26A5 mRNA in specific structures and cells of the inner ear from archival human temporal bone. Our innovative method using laser microdissection and semi-nested RT-PCR should advance future RNA study of human inner ear diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Vestibular Evoked Myogenic Potentials (VEMP) Can Detect Asymptomatic Saccular Hydrops

    PubMed Central

    Lin, Ming-Yee; Timmer, Ferdinand C. A.; Oriel, Brad S.; Zhou, Guangwei; Guinan, John J.; Kujawa, Sharon G.; Herrmann, Barbara S.; Merchant, Saumil N.; Rauch, Steven D.

    2009-01-01

    Objective The objective of this study was to explore the useful of vestibular evoked myogenic potential (VEMP) testing for detecting endolymphatic hydrops, especially in the second ear of patients with unilateral Ménière disease (MD). Methods This study was performed at a tertiary care academic medical center. Part I consisted of postmortem temporal bone specimens from the temporal bone collection of the Massachusetts Eye & Ear Infirmary; part II consisted of consecutive consenting adult patients (n = 82) with unilateral MD by American Academy of Otolaryngology–Head and Neck Surgery criteria case histories. Out-come measures consisted of VEMP thresholds in patients and histologic saccular endolymphatic hydrops in postmortem temporal bones. Results Saccular hydrops was observed in the asymptomatic ear in six of 17 (35%) of temporal bones from donors with unilateral MD. Clinic patients with unilateral MD showed elevated mean VEMP thresholds and altered VEMP tuning in their symptomatic ears and, to a lesser degree, in their asymptomatic ears. Specific VEMP frequency and tuning criteria were used to define a “Ménière-like” response. This “Ménière-like” response was seen in 27% of asymptomatic ears of our patients with unilateral MD. Conclusions Bilateral involvement is seen in approximately one third of MD cases. Saccular hydrops appears to precede symptoms in bilateral MD. Changes in VEMP threshold and tuning appear to be sensitive to these structural changes in the saccule. If so, then VEMP may be useful as a detector of asymptomatic saccular hydrops and as a predictor of evolving bilateral MD. PMID:16735912

  1. Thermal effects of endoscopy in a human temporal bone model: Implications for endoscopic ear surgery

    PubMed Central

    Kozin, Elliott D.; Lehmann, Ashton; Carter, Margaret; Hight, Ed; Cohen, Michael; Nakajima, Hideko Heidi; Lee, Daniel J.

    2015-01-01

    Objective Although the theoretical risk of elevated temperatures during endoscopic ear surgery has been reported previously, neither temperature change nor heat distribution associated with the endoscope has been quantified. In this study, we measure temperature changes during rigid middle ear endoscopy in a human temporal bone model and investigate whether suction can act as a significant cooling mechanism. Study Design Human temporal bone model of endoscopic middle ear surgery. Methods Fresh human temporal bones were maintained at body temperature (~36°C). Temperature fluctuations were measured as a function of 1) distance between the tip of a 3mm 0° Hopkins rod and round window membrane, and 2) intensity of the light source. Infrared imaging determined the thermal gradient. For suction, a #20 French was utilized. Results We found: 1) an endoscope maximally powered by a xenon or LED light source resulted in a rapid temperature elevation up to 46°C within 0.5–1mm from the tip of the endoscope within 30–124 seconds; 2) elevated temperatures occurred up to 8mm from the endoscope tip; and 3) temperature decreased rapidly within 20–88 seconds of turning off the light source or applying suction. Conclusion Our findings have direct implications for avoiding excessive temperature elevation in endoscopic ear surgery. We recommend: 1) using submaximal light intensity, 2) frequent repositioning of the endoscope, and 3) removing the endoscope to allow tissue cooling. Use of suction provides rapid cooling of the middle ear space and may be incorporated in the design of new instrumentation for prolonged dissection. PMID:24604692

  2. Inflammatory Pseudotumor of the Temporal Bone: A Case Series.

    PubMed

    Ortlip, Timothy E; Drake, Virginia E; Raghavan, Prashant; Papadimitriou, John C; Porter, Neil C; Eisenman, David J; Hertzano, Ronna

    2017-08-01

    Inflammatory pseudotumor of the temporal bone is a benign, idiopathic inflammatory process that is locally invasive and a cause of significant morbidity. This study reviews our experience with seven patients and is currently the largest series to date. Retrospective review from January 1, 2014 to January 1, 2016. Single tertiary medical center. There were five male and two female (n = 7) subjects with a diagnosis of temporal bone inflammatory pseudotumor. The mean age at presentation was 41 years old. The most common presenting symptoms were hearing loss (7/7) and headache (4/7). Four patients demonstrated an inflammatory aural polyp. Two patients experienced facial nerve paralysis. Seven patients underwent computed tomography and six underwent magnetic resonance imaging. Corticosteroids and antibiotics were the initial treatment of choice. Five patients also underwent surgery. As adjuvant therapy, two patients received Rituximab, one patient received radiation, and one received mycophenolate mofetil. Clinical courses were followed with focus on symptoms, disease recurrence, duration, and treatment. Mean follow-up was 17.8 months. The primary lesions demonstrated T2 hypo-intensity and enhancement as well as diffuse dural thickening on magnetic resonance imaging in five of six patients. Histopathology demonstrated chronic inflammation in the setting of hyalinized fibrosis (7/7). All the patients are currently symptomatically stable. Inflammatory pseudotumor of the temporal bone can cause devastating effects on neurological function and quality of life. Recognition of characteristic imaging and histopathology can expedite appropriate treatment. Patients may require chronic steroid therapy. Adjunctive therapy with radiation and immuno-modulation are currently being explored.

  3. Genomic validation of the differential preservation of population history in modern human cranial anatomy.

    PubMed

    Reyes-Centeno, Hugo; Ghirotto, Silvia; Harvati, Katerina

    2017-01-01

    In modern humans, the significant correlation between neutral genetic loci and cranial anatomy suggests that the cranium preserves a population history signature. However, there is disagreement on whether certain parts of the cranium preserve this signature to a greater degree than other parts. It is also unclear how different quantitative measures of phenotype affect the association of genetic variation and anatomy. Here, we revisit these matters by testing the correlation of genetic distances and various phenotypic distances for ten modern human populations. Geometric morphometric shape data from the crania of adult individuals (n = 224) are used to calculate phenotypic P ST , Procrustes, and Mahalanobis distances. We calculate their correlation to neutral genetic distances, F ST , derived from single nucleotide polymorphisms (SNPs). We subset the cranial data into landmark configurations that include the neurocranium, the face, and the temporal bone in order to evaluate whether these cranial regions are differentially correlated to neutral genetic variation. Our results show that P ST , Mahalanobis, and Procrustes distances are correlated with F ST distances to varying degrees. They indicate that overall cranial shape is significantly correlated with neutral genetic variation. Of the component parts examined, P ST distances for both the temporal bone and the face have a stronger association with F ST distances than the neurocranium. When controlling for population divergence time, only the whole cranium and the temporal bone have a statistically significant association with F ST distances. Our results confirm that the cranium, as a whole, and the temporal bone can be used to reconstruct modern human population history. © 2016 Wiley Periodicals, Inc.

  4. Assessing stapes piston position using computed tomography: a cadaveric study.

    PubMed

    Hahn, Yoav; Diaz, Rodney; Hartman, Jonathan; Bobinski, Matthew; Brodie, Hilary

    2009-02-01

    Temporal bone computed tomographic (CT) scanning in the postoperative stapedotomy patient is inaccurate in assessing stapes piston position within the vestibule. Poststapedotomy patients that have persistent vertigo may undergo CT scanning to assess the position of the stapes piston within the vestibule to rule out overly deep insertion. Vertigo is a recognized complication of the deep piston, and CT evaluation is often recommended. The accuracy of CT scan in this setting is unestablished. Stapedotomy was performed on 12 cadaver ears, and stainless steel McGee pistons were placed. The cadaver heads were then scanned using a fine-cut temporal bone protocol. Temporal bone dissection was performed with microscopic measurement of the piston depth in the vestibule. These values were compared with depth of intravestibular penetration measured on CT scan by 4 independent measurements. The intravestibular penetration as assessed by computed tomography was consistently greater than the value found on cadaveric anatomic dissection. The radiographic bias was greater when piston location within the vestibule was shallower. The axial CT scan measurement was 0.53 mm greater, on average, than the anatomic measurement. On average, the coronal CT measurement was 0.68 mm greater than the anatomic measurement. The degree of overestimation of penetration, however, was highly inconsistent. Standard temporal bone CT scan is neither an accurate nor precise examination of stapes piston depth within the vestibule. We found that CT measurement consistently overstated intravestibular piston depth. Computed tomography is not a useful study in the evaluation of piston depth for poststapedectomy vertigo and is of limited value in this setting.

  5. Image-interactive orientation in the middle cranial fossa approach to the internal auditory canal: an experimental study.

    PubMed

    Vrionis, F D; Robertson, J H; Foley, K T; Gardner, G

    1997-01-01

    Approaches through the middle cranial fossa directed at reaching the internal auditory canal (IAC) invariably employ exposure of the geniculate ganglion, the superior semicircular canal (SSC) or the epitympanum. This involves risk to the facial nerve and hearing apparatus. To minimize this risk, we conducted a laboratory study on 9 cadaver temporal bones by using an image-interactive guidance system (StealthStation) to provide topographic orientation in the middle fossa approach. Surface anatomic fiducials such as the umbo of the tympanic membrane, Henle's spine, the root of the zygoma and various sutures were used as fiducials for registration of CT-images of the temporal bone. Accurate localization of the IAC was achieved in every specimen. Mean target localization error varied from 1.20 to 1.38 mm for critical structures in the temporal bone such as the apex of the cochlea, crus commune, ampula of the SSC and facial hiatus. Our results suggest that frameless stereotaxy may be used as an alternative to current methods in localizing the IAC in patients with small vestibular schwannomas or intractable vertigo undergoing middle fossa surgery.

  6. Optical coherence tomography as a guide for cochlear implant surgery?

    NASA Astrophysics Data System (ADS)

    Just, T.; Lankenau, E.; Hüttmann, G.; Pau, H. W.

    2008-02-01

    To assess the potential use of optical coherence tomography (OCT) in cochlear implant surgery, OCT was applied in human temporal bones before cochleostomy. The question was whether OCT might provide information about the cochlear topography, especially about the site of the scala tympani. OCT was carried out on human temporal bone preparations, in which the cochleostomy was performed leaving the membranous labyrinth and the fluid-filled inner ear intact. A specially equipped operating microscope with integrated OCT prototype was used. Spectral-domain (SD)-OCT was used for all investigations. On all scans, OCT supplied information about inner ear structures, such as scala tympani, scala vestibuli while the membranous labyrinth was still intact. In the fresh temporal bone the scala media, basilar membrane and the Reissner's membrane were identified. This OCT study clearly documents the possibility to identify inner ear structures, especially the scala tympani without opening its enveloping membranes. These findings may have an impact on cochlear implant surgery, especially as an orientation guide to localize the scala tympani precisely before opening the fluid filled inner ear.

  7. Comparison of cadaveric and isomorphic three-dimensional printed models in temporal bone education.

    PubMed

    Hochman, Jordan B; Rhodes, Charlotte; Wong, Dana; Kraut, Jay; Pisa, Justyn; Unger, Bertram

    2015-10-01

    Current three-dimensional (3D) printed simulations are complicated by insufficient void spaces and inconsistent density. We describe a novel simulation with focus on internal anatomic fidelity and evaluate against template/identical cadaveric education. Research ethics board-approved prospective cohort study. Generation of a 3D printed temporal bone was performed using a proprietary algorithm that deconstructs the digital model into slices prior to printing. This supplemental process facilitates removal of residual material from air-containing spaces and permits requisite infiltrative access to the all regions of the model. Ten otolaryngology trainees dissected a cadaveric temporal bone (CTB) followed by a matched/isomorphic 3D printed bone model (PBM), based on derivative micro-computed tomography data. Participants rated 1) physical characteristics, 2) specific anatomic constructs, 3) usefulness in skill development, and 4) perceived educational value. The survey instrument employed a seven-point Likert scale. Trainees felt physical characteristics of the PBM were quite similar to CTB, with highly ranked cortical (5.5 ± 1.5) and trabecular (5.2 ± 1.3) bone drill quality. The overall model was considered comparable to CTB (5.9 ± 0.74), with respectable air cell reproduction (6.1 ± 1.1). Internal constructs were rated as satisfactory (range, 4.9-6.2). The simulation was considered a beneficial training tool for all types of mastoidectomy (range, 5.9-6.6), posterior tympanotomy (6.5 ± 0.71), and skull base approaches (range, 6-6.5). Participants believed the model to be an effective training instrument (6.7 ± 0.68), which should be incorporated into the temporal bone lab (7.0 ± 0.0). The PBM was thought to improve confidence (6.7 ± 0.68) and operative performance (6.7 ± 0.48). Study participants found the PBM to be an effective platform that compared favorably to CTB. The model was considered a valuable adjunctive training tool with both realistic mechanical and visual character. NA © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Reduced functional loads alter the physical characteristics of the bone-PDL-cementum complex

    PubMed Central

    Niver, Eric L.; Leong, Narita; Greene, Janelle; Curtis, Donald; Ryder, Mark I.; Ho, Sunita P.

    2011-01-01

    Background Adaptive properties of the bone-PDL-tooth complex have been identified by changing the magnitude of functional loads using small-scale animal models such as rodents. Reported adaptive responses as a result of lower loads due to softer diet include decreased muscle development, change in structure-function relationship of the cranium, narrowed PDL-space, changes in mineral level of the cortical bone and alveolar jaw bone, and glycosaminoglycans of the alveolar bone. However, the adaptive role of the dynamic bone-PDL-cementum complex due to prolonged reduced loads has not been fully explained to date, especially with regards to concurrent adaptations of bone, PDL and cementum. Hence, the temporal effect of reduced functional loads on physical characteristics such as morphology and mechanical properties, and mineral profiles of the bone-periodontal ligament (PDL)-cementum complex using a rat model was investigated. Materials and Methods Two groups of six-week-old male Sprague-Dawley rats were fed nutritionally identical food with a stiffness range of 127–158N/mm for hard pellet or 0.32–0.47N/mm for soft powder forms. Spatio-temporal adaptation of the bone-PDL-cementum complex was identified by mapping changes in: 1) PDL-collagen orientation and birefringence using polarized light microscopy, bone and cementum adaptation using histochemistry, and bone and cementum morphology using micro X-ray computed tomography, 2) mineral profiles of the PDL-cementum and PDL-bone interfaces by X-ray attenuation, and 3) microhardness of bone and cementum by microindentation of specimens at ages six, eight, twelve, and fifteen weeks. Results Reduced functional loads over prolonged time resulted in 1) altered PDL orientation and decreased PDL collagen birefringence indicating decreased PDL turnover rate and decreased apical cementum resorption; 2) a gradual increase in X-ray attenuation, owing to mineral differences, at the PDL-bone and PDL-cementum interfaces without significant differences in the gradients for either group; 3) significantly (p<0.05) lower microhardness of alveolar bone (0.93±0.16 GPa) and secondary cementum (0.803±0.13 GPa) compared to the higher load group (1.10±0.17 GPa and 0.940±0.15 GPa respectively) at fifteen weeks indicating a temporal effect of loads on local mineralization of bone and cementum. Conclusions Based on the results from this study, the effect of reduced functional loads for a prolonged time could differentially affect morphology and mechanical properties, and mineral variations and of the local load-bearing sites in a bone-PDL-cementum complex. These observed local changes in turn could help explain the overall biomechanical function and adaptations of the tooth-bone joint. From a clinical translation perspective, our study provides an insight into modulation of load on the complex for improved tooth function during periodontal disease, and/or orthodontic and prosthodontic treatments. PMID:21848615

  9. Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes.

    PubMed

    Bardsley, Katie; Kwarciak, Agnieska; Freeman, Christine; Brook, Ian; Hatton, Paul; Crawford, Aileen

    2017-01-01

    The regeneration of large bone defects remains clinically challenging. The aim of our study was to use a rat model to use nasal chondrocytes to engineer a hypertrophic cartilage tissue which could be remodelled into bone in vivo by endochondral ossification. Primary adult rat nasal chondrocytes were isolated from the nasal septum, the cell numbers expanded in monolayer culture and the cells cultured in vitro on polyglycolic acid scaffolds in chondrogenic medium for culture periods of 5-10 weeks. Hypertrophic differentiation was assessed by determining the temporal expression of key marker genes and proteins involved in hypertrophic cartilage formation. The temporal changes in the genes measured reflected the temporal changes observed in the growth plate. Collagen II gene expression increased 6 fold by day 7 and was then significantly downregulated from day 14 onwards. Conversely, collagen X gene expression was detectable by day 14 and increased 100-fold by day 35. The temporal increase in collagen X expression was mirrored by increases in alkaline phosphatase gene expression which also was detectable by day 14 with a 30-fold increase in gene expression by day 35. Histological and immunohistochemical analysis of the engineered constructs showed increased chondrocyte cell volume (31-45 μm), deposition of collagen X in the extracellular matrix and expression of alkaline phosphatase activity. However, no cartilage mineralisation was observed in in vitro culture of up to 10 weeks. On subcutaneous implantation of the hypertrophic engineered constructs, the grafts became vascularised, cartilage mineralisation occurred and loss of the proteoglycan in the matrix was observed. Implantation of the hypertrophic engineered constructs into a rat cranial defect resulted in angiogenesis, mineralisation and remodelling of the cartilage tissue into bone. Micro-CT analysis indicated that defects which received the engineered hypertrophic constructs showed 38.48% in bone volume compared to 7.01% in the control defects. Development of tissue engineered hypertrophic cartilage to use as a bone graft substitute is an exciting development in regenerative medicine. This is a proof of principal study demonstrating the potential of nasal chondrocytes to engineer hypertrophic cartilage which will remodel into bone on in vivo transplantation. This approach to making engineered hypertrophic cartilage grafts could form the basis of a new potential future clinical treatment for maxillofacial reconstruction. Copyright © 2016. Published by Elsevier Ltd.

  10. * Calvarial Bone Regeneration Is Enhanced by Sequential Delivery of FGF-2 and BMP-2 from Layer-by-Layer Coatings with a Biomimetic Calcium Phosphate Barrier Layer.

    PubMed

    Gronowicz, Gloria; Jacobs, Emily; Peng, Tao; Zhu, Li; Hurley, Marja; Kuhn, Liisa T

    2017-12-01

    A drug delivery coating for synthetic bone grafts has been developed to provide sequential delivery of multiple osteoinductive factors to better mimic aspects of the natural regenerative process. The coating is composed of a biomimetic calcium phosphate (bCaP) layer that is applied to a synthetic bone graft and then covered with a poly-l-Lysine/poly-l-Glutamic acid polyelectrolyte multilayer (PEM) film. Bone morphogenetic protein-2 (BMP-2) was applied before the coating process directly on the synthetic bone graft and then, bCaP-PEM was deposited followed by adsorption of fibroblast growth factor-2 (FGF-2) into the PEM layer. Cells access the FGF-2 immediately, while the bCaP-PEM temporally delays the cell access to BMP-2. In vitro studies with cells derived from mouse calvarial bones demonstrated that Sca-1 and CD-166 positive osteoblast progenitor cells proliferated in response to media dosing with FGF-2. Coated scaffolds with BMP-2 and FGF-2 were implanted in mouse calvarial bone defects and harvested at 1 and 3 weeks. After 1 week in vivo, proliferation of cells, including Sca-1+ progenitors, was observed with low dose FGF-2 and BMP-2 compared to BMP-2 alone, indicating that in vivo delivery of FGF-2 activated a similar population of cells as shown by in vitro testing. At 3 weeks, FGF-2 and BMP-2 delivery increased bone formation more than BMP-2 alone, particularly in the center of the defect, confirming that the proliferation of the Sca-1 positive osteoprogenitors by FGF-2 was associated with increased bone healing. Areas of bone mineralization were positive for double fluorochrome labeling of calcium and alkaline phosphatase staining of osteoblasts, along with increased TRAP+ osteoclasts, demonstrating active bone formation distinct from the bone-like collagen/hydroxyapatite scaffold. In conclusion, the addition of a bCaP layer to PEM delayed access to BMP-2 and allowed the FGF-2 stimulated progenitors to populate the scaffold before differentiating in response to BMP-2, leading to improved bone defect healing.

  11. Different clinical presentation and management of temporal bone fibrous dysplasia in children.

    PubMed

    Mierzwiński, Józef; Kosowska, Justyna; Tyra, Justyna; Haber, Karolina; Drela, Maria; Paczkowski, Dariusz; Burduk, Paweł

    2018-01-15

    Fibrous dysplasia is a slowly progressive benign fibro-osseous disorder that involves one or multiple bones with a unilateral distribution in most cases. It is a lesion of unknown etiology, uncertain pathogenesis, and diverse histopathology. Temporal bone involvement is the least frequently reported type, especially in children. We reviewed available articles regarding fibrous dysplasia with temporal bone involvement in children and added four patients aged 7 to 17 years who were diagnosed and treated in our institution from 2006 to 2017. The patients' clinical picture comprised head deformity, external canal stenosis, headache, progressive conductive and/or sensorineural hearing loss, tinnitus, and sudden deafness. Two patients had experienced severe episodic vertigo with nausea and vomiting. Two were referred to us with external canal obstruction and secondary cholesteatoma formation with broad middle ear destruction. One was diagnosed with acute mastoiditis and intracranial complications. Optimal management of fibrous dysplasia is unclear and can be challenging, especially in children. In our two patients with disease expansion and involvement of important structures, surgical treatment was abandoned and a "wait-and-scan" policy was applied. The other two were qualified for surgical treatment. One patient underwent two surgeries: modified lateral petrosectomy (canal left open) with pathological tissue removal, cavity obliteration, and subsequent tympanoplasty. Another patient with extensive destruction of the left temporal bone underwent canal wall down mastoidectomy with perisinus abscess drainage and revision 12 months later. Tympanoplasty was unsatisfactory in both patients because of slow progression of the middle ear pathology. None of our patients underwent pharmacological treatment. In younger patients, observation and a "wait-and-scan" protocol is relevant until significant function, or cosmetic deficits are obvious. Surgery is not preferred and should be delayed until puberty because fibrous dysplasia has a tendency to stabilize after adolescence. In patients with severe symptoms medical treatment can be implemented, but safety of this treatment in children remain controversial.

  12. Evaluating cochlear implant trauma to the scala vestibuli.

    PubMed

    Adunka, O; Kiefer, J; Unkelbach, M H; Radeloff, A; Gstoettner, W

    2005-04-01

    Placement of cochlear implant electrodes into the scala vestibuli may be intentional, e.g. in case of blocked scala tympani or unintentional as a result of trauma to the basilar membrane or erroneous location of the cochieostomy. The aim of this study was to evaluate the morphological consequences and cochlear trauma after implantation of different cochlear implant electrode arrays in the scala vestibuli. Human temporal bone study with histological and radiological evaluation. Twelve human cadaver temporal bones were implanted with different cochlear implant electrodes. Implanted bones were processed using a special method to section undecalcified bone. Cochlear trauma and intracochlear positions. All implanted electrodes were implanted into the scala vestibuli using a special approach that allows direct scala vestibuli insertions. Fractures of the osseous spiral lamina were evaluated in some bones in the basal cochlear regions. In most electrodes, delicate structures of the organ of Corti were left intact, however, Reissner's membrane was destroyed in all specimens and the electrode lay upon the tectorial membrane. In some bones the organ of Corti was destroyed. Scala vestibuli insertions did not cause severe trauma to osseous or neural structures, thus preserving the basis for electrostimulation of the cochlea. However, destruction of Reissner's membrane and impact on the Organ of Corti can be assumed to destroy residual hearing.

  13. Regeneration of bone and periodontal ligament induced by recombinant amelogenin after periodontitis.

    PubMed

    Haze, Amir; Taylor, Angela L; Haegewald, Stefan; Leiser, Yoav; Shay, Boaz; Rosenfeld, Eli; Gruenbaum-Cohen, Yael; Dafni, Leah; Zimmermann, Bernd; Heikinheimo, Kristiina; Gibson, Carolyn W; Fisher, Larry W; Young, Marian F; Blumenfeld, Anat; Bernimoulin, Jean P; Deutsch, Dan

    2009-06-01

    Regeneration of mineralized tissues affected by chronic diseases comprises a major scientific and clinical challenge. Periodontitis, one such prevalent disease, involves destruction of the tooth-supporting tissues, alveolar bone, periodontal-ligament and cementum, often leading to tooth loss. In 1997, it became clear that, in addition to their function in enamel formation, the hydrophobic ectodermal enamel matrix proteins (EMPs) play a role in the regeneration of these periodontal tissues. The epithelial EMPs are a heterogeneous mixture of polypeptides encoded by several genes. It was not clear, however, which of these many EMPs induces the regeneration and what mechanisms are involved. Here we show that a single recombinant human amelogenin protein (rHAM(+)), induced in vivo regeneration of all tooth-supporting tissues after creation of experimental periodontitis in a dog model. To further understand the regeneration process, amelogenin expression was detected in normal and regenerating cells of the alveolar bone (osteocytes, osteoblasts and osteoclasts), periodontal ligament, cementum and in bone marrow stromal cells. Amelogenin expression was highest in areas of high bone turnover and activity. Further studies showed that during the first 2 weeks after application, rHAM(+) induced, directly or indirectly, significant recruitment of mesenchymal progenitor cells, which later differentiated to form the regenerated periodontal tissues. The ability of a single protein to bring about regeneration of all periodontal tissues, in the correct spatio-temporal order, through recruitment of mesenchymal progenitor cells, could pave the way for development of new therapeutic devices for treatment of periodontal, bone and ligament diseases based on rHAM(+).

  14. Antlers on the Arctic Refuge: capturing multi-generational patterns of calving ground use from bones on the landscape

    PubMed Central

    Miller, Joshua H.; Druckenmiller, Patrick; Bahn, Volker

    2013-01-01

    Bone accumulations faithfully record historical ecological data on animal communities, and owing to millennial-scale bone survival on high-latitude landscapes, have exceptional potential for extending records on arctic ecosystems. For the Porcupine Caribou Herd, maintaining access to calving grounds on the Arctic National Wildlife Refuge (ANWR, Alaska) is a central management concern. However, variability in calving ground geography over the 30+ years of monitoring suggests establishing the impacts of climate change and potential petroleum development on future calving success could benefit from extended temporal perspectives. Using accumulations of female antlers (shed within days of calving) and neonatal skeletons, we test if caribou calving grounds develop measureable and characteristic bone accumulations and if skeletal data may be helpful in establishing a fuller, historically integrated understanding of landscape and habitat needs. Bone surveys of an important ANWR calving area reveal abundant shed antlers (reaching 103 km–2) and high proportional abundance of newborn skeletal individuals (up to 60% neonate). Openly vegetated riparian terraces, which compose less than 10 per cent of ANWR calving grounds, yield significantly higher antler concentrations than more abundant habitats traditionally viewed as primary calving terrain. Differences between habitats appear robust to potential differences in bone visibility. The distribution of antler weathering stages mirrors known multi-decadal calving histories and highlights portions of the antler accumulation that probably significantly extends records of calving activity. Death assemblages offer historically integrated ecological data valuable for the management and conservation of faunas across polar latitudes. PMID:23536601

  15. A Novel Two-Compartment Model for Calculating Bone Volume Fractions and Bone Mineral Densities From Computed Tomography Images.

    PubMed

    Lin, Hsin-Hon; Peng, Shin-Lei; Wu, Jay; Shih, Tian-Yu; Chuang, Keh-Shih; Shih, Cheng-Ting

    2017-05-01

    Osteoporosis is a disease characterized by a degradation of bone structures. Various methods have been developed to diagnose osteoporosis by measuring bone mineral density (BMD) of patients. However, BMDs from these methods were not equivalent and were incomparable. In addition, partial volume effect introduces errors in estimating bone volume from computed tomography (CT) images using image segmentation. In this study, a two-compartment model (TCM) was proposed to calculate bone volume fraction (BV/TV) and BMD from CT images. The TCM considers bones to be composed of two sub-materials. Various equivalent BV/TV and BMD can be calculated by applying corresponding sub-material pairs in the TCM. In contrast to image segmentation, the TCM prevented the influence of the partial volume effect by calculating the volume percentage of sub-material in each image voxel. Validations of the TCM were performed using bone-equivalent uniform phantoms, a 3D-printed trabecular-structural phantom, a temporal bone flap, and abdominal CT images. By using the TCM, the calculated BV/TVs of the uniform phantoms were within percent errors of ±2%; the percent errors of the structural volumes with various CT slice thickness were below 9%; the volume of the temporal bone flap was close to that from micro-CT images with a percent error of 4.1%. No significant difference (p >0.01) was found between the areal BMD of lumbar vertebrae calculated using the TCM and measured using dual-energy X-ray absorptiometry. In conclusion, the proposed TCM could be applied to diagnose osteoporosis, while providing a basis for comparing various measurement methods.

  16. Mastoiditis and facial paralysis as initial manifestations of temporal bone systemic diseases - the significance of the histopathological examination.

    PubMed

    Maniu, Alma Aurelia; Harabagiu, Oana; Damian, Laura Otilia; Ştefănescu, Eugen HoraŢiu; FănuŢă, Bogdan Marius; Cătană, Andreea; Mogoantă, Carmen Aurelia

    2016-01-01

    Several systemic diseases, including granulomatous and infectious processes, tumors, bone disorders, collagen-vascular and other autoimmune diseases may involve the middle ear and temporal bone. These diseases are difficult to diagnose when symptoms mimic acute otomastoiditis. The present report describes our experience with three such cases initially misdiagnosed. Their predominating symptoms were otological with mastoiditis, hearing loss, and subsequently facial nerve palsy. The cases were considered an emergency and the patients underwent tympanomastoidectomy, under the suspicion of otitis media with cholesteatoma, in order to remove a possible abscess and to decompress the facial nerve. The common features were the presence of severe granulation tissue filling the mastoid cavity and middle ear during surgery, without cholesteatoma. The definitive diagnoses was made by means of biopsy of the granulation tissue from the middle ear, revealing granulomatosis with polyangiitis (formerly known as Wegener's granulomatosis) in one case, middle ear tuberculosis and diffuse large B-cell lymphoma respectively. After specific associated therapy facial nerve functions improved, and atypical inflammatory states of the ear resolved. As a group, systemic diseases of the middle ear and temporal bone are uncommon, but aggressive lesions. After analyzing these cases and reviewing the literature, we would like to stress upon the importance of microscopic examination of the affected tissue, required for an accurate diagnosis and effective treatment.

  17. Efficacy of immediate replacement of cranial bone graft following drainage of intracranial empyema.

    PubMed

    Lajthia, Orgest; Chao, Jerry W; Mandelbaum, Max; Myseros, John S; Oluigbo, Chima; Magge, Suresh N; Zarella, Christopher S; Oh, Albert K; Rogers, Gary F; Keating, Robert F

    2018-06-22

    OBJECTIVE Intracranial empyema is a life-threatening condition associated with a high mortality rate and residual deleterious neurological effects if not diagnosed and managed promptly. The authors present their institutional experience with immediate reimplantation of the craniotomy flap and clarify the success of this method in terms of cranial integrity, risk of recurrent infection, and need for secondary procedures. METHODS A retrospective analysis of patients admitted for management of intracranial empyema during a 19-year period (1997-2016) identified 33 patients who underwent emergency drainage and decompression with a follow-up duration longer than 6 months, 23 of whom received immediate bone replacement. Medical records were analyzed for demographic information, extent and location of the infection, bone flap size, fixation method, need for further operative intervention, and duration of intravenous antibiotics. RESULTS The mean patient age at surgery was 8.7 ± 5.7 years and the infections were largely secondary to sinusitis (52.8%), with the most common location being the frontal/temporal region (61.3%). Operative intervention involved removal of a total of 31 bone flaps with a mean surface area of 22.8 ± 26.9 cm 2 . Nearly all (96.8%) of the bone flaps replaced at the time of the initial surgery were viable over the long term. Eighteen patients (78.3%) required a single craniotomy in conjunction with antibiotic therapy to address the infection, whereas the remaining 21.7% required more than 1 surgery. Partial bone flap resorption was noted in only 1 (3.2%) of the 31 successfully replaced bone flaps. This patient eventually had his bone flap removed and received a split-calvaria bone graft. Twenty-one patients (91.3%) received postoperative CT scans to evaluate bone integrity. The mean follow-up duration of the cohort was 43.9 ± 54.0 months. CONCLUSIONS The results of our investigation suggest that immediate replacement and stabilization of the bone flap after craniectomy for drainage of intracranial empyemas has a low risk of recurrent infection and is a safe and effective way to restore bone integrity in most patients.

  18. Anabolic actions of PTH (1-34): use of a novel tissue engineering model to investigate temporal effects on bone.

    PubMed

    Pettway, Glenda J; Schneider, Abraham; Koh, Amy J; Widjaja, Effendi; Morris, Michael D; Meganck, Jeffrey A; Goldstein, Steven A; McCauley, Laurie K

    2005-06-01

    PTH is in clinical use for the treatment of osteoporosis and is under intensive investigation for its potential in applications of tissue engineering, fracture healing, and implant integration. However, the mechanisms of its action to stimulate bone formation are still unclear. A novel bone tissue engineering model was used to elucidate basic mechanisms of PTH anabolic actions. Ectopic ossicles containing cortical bone, trabecular bone, and a hematopoietic marrow were generated from implanted bone marrow stromal cells (BMSC). One week after implantation, nude mice were administered PTH or vehicle for 1 week (group 1), 3 weeks (group 2), or 7 weeks (group 3). Another group was also treated for 3 weeks, initiated 12 weeks after implantation (group 4). Micro-radiography and histomorphometry revealed increased marrow cellularity in group 1 PTH-treated ossicles, increased bone in group 2 PTH-treated ossicles, and similar amounts of bone in both group 3 and 4 ossicles regardless of treatment. Incidence of phosphate mineral and phosphate mineral to hydroxyproline ratio via Raman spectroscopy were significantly higher after 3 weeks versus 1 week of PTH treatment, but there was no difference between PTH- and vehicle-treated ossicles. Early events of PTH action in group 1 ossicles and the effects of a single injection of PTH on 1- and 2-week-old ossicles were evaluated by Northern blot analysis. Osteocalcin (OC) mRNA was increased after 1 week of intermittent PTH treatment in ossicles and calvaria but an acute injection did not alter OC mRNA. In contrast, a single injection of PTH increased matrix gamma-carboxyglutamic acid protein (MGP) mRNA in 2-week-old ossicles. Differential and temporal-dependent effects of PTH on OC and MGP suggest at the molecular level, that PTH acts to inhibit osteoblast mineralization. However, this does not translate into tissue level alterations. These data indicate that anabolic actions of PTH in ectopic ossicles are temporally dependent on the BMSC implanted and suggest that cell implantation strategies are particularly responsive to PTH.

  19. The Relationships between Two Different Drinking Water Fluoride Levels, Dental Fluorosis and Bone Mineral Density of Children

    PubMed Central

    Grobler, S.R; Louw, A.J; Chikte, U.M.E; Rossouw, R.J; van W Kotze, T.J.

    2009-01-01

    This field study included the whole population of children aged 10–15 years (77 from a 0.19 mg/L F area; 89 from a 3.00 mg/L F area), with similar nutritional, dietary habits and similar ethnic and socioeconomic status. The fluoride concentration in the drinking water, the bone mineral content, the bone density and the degree of dental fluorosis were determined. The left radius was measured for bone width, bone mineral content, and bone mineral density. The mean fluorosis score was 1.3 in the low fluoride area and 3,6 in the high fluoride area. More than half the children in the low fluoride area had no fluorosis (scores 0 and 1) while only 5% in the high fluoride area had none. Severe fluorosis (30%) was only observed in the high fluoride area. The Wilcoxon Rank Sum Test indicated that fluorosis levels differed significantly (p < 0.05) between the two areas. No relationships were found between dental fluorosis and bone width or between fluorosis and bone mineral density in the two areas (Spearment Rank correlations). A significant increase in bone width was found with age but no differences amongst and boys and girls. A significant positive correlation was found in the high fluoride area between bone mineral density over age. In the 12-13 and 13-14 year age groups in the high fluoride area, girls had higher bone mineral densities. However, a significant negative correlation (p<0.02) was found for the low fluoride area (0.19 mg/L F) over age. PMID:19444344

  20. Fibrous Dysplasia of the Temporal Bone with External Auditory Canal Stenosis and Secondary Cholesteatoma.

    PubMed

    Liu, Yu-Hsi; Chang, Kuo-Ping

    2016-04-01

    Fibrous dysplasia is a slowly progressive benign fibro-osseous disease, rarely occurring in temporal bones. In these cases, most bony lesions developed from the bony part of the external auditory canals, causing otalgia, hearing impairment, otorrhea, and ear hygiene blockade and probably leading to secondary cholesteatoma. We presented the medical history of a 24-year-old woman with temporal monostotic fibrous dysplasia with secondary cholesteatoma. The initial presentation was unilateral conductive hearing loss. A hard external canal tumor contributing to canal stenosis and a near-absent tympanic membrane were found. Canaloplasty and type I tympanoplasty were performed, but the symptoms recurred after 5 years. She received canal wall down tympanomastoidectomy with ossciculoplasty at the second time, and secondary cholesteatoma in the middle ear was diagnosed. Fifteen years later, left otorrhea recurred again and transcanal endoscopic surgery was performed for middle ear clearance. Currently, revision surgeries provide a stable auditory condition, but her monostotic temporal fibrous dysplasia is still in place.

  1. High-resolution T1-weighted 3D real IR imaging of the temporal bone using triple-dose contrast material.

    PubMed

    Naganawa, Shinji; Koshikawa, Tokiko; Nakamura, Tatsuya; Fukatsu, Hiroshi; Ishigaki, Takeo; Aoki, Ikuo

    2003-12-01

    The small structures in the temporal bone are surrounded by bone and air. The objectives of this study were (a) to compare contrast-enhanced T1-weighted images acquired by fast spin-echo-based three-dimensional real inversion recovery (3D rIR) against those acquired by gradient echo-based 3D SPGR in the visualization of the enhancement of small structures in the temporal bone, and (b) to determine whether either 3D rIR or 3D SPGR is useful for visualizing enhancement of the cochlear lymph fluid. Seven healthy men (age range 27-46 years) volunteered to participate in this study. All MR imaging was performed using a dedicated bilateral quadrature surface phased-array coil for temporal bone imaging at 1.5 T (Visart EX, Toshiba, Tokyo, Japan). The 3D rIR images (TR/TE/TI: 1800 ms/10 ms/500 ms) and flow-compensated 3D SPGR images (TR/TE/FA: 23 ms/10 ms/25 degrees) were obtained with a reconstructed voxel size of 0.6 x 0.7 x 0.8 mm3. Images were acquired before and 1, 90, 180, and 270 min after the administration of triple-dose Gd-DTPA-BMA (0.3 mmol/kg). In post-contrast MR images, the degree of enhancement of the cochlear aqueduct, endolymphatic sac, subarcuate artery, geniculate ganglion of the facial nerve, and cochlear lymph fluid space was assessed by two radiologists. The degree of enhancement was scored as follows: 0 (no enhancement); 1 (slight enhancement); 2 (intermediate between 1 and 3); and 3 (enhancement similar to that of vessels). Enhancement scores for the endolymphatic sac, subarcuate artery, and geniculate ganglion were higher in 3D rIR than in 3D SPGR. Washout of enhancement in the endolymphatic sac appeared to be delayed compared with that in the subarcuate artery, suggesting that the enhancement in the endolymphatic sac may have been due in part to non-vascular tissue enhancement. Enhancement of the cochlear lymph space was not observed in any of the subjects in 3D rIR and 3D SPGR. The 3D rIR sequence may be more sensitive than the 3D SPGR sequence in visualizing the enhancement of small structures in the temporal bone; however, enhancement of the cochlear fluid space could not be visualized even with 3D rIR, triple-dose contrast, and dedicated coils at 1.5 T.

  2. Progressive Temporal Change in Serum SHBG, But Not in Serum Testosterone or Estradiol, Is Associated With Bone Loss and Incident Fractures in Older Men: The Concord Health and Ageing in Men Project.

    PubMed

    Hsu, Benjumin; Seibel, Markus J; Cumming, Robert G; Blyth, Fiona M; Naganathan, Vasi; Bleicher, Kerrin; Le Couteur, David G; Waite, Louise M; Handelsman, David J

    2016-12-01

    This study aimed to examine progressive temporal relationships between changes in major reproductive hormones across three waves of a cohort study of older men and (1) changes in bone mineral density (BMD) and (2) incident fractures (any, hip or non-vertebral) over an average of 6 years of follow-up. The CHAMP cohort of men aged 70 years and older were assessed at baseline (2005 to 2007, n = 1705), 2-year follow-up (n = 1367), and 5-year follow-up (n = 958). Serum testosterone (T), dihydrotestosterone (DHT), estradiol (E2), and estrone (E1) (by liquid chromatography-tandem mass spectrometry [LC-MS/MS]), and sex hormone-binding globulin (SHBG), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) (by immunoassay) were measured at all time-points, whereas free testosterone (cFT) was calculated using a well-validated formula. Hip BMD was measured by dual-energy X-ray absorptiometry (DXA) at all three time-points, and fracture data were verified radiographically. Statistical modeling was done using general estimating equations (GEEs). For total hip BMD, univariable analyses revealed inverse associations with temporal changes in serum SHBG, FSH, and LH and positive associations for serum E1 and cFT across the three time-points. In models adjusted for multiple covariables, serum SHBG (β = -0.029), FSH (β = -0.065), LH (β = -0.049), E1 (β = 0.019), and cFT (β = 0.033) remained significantly associated with hip BMD. However for femoral neck BMD, only FSH (β = -0.048) and LH (β = -0.036) remained associated in multivariable-adjusted models. Temporal change in serum SHBG, but not T, E2, or other hormonal variables, was significantly associated with any, nonvertebral or hip fracture incidence in univariable analyses. In multivariable-adjusted models, temporal increase in serum SHBG over time remained associated with any fracture (β = 0.060) and hip fracture (β = 0.041) incidence, but not nonvertebral fracture incidence. These data indicate that a progressive increase in circulating SHBG over time predicts bone loss and fracture risk in older men. Further studies are warranted to further characterize changes in circulating SHBG as a mechanism and/or biomarker of bone health during male ageing. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  3. The effect of middle ear cavity and superior canal dehiscence on wideband acoustic immittance in fresh human cadaveric specimens

    NASA Astrophysics Data System (ADS)

    Masud, Salwa F.; Raufer, Stefan; Neely, Stephen T.; Nakajima, Hideko H.

    2018-05-01

    Superior canal dehiscence (SCD) is a hole in the bony wall of the superior semicircular canal, which can cause various auditory and/or vestibular symptoms and can result in wrong and/or delayed diagnosis. Wideband acoustic immittance (WAI) can potentially distinguish various mechanical middle-ear pathologies as well as inner-ear pathologies non-invasively. We found that in patients, SCD was commonly associated with a narrow-band decrease in power reflectance (PR, derived from WAI) near 1 kHz. Because clinical data has large variation across individual ears and because we do not know the individual "normal" state prior to SCD, we measured WAI in five fresh temporal bone specimens to determine the effects of SCD with respect to the normal state. In temporal bone, we measured PR to assess mechanical changes before and after SCD, as well as to assess the effect of an open or closed middle-ear cavity. After SCD, PR had a consistent decrease between 0.48 and 0.76 kHz, and a slight increase between 1.04 and 1.4 kHz in the open cavity condition. However, in several experiments, we observed low PR around 1 kHz in the normal state before SCD, likely due to the specimen's open middle ear cavity (MEC). Because we see effects of both SCD and open MEC around 1 kHz, some of the SCD effect can be masked by the effect of the MEC in the temporal bone specimens. To compensate for this MEC effect, we estimated the effect of SCD in a closed MEC case, but the effect did not differ significantly from the measured open MEC. This study demonstrates the limitation of temporal bone experiments with open MEC when studying inner-ear lesions with WAI.

  4. Two examples of indication specific radiation dose calculations in dental CBCT and Multidetector CT scanners.

    PubMed

    Stratis, Andreas; Zhang, Guozhi; Lopez-Rendon, Xochitl; Politis, Constantinus; Hermans, Robert; Jacobs, Reinhilde; Bogaerts, Ria; Shaheen, Eman; Bosmans, Hilde

    2017-09-01

    To calculate organ doses and estimate the effective dose for justification purposes in patients undergoing orthognathic treatment planning purposes and temporal bone imaging in dental cone beam CT (CBCT) and Multidetector CT (MDCT) scanners. The radiation dose to the ICRP reference male voxel phantom was calculated for dedicated orthognathic treatment planning acquisitions via Monte Carlo simulations in two dental CBCT scanners, Promax 3D Max (Planmeca, FI) and NewTom VGi evo (QR s.r.l, IT) and in Somatom Definition Flash (Siemens, DE) MDCT scanner. For temporal bone imaging, radiation doses were calculated via MC simulations for a CBCT protocol in NewTom 5G (QR s.r.l, IT) and with the use of a software tool (CT-expo) for Somatom Force (Siemens, DE). All procedures had been optimized at the acceptance tests of the devices. For orthognathic protocols, dental CBCT scanners deliver lower doses compared to MDCT scanners. The estimated effective dose (ED) was 0.32mSv for a normal resolution operation mode in Promax 3D Max, 0.27mSv in VGi-evo and 1.18mSv in the Somatom Definition Flash. For temporal bone protocols, the Somatom Force resulted in an estimated ED of 0.28mSv while for NewTom 5G the ED was 0.31 and 0.22mSv for monolateral and bilateral imaging respectively. Two clinical exams which are carried out with both a CBCT or a MDCT scanner were compared in terms of radiation dose. Dental CBCT scanners deliver lower doses for orthognathic patients whereas for temporal bone procedures the doses were similar. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Computed tomography demonstrates abnormalities of contralateral ear in subjects with unilateral sensorineural hearing loss.

    PubMed

    Marcus, Sonya; Whitlow, Christopher T; Koonce, James; Zapadka, Michael E; Chen, Michael Y; Williams, Daniel W; Lewis, Meagan; Evans, Adele K

    2014-02-01

    Prior studies have associated gross inner ear abnormalities with pediatric sensorineural hearing loss (SNHL) using computed tomography (CT). No studies to date have specifically investigated morphologic inner ear abnormalities involving the contralateral unaffected ear in patients with unilateral SNHL. The purpose of this study is to evaluate contralateral inner ear structures of subjects with unilateral SNHL but no grossly abnormal findings on CT. IRB-approved retrospective analysis of pediatric temporal bone CT scans. 97 temporal bone CT scans, previously interpreted as "normal" based upon previously accepted guidelines by board certified neuroradiologists, were assessed using 12 measurements of the semicircular canals, cochlea and vestibule. The control-group consisted of 72 "normal" temporal bone CTs with underlying SNHL in the subject excluded. The study-group consisted of 25 normal-hearing contralateral temporal bones in subjects with unilateral SNHL. Multivariate analysis of covariance (MANCOVA) was then conducted to evaluate for differences between the study and control group. Cochlea basal turn lumen width was significantly greater in magnitude and central lucency of the lateral semicircular canal bony island was significantly lower in density for audiometrically normal ears of subjects with unilateral SNHL compared to controls. Abnormalities of the inner ear were present in the contralateral audiometrically normal ears of subjects with unilateral SNHL. These data suggest that patients with unilateral SNHL may have a more pervasive disease process that results in abnormalities of both ears. The findings of a cochlea basal turn lumen width disparity >5% from "normal" and/or a lateral semicircular canal bony island central lucency disparity of >5% from "normal" may indicate inherent risk to the contralateral unaffected ear in pediatric patients with unilateral sensorineural hearing loss. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Reduced functional loads alter the physical characteristics of the bone-periodontal ligament-cementum complex.

    PubMed

    Niver, E L; Leong, N; Greene, J; Curtis, D; Ryder, M I; Ho, S P

    2011-12-01

    Adaptive properties of the bone-periodontal ligament-tooth complex have been identified by changing the magnitude of functional loads using small-scale animal models, such as rodents. Reported adaptive responses as a result of lower loads due to softer diet include decreased muscle development, change in structure-function relationship of the cranium, narrowed periodontal ligament space, and changes in the mineral level of the cortical bone and alveolar jaw bone and in the glycosaminoglycans of the alveolar bone. However, the adaptive role of the dynamic bone-periodontal ligament-cementum complex to prolonged reduced loads has not been fully explained to date, especially with regard to concurrent adaptations of bone, periodontal ligament and cementum. Therefore, in the present study, using a rat model, the temporal effect of reduced functional loads on physical characteristics, such as morphology and mechanical properties and the mineral profiles of the bone-periodontal ligament-cementum complex was investigated. Two groups of 6-wk-old male Sprague-Dawley rats were fed nutritionally identical food with a stiffness range of 127-158 N/mm for hard pellet or 0.3-0.5 N/mm for soft powder forms. Spatio-temporal adaptation of the bone-periodontal ligament-cementum complex was identified by mapping changes in the following: (i) periodontal ligament collagen orientation and birefringence using polarized light microscopy, bone and cementum adaptation using histochemistry, and bone and cementum morphology using micro-X-ray computed tomography; (ii) mineral profiles of the periodontal ligament-cementum and periodontal ligament-bone interfaces by X-ray attenuation; and (iii) microhardness of bone and cementum by microindentation of specimens at ages 6, 8, 12 and 15 wk. Reduced functional loads over prolonged time resulted in the following adaptations: (i) altered periodontal ligament orientation and decreased periodontal ligament collagen birefringence, indicating decreased periodontal ligament turnover rate and decreased apical cementum resorption; (ii) a gradual increase in X-ray attenuation, owing to mineral differences, at the periodontal ligament-bone and periodontal ligament-cementum interfaces, without significant differences in the gradients for either group; (iii) significantly (p < 0.05) lower microhardness of alveolar bone (0.93 ± 0.16 GPa) and secondary cementum (0.803 ± 0.13 GPa) compared with the higher load group insert bone = (1.10 ± 0.17 and cementum = 0.940 ± 0.15 GPa, respectively) at 15 wk, indicating a temporal effect of loads on the local mineralization of bone and cementum. Based on the results from this study, the effect of reduced functional loads for a prolonged time could differentially affect morphology, mechanical properties and mineral variations of the local load-bearing sites in the bone-periodontal ligament-cementum complex. These observed local changes in turn could help to explain the overall biomechanical function and adaptations of the tooth-bone joint. From a clinical translation perspective, our study provides an insight into modulation of load on the complex for improved tooth function during periodontal disease and/or orthodontic and prosthodontic treatments. © 2011 John Wiley & Sons A/S.

  7. Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling.

    PubMed

    Sharmin, Farzana; McDermott, Casey; Lieberman, Jay; Sanjay, Archana; Khan, Yusuf

    2017-05-01

    Autografts have been shown to stimulate osteogenesis, osteoclastogenesis, and angiogenesis, and subsequent rapid graft incorporation. Large structural allografts, however, suffer from limited new bone formation and remodeling, both of which are directly associated with clinical failure due to non-unions, late graft fractures, and infections, making it a priority to improve large structural allograft healing. We have previously shown the osteogenic ability of a polymer-coated allograft that delivers bone morphogenetic protein-2 both in vitro and in vivo through both burst release and sustained release kinetics. In this study, we have demonstrated largely sequential delivery of bone morphogenetic protein-2 and vascular endothelial growth factor from the same coated allograft. Release data showed that loading both growth factors onto a polymeric coating with two different techniques resulted in short-term (95% release within 2 weeks) and long-term (95% release within 5 weeks) delivery kinetics. We have also demonstrated how released VEGF, traditionally associated with angiogenesis, can also provide a stimulus for allograft remodeling via resorption. Bone marrow derived mononuclear cells were co-cultured with VEGF released from the coated allograft and showed a statistically significant (p < 0.05) and dose dependent increase in the number of tartrate-resistant acid phosphatase-positive multinucleated osteoclasts. Functionality of these osteoclasts was assessed quantitatively and qualitatively by evaluating resorption pit area from both osteo-assay plates and harvested bone. Data indicated a statistically significant higher resorption area from the cells exposed to VEGF released from the allografts over controls (p < 0.05). These results indicate that by using different loading protocols temporal control can be achieved when delivering multiple growth factors from a polymer-coated allograft. Further, released VEGF can also stimulate osteoclastogenesis that may enhance allograft incorporation, and thus mitigate long-term clinical complications. © 2017 Orthopedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1086-1095, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Sphenoid dysplasia in neurofibromatosis type 1: a new technique for repair.

    PubMed

    Concezio, Di Rocco; Amir, Samii; Gianpiero, Tamburrini; Luca, Massimi; Mario, Giordano

    2017-06-01

    Sphenoid bone dysplasia in neurofibromatosis type 1 is characterized by progressive exophthalmos and facial disfiguration secondary to herniation of meningeal and cerebral structures. We describe a technique for reconstruction of the sphenoid defect apt at preventing or correcting the ocular globe dislocation. After placement of spinal cerebrospinal fluid drainage to reduce intracranial pressure, the temporal pole is posteriorly dislocated extradurally. The greater sphenoid wing defect is identified. A titanium mesh covered by lyophilized dura, modeled in a curved fashion, is interposed between the bone defect and the cerebro-meningeal structures with its convex surface over the retracted temporal pole. The particular configuration of the titanium mesh allows a self-maintaining position due to the pressure exerted by the brain over its convex central part with its lateral margins consequently pushed and self-anchored against the medial and lateral walls of the temporal fossa. Screw fixation is not needed. The technique utilized in four cases proved to be reliable at the long-term clinical and neuroradiological controls (6 to 19 years). Sphenoid bone dysplasia in NF1, resulting in proptosis and exophthalmos, is usually progressive. It can be surgically repaired using a curved titanium mesh with the convexity faced to the temporal pole that is in the opposite fashion from all the techniques previously introduced. When utilized early in life, the technique can prevent the occurrence of the orbital and facial disfiguration.

  9. Maturation of Mechanical Impedance of the Skin-Covered Skull: Implications for Soft Band Bone-Anchored Hearing Systems Fitted in Infants and Young Children.

    PubMed

    Mackey, Allison R; Hodgetts, William E; Scott, Dylan; Small, Susan A

    2016-01-01

    Little is known about the maturational changes in the mechanical properties of the skull and how they might contribute to infant-adult differences in bone conduction hearing sensitivity. The objective of this study was to investigate the mechanical impedance of the skin-covered skull for different skull positions and contact forces for groups of infants, young children, and adults. These findings provide a better understanding of how changes in mechanical impedance might contribute to developmental changes in bone conduction hearing, and might provide insight into how fitting and output verification protocols for bone-anchored hearing systems (BAHS) could be adapted for infants and young children. Seventy-seven individuals participated in the study, including 63 infants and children (ages 1 month to 7 years) and 11 adults. Mechanical impedance magnitude for the forehead and temporal bone was collected for contact forces of 2, 4, and 5.4 N using an impedance head, a BAHS transducer, and a specially designed holding device. Mechanical impedance magnitude was determined across frequency using a stepped sine sweep from 100 to 10,000 Hz, and divided into low- and high-frequency sets for analysis. Mechanical impedance magnitude was lowest for the youngest infants and increased throughout maturation in the low frequencies. For high frequencies, the youngest infants had the highest impedance, but only for a temporal bone placement. Impedance increased with increasing contact force for low frequencies for each age group and for both skull positions. The effect of placement was significant for high frequencies for each contact force and for each age group, except for the youngest infants. Our findings show that mechanical impedance properties change systematically up to 7 years old. The significant age-related differences in mechanical impedance suggest that infant-adult differences in bone conduction thresholds may be related, at least in part, to properties of the immature skull and overlying skin and tissues. These results have important implications for fitting the soft band BAHS on infants and young children. For example, verification of output force form a BAHS on a coupler designed with adult values may not be appropriate for infants. This may also hold true for transducer calibration when assessing bone conduction hearing thresholds in infants for different skull locations. The results have two additional clinical implications for fitting soft band BAHSs. First, parents should be counseled to maintain sufficient and consistent tightness so that the output from the BAHS does not change as the child moves around during everyday activities. Second, placement of a BAHS on the forehead versus the temporal bone results in changes in mechanical impedance which may contribute to a decrease in signal level at the cochlea as it has been previously demonstrated that bone conduction thresholds are poorer at the forehead compared with a temporal placement.

  10. [Petrous bone fracture. Our experience: 1999-2004].

    PubMed

    Ramírez Sabio, J B; de Paula Vernetta, C; García Sanchís, J M; Callejo García, F J; Cortés Andrés, O; Quilis Quesada, V; Dualde Beltrán, D; Marco Algarra, J

    2006-12-01

    To review the petrous bone fractures during the last five years (1999-2004) in our hospital, its manage, control, and analysis onf the associated factors. To analyse the managing protocoles and current bibliography. We review 266 temporal bone fractures, 74 with petrous bone association. We analyse these fractures by sex distribution, injurie severity, otorhinolaryngological clinical findings, production mechanism and radiological findings. The cases are discussed and compared with current bibliography. Petrous bone fractures must be always suspected in patients with head trauma, specially if it associates severity and otorrhagia. It is necessary a deep colaboration between neurosurgeons, radiologists and otorhinolaryngologists to obtain a good management, control and follow up of the patients.

  11. Sex determination using discriminant analysis of upper and lower extremity bones: New approach using the volume and surface area of digital model.

    PubMed

    Lee, U-Young; Kim, In-Beom; Kwak, Dai-Soon

    2015-08-01

    This study used 110 CT images taken from donated Korean cadavers to create 3-D models of the following upper and lower limb bones: the clavicle, scapula, humerus, radius, ulna, hip bone (os coxa), femur, patella (knee cap), tibia, talus, and calcaneus. In addition, the bone volume and surface area were calculated to determine sex differences using discriminant analysis. Significant sex differences were found in all bones with respect to volume and surface area (p<0.01). The order of volume was the same in females and males (femur>hip bone>tibia>humerus>scapula), although the order of surface area was different. The largest surface area in men was the femur and in women was the hip bone (p<0.01). An interesting finding of this study was that the ulna is the bone with the highest accuracy for sex determination (94%). When using the surface area of multiple bones, the maximum accuracy (99.4%) was achieved. The equation was as follows: (discriminant equation of surface area; female<0

  12. Histological Evaluation of the Healing Process of Various Bone Graft Materials after Engraftment into the Human Body.

    PubMed

    Jo, Sang Hyun; Kim, Young-Kyun; Choi, Yong-Hoon

    2018-05-02

    The purpose of this study was to measure the level of new bone formation induced by various bone graft materials to provide clinicians with more choices. The samples were divided into three groups: group 1 ( n = 9: allograft + xenograft, DBX ® , San Francisco, CA, USA + Bio-Oss ® , Princeton, NJ, USA), group 2 ( n = 10: xenograft, Bio-Oss ® ), and group 3 ( n = 8: autogenous tooth bone graft, AutoBT ® , Korea Tooth Bank, Seoul, Korea). The average duration of evaluation was 9.56, 2.50, and 3.38 months, respectively. A tissue sample was taken from 27 patients during the second implant surgery. New bone formation was measured via histomorphometry, using a charge-coupled device camera, adaptor, and image analysis software. Total bone area, total area, and ((total bone area/total area) × 100) was measured to determine the extent of new bone formation. The mean value of the total bone area was 152,232.63 μm²; the mean value of the total area was 1,153,696.46 μm²; and the mean total bone area/total area ratio was 13.50%. In each comparison, there was no significant difference among the groups; no inflammation or complications were found in any of the groups. AutoBT ® , an autogenous tooth bone graft, resulted in a level of bone formation similar to that using allografts and xenografts.

  13. Rate of occurrence, gross appearance, and age relation of hyperostosis frontalis interna in females: a prospective autopsy study.

    PubMed

    Nikolić, Slobodan; Djonić, Danijela; Zivković, Vladimir; Babić, Dragan; Juković, Fehim; Djurić, Marija

    2010-09-01

    The aim of our study was to determine rate of occurrence and appearance of hyperostosis frontalis interna (HFI) in females and correlation of this phenomenon with ageing. The sample included 248 deceased females: 45 of them with different types of HFI, and 203 without HFI, average age 68.3 +/- 15.4 years (range, 19-93), and 58.2 +/- 20.2 years (range, 10-101), respectively. According to our results, the rate of HFI was 18.14%. The older the woman was, the higher the possibility of HFI occurring (Pearson correlation 0.211, N=248, P=0.001), but the type of HFI did not correlate with age (Pearson correlation 0.229, N=45, P=0.131). Frontal and temporal bone were significantly thicker in women with than in women without HFI (t= -10.490, DF=246, P=0.000, and t= -5.658, DF=246, P=0.000, respectively). These bones became thicker with ageing (Pearson correlation 0.178, N=248, P=0.005, and 0.303, N=248, P=0.000, respectively). The best predictors of HFI occurrence were respectively, frontal bone thickness, temporal bone thickness, and age(Wald. coeff.=35.487, P=0.000; Wald. coeff.=3.288, P=0.070, and Wald.coeff. =2.727, P =0.099). Diagnosis of HFI depends not only on frontal bone thickness, but also on waviness of internal plate of the frontal bone, as well as-the involvement of the inner bone surface.

  14. Implications of combined Ovariectomy/Multi-Deficiency Diet on rat bone with age-related variation in Bone Parameters and Bone Loss at Multiple Skeletal Sites by DEXA

    PubMed Central

    Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C.; Zahner, Daniel; Hemdan, Nasr Y.; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Background Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Material/Methods Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. Results BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below −5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Conclusions Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk. PMID:23446183

  15. Implications of combined ovariectomy/multi-deficiency diet on rat bone with age-related variation in bone parameters and bone loss at multiple skeletal sites by DEXA.

    PubMed

    Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C; Zahner, Daniel; Hemdan, Nasr Y; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian

    2013-02-28

    Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below -5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk.

  16. Mucous retention cyst of temporal bone: a mimic of cholesteatoma on DW-MRI.

    PubMed

    Karandikar, Amit; Goh, Julian; Loke, Siu Cheng; Yeo, Seng Beng; Tan, Tiong Yong

    2013-01-01

    Non-EPI DW imaging is increasingly being used as a sensitive sequence in detecting cholesteatomas especially if CT findings are not confirmatory. Cholesteatoma appears as a hyperintense focus on DWI. We present two cases of mucous retention cysts in the mastoid temporal bone/middle ear cavity, which present as hyperintense on non-EPI DWI and potentially may mimic cholesteatomas. Differentiating between the two conditions is important, as surgery can be avoided in mucous retention cysts. We have also discussed ways to differentiate between these two conditions on MRI. To our knowledge, this entity is not reported previously. © 2013 Elsevier Inc. All rights reserved.

  17. [Surgical treatment of patients with exudative otitis media].

    PubMed

    Dmitriev, N S; Mileshina, N A

    2003-01-01

    The article concerns peculiarities of surgery for chronic exudative otitis media (CEOM). The significance of miringotomy, tympanostomy, tympanotomy and tympanoantrotomy is demonstrated. The experience of the authors in surgical treatment and postoperative management of CEOM is reviewed. Of primary importance is valid selection of patients for each operation and choice of ventilatory tubes depending on the disease stage. Incidence rate and causes of recurrences in respect to the patients' age are presented and the role of follow-up in prevention of CEOM recurrences is shown. Use of temporal bone computed tomography in CEOM is specified. Key words: exudative otitis media, tympanostomy, ventilation tubes, CT of the temporal bone.

  18. Lateral semicircular canal osteoma presenting as chronic postaural fistula.

    PubMed

    Gill, Charn; Muzaffar, Jameel; Kumar, Raghu Sampath; Irving, Richard

    2018-05-12

    Temporal bone osteoma is an unusual pathology which can occur by birth or can be acquired and mostly involves the tympanomastoid segment of the temporal bone. Osteomas arising from the otic capsule are extremely rare, and there has been only one other report of a lateral semicircular canal osteoma in the literature. We report a similar case of an acquired lateral canal osteoma which presented as a chronic postaural fistula in an ear previously operated for paediatric cholesteatoma. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Planning nonlinear access paths for temporal bone surgery.

    PubMed

    Fauser, Johannes; Sakas, Georgios; Mukhopadhyay, Anirban

    2018-05-01

    Interventions at the otobasis operate in the narrow region of the temporal bone where several highly sensitive organs define obstacles with minimal clearance for surgical instruments. Nonlinear trajectories for potential minimally invasive interventions can provide larger distances to risk structures and optimized orientations of surgical instruments, thus improving clinical outcomes when compared to existing linear approaches. In this paper, we present fast and accurate planning methods for such nonlinear access paths. We define a specific motion planning problem in [Formula: see text] with notable constraints in computation time and goal pose that reflect the requirements of temporal bone surgery. We then present [Formula: see text]-RRT-Connect: two suitable motion planners based on bidirectional Rapidly exploring Random Tree (RRT) to solve this problem efficiently. The benefits of [Formula: see text]-RRT-Connect are demonstrated on real CT data of patients. Their general performance is shown on a large set of realistic synthetic anatomies. We also show that these new algorithms outperform state-of-the-art methods based on circular arcs or Bézier-Splines when applied to this specific problem. With this work, we demonstrate that preoperative and intra-operative planning of nonlinear access paths is possible for minimally invasive surgeries at the otobasis.

  20. Creating an Optimal 3D Printed Model for Temporal Bone Dissection Training.

    PubMed

    Takahashi, Kuniyuki; Morita, Yuka; Ohshima, Shinsuke; Izumi, Shuji; Kubota, Yamato; Yamamoto, Yutaka; Takahashi, Sugata; Horii, Arata

    2017-07-01

    Making a 3-dimensional (3D) temporal bone model is simple using a plaster powder bed and an inkjet printer. However, it is difficult to reproduce air-containing spaces and precise middle ear structures. The objective of this study was to overcome these problems and create a temporal bone model that would be useful both as a training tool and for preoperative simulation. Drainage holes were made to remove excess materials from air-containing spaces, ossicle ligaments were manually changed to bony structures, and small and/or soft tissue structures were colored differently while designing the 3D models. The outcomes were evaluated by 3 procedures: macroscopic and endoscopic inspection of the model, comparison of computed tomography (CT) images of the model to the original CT, and assessment of tactile sensation and reproducibility by 20 surgeons performing surgery on the model. Macroscopic and endoscopic inspection, CT images, and assessment by surgeons were in agreement in terms of reproducibility of model structures. Most structures could be reproduced, but the stapes, tympanic sinus, and mastoid air cells were unsatisfactory. Perioperative tactile sensation of the model was excellent. Although this model still does not embody perfect reproducibility, it proved sufficiently practical for use in surgical training.

  1. Safety of MRI with metallic middle ear implants.

    PubMed

    Tohme, Souheil M; Karkas, Alexandre A; Romanos, Bassam H

    2003-01-01

    Investigation of the effects of magnetic resonance fields on commonly used metallic middle ear implants. Nine middle ear prostheses (seven containing stainless steel and two made of pure gold used as control) were tested in vitro and one stainless steel stapedectomy prosthesis was tested on a cadaveric temporal bone. Each metallic prosthesis was placed in an empty Petri dish and introduced into a 1.5-tesla (T) magnetic resonance imaging (MRI) unit. Most of the prostheses were then placed in a water-filled Petri dish and reintroduced into the MRI unit. Eventual in vitro displacement was assessed visually by two means. In situ testing was done by implanting a piston in a cadaveric temporal bone and performing MR sequences ; any possible displacement was then assessed by CT scan and under microscopic vision. None of the prostheses was displaced in the empty Petri dish. However, while in the water-filled Petri dish, three of these moved with the flux. The implanted piston in the temporal bone did not move. The displacement of three of the prostheses in water is not relevant in real clinical situations. MRI can thus be considered safe in usual clinical settings, as far as our studied implants are concerned.

  2. Cholesteatomas of the temporal bone: role of computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.W.; Voorhees, R.L.; Lufkin, R.B.

    1983-09-01

    Computed tomography (CT) of the temporal bone was performed in 64 patients thought to have a cholesteatoma of the middle ear. Twenty had not had surgery before, while 44 had been operated on; special consideration was given to 21 patients who were scanned immediately before a second operation and had confirmation of the CT findings. Inflammatory disease without cholesteatoma was characterized by absence of erosion of the otic capsule or ossicular chain. Sharply circumscribed cholesteatomas were easily diagnosed by CT. When they were combined with scarring, granulation tissue, or postsurgical changes, the resulting soft-tissue masses were indistinguishable, although cholesteatoma maymore » be suspected if there is evidence of progressive bone erosion about the middle ear. CT can play a major role in postoperative follow-up by confirming that the ear is normal and demonstrating displacement of ossicular grafts or prostheses.« less

  3. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation

    PubMed Central

    Balachandran, Ramya; Labadie, Robert F.

    2015-01-01

    Purpose A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. Methods An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. Results The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of 45° and higher as well as longer cantilevered drill lengths. Conclusion The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure. PMID:26183149

  4. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation.

    PubMed

    Dillon, Neal P; Balachandran, Ramya; Labadie, Robert F

    2016-03-01

    A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of [Formula: see text] and higher as well as longer cantilevered drill lengths. The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure.

  5. Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality.

    PubMed

    Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas

    2012-03-01

    The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols.

  6. A three-dimensional analysis of the endolymph drainage system in Ménière disease.

    PubMed

    Monsanto, Rafael da Costa; Pauna, Henrique F; Kwon, Geeyoun; Schachern, Patricia A; Tsuprun, Vladimir; Paparella, Michael M; Cureoglu, Sebahattin

    2017-05-01

    To measure the volume of the endolymph drainage system in temporal bone specimens with Ménière disease, as compared with specimens with endolymphatic hydrops without vestibular symptoms and with nondiseased specimens STUDY DESIGN: Comparative human temporal bone analysis. We generated three-dimensional models of the vestibular aqueduct, endolymphatic sinus and duct, and intratemporal portion of the endolymphatic sac and calculated the volume of those structures. We also measured the internal and external aperture of the vestibular aqueduct, as well as the opening (if present) of the utriculoendolymphatic (Bast's) valve and compared the measurements in our three study groups. The volume of the vestibular aqueduct and of the endolymphatic sinus, duct, and intratemporal endolymphatic sac was significantly lower in the Ménière disease group than in the endolymphatic hydrops group (P <.05). The external aperture of the vestibular aqueduct was also smaller in the Ménière disease group. Bast's valve was open only in some specimens in the Ménière disease group. In temporal bones with Ménière disease, the volume of the vestibular aqueduct, endolymphatic duct, and intratemporal endolymphatic sac was lower, and the external aperture of the vestibular aqueduct was smaller as compared with bones from donors who had endolymphatic hydrops without vestibular symptoms and with nondiseased bones. The open status of the Bast's valve in the Ménière disease group could be secondary to higher retrograde endolymph pressures caused by smaller drainage systems. These anatomic findings could correlate with the reason that some patients with hydrops develop clinical symptoms, whereas others do not. N/A Laryngoscope, 127:E170-E175, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Mixed reality temporal bone surgical dissector: mechanical design.

    PubMed

    Hochman, Jordan Brent; Sepehri, Nariman; Rampersad, Vivek; Kraut, Jay; Khazraee, Milad; Pisa, Justyn; Unger, Bertram

    2014-08-08

    The Development of a Novel Mixed Reality (MR) Simulation. An evolving training environment emphasizes the importance of simulation. Current haptic temporal bone simulators have difficulty representing realistic contact forces and while 3D printed models convincingly represent vibrational properties of bone, they cannot reproduce soft tissue. This paper introduces a mixed reality model, where the effective elements of both simulations are combined; haptic rendering of soft tissue directly interacts with a printed bone model. This paper addresses one aspect in a series of challenges, specifically the mechanical merger of a haptic device with an otic drill. This further necessitates gravity cancelation of the work assembly gripper mechanism. In this system, the haptic end-effector is replaced by a high-speed drill and the virtual contact forces need to be repositioned to the drill tip from the mid wand. Previous publications detail generation of both the requisite printed and haptic simulations. Custom software was developed to reposition the haptic interaction point to the drill tip. A custom fitting, to hold the otic drill, was developed and its weight was offset using the haptic device. The robustness of the system to disturbances and its stable performance during drilling were tested. The experiments were performed on a mixed reality model consisting of two drillable rapid-prototyped layers separated by a free-space. Within the free-space, a linear virtual force model is applied to simulate drill contact with soft tissue. Testing illustrated the effectiveness of gravity cancellation. Additionally, the system exhibited excellent performance given random inputs and during the drill's passage between real and virtual components of the model. No issues with registration at model boundaries were encountered. These tests provide a proof of concept for the initial stages in the development of a novel mixed-reality temporal bone simulator.

  8. Adhesive bone bonding prospects for lithium disilicate ceramic implants

    NASA Astrophysics Data System (ADS)

    Vennila Thirugnanam, Sakthi Kumar

    Temporomandibular Joint (TMJ) implants articulating mandible with temporal bone in humans have a very high failure rate. Metallic TMJ implants available in the medical market are not osseointegrated, but bond only by mechanical interlocking using screws which may fail, mandating a second surgery for removal. Stress concentration around fixture screws leads to aseptic loosening or fracture of the bone. It has been proposed that this problem can be overcome by using an all-ceramic TMJ implant bonded to bone with dental adhesives. Structural ceramics are promising materials with an excellent track record in the field of dentis.

  9. Prostaglandin E2 Increased Rat Cortical Bone Mass When Administered Immediately Following Ovariectomy

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Jee, Webster S.S.; Zeng, Qing Qiang; Li, Mei; Lin, Bai Yun

    1993-01-01

    To investigate the effects of ovariectomy and the simultaneous administration of prostaglandin E2 (PGE2) on rat tibial shaft cortical bone histomorphometry, thirty-five 3 month-old female Sprague-Dawley rats were either ovariectomized (OVX), or sham ovariectomy (sham-OVX). The OVX rats were divided into three groups and treated with 0, 1 and 6 mg PGE2/kg/day for 90 days. The double fluorescent labeled undecalcified tibial shaft cross sections (proximal to the tibiofibular junction) of all the subjects were used for histomorphometry analysis. No differences in cross-sectional area and cortical bone area were found between sham-OVX and OVX controls, but OVX increased marrow area, intracortical porosity area and endocortical eroded perimeter. Periosteal and endocortical bone formation rates decreased with aging yet OVX prevented these changes. These OVX-induced increases in marrow area and endocortical eroded perimeter were prevented by 1 mg PGE2/kg/day treatment and added bone to periosteal and endocortical surfaces and to the marrow cavity. At the 6 mg/kg/day dose level, PGE2-treated OVX rats increased total tissue area, cortical bone area, marrow trabmular bone area, minimal cortical width and intracortical porosity area, and decreased marrow area compared to basal, sham-OVX and OVX controls. In addition, periosteal bone formation was elevated in the 6 mg PGE2/kg/day-treated OVX rats compared to OVX controls. Endocortical eroded perimeter increased from basal and sham-OVX control levels, but decreased from OVX control levels in the 6 mg PGE2/kg/day-treated OVX rats. Our study confirmed that ovariectomy does not cause osteopenia in tibial shaft cortical bone in rats, but it does stimulate endocortical bone resorption and enlarges marrow area. The new findings from the present study demonstrate that PGE2 prevents the OVX-induced increases in endocortical bone resorption and marrow area and adds additional bone to periosteal and endocortical surfaces and to marrow cavity to increase total bone mass in the tibial shaft of OVX rats when given immediately following ovafiectomy.

  10. Pore cross-section area on predicting elastic properties of trabecular bovine bone for human implants.

    PubMed

    Maciel, Alfredo; Presbítero, Gerardo; Piña, Cristina; del Pilar Gutiérrez, María; Guzmán, José; Munguía, Nadia

    2015-01-01

    A clear understanding of the dependence of mechanical properties of bone remains a task not fully achieved. In order to estimate the mechanical properties in bones for implants, pore cross-section area, calcium content, and apparent density were measured in trabecular bone samples for human implants. Samples of fresh and defatted bone tissue, extracted from one year old bovines, were cut in longitudinal and transversal orientation of the trabeculae. Pore cross-section area was measured with an image analyzer. Compression tests were conducted into rectangular prisms. Elastic modulus presents a linear tendency as a function of pore cross-section area, calcium content and apparent density regardless of the trabecular orientation. The best variable to estimate elastic modulus of trabecular bone for implants was pore cross-section area, and affirmations to consider Nukbone process appropriated for marrow extraction in trabecular bone for implantation purposes are proposed, according to bone mechanical properties. Considering stress-strain curves, defatted bone is stiffer than fresh bone. Number of pores against pore cross-section area present an exponential decay, consistent for all the samples. These graphs also are useful to predict elastic properties of trabecular samples of young bovines for implants.

  11. Production of New Trabecular Bone in Osteopenic Ovariectomized Rats by Prostaglandin E2

    NASA Technical Reports Server (NTRS)

    Mori, S.; Jee, W. S. S.; Li, X. J.

    1992-01-01

    Serum chemistry and bone morphometry of the proximal tibial metaphysis were performed in 3 month-old double fluorescent-labeled, female Sprague-Dawley rats subjected to bilateral ovariectomy or sham surgery for 4 months prior to treatment with 0, 0.3, 1,3, or 6 mg of prostaglandin E2 (PGE2)/kg/day subcutaneously for 30 days. The 4 month postovariectomized rats possessed an osteopenic proximal tibial metaphysis with 7% trabecular area compared with controls (19%). PGE2 treatment elevated osteocalcin levels and augmented proximal tibial metaphyseal bone area in ovariectomized and sham-operated rats. Osteopenic, ovariectomized rats treated with 6 mg (PGE2)/kg/day for 30 days restored bone area to levels of agematched sham-operated rats. Morphometric analyses showed increased woven and lamellar bone area, fluorescent-labeled perimeter (osteoblastic recruitment), mineral apposition rate (osteoblastic activity), bone formation rate (BFR/BV), and longitudinal bone growth. These dramatic bone changes were all significantly increased at the doseresponse manner. This study showed that in vivo PGE2 is a powerful activator of bone remodeling, it increases both bone resorption and bone formation, and produces an anabolic effect by shifting bone balance to the positive direction. Furthermore, PGE2-induced augmentation of metaphyseal bone area in ovariectomized rats was at least two times greater than in sham-operated rats.

  12. Temporal Subtraction of Serial CT Images with Large Deformation Diffeomorphic Metric Mapping in the Identification of Bone Metastases.

    PubMed

    Sakamoto, Ryo; Yakami, Masahiro; Fujimoto, Koji; Nakagomi, Keita; Kubo, Takeshi; Emoto, Yutaka; Akasaka, Thai; Aoyama, Gakuto; Yamamoto, Hiroyuki; Miller, Michael I; Mori, Susumu; Togashi, Kaori

    2017-11-01

    Purpose To determine the improvement of radiologist efficiency and performance in the detection of bone metastases at serial follow-up computed tomography (CT) by using a temporal subtraction (TS) technique based on an advanced nonrigid image registration algorithm. Materials and Methods This retrospective study was approved by the institutional review board, and informed consent was waived. CT image pairs (previous and current scans of the torso) in 60 patients with cancer (primary lesion location: prostate, n = 14; breast, n = 16; lung, n = 20; liver, n = 10) were included. These consisted of 30 positive cases with a total of 65 bone metastases depicted only on current images and confirmed by two radiologists who had access to additional imaging examinations and clinical courses and 30 matched negative control cases (no bone metastases). Previous CT images were semiautomatically registered to current CT images by the algorithm, and TS images were created. Seven radiologists independently interpreted CT image pairs to identify newly developed bone metastases without and with TS images with an interval of at least 30 days. Jackknife free-response receiver operating characteristics (JAFROC) analysis was conducted to assess observer performance. Reading time was recorded, and usefulness was evaluated with subjective scores of 1-5, with 5 being extremely useful and 1 being useless. Significance of these values was tested with the Wilcoxon signed-rank test. Results The subtraction images depicted various types of bone metastases (osteolytic, n = 28; osteoblastic, n = 26; mixed osteolytic and blastic, n = 11) as temporal changes. The average reading time was significantly reduced (384.3 vs 286.8 seconds; Wilcoxon signed rank test, P = .028). The average figure-of-merit value increased from 0.758 to 0.835; however, this difference was not significant (JAFROC analysis, P = .092). The subjective usefulness survey response showed a median score of 5 for use of the technique (range, 3-5). Conclusion TS images obtained from serial CT scans using nonrigid registration successfully depicted newly developed bone metastases and showed promise for their efficient detection. © RSNA, 2017 Online supplemental material is available for this article.

  13. Analysis of the effects of growth hormone, exercise and food restriction on cancellous bone in different bone sites in middle-aged female rats.

    PubMed

    Banu, J; Orhii, P B; Okafor, M C; Wang, L; Kalu, D N

    2001-06-01

    The aim of this study is to determine the effects of growth hormone (GH), exercise (EX), GH+EX and food restriction on cancellous bone in middle-aged female rats. Female F344 rats aged 13 months were divided into (1) age-matched controls; (2) GH treated (2.5 mg/kg. 5 day/week); (3) EX (voluntary wheel running); (4) GH+EX; and (5) food restricted (FR) (fed 60% of the ad libitum food intake). The animals were treated for 18 weeks, at the end of which they were sacrificed. Cancellous bone and cortical bone in the fourth lumbar vertebra, proximal tibial metaphysis (PTM), distal femoral metaphysis (DFM) and femoral neck (NF) were analyzed using peripheral quantitative computerized tomography (pQCT) densitometry. Growth hormone increased cancellous bone area, cancellous bone mineral content, cortical bone area and cortical bone mineral content in the vertebra, PTM, DFM and NF. The tibial muscle wet weight was increased significantly after GH treatment. Exercise increased the cancellous bone area in the vertebra, PTM and DFM. Cortical bone area and cortical bone mineral content increased after EX in the vertebra, PTM, DFM and NF. No significant change was seen in the tibial muscle wet weight after EX. Growth hormone+EX increased cancellous bone area in the vertebra PTM and DFM but had no effect in neck of the femur. Cancellous bone mineral content, cortical bone area and cortical bone mineral content increased with GH+EX in the vertebra, PTM, DFM and NF. The tibial muscle wet weight was increased significantly with GH+EX. Food restriction decreased cancellous bone area and cancellous bone mineral content in all the bones studied. The decrease was statistically significant only at the distal femoral metaphysis. The tibial muscle wet weight decreased when compared with the age-matched control, but this decrease was not statistically significant. We conclude that the effect of the dose of GH used and the levels of voluntary wheel running EX used increased cancellous bone in intact rats; the effect of GH is much greater and different bones respond with varying intensities. The effects of combined treatment of GH and EX on cancellous bone are not always significantly higher than those of GH alone. FR at the level studied has a mostly negative effect on cancellous bone.

  14. The dynamics of adult haematopoiesis in the bone and bone marrow environment.

    PubMed

    Ho, Miriel S H; Medcalf, Robert L; Livesey, Stephen A; Traianedes, Kathy

    2015-08-01

    This review explores the dynamic relationship between bone and bone marrow in the genesis and regulation of adult haematopoiesis and will provide an overview of the haematopoietic hierarchical system. This will include the haematopoietic stem cell (HSC) and its niches, as well as discuss emerging evidence of the reciprocal interplay between bone and bone marrow, and support of the pleiotropic role played by bone cells in the regulation of HSC proliferation, differentiation and function. In addition, this review will present demineralized bone matrix as a unique acellular matrix platform that permits the generation of ectopic de novo bone and bone marrow and provides a means of investigating the temporal sequence of bone and bone marrow regeneration. It is anticipated that the utilization of this matrix-based approach will help researchers in gaining deeper insights into the major events leading to adult haematopoiesis in the bone marrow. Furthermore, this model may potentially offer new avenues to manipulate the HSC niche and hence influence the functional output of the haematopoietic system. © 2015 John Wiley & Sons Ltd.

  15. Occupational Noise Exposure and Risk for Noise-Induced Hearing Loss Due to Temporal Bone Drilling.

    PubMed

    Vaisbuch, Yona; Alyono, Jennifer C; Kandathil, Cherian; Wu, Stanley H; Fitzgerald, Matthew B; Jackler, Robert K

    2018-07-01

    Noise-induced hearing loss is one of the most common occupational hazards in the United States. Several studies have described noise-induced hearing loss in patients following mastoidectomy. Although otolaryngologists care for patients with noise-induced hearing loss, few studies in the English literature have examined surgeons' occupational risk. Noise dosimeters and sound level meters with octave band analyzers were used to assess noise exposure during drilling of temporal bones intraoperatively and in a lab setting. Frequency specific sound intensities were recorded. Sound produced using burrs of varying size and type were compared. Differences while drilling varying anatomic structures were assessed using drills from two manufacturers. Pure tone audiometry was performed on 7 to 10 otolaryngology residents before and after a temporal bone practicum to assess for threshold shifts. Noise exposure during otologic drilling can exceed over 100 dB for short periods of time, and is especially loud using large diameter burrs > 4 mm, with cutting as compared with diamond burrs, and while drilling denser bone such as the cortex. Intensity peaks were found at 2.5, 5, and 6.3 kHz. Drilling on the tegmen and sigmoid sinus revealed peaks at 10 and 12.5 kHz. No temporary threshold shifts were found at 3 to 6 kHz, but were found at 8 to 16 kHz, though this did not reach statistical significance. This article examines noise exposure and threshold shifts during temporal bone drilling. We were unable to find previous descriptions in the literature of measurements done while multiple people drilling simultaneously, during tranlabyrinthine surgery and a specific frequency characterization of the change in peach that appears while drilling on the tegmen. Hearing protection should be considered, which would still allow the surgeon to appreciate pitch changes associated with drilling on sensitive structures and communication with surgical team members. As professionals who specialize in promoting the restoration and preservation of hearing for others, otologic surgeons should not neglect hearing protection for themselves.

  16. Reciprocal Relation between Marrow Adiposity and the Amount of Bone in the Axial and Appendicular Skeleton of Young Adults

    PubMed Central

    Di Iorgi, Natascia; Rosol, Michael; Mittelman, Steven D.; Gilsanz, Vicente

    2008-01-01

    Background: Studies in the elderly suggest a reciprocal relation between increased marrow adiposity and bone loss, supporting basic research data indicating that osteoblasts and adipocytes share a common progenitor cell. However, whether this relation represents a preferential differentiation of stromal cells from osteoblasts to adipocytes or whether a passive accumulation of fat as bone is lost and marrow space increases with aging is unknown. To address this question and avoid the confounding effect of bone loss, we examined teenagers and young adults. Methods: Using computed tomography, we obtained measurements of bone density and cross-sectional area of the lumbar vertebral bodies and cortical bone area, cross-sectional area, marrow canal area, and fat density in the marrow of the femurs in 255 sexually mature subjects (126 females, 129 males; 15–24.9 yr of age). Additionally, values for total body fat were obtained with dual-energy x-ray absorptiometry. Results: Regardless of gender, reciprocal relations were found between fat density and measures of vertebral bone density and femoral cortical bone area (r = 0.19–0.39; all P values ≤ .03). In contrast, there was no relation between marrow canal area and cortical bone area in the femurs, neither between fat density and the cross-sectional dimensions of the bones. We also found no relation between anthropometric or dual-energy x-ray absorptiometry fat values and measures for marrow fat density. Conclusions: Our results indicate an inverse relation between bone marrow adiposity and the amount of bone in the axial and appendicular skeleton and support the notion of a common progenitor cell capable of mutually exclusive differentiation into the cell lineages responsible for bone and fat formation. PMID:18381577

  17. Inner ear anomalies and conductive hearing loss in children with Apert syndrome: an overlooked otologic aspect.

    PubMed

    Zhou, Guangwei; Schwartz, Lynn Thomas; Gopen, Quinton

    2009-02-01

    To identify the occurrence of inner ear structural anomalies and conductive hearing loss (CHL) in children with Apert syndrome. Retrospective review. Pediatric tertiary referral center. Twenty pediatric patients with Apert syndrome were found; all patients (38/40 ears) had inner ear anomalies. Computerized tomography of the head/temporal bone, pure-tone (including air and bone conduction) audiometry, and tympanometry. Imaging demonstrating inner ear anomalies, including malformations of the cochlea, dilated vestibule, and/or semicircular canal; audiologic findings of air-bone gap(s). Hearing loss was found in 90% of the patients with Apert syndrome, and 80% of them had CHL. Air-bone gaps were found at all frequencies, with larger gaps at low frequencies. Fifty percent (20/40) of the ears had better than 0 dB hearing level bone conduction thresholds at 250 and/or 500 Hz. Normal middle ear pressure and mobility were found in all ears with intact eardrum. Inner ear anomalies were found in all patients, and 90% of them had bilateral involvement. Most frequently observed inner ear anomalies were dilated vestibule, malformed lateral semicircular canal, and cochlear dysplasia. Children with Apert syndrome may present with significant CHL that cannot be explained by minor middle ear pathologies alone. This conductive loss may be, at least partially, attributed to the inner ear anomalies; however, these structural anomalies are usually not recognized in these patients. Failure to close air-bone gap after surgical intervention may raise the suspicion of inner ear anomalies, and computed tomographic scan of the temporal bone can provide definitive proof.

  18. Micro-endoscopic ear anatomy of guinea pig applied to experimental surgery.

    PubMed

    Barros, Bruno Borges de Carvalho; Andrade, José Santos Cruz de; Garcia, Leandro Borborema; Pifaia, Gustavo Ribeiro; Cruz, Oswaldo Laércio Mendonça; Onishi, Ektor Tsuneo; Penido, Norma de Oliveira

    2014-01-01

    To describe topographic and endoscopic anatomy of guinea pig ear for development of surgical approaches in experimental studies. Experimental study. Eight adult guinea pigs (Cavia porcellus) were used in this study. Four animals were described through endoscopic view and four animals were used to describe topographic anatomy. The main structures of middle ear were well identified through endoscopy view: oval and round window, ossicles and vascular structures. Temporal bone position, landmarks and its relations to skull are perceived with topographic description. Topographic anatomic description allowed exposition of temporal bone relations for external surgical approaches. Alternatively, grooves and middle ear structures were identified and may be used to transcanal accesses.

  19. Complicated coexisting pyogenic and tuberculous otitis media affecting the temporozygomatic, infratemporal, and parotid areas: report of a rare entity.

    PubMed

    Brar, Tripti; Mrig, Sumit; Passey, J C; Agarwal, A K; Jain, Shayma

    2013-01-01

    We report an unusual case in which a 28-year-old woman presented with a long-standing history of ear discharge, hearing loss, facial weakness with ipsilateral facial swelling and cellulitis, a postauricular fistula, and an abscess of the temporozygomatic, infratemporal, and parotid areas. The pus stained positive for bacteria and acid-fast bacilli, and culture was positive for Proteus vulgaris and mycobacteria. Based on these findings, a diagnosis of tuberculous otitis media with complications was made. Computed tomography showed extensive destruction of the tympanic and mastoid part of the temporal bone, as well as lytic lesions in the skull. The patient was placed on antituberculosis drug therapy. Although her facial nerve palsy and hearing loss persisted, she otherwise responded well and did not require surgery.

  20. Effect of rhythmic gymnastics on volumetric bone mineral density and bone geometry in premenarcheal female athletes and controls.

    PubMed

    Tournis, S; Michopoulou, E; Fatouros, I G; Paspati, I; Michalopoulou, M; Raptou, P; Leontsini, D; Avloniti, A; Krekoukia, M; Zouvelou, V; Galanos, A; Aggelousis, N; Kambas, A; Douroudos, I; Lyritis, G P; Taxildaris, K; Pappaioannou, N

    2010-06-01

    Weight-bearing exercise during growth exerts positive effects on the skeleton. Our objective was to test the hypothesis that long-term elite rhythmic gymnastics exerts positive effects on volumetric bone mineral density and geometry and to determine whether exercise-induced bone adaptation is associated with increased periosteal bone formation or medullary contraction using tibial peripheral quantitative computed tomography and bone turnover markers. We conducted a cross-sectional study at a tertiary center. We studied 26 elite premenarcheal female rhythmic gymnasts (RG) and 23 female controls, aged 9-13 yr. We measured bone age, volumetric bone mineral density, bone mineral content (BMC), cortical thickness, cortical and trabecular area, and polar stress strength index (SSIp) by peripheral quantitative computed tomography of the left tibia proximal to the distal metaphysis (trabecular) at 14, 38 (cortical), and 66% (muscle mass) from the distal end and bone turnover markers. The two groups were comparable according to height and chronological and bone age. After weight adjustment, cortical BMC, area, and thickness at 38% were significantly higher in RG (P < 0.005-0.001). Periosteal circumference, SSIp, and muscle area were higher in RG (P < 0.01-0.001). Muscle area was significantly associated with cortical BMC, area, and SSIp, whereas years of training showed positive association with cortical BMC, area, and thickness independent of chronological age. RG in premenarcheal girls may induce positive adaptations on the skeleton, especially in cortical bone. Increased duration of exercise is associated with a positive response of bone geometry.

  1. Cochlear implantation in patients with bilateral cochlear trauma.

    PubMed

    Serin, Gediz Murat; Derinsu, Ufuk; Sari, Murat; Gergin, Ozgül; Ciprut, Ayça; Akdaş, Ferda; Batman, Cağlar

    2010-01-01

    Temporal bone fracture, which involves the otic capsule, can lead to complete loss of auditory and vestibular functions, whereas the patients without fractures may experience profound sensorineural hearing loss due to cochlear concussion. Cochlear implant is indicated in profound sensorineural hearing loss due to cochlear trauma but who still have an intact auditory nerve. This is a retrospective review study. We report 5 cases of postlingually deafened patients caused by cochlear trauma, who underwent cochlear implantation. Preoperative and postoperative hearing performance will be presented. These patients are cochlear implanted after the cochlear trauma in our department between 2001 and 2006. All patients performed very well with their implants, obtained open-set speech understanding. They all became good telephone users after implantation. Their performance in speech understanding was comparable to standard postlingual adult patients implanted. Cochlear implantation is an effective aural rehabilitation in profound sensorineural hearing loss caused by temporal bone trauma. Preoperative temporal bone computed tomography, magnetic resonance imaging, and promontorium stimulation testing are necessary to make decision for the surgery and to determine the side to be implanted. Surgery could be challenging and complicated because of anatomical irregularity. Moreover, fibrosis and partial or total ossification within the cochlea must be expected. Copyright 2010. Published by Elsevier Inc.

  2. A MEMS Condenser Microphone-Based Intracochlear Acoustic Receiver.

    PubMed

    Pfiffner, Flurin; Prochazka, Lukas; Peus, Dominik; Dobrev, Ivo; Dalbert, Adrian; Sim, Jae Hoon; Kesterke, Rahel; Walraevens, Joris; Harris, Francesca; Roosli, Christof; Obrist, Dominik; Huber, Alexander

    2017-10-01

    Intracochlear sound pressure (ICSP) measurements are limited by the small dimensions of the human inner ear and the requirements imposed by the liquid medium. A robust intracochlear acoustic receiver (ICAR) for repeated use with a simple data acquisition system that provides the required high sensitivity and small dimensions does not yet exist. The work described in this report aims to fill this gap and presents a new microelectromechanical systems (MEMS) condenser microphone (CMIC)-based ICAR concept suitable for ICSP measurements in human temporal bones. The ICAR head consisted of a passive protective diaphragm (PD) sealing the MEMS CMIC against the liquid medium, enabling insertion into the inner ear. The components of the MEMS CMIC-based ICAR were expressed by a lumped element model (LEM) and compared to the performance of successfully fabricated ICARs. Good agreement was achieved between the LEM and the measurements with different sizes of the PD. The ICSP measurements in a human cadaver temporal bone yielded data in agreement with the literature. Our results confirm that the presented MEMS CMIC-based ICAR is a promising technology for measuring ICSP in human temporal bones in the audible frequency range. A sensor for evaluation of the biomechanical hearing process by quantification of ICSP is presented. The concept has potential as an acoustic receiver in totally implantable cochlear implants.

  3. Computed tomographic imaging of stapes implants.

    PubMed

    Warren, Frank M; Riggs, Sterling; Wiggins, Richard H

    2008-08-01

    Computed tomographic (CT) imaging of stapes prostheses is inaccurate. Clinical situations arise in which it would be helpful to determine the depth of penetration of a stapes prosthesis into the vestibule. The accuracy of CT imaging for this purpose has not been defined. This study was aimed to determine the accuracy of CT imaging to predict the depth of intrusion of stapes prostheses into the vestibule. The measurement of stapes prostheses by CT scan was compared with physical measurements in 8 cadaveric temporal bones. The depth of intrusion into the vestibule of the piston was underestimated in specimens with the fluoroplastic piston by a mean of 0.5 mm when compared with the measurements obtained in the temporal bones. The depth of penetration of the stainless steel implant was overestimated by 0.5 mm when compared with that in the temporal bone. The type of implant must be taken into consideration when estimating the depth of penetration into the vestibule using CT scanning because the imaging characteristics of the implanted materials differ. The position of fluoroplastic pistons cannot be accurately measured in the vestibule. Metallic implants are well visualized, and measurements exceeding 2.2 mm increase the suspicion of otolithic impingement. Special reconstructions along the length of the piston may be more accurate in estimating the position of stapes implants.

  4. Simplified Summative Temporal Bone Dissection Scale Demonstrates Equivalence to Existing Measures.

    PubMed

    Pisa, Justyn; Gousseau, Michael; Mowat, Stephanie; Westerberg, Brian; Unger, Bert; Hochman, Jordan B

    2018-01-01

    Emphasis on patient safety has created the need for quality assessment of fundamental surgical skills. Existing temporal bone rating scales are laborious, subject to evaluator fatigue, and contain inconsistencies when conferring points. To address these deficiencies, a novel binary assessment tool was designed and validated against a well-established rating scale. Residents completed a mastoidectomy with posterior tympanotomy on identical 3D-printed temporal bone models. Four neurotologists evaluated each specimen using a validated scale (Welling) and a newly developed "CanadaWest" scale, with scoring repeated after a 4-week interval. Nineteen participants were clustered into junior, intermediate, and senior cohorts. An ANOVA found significant differences between performance of the junior-intermediate and junior-senior cohorts for both Welling and CanadaWest scales ( P < .05). Neither scale found a significant difference between intermediate-senior resident performance ( P > .05). Cohen's kappa found strong intrarater reliability (0.711) with a high degree of interrater reliability of (0.858) for the CanadaWest scale, similar to scores on the Welling scale of (0.713) and (0.917), respectively. The CanadaWest scale was facile and delineated performance by experience level with strong intrarater reliability. Comparable to the validated Welling Scale, it distinguished junior from senior trainees but was challenged in differentiating intermediate and senior trainee performance.

  5. Measurement of cochlear length using the 'A' value for cochlea basal diameter: A feasibility study.

    PubMed

    Deep, Nicholas L; Howard, Brittany E; Holbert, Sarah O; Hoxworth, Joseph M; Barrs, David M

    2017-07-01

    To determine whether the cochlea basal diameter (A value) measurement can be consistently and precisely obtained from high-resolution temporal bone imaging for use in cochlear length estimation. A feasibility study at a tertiary referral center was performed using the temporal bone CTs of 40 consecutive patients. The distance from the round window to the lateral wall was measured for each cochlea by two independent reviewers, a neuroradiologist and an otolaryngologist. The interrater reliability was calculated using the intraclass correlation coefficient (ICC) and the Bland-Altman plot. Forty patients (19 males, 21 females) for a total of 80 cochleae were included. Interrater reliability on the same ear had a high level of agreement by both the ICC and the Bland-Altman plot. ICCs were 0.90 (95% CI: 0.82, 0.94) for the left ear and 0.96 (95% CI: 0.92, 0.98) for the right ear. Bland-Altman plot confirmed interrater reliability with all 96% of measurements falling within the 95% limits of agreement. Measurement between the round window and lateral cochlear wall can be consistently and reliably obtained from high-resolution temporal bone CT scans. Thus, it is feasible to utilize this method to estimate the cochlear length of patients undergoing cochlear implantation.

  6. Representation of Glossy Material Surface in Ventral Superior Temporal Sulcal Area of Common Marmosets

    PubMed Central

    Miyakawa, Naohisa; Banno, Taku; Abe, Hiroshi; Tani, Toshiki; Suzuki, Wataru; Ichinohe, Noritaka

    2017-01-01

    The common marmoset (Callithrix jacchus) is one of the smallest species of primates, with high visual recognition abilities that allow them to judge the identity and quality of food and objects in their environment. To address the cortical processing of visual information related to material surface features in marmosets, we presented a set of stimuli that have identical three-dimensional shapes (bone, torus or amorphous) but different material appearances (ceramic, glass, fur, leather, metal, stone, wood, or matte) to anesthetized marmoset, and recorded multiunit activities from an area ventral to the superior temporal sulcus (STS) using multi-shanked, and depth resolved multi-electrode array. Out of 143 visually responsive multiunits recorded from four animals, 29% had significant main effect only of the material, 3% only of the shape and 43% of both the material and the shape. Furthermore, we found neuronal cluster(s), in which most cells: (1) showed a significant main effect in material appearance; (2) the best stimulus was a glossy material (glass or metal); and (3) had reduced response to the pixel-shuffled version of the glossy material images. The location of the gloss-selective area was in agreement with previous macaque studies, showing activation in the ventral bank of STS. Our results suggest that perception of gloss is an important ability preserved across wide range of primate species. PMID:28367117

  7. Representation of Glossy Material Surface in Ventral Superior Temporal Sulcal Area of Common Marmosets.

    PubMed

    Miyakawa, Naohisa; Banno, Taku; Abe, Hiroshi; Tani, Toshiki; Suzuki, Wataru; Ichinohe, Noritaka

    2017-01-01

    The common marmoset ( Callithrix jacchus ) is one of the smallest species of primates, with high visual recognition abilities that allow them to judge the identity and quality of food and objects in their environment. To address the cortical processing of visual information related to material surface features in marmosets, we presented a set of stimuli that have identical three-dimensional shapes (bone, torus or amorphous) but different material appearances (ceramic, glass, fur, leather, metal, stone, wood, or matte) to anesthetized marmoset, and recorded multiunit activities from an area ventral to the superior temporal sulcus (STS) using multi-shanked, and depth resolved multi-electrode array. Out of 143 visually responsive multiunits recorded from four animals, 29% had significant main effect only of the material, 3% only of the shape and 43% of both the material and the shape. Furthermore, we found neuronal cluster(s), in which most cells: (1) showed a significant main effect in material appearance; (2) the best stimulus was a glossy material (glass or metal); and (3) had reduced response to the pixel-shuffled version of the glossy material images. The location of the gloss-selective area was in agreement with previous macaque studies, showing activation in the ventral bank of STS. Our results suggest that perception of gloss is an important ability preserved across wide range of primate species.

  8. Clival giant cell tumor - A rare case report and review of literature with respect to current line of management

    PubMed Central

    Patibandla, Mohana Rao; Thotakura, Amit Kumar; Rao, Marabathina Nageswara; Addagada, Gokul Chowdary; Nukavarapu, Manisha Chowdary; Panigrahi, Manas Kumar; Uppin, Shantiveer; Challa, Sundaram; Dandamudi, Srinivas

    2017-01-01

    Giant-cell tumor (GCT) involving the skull base is rare. Sphenoid bone is the most commonly involved bone followed by petrous temporal bone. Histopathology and radiological features of these lesions are similar to GCT involving bone elsewhere. Unlike other sites, skull base is not an ideal site for the radical surgery. Hence adjuvant treatment has pivotal role. Radiation therapy with intensity-modulated radiation therapy, stereotactic radiosurgery or chemotherapy with adriamycin are promising as described in some case reports. Bisphosphonates showed good control in local recurrence. In vitro studies with Zolendronate loaded bone cement and phase 2 trials of Denosumab showed hopeful results, may be useful in future. PMID:28413541

  9. The temporal response of bone to unloading

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Bikle, D. D.; Morey-Holton, E.

    1984-01-01

    Rats were suspended by their tails with the forelimbs bearing the weight load to simulate the weightlessness of space flight. Growth in bone mass ceased by 1 week in the hindlimbs and lumbar vertebrae in growing rats, while growth in the forelimbs and cervical vertebrae remained unaffected. The effects of selective skeletal unloading on bone formation during 2 weeks of suspension was investigated using radio iostope incorporation (with Ca-45 and H-3 proline) and histomorphometry (with tetracycline labeling). The results of these studies were confirmed by histomorphometric measurements of bone formation using triple tetracycline labeling. This model of simulated weightlessness results in an initial inhibition of bone formation in the unloaded bones. This temporary cessation of bone formation is followed in the accretion of bone mass, which then resumes at a normal rate by 14 days, despite continued skeletal unloading. This cycle of inhibition and resumption of bone formation has profound implication for understanding bone dynamics durng space flight, immobilization, or bed rest and offers an opportunity to study the hormonal and mechanical factors that regulate bone formation.

  10. Correlation between Preoperative High Resolution Computed Tomography (CT) Findings with Surgical Findings in Chronic Otitis Media (COM) Squamosal Type.

    PubMed

    Karki, S; Pokharel, M; Suwal, S; Poudel, R

    Background The exact role of High resolution computed tomography (HRCT) temporal bone in preoperative assessment of Chronic suppurative otitis media atticoantral disease still remains controversial. Objective To evaluate the role of high resolution computed tomography temporal bone in Chronic suppurative otitis media atticoantral disease and to compare preoperative computed tomographic findings with intra-operative findings. Method Prospective, analytical study conducted among 65 patients with chronic suppurative otitis media atticoantral disease in Department of Radiodiagnosis, Kathmandu University Dhulikhel Hospital between January 2015 to July 2016. The operative findings were compared with results of imaging. The parameters of comparison were erosion of ossicles, scutum, facial canal, lateral semicircular canal, sigmoid and tegmen plate along with extension of disease to sinus tympani and facial recess. Sensitivity, specificity, negative predictive value, positive predictive values were calculated. Result High resolution computed tomography temporal bone offered sensitivity (Se) and specificity (Sp) of 100% for visualization of sigmoid and tegmen plate erosion. The performance of HRCT in detecting malleus (Se=100%, Sp=95.23%), incus (Se=100%,Sp=80.48%) and stapes (Se=96.55%, Sp=71.42%) erosion was excellent. It offered precise information about facial canal erosion (Se=100%, Sp=75%), scutum erosion (Se=100%, Sp=96.87%) and extension of disease to facial recess and sinus tympani (Se=83.33%,Sp=100%). high resolution computed tomography showed specificity of 100% for lateral semicircular canal erosion (Sp=100%) but with low sensitivity (Se=53.84%). Conclusion The findings of high resolution computed tomography and intra-operative findings were well comparable except for lateral semicircular canal erosion. high resolution computed tomography temporal bone acts as a road map for surgeon to identify the extent of disease, plan for appropriate procedure that is required and prepare for potential complications that can be encountered during surgery.

  11. The 'temporal effect' in hominids: Reinvestigating the nature of support for a chimp-human clade in bone morphology.

    PubMed

    Pearson, Alannah; Groves, Colin; Cardini, Andrea

    2015-11-01

    In 2004, an analysis by Lockwood and colleagues of hard-tissue morphology, using geometric morphometrics on the temporal bone, succeeded in recovering the correct phylogeny of living hominids without resorting to potentially problematic methods for transforming continuous shape variables into meristic characters. That work has increased hope that by using modern analytical methods and phylogenetically informative anatomical data we might one day be able to accurately infer the relationships of hominins, including the closest extinct relatives of modern humans. In the present study, using 3D virtually generated models of the hominid temporal bone and a larger suite of geometric morphometric and comparative techniques, we have re-examined the evidence for a Pan-Homo clade. Despite differences in samples, as well as the type of raw data, the effect of measurement error (and especially landmark digitization by a different operator), but also a broader perspective brought in by our diverse set of approaches, our reanalysis largely supports Lockwood and colleagues' original results. However, by focusing not only mainly on shape (as in the original 2004 analysis) but also on size and 'size-corrected' (non-allometric) shape, we demonstrate that the strong phylogenetic signal in the temporal bone is largely related to similarities in size. Thus, with this study, we are not suggesting the use of a single 'character', such as size, for phylogenetic inference, but we do challenge the common view that shape, with its highly complex and multivariate nature, is necessarily more phylogenetically informative than size and that actually size and size-related shape variation (i.e., allometry) confound phylogenetic inference based on morphology. This perspective may in fact be less generalizable than often believed. Thus, while we confirm the original findings by Lockwood et al., we provide a deep reinterpretation of their nature and potential implications for hominid phylogenetics and we show how crucial it is not to overlook size in geometric morphometric analyses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Hypoglossal-facial nerve "side"-to-side neurorrhaphy for facial paralysis resulting from closed temporal bone fractures.

    PubMed

    Su, Diya; Li, Dezhi; Wang, Shiwei; Qiao, Hui; Li, Ping; Wang, Binbin; Wan, Hong; Schumacher, Michael; Liu, Song

    2018-06-06

    Closed temporal bone fractures due to cranial trauma often result in facial nerve injury, frequently inducing incomplete facial paralysis. Conventional hypoglossal-facial nerve end-to-end neurorrhaphy may not be suitable for these injuries because sacrifice of the lesioned facial nerve for neurorrhaphy destroys the remnant axons and/or potential spontaneous innervation. we modified the classical method by hypoglossal-facial nerve "side"-to-side neurorrhaphy using an interpositional predegenerated nerve graft to treat these injuries. Five patients who experienced facial paralysis resulting from closed temporal bone fractures due to cranial trauma were treated with the "side"-to-side neurorrhaphy. An additional 4 patients did not receive the neurorrhaphy and served as controls. Before treatment, all patients had suffered House-Brackmann (H-B) grade V or VI facial paralysis for a mean of 5 months. During the 12-30 months of follow-up period, no further detectable deficits were observed, but an improvement in facial nerve function was evidenced over time in the 5 neurorrhaphy-treated patients. At the end of follow-up, the improved facial function reached H-B grade II in 3, grade III in 1 and grade IV in 1 of the 5 patients, consistent with the electrophysiological examinations. In the control group, two patients showed slightly spontaneous innervation with facial function improved from H-B grade VI to V, and the other patients remained unchanged at H-B grade V or VI. We concluded that the hypoglossal-facial nerve "side"-to-side neurorrhaphy can preserve the injured facial nerve and is suitable for treating significant incomplete facial paralysis resulting from closed temporal bone fractures, providing an evident beneficial effect. Moreover, this treatment may be performed earlier after the onset of facial paralysis in order to reduce the unfavorable changes to the injured facial nerve and atrophy of its target muscles due to long-term denervation and allow axonal regrowth in a rich supportive environment.

  13. Spatially and temporally controlled biomineralization is facilitated by interaction between self-assembled dentin matrix protein 1 and calcium phosphate nuclei in solution.

    PubMed

    He, Gen; Gajjeraman, Sivakumar; Schultz, David; Cookson, David; Qin, Chunlin; Butler, William T; Hao, Jianjun; George, Anne

    2005-12-13

    Bone and dentin biomineralization are well-regulated processes mediated by extracellular matrix proteins. It is widely believed that specific matrix proteins in these tissues modulate nucleation of apatite nanoparticles and their growth into micrometer-sized crystals via molecular recognition at the protein-mineral interface. However, this assumption has been supported only circumstantially, and the exact mechanism remains unknown. Dentin matrix protein 1 (DMP1) is an acidic matrix protein, present in the mineralized matrix of bone and dentin. In this study, we have demonstrated using synchrotron small-angle X-ray scattering that DMP1 in solution can undergo oligomerization and temporarily stabilize the newly formed calcium phosphate nanoparticle precursors by sequestering them and preventing their further aggregation and precipitation. The solution structure represents the first low-resolution structural information for DMP1. Atomic force microscopy and transmission electron microscopy studies further confirmed that the nascent calcium phosphate nuclei formed in solution were assembled into ordered protein-mineral complexes with the aid of oligomerized DMP1, recombinant and native. This study reveals a novel mechanism by which DMP1 might facilitate initiation of mineral nucleation at specific sites during bone and dentin mineralization and prevent spontaneous calcium phosphate precipitation in areas in which mineralization is not desirable.

  14. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone.

    PubMed

    Pinhasi, Ron; Fernandes, Daniel; Sirak, Kendra; Novak, Mario; Connell, Sarah; Alpaslan-Roodenberg, Songül; Gerritsen, Fokke; Moiseyev, Vyacheslav; Gromov, Andrey; Raczky, Pál; Anders, Alexandra; Pietrusewsky, Michael; Rollefson, Gary; Jovanovic, Marija; Trinhhoang, Hiep; Bar-Oz, Guy; Oxenham, Marc; Matsumura, Hirofumi; Hofreiter, Michael

    2015-01-01

    The invention and development of next or second generation sequencing methods has resulted in a dramatic transformation of ancient DNA research and allowed shotgun sequencing of entire genomes from fossil specimens. However, although there are exceptions, most fossil specimens contain only low (~ 1% or less) percentages of endogenous DNA. The only skeletal element for which a systematically higher endogenous DNA content compared to other skeletal elements has been shown is the petrous part of the temporal bone. In this study we investigate whether (a) different parts of the petrous bone of archaeological human specimens give different percentages of endogenous DNA yields, (b) there are significant differences in average DNA read lengths, damage patterns and total DNA concentration, and (c) it is possible to obtain endogenous ancient DNA from petrous bones from hot environments. We carried out intra-petrous comparisons for ten petrous bones from specimens from Holocene archaeological contexts across Eurasia dated between 10,000-1,800 calibrated years before present (cal. BP). We obtained shotgun DNA sequences from three distinct areas within the petrous: a spongy part of trabecular bone (part A), the dense part of cortical bone encircling the osseous inner ear, or otic capsule (part B), and the dense part within the otic capsule (part C). Our results confirm that dense bone parts of the petrous bone can provide high endogenous aDNA yields and indicate that endogenous DNA fractions for part C can exceed those obtained for part B by up to 65-fold and those from part A by up to 177-fold, while total endogenous DNA concentrations are up to 126-fold and 109-fold higher for these comparisons. Our results also show that while endogenous yields from part C were lower than 1% for samples from hot (both arid and humid) parts, the DNA damage patterns indicate that at least some of the reads originate from ancient DNA molecules, potentially enabling ancient DNA analyses of samples from hot regions that are otherwise not amenable to ancient DNA analyses.

  15. Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men.

    PubMed

    Jepsen, Karl J; Bigelow, Erin M R; Schlecht, Stephen H

    2015-08-01

    The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; p<0.001, GLM). Likewise, the femurs of white women had 12% less cortical area compared with those of white men after adjusting for body size and bone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; p<0.001, GLM). In contrast, female and male femora from recombinant inbred mouse strains showed the opposite trend; femurs from female mice had a 4% larger cortical area compared with those of male mice after adjusting for body size and bone size (female: mean=0.73 mm2; 95% CI, 0.71-0.74 mm2; male: mean=0.70 mm2; 95% CI, 0.68-0.71 mm2; effect size=0.74; p=0.04, GLM). Female femurs are not simply a more slender version of male femurs. Women acquire substantially less mass (cortical area) for their body size and bone size compared with men. Our analysis questions whether mouse long bone is a suitable model to study human sexual dimorphism. Identifying differences in the way bones are constructed may be clinically important for developing sex-specific diagnostics and treatment strategies to reduce fragility fractures.

  16. Malignant external otitis: early scintigraphic detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strashun, A.M.; Nejatheim, M.; Goldsmith, S.J.

    1984-02-01

    Pseudomonas otitis externa in elderly diabetics may extend aggressively to adjacent bone, cranial nerves, meninges, and vessels, leading to a clinical diagnosis of ''malignant'' external otitis. Early diagnosis is necessary for successful treatment. This study compares the findings of initial radiographs, thin-section tomography of temporal bone, CT scans of head and neck, technetium-99m methylene diphosphonate (MDP) and gallium-67 citrate scintigraphy, and single-photon emission computed tomography (SPECT) for detection of temporal bone osteomylitis in ten patients fulfilling the clinical diagnostic criteria of malignant external otitis. Skull radiographs were negative in all of the eight patients studied. Thin-section tomography was positive inmore » one of the seven patients studied using this modality. CT scanning suggested osteomyelitis in three of nine patients. Both Tc-99m and Ga-67 citrate scintigraphy were positive in 10 of 10 patients. These results suggest that technetium and gallium scintigraphy are more sensitive than radiographs and CT scans for early detection of malignant external otitis.« less

  17. S-Ketoprofen Inhibits Tenotomy-Induced Bone Loss and Dynamics in Weanling Rats

    NASA Technical Reports Server (NTRS)

    Zeng, Q. Q.; Jee, W. S. S.; Ke, H. Z.; Wechter, W. J.

    1993-01-01

    The objects of this study were to determine whether S-ketoprofen, a non-steroidal anti-inflammatory drug (NSAID), can prevent immobilization (tenotomy)-induced bone loss in weanling rats. Forty five 4 week-old Sprague-Dawley female rats were either sham-operated or subjected to knee tenotomy and treated simultaneously with 0, 0.02, 0.1, 0.5 or 2.5 mg of S-ketoprofen/kg per day for 21 days. We then studied double-fluorescent labeled proximal tibial longitudinal sections and tibial shaft cross sections using static and dynamic histomorphometry. Less cancellous bone mass in proximal tibial metaphyses was found in tenotomized controls than in basal (36%) and sham-operated (54%) controls. This was due to the inhibition of age-related bone gain and induced bone loss due to increased bone resorption and decreased bone formation. S-ketoprofen prevented both the inhibition of age-related bone gain and the stimulation of bone loss at the 2.5 mg/kg per day dose level, while it only prevented bone loss at the 0.5 mg/kg dose levels. In cancellous bone, dynamic histomorphometry showed that S-ketoprofen prevented the tenotomy induced decrease in bone formation and increase in bone resorption. In the tibial shaft, tenotomy inhibited the enlargement of total tissue area by depressing periosteal bone formation, and thus inhibited age-related cortical bone gain. S-ketoprofen treatment did not prevent this change at all dose levels, but reduced marrow cavity area to increase cortical bone area at the 0.1, 0.5 and 2.5 mg/kg per dose levels compared to tenotomy controls. However, the cortical bone area in the 0.1 and 0.5 mg dose-treated treated tenotomy rats was still lower than in the age-related controls. S-ketoprofen also prevented the increase in endocortical eroded perimeter induced by tenotomy. In summary, tenotomy inhibited age-related bone gain and stimulated bone loss in cancellous bone sites, and only inhibited age-related bone gain in cortical bone sites. S-ketoprofen treatment at the highest dose levels prevented the changes in cancellous bone, and reduced marrow area to increase cortical bone in the tibial shafts.

  18. Monocyte recruitment and expression of monocyte chemoattractant protein-1 are developmentally regulated in remodeling bone in the mouse.

    PubMed Central

    Volejnikova, S.; Laskari, M.; Marks, S. C.; Graves, D. T.

    1997-01-01

    Tooth eruption is defined as the movement of a tooth from its site of development within the alveolar bone to its position of function in the oral cavity. It represents an excellent model to examine osseous metabolism as bone resorption and bone formation occur simultaneously and are spatially separated. Bone resorption occurs in the coronal (occlusal) area, whereas bone formation occurs in the basal area. Monocytes are thought to have a significant role in the regulation of osseous metabolism. The goal of this study was to examine the recruitment of monocytes to bone in C57BL/6J mice that are undergoing developmentally regulated bone remodeling. Monocytes were detected by immunohistochemistry and osteoclasts were counted as bone-associated multi-nucleated, tartrate-resistant acid phosphatase (TRAP)-positive cells. Cell numbers were obtained from histological sections of animals sacrificed daily for 14 days after birth; an image analysis system was used for quantification. The results demonstrated that, immediately after birth, there were relatively few monocytic cells. In the area of bone resorption, the number of monocytes increased with time, reaching peaks at 5 and 9 days, and decreased thereafter. A similar pattern was observed for osteoclasts. In the area of bone formation, there was a time-dependent increase in the number of monocytes. In contrast, the number of osteoclasts in this area was highest at the earliest time points and decreased after day 3. To investigate potential mechanisms for the recruitment of monocytes, expression of monocyte chemoattractant protein (MCP)-1 was assessed. The number of MCP-1-positive cells increased with time and was generally proportional to the recruitment of mononuclear phagocytes. Osteoblasts were the principal bone cell type expressing MCP-1. The results demonstrate that the recruitment of mononuclear cells in the occlusal area is associated with bone resorption. In contrast, recruitment of monocytes in the basal area is associated with bone formation and a decrease in the number of osteoclasts. These results suggest that monocytes have different functional roles in areas of bone formation compared with bone resorption. Furthermore, the expression of MCP-1 is developmentally regulated and may provide a mechanistic basis to explain the recruitment of monocytic cells. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9137095

  19. Sex-related differences of bone properties of pelvic limb and bone metabolism indices in 14-month-old ostriches (Struthio camelus).

    PubMed

    Krupski, W; Tatara, M R; Charuta, A; Brodzki, A; Szpetnar, M; Jóźwik, A; Strzałkowska, N; Poławska, E; Łuszczewska-Sierakowska, I

    2018-06-01

    1. Sex-related differences of long pelvic limb bones and serum bone metabolism indices were evaluated in 14-month-old female (N = 7) and male (N = 7) ostriches of similar body weights. 2. Densitometric parameters of femur, tibia and tarsometatarsus were determined using quantitative computed tomography (volumetric bone mineral density, calcium hydroxyapatite density and mean volumetric bone mineral density) and dual energy X-ray absorptiometry (bone mineral density and bone mineral content) methods. Geometrical parameters such as cortical bone area, cross-sectional area, second moment of inertia, mean relative wall thickness and cortical index were determined in the midshaft of bones. Mechanical properties of bones (maximum elastic strength and ultimate strength) were evaluated using three-point bending test. Serum concentrations of free amino acids, osteocalcin, N-terminal propeptide of type I procollagen, C-terminal telopeptides of type II collagen and total antioxidative capacity were also determined. 3. Bone weight and relative bone weight of all bones were significantly higher in males than in females. Significantly lower values of trabecular bone mineral density and calcium hydroxyapatite density were found in the trabecular bone of tibia in males. The highest number of the sex-related differences was observed in the tarsometatarsus where bone length, bone mineral content, cortical bone area, cross-sectional area and ultimate strength were higher in males. Serum concentrations of taurine, hydroxyproline, valine and isoleucine were significantly higher in males. 4. Higher loading of the tarsometatarsus in comparison to femur and tibia may be an important factor interacting with sex hormones in regulation of bone formation and mineralisation processes. Sex-related differences of bone properties were associated with increased serum concentration of selected amino acids in males.

  20. Landscape features and attractants that predispose grizzly bears to risk of conflicts with humans: A spatial and temporal analysis on privately owned agricultural land

    NASA Astrophysics Data System (ADS)

    Wilson, Seth Mark

    Grizzly bear (Ursus arctos) deaths in the US tend to be concentrated on the periphery of core habitats. These deaths were often preceded by conflicts with humans. Management removals of "nuisance" and or habituated grizzly bears are a leading cause of death in many populations. This exploratory study focuses on the conditions that lead to human-grizzly bear conflicts on private lands near core habitat. I examined spatial associations among reported human-grizzly bear conflicts during 1986--2001, landscape features, and agricultural-attractants in north-central Montana. I surveyed 61 of a possible 64 active livestock related land users and I used geographic information system (GIS) techniques to collect information on cattle and sheep pasture locations, seasons of use, and bone yard (carcass dumps) and beehive locations. I used GIS spatial analyses, univariate tests, and logistic regression models to explore the associations among conflicts, landscape features, and attractants. A majority (75%) of conflicts were found in distinct seasonal conflict hotspots. Conflict hotspots with spatial overlap were associated with riparian vegetation, bone yards, and beehives in close proximity to one another and accounted for 62% of all conflicts. Consistently available seasonal attractants in overlapping hotspots such as calving areas, sheep lambing areas and spring, summer, and fall sheep and cattle pastures appear to perpetuate the occurrence of conflicts. I found that lambing areas and spring and summer sheep pastures were strongly associated with conflict locations as were cattle calving areas, spring cow/calf pastures, fall pastures, and bone yards. Logistic regression modeling revealed that the presence of riparian vegetation within a 1.6 km search radius strongly influenced the likelihood of conflict. After controlling for riparian vegetation, I found that unmanaged bone yards, unfenced and fenced beehives, all increased the odds of conflict. For every 1 km moved away from spring, summer, and fall sheep and cattle pastures, the odds of conflict decreased. The model confirmed the existence of conflict hotspots and illustrated that a collection of attractants beyond the effects of riparian vegetation were associated with conflicts. Contour probability plots of logistic regression models showed good predictive capacity. We discuss these findings and offer management recommendations.

  1. A rare case of an aggressive osteoblastoma of the squamous temporal bone: a unique presentation with literature review.

    PubMed

    Mohanty, Sujata; Rani, Amita; Urs, A B; Dabas, Jitender

    2014-10-01

    Aggressive osteoblastoma is a rare osteoid tissue forming tumour commonly affecting the spine with predilection for the posterior elements. Calvarial involvement is extremely rare with only two reported cases in the literature. Due to its overlapping clinical, radiographic and histological features with ossifying fibroma, benign osteoblastoma and osteosarcoma, it is very difficult accurately to diagnose this lesion at an early stage. A rare case of an aggressive osteoblastoma of the squamous temporal bone in a young male is presented here which was misdiagnosed twice before reaching the final diagnosis by correlating clinical, radiographic and histopathological features. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  2. Middle and inner ear malformations in mutation-proven branchio-oculo-facial (BOF) syndrome: case series and review of the literature.

    PubMed

    Carter, Melissa T; Blaser, Susan; Papsin, Blake; Meschino, Wendy; Reardon, Willie; Klatt, Regan; Babul-Hirji, Riyana; Milunsky, Jeff; Chitayat, David

    2012-08-01

    Hearing impairment is common in individuals with branchio-oculo-facial (BOF) syndrome. The majority of described individuals have conductive hearing impairment due to malformed ossicles and/or external canal stenosis or atresia, although a sensorineural component to the hearing impairment in BOF syndrome is increasingly being reported. Sophisticated computed tomography (CT) of the temporal bone has revealed middle and inner ear malformations in three previous reports. We present middle and inner ear abnormalities in three additional individuals with mutation-proven BOF syndrome. We suggest that temporal bone CT imaging be included in the medical workup of a child with BOF syndrome, in order to guide management. Copyright © 2012 Wiley Periodicals, Inc.

  3. Penetrating brain injury caused by nail guns: two case reports and a review of the literature.

    PubMed

    Luo, Wei; Liu, Hai; Hao, Shuyu; Zhang, Ying; Li, Jingsheng; Liu, Baiyun

    2012-01-01

    To the best of the authors' knowledge, there are few case reports of penetrating brain injuries (PBI) caused by nail guns and these have usually involved incomplete penetration of the skull. Complete penetration of a nail into the intracranial cavity is extremely rare. Here, two such cases are presented. In the first, the nail entered through the right temporal bone, lodged in the right temporal lobe and was removed via craniotomy with intra-operative ultrasound guidance. In the second, the nail destroyed the left parietal bone, damaged the left internal capsule and lodged in the left temporal lobe near the left petrous apex and the brain stem. According to the latest literature retrieval, this is the first reported case of nail-gun injury to the internal capsule. The position of the nail precluded removal without further neurologic damage. Treatment strategies designed to optimize outcome, with or without surgery, and possible complications are discussed in this report.

  4. Bone tumor

    MedlinePlus

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  5. Structure of Clavicle In Relation to Weight Transmission

    PubMed Central

    Routatal, Rohini V

    2015-01-01

    Aims and Objectives It is a known fact that weight of upper limb is transmitted to the axial skeleton through clavicle. The present study is an attempt to correlate pattern of compact and trabecular bone of clavicle as a weight transmitting bone. Materials and Methods Sixty clavicles were studied from right and left sides of 30 cadavers donated to the Anatomy department, Pramukhswami Medical College, Karamsad, India. The study was focused on the thickness of compact bone of clavicle and trabecular pattern of this bone. Results Cancellous bone: Cancellous bone near both ends of clavicle presented meshwork of thin bony plates. Between the conoid tubercle and area for attachment of costo-clavicular ligament, cancellous bone showed a definite pattern. Thickness of compact bone The compact bone was thicker between conoid tubercle and area for attachment of costo-clavicular ligament. At midshaft point thickness of compact bone was maximum. Conclusion The structure of clavicle between conoid tubercle and area for costoclavicular ligament showed thick compact bone and definite pattern of cancellous bone. This structure of clavicle between conoid tubercle and area for attachment of costo-clavicular ligament transmits weight from lateral to medial direction and this knowledge of clavicular structure will also be useful to orthopedic surgeons to deal with clavicular fractures and other abnormalities. PMID:26393112

  6. Mixed reality temporal bone surgical dissector: mechanical design

    PubMed Central

    2014-01-01

    Objective The Development of a Novel Mixed Reality (MR) Simulation. An evolving training environment emphasizes the importance of simulation. Current haptic temporal bone simulators have difficulty representing realistic contact forces and while 3D printed models convincingly represent vibrational properties of bone, they cannot reproduce soft tissue. This paper introduces a mixed reality model, where the effective elements of both simulations are combined; haptic rendering of soft tissue directly interacts with a printed bone model. This paper addresses one aspect in a series of challenges, specifically the mechanical merger of a haptic device with an otic drill. This further necessitates gravity cancelation of the work assembly gripper mechanism. In this system, the haptic end-effector is replaced by a high-speed drill and the virtual contact forces need to be repositioned to the drill tip from the mid wand. Previous publications detail generation of both the requisite printed and haptic simulations. Method Custom software was developed to reposition the haptic interaction point to the drill tip. A custom fitting, to hold the otic drill, was developed and its weight was offset using the haptic device. The robustness of the system to disturbances and its stable performance during drilling were tested. The experiments were performed on a mixed reality model consisting of two drillable rapid-prototyped layers separated by a free-space. Within the free-space, a linear virtual force model is applied to simulate drill contact with soft tissue. Results Testing illustrated the effectiveness of gravity cancellation. Additionally, the system exhibited excellent performance given random inputs and during the drill’s passage between real and virtual components of the model. No issues with registration at model boundaries were encountered. Conclusion These tests provide a proof of concept for the initial stages in the development of a novel mixed-reality temporal bone simulator. PMID:25927300

  7. Cosmetic reconstruction of temporal defect following pterional [corrected] craniotomy.

    PubMed

    Badie, B

    1996-04-01

    Depression of the temporal fossa that is often caused by atrophy of the temporalis muscle or superficial temporal fat pad may be an unavoidable defect following pterional craniotomy. Various techniques have been previously described to correct this disfiguring defect. Most techniques, however, require drilling holes into the cranium or the synthetic grafts for attachment of the temporalis muscle. A simple method is described by which a temporal fossa depression is repaired with methylmethacrylate bone cement and a new superior temporal line is created for attachment of the temporalis muscle without the need to drill suture holes into the acrylic or the cranium. The technique described has been used on several patients with excellent cosmetic outcome.

  8. [Cholesterol granuloma in paranasal sinus. An unfrequent pseudotumor in maxillary sinuses].

    PubMed

    García de Hombre, Alina María; Pérez Peñate, Armando

    2005-01-01

    The cholesterol granuloma is well known in the middle ear, in the mastoid antrum and the air cells of temporal bone, mostly related to a chronic infectious process. There are other localizations such as the pleura, lung, pericardium, kidneys, arterial wall, nerves, brain, testicles, lymphatic ganglion and in the paranasals sinuses. Its localization in the mediofacial area is very unfrequent, having only been described 44 cases up to the year 2002. We present a 42 year-old patient, who required surgical treatment because of a increase in the volume of area her left facial of one month's old. It resulted to be secundary to an expansion of the maxilar sinus, such as seen on the computerized tomography carried out on the patient. The diagnosis was cholesterol granuloma, performed, through the anatomo-pathology study. We review the litterature on this subject and analyse the possible etiologic cause of this lesion, its clinic, diagnostic methodology and treatment.

  9. Searching for new features of intravitality of hanging based on macro- and microscopic evaluation of the proximal attachment of the sternocleidomastoid muscle and the mastoid process of the temporal bone.

    PubMed

    Szleszkowski, Ł; Hałoń, A; Thannhäuser, A; Jurek, T

    2015-01-01

    Assessment of the usefulness of intravital lesions in the proximal attachment of the sternocleidomastoid muscle and the mastoid process of the temporal bone in medico-legal evaluation of death by hanging. The study material was obtained from the bodies of 35 people who died by hanging. The control group comprised specimens collected from 30 people who died of non-traumatic causes. The structures under study were examined macro- and microscopically. The basic change which could be recognized as a marker of intravitality of hanging was the presence of a macroscopically extensive blotchy area of abundant ecchymosis in the proximal muscle attachment, similar to that found in the distal attachment, and the presence of abundant diffuse intraosseous ecchymoses in the mastoid process. None of the cases revealed any ecchymoses in the proximal attachment of the muscle that would be similar to those present in the distal attachment. Discolourations within the mastoid processes, macroscopically suggestive of extensive intraosseous effusions arising from the mechanism of stretching, were not confirmed by microscopic evaluation and occurred at the same frequency as in the control group. Limitations of the study were related to the method which involved sample collection by means of bone chisels, decalcification and preparation of specimens, which had an effect, for example, on the measurable evaluation of the degree of congestion. The study has failed to provide convincing and unambiguous data on the usefulness of examining mastoid processes and proximal attachments of the sternocleidomastoid muscles during autopsy to determine the presence of intravitality features of hanging. A description of research methodology and its associated difficulties, e.g. with the interpretation of results, can also be useful for the planning of similar studies by other researchers.

  10. [Black bone disease of the skull and facial bones].

    PubMed

    Laure, B; Petraud, A; Sury, F; Bayol, J-C; Marquet-Van Der Mee, N; de Pinieux, G; Goga, D

    2009-11-01

    We report the case of a patient with a craniofacial black bone disease. This was discovered accidentally during a coronal approach. A 38-year-old patient was referred to our unit for facial palsy having appeared 10 years before. Rehabilitation of the facial palsy was performed with a lengthening temporal myoplasty and lengthening of the upper eyelid elevator. An unusual black color of the skull was observed at incision of the coronal approach. Subperiostal dissection of skull and malars confirmed the presence of a black bone disease. A postoperative history revealed minocycline intake (200mg per day) during 3 years. This craniofacial black bone disease was caused by minocycline intake. The originality of this case is to see directly the entire craniofacial skeleton black. This abnormal pigmentation may affect various organs or tissues. Bone pigmentation is irreversible unlike that of the mouth mucosa or of the skin. This abnormal pigmentation is usually discovered accidentally.

  11. ASSOCIATION BETWEEN NON-ENZYMATIC GLYCATION, RESORPTION, AND MICRODAMAGE IN HUMAN TIBIAL CORTICES

    PubMed Central

    Karim, Lamya; Diab, Tamim; Vashishth, Deepak

    2015-01-01

    Purpose/Introduction Changes in the quality of bone material contribute significantly to bone fragility. In order to establish a better understanding of the interaction of the different components of bone quality and their influence on bone fragility we investigated the relationship between non-enzymatic glycation, resorption, and microdamage generated in vivo in cortical bone using bone specimens from the same donors. Methods Total fluorescent advanced glycation end-products (AGEs) were measured in 96 human cortical bone samples from 83 donors. Resorption pit density, average resorption pit area, and percent resorption area were quantified in samples from 48 common donors with AGE measurements. Linear microcrack density and diffuse damage were measured in 21 common donors with AGE and resorption measurements. Correlation analyses were performed between all measured variables to establish the relationships among them and their variation with age. Results We found that average resorption pit area and percent resorption area decreased with increasing AGEs independently of age. Resorption pit density and percent resorption area demonstrated negative age-adjusted correlation with diffuse damage. Furthermore, average resorption pit area, resorption pit density, and percent resorption area were found to decrease significantly with age. Conclusions The current study demonstrated the in vivo interrelationship between the organic constituents, remodeling, and damage formation in cortical bone. In addition to the age-related reduction in resorption, there is a negative correlation between AGEs and resorption independent of age. This inverse relationship indicates that AGEs alter the resorption process and/or accumulate in the tissue as a result of reduced resorption and may lead to bone fragility by adversely affecting fracture resistance through altered bone matrix properties. PMID:25326375

  12. Pathologic Changes of the Peripheral Vestibular System Secondary to Chronic Otitis Media.

    PubMed

    da Costa Monsanto, Rafael; Erdil, Mehmet; Pauna, Henrique F; Kwon, Geeyoun; Schachern, Patricia A; Tsuprun, Vladimir; Paparella, Michael M; Cureoglu, Sebahattin

    2016-09-01

    To evaluate the histopathologic changes of dark, transitional, and hair cells of the vestibular system in human temporal bones from patients with chronic otitis media. Comparative human temporal bone study. Otopathology laboratory. To compare the density of vestibular dark, transitional, and hair cells in temporal bones with and without chronic otitis media, we used differential interference contrast microscopy. In the chronic otitis media group (as compared with the age-matched control group), the density of type I and type II hair cells was significantly decreased in the lateral semicircular canal, saccule, and utricle (P < .05). The density of type I cells was also significantly decreased in the chronic otitis media group in the posterior semicircular canal (P = .005), but that of type II cells was not (P = .168). The mean number of dark cells was significantly decreased in the chronic otitis media group in the lateral semicircular canal (P = .014) and in the posterior semicircular canal (P = .002). We observed no statistically significant difference in the density of transitional cells between the 2 groups (P > .1). The findings of our study suggest that the decrease in the number of vestibular sensory cells and dark cells could be the cause of the clinical symptoms of imbalance of some patients with chronic otitis media. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  13. In vivo Clonal Tracking of Hematopoietic Stem and Progenitor Cells Marked by Five Fluorescent Proteins using Confocal and Multiphoton Microscopy

    PubMed Central

    Malide, Daniela; Métais, Jean-Yves; Dunbar, Cynthia E.

    2014-01-01

    We developed and validated a fluorescent marking methodology for clonal tracking of hematopoietic stem and progenitor cells (HSPCs) with high spatial and temporal resolution to study in vivo hematopoiesis using the murine bone marrow transplant experimental model. Genetic combinatorial marking using lentiviral vectors encoding fluorescent proteins (FPs) enabled cell fate mapping through advanced microscopy imaging. Vectors encoding five different FPs: Cerulean, EGFP, Venus, tdTomato, and mCherry were used to concurrently transduce HSPCs, creating a diverse palette of color marked cells. Imaging using confocal/two-photon hybrid microscopy enables simultaneous high resolution assessment of uniquely marked cells and their progeny in conjunction with structural components of the tissues. Volumetric analyses over large areas reveal that spectrally coded HSPC-derived cells can be detected non-invasively in various intact tissues, including the bone marrow (BM), for extensive periods of time following transplantation. Live studies combining video-rate multiphoton and confocal time-lapse imaging in 4D demonstrate the possibility of dynamic cellular and clonal tracking in a quantitative manner. PMID:25145579

  14. The effect of brain tomography findings on mortality in sniper shot head injuries.

    PubMed

    Can, Çağdaş; Bolatkale, M; Sarıhan, A; Savran, Y; Acara, A Ç; Bulut, M

    2017-06-01

    Penetrating gunshot head injuries have a poor prognosis and require prompt care. Brain CT is a routine component of the standard evaluation of head wounds and suspected brain injury. We aimed to investigate the effect of brain CT findings on mortality in gunshot head injury patients who were admitted to our emergency department (ED) from the Syrian Civil War. The study group comprised patients who were admitted to the ED with gunshot brain injury. Patients' GCS scores, prehospital intubations and brain CT findings were examined. 104 patients were included (92% male, mean age 25 years). Pneumocephalus, midline shift, penetrating head injury, patients with GCS scores ≤6 and patients who had to be intubated in the prehospital period were associated with higher mortality (p<0.05). The results of this study demonstrated that pneumocephalus, midline shift, a penetrating head injury, GCS scores ≤6 and prehospital intubation are associated with high mortality, whereas patients with temporal bone fracture, perforating or single cerebral lobe head injury had a higher survival rates. The temporal bone has a relatively thin and smooth shape compared with the other skull bones so a bullet is less fragmented when it has penetrated the temporal bone, which could be a reason for the reduced cavitation effect. In perforating head injury, the bullet makes a second hole and so will have deposited less energy than a retained bullet with a consequent reduction in intracranial injury and mortality. Further studies are required to reach definitive conclusions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Insertion characteristics and placement of the Mid-Scala electrode array in human temporal bones using detailed cone beam computed tomography.

    PubMed

    Dietz, Aarno; Gazibegovic, Dzemal; Tervaniemi, Jyrki; Vartiainen, Veli-Matti; Löppönen, Heikki

    2016-12-01

    The aim of this study was to evaluate the insertion results and placement of the new Advanced Bionics HiFocus Mid-Scala (HFms) electrode array, inserted through the round window membrane, in eight fresh human temporal bones using cone beam computed tomography (CBCT). Pre- and post-insertion CBCT scans were registered to create a 3D reconstruction of the cochlea with the array inserted. With an image fusion technique both the bony edges of the cochlea and the electrode array in situ could accurately be determined, thus enabling to identify the exact position of the electrode array within the scala tympani. Vertical and horizontal scalar location was measured at four points along the cochlea base at an angular insertion depth of 90°, 180° and 270° and at electrode 16, the most basal electrode. Smooth insertion through the round window membrane was possible in all temporal bones. The imaging results showed that there were no dislocations from the scala tympani into the scala vestibule. The HFms electrode was positioned in the middle of the scala along the whole electrode array in three out of the eight bones and in 62 % of the individual locations measured along the base of the cochlea. In only one cochlea a close proximity of the electrode with the basilar membrane was observed, indicating possible contact with the basilar membrane. The results and assessments presented in this study appear to be highly accurate. Although a further validation including histopathology is needed, the image fusion technique described in this study represents currently the most accurate method for intracochlear electrode assessment obtainable with CBCT.

  16. Sclerosteosis involving the temporal bone: histopathologic aspects.

    PubMed

    Nager, G T; Hamersma, H

    1986-01-01

    Sclerosteosis is a rare, potentially lethal, autosomal recessive, progressive craniotubular sclerosing bone dysplasia with characteristic facial and skeletal features. The temporal bone changes include a marked increase in overall size, extensive sclerosis, narrowing of the external auditory canal, and severe constriction of the internal auditory meatus, fallopian canal, eustachian tube, and middle ear cleft. Attenuation of the bony canals of the 9th, 10th, and 11th cranial nerves, reduction in size of the internal carotid artery, and severe obliteration of the sigmoid sinus and jugular bulb also occur. Loss of hearing, generally bilateral, is a frequent symptom. It often manifests in early childhood and initially is expressed as sound conduction impairment. Later, a sensorineural hearing loss and loss of vestibular nerve function often develop. Impairment of facial nerve function is another feature occasionally present at birth. In the beginning, a unilateral intermittent facial weakness may occur which eventually progresses to a bilateral permanent facial paresis. The histologic examination of the temporal bones from a patient with sclerosteosis explains the mechanisms involved in the progressive impairment of sound conduction and loss of cochlear, vestibular, and facial nerve function. There is a decrease of the arterial blood supply to the brain and an obstruction of the venous drainage from it. The histopathology reveals the obstacles to decompression of the middle ear cleft, ossicular chain, internal auditory and facial canals, and the risks, and in many instances the contraindications, to such procedures. On the other hand, decompression of the sigmoid sinus and jugular bulb should be considered as an additional life-saving procedure in conjunction with the prophylactic craniotomy recommended in all adult patients.

  17. Adiposity and TV viewing are related to less bone accrual in young children.

    PubMed

    Wosje, Karen S; Khoury, Philip R; Claytor, Randal P; Copeland, Kristen A; Kalkwarf, Heidi J; Daniels, Stephen R

    2009-01-01

    To examine the relation between baseline fat mass and gain in bone area and bone mass in preschoolers studied prospectively for 4 years, with a focus on the role of physical activity and TV viewing. Children were part of a longitudinal study in which measures of fat, lean and bone mass, height, weight, activity, and diet were taken every 4 months from ages 3 to 7 years. Activity was measured by accelerometer and TV viewing by parent checklist. We included 214 children with total body dual energy x-ray absorptiometry (Hologic 4500A) scans at ages 3.5 and 7 years. Higher baseline fat mass was associated with smaller increases in bone area and bone mass over the next 3.5 years (P < .001). More TV viewing was related to smaller gains in bone area and bone mass accounting for race, sex, and height. Activity by accelerometer was not associated with bone gains. Adiposity and TV viewing are related to less bone accrual in preschoolers.

  18. Autologous distal clavicle versus autologous coracoid bone grafts for restoration of anterior-inferior glenoid bone loss: a biomechanical comparison.

    PubMed

    Petersen, Steve A; Bernard, Johnathan A; Langdale, Evan R; Belkoff, Stephen M

    2016-06-01

    Treating anterior glenoid bone loss in patients with recurrent shoulder instability is challenging. Coracoid transfer techniques are associated with neurologic complications and neuroanatomic alterations. The purpose of our study was to compare the contact area and pressures of a distal clavicle autograft with a coracoid bone graft for the restoration of anterior glenoid bone loss. We hypothesized that a distal clavicle autograft would be as effective as a coracoid graft. In 13 fresh-frozen cadaveric shoulder specimens, we harvested the distal 1.0 cm of each clavicle and the coracoid bone resection required for a Latarjet procedure. A compressive load of 440 N was applied across the glenohumeral joint at 30° and 60° of abduction, as well as 60° of abduction with 90° of external rotation. Pressure-sensitive film was used to determine normal glenohumeral contact area and pressures. In each specimen, we created a vertical, 25% anterior bone defect, reconstructed with distal clavicle (articular surface and undersurface) and coracoid bone grafts, and determined the glenohumeral contact area and pressures. We used analysis of variance for group comparisons and a Tukey post hoc test for individual comparisons (with P <.05 indicating a significant difference). The articular distal clavicle bone graft provided the lowest mean pressure in all testing positions. The coracoid bone graft provided the greatest contact area in all humeral positions, but the difference was not significant. An articular distal clavicle bone graft is comparable in glenohumeral contact area and pressures to an optimally placed coracoid bone graft for restoring glenoid bone loss. Basic Science Study; Biomechanics. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Are bi-axial proximal sesamoid bone fractures in the British Thoroughbred racehorse a bone fatigue related fracture? A histological study.

    PubMed

    Kristoffersen, M; Hetzel, U; Parkin, T D H; Singer, E R

    2010-01-01

    To investigate whether microfractures and alterations in the trabecular bone area are associated with catastrophic bi-axial proximal sesamoid bone fractures (PSBF). Proximal sesamoid bones (PSB) from 10 racehorses with PSBF and from 10 control racehorses without musculoskeletal injury were examined using the bulk basic fuchsin method. Bone histomorphometric and microfracture analysis was performed, and cases and controls compared using two-sample t-test, paired t-test, and Mann-Whitney U test. There was no significant difference in the microfracture density and the trabecular bone area between bones from case and control horses, and between fractured and non-fractured bones in case horses. Microfracture density was low in the areas of the PSB examined. Microfracture density was not significantly different between groups, indicating that propagation of micro-cracks is an unlikely predisposing pathologic alteration in PSBF in British racehorses. There was no significant difference in the bone surface area between groups, which one would expect if modelling, adaptation and an increase in bone density were associated with PSBF fracture in the case horses. Therefore, PSBF in the British racehorse does not appear to be associated with microfractures of the trabecular bone of the PSB. The PSB fractures might represent an acute monotonic fracture; however, the aetiology of the fractures remains unknown with additional research required.

  20. Bone tissue formation in extraction sockets from sites with advanced periodontal disease: a histomorphometric study in humans.

    PubMed

    Ahn, Jae-Jin; Shin, Hong-In

    2008-01-01

    To investigate postextraction bone formation over time in both diseased and healthy sockets. Core specimens of healing tissues following tooth extraction were obtained at the time of implant placement in patients treated between October 2005 and December 2007. A disease group and a control group were classified according to socket examination at the time of extraction. The biopsy specimens were analyzed histomorphometrically to measure the dimensional changes among 3 tissue types: epithelial layer, connective tissue area, and new bone tissue area. Fifty-five specimens from sites of previously advanced periodontal disease from 45 patients were included in the disease group. Another 12 specimens of previously healthy extraction sockets were collected from 12 different patients as a control. The postextraction period of the disease group varied from 2 to 42 weeks. In the disease group, connective tissue occupied most of the socket during the first 4 weeks. New bone area progressively replaced the connective tissue area after the first 4 weeks. The area proportion of new bone tissue exceeded that of connective tissue by 14 weeks. After 20 weeks, most extraction sockets in the disease group demonstrated continuous new bone formation. The control group exhibited almost complete socket healing after 10 weeks, with no more new bone formation after 20 weeks. Osseous regeneration in the diseased sockets developed more slowly than in the disease-free sockets. After 16 weeks, new bone area exceeded 50% of the total newly regenerated tissue in the sockets with severe periodontal destruction. In the control group, after 8 weeks, new bone area exceeded 50% of the total tissue.

  1. PubMed Central

    Saint-Pierre, H. Y.; Teuscher, E.; Paul, M.; Bergeron, R.

    1984-01-01

    Following the oral administration of a magnet to a cow, a perforation of the pharyngeal mucosa occurred. The magnet underwent encapsulation in the vicinity of the stylohyoid bone. The subsequent osteitis gradually extended to the temporal bone, where another abscess developed. The cardiac signs resulting from the irritation of the vagus nerve by the first abscess and the nervous signs associated with the intracranial pressure due to the second abscess are described. ImagesFigure 1. PMID:17422402

  2. The periosteal requirement and temporal dynamics of BMP2‐induced middle phalanx regeneration in the adult mouse

    PubMed Central

    Dawson, Lindsay A.; Yu, Ling; Yan, Mingquan; Marrero, Luis; Schanes, Paula P.; Dolan, Connor; Pela, Maegan; Petersen, Britta; Han, Manjong

    2017-01-01

    Abstract Regeneration of mammalian limbs is restricted to amputation of the distal digit tip, the terminal phalanx (P3). The adjacent skeletal element, the middle phalanx (P2), has emerged as a model system to investigate regenerative failure and as a site to test approaches aimed at enhancing regeneration. We report that exogenous application of bone morphogenetic protein 2 (BMP2) stimulates the formation of a transient cartilaginous callus distal to the amputation plane that mediates the regeneration of the amputated P2 bone. BMP2 initiates a significant regeneration response during the periosteal‐derived cartilaginous healing phase of P2 bone repair, yet fails to induce regeneration in the absence of periosteal tissue, or after boney callus formation. We provide evidence that a temporal component exists in the induced regeneration of P2 that we define as the “regeneration window.” In this window, cells are transiently responsive to BMP2 after the amputation injury. Simple re‐injury of the healed P2 stump acts to reinitiate endogenous bone repair, complete with periosteal chondrogenesis, thus reopening the “regeneration window” and thereby recreating a regeneration‐permissive environment that is responsive to exogenous BMP2 treatment. PMID:28975034

  3. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation.

    PubMed

    Stenfelt, Stefan; Hato, Naohito; Goode, Richard L

    2004-02-01

    The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180 degrees for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.

  4. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation

    NASA Astrophysics Data System (ADS)

    Stenfelt, Stefan; Hato, Naohito; Goode, Richard L.

    2004-02-01

    The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180° for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.

  5. The Role of Skull Modeling in EEG Source Imaging for Patients with Refractory Temporal Lobe Epilepsy.

    PubMed

    Montes-Restrepo, Victoria; Carrette, Evelien; Strobbe, Gregor; Gadeyne, Stefanie; Vandenberghe, Stefaan; Boon, Paul; Vonck, Kristl; Mierlo, Pieter van

    2016-07-01

    We investigated the influence of different skull modeling approaches on EEG source imaging (ESI), using data of six patients with refractory temporal lobe epilepsy who later underwent successful epilepsy surgery. Four realistic head models with different skull compartments, based on finite difference methods, were constructed for each patient: (i) Three models had skulls with compact and spongy bone compartments as well as air-filled cavities, segmented from either computed tomography (CT), magnetic resonance imaging (MRI) or a CT-template and (ii) one model included a MRI-based skull with a single compact bone compartment. In all patients we performed ESI of single and averaged spikes marked in the clinical 27-channel EEG by the epileptologist. To analyze at which time point the dipole estimations were closer to the resected zone, ESI was performed at two time instants: the half-rising phase and peak of the spike. The estimated sources for each model were validated against the resected area, as indicated by the postoperative MRI. Our results showed that single spike analysis was highly influenced by the signal-to-noise ratio (SNR), yielding estimations with smaller distances to the resected volume at the peak of the spike. Although averaging reduced the SNR effects, it did not always result in dipole estimations lying closer to the resection. The proposed skull modeling approaches did not lead to significant differences in the localization of the irritative zone from clinical EEG data with low spatial sampling density. Furthermore, we showed that a simple skull model (MRI-based) resulted in similar accuracy in dipole estimation compared to more complex head models (based on CT- or CT-template). Therefore, all the considered head models can be used in the presurgical evaluation of patients with temporal lobe epilepsy to localize the irritative zone from low-density clinical EEG recordings.

  6. Chondroblastoma of the skull.

    PubMed Central

    Feely, M; Keohane, C

    1984-01-01

    A case of chondroblastoma of the temporal bone is reported, and the pathology of the lesion outlined. The rarity of these neoplasms in the skull makes accurate prognosis impossible. Images PMID:6512556

  7. DIZZINESS AND HEAD INJURY.

    PubMed

    BARBER, H O

    1965-05-01

    Dizziness, whether vague or specifically rotational, is a common sequel to head injury, and is often postural. One hundred and sixty-five patients with this symptom were examined. The simple posture tests employed to detect positional nystagmus are described. This physical finding was present in one-quarter of the entire group, and in nearly one-half of cases of longitudinal fracture of temporal bone. In such cases, it is an objective finding that corresponds precisely to the patient's complaint of vertigo.Transverse fracture of temporal bone destroys the inner ear in both cochlear and vestibular parts. Longitudinal fracture is commoner and causes bleeding from the ear; inner-ear damage is usually minor.In the rare cases where persisting postural vertigo and positional nystagmus are disabling, relief of the symptom may be achieved by vestibular denervation of the affected side.

  8. A temporal bone surgery simulator with real-time feedback for surgical training.

    PubMed

    Wijewickrema, Sudanthi; Ioannou, Ioanna; Zhou, Yun; Piromchai, Patorn; Bailey, James; Kennedy, Gregor; O'Leary, Stephen

    2014-01-01

    Timely feedback on surgical technique is an important aspect of surgical skill training in any learning environment, be it virtual or otherwise. Feedback on technique should be provided in real-time to allow trainees to recognize and amend their errors as they occur. Expert surgeons have typically carried out this task, but they have limited time available to spend with trainees. Virtual reality surgical simulators offer effective, repeatable training at relatively low cost, but their benefits may not be fully realized while they still require the presence of experts to provide feedback. We attempt to overcome this limitation by introducing a real-time feedback system for surgical technique within a temporal bone surgical simulator. Our evaluation study shows that this feedback system performs exceptionally well with respect to accuracy and effectiveness.

  9. Configuration optimization and experimental accuracy evaluation of a bone-attached, parallel robot for skull surgery.

    PubMed

    Kobler, Jan-Philipp; Nuelle, Kathrin; Lexow, G Jakob; Rau, Thomas S; Majdani, Omid; Kahrs, Lueder A; Kotlarski, Jens; Ortmaier, Tobias

    2016-03-01

    Minimally invasive cochlear implantation is a novel surgical technique which requires highly accurate guidance of a drilling tool along a trajectory from the mastoid surface toward the basal turn of the cochlea. The authors propose a passive, reconfigurable, parallel robot which can be directly attached to bone anchors implanted in a patient's skull, avoiding the need for surgical tracking systems. Prior to clinical trials, methods are necessary to patient specifically optimize the configuration of the mechanism with respect to accuracy and stability. Furthermore, the achievable accuracy has to be determined experimentally. A comprehensive error model of the proposed mechanism is established, taking into account all relevant error sources identified in previous studies. Two optimization criteria to exploit the given task redundancy and reconfigurability of the passive robot are derived from the model. The achievable accuracy of the optimized robot configurations is first estimated with the help of a Monte Carlo simulation approach and finally evaluated in drilling experiments using synthetic temporal bone specimen. Experimental results demonstrate that the bone-attached mechanism exhibits a mean targeting accuracy of [Formula: see text] mm under realistic conditions. A systematic targeting error is observed, which indicates that accurate identification of the passive robot's kinematic parameters could further reduce deviations from planned drill trajectories. The accuracy of the proposed mechanism demonstrates its suitability for minimally invasive cochlear implantation. Future work will focus on further evaluation experiments on temporal bone specimen.

  10. The temporal expression of estrogen receptor alpha-36 and runx2 in human bone marrow derived stromal cells during osteogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, W.R., E-mail: w.francis@swansea.ac.uk; Owens, S.E.; Wilde, C.

    2014-10-24

    Highlights: • ERα36 is the predominant ERα isoform involved in bone regulation in human BMSC. • ERα36 mRNA is significantly upregulated during the process of osteogenesis. • The pattern of ERα36 and runx2 mRNA expression is similar during osteogenesis. • ERα36 appears to be co-localised with runx2 during osteogenesis. - Abstract: During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2),more » a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments.« less

  11. New technique for correcting mild types of cryptotia: elevate cavum conchae cartilage and suture to cranial periosteum.

    PubMed

    Shen, Weimin; Cui, Jie; Chen, Jianbin; Chen, Haini; Zou, Jijun; Ji, Yi

    2012-11-01

    We have developed a new technique for the treatment of mild types of cryptotia in which the cavum conchae cartilage was pulled superiorly and sutured it to the temporal bone to the temporal parietal junction periosteum securely. Then, the stitches for bolster fixation were inserted parallel to the auricular temporal sulcus and temporarily left untied. Our technique is easy to use and secures a firm bolster fixation, and the scar is hidden. We recommend it for the treatment of mild types of cryptotia.

  12. Effects of Long-Term Daily Administration of Prostaglandin-E2 on Maintaining Elevated Proximal Tibial Metaphyseal Cancellous Bone Mass in Male Rats

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Jee, Webster S. S.; Mori, Satoshi; Li, Xiao Jian; Kimmel, Donald B.

    1992-01-01

    The effects of long-term prostaglandin E(sub 2) (PGE(sub 2)) on cancellous bone in proximal tibial metaphysis were studied in 7 month old male Sprague-Dawley rats given daily subcutaneous injections of 0, 1, 3, and 6 mg PGE(sub 2)/kg/day and sacrificed after 60, 120, and 180 days. Histomorphometric analyses were performed on double fluorescent-labeled undecalcified bone specimens. After 60 days of treatment, PGE(sub 2) produced diffusely labeled trabecular bone area, increased trabecular bone area, eroded and labeled trabecular perimeter, mineral apposition rate, and bone formation rate at all dose levels when compared with age-matched controls. In rats given PGE(sub 2) for longer time periods (120 and 180 days), trabecular bone area, diffusely labeled trabecular bone area, labeled perimeter, mineral apposition, and bone formation rates were sustained at the elevated levels achieved earlier at 60-day treatment. The eroded perimeter continued to increase until 120 days, then plateau. The observation that continuous systemic PGE(sub 2) administration to adult male rats elevated metaphyseal cancellous bone mass to 3.5-fold of the control level within 60 days and maintained it for another 120 days indicates that the powerful skeletal anabolic effects of PGE2 can be sustained with continuous administration .

  13. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability

    PubMed Central

    McKechnie, Iain; Lepofsky, Dana; Moss, Madonna L.; Butler, Virginia L.; Orchard, Trevor J.; Coupland, Gary; Foster, Fredrick; Caldwell, Megan; Lertzman, Ken

    2014-01-01

    Pacific herring (Clupea pallasii), a foundation of coastal social-ecological systems, is in decline throughout much of its range. We assembled data on fish bones from 171 archaeological sites from Alaska, British Columbia, and Washington to provide proxy measures of past herring distribution and abundance. The dataset represents 435,777 fish bones, dating throughout the Holocene, but primarily to the last 2,500 y. Herring is the single-most ubiquitous fish taxon (99% ubiquity) and among the two most abundant taxa in 80% of individual assemblages. Herring bones are archaeologically abundant in all regions, but are superabundant in the northern Salish Sea and southwestern Vancouver Island areas. Analyses of temporal variability in 50 well-sampled sites reveals that herring exhibits consistently high abundance (>20% of fish bones) and consistently low variance (<10%) within the majority of sites (88% and 96%, respectively). We pose three alternative hypotheses to account for the disjunction between modern and archaeological herring populations. We reject the first hypothesis that the archaeological data overestimate past abundance and underestimate past variability. We are unable to distinguish between the second two hypotheses, which both assert that the archaeological data reflect a higher mean abundance of herring in the past, but differ in whether variability was similar to or less than that observed recently. In either case, sufficient herring was consistently available to meet the needs of harvesters, even if variability is damped in the archaeological record. These results provide baseline information prior to herring depletion and can inform modern management. PMID:24550468

  14. Malignant otitis externa in a healthy non-diabetic patient.

    PubMed

    Liu, Xiao-Long; Peng, Hong; Mo, Ting-Ting; Liang, Yong

    2016-08-01

    A healthy 60-year-old male was initially treated for external otitis, and subsequently received multiple surgeries including abscess drainage, temporal bone debridement, canaloplasty of the external auditory meatus, and fistula excision and was treated with numerous antibiotics at another hospital over a 1-year period. He was seen at our hospital on February 14, 2014 with a complaint of a non-healing wound behind the left ear and drainage of purulent fluid. He had no history of diabetes mellitus or compromised immune function. Computed tomography (CT) and magnetic resonance imaging (MRI) studies at our hospital showed osteomyelitis involving the left temporal, occipital, and sphenoid bones, the mandible, and an epidural abscess. Routine blood testing and tests of immune function were normal, and no evidence of other infectious processes was found. He was diagnosed with malignant otitis externa (MOE). Bone debridement and incision and drainage of the epidural abscess were performed, and vancomycin was administered because culture results revealed Corynebacterium jeikeium, Corynebacterium xerosis, and Enterococcus faecalis. MOE should be considered in healthy patients with external otitis who fail initial treatment.

  15. Selective inner hair cell loss in prematurity: a temporal bone study of infants from a neonatal intensive care unit.

    PubMed

    Amatuzzi, Monica; Liberman, M Charles; Northrop, Clarinda

    2011-10-01

    Premature birth is a well-known risk factor for sensorineural hearing loss in general and auditory neuropathy in particular. However, relatively little is known about the underlying causes, in part because there are so few relevant histopathological studies. Here, we report on the analysis of hair cell loss patterns in 54 temporal bones from premature infants and a control group of 46 bones from full-term infants, all of whom spent time in the neonatal intensive care unit at the Hospital de Niños in San Jose, Costa Rica, between 1977 and 1993. The prevalence of significant hair cell loss was higher in the preterm group than the full-term group (41% vs. 28%, respectively). The most striking finding was the frequency of selective inner hair cell loss, an extremely rare histopathological pattern, in the preterm vs. the full-term babies (27% vs. 3%, respectively). The findings suggest that a common cause of non-genetic auditory neuropathy is selective loss of inner hair cells rather than primary damage to the cochlear nerve.

  16. Effect of nickel-titanium shape memory metal alloy on bone formation.

    PubMed

    Kapanen, A; Ryhänen, J; Danilov, A; Tuukkanen, J

    2001-09-01

    The aim of this study was to determine the biocompatibility of NiTi alloy on bone formation in vivo. For this purpose we used ectopic bone formation assay which goes through all the events of bone formation and calcification. Comparisons were made between Nitinol (NiTi), stainless steel (Stst) and titanium-aluminium (6%)-vanadium (4%) alloy (Ti-6Al-4V), which were implanted for 8 weeks under the fascia of the latissimus dorsi muscle in 3-month-old rats. A light-microscopic examination showed no chronic inflammatory or other pathological findings in the induced ossicle or its capsule. New bone replaced part of the decalcified matrix with mineralized new cartilage and bone. The mineral density was measured with peripheral quantitative computed tomography (pQCT). The total bone mineral density (BMD) values were nearly equal between the control and the NiTi samples, the Stst samples and the Ti-6Al-4V samples had lower BMDs. Digital image analysis was used to measure the combined area of new fibrotic tissue and original implanted bone matrix powder around the implants. There were no significant differences between the implanted materials, although Ti-6Al-4V showed the largest matrix powder areas. The same method was used for measurements of proportional cartilage and new bone areas in the ossicles. NiTi showed the largest cartilage area (p < or = 0.05). Between implant groups the new bone area was largest in NiTi. We conclude that NiTi has good biocompatibility, as its effects on ectopic bone formation are similar to those of Stst, and that the ectopic bone formation assay developed here can be used for biocompatibility studies.

  17. A 3-D analysis of the protympanum in human temporal bones with chronic ear disease.

    PubMed

    Pauna, Henrique F; Monsanto, Rafael C; Schachern, Patricia; Paparella, Michael M; Cureoglu, Sebahattin

    2017-03-01

    Eustachian tube dysfunction is believed to be an important factor to cholesteatoma development and recurrence of disease after surgical treatment. Although many studies have described prognostic factors, evaluation methods, or surgical techniques for Eustachian tube dysfunction, they relied on the soft tissues of its structure; little is known about its bony structure-the protympanum-which connects the Eustachian tube to the tympanic cavity, and can also be affected by several inflammatory conditions, both from the middle ear or from the nasopharynx. We studied temporal bones from patients with cholesteatoma, chronic otitis media (with and without retraction pockets), purulent otitis media, and non-diseased ears, looking for differences between the volume of the protympanum, the diameter of the Eustachian tube isthmus, and the distance between the anterior tympanic annulus and the promontory. Light microscopy and 3-D reconstruction software were used for the measurements. We observed a decrease of volume in the lumen of the four middle ear diseased ears compared to the control group. We observed a significant decrease in the volume of the protympanic space in the cholesteatoma group compared to the chronic otitis media group. We also observed a decrease in the bony space (protympanum space) in cholesteatoma, chronic otitis media with retraction pockets, and purulent otitis media compared to the control group. We found a correlation in middle ear diseases and a decrease in the middle ear space. Our findings may suggest that a smaller bony volume in the protympanic area may trigger middle ear dysventilation problems.

  18. A New Piezoelectric Actuator Induces Bone Formation In Vivo: A Preliminary Study

    PubMed Central

    Reis, Joana; Frias, Clara; Canto e Castro, Carlos; Botelho, Maria Luísa; Marques, António Torres; Simões, José António Oliveira; Capela e Silva, Fernando; Potes, José

    2012-01-01

    This in vivo study presents the preliminary results of the use of a novel piezoelectric actuator for orthopedic application. The innovative use of the converse piezoelectric effect to mechanically stimulate bone was achieved with polyvinylidene fluoride actuators implanted in osteotomy cuts in sheep femur and tibia. The biological response around the osteotomies was assessed through histology and histomorphometry in nondecalcified sections and histochemistry and immunohistochemistry in decalcified sections, namely, through Masson's trichrome, and labeling of osteopontin, proliferating cell nuclear antigen, and tartrate-resistant acid phosphatase. After one-month implantation, total bone area and new bone area were significantly higher around actuators when compared to static controls. Bone deposition rate was also significantly higher in the mechanically stimulated areas. In these areas, osteopontin increased expression was observed. The present in vivo study suggests that piezoelectric materials and the converse piezoelectric effect may be used to effectively stimulate bone growth. PMID:22701304

  19. Computed tomographic analysis of temporal maxillary stability and pterygomaxillary generate formation following pediatric Le Fort III distraction advancement.

    PubMed

    Hopper, Richard A; Sandercoe, Gavin; Woo, Albert; Watts, Robyn; Kelley, Patrick; Ettinger, Russell E; Saltzman, Babette

    2010-11-01

    Le Fort III distraction requires generation of bone in the pterygomaxillary region. The authors performed retrospective digital analysis on temporal fine-cut computed tomographic images to quantify both radiographic evidence of pterygomaxillary region bone formation and relative maxillary stability. Fifteen patients with syndromic midface hypoplasia were included in the study. The average age of the patients was 8.7 years; 11 had either Crouzon or Apert syndrome. The average displacement of the maxilla during distraction was 16.2 mm (range, 7 to 31 mm). Digital analysis was performed on fine-cut computed tomographic scans before surgery, at device removal, and at annual follow-up. Seven patients also had mid-consolidation computed tomographic scans. Relative maxillary stability and density of radiographic bone in the pterygomaxillary region were calculated between each scan. There was no evidence of clinically significant maxillary relapse, rotation, or growth between the end of consolidation and 1-year follow-up, other than a relatively small 2-mm subnasal maxillary vertical growth. There was an average radiographic ossification of 0.5 mm/mm advancement at the time of device removal, with a 25th percentile value of 0.3 mm/mm. The time during consolidation that each patient reached the 25th percentile of pterygomaxillary region bone density observed in this series of clinically stable advancements ranged from 1.3 to 9.8 weeks (average, 3.7 weeks). There was high variability in the amount of bone formed in the pterygomaxillary region associated with clinical stability of the advanced Le Fort III segment. These data suggest that a subsection of patients generate the minimal amount of pterygomaxillary region bone formation associated with advancement stability as early as 4 weeks into consolidation.

  20. Adiposity and TV viewing are related to less bone accrual in young children

    PubMed Central

    Wosje, Karen S.; Khoury, Philip R.; Claytor, Randal P.; Copeland, Kristen A.; Kalkwarf, Heidi J.; Daniels, Stephen R.

    2008-01-01

    Objective To examine the relation between baseline fat mass and gain in bone area and bone mass in preschoolers studied prospectively for 4 y, with a focus on the role of physical activity and TV viewing. Study design Children were part of a longitudinal study in which measures of fat, lean and bone mass, height, weight, activity, and diet were taken every 4 months from ages 3 to 7 y. Activity was measured by accelerometer, and TV viewing by parent checklist. We included 214 children with total body dual energy x-ray absorptiometry (Hologic 4500A) scans at ages 3.5 and 7 y. Results Higher baseline fat mass was associated with smaller increases in bone area and bone mass over the next 3.5 y (p<0.001). More TV viewing was related to smaller gains in bone area and bone mass accounting for race, sex, and height. Activity by accelerometer was not associated with bone gains. Conclusions Adiposity and TV viewing are related to less bone accrual in preschoolers. PMID:18692201

  1. Guided bone generation in a rabbit mandible model after periosteal expansion with an osmotic tissue expander.

    PubMed

    Abrahamsson, Peter; Isaksson, Sten; Andersson, Gunilla

    2011-11-01

    To evaluate the space-maintaining capacity of titanium mesh covered by a collagen membrane after soft tissue expansion on the lateral border of the mandible in rabbits, and to assess bone quantity and quality using autogenous particulate bone or bone-substitute (Bio-Oss(®) ), and if soft tissue ingrowth can be avoided by covering the mesh with a collagen membrane. In 11 rabbits, a self-inflatable soft tissue expander was placed under the lateral mandibular periosteum via an extra-oral approach. After 2 weeks, the expanders were removed and a particulated onlay bone graft and deproteinized bovine bone mineral (DBBM) (Bio-Oss(®) ) were placed in the expanded area and covered by a titanium mesh. The bone and DBBM were separated in two compartments under the mesh with a collagen membrane in between. The mesh was then covered with a collagen membrane. After 3 months, the animals were sacrificed and specimens were collected for histology. The osmotic soft tissue expander created a subperiosteal pocket and a ridge of new bone formed at the edges of the expanded periosteum in all sites. After the healing period of 3 months, no soft tissue dehiscence was recorded. The mean bone fill was 58.1±18% in the bone grafted area and 56.9±13.7% in the DBBM area. There was no significant difference between the autologous bone graft and the DDBM under the titanium mesh with regard to the total bone area or the mineralized bone area. Scanning electron microscopy showed that new bone was growing in direct contact with the DBBM particles and the titanium mesh. There is a soft tissue ingrowth even after soft tissue expansion and protection of the titanium mesh with a collagen membrane. This study confirms that an osmotic soft tissue expander creates a surplus of periosteum and soft tissue, and that new bone can subsequently be generated under a titanium mesh with the use of an autologous bone graft or DBBM. © 2011 John Wiley & Sons A/S.

  2. Radiation injury to the temporal bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guida, R.A.; Finn, D.G.; Buchalter, I.H.

    1990-01-01

    Osteoradionecrosis of the temporal bone is an unusual sequela of radiation therapy to the head and neck. Symptoms occur many years after the radiation is administered, and progression of the disease is insidious. Hearing loss (sensorineural, conductive, or mixed), otalgia, otorrhea, and even gross tissue extrusion herald this condition. Later, intracranial complications such as meningitis, temporal lobe or cerebellar abscess, and cranial neuropathies may occur. Reported here are five cases of this rare malady representing varying degrees of the disease process. They include a case of radiation-induced necrosis of the tympanic ring with persistent squamous debris in the external auditorymore » canal and middle ear. Another case demonstrates the progression of radiation otitis media to mastoiditis with bony sequestration. Further progression of the disease process is seen in a third case that evolved into multiple cranial neuropathies from skull base destruction. Treatment includes systemic antibiotics, local wound care, and debridement in cases of localized tissue involvement. More extensive debridement with removal of sequestrations, abscess drainage, reconstruction with vascularized tissue from regional flaps, and mastoid obliteration may be warranted for severe cases. Hyperbaric oxygen therapy has provided limited benefit.« less

  3. Multi-temporal MRI carpal bone volumes analysis by principal axes registration

    NASA Astrophysics Data System (ADS)

    Ferretti, Roberta; Dellepiane, Silvana

    2016-03-01

    In this paper, a principal axes registration technique is presented, with the relevant application to segmented volumes. The purpose of the proposed registration is to compare multi-temporal volumes of carpal bones from Magnetic Resonance Imaging (MRI) acquisitions. Starting from the study of the second-order moment matrix, the eigenvectors are calculated to allow the rotation of volumes with respect to reference axes. Then the volumes are spatially translated to become perfectly overlapped. A quantitative evaluation of the results obtained is carried out by computing classical indices from the confusion matrix, which depict similarity measures between the volumes of the same organ as extracted from MRI acquisitions executed at different moments. Within the medical field, the way a registration can be used to compare multi-temporal images is of great interest, since it provides the physician with a tool which allows a visual monitoring of a disease evolution. The segmentation method used herein is based on the graph theory and is a robust, unsupervised and parameters independent method. Patients affected by rheumatic diseases have been considered.

  4. Childhood growth predicts higher bone mass and greater bone area in early old age: findings among a subgroup of women from the Helsinki Birth Cohort Study.

    PubMed

    Mikkola, T M; von Bonsdorff, M B; Osmond, C; Salonen, M K; Kajantie, E; Cooper, C; Välimäki, M J; Eriksson, J G

    2017-09-01

    We examined the associations between childhood growth and bone properties among women at early old age. Early growth in height predicted greater bone area and higher bone mineral mass. However, information on growth did not improve prediction of bone properties beyond that predicted by body size at early old age. We examined the associations between body size at birth and childhood growth with bone area, bone mineral content (BMC), and areal bone mineral density (aBMD) in early old age. A subgroup of women (n = 178, mean 60.4 years) from the Helsinki Birth Cohort Study, born 1934-1944, participated in dual-energy X-ray absorptiometry (DXA) measurements of the lumbar spine and hip. Height and weight at 0, 2, 7, and 11 years, obtained from health care records, were reconstructed into conditional variables representing growth velocity independent of earlier growth. Weight was adjusted for corresponding height. Linear regression models were adjusted for multiple confounders. Birth length and growth in height before 7 years of age were positively associated with femoral neck area (p < 0.05) and growth in height at all age periods studied with spine bone area (p < 0.01). Growth in height before the age of 7 years was associated with BMC in the femoral neck (p < 0.01) and birth length and growth in height before the age of 7 years were associated with BMC in the spine (p < 0.05). After entering adult height into the models, nearly all associations disappeared. Weight gain during childhood was not associated with bone area or BMC, and aBMD was not associated with early growth. Optimal growth in height in girls is important for obtaining larger skeleton and consequently higher bone mass. However, when predicting bone mineral mass among elderly women, information on early growth does not improve prediction beyond that predicted by current height and weight.

  5. A longitudinal study of bone area, content, density, and strength development at the radius and tibia in children 4-12 years of age exposed to recreational gymnastics.

    PubMed

    Jackowski, S A; Baxter-Jones, A D G; Gruodyte-Raciene, R; Kontulainen, S A; Erlandson, M C

    2015-06-01

    This study investigated the long-term relationship between the exposure to childhood recreational gymnastics and bone measures and bone strength parameters at the radius and tibia. It was observed that individuals exposed to recreational gymnastics had significantly greater total bone content and area at the distal radius. No differences were observed at the tibia. This study investigated the relationship between exposure to early childhood recreational gymnastics with bone measures and bone strength development at the radius and tibia. One hundred twenty seven children (59 male, 68 female) involved in either recreational gymnastics (gymnasts) or other recreational sports (non-gymnasts) between 4 and 6 years of age were recruited. Peripheral quantitative computed tomography (pQCT) scans of their distal and shaft sites of the forearm and leg were obtained over 3 years, covering the ages of 4-12 years at study completion. Multilevel random effects models were constructed to assess differences in the development of bone measures and bone strength measures between those exposed and not exposed to gymnastics while controlling for age, limb length, weight, physical activity, muscle area, sex, and hours of training. Once age, limb length, weight, muscle area, physical activity, sex, and hours of training effects were controlled, it was observed that individuals exposed to recreational gymnastics had significantly greater total bone area (18.0 ± 7.5 mm(2)) and total bone content (6.0 ± 3.0 mg/mm) at the distal radius (p < 0.05). This represents an 8-21 % benefit in ToA and 8-15 % benefit to ToC from 4 to 12 years of age. Exposure to recreational gymnastics had no significant effect on bone measures at the radius shaft or at the tibia (p > 0.05). Exposure to early life recreational gymnastics provides skeletal benefits to distal radius bone content and area. Thus, childhood recreational gymnastics exposure may be advantageous to bone development at the wrist.

  6. Holographic nondestructive testing in bone growth disturbance studies

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Raimo V. J.; Nygren, Kaarlo

    1993-09-01

    We used isolated radioulnar bones of subadult European moose collected in various environmental pollution areas of Finland. The bones were radiographed and outer dimensions measured. By using small caudo-cranial bending forces, the bones were tested by using HNDT. For bone mineral studies, samples were taken from the mandibles of the same animals. Results showed, that the bones obtained from the heavily polluted area showed biomechanical response comparable to the bones developed partially without mothers milk. Differences were also seen in morphometrical and radiological studies. The mineral contents studied did not differ significantly from randomly collected samples of the same age category. We therefore conclude that environmental factors may influence the bone matrix development.

  7. Precision of pQCT-measured total, trabecular and cortical bone area, content, density and estimated bone strength in children

    PubMed Central

    Duff, W.R.D.; Björkman, K.M.; Kawalilak, C.E.; Kehrig, A.M.; Wiebe, S.; Kontulainen, S.

    2017-01-01

    Objectives: To define pQCT precision errors, least-significant-changes, and identify associated factors for bone outcomes at the radius and tibia in children. Methods: We obtained duplicate radius and tibia pQCT scans from 35 children (8-14yrs). We report root-mean-squared coefficient of variation (CV%RMS) and 95% limits-of-agreement to characterize repeatability across scan quality and least-significant-changes for bone outcomes at distal (total and trabecular area, content and density; and compressive bone strength) and shaft sites (total area and content; cortical area content, density and thickness; and torsional bone strength). We used Spearman’s rho to identify associations between CV% and time between measurements, child’s age or anthropometrics. Results: After excluding unanalyzable scans (6-10% of scans per bone site), CV%RMS ranged from 4% (total density) to 19% (trabecular content) at the distal radius, 4% (cortical content) to 8% (cortical thickness) at the radius shaft, 2% (total density) to 14% (trabecular content) at the distal tibia and from 2% (cortical content) to 6% (bone strength) at the tibia shaft. Precision errors were within 95% limits-of-agreement across scan quality. Age was associated (rho -0.4 to -0.5, p <0.05) with CV% at the tibia. Conclusion: Bone density outcomes and cortical bone properties appeared most precise (CV%RMS <5%) in children. PMID:28574412

  8. Sector retinitis pigmentosa.

    PubMed

    Van Woerkom, Craig; Ferrucci, Steven

    2005-05-01

    Retinitis pigmentosa (RP) is one of the most common hereditary retinal dystrophies and causes of visual impairment affecting all age groups. The reported incidence varies, but is considered to be between 1 in 3,000 to 1 in 7,000. Sector retinitis pigmentosa is an atypical form of RP that is characterized by regionalized areas of bone spicule pigmentation, usually in the inferior quadrants of the retina. A 57-year-old Hispanic man with a history of previously diagnosed retinitis pigmentosa came to the clinic with a longstanding symptom of decreased vision at night. Bone spicule pigmentation was found in the nasal and inferior quadrants in each eye. He demonstrated superior and temporal visual-field loss corresponding to the areas of the affected retina. Clinical measurements of visual-field loss, best-corrected visual acuity, and ophthalmoscopic appearance have remained stable during the five years the patient has been followed. Sector retinitis pigmentosa is an atypical form of RP that is characterized by bilateral pigmentary retinopathy, usually isolated to the inferior quadrants. The remainder of the retina appears clinically normal, although studies have found functional abnormalities in these areas as well. Sector RP is generally considered a stationary to slowly progressive disease, with subnormal electro-retinogram findings and visual-field defects corresponding to the involved retinal sectors. Management of RP is very difficult because there are no proven methods of treatment. Studies have shown 15,000 IU of vitamin A palmitate per day may slow the progression, though this result is controversial. Low vision rehabilitation, long wavelength pass filters, and pedigree counseling remain the mainstay of management.

  9. Dizziness and Head Injury

    PubMed Central

    Barber, H. O.

    1965-01-01

    Dizziness, whether vague or specifically rotational, is a common sequel to head injury, and is often postural. One hundred and sixty-five patients with this symptom were examined. The simple posture tests employed to detect positional nystagmus are described. This physical finding was present in one-quarter of the entire group, and in nearly one-half of cases of longitudinal fracture of temporal bone. In such cases, it is an objective finding that corresponds precisely to the patient's complaint of vertigo. Transverse fracture of temporal bone destroys the inner ear in both cochlear and vestibular parts. Longitudinal fracture is commoner and causes bleeding from the ear; inner-ear damage is usually minor. In the rare cases where persisting postural vertigo and positional nystagmus are disabling, relief of the symptom may be achieved by vestibular denervation of the affected side. PMID:14285289

  10. Time-saving and fail-safe dissection method for vestibulocochlear organs in gross anatomy classes.

    PubMed

    Suzuki, Ryoji; Konno, Naoaki; Ishizawa, Akimitsu; Kanatsu, Yoshinori; Funakoshi, Kodai; Akashi, Hideo; Zhou, Ming; Abe, Hiroshi

    2017-09-01

    Because the vestibulocochlear organs are tiny and complex, and are covered by the petrous part of the temporal bone, they are very difficult for medical students to dissect and visualize during gross anatomy classes. Here, we report a time-saving and fail-safe procedure we have devised, using a hand-held hobby router. Nine en bloc temporal bone samples from donated human cadavers were used as trial materials for devising an appropriate procedure for dissecting the vestibulocochlear organs. A hand-held hobby router was used to cut through the temporal bone. After trials, the most time-saving and fail-safe method was selected. The performance of the selected method was assessed by a survey of 242 sides of 121 cadavers during gross anatomy classes for vestibulocochlear dissection. The assessment was based on the observation ratio. The best procedure appeared to be removal of the external acoustic meatus roof and tympanic cavity roof together with removal of the internal acoustic meatus roof. The whole procedure was completed within two dissection classes, each lasting 4.5 hr. The ratio of surveillance for the chorda tympani and three semicircular canals by students was significantly improved during 2013 through 2016. In our dissection class, "removal of the external acoustic meatus roof and tympanic cavity roof together with removal of the internal acoustic meatus roof" was the best procedure for students in the limited time available. Clin. Anat. 30:703-710, 2017. © 2017Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. [Applied anatomy of scala tympani inlet related to cochlear implantation].

    PubMed

    Zou, Tuanming; Guo, Menghe; Zhang, Hongzheng; Shu, Fan; Xie, Nanping

    2012-06-01

    To investigate the related parameters of the temporal bone structure for determining the position of implanting electrode into the scala tympani in cochlear implantation surgery through the facial recess and epitympanum approach. In a surgical simulation experiment, 20 human temporal bones were studied and measured to determine the related parameters of the temporal bone structure. The distance 5.91∓0.29 mm between the short process of the incus and the round window niche, 2.11∓0.18 mm between the stapes and the round window niche, 6.70∓0.19 mm between the facial nerve in the perpendicular paragraph and the round window niche, 2.22∓0.21 mm from the pyramidal eminence to the round window, and 2.16∓0.14 mm between the stapes and the round window. The minimal distance between the implanting electrode and the vestibular window was 2.12∓0.19 mm. The distance between the cochleariform process and the round window niche was 3.79∓0.17 mm. The position of the cochlear electrode array insertion into the second cochlear turn was 2.25∓0.13 mm under the stapes. The location of the cochlear electrode array insertion into the second cochlear turn was 2.28∓0.20 mm inferior to the pyramidal eminence. These parameters provide a reference value to determine the different positions of cochlear electrode array insertion into the scale tympani in different patients.

  12. Does Otosclerosis Affect Dark and Transitional Cells in the Human Vestibular Labyrinth?

    PubMed

    Kaya, Serdar; Paparella, Michael M; Cureoglu, Sebahattin

    2017-02-01

    The density of vestibular dark cells (DCs) and vestibular transitional cells (TCs) can be quantitatively decreased in human temporal bones with otosclerosis. Previous reports have shown that otosclerosis can lead to vestibular symptoms. We examined 61 human temporal bone specimens from 52 deceased donors with otosclerosis group-with and without endosteal involvement (EI), and with and without endolymphatic hydrops (EH)-versus 25 specimens from 18 age-matched controls. Using light microscopy, we evaluated the nonsensory epithelium of the lateral semicircular canal (LSC) and posterior semicircular canal (PSC) of the human vestibular labyrinth, focusing on the density of DCs and TCs. In both the LSC and the PSC, as compared with the control group, the mean density of DCs significantly decreased in the EI (+) group, in the EI (+) and EH (+) subgroup, and in the EI (+) and EH (-) subgroup (p < 0.05). In addition, we found a significant difference in the mean density of DCs between the EI (+) group and the EI (-) group in the LSC and in the PSC (p < 0.05). But we found no significant difference in the mean density of TCs in any of the otosclerosis groups or subgroups as compared with the control group (p > 0.05). We found a decrease in the density of DCs associated with EI in human temporal bone specimens with otosclerosis, regardless of the presence of EH. This decrease might cause damage in ion and water transportation, leading to vestibular symptoms.

  13. Does Otosclerosis Affect Dark and Transitional Cells in the Human Vestibular Labyrinth?

    PubMed Central

    Kaya, Serdar; Paparella, Michael M.; Cureoglu, Sebahattin

    2016-01-01

    Hypothesis The density of vestibular dark cells (DCs) and vestibular transitional cells (TCs) can be quantitatively decreased in human temporal bones with otosclerosis. Background Previous reports have shown that otosclerosis can lead to vestibular symptoms. Methods We examined 61 human temporal bone specimens from 52 deceased donors with otosclerosis group—with and without endosteal involvement (EI), and with and without endolymphatic hydrops (EH)—vs. 25 specimens from 18 age-matched controls. Using light microscopy, we evaluated the nonsensory epithelium of the lateral semicircular canal (LSC) and posterior semicircular canal (PSC) of the human vestibular labyrinth, focusing on the density of DCs and TCs. Results In both the LSC and the PSC, as compared with the control group, the mean density of DCs significantly decreased in the EI (+) group, in the EI (+) and EH (+) subgroup, and in the EI (+) and EH (−) subgroup (P < 0.05). In addition, we found a significant difference in the mean density of DCs between the EI (+) group and the EI (−) group in the LSC and in the PSC (P < 0.05). But we found no significant difference in the mean density of TCs in any of the otosclerosis groups or subgroups as compared with the control group (P > 0.05). Conclusion We found a decrease in the density of DCs associated with EI in human temporal bone specimens with otosclerosis, regardless of the presence of EH. This decrease might cause damage in ion and water transportation, leading to vestibular symptoms. PMID:27851656

  14. Transmastoid approach to temporal bone cerebrospinal fluid leaks.

    PubMed

    Oliaei, Sepehr; Mahboubi, Hossein; Djalilian, Hamid R

    2012-01-01

    The aim of the study was to evaluate various presentations and treatment options for spontaneous cerebrospinal fluid (CSF) leakage originating in the temporal bone. Clinical data and imaging results for 18 ears (15 patients) presenting with spontaneous CSF leakage originating in the temporal bone were reviewed. Average follow-up period was 13.5 months. The main outcome measure was presence of persistent CSF leak postoperatively. A standard postauricular mastoidectomy was performed. Fifteen patients diagnosed with spontaneous CSF leakage over an 8-year period including 3 treated for bilateral disease were included in the study. The age ranged between 33 and 83 years. Presenting symptoms included serous otitis media (44%), persistent otorrhea after tympanostomy tube placement (28%), and meningitis (28%). Preoperative diagnosis was made using imaging studies and was substantiated by observation of CSF leakage and dural herniation intraoperatively. Treatment was eustachian tube plugging (5%), mastoidectomy with fat obliteration (61%), middle fossa approach with extradural (17%), intradural repair (5%), or combined middle fossa and transmastoid (TM) approach (11%). Successful treatment was obtained in 17 of the 18 cases. The last 9 patients in the series underwent TM approach alone for repair with no treatment failures. Repair of defects in tegmen mastoideum and posterior fossa can be successfully achieved on an outpatient basis without regard to size and multitude of defects via TM approach. This approach obviates the need for a craniotomy or lumbar drain. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Inner ear anatomy in Waardenburg syndrome: radiological assessment and comparison with normative data.

    PubMed

    Kontorinis, Georgios; Goetz, Friedrich; Lanfermann, Heinrich; Luytenski, Stefan; Giesemann, Anja M

    2014-08-01

    As patients with Waardenburg syndrome (WS) represent potential candidates for cochlear implantation, their inner ear anatomy is of high significance. There is an ongoing debate whether WS is related to any inner ear dysplasias. Our objective was to evaluate radiologically the inner ear anatomy in patients with WS and identify any temporal bone malformations. A retrospective case review was carried out in a tertiary, referral center. The high resolution computed tomography (HRCT) scans of the temporal bone from 20 patients (40 ears) with WS who were managed for deafness in a tertiary referral center from 1995 to 2012 were retrospectively examined. Measurements of 15 different inner ear dimensions, involving the cochlea, the vestibule, the semicircular canals and the internal auditory meatus, as well as measurements of the vestibular aqueduct, were performed independently by two neuroradiologists. Finally, we compared the results from the WS group with a control group consisting of 50 normal hearing subjects (100 ears) and with previously reported normative values. Inner ear malformations were not found in any of the patients with WS. All measured inner ear dimensions were within the normative values compiled by our study group as well as by others. Inner ear malformations are not characteristic for all types of WS; however, certain rare subtypes might be related to inner ear deformities. Normative cochleovestibular dimensions that can help in assessing the temporal bone anatomy are provided. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants.

    PubMed

    Vuola, J; Göransson, H; Böhling, T; Asko-Seljavaara, S

    1996-09-01

    In this experimental study, blocks of natural coral (calcium carbonate) and its structurally similar derivate in the form of hydroxyapatite (calcium phosphate) were implanted in rat latissimus dorsi muscle with autogenous bone marrow to compare their bone-forming capability. A block without marrow placed in the opposite latissimus muscle served as a control. The animals were killed at 3, 6 and 12 weeks and, in the hydroxyapatite group, also at 24 weeks. The sections were analysed histologically and histomorphometrically. Bone was found only in implants containing bone marrow. Bone formation was significantly (p < 0.05) higher in coral than in hydroxyapatite implants at 3 weeks (10.8% versus 4.8%) and at 12 weeks (13.7% versus 6.3%, bone/total original block area). At 12 weeks all the coral implants had lost their original structure, and the cross-sectional area of the block had diminished to 40% of the original area.

  17. Bone Tissue Response to Porous and Functionalized Titanium and Silica Based Coatings

    PubMed Central

    Chaudhari, Amol; Braem, Annabel; Vleugels, Jozef; Martens, Johan A.; Naert, Ignace; Cardoso, Marcio Vivan; Duyck, Joke

    2011-01-01

    Background Topography and presence of bio-mimetic coatings are known to improve osseointegration. The objective of this study was to evaluate the bone regeneration potential of porous and osteogenic coatings. Methodology Six-implants [Control (CTR); porous titanium coatings (T1, T2); thickened titanium (Ti) dioxide layer (TiO2); Amorphous Microporous Silica (AMS) and Bio-active Glass (BAG)] were implanted randomly in tibiae of 20-New Zealand white rabbits. The animals were sacrificed after 2 or 4 weeks. The samples were analyzed histologically and histomorphometrically. In the initial bone-free areas (bone regeneration areas (BRAs)), the bone area fraction (BAF) was evaluated in the whole cavity (500 µm, BAF-500), in the implant vicinity (100 µm, BAF-100) and further away (100–500 µm, BAF-400) from the implant. Bone-to-implant contact (BIC-BAA) was measured in the areas where the implants were installed in contact to the host bone (bone adaptation areas (BAAs)) to understand and compare the bone adaptation. Mixed models were used for statistical analysis. Principal Findings After 2 weeks, the differences in BAF-500 for different surfaces were not significant (p>0.05). After 4 weeks, a higher BAF-500 was observed for BAG than CTR. BAF-100 for AMS was higher than BAG and BAF-400 for BAG was higher than CTR and AMS. For T1 and AMS, the bone regeneration was faster in the 100-µm compared to the 400-µm zone. BIC-BAA for AMS and BAG was lower after 4 than 2 weeks. After 4 weeks, BIC-BAA for BAG was lower than AMS and CTR. Conclusions BAG is highly osteogenic at a distance from the implant. The porous titanium coatings didn't stimulate bone regeneration but allowed bone growth into the pores. Although AMS didn't stimulate higher bone response, it has a potential of faster bone growth in the vicinity compared to further away from the surface. BIC-BAA data were inconclusive to understand the bone adaptation. PMID:21935382

  18. A novel approach for studying the temporal modulation of embryonic skeletal development using organotypic bone cultures and microcomputed tomography.

    PubMed

    Kanczler, Janos M; Smith, Emma L; Roberts, Carol A; Oreffo, Richard O C

    2012-10-01

    Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal, structural developmental paradigms and modulation of bone tissue formation to underpin innovative skeletal regenerative technology for clinical therapeutic strategies in musculoskeletal trauma and diseases.

  19. Current Approaches to Bone Tissue Engineering: The Interface between Biology and Engineering.

    PubMed

    Li, Jiao Jiao; Ebied, Mohamed; Xu, Jen; Zreiqat, Hala

    2018-03-01

    The successful regeneration of bone tissue to replace areas of bone loss in large defects or at load-bearing sites remains a significant clinical challenge. Over the past few decades, major progress is achieved in the field of bone tissue engineering to provide alternative therapies, particularly through approaches that are at the interface of biology and engineering. To satisfy the diverse regenerative requirements of bone tissue, the field moves toward highly integrated approaches incorporating the knowledge and techniques from multiple disciplines, and typically involves the use of biomaterials as an essential element for supporting or inducing bone regeneration. This review summarizes the types of approaches currently used in bone tissue engineering, beginning with those primarily based on biology or engineering, and moving into integrated approaches in the areas of biomaterial developments, biomimetic design, and scalable methods for treating large or load-bearing bone defects, while highlighting potential areas for collaboration and providing an outlook on future developments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Methods to Analyze Bone Regenerative Response to Different rhBMP-2 Doses in Rabbit Craniofacial Defects

    DTIC Science & Technology

    2014-02-28

    sockets.6 The commercially available INFUSE system (Medtronic Spinal and Biologics, Memphis, TN), compris- ing an absorbable collagen sponge plus...a collagen sponge carrier) by Medtronics27 for bone healing in rabbits. Even the 25mg rhBMP-2 dose used showed significantly greater re- generated...visualization No 3D morphological analysis for small-animal modelsCan be repeated over course of healing for temporal trends Potential risk of X-ray

  1. Micro-finite element analysis applied to high-resolution MRI reveals improved bone mechanical competence in the distal femur of female pre-professional dancers

    PubMed Central

    Rajapakse, C. S.; Diamond, M.; Honig, S.; Recht, M. P.; Weiss, D. S.; Regatte, R. R.

    2013-01-01

    Summary Micro-finite element analysis applied to high-resolution (0.234-mm length scale) MRI reveals greater whole and cancellous bone stiffness, but not greater cortical bone stiffness, in the distal femur of female dancers compared to controls. Greater whole bone stiffness appears to be mediated by cancellous, rather than cortical bone adaptation. Introduction The purpose of this study was to compare bone mechanical competence (stiffness) in the distal femur of female dancers compared to healthy, relatively inactive female controls. Methods This study had institutional review board approval. We recruited nine female modern dancers (25.7± 5.8 years, 1.63±0.06 m, 57.1±4.6 kg) and ten relatively inactive, healthy female controls matched for age, height, and weight (32.1±4.8 years, 1.6±0.04 m, 55.8±5.9 kg). We scanned the distal femur using a 7-T MRI scanner and a three-dimensional fast low-angle shot sequence (TR/TE= 31 ms/5.1 ms, 0.234 mm×0.234 mm×1 mm, 80 slices). We applied micro-finite element analysis to 10-mm-thick volumes of interest at the distal femoral diaphysis, metaphysis, and epiphysis to compute stiffness and cross-sectional area of whole, cortical, and cancellous bone, as well as cortical thickness. We applied two-tailed t-tests and ANCOVA to compare groups. Results Dancers demonstrated greater whole and cancellous bone stiffness and cross-sectional area at all locations (p< 0.05). Cortical bone stiffness, cross-sectional area, and thickness did not differ between groups (>0.08). At all locations, the percent of intact whole bone stiffness for cortical bone alone was lower in dancers (p<0.05). Adjustment for cancellous bone cross-sectional area eliminated significant differences in whole bone stiffness between groups (p>0.07), but adjustment for cortical bone cross-sectional area did not (p<0.03). Conclusions Modern dancers have greater whole and cancellous bone stiffness in the distal femur compared to controls. Elevated whole bone stiffness in dancers may be mediated via cancellous, rather than cortical bone adaptation. PMID:22893356

  2. Tuberculous otitis media: a clinical and radiologic analysis of 52 patients.

    PubMed

    Cho, Yang-Sun; Lee, Hyun-Seok; Kim, Sang-Woo; Chung, Kyu-Hwan; Lee, Dong-Kyung; Koh, Won-Jung; Kim, Myung-Gu

    2006-06-01

    This retrospective study reports on the clinical and radiologic features and the treatment outcomes of patients with tuberculous otitis media (TOM). We reviewed the medical records of 52 patients (53 ears) with TOM between 1993 and 2005 and analyzed temporal bone computed tomography scans of 23 patients. The diagnosis of TOM was made if a specimen of the middle ear revealed the presence of acid fast bacilli (AFB), grew Mycobacterium tuberculosis (M. Tb) on a culture, revealed characteristic histology, and/or was positive for polymerase chain reaction (PCR) for M. Tb. The highest incidence of the disease was observed among patients in their 30s. The main symptom was otorrhea, and the duration of symptoms was shorter than with nonspecific chronic otitis media. Most patients demonstrated a moderate to severe hearing loss. Five patients (9.6%) demonstrated a peripheral-type facial palsy. Temporal bone CT scans demonstrated relatively well-pneumatized mastoids and occupation by soft tissue of the entire tympanum and mastoid air cells. Six patients demonstrated bone destruction that involved the cortex of the mastoid bone. In most patients, antituberculous medication was effective treatment. The patients who underwent chemotherapy after surgery achieved more rapid healing of the ear and more frequent closure of the tympanic membrane than those who did not receive surgery. Clinicians should have a high index of suspicion and be aware of the clinical and radiologic characteristics of TOM.

  3. [The anatomical features of the middle ear exerting the influence on the formation of exudative otitis media in the breast-fed infants of different gestational age].

    PubMed

    Matroskin, A G; Rakhmanova, I V; Dreval', A A; Kislyakov, A N; Vladimirov, A I

    The objective of the present study was to elucidate the anatomical features of the structure of the middle ear and eustachian tube in the breast-fed infants of different gestational age that may be responsible for the formation of exudates (fluids). We have examined 150 temporal bones obtained from the children's cadavers that were allocated to three groups as follows: 50 temporal bones obtained at weeks 26-30 weeks of gestation (group 1), 44 bones 31-36 weeks of gestation (group 2), and 37-40 weeks of gestation (full-term babies, group 3),The analysis of the data obtained on an individual bases revealed either increase or decreases in the selected characteristics of the eustachian tube in comparison with the respective average values as well as the well apparent predominance of a single change or a combination of alteration of several parameters in one case in 26-30 weeks and 31-36 weeks groups. No significant changes were found in group 1. It is concluded that the presence of a single change or a combination of two or three abnormal changes in the parameters of the bone structures of the eustachian tube can affect the development of the secretory process in the middle ear especially in the children born after 36 weeks of pregnancy.

  4. External auditory canal cholesteatoma and keratosis obturans: the role of imaging in preventing facial nerve injury.

    PubMed

    McCoul, Edward D; Hanson, Matthew B

    2011-12-01

    We conducted a retrospective study to compare the clinical characteristics of external auditory canal cholesteatoma (EACC) with those of a similar entity, keratosis obturans (KO). We also sought to identify those aspects of each disease that may lead to complications. We identified 6 patients in each group. Imaging studies were reviewed for evidence of bony erosion and the proximity of disease to vital structures. All 6 patients in the EACC group had their diagnosis confirmed by computed tomography (CT), which demonstrated widening of the bony external auditory canal; 4 of these patients had critical erosion of bone adjacent to the facial nerve. Of the 6 patients with KO, only 2 had undergone CT, and neither exhibited any significant bony erosion or expansion; 1 of them developed osteomyelitis of the temporal bone and adjacent temporomandibular joint. Another patient manifested KO as part of a dermatophytid reaction. The essential component of treatment in all cases of EACC was microscopic debridement of the ear canal. We conclude that EACC may produce significant erosion of bone with exposure of vital structures, including the facial nerve. Because of the clinical similarity of EACC to KO, misdiagnosis is possible. Temporal bone imaging should be obtained prior to attempts at debridement of suspected EACC. Increased awareness of these uncommon conditions is warranted to prompt appropriate investigation and prevent iatrogenic complications such as facial nerve injury.

  5. Observations on the bony bridging of the jugular foramen in man.

    PubMed

    Dodo, Y

    1986-02-01

    The anatomical nature and pattern of incidence of bony bridging of the jugular foramen was investigated using 64 fetal crania aged nine months to term and 222 adult crania of Japanese. In addition, the region of the jugular foramen of an adult cadaver was carefully dissected in order to clarify the relationship between the cranial nerves passing through the jugular foramen and the intrajugular processes of the jugular foramen. The general conclusions concerning the anatomical nature of the bony bridging of the jugular foramen were as follows. (1) The intrajugular process of the temporal bone is situated posterior to the triangular depression (as described in Gray's Anatomy) of the petrous part. (2) The bony bridging of the jugular foramen is established by the contact of the intrajugular process of the temporal bone with the bony process of the occipital bone projecting either from just above the hypoglossal canal (Type I) or from posterior to the hypoglossal canal (Type III). (3) If both the processes of the occipital bone reach the intrajugular process of the temporal bone simultaneously, the jugular foramen is divided into three compartments. (4) In the case of Type I bridging, the anteromedial compartment transmits the glossopharyngeal nerve, while the posterolateral compartment gives passage to the vagus nerve, the accessory nerve and the internal jugular vein. (5) In the case of Type II bridging, the anteromedial compartment contains the glossopharyngeal, vagus and accessory nerves, and the posterolateral compartment transmits the internal jugular vein. (6) When tripartite division of the jugular foramen occurs, the anteromedial compartment transmits the glossopharyngeal nerve, the middle compartment contains the vagus and accessory nerves, and the posterolateral compartment transmits the internal jugular vein. Concerning the pattern of incidence of jugular foramen bridging in the Japanese fetal and adult cranial series, this is similar to that of the bony bridging of the hypoglossal canal. The fact that almost all the cases of bridging of the jugular foramen are already established by the end of fetal development must serve as a strong indication that this trait can be used effectively for anthropological population studies.

  6. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies.

    PubMed

    Porter, Joshua R; Ruckh, Timothy T; Popat, Ketul C

    2009-01-01

    Critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of a tissue-engineered scaffold is to use engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. A synthetic bone scaffold must be biocompatible, biodegradable to allow native tissue integration, and mimic the multidimensional hierarchical structure of native bone. In addition to being physically and chemically biomimetic, an ideal scaffold is capable of eluting bioactive molecules (e.g., BMPs, TGF-betas, etc., to accelerate extracellular matrix production and tissue integration) or drugs (e.g., antibiotics, cisplatin, etc., to prevent undesired biological response such as sepsis or cancer recurrence) in a temporally and spatially controlled manner. Various biomaterials including ceramics, metals, polymers, and composites have been investigated for their potential as bone scaffold materials. However, due to their tunable physiochemical properties, biocompatibility, and controllable biodegradability, polymers have emerged as the principal material in bone tissue engineering. This article briefly reviews the physiological and anatomical characteristics of native bone, describes key technologies in mimicking the physical and chemical environment of bone using synthetic materials, and provides an overview of local drug delivery as it pertains to bone tissue engineering is included. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  7. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone.

    PubMed

    Abshagen, K; Schrodi, I; Gerber, T; Vollmar, B

    2009-11-01

    One of the major challenges in the application of bone substitutes is adequate vascularization and biocompatibility of the implant. Thus, the temporal course of neovascularization and the microvascular inflammatory response of implants of NanoBone (fully synthetic nanocrystalline bone grafting material) were studied in vivo by using the mouse dorsal skinfold chamber model. Angiogenesis, microhemodynamics, and leukocyte-endothelial cell interaction were analyzed repetitively after implantation in the center and in the border zone of the implant up to 15 days. Both NanoBone granules and plates exhibited high biocompatibility comparable to that of cancellous bone, as indicated by a lack of venular leukocyte activation after implantation. In both synthetic NanoBone groups, signs of angiogenesis could be observed even at day 5 after implantation, whereas granules showed higher functional vessel density compared with NanoBone plates. The angiogenic response of the cancellous bone was markedly accelerated in the center of the implant tissue. Histologically, implant tissue showed an ingrowth of vascularized fibrous tissue into the material combined with an increased number of foreign-body giant cells. In conclusion, NanoBone, particularly in granular form, showed high biocompatibility and high angiogenic response, thus improving the healing of bone defects. Our results underline that, beside the composition and nanostructure, the macrostructure is also of importance for the incorporation of the biomaterial by the host tissue. (c) 2008 Wiley Periodicals, Inc.

  8. Impregnation of bone chips with alendronate and cefazolin, combined with demineralized bone matrix: a bone chamber study in goats

    PubMed Central

    2012-01-01

    Background Bone grafts from bone banks might be mixed with bisphosphonates to inhibit the osteoclastic response. This inhibition prevents the osteoclasts to resorb the allograft bone before new bone has been formed by the osteoblasts, which might prevent instability. Since bisphosphonates may not only inhibit osteoclasts, but also osteoblasts and thus bone formation, we studied different bisphosphonate concentrations combined with allograft bone. We investigated whether locally applied alendronate has an optimum dose with respect to bone resorption and formation. Further, we questioned whether the addition of demineralized bone matrix (DBM), would stimulate bone formation. Finally, we studied the effect of high levels of antibiotics on bone allograft healing, since mixing allograft bone with antibiotics might reduce the infection risk. Methods 25 goats received eight bone conduction chambers in the cortical bone of the proximal medial tibia. Five concentrations of alendronate (0, 0.5 mg/mL, 1 mg/mL, 2 mg/mL, and 10 mg/mL) were tested in combination with allograft bone and supplemented with cefazolin (200 μg/mL). Allograft not supplemented with alendronate and cefazolin served as control. In addition, allograft mixed with demineralized bone matrix, with and without alendronate, was tested. After 12 weeks, graft bone area and new bone area were determined with manual point counting. Results Graft resorption decreased significantly (p < 0.001) with increasing alendronate concentration. The area of new bone in the 1 mg/mL alendronate group was significantly (p = 0.002) higher when compared to the 10 mg/mL group. No differences could be observed between the group without alendronate, but with demineralized bone, and the control groups. Conclusions A dose-response relationship for local application of alendronate has been shown in this study. Most new bone was present at 1 mg/mL alendronate. Local application of cefazolin had no effect on bone remodelling. PMID:22443362

  9. NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases.

    PubMed

    Lin, T-H; Pajarinen, J; Lu, L; Nabeshima, A; Cordova, L A; Yao, Z; Goodman, S B

    Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system. © 2017 Elsevier Inc. All rights reserved.

  10. NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases

    PubMed Central

    Lin, T.-h.; Pajarinen, J.; Lu, L.; Nabeshima, A.; Cordova, L.A.; Yao, Z.; Goodman, S.B.

    2017-01-01

    Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system. PMID:28215222

  11. [Effects of cuttlefish bone-bone morphogenetic protein composite material on osteogenesis and revascularization of bone defect in rats].

    PubMed

    Liu, Yuan; Yu, Jiang; Bai, Jie; Gu, Jin-song; Cai, Bin; Zhou, Xia

    2013-12-01

    To study the effects of cuttlefish bone-bone morphogenetic protein (BMP) composite material on osteogenesis and revascularization of bone defect in rats. The cuttlefish bone was formed into cylinder with the diameter of about 5 mm and height of about 2 mm after the shell was removed, and then it was soaked in the recombinant human BMP 2 to make a cuttlefish bone-BMP (CBB) composite material. Thirty SD rats, with a defect of skull in every rat, were divided into the CBB and pure cuttlefish bone (PCB) groups according to the random number table, with 15 rats in each group. The rats in the group CBB and group PCB were transplanted with the corresponding material to repair the skull defect. At post transplantation week (PTW) 4, 6, and 8, 5 rats from every group were sacrificed by exsanguination, and ink perfusion was performed. One day later, all the transplants and part of the skull surrounding the defect were harvested, and general observation was conducted at the same time. The specimens were paraffin sectioned for HE staining and Masson staining. The area of microvessel and the area of newborn bone were observed and analyzed through histopathological techniques and image collection system. Data were processed with the analysis of variance of factorial design and LSD test. The correlation between the area of microvessel and the area of newborn bone of the group CBB was analyzed with Pearson correlation analysis. (1) The general observation of the transplant region showed that the transplants were encapsulated by a capsule of fibrous connective tissue. The texture of capsule was soft and relatively thick at PTW 4. The texture was tenacious and thin, but rather compact at PTW 6 and 8. The transplants became gelatinous at PTW 4, and similar to the cartilage tissue at PTW 6 and 8. (2) Histological observation showed that the structure of the transplants in two groups was damaged at PTW 4. A moderate quantity of inflammatory cell infiltration could be observed. The amounts of the primary bone trabeculae and microvessels in group CBB were more abundant than those of group PCB, while the number of osteoclasts was less than those of group PCB. At PTW 6, the inflammatory cell infiltration in the transplants in both groups decreased obviously, the cuttlefish bone was found to be further degraded, and the number of newborn microvessels was increased. There were mature bone trabeculae around the transplants in both groups. And there were also mature bone trabeculae in the degraded CBB in group CBB. At PTW 8, the inflammatory reaction in the transplants in both groups disappeared; there were more mature bone trabeculae; the structure of the cuttlefish bone was found to be damaged basically. Bone trabeculae in group PCB were found around the transplant, while the bone trabeculae could be observed not only around the transplant but also in the degraded CBB in group CBB. The amount of the microvessels in group CBB was still larger than that of group PCB. (3) From PTW 4 to 8, the area of microvessel in group CBB [(63 ± 4), ( 136 ± 36), ( 347 ± 31) µm(2)] was larger than that in group PCB [(44 ± 7), (73 ± 4), (268 ± 42) µm(2), P < 0.05 or P < 0.01]. From PTW 4 to 8, the area of newborn bone in group CBB [(236 ± 26), (339 ± 42), (553 ± 40) µm(2)] was larger than that in group PCB [(137 ± 15), (243 ± 21), (445 ± 29) µm(2), with P values all below 0.01]. (4) The relation between the area of microvessel and the area of newborn bone was significantly positive (r = 0.948, P = 0.001). The CBB may exert good effect on osteogenesis and vascularization of rats with bone defect. It is a good three dimensional scaffold in bone tissue engineering.

  12. An Approach for Determining Quantitative Measures for Bone Volume and Bone Mass in the Pediatric Spina Bifida Population

    PubMed Central

    Horenstein, Rachel E.; Shefelbine, Sandra J.; Mueske, Nicole M.; Fisher, Carissa L.; Wren, Tishya A.L.

    2015-01-01

    Background The pediatric spina bifida population suffers from decreased mobility and recurrent fractures. This study aimed to develop a method for quantifying bone mass along the entire tibia in youth with spina bifida. This will provide information about all potential sites of bone deficiencies. Methods Computed tomography images of the tibia for 257 children (n=80 ambulatory spina bifida, n=10 non-ambulatory spina bifida, n=167 typically developing) were analyzed. Bone area was calculated at regular intervals along the entire tibia length and then weighted by calibrated pixel intensity for density weighted bone area. Integrals of density weighted bone area were used to quantify bone mass in the proximal and distal epiphyses and diaphysis. Group differences were evaluated using analysis of variance. Findings Non-ambulatory children suffer from decreased bone mass in the diaphysis and proximal and distal epiphyses compared to ambulatory and control children (P≤0.001). Ambulatory children with spina bifida showed statistically insignificant differences in bone mass in comparison to typically developing children at these sites (P>0.5). Interpretation This method provides insight into tibial bone mass distribution in the pediatric spina bifida population by incorporating information along the whole length of the bone, thereby providing more information than dual-energy x-ray absorptiometry and peripheral quantitative computed tomography. This method can be applied to any population to assess bone mass distribution across the length of any long bone. PMID:26002057

  13. Cyst-Like Osteolytic Formations in Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Augmented Sheep Spinal Fusion.

    PubMed

    Pan, Hsin Chuan; Lee, Soonchul; Ting, Kang; Shen, Jia; Wang, Chenchao; Nguyen, Alan; Berthiaume, Emily A; Zara, Janette N; Turner, A Simon; Seim, Howard B; Kwak, Jin Hee; Zhang, Xinli; Soo, Chia

    2017-07-01

    Multiple case reports using recombinant human bone morphogenetic protein-2 (rhBMP-2) have reported complications. However, the local adverse effects of rhBMP-2 application are not well documented. In this report we show that, in addition to promoting lumbar spinal fusion through potent osteogenic effects, rhBMP-2 augmentation promotes local cyst-like osteolytic formations in sheep trabecular bones that have undergone anterior lumbar interbody fusion. Three months after operation, conventional computed tomography showed that the trabecular bones of the rhBMP-2 application groups could fuse, whereas no fusion was observed in the control group. Micro-computed tomography analysis revealed that the core implant area's bone volume fraction and bone mineral density increased proportionately with rhBMP-2 dose. Multiple cyst-like bone voids were observed in peri-implant areas when using rhBMP-2 applications, and these sites showed significant bone mineral density decreases in relation to the unaffected regions. Biomechanically, these areas decreased in strength by 32% in comparison with noncystic areas. Histologically, rhBMP-2-affected void sites had an increased amount of fatty marrow, thinner trabecular bones, and significantly more adiponectin- and cathepsin K-positive cells. Despite promoting successful fusion, rhBMP-2 use in clinical applications may result in local adverse structural alterations and compromised biomechanical changes to the bone. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Repair of sheep long bone cortical defects filled with COLLOSS, COLLOSS E, OSSAPLAST, and fresh iliac crest autograft.

    PubMed

    Huffer, William E; Benedict, James J; Turner, A S; Briest, Arne; Rettenmaier, Robert; Springer, Marco; Walboomers, X F

    2007-08-01

    COLLOSS and COLLOSS E are osteoinductive bone void fillers consisting of bone collagen and noncollagenous proteins from bovine and equine bone, respectively. The aim of this study was to compare COLLOSS, COLLOSS E, iliac bone autograft, sintered beta tricalcium phosphate (beta-TCP; OSSAPLAST), and COLLOSS E plus OSSAPLAST. Materials were placed for 4, 8, or 24 weeks in 5-mm cortical bone defects in sheep long bones. Histological sections in a plane perpendicular to the long axis of the bone were used to measure the total repair area (original defect plus callus) and the area of bone within the total repair area. The incidence of defect union was also evaluated. At 4 and 8 weeks, defects treated with COLLOSS and COLLOSS E with or without OSSAPLAST had total repair and bone areas equivalent to autograft, and larger than OSSAPLAST-treated defects. At 8 weeks, the incidence of defect union was higher in defects treated with autograft or COLLOSS E plus OSSAPLAST than in untreated defects. At 24 weeks, the incidence of union was 100% in all treatment groups and 0% in untreated defects. The incidence of union was related to the degree of remodeling between 8 and 24 weeks. This was greater in all treated than nontreated defects. In conclusion, COLLOSS and COLLOSS E were equivalent to each other and to autograft, and superior to beta-TCP, in this study model.

  15. [Morphological analysis of bone dynamics and metabolic bone disease. Effect of loading on bone tissue].

    PubMed

    Sakai, Akinori

    2011-04-01

    We developed a voluntarily climbing animal model to investigate the effect of skeletal loading on bone tissue. At the cross section of the mid-femur, climbing exercise increases outer diameter and area of cortical bone. The mechanical strength of the femur is increased. This change of cortical volume and structure is more marked in anti-gravity exercise, such as climbing and jumping, than aerobic exercise. At the bone marrow area, climbing exercise increases trabecular bone volume and osteoblast number, while it decreases fat volume and adipocyte number. Skeletal loading promotes differentiation from mesenchymal stem cells to osteoblasts and suppresses that to adipocytes by facilitating the signal through PTH÷PTHrP receptor.

  16. [Experimental study of repairing bone defect with tissue engineered bone seeded with autologous red bone marrow and wrapped by pedicled fascial flap].

    PubMed

    Yang, Xinming; Shi, Wei; Du, Yakun; Meng, Xianyong; Yin, Yanlin

    2009-10-01

    To investigate the effect of repairing bone defect with tissue engineered bone seeded with the autologous red bone marrow (ARBM) and wrapped by the pedicled fascial flap and provide experimental foundation for clinical application. Thirty-two New Zealand white rabbits (male and/or female) aged 4-5 months old and weighing 2.0-2.5 kg were used to make the experimental model of bilateral 2 cm defect of the long bone and the periosteum in the radius. The tissue engineered bone was prepared by seeding the ARBM obtained from the rabbits on the osteoinductive absorbing material containing BMP. The left side of the experimental model underwent the implantation of autologous tissue engineered bone serving as the control group (group A). While the right side was designed as the experimental group (group B), one 5 cm x 3 cm fascial flap pedicled on the nameless blood vessel along with its capillary network adjacent to the bone defect was prepared using microsurgical technology, and the autologous tissue engineered bone wrapped by the fascial flap was used to fill the bone defect. At 4, 8, 12, and 16 weeks after operation, X-ray exam, absorbance (A) value test, gross morphology and histology observation, morphology quantitative analysis of bone in the reparative area, vascular image analysis on the boundary area were conducted. X-ray films, gross morphology observation, and histology observation: group B was superior to group A in terms of the growth of blood vessel into the implant, the quantity and the speed of the bone trabecula and the cartilage tissue formation, the development of mature bone structure, the remodeling of shaft structure, the reopen of marrow cavity, and the absorbance and degradation of the implant. A value: there was significant difference between two groups 8, 12, and 16 weeks after operation (P < 0.05), and there were significant differences among those three time points in groups A and B (P < 0.05). For the ratio of neonatal trabecula area to the total reparative area, there were significant differences between two groups 4, 8, 12, and 16 weeks after operation (P < 0.05), and there were significant differences among those four time points in group B (P < 0.05). For the vascular regenerative area in per unit area of the junctional zone, group B was superior to group A 4, 8, 12, and 16 weeks after operation (P < 0.05). Tissue engineered bone, seeded with the ARBM and wrapped by the pedicled fascial flap, has a sound reparative effect on bone defect due to its dual role of constructing vascularization and inducing membrane guided tissue regeneration.

  17. The Effect of Different Bone Marrow Stimulation Techniques on Human Talar Subchondral Bone: A Micro-Computed Tomography Evaluation.

    PubMed

    Gianakos, Arianna L; Yasui, Youichi; Fraser, Ethan J; Ross, Keir A; Prado, Marcelo P; Fortier, Lisa A; Kennedy, John G

    2016-10-01

    To evaluate morphological alterations, microarchitectural disturbances, and the extent of bone marrow access to the subchondral bone marrow compartment using micro-computed tomography analysis in different bone marrow stimulation (BMS) techniques. Nine zones in a 3 × 3 grid pattern were assigned to 5 cadaveric talar dome articular surfaces. A 1.00-mm microfracture awl (s.MFX), a 2.00-mm standard microfracture awl (l.MFX), or a 1.25-mm Kirschner wire (K-wire) drill hole was used to penetrate the subchondral bone in each grid zone. Subchondral bone holes and adjacent tissue areas were assessed by micro-computed tomography to analyze adjacent bone area destruction and communicating channels to the bone marrow. Grades 1 to 3 were assigned, where 1 = minimal compression/sclerosis; 2 = moderate compression/sclerosis; 3 = severe compression/sclerosis. Bone volume/total tissue volume, bone surface area/bone volume, trabecular thickness, and trabecular number were calculated in the region of interest. Visual assessment revealed that the s.MFX had significantly more grade 1 holes (P < .001) and that the l.MFX had significantly more poor/grade 3 holes (P = .002). Bone marrow channel assessment showed a statistically significant increase in the number of channels in the s.MFX when compared with both K-wire and l.MFX holes (P < .001). Bone volume fraction for the s.MFX was significantly less than that of the l.MFX (P = .029). BMS techniques using instruments with larger diameters resulted in increased trabecular compaction and sclerosis in areas adjacent to the defect. K-wire and l.MFX techniques resulted in less open communicating bone marrow channels, denoting a reduction in bone marrow access. The results of this study indicate that BMS using larger diameter devices results in greater microarchitecture disturbances. The current study suggests that the choice of a BMS technique should be carefully considered as the results indicate that smaller diameter hole sizes may diminish the amount of microarchitectural disturbances in the subchondral bone. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin, Improves Trabecular Bone Mineral Density and Microstructure in Obese, Insulin-Resistant, Pre-diabetic Rats.

    PubMed

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Teerapornpuntakit, Jarinthorn; Aeimlapa, Ratchaneevan; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2018-02-02

    Obese insulin resistance and type 2 diabetes mellitus profoundly impair bone mechanical properties and bone quality. However, because several antidiabetes drugs, especially thiazolidinediones, further aggravate bone loss in individuals with diabetes, diabetic osteopathy should not be treated by using simply any glucose-lowering agents. Recently, incretins have been reported to affect osteoblast function positively. The present study aimed to investigate the effects of vildagliptin, an inhibitor of dipeptidyl peptidase-4, on bone of rats with high-fat-diet-induced prediabetes. Male rats were fed a high-fat diet for 12 weeks to induce obese insulin resistance and then treated with vildagliptin for 4 weeks. The effects of the drug on bone were determined by microcomputed tomography and bone histomorphometry. Vildagliptin markedly improved insulin resistance in these obese insulin-resistant rats. It also significantly increased volumetric bone mineral density. Specifically, vildagliptin-treated obese insulin-resistant rats exhibited higher trabecular volumetric bone mineral density than vehicle-treated obese insulin-resistant rats, whereas cortical volumetric bone mineral density, cortical thickness and area were not changed. Bone histomorphometric analysis in a trabecular-rich area (i.e. tibial metaphysis) revealed greater trabecular bone volume and number and less trabecular separation without change in trabecular thickness, osteocyte lacunar area or cortical thickness in the vildagliptin-treated group. Vildagliptin had a beneficial effect on the bone of obese insulin-resistant rats with prediabetes, particularly at the trabecular site. Such benefit probably results from enhanced bone formation rather than from suppressed bone resorption. Copyright © 2018 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  19. [Oral Anatomy.

    PubMed

    Abe, Shinichi

    With regard to oral cavity, it is known that jaw bone morphology greatly changes with tooth loss. Therefore, it is necessary to consider the muscles attached to the jaw bone and the surrounding vessels and nerves, in connection with the jaw bone morphology after tooth loss. As an example, the height of the mandibular bone decreases to the position of the mylohyoid line after tooth loss. By this marked morphological change in the alveolar area, the lingual nerve and the lingual artery branches running in the sublingual area on the mandibular inner surface becomes located in the area almost the same as the alveolar crest.

  20. Impact of air pollution on vitamin D deficiency and bone health in adolescents.

    PubMed

    Feizabad, Elham; Hossein-Nezhad, Arash; Maghbooli, Zhila; Ramezani, Majid; Hashemian, Roxana; Moattari, Syamak

    2017-12-01

    The association between air pollution and bone health was evaluated in adolescents in the city of Tehran. This study is essentially ecological. Vitamin D deficiency among adolescents has been reported at higher rates in polluted areas than in non-polluted areas. Additionally, residence in polluted areas is associated with lower levels of bone alkaline phosphatase. The aim of this study was to evaluate the association between ambient air pollution and bone turnover in adolescents and to compare the prevalence of vitamin D deficiency between polluted and non-polluted areas of Tehran. This cross-sectional population-based study was conducted on 325 middle- and high-school students (both girls and boys) in Tehran in the winter. During the study period, detailed daily data on air pollution were obtained from archived data collected by Tehran Air Quality Control Company (AQCC). Serum levels of calcium, phosphorus, parathyroid hormone (PTH), bone-specific alkaline phosphatase, 25(OH) vitamin D, osteocalcin, cross-linked C-telopeptide (CTX), total protein, albumin, and creatinine were obtained from the study group. Vitamin D deficiency was more prevalent in polluted areas than in non-polluted areas. After adjustment for age and sex, residence in the polluted area showed a statistically significant positive association with vitamin D deficiency and a statistically significant negative association with bone turnover. Interestingly, high calcium intake (>5000 mg/week) protects against the effects of air pollution on bone turnover. Air pollution is a chief factor determining the amount of solar UVB that reaches the earth's surface. Thus, atmospheric pollution may play a significant independent role in the development of vitamin D deficiency.

  1. Gene Expression and Structural Skeletal Responses to Long-Duration Simulated Microgravity in Rats

    NASA Technical Reports Server (NTRS)

    Shirazi-Fard, Yasaman; Rael, Victoria E.; Torres, Samantha; Steczina, Sonette; Bryant, Sheenah; Tahimic, Candice; Globus, Ruth K.

    2017-01-01

    In this study, we aim to examine skeletal responses to simulated long-duration spaceflight (90 days) and weight-bearing recovery on bone loss using the ground-based hindlimb unloading (HU) model in adolescent (3-month old) male rats. We hypothesized that simulated microgravity leads to the temporal regulation of oxidative defense genes and pro-bone resorption factors, where there is a progression and eventual plateau; furthermore, early transient changes in these pathways precede skeletal adaptations.

  2. Headache of a diagnosis: frontotemporal pain and inflammation associated with osteolysis.

    PubMed

    Tacon, Lyndal J; Parkinson, Jonathon F; Hudson, Bernard J; Brewer, Janice M; Little, Nicholas S; Clifton-Bligh, Roderick J

    2008-11-17

    A 62-year-old woman presented with left frontotemporal pain, scalp tenderness and raised levels of inflammatory markers. Temporal arteritis was considered likely, and symptoms resolved with prednisone therapy. This delayed diagnostic bone biopsy until a soft tissue abscess formed, and Pott's puffy tumour associated with Prevotella osteomyelitis of the frontal bone was diagnosed. This case highlights the value of early histopathological examination, and is a reminder of a condition seen frequently in the pre-antibiotic era.

  3. Quantitative evaluation of bone resorption activity of osteoclast-like cells by measuring calcium phosphate resorbing area using incubator-facilitated and video-enhanced microscopy.

    PubMed

    Morimoto, Yoshitaka; Hoshino, Hironobu; Sakurai, Takashi; Terakawa, Susumu; Nagano, Akira

    2009-04-01

    Quantitative evaluation of the ability of bone resorption activity in live osteoclast-like cells (OCLs) has not yet been reported on. In this study, we observed the sequential morphological change of OCLs and measured the resorbing calcium phosphate (CP) area made by OCLs alone and with the addition of elcatonin utilizing incubator facilitated video-enhanced microscopy. OCLs, which were obtained from a coculture of ddy-mouse osteoblastic cells and bone marrow cells, were cultured on CP-coated quartz cover slips. The CP-free area increased constantly in the OCLs alone, whereas it did not increase after the addition of elcatonin. This study showed that analysis of the resorbed areas under the OCL body using this method enables the sequential quantitative evaluation of the bone resorption activity and the effect of several therapeutic agents on bone resorption in vitro.

  4. Using modern human cortical bone distribution to test the systemic robusticity hypothesis.

    PubMed

    Baab, Karen L; Copes, Lynn E; Ward, Devin L; Wells, Nora; Grine, Frederick E

    2018-06-01

    The systemic robusticity hypothesis links the thickness of cortical bone in both the cranium and limb bones. This hypothesis posits that thick cortical bone is in part a systemic response to circulating hormones, such as growth hormone and thyroid hormone, possibly related to physical activity or cold climates. Although this hypothesis has gained popular traction, only rarely has robusticity of the cranium and postcranial skeleton been considered jointly. We acquired computed tomographic scans from associated crania, femora and humeri from single individuals representing 11 populations in Africa and North America (n = 228). Cortical thickness in the parietal, frontal and occipital bones and cortical bone area in limb bone diaphyses were analyzed using correlation, multiple regression and general linear models to test the hypothesis. Absolute thickness values from the crania were not correlated with cortical bone area of the femur or humerus, which is at odds with the systemic robusticity hypothesis. However, measures of cortical bone scaled by total vault thickness and limb cross-sectional area were positively correlated between the cranium and postcranium. When accounting for a range of potential confounding variables, including sex, age and body mass, variation in relative postcranial cortical bone area explained ∼20% of variation in the proportion of cortical cranial bone thickness. While these findings provide limited support for the systemic robusticity hypothesis, cranial cortical thickness did not track climate or physical activity across populations. Thus, some of the variation in cranial cortical bone thickness in modern humans is attributable to systemic effects, but the driving force behind this effect remains obscure. Moreover, neither absolute nor proportional measures of cranial cortical bone thickness are positively correlated with total cranial bone thickness, complicating the extrapolation of these findings to extinct species where only cranial vault thickness has been measured. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Lasp1 misexpression influences chondrocyte differentiation in the vertebral column.

    PubMed

    Hermann-Kleiter, Natascha; Ghaffari-Tabrizi, Nassim; Blumer, Michael J F; Schwarzer, Christoph; Mazur, Magdalena A; Artner, Isabella

    2009-01-01

    The mouse mutant wavy tail Tg(Col1a1-lacZ)304ng was created through transgene insertion and exhibits defects of the vertebral column. Homozygous mutant animals have compressed tail vertebrae and wedge-shaped intervertebral discs, resulting in a meandering tail. Delayed closure of lumbar neural arches and lack of processus spinosi have been observed; these defects become most prominent during the transition from cartilage to bone. The spina bifida was resistant to folic acid treatment, while retinoic acid administration caused severe skeletal defects in the mutant, but none in wild type control animals. The transgene integrated at chromosome 11 band D, in an area of high gene density. The insertion site was located between the transcription start sites of the Rpl23 and Lasp1 genes. LASP1 (an actin binding protein involved in cell migration and survival) was found to be produced in resting and hypertrophic chondrocytes in the vertebrae. In mutant vertebrae, temporal and spatial misexpression of Lasp1 was observed, indicating that alterations in Lasp1 transcription are most likely responsible for the observed phenotype. These data reveal a yet unappreciated role of Lasp1 in chondrocyte differentiation during cartilage to bone transition.

  6. Semi-manual mastoidectomy assisted by human-robot collaborative control - A temporal bone replica study.

    PubMed

    Lim, Hoon; Matsumoto, Nozomu; Cho, Byunghyun; Hong, Jaesung; Yamashita, Makoto; Hashizume, Makoto; Yi, Byung-Ju

    2016-04-01

    To develop an otological robot that can protect important organs from being injured. We developed a five degree-of-freedom robot for otological surgery. Unlike the other robots that were reported previously, our robot does not replace surgeon's procedures, but instead utilizes human-robot collaborative control. The robot basically releases all of the actuators so that the surgeon can manipulate the drill within the robot's working area with minimal restriction. When the drill reaches a forbidden area, the surgeon feels as if the drill hits a wall. When an engineer performed mastoidectomy using the robot for assistance, the facial nerve in the segmented region was always protected with a more than 2.5mm margin, which was almost the same as the pre-set safety margin of 3mm. Semi-manual drilling using human-robot collaborative control was feasible, and may hold a realistic prospect of clinical use in the near future. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Bilateral traumatic facial paralysis. Case report.

    PubMed

    Undabeitia, Jose; Liu, Brian; Pendleton, Courtney; Nogues, Pere; Noboa, Roberto; Undabeitia, Jose Ignacio

    2013-01-01

    Although traumatic injury of the facial nerve is a relatively common condition in neurosurgical practice, bilateral lesions related to fracture of temporal bones are seldom seen. We report the case of a 38-year-old patient admitted to Intensive Care Unit after severe head trauma requiring ventilatory support (Glasgow Coma Scale of 7 on admission). A computed tomography (CT) scan confirmed a longitudinal fracture of the right temporal bone and a transversal fracture of the left. After successful weaning from respirator, bilateral facial paralysis was observed. The possible aetiologies for facial diplegia differ from those of unilateral injury. Due to the lack of facial asymmetry, it can be easily missed in critically ill patients, and both the high resolution CT scan and electromyographic studies can be helpful for correct diagnosis. Copyright © 2012 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  8. Inner ear abnormalities in patients with Goldenhar syndrome.

    PubMed

    Bisdas, Sotirios; Lenarz, Minoo; Lenarz, Thomas; Becker, Hartmut

    2005-05-01

    The objective of this study is to investigate the inner ear malformations in patients with Goldenhar syndrome and to hypothesize the potential embryopathogenesis of these malformations. Retrospective case review. Tertiary referral center. Fourteen patients with Goldenhar syndrome. Each patient underwent hearing tests and high-resolution computed tomography (CT) of the temporal bone. In six patients, magnetic resonance imaging of the temporal bone also was performed. Among the 14 patients with Goldenhar syndrome, 13 had outer and middle ear anomalies and 5 (36%) had inner ear malformations, including one case of common cavity. Our observations regarding inner ear anomalies in Goldenhar syndrome correlate with the reported cases in the literature and may help to hypothesize the embryological origin of these malformations, which can caused by an early developmental arrest in the fourth gestational week. Specialists evaluating patients with Goldenhar syndrome should be aware of the possibility of inner ear malformations, which could be diagnosed earlier with appropriate imaging studies.

  9. Tracking modern human population history from linguistic and cranial phenotype

    PubMed Central

    Reyes-Centeno, Hugo; Harvati, Katerina; Jäger, Gerhard

    2016-01-01

    Languages and genes arguably follow parallel evolutionary trajectories, descending from a common source and subsequently differentiating. However, although common ancestry is established within language families, it remains controversial whether language preserves a deep historical signal. To address this question, we evaluate the association between linguistic and geographic distances across 265 language families, as well as between linguistic, geographic, and cranial distances among eleven populations from Africa, Asia, and Australia. We take advantage of differential population history signals reflected by human cranial anatomy, where temporal bone shape reliably tracks deep population history and neutral genetic changes, while facial shape is more strongly associated with recent environmental effects. We show that linguistic distances are strongly geographically patterned, even within widely dispersed groups. However, they are correlated predominantly with facial, rather than temporal bone, morphology, suggesting that variation in vocabulary likely tracks relatively recent events and possibly population contact. PMID:27833101

  10. Bullet fragmentation preceding a contour shot: case study and experimental simulation.

    PubMed

    Sterzik, V; Kneubuehl, B P; Bohnert, M; Riva, F; Glardon, M

    2017-01-01

    In medico-legal literature, only a small number of publications deal with lethal injuries caused by shots with modified guns. This might lead to the conclusion that such cases are extremely rare. However, there are cases again and yet again. During the investigation process, the modified gun is of particular importance since it can show an unusual ballistic behaviour. The present paper reports on a suicide of a 60-year-old man, committed with a modified revolver and a lead bullet. The man had a single gunshot wound with entrance at the right temporal bone. Autopsy revealed that the bullet had fragmented into two major parts. The smaller one stood outside the cranial cavity and pushed its way alongside between the cranial bone and scalp to its end position in the left temporal area. The bigger part entered the cranial cavity and ended in the left parietal lobe. In shots on ballistic soap and on a head-model, the ballistics of the weapon and lead bullet were characterized. The angle necessary for bullet fragmentation was determined by shots on ballistic soap and turned out to be 55°-60° at a velocity of around 200 m/s. This knowledge was transferred to contact shots on a head-model consisting of a layered polyurethane sphere filled with 10 % ballistic gelatine and covered with a skin-like cap almost all around. The resulting injury pattern corresponded to the one of the suicide person. The bigger bullet part entered the skull while the smaller part pushed its way alongside between skin and skull causing an outer contour shot. Furthermore, the revolver was documented firing off two bullets by one trigger pull-a phenomenon of importance for forensic casework the authors have not found reported in forensic literature.

  11. Temporal radiographic texture analysis in the detection of periprosthetic osteolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkie, Joel R.; Giger, Maryellen L.; Chinander, Michael R.

    2008-01-15

    Periprosthetic osteolysis is one of the most serious long-term problems in total hip arthroplasty. It has been primarily attributed to the body's inflammatory response to submicron polyethylene particles worn from the hip implant, and it leads to bone loss and structural deterioration in the surrounding bone. It was previously demonstrated that radiographic texture analysis (RTA) has the ability to distinguish between osteolysis and normal cases at the time of clinical detection of the disease; however, that analysis did not take into account the changes in texture over time. The goal of this preliminary analysis, however, is to assess the abilitymore » of temporal radiographic texture analysis (tRTA) to distinguish between patients who develop osteolysis and normal cases. Two tRTA methods were used in the study: the RTA feature change from baseline at various follow-up intervals and the slope of the best-fit line to the RTA data series. These tRTA methods included Fourier-based and fractal-based features calculated from digitized images of 202 total hip replacement cases, including 70 that developed osteolysis. Results show that separation between the osteolysis and normal groups increased over time for the feature difference method, as the disease progressed, with area under the curve (AUC) values from receiver operating characteristic analysis of 0.65 to 0.72 at 15 years postsurgery. Separation for the slope method was also evident, with AUC values ranging from 0.65 to 0.76 for the task of distinguishing between osteolysis and normal cases. The results suggest that tRTA methods have the ability to measure changes in trabecular structure, and may be useful in the early detection of periprosthetic osteolysis.« less

  12. Permeability study of cancellous bone and its idealised structures.

    PubMed

    Syahrom, Ardiyansyah; Abdul Kadir, Mohammed Rafiq; Harun, Muhamad Nor; Öchsner, Andreas

    2015-01-01

    Artificial bone is a suitable alternative to autografts and allografts, however their use is still limited. Though there were numerous reports on their structural properties, permeability studies of artificial bones were comparably scarce. This study focused on the development of idealised, structured models of artificial cancellous bone and compared their permeability values with bone surface area and porosity. Cancellous bones from fresh bovine femur were extracted and cleaned following an established protocol. The samples were scanned using micro-computed tomography (μCT) and three-dimensional models of the cancellous bones were reconstructed for morphology study. Seven idealised and structured cancellous bone models were then developed and fabricated via rapid prototyping technique. A test-rig was developed and permeability tests were performed on the artificial and real cancellous bones. The results showed a linear correlation between the permeability and the porosity as well as the bone surface area. The plate-like idealised structure showed a similar value of permeability to the real cancellous bones. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Holographic nondestructive testing in bone growth disturbance studies

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Raimo; Nygren, Kaarlo; Mozerov, Mikhail G.

    1994-03-01

    We used isolated radioulnar bones (fused radial and ulnar bones) of subadult European moose collected in various environmentally polluted areas of Finland. The bones were radiographed and holographic interference pictures, for holographic nondestructive testing (HNDT), were produced by using small caudocranial bending forces. The cortical index values were measured in the diaphyses and samples were taken for mineral studies from the mandibles of the same animals. Results indicated that the bones obtained from the heavily polluted area showed biomechanical response comparable to the bones developed partially without mothers milk. Differences were also seen in morphometrical and radiological studies. The mineral contents studied did not differ significantly from randomly collected samples of the same age category. We therefore conclude that environmental factors may influence the bone matrix development.

  14. Neuroimaging Evidence of a Bilateral Representation for Visually Presented Numbers.

    PubMed

    Grotheer, Mareike; Herrmann, Karl-Heinz; Kovács, Gyula

    2016-01-06

    The clustered architecture of the brain for different visual stimulus categories is one of the most fascinating topics in the cognitive neurosciences. Interestingly, recent research suggests the existence of additional regions for newly acquired stimuli such as letters (letter form area; LFA; Thesen et al., 2012) and numbers (visual number form area; NFA; Shum et al., 2013). However, neuroimaging methods thus far have failed to visualize the NFA in healthy participants, likely due to fMRI signal dropout caused by the air/bone interface of the petrous bone (Shum et al., 2013). In the current study, we combined a 64-channel head coil with high spatial resolution, localized shimming, and liberal smoothing, thereby decreasing the signal dropout and increasing the temporal signal-to-noise ratio in the neighborhood of the NFA. We presented subjects with numbers, letters, false numbers, false letters, objects and their Fourier randomized versions. A group analysis showed significant activations in the inferior temporal gyrus at the previously proposed location of the NFA. Crucially, we found the NFA to be present in both hemispheres. Further, we could identify the NFA on the single-subject level in most of our participants. A detailed analysis of the response profile of the NFA in two separate experiments confirmed the whole-brain results since responses to numbers were significantly higher than to any other presented stimulus in both hemispheres. Our results show for the first time the existence and stimulus selectivity of the NFA in the healthy human brain. This fMRI study shows for the first time a cluster of neurons selective for visually presented numbers in healthy human adults. This visual number form area (NFA) was found in both hemispheres. Crucially, numbers have gained importance for humans too recently for neuronal specialization to be established by evolution. Therefore, investigations of this region will greatly advance our understanding of learning and plasticity in the brain. In addition, these results will aid our knowledge regarding related neurological illnesses (e.g., dyscalculia). To overcome the fMRI signal dropout in the neighborhood of the NFA, we combined high spatial resolution with liberal smoothing. We believe that this approach will be useful to the broad neuroimaging community. Copyright © 2016 the authors 0270-6474/16/360088-10$15.00/0.

  15. Complex single step skull reconstruction in Gorham's disease - a technical report and review of the literature.

    PubMed

    Ohla, Victoria; Bayoumi, Ahmed B; Hefty, Markus; Anderson, Matthew; Kasper, Ekkehard M

    2015-03-11

    Gorham's disease is a rare osteolytic disorder characterized by progressive resorption of bone and replacement of osseous matrix by a proliferative non-neoplastic vascular or lymphatic tissue. A standardized treatment protocol has not yet been defined due to the unpredictable natural history of the disease and variable clinical presentations. No single treatment has proven to be superior in arresting the course of the disease. Trials have included surgery, radiation and medical therapies using drugs such as calcium salts, vitamin D supplements and hormones. We report on our advantageous experience in the management of this osteolyic disorder in a case when it affected only the skull vault. A brief review of pertinent literature about Gorham's disease with skull involvement is provided. A 25-year-old Caucasian male presented with a skull depression over the left fronto-temporal region. He noticed progressive enlargement of the skull defect associated with local pain and mild headache. Physical examination revealed a tender palpable depression of the fronto-temporal convexity. Conventional X-ray of the skull showed widespread loss of bone substance. Subsequent CT scans showed features of patchy erosions indicative of an underlying osteolysis. MRI also revealed marginal enhancement at the site of the defect. The patient was in need of a pathological diagnosis as well as complex reconstruction of the afflicted area. A density graded CT scan was done to determine the variable degrees of osteolysis and a custom made allograft was designed for cranioplasty preoperatively to allow for a single step excisional craniectomy with synchronous skull repair. Gorham's disease was diagnosed based on histopathological examination. No neurological deficit or wound complications were reported postoperatively. Over a two-year follow up period, the patient had no evidence of local recurrence or other systemic involvement. A single step excisional craniectomy and cranioplasty can be an effective treatment for patients with Gorham's disease affecting the skull vault only. Preoperative planning by a density graded CT aids to design a synthetic bone flap and is beneficial in skull reconstruction. Systemic involvement is variable in this patient's population.

  16. Effects of Ibuprofen and Resistance Training on Bone and Muscle: A Randomized Controlled Trial in Older Women.

    PubMed

    Duff, Whitney R D; Chilibeck, Philip D; Candow, Darren G; Gordon, Julianne J; Mason, Riley S; Taylor-Gjevre, Regina; Nair, Bindu; Szafron, Michael; Baxter-Jones, Adam; Zello, Gordon A; Kontulainen, Saija A

    2017-04-01

    Resistance training with ibuprofen supplementation may improve musculoskeletal health in postmenopausal women. The study purpose was to determine the efficacy of resistance training and ibuprofen supplementation on bone and muscle properties in postmenopausal women. Participants (n = 90, 65.3 ± 4.9 yr) were randomly assigned to: supervised resistance training or stretching (placebo-exercise) with postexercise ibuprofen (400 mg) or placebo supplementation for 3 d·wk (9 months). Baseline and postintervention measurements included distal and shaft scans of the forearm and lower leg using peripheral quantitative computed tomography. Distal site outcomes included cross-sectional area, content, and density for total and trabecular bone, as well as estimated bone strength in compression. Shaft site outcomes included total bone area; cortical bone area, content, and density; estimated bone strength in torsion; and muscle area and density. Exercise-supplement-time interactions for total bone content at the distal radius (P = 0.009) and cortical density at the radius shaft (P = 0.038) were significant. Resistance training with ibuprofen decreased total bone content (-1.5%) at the distal radius in comparison to the resistance training (0.6%; P = 0.032) and ibuprofen alone (0.5%; P = 0.050). Change in cortical density at the radius shaft differed between the stretching with placebo and ibuprofen supplementation groups (-1.8% vs 1.1%; P = 0.050). Resistance training preserved muscle density in the lower leg more so than stretching (-3.1% vs -5.4%; P = 0.015). Ibuprofen consumed immediately after resistance training had a deleterious effect on bone mineral content at the distal radius, whereas resistance training or ibuprofen supplementation individually prevented bone loss. Resistance training prevented muscle density decline in the lower leg.

  17. The effect of fidelity: how expert behavior changes in a virtual reality environment.

    PubMed

    Ioannou, Ioanna; Avery, Alex; Zhou, Yun; Szudek, Jacek; Kennedy, Gregor; O'Leary, Stephen

    2014-09-01

    We compare the behavior of expert surgeons operating on the "gold standard" of simulation-the cadaveric temporal bone-against a high-fidelity virtual reality (VR) simulation. We aim to determine whether expert behavior changes within the virtual environment and to understand how the fidelity of simulation affects users' behavior. Five expert otologists performed cortical mastoidectomy and cochleostomy on a human cadaveric temporal bone and a VR temporal bone simulator. Hand movement and video recordings were used to derive a range of measures, to facilitate an analysis of surgical technique, and to compare expert behavior between the cadaveric and simulator environments. Drilling time was similar across the two environments. Some measures such as total time and burr change count differed predictably due to the ease of switching burrs within the simulator. Surgical strokes were generally longer in distance and duration in VR, but these measures changed proportionally to cadaveric measures across the stages of the procedure. Stroke shape metrics differed, which was attributed to the modeling of burr behavior within the simulator. This will be corrected in future versions. Slight differences in drill interaction between a virtual environment and the real world can have measurable effects on surgical technique, particularly in terms of stroke length, duration, and curvature. It is important to understand these effects when designing and implementing surgical training programs based on VR simulation--and when improving the fidelity of VR simulators to facilitate use of a similar technique in both real and simulated situations. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  18. A new method for selecting auricle positions in skull base reconstruction for temporal bone cancer.

    PubMed

    Tanaka, Kentaro; Yano, Tomoyuki; Homma, Tsutomu; Tsunoda, Atsunobu; Aoyagi, Masaru; Kishimoto, Seiji; Okazaki, Mutsumi

    2018-03-25

    In advanced temporal bone carcinoma cases, we attempted to preserve as much of the auricle as possible from a cosmetic and functional perspective. Difficulties are associated with selecting an adequate position for reconstructed auricles intraoperatively. We improved the surgical procedure to achieve a good postoperative auricle position. Nine patients were included in this study. All patients underwent subtotal removal of the temporal bone and resection of the external auditory canal while preserving most of the external ear, and lateral skull base reconstruction was performed with anterolateral thigh flaps. We invented a new device, the auricle localizer, to select the correct position for the replaced external ear. The head skin incision line and two points of three-point pin fixation were used as criteria, and a Kirschner wire was shaped as a basic line to match these criteria. Another Kirschner wire was shaped by wrapping it around the inferior edge of the external ear as the positioning line, and these two lines were then combined. To evaluate the postoperative auricle position, the auricle inclination angle was measured using head frontal cephalogram imaging. The external ear on the affected side clearly drooped postoperatively in nonlocalizer cases, whereas this was not obvious in localizer cases. Auricle inclination angles 1 year after surgery significantly differed between these two cases (P = 0.018). The surgical device, the auricle localizer, is useful for selecting intraoperative accurate auricle positions. The assessment index, the auricle inclination angle, is useful for quantitatively evaluating postoperative results. 4 Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Predictors of round window accessibility for adult cochlear implantation based on pre-operative CT scan: a prospective observational study.

    PubMed

    Park, Edward; Amoodi, Hosam; Kuthubutheen, Jafri; Chen, Joseph M; Nedzelski, Julian M; Lin, Vincent Y W

    2015-05-28

    Cochlear implantation has become a mainstream treatment option for patients with severe to profound sensorineural hearing loss. During cochlear implant, there are key surgical steps which are influenced by anatomical variations between each patient. The aim of this study is to determine if there are potential predictors of difficulties that may be encountered during the cortical mastoidectomy, facial recess approach and round window access in cochlear implant surgery based upon pre-operative temporal bone CT scan. Fifty seven patients undergoing unilateral cochlear implantation were analyzed. Difficulty with 1) cortical mastoidectomy, 2) facial recess approach, and 3) round window access were scored intra-operatively by the surgeon in a blinded fashion (1 = "easy", 2 = "moderate", 3 = "difficult"). Pre-operative temporal bone CT scans were analyzed for 1) degree of mastoid aeration; 2) location of the sigmoid sinus; 3) height of the tegmen; 4) the presence of air cells in the facial recess, and 5) degree of round window bony overhang. Poor mastoid aeration and lower tegmen position, but not the location of sigmoid sinus, are associated with greater difficulty with the cortical mastoidectomy. Presence of an air cell around the facial nerve was predictive of easier facial recess access. However, the degree of round window bony overhang was not predictive of difficulty associated with round window access. Certain parameters on the pre-operative temporal bone CT scan may be useful in predicting potential difficulties encountered during the key steps involved in cochlear implant surgery.

  20. Human cranial anatomy and the differential preservation of population history and climate signatures.

    PubMed

    Harvati, Katerina; Weaver, Timothy D

    2006-12-01

    Cranial morphology is widely used to reconstruct evolutionary relationships, but its reliability in reflecting phylogeny and population history has been questioned. Some cranial regions, particularly the face and neurocranium, are believed to be influenced by the environment and prone to convergence. Others, such as the temporal bone, are thought to reflect more accurately phylogenetic relationships. Direct testing of these hypotheses was not possible until the advent of large genetic data sets. The few relevant studies in human populations have had intriguing but possibly conflicting results, probably partly due to methodological differences and to the small numbers of populations used. Here we use three-dimensional (3D) geometric morphometrics methods to test explicitly the ability of cranial shape, size, and relative position/orientation of cranial regions to track population history and climate. Morphological distances among 13 recent human populations were calculated from four 3D landmark data sets, respectively reflecting facial, neurocranial, and temporal bone shape; shape and relative position; overall cranial shape; and centroid sizes. These distances were compared to neutral genetic and climatic distances among the same, or closely matched, populations. Results indicate that neurocranial and temporal bone shape track neutral genetic distances, while facial shape reflects climate; centroid size shows a weak association with climatic variables; and relative position/orientation of cranial regions does not appear correlated with any of these factors. Because different cranial regions preserve population history and climate signatures differentially, caution is suggested when using cranial anatomy for phylogenetic reconstruction. Copyright (c) 2006 Wiley-Liss, Inc.

  1. Increasing hip fractures in patients receiving hemodialysis and peritoneal dialysis.

    PubMed

    Mathew, Anna T; Hazzan, Azzour; Jhaveri, Kenar D; Block, Geoffrey A; Chidella, Shailaja; Rosen, Lisa; Wagner, John; Fishbane, Steve

    2014-01-01

    Dialysis patients are at increased risk for hip fractures. Because changes in treatment of metabolic bone disease in this population may have impacted bone fragility, this study aims to analyze the longitudinal risk for fractures in hemodialysis (HD) and peritoneal dialysis (PD) patients. Using the United States Renal Data System database from 1992 to 2009, the temporal trend in hip fractures requiring hospitalization was analyzed using an overdispersed Poisson regression model. Generalized Estimating Equations were used to assess the adjusted effect of dialysis modality on hip fractures. 842,028 HD and 87,086 PD patients were included. There was a significant temporal increase in hip fractures in both HD and PD with stabilization of rates after 2005. With stratification, the increase in fractures occurred in patients who were white and over 65 years of age. In adjusted analyses, HD patients had 1.6 times greater odds of hip fracture than PD patients (OR 1.60 95% CI 1.52, 1.68, p < 0.001). In contrast to the declining hip fracture rates in the general population, we identified a temporal rise in incidence of hip fractures in HD and PD patients. HD patients were at a higher risk for hip fractures than PD patients after adjustment for recognized bone fragility risk factors. The increase in fracture rate over time was limited to older white patients in both HD and PD, the demographics being consistent with osteoporosis risk. Further research is indicated to better understand the longitudinal trend in hip fractures and the discordance between HD and PD. © 2014 S. Karger AG, Basel.

  2. The effect of different concentrations of topical ozone administration on bone formation in orthopedically expanded suture in rats

    PubMed Central

    Ramoglu, Sabri Ilhan; Sonmez, Mehmet Fatih

    2016-01-01

    Summary Background/objective: The aim of this study was to investigate the effects of different concentrations of ozone (O3) therapy on bone regeneration in response to an expansion of the inter-premaxillary suture in rats. Materials and methods: Forty-eight Wistar rats were randomly divided into four groups (n = 12). In groups I, II, and III, 1ml of O3 at 10, 25, and 40 µg/ml was injected at the premaxillary suture, respectively. In group IV (control group), 1ml of saline solution was injected at the same point during the expansion procedure for 5 days. Bone regeneration in the suture was evaluated histomorphometrically. The area of new bone and fibrotic area, the number of osteoblasts and osteoclasts, and the amount of vascularity were measured and compared. The density of the newly formed bone in the expansion area was measured by using cone beam computed tomography. Data were analyzed using the Kruskal–Wallis one-way analysis of variance and post hoc Student-Newman–Keuls tests. Results: New bone area, fibrotic area, osteoblast and osteoclast numbers, and the amount of vascularity were significantly higher in experimental groups compared with the control group (P < 0.001). The density of newly formed bone (P < 0.001), new bone formation (P = 0.009), number of capillaries (P < 0.001), number of osteoclasts (P = 0.016), and number of osteoblasts (P < 0.001) in the maxillary sutures were highest in the 25 μg/ml O3 group compared with the other experimental groups and control group. Conclusions/implications: The application of O3 therapy can stimulate bone regeneration in an orthopedically expanded inter-premaxillary suture during both the expansion and retention periods. PMID:26136437

  3. Morphometric Measurements of Bony Nasolacrimal Canal in Children.

    PubMed

    Ela, Araz Server; Cigdem, Kalaycik Ertugay; Karagoz, Yesim; Yigit, Ozgur; Longur, Ecem Sevim

    2018-05-01

    Morphology and dimensions of the bony nasolacrimal canal duct (BNLD) as a key factor in the development of primary acquired nasolacrimal duct obstruction. We aimed to obtain detailed morphometric analysis of BNLD in children without nasolacrimal duct pathology by using computed tomography and provide standard measurements by means of age which could be utilized in planning management or in invasive interventions. Picture Archiving Communication Systems database of our hospital's radiology department was searched for this retrospective study. Subjects were under 18 years of age who had undergone a paranasal, maxillofacial, or temporal bone high-resolution computed tomography scan in last 2 years with various indications. Those with fractures including facial bones and/or nasolacrimal canal or history of nasolacrimal duct pathology were excluded from the study. We measured the diameter, angle, and surface area of BNLD. A total number of 136 subjects (86 boys, 50 girls) were included in the study. The average age was 7.3 ± 5.1 years. We documented statistically significantly positive correlation between all measured diameters and ages (P < 0.001), whereas there was a negative association between mean angle and age (P < 0.001). Mean angle is defined as the angle between BNLD and nasal floor. The surface area of BNLD was found to be significantly increasing depending on age (P < 0.001). However, we could not find any significant association between gender and measured parameters (P > 0.050). Our study demonstrated that development of BNLD continues during childhood, regardless of gender.

  4. Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis

    PubMed Central

    2011-01-01

    Introduction Osteoarthritis (OA) is a complex, multifactorial joint disease affecting both the cartilage and the subchondral bone. Animal models of OA aid in the understanding of the pathogenesis of OA and testing suitable drugs for OA treatment. In this study we characterized the temporal changes in the tibial subchondral bone architecture in a rat model of low-dose monosodium iodoacetate (MIA)-induced OA using in vivo micro-computed tomography (CT). Methods Male Wistar rats received a single intra-articular injection of low-dose MIA (0.2 mg) in the right knee joint and sterile saline in the left knee joint. The animals were scanned in vivo by micro-CT at two, six, and ten weeks post-injection, analogous to early, intermediate, and advanced stages of OA, to assess architectural changes in the tibial subchondral bone. The articular cartilage changes in the tibiae were assessed macroscopically and histologically at ten weeks post-injection. Results Interestingly, tibiae of the MIA-injected knees showed significant bone loss at two weeks, followed by increased trabecular thickness and separation at six and ten weeks. The trabecular number was decreased at all time points compared to control tibiae. The tibial subchondral plate thickness of the MIA-injected knee was increased at two and six weeks and the plate porosity was increased at all time points compared to control. At ten weeks, histology revealed loss of proteoglycans, chondrocyte necrosis, chondrocyte clusters, cartilage fibrillation, and delamination in the MIA-injected tibiae, whereas the control tibiae showed no changes. Micro-CT images and histology showed the presence of subchondral bone sclerosis, cysts, and osteophytes. Conclusions These findings demonstrate that the low-dose MIA rat model closely mimics the pathological features of progressive human OA. The low-dose MIA rat model is therefore suitable to study the effect of therapeutic drugs on cartilage and bone in a non-trauma model of OA. In vivo micro-CT is a non-destructive imaging technique that can track structural changes in the tibial subchondral bone in this animal model, and could also be used to track changes in bone in preclinical drug intervention studies for OA treatments. PMID:22185204

  5. Multiscale biomechanical responses of adapted bone-periodontal ligament-tooth fibrous joints

    PubMed Central

    Jang, Andrew T.; Merkle, Arno; Fahey, Kevin; Gansky, Stuart A.; Ho, Sunita P.

    2015-01-01

    Reduced functional loads cause adaptations in organs. In this study, temporal adaptations of bone-ligament-tooth fibrous joints to reduced functional loads were mapped using a holistic approach. Systematic studies were performed to evaluate organ-level and tissue-level adaptations in specimens harvested periodically from rats given powder food for 6 months (N = 60 over 8,12,16,20, and 24 weeks). Bone-periodontal ligament (PDL)-tooth fibrous joint adaptation was evaluated by comparing changes in joint stiffness with changes in functional space between the tooth and alveolar bony socket. Adaptations in tissues included mapping changes in the PDL and bone architecture as observed from collagen birefringence, bone hardness and volume fraction in rats fed soft foods (soft diet, SD) compared to those fed hard pellets as a routine diet (hard diet, HD). In situ biomechanical testing on harvested fibrous joints revealed increased stiffness in SD groups (SD:239-605 N/mm) (p<0.05) at 8 and 12 weeks. Increased joint stiffness in early development phase was due to decreased functional space (at 8wks change in functional space was −33 µm, at 12wks change in functional space was −30 µm) and shifts in tissue quality as highlighted by birefringence, architecture and hardness. These physical changes were not observed in joints that were well into function, that is, in rodents older than 12 weeks of age. Significant adaptations in older groups were highlighted by shifts in bone growth (bone volume fraction 24wks: Δ-0.06) and bone hardness (8wks: Δ−0.04 GPa, 16 wks: Δ−0.07 GPa, 24wks: Δ−0.06 GPa). The response rate (N/s) of joints to mechanical loads decreased in SD groups. Results from the study showed that joint adaptation depended on age. The initial form-related adaptation (observed change in functional space) can challenge strain-adaptive nature of tissues to meet functional demands with increasing age into adulthood. The coupled effect between functional space in the bone-PDLtooth complex and strain-adaptive nature of tissues is necessary to accommodate functional demands, and is temporally sensitive despite joint malfunction. From an applied science perspective, we propose that adaptations are registered as functional history in tissues and joints. PMID:26151121

  6. Temporal gradients in shear stimulate osteoblastic proliferation via ERK1/2 and retinoblastoma protein

    NASA Technical Reports Server (NTRS)

    Jiang, Guang-Liang; White, Charles R.; Stevens, Hazel Y.; Frangos, John A.

    2002-01-01

    Bone cells are subject to interstitial fluid flow (IFF) driven by venous pressure and mechanical loading. Rapid dynamic changes in mechanical loading cause transient gradients in IFF. The effects of pulsatile flow (temporal gradients in fluid shear) on rat UMR106 cells and rat primary osteoblastic cells were studied. Pulsatile flow induced a 95% increase in S-phase UMR106 cells compared with static controls. In contrast, ramped steady flow stimulated only a 3% increase. Similar patterns of S-phase induction were also observed in rat primary osteoblastic cells. Pulsatile flow significantly increased relative UMR106 cell number by 37 and 62% at 1.5 and 24 h, respectively. Pulsatile flow also significantly increased extracellular signal-regulated kinase (ERK1/2) phosphorylation by 418%, whereas ramped steady flow reduced ERK1/2 activation to 17% of control. Correspondingly, retinoblastoma protein was significantly phosphorylated by pulsatile fluid flow. Inhibition of mitogen-activated protein (MAP)/ERK kinase (MEK)1/2 by U0126 (a specific MEK1/2 inhibitor) reduced shear-induced ERK1/2 phosphorylation and cell proliferation. These findings suggest that temporal gradients in fluid shear stress are potent stimuli of bone cell proliferation.

  7. Treatment of open tibial fracture with bone defect caused by high velocity missiles: a case report.

    PubMed

    Golubović, Zoran; Vukajinović, Zoran; Stojiljković, Predrag; Golubović, Ivan; Visnjić, Aleksandar; Radovanović, Zoran; Najman, Stevo

    2013-01-01

    Tibia fracture caused by high velocity missiles is mostly comminuted and followed by bone defect which makes their healing process extremely difficult and prone to numerous complications. A 34-year-old male was wounded at close range by a semi-automatic gun missile. He was wounded in the distal area of the left tibia and suffered a massive defect of the bone and soft tissue. After the primary treatment of the wound, the fracture was stabilized with an external fixator type Mitkovic, with convergent orientation of the pins. The wound in the medial region of the tibia was closed with the secondary stitch, whereas the wound in the lateral area was closed with the skin transplant after Thiersch. Due to massive bone defect in the area of the rifle-missile wound six months after injury, a medical team placed a reconstructive external skeletal fixator type Mitkovic and performed corticotomy in the proximal metaphyseal area of the tibia. By the method of bone transport (distractive osteogenesis), the bone defect of the tibia was replaced. After the fracture healing seven months from the secondary surgery, the fixator was removed and the patient was referred to physical therapy. Surgical treatment of wounds, external fixation, performing necessary debridement, adequate antibiotic treatment and soft and bone tissue reconstruction are essential in achieving good results in patients with the open tibial fracture with bone defect caused by high velocity missiles. Reconstruction of bone defect can be successfully treated by reconstructive external fixator Mitkovic.

  8. Long-term Observation of Regenerated Periodontium Induced by FGF-2 in the Beagle Dog 2-Wall Periodontal Defect Model

    PubMed Central

    Anzai, Jun; Nagayasu-Tanaka, Toshie; Terashima, Akio; Asano, Taiji; Yamada, Satoru; Nozaki, Takenori; Kitamura, Masahiro; Murakami, Shinya

    2016-01-01

    The long-term stability and qualitative characteristics of periodontium regenerated by FGF-2 treatment were compared with normal physiological healing tissue controls in a Beagle dog 2-wall periodontal defect model 13 months after treatment by assessing tissue histology and three-dimensional microstructure using micro-computed tomography (μCT). After FGF-2 (0.3%) or vehicle treatment at the defect sites, serial changes in the bone mineral content (BMC) were observed using periodic X-ray imaging. Tissues were harvested at 13 months, evaluated histomorphometrically, and the cortical bone volume and trabecular bone structure of the newly formed bone were analyzed using μCT. FGF-2 significantly increased the BMC of the defect area at 2 months compared with that of the control group, and this difference was unchanged through 13 months. The cortical bone volume was significantly increased by FGF-2, but there was no difference between the groups in trabecular bone structure. Bone maturation was occurring in both groups because of the lower cortical volume and denser trabecular bone than what is found in intact bone. FGF-2 also increased the area of newly formed bone as assessed histomorphometrically, but the ratios of trabecular bone in the defect area were similar between the control and FGF-2 groups. These results suggest that FGF-2 stimulates neogenesis of alveolar bone that is of similar quality to that of the control group. The lengths of the regenerated periodontal ligament and cementum, measured as the distance from the defect bottom to the apical end of the gingival epithelium, and height and area of the newly formed bone in the FGF-2 group were larger than those in the control group. The present study demonstrated that, within the limitation of artificial periodontal defect model, the periodontal tissue regenerated by FGF-2 was maintained for 13 months after treatment and was qualitatively equivalent to that generated through the physiological healing process. PMID:27391131

  9. Conservative management of typical pediatric postauricular dermoid cysts.

    PubMed

    Linkov, Gary; Kanev, Paul M; Isaacson, Glenn

    2015-11-01

    Congenital dermoid cysts of the skull and face frequently arise in embryonic fusion planes. They may follow these planes to extend intratemporally or intracranially. Advanced imaging and operative techniques are generally recommended for these lesions. Postauricular temporal bone dermoid cysts seem to form a distinct subgroup with a lesser tendency toward deep extension. They may be amenable to more conservative management strategies. With IRB-approval, we queried a prospectively-accrued computerized patient-care database to find all postauricular temporal dermoid lesions surgically managed by a single pediatric otolaryngologist from 2001 to 2014. We reviewed the English-language literature to identify similar series of surgically treated pediatric temporal bone dermoid cysts. Ten postauricular temporal dermoid cysts with pathological confirmation were identified in our surgical series. The average size of the lesions was 1.5 cm (0.3-3 cm). The average age at time of surgery was 4 years (6 months-17 years). No intracranial extension was observed at surgery. There were no recurrences noted on last follow-up (mean 65 months, range 10-150 months). A computerized literature review found no examples of intracranial extension among typical postauricular dermoid cysts. There was no intracranial or temporal extension in our series or among postauricular lesions described in the literature. Given the low incidence of deep extension we advocate neither advanced imaging nor routine neurosurgical consultation for typical postauricular lesions. Dissection in continuity with cranial periosteum facilitates intact removal of adherent lesions. Surgery is curative if the dermoid is removed intact. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Prenatal nutritional manipulation by in ovo enrichment influences bone structure, composition, and mechanical properties.

    PubMed

    Yair, R; Shahar, R; Uni, Z

    2013-06-01

    The objective of this study was to examine the effect of embryonic nutritional enrichment on the development and properties of broiler leg bones (tibia and femur) from the prenatal period until maturity. To accomplish the objective, 300 eggs were divided into 2 groups: a noninjected group (control) and a group injected in ovo with a solution containing minerals, vitamins, and carbohydrates (enriched). Tibia and femur from both legs were harvested from chicks on embryonic days 19 (E19) and 21 (E21) and d 3, 7, 14, 28, and 54 posthatch (n = 8). The bones were mechanically tested (stiffness, maximal load, and work to fracture) and scanned in a micro-computed tomography (μCT) scanner to examine the structural properties of the cortical [cortical area, medullary area, cortical thickness, and maximal moment of inertia (Imax)] and trabecular (bone volume percent, trabecular thickness, and trabecular number) areas. To examine bone mineralization, bone mineral density (BMD) of the cortical area was obtained from the μCT scans, and bones were analyzed for the ash and mineral content. The results showed improved mechanical properties of the enriched group between E19 and d 3 and on d 14 (P < 0.05). Differences in cortical morphology were noted between E19 and d 14 as the enriched group had greater medullary area on E19 (femur), reduced medullary area on E21 (both bones), greater femoral cortical area on d 3, and greater Imax of both bones on d 14 (P < 0.05). The major differences in bone trabecular architecture were that the enriched group had greater bone volume percent and trabecular thickness in the tibia on d 7 and the femur on d 28 (P < 0.05). The pattern of mineralization between E19 and d 54 showed improved mineralization in the enriched group on E19 whereas on d 3 and 7, the control group showed a mineralization advantage, and on d 28 and 54, the enriched group showed again greater mineralization (P < 0.05). In summary, this study demonstrated that in ovo enrichment affects multiple bone properties pre- and postnatally and showed that avian embryos are a good model for studying the effect of embryonic nutrition on natal and postnatal development. Most importantly, the enrichment led to improved mechanical properties until d 14 (roughly third of the lifespan of the bird), a big advantage for the young broiler. Additionally, the improved mineralization and trabecular architecture on d 28 and 54 indicate a potential long-term effect of altering embryonic nutrition.

  11. Two-time scale fatigue modelling: application to damage

    NASA Astrophysics Data System (ADS)

    Devulder, Anne; Aubry, Denis; Puel, Guillaume

    2010-05-01

    A temporal multiscale modelling applied to fatigue damage evolution in cortical bone is presented. Microdamage accumulation in cortical bone, ensued from daily activities, leads to impaired mechanical properties, in particular by reducing the bone stiffness and inducing fatigue. However, bone damage is also known as a stimulus to bone remodelling, whose aim is to repair and generate new bone, adapted to its environment. This biological process by removing fatigue damage seems essential to the skeleton lifetime. As daily activities induce high frequency cycles (about 10,000 cycles a day), identifying two-time scale is very fruitful: a fast one connected with the high frequency cyclic loading and a slow one related to a quasi-static loading. A scaling parameter is defined between the intrinsic time (bone lifetime of several years) and the high frequency loading (few seconds). An asymptotic approach allows to decouple the two scales and to take into account history effects (Guennouni and Aubry in CR Acad Sci Paris Ser II 20:1765-1767, 1986). The method is here applied to a simple case of fatigue damage and a real cortical bone microstructure. A significant reduction in the amount of computation time in addition to a small computational error between time homogenized and non homogenized models are obtained. This method seems thus to give new perspectives to assess fatigue damage and, with regard to bone, to give a better understanding of bone remodelling.

  12. Determination of mechanical stiffness of bone by pQCT measurements: correlation with non-destructive mechanical four-point bending test data.

    PubMed

    Martin, Daniel E; Severns, Anne E; Kabo, J M J Michael

    2004-08-01

    Mechanical tests of bone provide valuable information about material and structural properties important for understanding bone pathology in both clinical and research settings, but no previous studies have produced applicable non-invasive, quantitative estimates of bending stiffness. The goal of this study was to evaluate the effectiveness of using peripheral quantitative computed tomography (pQCT) data to accurately compute the bending stiffness of bone. Normal rabbit humeri (N=8) were scanned at their mid-diaphyses using pQCT. The average bone mineral densities and the cross-sectional moments of inertia were computed from the pQCT cross-sections. Bending stiffness was determined as a function of the elastic modulus of compact bone (based on the local bone mineral density), cross-sectional moment of inertia, and simulated quasistatic strain rate. The actual bending stiffness of the bones was determined using four-point bending tests. Comparison of the bending stiffness estimated from the pQCT data and the mechanical bending stiffness revealed excellent correlation (R2=0.96). The bending stiffness from the pQCT data was on average 103% of that obtained from the four-point bending tests. The results indicate that pQCT data can be used to accurately determine the bending stiffness of normal bone. Possible applications include temporal quantification of fracture healing and risk management of osteoporosis or other bone pathologies.

  13. Glycogen synthase kinase-3α/β inhibition promotes in vivo amplification of endogenous mesenchymal progenitors with osteogenic and adipogenic potential and their differentiation to the osteogenic lineage.

    PubMed

    Gambardella, Alessandra; Nagaraju, Chandan K; O'Shea, Patrick J; Mohanty, Sindhu T; Kottam, Lucksy; Pilling, James; Sullivan, Michael; Djerbi, Mounira; Koopmann, Witte; Croucher, Peter I; Bellantuono, Ilaria

    2011-04-01

    Small molecules are attractive therapeutics to amplify and direct differentiation of stem cells. They also can be used to understand the regulation of their fate by interfering with specific signaling pathways. Mesenchymal stem cells (MSCs) have the potential to proliferate and differentiate into several cell types, including osteoblasts. Activation of canonical Wnt signaling by inhibition of glycogen synthase kinase 3 (GSK-3) has been shown to enhance bone mass, possibly by involving a number of mechanisms ranging from amplification of the mesenchymal stem cell pool to the commitment and differentiation of osteoblasts. Here we have used a highly specific novel inhibitor of GSK-3, AR28, capable of inducing β-catenin nuclear translocation and enhanced bone mass after 14 days of treatment in BALB/c mice. We have shown a temporally regulated increase in the number of colony-forming units-osteoblast (CFU-O) and -adipocyte (CFU-A) but not colony-forming units-fibroblast (CFU-F) in mice treated for 3 days. However, the number of CFU-O and CFU-A returned to normal levels after 14 days of treatment, and the number of CFU-F was decreased significantly. In contrast, the number of osteoblasts increased significantly only after 14 days of treatment, and this was seen together with a significant decrease in bone marrow adiposity. These data suggest that the increased bone mass is the result of an early temporal wave of amplification of a subpopulation of MSCs with both osteogenic and adipogenic potential, which is driven to osteoblast differentiation at the expense of adipogenesis. Copyright © 2011 American Society for Bone and Mineral Research.

  14. Fusion of Computed Tomography and PROPELLER Diffusion-Weighted Magnetic Resonance Imaging for the Detection and Localization of Middle Ear Cholesteatoma.

    PubMed

    Locketz, Garrett D; Li, Peter M M C; Fischbein, Nancy J; Holdsworth, Samantha J; Blevins, Nikolas H

    2016-10-01

    A method to optimize imaging of cholesteatoma by combining the strengths of available modalities will improve diagnostic accuracy and help to target treatment. To assess whether fusing Periodically Rotated Overlapping Parallel Lines With Enhanced Reconstruction (PROPELLER) diffusion-weighted magnetic resonance imaging (DW-MRI) with corresponding temporal bone computed tomography (CT) images could increase cholesteatoma diagnostic and localization accuracy across 6 distinct anatomical regions of the temporal bone. Case series and preliminary technology evaluation of adults with preoperative temporal bone CT and PROPELLER DW-MRI scans who underwent surgery for clinically suggested cholesteatoma at a tertiary academic hospital. When cholesteatoma was encountered surgically, the precise location was recorded in a diagram of the middle ear and mastoid. For each patient, the 3 image data sets (CT, PROPELLER DW-MRI, and CT-MRI fusion) were reviewed in random order for the presence or absence of cholesteatoma by an investigator blinded to operative findings. If cholesteatoma was deemed present on review of each imaging modality, the location of the lesion was mapped presumptively. Image analysis was then compared with surgical findings. Twelve adults (5 women and 7 men; median [range] age, 45.5 [19-77] years) were included. The use of CT-MRI fusion had greater diagnostic sensitivity (0.88 vs 0.75), positive predictive value (0.88 vs 0.86), and negative predictive value (0.75 vs 0.60) than PROPELLER DW-MRI alone. Image fusion also showed increased overall localization accuracy when stratified across 6 distinct anatomical regions of the temporal bone (localization sensitivity and specificity, 0.76 and 0.98 for CT-MRI fusion vs 0.58 and 0.98 for PROPELLER DW-MRI). For PROPELLER DW-MRI, there were 15 true-positive, 45 true-negative, 1 false-positive, and 11 false-negative results; overall accuracy was 0.83. For CT-MRI fusion, there were 20 true-positive, 45 true-negative, 1 false-positive, and 6 false-negative results; overall accuracy was 0.90. The poor anatomical spatial resolution of DW-MRI makes precise localization of cholesteatoma within the middle ear and mastoid a diagnostic challenge. This study suggests that the bony anatomic detail obtained via CT coupled with the excellent sensitivity and specificity of PROPELLER DW-MRI for cholesteatoma can improve both preoperative identification and localization of disease over DW-MRI alone.

  15. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis.

    PubMed

    Langdahl, Bente; Ferrari, Serge; Dempster, David W

    2016-12-01

    The adult skeleton is renewed by remodeling throughout life. Bone remodeling is a process where osteoclasts and osteoblasts work sequentially in the same bone remodeling unit. After the attainment of peak bone mass, bone remodeling is balanced and bone mass is stable for one or two decades until age-related bone loss begins. Age-related bone loss is caused by increases in resorptive activity and reduced bone formation. The relative importance of cortical remodeling increases with age as cancellous bone is lost and remodeling activity in both compartments increases. Bone modeling describes the process whereby bones are shaped or reshaped by the independent action of osteoblast and osteoclasts. The activities of osteoblasts and osteoclasts are not necessarily coupled anatomically or temporally. Bone modeling defines skeletal development and growth but continues throughout life. Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at the long bones with aging. Existing and upcoming treatments affect remodeling as well as modeling. Teriparatide stimulates bone formation, 70% of which is remodeling based and 20-30% is modeling based. The vast majority of modeling represents overflow from remodeling units rather than de novo modeling. Denosumab inhibits bone remodeling but is permissive for modeling at cortex. Odanacatib inhibits bone resorption by inhibiting cathepsin K activity, whereas modeling-based bone formation is stimulated at periosteal surfaces. Inhibition of sclerostin stimulates bone formation and histomorphometric analysis demonstrated that bone formation is predominantly modeling based. The bone-mass response to some osteoporosis treatments in humans certainly suggests that nonremodeling mechanisms contribute to this response and bone modeling may be such a mechanism. To date, this has only been demonstrated for teriparatide, however, it is clear that rediscovering a phenomenon that was first observed more half a century ago will have an important impact on our understanding of how new antifracture treatments work.

  16. Association between disk position and degenerative bone changes of the temporomandibular joints: an imaging study in subjects with TMD.

    PubMed

    Cortés, Daniel; Sylvester, Daniel Cortés; Exss, Eduardo; Marholz, Carlos; Millas, Rodrigo; Moncada, Gustavo

    2011-04-01

    The aim of this study was to determine the frequency and relationship between disk position and degenerative bone changes in the temporomandibular joints (TMJ), in subjects with internal derangement (ID). MRI and CT scans of 180 subjects with temporomandibular disorders (TMD) were studied. Different image parameters or characteristics were observed, such as disk position, joint effusion, condyle movement, degenerative bone changes (flattened, cortical erosions and irregularities), osteophytes, subchondral cysts and idiopathic condyle resorption. The present study concluded that there is a significant association between disk displacement without reduction and degenerative bone changes in patients with TMD. The study also found a high probability of degenerative bone changes when disk displacement without reduction is present. No association was found between TMD and condyle range of motion, joint effusion and/or degenerative bone changes. The following were the most frequent morphological changes observed: flattening of the anterior surface of the condyle; followed by erosions and irregularities of the joint surfaces; flattening of the articular surface of the temporal eminence, subchondral cysts, osteophytes; and idiopathic condyle resorption, in decreasing order.

  17. Remnant Woven Bone and Calcified Cartilage in Mouse Bone: Differences between Ages/Sex and Effects on Bone Strength

    PubMed Central

    Ip, Victoria; Toth, Zacharie; Chibnall, John; McBride-Gagyi, Sarah

    2016-01-01

    Introduction Mouse models are used frequently to study effects of bone diseases and genetic determinates of bone strength. Murine bones have an intracortical band of woven bone that is not present in human bones. This band is not obvious under brightfield imaging and not typically analyzed. Due to the band’s morphology and location it has been theorized to be remnant bone from early in life. Furthermore, lamellar and woven bone are well known to have differing mechanical strengths. The purpose of this study was to determine (i) if the band is from early life and (ii) if the woven bone or calcified cartilage contained within the band affect whole bone strength. Woven Bone Origin Studies In twelve to fourteen week old mice, doxycycline was used to label bone formed prior to 3 weeks old. Doxycycline labeling and woven bone patterns on contralateral femora matched well and encompassed an almost identical cross-sectional area. Also, we highlight for the first time in mice the presence of calcified cartilage exclusively within the band. However, calcified cartilage could not be identified on high resolution cone-beam microCT scans when examined visually or by thresholding methods. Mechanical Strength Studies Subsequently, three-point bending was used to analyze the effects of woven bone and calcified cartilage on whole bone mechanics in a cohort of male and female six and 13 week old Balb/C mice. Three-point bending outcomes were correlated with structural and compositional measures using multivariate linear regression. Woven bone composed a higher percent of young bones than older bones. However, calcified cartilage in older bones was twice that of younger bones, which was similar when normalized by area. Area and/or tissue mineral density accounted for >75% of variation for most strength outcomes. Percent calcified cartilage added significant predictive power to maximal force and bending stress. Calcified cartilage and woven bone could have more influence in genetic models where calcified cartilage percent is double our highest value. PMID:27829059

  18. Intercellular signaling pathways active during and after growth and differentiation of the lumbar vertebral growth plate.

    PubMed

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2011-06-15

    Vertebral growth plates at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the major signaling pathways active in the postnatal mouse lumbar vertebral growth plate. The growth of all long bones is known to occur by cartilaginous growth plates. The growth plate is composed of layers of chondrocyets that actively proliferate, differentiate, die and, are replaced by bone. The role of major cell signaling pathways has been suggested for regulation of the fetal long bones. But not much is known about the molecular or cellular signals that control the postnatal vertebral growth plate and hence postnatal vertebral bone growth. Understanding such molecular mechanisms will help design therapeutic treatments for vertebral growth disorders such as scoliosis. Antibodies against activated downstream intermediates were used to identify cells in the growth plate responding to BMP, TGFβ, and FGF in cryosections of lumbar vertebrae from different postnatal age mice to identify the zones that were responding to these signals. Reporter mice were used to identify the chondrocytes responding to hedgehog (Ihh), and Wnt signaling. We present a spatial/temporal map of these signaling pathways during growth, and differentiation of the mouse lumbar vertebral growth plate. During growth and differentiation of the vertebral growth plate, its different components respond at different times to different intercellular signaling ligands. Response to most of these signals is dramatically downregulated at the end of vertebral growth.

  19. Effect of excitation direction on cochlear macro-mechanics during bone conduction stimulation

    NASA Astrophysics Data System (ADS)

    Kamieniecki, Konrad; Tudruj, Sylwester; Piechna, Janusz; Borkowski, Paweł

    2018-05-01

    In many instances of hearing loss, audiological improvement can be made via direct excitation of a temporal bone (i.e., bone conduction). In order to design better and more efficient devices, the macro-mechanics of the bone conduction hearing pathway must be better understood. Based on previous empirical work, numerical models are useful. In this work, we present results of a time-domain Fluid Structure Interaction model that describes stimulation of the bone conduction pathway. The cochlea was modelled as uncoiled and consisted of an oval window, a round window, a basilar membrane and a helicotrema. In order to monitor pressure waves in the perilymph, the fluid was considered compressible. The excitation, in form of sinusoidal velocity, was applied to the cochlea bony walls. The system was excited in three perpendicular directions: along the basilar membrane, perpendicularly to the membrane and transversely to the membrane. The numerical simulation examined which stimulation direction maximally excited the basilar membrane, the pressure distributions for each excitation direction, and the associated mechanics.

  20. Site-specific adaptive remodeling of Greyhound metacarpal cortical bone subjected to asymmetrical cyclic loading.

    PubMed

    Johnson, K A; Skinner, G A; Muir, P

    2001-05-01

    To quantify geometric, inertial, and histomorphometric properties at the mid-diaphyseal level of left and right metacarpal bones (MCB) of racing Greyhounds. MCB from 7 racing Greyhounds euthanatized for reasons unrelated to MCB abnormalities. Mid-diaphyseal transverse sections of left and right MCB were stained with H&E or microradiographed. Images of stained sections were digitized, and cross-sectional area, cortical area, and maximum and minimum area moments of inertia of each bone were determined. Histomorphometric data (osteonal density, osteonal birefringence, and endosteal new lamellar bone thickness) were collected in 4 quadrants (dorsal, palmar, lateral, medial). Values were compared between limbs and among bones and quadrants. Cross-sectional area, cortical area, and maximum and minimum moments of inertia of left MCB-IV and -V were significantly greater, compared with contralateral bones. Overall osteonal densities in the dorsal quadrants of left MCB were greater, compared with lateral and medial quadrants. Also, percentage of birefringent osteons was significantly greater in the dorsal quadrant of left MCB-III, -IV, and -V, compared with the palmar quadrant. Thickness of new endosteal lamellar bone was not significantly influenced by limb, bone, or quadrant. Increased cortical thickness and geometric properties of left MCB-IV and -V of Greyhounds, together with altered turnover and orientation of osteons in the dorsal quadrants of left MCB, are site-specific adaptive responses associated with asymmetric cyclic loading as a result of racing on circular tracks. Site-specific adaptive remodeling may be important in the etiopathogenesis of fatigue fractures in racing Greyhounds.

  1. Exogenous PTHrP Repairs the Damaged Fracture Healing of PTHrP+/− Mice and Accelerates Fracture Healing of Wild Mice

    PubMed Central

    Wang, Yinhe; Fang, Xin; Wang, Chun; Ding, Congzhu; Lin, Hua; Liu, Anlong; Wang, Lei; Cao, Yang

    2017-01-01

    Bone fracture healing is a complicated physiological regenerative process initiated in response to injury and is similar to bone development. To demonstrate whether an exogenous supply of parathyroid hormone–related protein (PTHrP) helps in bone fracture healing, closed mid-diaphyseal femur fractures were created and stabilized with intramedullary pins in eight-week-old wild-type (WT) PTHrP+/+ and PTHrP+/− mice. After administering PTHrP for two weeks, callus tissue properties were analyzed at one, two, and four weeks post-fracture (PF) by various methods. Bone formation–related genes and protein expression levels were evaluated by real-time reverse transcriptase–polymerase chain reaction and Western blots. At two weeks PF, mineral density of callus, bony callus areas, mRNA levels of alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx-2), and protein levels of Runx-2 and insulin-like growth factor-1 decreased in PTHrP+/− mice compared with WT mice. At four weeks PF, total collagen-positive bony callus areas, osteoblast number, ALP-positive areas, and type I collagen-positive areas all decreased in PTHrP+/− mice. At both two and four weeks PF, tartrate-resistant acid phosphatase–positive osteoclast number and surface decreased a little in PTHrP+/− mice. The study indicates that exogenous PTHrP provided by subcutaneous injection could redress impaired bone fracture healing, leading to mutation of activated PTHrP by influencing callus areas, endochondral bone formation, osteoblastic bone formation, and bone turnover. PMID:28178186

  2. Predicting Bone Mechanical State During Recovery After Long-Duration Skeletal Unloading Using QCT and Finite Element Modeling

    NASA Technical Reports Server (NTRS)

    Chang, Katarina L.; Pennline, James A.

    2013-01-01

    During long-duration missions at the International Space Station, astronauts experience weightlessness leading to skeletal unloading. Unloading causes a lack of a mechanical stimulus that triggers bone cellular units to remove mass from the skeleton. A mathematical system of the cellular dynamics predicts theoretical changes to volume fractions and ash fraction in response to temporal variations in skeletal loading. No current model uses image technology to gather information about a skeletal site s initial properties to calculate bone remodeling changes and then to compare predicted bone strengths with the initial strength. The goal of this study is to use quantitative computed tomography (QCT) in conjunction with a computational model of the bone remodeling process to establish initial bone properties to predict changes in bone mechanics during bone loss and recovery with finite element (FE) modeling. Input parameters for the remodeling model include bone volume fraction and ash fraction, which are both computed from the QCT images. A non-destructive approach to measure ash fraction is also derived. Voxel-based finite element models (FEM) created from QCTs provide initial evaluation of bone strength. Bone volume fraction and ash fraction outputs from the computational model predict changes to the elastic modulus of bone via a two-parameter equation. The modulus captures the effect of bone remodeling and functions as the key to evaluate of changes in strength. Application of this time-dependent modulus to FEMs and composite beam theory enables an assessment of bone mechanics during recovery. Prediction of bone strength is not only important for astronauts, but is also pertinent to millions of patients with osteoporosis and low bone density.

  3. [Comparation on Haversian system between human and animal bones by imaging analysis].

    PubMed

    Lu, Hui-Ling; Zheng, Jing; Yao, Ya-Nan; Chen, Sen; Wang, Hui-Pin; Chen, Li-Xian; Guo, Jing-Yuan

    2006-04-01

    To explore the differences in Haversian system between human and animal bones through imaging analysis and morphology description. Thirty-five slices grinding from human being as well as dog, pig, cow and sheep bones were observed to compare their structure, then were analysed with the researchful microscope. Plexiform bone or oeston band was not found in human bones; There were significant differences in the shape, size, location, density of Haversian system, between human and animal bones. The amount of Haversian lamella and diameter of central canal in human were the biggest; Significant differences in the central canal diameter and total area percentage between human and animal bones were shown by imaging analysis. (1) Plexiform bone and osteon band could be the exclusive index in human bone; (2) There were significant differences in the structure of Haversian system between human and animal bones; (3) The percentage of central canals total area was valuable in species identification through imaging analysis.

  4. Tomographic imaging of bone composition using coherently scattered x rays

    NASA Astrophysics Data System (ADS)

    Batchelar, Deidre L.; Dabrowski, W.; Cunningham, Ian A.

    2000-04-01

    Bone tissue consists primarily of calcium hydroxyapatite crystals (bone mineral) and collagen fibrils. Bone mineral density (BMD) is commonly used as an indicator of bone health. Techniques available at present for assessing bone health provide a measure of BMD, but do not provide information about the degree of mineralization of the bone tissue. This may be adequate for assessing diseases in which the collagen-mineral ratio remains constant, as assumed in osteoporosis, but is insufficient when the mineralization state is known to change, as in osteomalacia. No tool exists for the in situ examination of collagen and hydroxyapatite density distributions independently. Coherent-scatter computed tomography (CSCT) is a technique we are developing that produces images of the low- angle scatter properties of tissue. These depend on the molecular structure of the scatterer making it possible to produce material-specific maps of each component in a conglomerate. After corrections to compensate for exposure fluctuations, self-attenuation of scatter and the temporal response of the image intensifier, material-specific images of mineral, collagen, fat and water distributions are obtained. The gray-level in these images provides the volumetric density of each component independently.

  5. Vertebroplasty

    MedlinePlus

    ... to the correct area in your lower back. Cement is then injected into the broken spine bone ... general anesthesia Nerve injuries Leakage of the bone cement into surrounding areas (this can cause pain if ...

  6. Anthropometric and computerized tomographic measurements of lower extremity lean body mass.

    PubMed

    Buckley, D C; Kudsk, K A; Rose, B S; Fatzinger, P; Koetting, C A; Schlatter, M

    1987-02-01

    The loss of lean muscle mass is one of the hallmarks of protein-calorie malnutrition. Anthropometry is a standardized technique used to assess the response of muscle mass to nutrition therapy by quantifying the muscle and fat compartments. That technique does not accurately reflect actual limb composition, whereas computerized tomography does. Twenty lower extremities on randomly chosen men and women patients were evaluated by anthropometry and computerized tomography. Total area, muscle plus bone area, total volume, and muscle plus bone volume were correlated, using Heymsfield's equation and computerized tomography-generated areas. Anthropometrics overestimated total and muscle plus bone cross-sectional areas at almost every level. Anthropometry overestimated total area and total volume by 5% to 10% but overestimated muscle plus bone area and muscle plus bone volume by as much as 40%. Anthropometry, while easily performed and useful in large population groups for epidemiological studies, offers a poor assessment of lower extremity composition. On the other hand, computerized tomography is also easily performed and, while impractical for large population groups, does offer an accurate assessment of the lower extremity tissue compartments and is an instrument that might be used in research on lean muscle mass.

  7. Early Onset of Laying and Bumblefoot Favor Keel Bone Fractures.

    PubMed

    Gebhardt-Henrich, Sabine G; Fröhlich, Ernst K F

    2015-11-27

    Numerous studies have demonstrated influences of hybrid, feed, and housing on prevalence of keel bone fractures, but influences of behavior and production on an individual level are less known. In this longitudinal study, 80 white and brown laying hens were regularly checked for keel bone deviations and fractures while egg production was individually monitored using Radio Frequency Identification (RFID) from production until depopulation at 65 weeks of age. These focal birds were kept in eight pens with 20 hens per pen in total. About 62% of the hens had broken keel bones at depopulation. The occurrence of new fractures was temporally linked to egg laying: more new fractures occurred during the time when laying rates were highest. Hens with fractured keel bones at depopulation had laid their first egg earlier than hens with intact keel bones. However, the total number of eggs was neither correlated with the onset of egg laying nor with keel bone fractures. All birds with bumblefoot on both feet had a fracture at depopulation. Hens stayed in the nest for a longer time during egg laying during the ten days after the fracture than during the ten days before the fracture. In conclusion, a relationship between laying rates and keel bone fractures seems likely.

  8. Advanced engineering and biomimetic materials for bone repair and regeneration

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Zhong, Chao

    2013-12-01

    Over the past decade, there has been tremendous progress in developing advanced biomaterials for tissue repair and regeneration. This article reviews the frontiers of this field from two closely related areas, new engineering materials for bone substitution and biomimetic mineralization for bone-like nanocomposites. Rather than providing an exhaustive overview of the literature, we focus on several representative directions. We also discuss likely future trends in these areas, including synthetic biology-enabled biomaterials design and multifunctional implant materials for bone repair and regeneration.

  9. Prenatal ultrasound and MRI findings of temporal and occipital lobe dysplasia in a twin with achondroplasia.

    PubMed

    Pugash, D; Lehman, A M; Langlois, S

    2014-09-01

    Thanatophoric dysplasia, hypochondroplasia and achondroplasia are all caused by FGFR3 (fibroblast growth factor receptor 3) mutations. Neuropathological findings of temporal lobe dysplasia are found in thanatophoric dysplasia, and temporal and occipital lobe abnormalities have been described recently in brain imaging studies of children with hypochondroplasia. We describe twins discordant for achondroplasia, in one of whom the prenatal diagnosis was based on ultrasound and fetal MRI documentation of temporal and occipital lobe abnormalities characteristic of hypochondroplasia, in addition to the finding of short long bones. Despite the intracranial findings suggestive of hypochondroplasia, achondroplasia was confirmed following postnatal clinical and genetic testing. These intracranial abnormalities have not been previously described in a fetus with achondroplasia. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.

  10. 77 FR 41412 - Determination That CHLOROMYCETIN (Chloramphenicol) Capsules, 250 Milligrams, Were Withdrawn From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... most serious being bone marrow depression (anemia, thrombocytopenia, and granulocytopenia temporally... succinate injection and chloramphenicol capsules states that serious hypoplastic anemia, thrombocytopenia... anemia associated with administration of the drug and aplastic anemia attributed to chloramphenicol that...

  11. Bone geometry, strength, and muscle size in runners with a history of stress fracture.

    PubMed

    Popp, Kristin L; Hughes, Julie M; Smock, Amanda J; Novotny, Susan A; Stovitz, Steven D; Koehler, Scott M; Petit, Moira A

    2009-12-01

    Our primary aim was to explore differences in estimates of tibial bone strength, in female runners with and without a history of stress fractures. Our secondary aim was to explore differences in bone geometry, volumetric density, and muscle size that may explain bone strength outcomes. A total of 39 competitive distance runners aged 18-35 yr, with (SFX, n = 19) or without (NSFX, n = 20) a history of stress fracture were recruited for this cross-sectional study. Peripheral quantitative computed tomography (XCT 3000; Orthometrix, White Plains, NY) was used to assess volumetric bone mineral density (vBMD, mg x mm(-3)), bone area (ToA, mm(2)), and estimated compressive bone strength (bone strength index (BSI) = ToA x total volumetric density (ToD(2))) at the distal tibia (4%). Total (ToA, mm(2)) and cortical (CoA, mm(2)) bone area, cortical vBMD, and estimated bending strength (strength-strain index (SSIp), mm(3)) were measured at the 15%, 25%, 33%, 45%, 50%, and 66% sites. Muscle cross-sectional area (MCSA) was measured at the 50% and 66% sites. Participants in the SFX group had significantly smaller (7%-8%) CoA at the 45%, 50%, and 66% sites (P

  12. Progesterone as a bone-trophic hormone.

    PubMed

    Prior, J C

    1990-05-01

    Experimental, epidemiological, and clinical data indicate that progesterone is active in bone metabolism. Progesterone appears to act directly on bone by engaging an osteoblast receptor or indirectly through competition for a glucocorticoid osteoblast receptor. Progesterone seems to promote bone formation and/or increase bone turnover. It is possible, through estrogen-stimulated increased progesterone binding to the osteoblast receptor, that progesterone plays a role in the coupling of bone resorption with bone formation. A model of the interdependent actions of progesterone and estrogen on appropriately-"ready" cells in each bone multicellular unit can be tied into the integrated secretions of these hormones within the ovulatory cycle. Figure 5 is an illustration of this concept. It shows the phases of the bone remodeling cycle in parallel with temporal changes in gonadal steroids across a stylized ovulatory cycle. Increasing estrogen production before ovulation may reverse the resorption occurring in a "sensitive" bone multicellular unit while gonadal steroid levels are low at the time of menstrual flow. The bone remodeling unit would then be ready to begin a phase of formation as progesterone levels peaked in the midluteal phase. From this perspective, the normal ovulatory cycle looks like a natural bone-activating, coherence cycle. Critical analysis of the reviewed data indicate that progesterone meets the necessary criteria to play a causal role in mineral metabolism. This review provides the preliminary basis for further molecular, genetic, experimental, and clinical investigation of the role(s) of progesterone in bone remodeling. Much further data are needed about the interrelationships between gonadal steroids and the "life cycle" of bone. Feldman et al., however, may have been prophetic when he commented; "If this anti-glucocorticoid effect of progesterone also holds true in bone, then postmenopausal osteoporosis may be, in part, a progesterone deficiency disease."

  13. [Multiple myeloma with significant multifocal osteolysis in a dog without a detectible gammopathy].

    PubMed

    Souchon, F; Koch, A; Sohns, A

    2013-01-01

    Description of a variant of multiple myeloma in a dog lacking the gammopathy normally associated with this type of neoplasm. A Border Collie mongrel was presented with symptoms of progressive hind-leg weakness, lethargy and tiredness, which had started to appear 6 weeks previously. Radiographic examination showed small osteolytic areas in the spinal column, but also diffuse small areas of increased opacity as well as evidence of decreased bone density in the pelvis and of both femoral necks. Moderate regenerative anaemia, hypogammopathy and hypercalcaemia were diagnosed. Computed tomography scans displayed multifocal osteolysis and bone destruction in the skull, spinal column, scapulae, proximal humeri, pelvis and femoral necks. H&E staining of the biopsies showed bone destruction and monomorphic plasmacyotid cell populations, causing infiltrative bone marrow lesions and osteolysis. In many areas neoplastic plasma cell infiltration of the bone marrow was 70% and in some areas reached 100%. The diagnosis was non-secretory multiple myeloma without apparent secretion of paraproteins into the blood.

  14. Radionuclide bone scanning of osteosarcoma: falsely extended uptake patterns.

    PubMed

    Chew, F S; Hudson, T M

    1982-07-01

    The pathologic specimens of 18 osteosarcomas of long bones were examined to correlate histologic abnormalities with abnormalities seen on preoperative 99mTc pyrophosphate or methylene diphosphonate bone scans. Seven scans accurately represented the extent of the tumor. Eleven scans disclosed increased activity extending beyond the radiographic abnormalities. In eight of these, there was no occult tumor extension and in the other three, the scan activity did not accurately portray the skip metastases that were present. Therefore, these 11 scans demonstrated the falsely extended pattern of uptake beyond the true limits of the tumors. Pathologic slides were available for 10 of the 11 areas of bone that exhibited extended uptake. In two instances, there was no pathologic abnormality. In the other eight cases we found marrow hyperemia, medullary reactive bone, or periosteal new bone. This is the first description of these histologic abnormalities of medullary bone in areas of extended uptake on radionuclide bone scans.

  15. Evaluation of Vertical Bone Regeneration Using Block and Particulate Forms of Bio-Oss Bone Graft: A Histologic Study in the Rabbit Mandible.

    PubMed

    Veis, Alexander; Dabarakis, Nikolaos; Koutrogiannis, Christos; Barlas, Irodis; Petsa, Elina; Romanos, Georgios

    2015-06-01

    The aim of the present study was to evaluate histologically vertical bone regeneration outcomes after using bovine bone graft material in block and granular forms. The buccal bony plates of the outer mandibles of 10 New Zealand rabbits received Bio-Oss blocks that were immobilized using orthopedic mini-plates, and another 10 received granular forms that were gently packed and stabilized into the custom-made perforated metallic cubes. The mean graft area (GA), new bone area (NBA), bone-to-graft contact (BGC), and maximum vertical height reached by the new bone development (MVH) were histometrically evaluated and showed no significant differences between 2 graft types. The new bone was observed mostly close to the basal bone and developed penetrating the trabecular scaffold in the form of seams that covered the intralumen surfaces of the block type graft, while in the granular graft type the new bone was observed to grow between the graft particles usually interconnecting them. Either form of Bio-Oss was capable of providing considerable vertical bone augmentation.

  16. A Novel Approach for Studying the Temporal Modulation of Embryonic Skeletal Development Using Organotypic Bone Cultures and Microcomputed Tomography

    PubMed Central

    Smith, Emma L.; Roberts, Carol A.

    2012-01-01

    Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal, structural developmental paradigms and modulation of bone tissue formation to underpin innovative skeletal regenerative technology for clinical therapeutic strategies in musculoskeletal trauma and diseases. PMID:22472170

  17. [Experimental study on vascular bundle implantation combined with cellular transplantation in treating rabbit femoral head necrosis].

    PubMed

    Chen, Shuang-Tao; Zhang, Wei-Ping; Liu, Chang-An; Wang, Jun-Jiang; Song, Heng-Yi; Chai, Zhi-wen

    2013-03-01

    To discuss the feasibility of vascular bundle implantation combined with allogeneic bone marrow stromal cells (BMSCs) transplantation in treating rabbit femoral head osteonecrosis and bone defect, in order to explore a new method for the treatment of femoral head necrosis. Thirty-six New Zealand rabbits were randomly divided into three groups,with 12 rabbits in each group. Bilateral femoral heads of the rabbits were studied in the experiment. The models were made by liquid nitrogen frozen, and the femoral heads were drilled to cause bone defect. Group A was the control group,group B was stem cells transplantaion group of allograft marrow stromal,and group C was stem cells transplantation group of allograft marrow stromal combined with vascular bundle implantation. Three rabbits of each group were sacrificed respectively at 2, 4, 8, 12 weeks after operation. All specimens of the femoral heads were sliced for HE staining. Furthermore ,vascular density and the percentage of new bone trabecula of femoral head coronary section in defect area were measured and analyzed statistically. In group C,new bone trabecula and original micrangium formed at the 2nd week after operation; new bone trabecula was lamellar and interlaced with abundant micrangium at the 8th week;at the 12th week,the broadened,coarsened bone trabecula lined up regularly,and the mature bone trabecula and new marrow were visible. At the 2nd week after operation,there was no statistical significance in the percentage of new bone trabecula of femoral head coronary section in defect area between group B and C. While at 4, 8, 12 week after operation, vascular density and the percentage of new bone trabecula of femoral head coronary section in defect area of group C was higher than that of group B. Allogeneic bone marrow stromal cells cultured in vivo can form new bone trabecula, and can be applied to allotransplant. Vascular bundle implanted into the bone defect area of femoral head necrosis could improve blood supply, and promote the formation of bone trabecula.

  18. Human hyoid bones from the middle Pleistocene site of the Sima de los Huesos (Sierra de Atapuerca, Spain).

    PubMed

    Martínez, I; Arsuaga, J L; Quam, R; Carretero, J M; Gracia, A; Rodríguez, L

    2008-01-01

    This study describes and compares two hyoid bones from the middle Pleistocene site of the Sima de los Huesos in the Sierra de Atapuerca (Spain). The Atapuerca SH hyoids are humanlike in both their morphology and dimensions, and they clearly differ from the hyoid bones of chimpanzees and Australopithecus afarensis. Their comparison with the Neandertal specimens Kebara 2 and SDR-034 makes it possible to begin to approach the question of temporal variation and sexual dimorphism in this bone in fossil humans. The results presented here show that the degree of metric and anatomical variation in the fossil sample was similar in magnitude and kind to living humans. Modern hyoid morphology was present by at least 530 kya and appears to represent a shared derived feature of the modern human and Neandertal evolutionary lineages inherited from their last common ancestor.

  19. Association of physical activity and physical performance with tibial cartilage volume and bone area in young adults.

    PubMed

    Antony, Benny; Venn, Alison; Cicuttini, Flavia; March, Lyn; Blizzard, Leigh; Dwyer, Terence; Cross, Marita; Jones, Graeme; Ding, Changhai

    2015-10-26

    Physical activity has been recommended to patients with knee osteoarthritis for improving their symptoms. However, it is still controversial if physical activity has effects on joint structures including cartilage volume. The aim of this study was to describe the associations between physical activity and performance measured 5 years prior and tibial cartilage volume and bone area in young adults. Subjects broadly representative of the Australian population (n = 328, aged 31-41 years, female 47.3 %) were selected from the Childhood Determinants of Adult Health study. They underwent T1-weighted fat-suppressed magnetic resonance imaging (MRI) scans of their knees. Tibial bone area and cartilage volume were measured from MRI. Physical activity (measured using long international physical activity questionnaire (IPAQ)) and performance measures (long jump, leg muscle strength, physical work capacity (PWC170)) were measured 5 years prior. In multivariable analyses, total physical activity (min/week) (β: 0.30 mm(3), 95 % CI: 0.13,0.47), vigorous (β: 0.54 mm(3), 95 % CI: 0.13,0.94), moderate (β: 0.34 mm(3), 95 % CI: 0.01,0.67), walking (β: 0.40 mm(3), 95 % CI: 0.07,0.72) and IPAQ category (β: 182.9 mm(3), 95 % CI: 51.8,314.0) were positively associated with total tibial cartilage volume but not tibial bone area. PWC170, long jump and leg muscle strength were positively and significantly associated with both total tibial cartilage volume and total tibial bone area; and the associations with tibial cartilage volume decreased in magnitude but remained significant for PWC170 and long jump after further adjustment for tibial bone area. While tibial bone area is affected only by physical performance, total tibial cartilage volume can be influenced by both physical activity and performance in younger adults. The clinical significance suggests a beneficial effect for cartilage but the bone area association was restricted to performance suggesting other factors rather than physical activity may be important.

  20. Sustained delivery of biomolecules from gelatin carriers for applications in bone regeneration.

    PubMed

    Song, Jiankang; Leeuwenburgh, Sander Cg

    2014-08-01

    Local delivery of therapeutic biomolecules to stimulate bone regeneration has matured considerably during the past decades, but control over the release of these biomolecules still remains a major challenge. To this end, suitable carriers that allow for tunable spatial and temporal delivery of biomolecules need to be developed. Gelatin is one of the most widely used natural polymers for the controlled and sustained delivery of biomolecules because of its biodegradability, biocompatibility, biosafety and cost-effectiveness. The current study reviews the applications of gelatin as carriers in form of bulk hydrogels, microspheres, nanospheres, colloidal gels and composites for the programmed delivery of commonly used biomolecules for applications in bone regeneration with a specific focus on the relationship between carrier properties and delivery characteristics.

  1. Radiological features of the skull in Klinefelter's syndrome and male hypogonadism.

    PubMed

    Kosowicz, J; Rzymski, K

    1975-07-01

    Skull radiographs were performed in 21 cases of Klinefelter's syndrome and in 30 cases of eunuchoidism. The radiographic changes of the skull in Klinefelter's syndrome are: temporal flattening, decreased width of the vault, narrowing of the mandible, decreased length of the skull, shortening of the anterior fossa cranii, decrease in the angle of the base, thinning of the vault bones at the major fontanelle, premature and excessive calcification of the coronal suture, deepening of the posterior fossa and shortening of the mandibular rami. In hypogonadotropic eunuchoidism the skull radiographs show: small mastoid processes, fine bones of the vault, small sella turcica, club-shaped clinoid processes, excessive development of sphenoidal sinuses and in the fourth and later decades of life a diminished bone density (osteoporosis).

  2. Influence of functionally graded pores on bone ingrowth in cementless hip prosthesis: a finite element study using mechano-regulatory algorithm.

    PubMed

    Tarlochan, Faris; Mehboob, Hassan; Mehboob, Ali; Chang, Seung-Hwan

    2018-06-01

    Cementless hip prostheses with porous outer coating are commonly used to repair the proximally damaged femurs. It has been demonstrated that stability of prosthesis is also highly dependent on the bone ingrowth into the porous texture. Bone ingrowth is influenced by the mechanical environment produced in the callus. In this study, bone ingrowth into the porous structure was predicted by using a mechano-regulatory model. Homogenously distributed pores (200 and 800 [Formula: see text]m in diameter) and functionally graded pores along the length of the prosthesis were introduced as a porous coating. Bone ingrowth was simulated using 25 and 12 [Formula: see text]m micromovements. Load control simulations were carried out instead of traditionally used displacement control. Spatial and temporal distributions of tissues were predicted in all cases. Functionally graded pore decreasing models gave the most homogenous bone distribution, the highest bone ingrowth (98%) with highest average Young's modulus of all tissue phenotypes approximately 4.1 GPa. Besides this, the volume of the initial callus increased to 8.33% in functionally graded pores as compared to the 200 [Formula: see text]m pore size models which increased the bone volume. These findings indicate that functionally graded porous surface promote bone ingrowth efficiently which can be considered to design of surface texture of hip prosthesis.

  3. Low-intensity pulsed ultrasound produced an increase of osteogenic genes expression during the process of bone healing in rats.

    PubMed

    Fávaro-Pípi, Elaine; Bossini, Paulo; de Oliveira, Poliani; Ribeiro, Juliana Uema; Tim, Carla; Parizotto, Nivaldo A; Alves, Jose Marcos; Ribeiro, Daniel Araki; Selistre de Araújo, Heloísa Sobreiro; Renno, Ana Claudia Muniz

    2010-12-01

    The aim of this study was to measure the temporal expression of osteogenic genes during the process of bone healing in low-intensity pulsed ultrasound (LIPUS) treated bone defects by means of histopathologic and real-time polymerase chain reaction (PCR) analysis. Animals were randomly distributed into two groups (n = 30): control group (bone defect without treatment) and LIPUS treated (bone defect treated with LIPUS). On days 7, 13 and 25 postinjury, 10 rats per group were sacrificed. Rats were treated with a 30 mW/cm(2) LIPUS. The results pointed out intense new bone formation surrounded by highly vascularized connective tissue presenting a slight osteogenic activity, with primary bone deposition was observed in the group exposed to LIPUS in the intermediary (13 days) and late stages of repair (25 days) in the treated animals. In addition, quantitative real-time polymerase chain reaction (RT-qPCR) showed an upregulation of bone morphogenetic protein 4 (BMP4), osteocalcin and Runx2 genes 7 days after the surgery. In the intermediary period, there was no increase in the expression. The expression of alkaline phosphatase, BMP4 and Runx2 was significantly increased at the last period. Our results indicate that LIPUS therapy improves bone repair in rats and upregulated osteogenic genes, mainly at the late stages of recovery. Copyright © 2010. Published by Elsevier Inc.

  4. Role of Cbl-PI3K Interaction during Skeletal Remodeling in a Murine Model of Bone Repair.

    PubMed

    Scanlon, Vanessa; Soung, Do Yu; Adapala, Naga Suresh; Morgan, Elise; Hansen, Marc F; Drissi, Hicham; Sanjay, Archana

    2015-01-01

    Mice in which Cbl is unable to bind PI3K (YF mice) display increased bone volume due to enhanced bone formation and repressed bone resorption during normal bone homeostasis. We investigated the effects of disrupted Cbl-PI3K interaction on fracture healing to determine whether this interaction has an effect on bone repair. Mid-diaphyseal femoral fractures induced in wild type (WT) and YF mice were temporally evaluated via micro-computed tomography scans, biomechanical testing, histological and histomorphometric analyses. Imaging analyses revealed no change in soft callus formation, increased bony callus formation, and delayed callus remodeling in YF mice compared to WT mice. Histomorphometric analyses showed significantly increased osteoblast surface per bone surface and osteoclast numbers in the calluses of YF fractured mice, as well as increased incorporation of dynamic bone labels. Furthermore, using laser capture micro-dissection of the fracture callus we found that cells lacking Cbl-PI3K interaction have higher expression of Osterix, TRAP, and Cathepsin K. We also found increased expression of genes involved in propagating PI3K signaling in cells isolated from the YF fracture callus, suggesting that the lack of Cbl-PI3K interaction perhaps results in enhanced PI3K signaling, leading to increased bone formation, but delayed remodeling in the healing femora.

  5. Medial-to-lateral Ratio of Tibiofemoral Subchondral Bone Area is Adapted to Alignment and Mechanical Load

    PubMed Central

    Eckstein, Felix; Hudelmaier, Martin; Cahue, September; Marshall, Meredith; Sharma, Leena

    2010-01-01

    Malalignment is known to impact the medial-to-lateral load distribution in the tibiofemoral joint. In this longitudinal study, we test the hypothesis that subchondral bone surface areas functionally adapt to the load distribution in malaligned knees. Alignment (hip-knee-ankle angle) was measured from full limb films in 174 participants with knee osteoarthritis. Coronal MR images were acquired at baseline and 26.6±5.4 months later. The subchondral bone surface area of the weight-bearing tibiofemoral cartilages was segmented, with readers blinded to the order of acquisition. The size of the subchondral bone surface areas was computed after triangulation using proprietary software. The hip-knee-ankle angle showed a significant correlation with the tibial (r2=0.25, p<0.0001) and femoral (r2=0.07, p<0.001) ratio of medial-to-lateral subchondral bone surface area. In the tibia, the ratio was significantly different between varus (1.28:1), neutral (1.18:1) and valgus (1.13:1) knees (ANOVA; p<0.00001). Similar observations were made in the weight-bearing femur (0.94:1 in neutral, 0.97.1 in varus, 0.91:1 in valgus knees; ANOVA p=0.018). The annualized longitudinal increase in subchondral bone surface area was significant (p<0.05) in the medial tibia (+0.13%), medial femur (+0.26%) and lateral tibia (+0.19%). In the medial femur, the change between baseline and follow-up was significantly different (ANOVA; p=0.020) between neutral, varus and valgus knees, the increase in surface area being significantly greater (p=0.019) in varus than in neutral knees. Tibiofemoral subchondral bone surface areas are shown to be functionally adapted to the medial-to-lateral load distribution. The longitudinal findings indicate that this adaptational process may continue to take place at advanced age. PMID:19148562

  6. Diprosopia in a cat.

    PubMed

    Camón, J; Ruberte, J; Ordóñez, G

    1990-05-01

    A diprosopic cat is described. In the head, two snouts, three eyes and two pinnae were present. The mandible was single and immobile because labial skin of both upper lips and single lower lip was partly fused. Superimposition of upper and lower dental arches was impossible and the mouths remained permanently open. Two incomplete oral cavities were present and the two tongues were joined at their base. The brain was duplicated in part. In the cranium only occipital and temporal bones were normal, the basisphenoid was bifurcated and the remaining bones were duplicated. Embryological mechanisms are discussed.

  7. Nuclear scanning in necrotizing progressive ''malignant'' external otitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisier, S.C.; Lucente, F.E.; Som, P.M.

    1982-09-01

    The usefulness of radionuclear scanning in the treatment of 18 patients with necrotizing progressive ''malignant'' external otitis is discussed. A Tc 99-m bone scan, a valuable test since results are positive in early cases of osteomyelitis of the temporal bone and base of skull, showed increased uptake in all 18 patients. In 6 patients, Ga-67 citrate scans were obtained at the start of therapy and at 5-6 week intervals thereafter. The serial gallium scans were useful in evaluating the effectiveness of therapy since the uptake decrease with control of infection.

  8. Brain and bone abnormalities of thanatophoric dwarfism.

    PubMed

    Miller, Elka; Blaser, Susan; Shannon, Patrick; Widjaja, Elysa

    2009-01-01

    The purpose of this article is to present the imaging findings of skeletal and brain abnormalities in thanatophoric dwarfism, a lethal form of dysplastic dwarfism. The bony abnormalities associated with thanatophoric dwarfism include marked shortening of the tubular bones and ribs. Abnormal temporal lobe development is a common associated feature and can be visualized as early as the second trimester. It is important to assess the brains of fetuses with suspected thanatophoric dwarfism because the presence of associated brain malformations can assist in the antenatal diagnosis of thanatophoric dwarfism.

  9. Study of a temporal bone of Homo heildelbergensis.

    PubMed

    Urquiza, Rafael; Botella, Miguel; Ciges, Miguel

    2005-05-01

    The characteristic features of the Hh specimen conformed to those of other Pleistocene human fossils, indicating strong cranial structures and a heavy mandible. The mastoid was large and suggested a powerful sternocleidomastoid muscle. The inner ear and tympanic cavities were similar in size and orientation, suggesting that their functions were probably similar. Our observations suggest that the left ear of this Hh specimen was healthy. The large canaliculo-fenestral angle confirms that this ancestor was bipedal. It also strongly suggests that Hh individuals were predisposed to develop certain pathologies of the labyrinth capsule associated with bipedalism, in particular otosclerosis. We studied a temporal bone of Homo heidelbergensis (Hh) in order to investigate the clinical and physiological implications of certain morphological features, especially those associated with the evolutionary reorganization of the inner ear. The bone, found in a breach of a cave near MAáaga in southern Spain, together with Middle Upper Pleistocene faunal remains, is >300000 years old. Four analytical methods were employed. A 3D high-resolution surface laser scan was used for anatomical measurements. For the sectional analysis of the middle and inner ears of Hh we used high-resolution CT, simultaneously studying a normal temporal bone from Homo sapiens sapiens (Hss). To study the middle and inner ear spaces we used 3D reconstruction CT preceded by an intra-bone air shielding technique. To examine the tympanic cavities and measure the canaliculo fenestral angle, we used a special minimally invasive endoscopic procedure. The surface, sectional and 3D CT examinations showed that the Hh specimen was generally more robust and larger than the Hss specimen. It had a large glenoid fossa. The external meatus was wide and deep. The middle ear, and especially the mastoid, was large and widely pneumatized. There were no appreciable differences in the position and size of the labyrinthine spaces and tympanic cavity. The dimensions of the semicircular canals were similar to those of the Hss specimen. Endoscopy revealed normal, healthy tympanic walls and an ossicle fragment in the atticum that probably belonged to the body of the malleus. The diameters of the fallopian duct and the tympanic opening of the Eustachian tube were large. The canaliculo-fenestral angle was approximately 114 degrees

  10. Observations on the bony bridging of the jugular foramen in man.

    PubMed Central

    Dodo, Y

    1986-01-01

    The anatomical nature and pattern of incidence of bony bridging of the jugular foramen was investigated using 64 fetal crania aged nine months to term and 222 adult crania of Japanese. In addition, the region of the jugular foramen of an adult cadaver was carefully dissected in order to clarify the relationship between the cranial nerves passing through the jugular foramen and the intrajugular processes of the jugular foramen. The general conclusions concerning the anatomical nature of the bony bridging of the jugular foramen were as follows. (1) The intrajugular process of the temporal bone is situated posterior to the triangular depression (as described in Gray's Anatomy) of the petrous part. (2) The bony bridging of the jugular foramen is established by the contact of the intrajugular process of the temporal bone with the bony process of the occipital bone projecting either from just above the hypoglossal canal (Type I) or from posterior to the hypoglossal canal (Type III). (3) If both the processes of the occipital bone reach the intrajugular process of the temporal bone simultaneously, the jugular foramen is divided into three compartments. (4) In the case of Type I bridging, the anteromedial compartment transmits the glossopharyngeal nerve, while the posterolateral compartment gives passage to the vagus nerve, the accessory nerve and the internal jugular vein. (5) In the case of Type II bridging, the anteromedial compartment contains the glossopharyngeal, vagus and accessory nerves, and the posterolateral compartment transmits the internal jugular vein. (6) When tripartite division of the jugular foramen occurs, the anteromedial compartment transmits the glossopharyngeal nerve, the middle compartment contains the vagus and accessory nerves, and the posterolateral compartment transmits the internal jugular vein. Concerning the pattern of incidence of jugular foramen bridging in the Japanese fetal and adult cranial series, this is similar to that of the bony bridging of the hypoglossal canal. The fact that almost all the cases of bridging of the jugular foramen are already established by the end of fetal development must serve as a strong indication that this trait can be used effectively for anthropological population studies. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 11 PMID:3693042

  11. Brown Adipose Tissue and Its Relationship to Bone Structure in Pediatric Patients

    PubMed Central

    Ponrartana, Skorn; Aggabao, Patricia C.; Hu, Houchun H.; Aldrovandi, Grace M.; Wren, Tishya A. L.

    2012-01-01

    Context: Emerging evidence suggests a possible link between brown adipose tissue (BAT) and bone metabolism. Objective: The objective of this study was to examine the relationships between BAT and bone cross-sectional dimensions in children and adolescents. Design: This was a cross-sectional study. Setting: The study was conducted at a pediatric referral center. Patients: Patients included 40 children and teenagers (21 males and 19 females) successfully treated for pediatric malignancies. Interventions: There were no interventions. Main Outcome Measures: The volume of BAT was determined by fluorodeoxyglucose-positron emission tomography/computed tomography. Measures of the cross-sectional area and cortical bone area and measures of thigh musculature and sc fat were determined at the midshaft of the femur. Results: Regardless of sex, there were significant correlations seen between BAT volume and the cross-sectional dimensions of the bone (r values between 0.68 and 0.77; all P ≤ 0 .001). Multiple regression analyses indicated that the volume of BAT predicted femoral cross-sectional area and cortical bone area, even after accounting for height, weight, and gender. The addition of muscle as an independent variable increased the predictive power of the model but significantly decreased the contribution of BAT. Conclusions: The volume of BAT is positively associated with the amount of bone and the cross-sectional size of the femur in children and adolescents. This relation between BAT and bone structure could, at least in part, be mediated by muscle. PMID:22593587

  12. Growth-Associated Changes in the Periodontal Bone and Molar Teeth of Male Rats

    PubMed Central

    García, María F; Moreno, Hilda; Rigalli, Alfredo; Puche, Rodolfo C

    2009-01-01

    Here we report quantitative data associating periodontal bone variables of young conventional rats with the growth process. The hemimandibles of male rats (IIM/Fm stock, 2 to 15 wk of age.) were excised and submitted to conventional morphologic, radiologic, and histologic evaluation. The length, area, or X-ray absorbance of various regions or structures was measured on digital images of radiographs by using an image-analysis program. The sum of periodontal bone areas undergoing resorption (interproximal + intraradicular) increased until 9 or 10 wk of age and decreased thereafter. Mineral accretion rates and mineral density asymptotes were not significantly different among molars. The mineral density of resorption areas in alveolar bone fitted sinusoidal kinetics, indicative of the ‘instability’ of the tissue due to its high metabolic activity. Mineral accretion rates and mineral density asymptotes were not significantly different among molars. The proportion of root length within alveolar bone exhibited a biphasic curve (minimum at 5 wk of age), due to differences in the growth rates of variables involved in its calculation (distance between the cementoenamel junction to the apex and height of the resorption areas). The distance between the cementoenamel junction and alveolar bone crest over time fitted a sigmoidal function with a point of inflection that did not differ significantly from that of body or mandible dry weight. In summary, the growth process appears to affect periodontal bone support and the distance between the cementoenamel junction and alveolar bone crest in male rats. PMID:19807966

  13. Correlates of bone quality in older persons

    PubMed Central

    Lauretani, F.; Bandinelli, S.; Russo, C.R.; Maggio, M.; Di Iorio, A.; Cherubini, A.; Maggio, D.; Ceda, G.P.; Valenti, G.; Guralnik, J.M.; Ferrucci, L.

    2009-01-01

    Purpose of the study In a population-based sample of older persons, we studied the relationship between tibial bone density and geometry and factors potentially affecting osteoporosis. Methods Of the 1260 participants aged 65 years or older eligible for the InCHIANTI study, 1155 received an interview and 915 (79.2%) had complete data on tibial QCTscans and other variables used in the analysis presented here. The final study population included 807 persons (372 men and 435 women, age range 65–96 years) after exclusion of participants affected by bone diseases or treated with drugs that interfere with bone metabolism. Results In both sexes, calf cross-sectional muscle area (CSMA) was significantly and independently associated with total bone cross-sectional area (tCSA) and cortical bone cross-sectional area (cCSA) but not with trabecular or cortical volumetric bone mineral density (vBMD). Bioavailable testosterone (Bio-T) was independently associated with both trabecular and cortical vBMD in both sexes. In women, independently of confounders, 25(OH)-vitamin D was positively associated with tCSA and cortical vBMD, while PTH was negatively associated with cortical vBMD. IL-1 beta was negatively correlated with cortical vBMD in women, while TNF-alpha was associated with enhanced bone geometrical adaptation in men. Conclusions Physiological parameters that are generically considered risk factors for osteoporosis were associated with specific bone parameters assessed by tibial QCT. Factors known to be associated with increased bone reabsorption, such as 25(OH)-vitamin D, PTH and Bio-T, affected mainly volumetric BMD, while factors associated with bone mechanical stimulation, such as CSMA, affected primarily bone geometry. Our results also suggested that pro-inflammatory cytokines might be considered as markers of bone resorption. PMID:16709469

  14. Does Guided Bone Regeneration Prevent Unfavorable Bone Shapes in Distraction Gap?

    PubMed

    Demetoglu, Umut; Alkan, Alper; Kiliç, Erdem; Ozturk, Mustafa; Bilge, Suheyb

    2018-03-01

    Complications related to distraction osteogenesis can cause degradation of newly regenerated bone. Additionally, an unfavorable shape of the regenerated bone at the distraction gap can reduce the quantity of regenerated bone. The aim of the present study was to report on the prevention of unfavorable shapes of regenerated bone using guided bone regeneration during distraction. Bilateral alveolar distraction was performed in 10 beagle dog mandibles. One side of the mandible formed the experimental group and the other side served as the control group. In the experimental group, guided bone regeneration was performed simultaneously with distraction osteogenesis. In the control group, only alveolar distraction was applied. At the end of a 1-week latent period, all mandibles were distracted 10 mm (1 mm/day). After the distraction period, 3 months were allowed for consolidation. After consolidation, all the dogs were euthanized, and the shape of the regenerated bone was determined to be either favorable or unfavorable. Densitometric evaluation and area measurements were performed using computed tomography scans. Statistical evaluation was performed using the independent t test, with a significance level of P < .05. In the experimental group, no unfavorable bone shape developed in the distraction gap, and the new bone had a surface and volume similar to those of the segments. In contrast, in the control group, 4 mandibles had an unfavorable bone shape in the distraction gap and 4 showed favorable bone healing with no defect. The surface area of the regenerating bone in the experimental group was significantly greater than that in the control group. Also, the surface area differed significantly between the experimental and control groups (P < .05). However, the densitometric values did not differ between the 2 groups (P < .05). Concomitant use of guided bone regeneration with distraction osteogenesis could be an optimal method for generating a favorable bone shape within the distraction gap. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Impaired bone formation in ovariectomized mice reduces implant integration as indicated by longitudinal in vivo micro-computed tomography.

    PubMed

    Li, Zihui; Kuhn, Gisela; Schirmer, Michael; Müller, Ralph; Ruffoni, Davide

    2017-01-01

    Although osteoporotic bone, with low bone mass and deteriorated bone architecture, provides a less favorable mechanical environment than healthy bone for implant fixation, there is no general agreement on the impact of osteoporosis on peri-implant bone (re)modeling, which is ultimately responsible for the long term stability of the bone-implant system. Here, we inserted an implant in a mouse model mimicking estrogen deficiency-induced bone loss and we monitored with longitudinal in vivo micro-computed tomography the spatio-temporal changes in bone (re)modeling and architecture, considering the separate contributions of trabecular, endocortical and periosteal surfaces. Specifically, 12 week-old C57BL/6J mice underwent OVX/SHM surgery; 9 weeks after we inserted special metal-ceramics implants into the 6th caudal vertebra and we measured bone response with in vivo micro-CT weekly for the following 6 weeks. Our results indicated that ovariectomized mice showed a reduced ability to increase the thickness of the cortical shell close to the implant because of impaired peri-implant bone formation, especially at the periosteal surface. Moreover, we observed that healthy mice had a significantly higher loss of trabecular bone far from the implant than estrogen depleted animals. Such behavior suggests that, in healthy mice, the substantial increase in peri-implant bone formation which rapidly thickened the cortex to secure the implant may raise bone resorption elsewhere and, specifically, in the trabecular network of the same bone but far from the implant. Considering the already deteriorated bone structure of estrogen depleted mice, further bone loss seemed to be hindered. The obtained knowledge on the dynamic response of diseased bone following implant insertion should provide useful guidelines to develop advanced treatments for osteoporotic fracture fixation based on local and selective manipulation of bone turnover in the peri-implant region.

  16. Impaired bone formation in ovariectomized mice reduces implant integration as indicated by longitudinal in vivo micro-computed tomography

    PubMed Central

    Li, Zihui; Kuhn, Gisela; Schirmer, Michael; Müller, Ralph

    2017-01-01

    Although osteoporotic bone, with low bone mass and deteriorated bone architecture, provides a less favorable mechanical environment than healthy bone for implant fixation, there is no general agreement on the impact of osteoporosis on peri-implant bone (re)modeling, which is ultimately responsible for the long term stability of the bone-implant system. Here, we inserted an implant in a mouse model mimicking estrogen deficiency-induced bone loss and we monitored with longitudinal in vivo micro-computed tomography the spatio-temporal changes in bone (re)modeling and architecture, considering the separate contributions of trabecular, endocortical and periosteal surfaces. Specifically, 12 week-old C57BL/6J mice underwent OVX/SHM surgery; 9 weeks after we inserted special metal-ceramics implants into the 6th caudal vertebra and we measured bone response with in vivo micro-CT weekly for the following 6 weeks. Our results indicated that ovariectomized mice showed a reduced ability to increase the thickness of the cortical shell close to the implant because of impaired peri-implant bone formation, especially at the periosteal surface. Moreover, we observed that healthy mice had a significantly higher loss of trabecular bone far from the implant than estrogen depleted animals. Such behavior suggests that, in healthy mice, the substantial increase in peri-implant bone formation which rapidly thickened the cortex to secure the implant may raise bone resorption elsewhere and, specifically, in the trabecular network of the same bone but far from the implant. Considering the already deteriorated bone structure of estrogen depleted mice, further bone loss seemed to be hindered. The obtained knowledge on the dynamic response of diseased bone following implant insertion should provide useful guidelines to develop advanced treatments for osteoporotic fracture fixation based on local and selective manipulation of bone turnover in the peri-implant region. PMID:28910363

  17. Implant angulation: 2-year retrospective analysis on the influence of dental implant angle insertion on marginal bone resorption in maxillary and mandibular osseous onlay grafts.

    PubMed

    Ramaglia, Luca; Toti, Paolo; Sbordone, Carolina; Guidetti, Franco; Martuscelli, Ranieri; Sbordone, Ludovico

    2015-05-01

    The purpose of this study was to determine the existence of correlations between marginal peri-implant linear bone loss and the angulation of implants in maxillary and mandibular augmented areas over the course of a 2-year survey. Dependent variables described the sample of the present retrospective chart review. By using three-dimensional radiographs, input variables, describing the implant angulation (buccal-lingual angle [φ] and mesial-distal angle [θ]) were measured; outcome variables described survival rate and marginal bone resorption (MBR) around dental implants in autogenous grafts (10 maxillae and 14 mandibles). Pairwise comparisons and linear correlation coefficient were computed. The peri-implant MBR in maxillary buccal and palatal areas appeared less intensive in the presence of an increased angulation of an implant towards the palatal side. Minor MBR was recorded around mandibular dental implants positioned at a right angle and slightly angulated towards the mesial. Resorption in buccal areas may be less intensive as the angulation of placed implants increases towards the palatal area in the maxilla, whereas for the mandible, a greater inclination towards the lingual area could be negative. In the mandibular group, when the implant was slightly angulated in the direction of the distal area, bone resorption seemed to be more marked in the buccal area. In the planning of dental implant placement in reconstructed alveolar bone with autograft, the extremely unfavourable resorption at the buccal aspect should be considered; this marginal bone loss seemed to be very sensitive to the angulation of the dental implant.

  18. Assessing the Amount of Interdental Bone in Posterior Areas of the Mandible for Placing Orthodontic Mini-Implants

    PubMed Central

    Esfahanizadeh, Nasrin; Shahraki, Damoun; Daneshparvar, Hamidreza; Talaei Pour, Ahmad Reza; Saghiri, Mohammad Ali; Sheibaninia, Ahmad; Rashtak, Shadab

    2013-01-01

    Objective : The aim of this study was to assess the amount of interdental bone in posterior areas of the mandible for placing orthodontic mini-implants to provide and control anchorage in orthodontic treatment. Materials and Methods : The amount of interdental bone in areas between the second premolars and first molars, first and second molars on the right and left sides of the mandible were determined in fifty patients by RVG using periapical radiographs. The images were assessed using Cygnus Media Software to determine the mesio-distal width of the interdental bone, starting at the crest of the alveolar bone (2 mm below the CEJ) every one millimeter up to 12 mm from the CEJ. The actual amount of interdental bone and the effect of related factors were assessed using chi-square test at a 95% confidence interval. Results : The minimum desired interdental bone width for placing mini-implants, 3 mm from the CEJ, between the second premolar and first molar and the first and second molars of the mandible on both sides were significantly different (p<0.01): 1.8 mm (31%) more apical in the area between the second premolar and the first molar. There was also a statistically significant difference between the areas under study on the right side (p<0.002), which was 2.2 mm (44%) more apical in the area of the second premolar and the first molar. Conclusion : The most secure site for placing orthodontic mini-implants in the mandible is between the first and second molars at the height of 5.8 mm from the CEJ. PMID:25512751

  19. Ward's area location, physical activity, and body composition in 8- and 9-year-old boys and girls.

    PubMed

    Cardadeiro, Graça; Baptista, Fátima; Zymbal, Vera; Rodrigues, Luís A; Sardinha, Luís B

    2010-11-01

    Bone strength is the result of its material composition and structural design, particularly bone mass distribution. The purpose of this study was to analyze femoral neck bone mass distribution by Ward's area location and its relationship with physical activity (PA) and body composition in children 8 and 9 years of age. The proximal femur shape was defined by geometric morphometric analysis in 88 participants (48 boys and 40 girls). Using dual-energy X-ray absorptiometry (DXA) images, 18 landmarks were digitized to define the proximal femur shape and to identify Ward's area position. Body weight, lean and fat mass, and bone mineral were assessed by DXA, PA by accelerometry, and bone age by the Tanner-Whitehouse III method. Warps analysis with Thin-Plate Spline software showed that the first axis explained 63% of proximal femur shape variation in boys and 58% in girls. Most of this variation was associated with differences in Ward's area location, from the central zone to the superior aspect of the femoral neck in both genders. Regression analysis demonstrated that body composition explained 4% to 7% of the proximal femur shape variation in girls. In boys, body composition variables explained a similar amount of variance, but moderate plus vigorous PA (MVPA) also accounted for 6% of proximal femur shape variation. In conclusion, proximal femur shape variation in children ages 8 and 9 was due mainly to differences in Ward's area position determined, in part, by body composition in both genders and by MVPA in boys. These variables were positively associated with a central Ward's area and thus with a more balanced femoral neck bone mass distribution. © 2010 American Society for Bone and Mineral Research.

  20. Bilateral sinus elevation evaluating plasma rich in growth factors technology: a report of five cases.

    PubMed

    Anitua, Eduardo; Prado, Roberto; Orive, Gorka

    2012-03-01

    The purpose of this study was to evaluate the potential effects of plasma rich in growth factors (PRGF) technology and its autologous formulations in five consecutive patients in which bilateral sinus lift augmentation was carried out. Five consecutive patients received bilateral sinus floor augmentation. All patients presented a residual bone height of class D (1-3 mm). The effects of PRGF combined with bovine anorganic bone (one side) were compared with the biomaterial alone (contralateral side). The effects of using liquid PRGF to maintain the bone window and autologous fibrin membrane to seal the defect were evaluated. A complete histological and histomorphometrical analysis was performed 5 months after surgery. One patient was excluded from the study as the Schneiderian membrane of the control side was perforated during the surgery. In two patients, the biopsies obtained from the control sides 5 months postsurgery were not acceptable for processing. PRGF technology facilitated the surgical approach of sinus floor elevation. The control area was more inflamed than the area treated with PRGF technology. Patients referred also to an increased sensation of pain in the control area. PRGF-treated samples had more new vital bone than controls. In patient number 1, image processing revealed 21.4% new vital bone in the PRGF area versus 8.4% in the control area, whereas in patient number 2, 28.4% new vital bone was quantified in the PRGF area compared with the 8.2% of the control side. The immunohistochemical processing of the biopsies revealed that the number of blood vessels per square millimeter of connective tissue was 116 vessels in the PRGF sample versus 7 in the control biopsy. These preliminary results suggest that from a practical point of view, PRGF may present a role in reducing tissue inflammation after surgery, increasing new bone formation and promoting the vascularization of bone tissue. © 2010 Wiley Periodicals, Inc.

  1. Anatomy-Specific Virtual Reality Simulation in Temporal Bone Dissection: Perceived Utility and Impact on Surgeon Confidence.

    PubMed

    Locketz, Garrett D; Lui, Justin T; Chan, Sonny; Salisbury, Kenneth; Dort, Joseph C; Youngblood, Patricia; Blevins, Nikolas H

    2017-06-01

    Objective To evaluate the effect of anatomy-specific virtual reality (VR) surgical rehearsal on surgeon confidence and temporal bone dissection performance. Study Design Prospective pre- and poststudy of a novel virtual surgical rehearsal platform. Setting Academic otolaryngology-head and neck surgery residency training programs. Subjects and Methods Sixteen otolaryngology-head and neck surgery residents from 2 North American training institutions were recruited. Surveys were administered to assess subjects' baseline confidence in performing 12 subtasks of cortical mastoidectomy with facial recess. A cadaver temporal bone was randomly assigned to each subject. Cadaver specimens were scanned with a clinical computed tomography protocol, allowing the creation of anatomy-specific models for use in a VR surgical rehearsal platform. Subjects then rehearsed a virtual mastoidectomy on data sets derived from their specimens. Surgical confidence surveys were administered again. Subjects then dissected assigned cadaver specimens, which were blindly graded with a modified Welling scale. A final survey assessed the perceived utility of rehearsal on dissection performance. Results Of 16 subjects, 14 (87.5%) reported a significant increase in overall confidence after conducting an anatomy-specific VR rehearsal. A significant correlation existed between perceived utility of rehearsal and confidence improvement. The effect of rehearsal on confidence was dependent on trainee experience and the inherent difficulty of the surgical subtask. Postrehearsal confidence correlated strongly with graded dissection performance. Subjects rated anatomy-specific rehearsal as having a moderate to high contribution to their dissection performance. Conclusion Anatomy-specific virtual rehearsal improves surgeon confidence in performing mastoid dissection, dependent on surgeon experience and task difficulty. The subjective confidence gained through rehearsal correlates positively with subsequent objective dissection performance.

  2. Effect of Round Window Reinforcement on Hearing: A Temporal Bone Study With Clinical Implications for Surgical Reinforcement of the Round Window.

    PubMed

    Wegner, Inge; Eldaebes, Mostafa M A S; Landry, Thomas G; Adamson, Robert B; Grolman, Wilko; Bance, Manohar L

    2016-06-01

    Round window reinforcement leads to conductive hearing loss. The round window is stiffened surgically as therapy for various conditions, including perilymphatic fistula and superior semicircular canal dehiscence. Round window reinforcement reduces symptoms in these patients. However, it also reduces fluid displacement in the cochlea and might therefore increase conductive hearing loss. Perichondrium was applied to the round window membrane in nine fresh-frozen, nonpathologic temporal bones. In four temporal bones cartilage was applied subsequently. Acoustic stimuli in the form of frequency sweeps from 250 to 8000 Hz were generated at 110 dB sound pressure level. A total of 16 frequencies in a 1/3-octave series were used. Stapes velocities in response to the acoustic stimuli were measured at equally spaced multiple points covering the stapes footplate using a scanning laser Doppler interferometry system. Measurements were made at baseline, after applying perichondrium, and after applying cartilage. At frequencies up to 1000 Hz perichondrium reinforcement decreased stapes velocities by 1.5 to 2.9 dB compared with no reinforcement (p value = 0.003). Reinforcement with cartilage led to a further deterioration of stapes velocities by 2.6 to 4.2 dB at frequencies up to 1000 Hz (p value = 0.050). The higher frequencies were not affected by perichondrium reinforcement (p value = 0.774) or cartilage reinforcement (p value = 0.644). Our results seem to suggest a modest, clinically negligible effect of reinforcement with perichondrium. Placing cartilage on the round window resulted in a graded effect on stapes velocities in keeping with the increased stiffness of cartilage compared with perichondrium. Even so, the effect was relatively small.

  3. Differentiating levels of surgical experience on a virtual reality temporal bone simulator.

    PubMed

    Zhao, Yi C; Kennedy, Gregor; Hall, Richard; O'Leary, Stephen

    2010-11-01

    Virtual reality simulation is increasingly being incorporated into surgical training and may have a role in temporal bone surgical education. Here we test whether metrics generated by a virtual reality surgical simulation can differentiate between three levels of experience, namely novices, otolaryngology residents, and experienced qualified surgeons. Cohort study. Royal Victorian Eye and Ear Hospital. Twenty-seven participants were recruited. There were 12 experts, six residents, and nine novices. After orientation, participants were asked to perform a modified radical mastoidectomy on the simulator. Comparisons of time taken, injury to structures, and forces exerted were made between the groups to determine which specific metrics would discriminate experience levels. Experts completed the simulated task in significantly shorter time than the other two groups (experts 22 minutes, residents 36 minutes, and novices 46 minutes; P = 0.001). Novices exerted significantly higher average forces when dissecting close to vital structures compared with experts (0.24 Newton [N] vs 0.13 N, P = 0.002). Novices were also more likely to injure structures such as dura compared to experts (23 injuries vs 3 injuries, P = 0.001). Compared with residents, the experts modulated their force between initial cortex dissection and dissection close to vital structures. Using the combination of these metrics, we were able to correctly classify the participants' level of experience 90 percent of the time. This preliminary study shows that measurements of performance obtained from within a virtual reality simulator can differentiate between levels of users' experience. These results suggest that simulator training may have a role in temporal bone training beyond foundational training. Copyright © 2010 American Academy of Otolaryngology–Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  4. The Usefulness of MR Imaging of the Temporal Bone in the Evaluation of Patients with Facial and Audiovestibular Dysfunction

    PubMed Central

    Park, Sang Uk; Cho, Young Kuk; Lim, Myung Kwan; Kim, Won Hong; Suh, Chang Hae; Lee, Seung Chul

    2002-01-01

    Objective To evaluate the clinical utility of MR imaging of the temporal bone in patients with facial and audiovestibular dysfunction with particular emphasis on the importance of contrast enhancement. Materials and Methods We retrospectively reviewed the MR images of 179 patients [72 men, 107 women; average age, 44 (range, 1-77) years] who presented with peripheral facial palsy (n=15), audiometrically proven sensorineural hearing loss (n=104), vertigo (n=109), or tinnitus (n=92). Positive MR imaging findings possibly responsible for the patients clinical manifestations were categorized according to the anatomic sites and presumed etiologies of the lesions. We also assessed the utility of contrast-enhanced MR imaging by analyzing its contribution to the demonstration of lesions which would otherwise not have been apparent. All MR images were interpreted by two neuroradiologists, who reached their conclusions by consensus. Results MR images demonstrated positive findings, thought to account for the presenting symptoms, in 78 (44%) of 179 patients, including 15 (100%) of 15 with peripheral facial palsy, 43 (41%) of 104 with sensorineural hearing loss, 40 (37%) of 109 with vertigo, and 39 (42%) of 92 with tinnitus. Thirty (38%) of those 78 patients had lesions that could be confidently recognized only at contrast-enhanced MR imaging. Conclusion Even though its use led to positive findings in less than half of these patients, MR imaging of the temporal bone is a useful diagnostic procedure in the evaluation of those with facial and audiovestibular dysfunction. Because it was only at contrast-enhanced MR imaging that a significant number of patients showed positive imaging findings which explained their clinical manifestations, the use of contrast material is highly recommended. PMID:11919474

  5. Bone fractures as indicators of intentional violence in the eastern Adriatic from the antique to the late medieval period (2nd-16th century AD).

    PubMed

    Slaus, Mario; Novak, Mario; Bedić, Zeljka; Strinović, Davor

    2012-09-01

    To test the historically documented hypothesis of a general increase in deliberate violence in the eastern Adriatic from the antique (AN; 2nd-6th c.) through the early medieval (EM; 7th-11th c.) to the late-medieval period (LM; 12th-16th c.), an analysis of the frequency and patterning of bone trauma was conducted in three skeletal series from these time periods. A total of 1,125 adult skeletons-346 from the AN, 313 from the EM, and 466 from the LM series-were analyzed. To differentiate between intentional violence and accidental injuries, data for trauma frequencies were collected for the complete skeleton, individual long bones, and the craniofacial region as well as by type of injury (perimortem vs. antemortem). The results of our analyses show a significant temporal increase in total fracture frequencies when calculated by skeleton as well as of individuals exhibiting one skeletal indicator of deliberate violence (sharp force lesions, craniofacial injuries, "parry" fractures, or perimortem trauma). No significant temporal increases were, however, noted in the frequencies of craniofacial trauma, "parry" fractures, perimortem injuries, or of individuals exhibiting multiple skeletal indicators of intentional violence. Cumulatively, these data suggest that the temporal increase in total fracture frequencies recorded in the eastern Adriatic was caused by a combination of factors that included not only an increase of intentional violence but also a significant change in lifestyle that accompanied the transition from a relatively affluent AN urban lifestyle to a more primitive rural medieval way of life. Copyright © 2012 Wiley Periodicals, Inc.

  6. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling.

    PubMed

    Hambli, Ridha

    2014-01-01

    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone adaptation. The proposed FEM model gives insight into how bone cells adapt their architecture to the mechanical and biological environment.

  7. ECM Inspired Coating of Embroidered 3D Scaffolds Enhances Calvaria Bone Regeneration

    PubMed Central

    Rentsch, C.; Rentsch, B.; Heinemann, S.; Bernhardt, R.; Bischoff, B.; Förster, Y.; Scharnweber, D.; Rammelt, S.

    2014-01-01

    Resorbable polymeric implants and surface coatings are an emerging technology to treat bone defects and increase bone formation. This approach is of special interest in anatomical regions like the calvaria since adults lose the capacity to heal large calvarial defects. The present study assesses the potential of extracellular matrix inspired, embroidered polycaprolactone-co-lactide (PCL) scaffolds for the treatment of 13 mm full thickness calvarial bone defects in rabbits. Moreover the influence of a collagen/chondroitin sulfate (coll I/cs) coating of PCL scaffolds was evaluated. Defect areas filled with autologous bone and empty defects served as reference. The healing process was monitored over 6 months by combining a novel ultrasonographic method, radiographic imaging, biomechanical testing, and histology. The PCL coll I/cs treated group reached 68% new bone volume compared to the autologous group (100%) and the biomechanical stability of the defect area was similar to that of the gold standard. Histological investigations revealed a significantly more homogenous bone distribution over the whole defect area in the PCL coll I/cs group compared to the noncoated group. The bioactive, coll I/cs coated, highly porous, 3-dimensional PCL scaffold acted as a guide rail for new skull bone formation along and into the implant. PMID:25013767

  8. Analysis of the independent power of age-related, anthropometric and mechanical factors as determinants of the structure of radius and tibia in normal adults. A pQCT study.

    PubMed

    Reina, P; Cointry, G R; Nocciolino, L; Feldman, S; Ferretti, J L; Rittweger, J; Capozza, R F

    2015-03-01

    To compare the independent influence of mechanical and non-mechanical factors on bone features, multiple regression analyses were performed between pQCT indicators of radius and tibia bone mass, mineralization, design and strength as determined variables, and age or time since menopause (TMP), body mass, bone length and regional muscles' areas as selected determinant factors, in Caucasian, physically active, untrained healthy men and pre- and post-menopausal women. In men and pre-menopausal women, the strongest influences were exerted by muscle area on radial features and by both muscle area and bone length on the tibia. Only for women, was body mass a significant factor for tibia traits. In men and pre-menopausal women, mass/design/strength indicators depended more strongly on the selected determinants than the cortical vBMD did (p<0.01-0.001 vs n.s.), regardless of age. However, TMP was an additional factor for both bones (p<0.01-0.001). The selected mechanical factors (muscle size, bone lengths) were more relevant than age/TMP or body weight to the development of allometrically-related bone properties (mass/design/strength), yet not to bone tissue 'quality' (cortical vBMD), suggesting a determinant, rather than determined role for cortical stiffness. While the mechanical impacts of muscles and bone levers on bone structure were comparable in men and pre-menopausal women, TMP exerted a stronger impact than allometric or mechanical factors on bone properties, including cortical vBMD.

  9. Long-term anabolic effects of prostaglandin-E2 on tibial diaphyseal bone in male rats

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.; Ke, Hua Zhu; Li, Xiao Jian

    1991-01-01

    The effects of long-term prostaglandin E2 (PGE2) on tibial diaphyseal bone were studied in 7-month-old male Sprague-Dawley rats given daily subcutaneous injections of 0, 1, 3 and 6 mg PGE2/kg/day for 60, 120 and 180 days. The tibial shaft was measured by single photon absorptiometry and dynamic histomorphometric analyses were performed on double-fluorescent labeled undecalcified tibial diaphyseal bone samples. Exogenous PGE2 administration produced the following transient changes in a dose-response manner between zero and 60 days: (1) increased bone width and mineral density; (2) increased total tissue and total bone areas; (3) decreased marrow area; (4) increased periosteal and corticoendosteal lamellar bone formation; (5) activated corticoendosteal lamellar and woven trabecular bone formation; and (6) activated intracortical bone remodeling. A new steady-state of increased tibial diaphyseal bone mass and elevated bone activities were observed from day 60 onward. The elevated bone mass level attained after 60 days of PGE2 treatment was maintained at 120 and 180 days. These observations indicate that the powerful anabolic effects of PGE2 will increase both periosteal and corticoendosteal bone mass and sustain the transient increase in bone mass with continuous daily administration of PGE2.

  10. Bone structure in two adult subjects with impaired minor spliceosome function resulting from RNU4ATAC mutations causing microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1).

    PubMed

    Krøigård, Anne Bruun; Frost, Morten; Larsen, Martin Jakob; Ousager, Lilian Bomme; Frederiksen, Anja Lisbeth

    2016-11-01

    Microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1), or Taybi-Linder syndrome is characterized by distinctive skeletal dysplasia, severe intrauterine and postnatal growth retardation, microcephaly, dysmorphic features, and neurological malformations. It is an autosomal recessive disorder caused by homozygous or compound heterozygous mutations in the RNU4ATAC gene resulting in impaired function of the minor spliceosome. Here, we present the first report on bone morphology, bone density and bone microstructure in two adult MOPD1 patients and applied radiographs, dual energy X-ray absorptiometry, high-resolution peripheral quantitative computed tomography and biochemical evaluation. The MOPD1 patients presented with short stature, low BMI but normal macroscopic bone configuration. Bone mineral density was low. Compared to Danish reference data, total bone area, cortical bone area, cortical thickness, total bone density, cortical bone density, trabecular bone density and trabecular bone volume per tissue volume (BV/TV) were all low. These findings may correlate to the short stature and low body weight of the MOPD1 patients. Our findings suggest that minor spliceosome malfunction may be associated with altered bone modelling. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. In situ accumulation of advanced glycation endproducts (AGEs) in bone matrix and its correlation with osteoclastic bone resorption.

    PubMed

    Dong, X Neil; Qin, An; Xu, Jiake; Wang, Xiaodu

    2011-08-01

    Advanced glycation end products (AGEs) have been observed to accumulate in bone with increasing age and may impose effects on bone resorption activities. However, the underlying mechanism of AGEs accumulation in bone is still poorly understood. In this study, human cortical bone specimens from young (31±6years old), middle-aged (51±3years old) and elderly (76±4years old) groups were examined to determine the spatial-temporal distribution of AGEs in bone matrix and its effect on bone resorption activities by directly culturing osteoclastic cells on bone slices. The results of this study indicated that the fluorescence intensity (excitation wave length 360nm and emission wave length 470±40nm) could be used to estimate the relative distribution of AGEs in bone (pentosidine as its marker) under an epifluorescence microscope. Using the fluorescence intensity as the relative measure of AGEs concentration, it was found that the concentration of AGEs varied with biological tissue ages, showing the greatest amount in the interstitial tissue, followed by the old osteons, and the least amount in newly formed osteons. In addition, AGEs accumulation was found to be dependent on donor ages, suggesting that the younger the donor the less AGEs were accumulated in the tissue. Most interestingly, AGEs accumulation appeared to initiate from the region of cement lines, and spread diffusively to the other parts as the tissue aged. Finally, it was observed that the bone resorption activities of osteoclasts were positively correlated with the in situ concentration of AGEs and such an effect was enhanced with increasing donor age. These findings may help elucidate the mechanism of AGEs accumulation in bone and its association with bone remodeling process. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. IN SITU ACCUMULATION OF ADVANCED GLYCATION ENDPRODUCTS (AGES) IN BONE MATRIX AND ITS CORRELATION WITH OSTEOCLASTIC BONE RESORPTION

    PubMed Central

    Dong, X. Neil; Qin, An; Xu, Jiake; Wang, Xiaodu

    2011-01-01

    Advanced glycation end products (AGEs) have been observed to accumulate in bone with increasing age and may impose effects on bone resorption activities. However, the underlying mechanism of AGEs accumulation in bone is still poorly understood. In this study, human cortical bone specimens from young (31±6 years old), middle-aged (51±3 years old) and elderly (76±4 years old) groups were examined to determine the spatial-temporal distribution of AGEs in bone matrix and its effect on bone resorption activities by directly culturing osteoclastic cells on bone slices. The results of this study indicated that the fluorescence intensity (excitation wave length 360 nm and emission wave length 470±40 nm) could be used to estimate the relative distribution of AGEs in bone (pentosidine as its marker) under an epifluorescence microscope. Using the fluorescence intensity as the relative measure of AGEs concentration, it was found that the concentration of AGEs varied with biological tissue ages, showing the greatest amount in the interstitial tissue, followed by the old osteons, and the least amount in newly formed osteons. In addition, AGEs accumulation was found to be dependent on donor ages, suggesting that the younger the donor the less AGEs were accumulated in the tissue. Most interestingly, AGEs accumulation appeared to initiate from the region of cement lines, and spread diffusively to the other parts as the tissue aged. Finally, it was observed that the bone resorption activities of osteoclasts were positively correlated with the in situ concentration of AGEs and such an effect was enhanced with increasing donor age. These findings may help elucidate the mechanism of AGEs accumulation in bone and its association with bone remodeling process. PMID:21530698

  13. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model.

    PubMed

    Bi, Lianxiang; Rahaman, Mohamed N; Day, Delbert E; Brown, Zackary; Samujh, Christopher; Liu, Xin; Mohammadkhah, Ali; Dusevich, Vladimir; Eick, J David; Bonewald, Lynda F

    2013-08-01

    Borate bioactive glasses are biocompatible and enhance new bone formation, but the effect of their microstructure on bone regeneration has received little attention. In this study scaffolds of borate bioactive glass (1393B3) with three different microstructures (trabecular, fibrous, and oriented) were compared for their capacity to regenerate bone in a rat calvarial defect model. 12weeks post-implantation the amount of new bone, mineralization, and blood vessel area in the scaffolds were evaluated using histomorphometric analysis and scanning electron microscopy. The amount of new bone formed was 33%, 23%, and 15%, respectively, of the total defect area for the trabecular, oriented, and fibrous microstructures. In comparison, the percent new bone formed in implants composed of silicate 45S5 bioactive glass particles (250-300μm) was 19%. Doping the borate glass with copper (0.4 wt.% CuO) had little effect on bone regeneration in the trabecular and oriented scaffolds, but significantly enhanced bone regeneration in the fibrous scaffolds (from 15 to 33%). The scaffolds were completely converted to hydroxyapatite within the 12week implantation. The amount of hydroxyapatite formed, 22%, 35%, and 48%, respectively, for the trabecular, oriented, and fibrous scaffolds, increased with increasing volume fraction of glass in the as-fabricated scaffold. Blood vessels infiltrated into all the scaffolds, but the trabecular scaffolds had a higher average blood vessel area compared with the oriented and fibrous scaffolds. While all three scaffold microstructures were effective in supporting bone regeneration, the trabecular scaffolds supported more bone formation and may be more promising in bone repair. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Endoscopically Assisted Drilling, Exposure of the Fundus through a Presigmoid Retrolabyrinthine Approach: A Cadaveric Feasibility Study.

    PubMed

    Muelleman, Thomas; Shew, Matthew; Alvi, Sameer; Shah, Kushal; Staecker, Hinrich; Chamoun, Roukouz; Lin, James

    2018-01-01

    The presigmoid retrolabyrinthine approach to the cerebellopontine angle is traditionally described to not provide access to the internal auditory canal (IAC). We aimed to evaluate the extent of the IAC that could be exposed with endoscopically assisted drilling and to measure the percentage of the IAC that could be visualized with the microscope and various endoscopes after drilling had been completed. Presigmoid retrolabyrinthine approaches were performed bilaterally on 4 fresh cadaveric heads. We performed endoscopically assisted drilling to expose the fundus of the IAC, which resulted in exposure of the entire IAC in 8 of 8 temporal bone specimens. The microscope afforded a mean view of 83% (n = 8) of the IAC. The 0°, 30°, 45°, and 70° endoscope each afforded a view of 100% of the IAC in 8 of 8 temporal bone specimens. In conclusion, endoscopic drilling of the IAC of can provide an extradural means of exposing the entire length of the IAC while preserving the labyrinth.

  15. Immunohistochemical localization of bone morphogenetic proteins and the receptors in epiphyseal growth plate.

    PubMed

    Yazaki, Y; Matsunaga, S; Onishi, T; Nagamine, T; Origuchi, N; Yamamoto, T; Ishidou, Y; Imamura, T; Sakou, T

    1998-01-01

    The expression of bone morphogenetic proteins (BMPs) and BMP receptors (BMPRs) in the epiphyseal growth plate has not been clarified. In this study, we studied immunohistochemically the spatial and temporal localization of BMP-2/4, osteogenic protein-1 (OP-1, or BMP-7), and BMP receptors (BMPR-IA, BMPR-IB, and BMPR-II) in the epiphyseal plate of growing rats. The proximal parts of tibia in growing rats were observed. At 12 weeks after birth, BMP-2/4 and OP-1 were expressed markedly in proliferating and maturing chondrocytes. BMPR-IA, IB and II were clearly co-expressed in proliferating and maturing chondrocytes, and the expression was decreased in hypertrophic chondrocytes. At 24 weeks, the expression of BMP-2/4 and OP-1 was decreased, but BMPRs were still well-expressed in proliferating chondrocytes. The temporal and spatial expression of BMP and BMPR suggests that BMP and BMP receptors play roles in the multistep cascade of enchondral ossification in the epiphyseal growth plate.

  16. Recurrent phosphaturic mesenchymal tumour of the temporal bone causing deafness and facial nerve palsy.

    PubMed

    Syed, M I; Chatzimichalis, M; Rössle, M; Huber, A M

    2012-07-01

    We describe the first reported case of a phosphaturic mesenchymal tumour, mixed connective tissue variant, invading the temporal bone. A female patient presented with increasing deafness. On examination there appeared to be a mass behind an intact tympanic membrane. Further radiological investigation showed a vascular mass occupying the middle ear, mastoid and internal auditory meatus. This was surgically resected and revealed to be a benign phosphaturic mesenchymal tumour, mixed connective tissue variant. The tumour recurred a year later, presenting as facial nerve palsy. A revision procedure was carried out; the tumour was excised with the sacrifice of a segment of the facial nerve, and a facial-hypoglossal nerve anastomosis was performed. This case report highlights the occurrence of this benign but sometimes aggressive tumour, of which both clinicians and pathologists should be aware. Early recognition of the condition remains of utmost importance to minimise the debilitating consequences of long-term osteomalacia in affected patients, and to prevent extracranial and intracranial complications caused by the tumour.

  17. A Downloadable Three-Dimensional Virtual Model of the Visible Ear

    PubMed Central

    Wang, Haobing; Merchant, Saumil N.; Sorensen, Mads S.

    2008-01-01

    Purpose To develop a three-dimensional (3-D) virtual model of a human temporal bone and surrounding structures. Methods A fresh-frozen human temporal bone was serially sectioned and digital images of the surface of the tissue block were recorded (the ‘Visible Ear’). The image stack was resampled at a final resolution of 50 × 50 × 50/100 µm/voxel, registered in custom software and segmented in PhotoShop® 7.0. The segmented image layers were imported into Amira® 3.1 to generate smooth polygonal surface models. Results The 3-D virtual model presents the structures of the middle, inner and outer ears in their surgically relevant surroundings. It is packaged within a cross-platform freeware, which allows for full rotation, visibility and transparency control, as well as the ability to slice the 3-D model open at any section. The appropriate raw image can be superimposed on the cleavage plane. The model can be downloaded at https://research.meei.harvard.edu/Otopathology/3dmodels/ PMID:17124433

  18. The Role of Genetic Drift in Shaping Modern Human Cranial Evolution: A Test Using Microevolutionary Modeling

    PubMed Central

    Smith, Heather F.

    2011-01-01

    The means by which various microevolutionary processes have acted in the past to produce patterns of cranial variation that characterize modern humans is not thoroughly understood. Applying a microevolutionary framework, within- and among-population variance/covariance (V/CV) structure was compared for several functional and developmental modules of the skull across a worldwide sample of modern humans. V/CV patterns in the basicranium, temporal bone, and face are proportional within and among groups, which is consistent with a hypothesis of neutral evolution; however, mandibular morphology deviated from this pattern. Degree of intergroup similarity in facial, temporal bone, and mandibular morphology is significantly correlated with geographic distance; however, much of the variance remains unexplained. These findings provide insight into the evolutionary history of modern human cranial variation by identifying signatures of genetic drift, gene flow, and migration and set the stage for inferences regarding selective pressures that early humans encountered since their initial migrations around the world. PMID:21461369

  19. Interactions between MSCs and Immune Cells: Implications for Bone Healing

    PubMed Central

    Kovach, Tracy K.; Dighe, Abhijit S.; Lobo, Peter I.; Cui, Quanjun

    2015-01-01

    It is estimated that, of the 7.9 million fractures sustained in the United States each year, 5% to 20% result in delayed or impaired healing requiring therapeutic intervention. Following fracture injury, there is an initial inflammatory response that plays a crucial role in bone healing; however, prolonged inflammation is inhibitory for fracture repair. The precise spatial and temporal impact of immune cells and their cytokines on fracture healing remains obscure. Some cytokines are reported to be proosteogenic while others inhibit bone healing. Cell-based therapy utilizing mesenchymal stromal cells (MSCs) is an attractive option for augmenting the fracture repair process. Osteoprogenitor MSCs not only differentiate into bone, but they also exert modulatory effects on immune cells via a variety of mechanisms. In this paper, we review the current literature on both in vitro and in vivo studies on the role of the immune system in fracture repair, the use of MSCs in the enhancement of fracture healing, and interactions between MSCs and immune cells. Insight into this paradigm can provide valuable clues in identifying cellular and noncellular targets that can potentially be modulated to enhance both natural bone healing and bone repair augmented by the exogenous addition of MSCs. PMID:26000315

  20. Two developmentally temporal quantitative trait loci underlie convergent evolution of increased branchial bone length in sticklebacks

    PubMed Central

    Erickson, Priscilla A.; Glazer, Andrew M.; Cleves, Phillip A.; Smith, Alyson S.; Miller, Craig T.

    2014-01-01

    In convergent evolution, similar phenotypes evolve repeatedly in independent populations, often reflecting adaptation to similar environments. Understanding whether convergent evolution proceeds via similar or different genetic and developmental mechanisms offers insight towards the repeatability and predictability of evolution. Oceanic populations of threespine stickleback fish, Gasterosteus aculeatus, have repeatedly colonized countless freshwater lakes and streams, where new diets lead to morphological adaptations related to feeding. Here, we show that heritable increases in branchial bone length have convergently evolved in two independently derived freshwater stickleback populations. In both populations, an increased bone growth rate in juveniles underlies the convergent adult phenotype, and one population also has a longer cartilage template. Using F2 crosses from these two freshwater populations, we show that two quantitative trait loci (QTL) control branchial bone length at distinct points in development. In both populations, a QTL on chromosome 21 controls bone length throughout juvenile development, and a QTL on chromosome 4 controls bone length only in adults. In addition to these similar developmental profiles, these QTL show similar chromosomal locations in both populations. Our results suggest that sticklebacks have convergently evolved longer branchial bones using similar genetic and developmental programmes in two independently derived populations. PMID:24966315

  1. MicroRNA Functions in Osteogenesis and Dysfunctions in Osteoporosis

    PubMed Central

    van Wijnen, Andre J.; van de Peppel, Jeroen; van Leeuwen, Johannes P.; Lian, Jane B.; Stein, Gary S.; Westendorf, Jennifer J.; Oursler, Merry-Jo; Sampen, Hee-Jeong Im; Taipaleenmaki, Hanna; Hesse, Eric; Riester, Scott; Kakar, Sanjeev

    2013-01-01

    MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression that control osteoblast mediated bone formation and osteoclast-related bone remodelling. Deregulation of miRNA mediated mechanisms is emerging as an important pathological factor in bone degeneration (e.g., osteoporosis) and other bone-related diseases. MiRNAs are intriguing regulatory molecules that are networked with cell signaling pathways and intricate transcriptional programs through ingenuous circuits with remarkably simple logic. This overview examines key principles by which miRNAs control differentiation of osteoblasts as they evolve from mesenchymal stromal cells during osteogenesis, or of osteoclasts as they originate from monocytic precursors in the hematopoietic lineage during osteoclastogenesis. Of particular note are miRNAs that are temporally up-regulated during osteoblastogenesis (e.g., miR-218) or osteoclastogenesis (e.g., miR-148a). Each miRNA stimulates differentiation by suppressing inhibitory signalling pathways (‘double-negative’ regulation). The excitement surrounding miRNAs in bone biology stems from the prominent effects that individual miRNAs can have on biological transitions during differentiation of skeletal cells and correlations of miRNA dysfunction with bone diseases. MiRNAs have significant clinical potential which is reflected by their versatility as disease-specific biomarkers and their promise as therapeutic agents to ameliorate or reverse bone tissue degeneration. PMID:23605904

  2. Low cortical bone density measured by computed tomography in children and adolescents with untreated hyperthyroidism.

    PubMed

    Numbenjapon, Nawaporn; Costin, Gertrude; Gilsanz, Vicente; Pitukcheewanont, Pisit

    2007-05-01

    To determine whether increased thyroid hormones levels have an effect on various bone components (cortical vs cancellous bone). The anthropometric and 3-dimensional quantitative computed tomography (CT) bone measurements, including bone density (BD), cross-sectional area (CSA) of the lumbar spine and femur, and cortical bone area (CBA) of the femur, of 18 children and adolescents with untreated hyperthyroidism were reviewed and compared with those of age-, sex-, and ethnicity-matched historical controls. No significant differences in height, weight, body mass index (BMI), or pubertal staging between patients and controls were found. Cortical BD was significantly lower (P < .001) in children and adolescents with hyperthyroidism compared with historical controls. After adjusting for weight and height, no difference in femur CSA between hyperthyroid children and historical controls was evident. No significant correlations among thyroid hormone levels, antithyroid antibody levels, and cortical BD values were found. As determined by CT, cortical bone is the preferential site of bone loss in children and adolescents with untreated hyperthyroidism.

  3. Infant milk feeding influences adult bone health: a prospective study from birth to 32 years.

    PubMed

    Pirilä, Satu; Taskinen, Mervi; Viljakainen, Heli; Kajosaari, Merja; Turanlahti, Maila; Saarinen-Pihkala, Ulla M; Mäkitie, Outi

    2011-04-27

    Peak bone mass, attained by early adulthood, is influenced by genetic and life-style factors. Early infant feeding and duration of breastfeeding in particular, associate with several health-related parameters in childhood. The aim of this study was to examine whether the effects of early infant feeding extend to peak bone mass and other bone health characteristics at adult age. A cohort of 158 adults (76 males) born in Helsinki, Finland, 1975, prospectively followed up from birth, underwent physical examination and bone densitometry to study bone area, bone mineral content (BMC), and bone mineral density (BMD) at 32 years of age. Life-style factors relevant for bone health were recorded. For data analysis the cohort was divided into three equal-size groups according to the total duration of breastfeeding (BF): Short (≤3 months), Intermediate and Prolonged (≥7 months) BF groups. In males short BF is associated with higher bone area, BMC, and BMD compared to longer BF. Males in the Short BF group had on average 4.7% higher whole body BMD than males in the Prolonged BF group. In multivariate analysis, after controlling for multiple confounding factors, the influence of BF duration on adult bone characteristics persisted in males. Differences between the three feeding groups were observed in lumbar spine bone area and BMC, and whole body BMD (MANCOVA; p = 0.025, p = 0.013, and p = 0.048, respectively), favoring the Short BF group. In women no differences were observed. In men, early infant milk feeding may have a significant impact on adult bone health. A potential explanation is that the calcium and phosphate contents were strikingly higher in formula milk and commercial cow milk/cow milk dilutions as opposed to human milk. Our novel finding merits further studies to determine means to ensure optimal bone mass development in infants with prolonged breastfeeding.

  4. Chronic, otogenic, epidural pneumatocoele with delayed mass effect: case report.

    PubMed

    Barbieri, F; Fiorino, F

    2010-05-01

    Mastoid hyperpneumatisation predisposes to intracranial pneumatocoele development, due to the risk of rupture of the thin, bony walls. Intracranial pneumatocoele may be precipitated by even minor head trauma or an abrupt change in middle-ear pressure, with the potential risk of infectious or compressive intracranial complications. A 19-year-old man with mastoid hyperpneumatisation developed a chronic intracranial-epidural pneumatocoele of traumatic origin in the right parieto-occipital area, in contiguity with the posterior mastoid cells. Eighteen months later, after a common cold, the patient developed signs of intracranial hypertension, due to the pneumatocoele spreading to the right epidural anterior fossa. A large right mastoidectomy extended to the retrosigmoid cells was performed, and a watertight seal applied over a large retrosigmoid cell using bovine pericardium and a mixture of bone powder and fibrin glue. The patient was discharged on post-operative day three with no symptoms. Ten days after surgery, computed tomography monitoring showed complete reabsorption of the pneumatocoele. In cases of chronic, otogenic, epidural pneumatocoele, the possibility of the sudden onset of serious complications suggests the need for early repair of the communication between the temporal bone and the intracranial compartments. Closure of the fistula using autogenic and/or allogenic materials is usually adequate to resolve the pneumatocoele.

  5. Bone marrow-derived cells participate in stromal remodeling of the lung following acute bacterial pneumonia in mice.

    PubMed

    Serikov, Vladimir B; Mikhaylov, Viatcheslav M; Krasnodembskay, Anna D; Matthay, Michael A

    2008-01-01

    Bone marrow-derived cells (BMDC) have been shown to graft injured tissues, differentiate in specialized cells, and participate in repair. The importance of these processes in acute lung bacterial inflammation and development of fibrosis is unknown. The goal of this study was to investigate the temporal sequence and lineage commitment of BMDC in mouse lungs injured by bacterial pneumonia. We transplanted GFP-tagged BMDC into 5-Gy-irradiated C57BL/6 mice. After 3 months of recovery, mice were subjected to LD(50) intratracheal instillation of live E. coli (controls received saline) which produced pneumonia and subsequent areas of fibrosis. Lungs were investigated by immunohistology for up to 6 months. At the peak of lung inflammation, the predominant influx of BMDC were GFP(+) leukocytes. Postinflammatory foci of lung fibrosis were evident after 1-2 months. The fibrotic foci in lung stroma contained clusters of GFP(+) CD45(+) cells, GFP(+) vimentin-positive cells, and GFP(+) collagen I-positive fibroblasts. GFP(+) endothelial or epithelial cells were not identified. These data suggest that following 5-Gy irradiation and acute bacterial pneumonia, BMDC may temporarily participate in lung postinflammatory repair and stromal remodeling without long-term engraftment as specialized endothelial or epithelial cells.

  6. Secondary osteons scale allometrically in mammalian humerus and femur

    PubMed Central

    Phillips, C.; Cornish, H.; Cooke, M.; Hutchinson, J. R.; Doube, M.

    2017-01-01

    Intra-cortical bone remodelling is a cell-driven process that replaces existing bone tissue with new bone tissue in the bone cortex, leaving behind histological features called secondary osteons. While the scaling of bone dimensions on a macroscopic scale is well known, less is known about how the spatial dimensions of secondary osteons vary in relation to the adult body size of the species. We measured the cross-sectional area of individual intact secondary osteons and their central Haversian canals in transverse sections from 40 stylopodal bones of 39 mammalian species (body mass 0.3–21 000 kg). Scaling analysis of our data shows that mean osteonal resorption area (negative allometry, exponent 0.23,R2 0.54,p<0.005) and Haversian canal area (negative allometry, exponent 0.31,R2 0.45,p<0.005) are significantly related to body mass, independent of phylogeny. This study is the most comprehensive of its kind to date, and allows us to describe overall trends in the scaling behaviour of secondary osteon dimensions, supporting the inference that the osteonal resorption area may be limited by the need to avoid fracture in smaller mammalian species, but the need to maintain osteocyte viability in larger mammalian species. PMID:29291052

  7. Identifying food deserts and swamps based on relative healthy food access: a spatio-temporal Bayesian approach.

    PubMed

    Luan, Hui; Law, Jane; Quick, Matthew

    2015-12-30

    Obesity and other adverse health outcomes are influenced by individual- and neighbourhood-scale risk factors, including the food environment. At the small-area scale, past research has analysed spatial patterns of food environments for one time period, overlooking how food environments change over time. Further, past research has infrequently analysed relative healthy food access (RHFA), a measure that is more representative of food purchasing and consumption behaviours than absolute outlet density. This research applies a Bayesian hierarchical model to analyse the spatio-temporal patterns of RHFA in the Region of Waterloo, Canada, from 2011 to 2014 at the small-area level. RHFA is calculated as the proportion of healthy food outlets (healthy outlets/healthy + unhealthy outlets) within 4-km from each small-area. This model measures spatial autocorrelation of RHFA, temporal trend of RHFA for the study region, and spatio-temporal trends of RHFA for small-areas. For the study region, a significant decreasing trend in RHFA is observed (-0.024), suggesting that food swamps have become more prevalent during the study period. For small-areas, significant decreasing temporal trends in RHFA were observed for all small-areas. Specific small-areas located in south Waterloo, north Kitchener, and southeast Cambridge exhibited the steepest decreasing spatio-temporal trends and are classified as spatio-temporal food swamps. This research demonstrates a Bayesian spatio-temporal modelling approach to analyse RHFA at the small-area scale. Results suggest that food swamps are more prevalent than food deserts in the Region of Waterloo. Analysing spatio-temporal trends of RHFA improves understanding of local food environment, highlighting specific small-areas where policies should be targeted to increase RHFA and reduce risk factors of adverse health outcomes such as obesity.

  8. An unusual case of cerebral penetrating injury by a driven bone fragment secondary to blunt head trauma.

    PubMed

    Lee, Jae Il; Ko, Jun Kyeung; Cha, Seung Heon; Han, In Ho

    2011-12-01

    Temple trauma that appears initially localized to the skin might possess intracranial complications. Early diagnosis and management of such complications are important, to avoid neurologic sequelae. Non-penetrating head injuries with intracranial hemorrhage caused by a driven bone fragment are extremely rare. A 53-year-old male was referred to our hospital because of intracerebral hemorrhage. He was a mechanic and one day before admission to a local clinic, tip of metallic rod hit his right temple while cutting the rod. Initial brain computed tomography (CT) and magnetic resonance imaging demonstrated scanty subdural hematoma at right temporal lobe and left falx and intracerebral hematoma at both frontal lobes. Facial CT with 3-D reconstruction images showed a small bony defect at the right sphenoid bone's greater wing and a small bone fragment at the left frontal lobe, crossing the falx. We present the unusual case of a temple trauma patient in whom a sphenoid bone fragment migrated from its origin upward, to the contralateral frontal lobe, producing hematoma along its trajectory.

  9. Knee loading inhibits osteoclast lineage in a mouse model of osteoarthritis

    PubMed Central

    Li, Xinle; Yang, Jing; Liu, Daquan; Li, Jie; Niu, Kaijun; Feng, Shiqing; Yokota, Hiroki; Zhang, Ping

    2016-01-01

    Osteoarthritis (OA) is a whole joint disorder that involves cartilage degradation and periarticular bone response. Changes of cartilage and subchondral bone are associated with development and activity of osteoclasts from subchondral bone. Knee loading promotes bone formation, but its effects on OA have not been well investigated. Here, we hypothesized that knee loading regulates subchondral bone remodeling by suppressing osteoclast development, and prevents degradation of cartilage through crosstalk of bone-cartilage in osteoarthritic mice. Surgery-induced mouse model of OA was used. Two weeks application of daily dynamic knee loading significantly reduced OARSI scores and CC/TAC (calcified cartilage to total articular cartilage), but increased SBP (subchondral bone plate) and B.Ar/T.Ar (trabecular bone area to total tissue area). Bone resorption of osteoclasts from subchondral bone and the differentiation of osteoclasts from bone marrow-derived cells were completely suppressed by knee loading. The osteoclast activity was positively correlated with OARSI scores and negatively correlated with SBP and B.Ar/T.Ar. Furthermore, knee loading exerted protective effects by suppressing osteoclastogenesis through Wnt signaling. Overall, osteoclast lineage is the hyper responsiveness of knee loading in osteoarthritic mice. Mechanical stimulation prevents OA-induced cartilage degeneration through crosstalk with subchondral bone. Knee loading might be a new potential therapy for osteoarthritis patients. PMID:27087498

  10. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation.

    PubMed

    Kang, Sung-Won; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Kim, Tae-Il; Yi, Won-Jin

    2015-03-01

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

  11. TH-CD-202-04: Evaluation of Virtual Non-Contrast Images From a Novel Split-Filter Dual-Energy CT Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J; Szczykutowicz, T; Bayouth, J

    Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between themore » acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials necessitate consideration for radiation therapy treatment planning.« less

  12. Methods for intraoperative, sterile pose-setting of patient-specific microstereotactic frames

    NASA Astrophysics Data System (ADS)

    Vollmann, Benjamin; Müller, Samuel; Kundrat, Dennis; Ortmaier, Tobias; Kahrs, Lüder A.

    2015-03-01

    This work proposes new methods for a microstereotactic frame based on bone cement fixation. Microstereotactic frames are under investigation for minimal invasive temporal bone surgery, e.g. cochlear implantation, or for deep brain stimulation, where products are already on the market. The correct pose of the microstereotactic frame is either adjusted outside or inside the operating room and the frame is used for e.g. drill or electrode guidance. We present a patientspecific, disposable frame that allows intraoperative, sterile pose-setting. Key idea of our approach is bone cement between two plates that cures while the plates are positioned with a mechatronics system in the desired pose. This paper includes new designs of microstereotactic frames, a system for alignment and first measurements to analyze accuracy and applicable load.

  13. Clinical use of vestibular evoked myogenic potentials in the evaluation of patients with air-bone gaps.

    PubMed

    Zhou, Guangwei; Poe, Dennis; Gopen, Quinton

    2012-10-01

    To determine the value of vestibular evoked myogenic potential (VEMP) test in clinical evaluation of air-bone gaps. Retrospective case review. Tertiary referral center. A total of 120 patients underwent VEMP testing during clinical investigation of significant air-bone gaps in their audiograms. Otologic examination and surgeries, high-resolution computerized tomography (CT), air and bone audiometry, tympanometry, acoustic reflex, and VEMP test. Imaging studies demonstrating structural anomalies in the temporal bone. Audiologic outcomes of air-bone gaps and VEMP thresholds. Surgical findings confirming imaging results. Middle ear pathologies, such as otosclerosis and chronic otitis media, were identified in 50 patients, and all of them had absent VEMP responses elicited by air-conduction stimuli. Moreover, 13 of them had successful middle ear surgeries with closures of the air-bone gaps. Abnormally low VEMP thresholds were found in 71 of 73 ears with inner ear anomalies, such as semicircular canal dehiscence and enlarged vestibular aqueduct. Seven patients with superior semicircular canal dehiscence underwent plugging procedure via middle fossa approach, and VEMP thresholds became normalized after the surgery in 3 of them. VEMP test failed to provide accurate diagnosis in only 3 cases. Air-bone gaps may be a result of various otologic pathologies, and the VEMP test is useful during clinical evaluation, better than tympanometry and acoustic reflexes. To avoid unnecessary middle ear surgery for air-bone gaps with unknown or unsure cause, VEMP test should be used in the differential diagnosis before an expensive imaging study.

  14. Age-Related Effects of Advanced Glycation End Products (Ages) in Bone Matrix on Osteoclastic Resorption.

    PubMed

    Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2015-12-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.

  15. Associations of muscle force, power, cross-sectional muscle area and bone geometry in older UK men.

    PubMed

    Zengin, Ayse; Pye, Stephen R; Cook, Michael J; Adams, Judith E; Rawer, Rainer; Wu, Frederick C W; O'Neill, Terence W; Ward, Kate A

    2017-08-01

    Ageing is associated with sarcopenia, osteoporosis, and increased fall risk, all of which contribute to increased fracture risk. Mechanically, bone strength adapts in response to forces created by muscle contractions. Adaptations can be through changes in bone size, geometry, and bending strength. Muscle mass is often used as a surrogate for muscle force; however, force can be increased without changes in muscle mass. Increased fall risk with ageing has been associated with a decline in muscle power-which is a measure of mobility. The aims of this study were as follows: (i) to investigate the relationship between muscle parameters in the upper and lower limbs with age in UK men and the influence of ethnicity on these relationships; (ii) to examine the relationships between jump force/grip strength/cross-sectional muscle area (CSMA) with bone outcomes at the radius and tibia. White European, Black Afro-Caribbean, and South Asian men aged 40-79 years were recruited from Manchester, UK. Cortical bone mineral content, cross-sectional area, cortical area, cross-sectional moment of inertia, and CSMA were measured at the diaphysis of the radius and tibia using peripheral quantitative computed tomography. Lower limb jump force and power were measured from a single two-legged jump performed on a ground-reaction force platform. Grip strength was measured using a dynamometer. Associations between muscle and bone outcomes was determined using linear regression with adjustments for age, height, weight, and ethnicity. Three hundred and one men were recruited. Jump force was negatively associated with age; for every 10 year increase in age, there was a 4% reduction in jump force (P < 0.0001). There was a significant age-ethnicity interaction for jump power (P = 0.039); after adjustments, this was attenuated (P = 0.088). For every 10 year increase in age, grip strength decreased by 11%. Jump force was positively associated with tibial bone outcomes: a 1 standard deviation greater jump force was associated with significantly higher cortical bone mineral content 3.1%, cross-sectional area 4.2%, cortical area 3.4%, and cross-sectional moment of inertia 6.8% (all P < 0.001). Cross-sectional muscle area of the lower leg was not associated with tibial bone outcomes. Both grip strength and CSMA of the arm were positively associated, to a similar extent, with radius diaphyseal bone outcomes. Jump force and power are negatively associated with age in UK men. In the lower limb, the measurement of jump force is more strongly related to bone outcomes than CSMA. It is important to consider jump force and power when understanding the aetiology of bone loss and mobility in ageing men. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  16. Augmentation of intramembranous bone in rabbit calvaria using an occlusive barrier in combination with demineralized bone matrix (DBM): a pilot study.

    PubMed

    Beltrán, Víctor; Engelke, Wilfried; Prieto, Ruth; Valdivia-Gandur, Iván; Navarro, Pablo; Manzanares, María Cristina; Borie, Eduardo; Fuentes, Ramón

    2014-01-01

    The aim of this study was to histologically evaluate the performance of demineralized bone matrix (DBM) when compared with a blood clot in addition to an occlusive barrier in the bone regeneration process for bone defects in a rabbit model. Prefabricated metallic capsules with 4.5 mm and 3.5 mm dimensions were placed in five adult rabbit skulls. At the right side, the capsule was filled with DBM, and the clot was located on the left side. The barriers were supplied with a 0.5 mm horizontal peripheral flap and a vertical edge, fitting tightly into a circular slit prepared by a trephine in the skull. After a healing period of three months, the animals were sacrificed, and the samples were prepared for histological and histomorphometric analyses after capsule removal. Trabecular and medullar bone percentages were calculated from the different areas of the newly formed bone inside the metallic barriers, and non-parametric statistical analysis was used to describe the findings. The results showed a complete filling of newly formed bone inside the capsules of both groups. Less mature bone tissue was observed in the upper third of all samples, and a higher trabecular area was observed in the samples with DBM. The use of barriers resulted in the augmentation of newly formed bone in a three-month period. However, a higher trabecular area was observed in the barriers filled with DBM. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  17. Aging changes in the bones - muscles - joints

    MedlinePlus

    ... ency/article/004015.htm Aging changes in the bones - muscles - joints To use the sharing features on ... to the body. Joints are the areas where bones come together. They allow the skeleton to be ...

  18. Comparisons of bone mineral density and bone quality in adult rock climbers, resistance-trained men, and untrained men.

    PubMed

    Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A

    2010-09-01

    The nature of muscular contractions and episodes of impact loading during technical rock climbing are often varied and complex, and the resulting effects on bone health are unclear. The purpose of this study was to compare total body, lumbar spine, proximal femur, and forearm areal bone mineral density (aBMD) and tibia and forearm bone quality in male rock climbers (RC) (n = 15), resistance trained men (RT) (n = 16), and untrained male controls (CTR) (n = 16). Total body, anteroposterior (AP) lumbar spine, proximal femur, and forearm aBMD and body composition were measured using dual-energy X-ray absorptiometry (DXA) (Lunar Prodigy, v. 10.50.086; GE Healthcare, Waukesha, Wisconsin, U.S.A.). Volumetric BMD (vBMD), bone content, bone area, and muscle cross-sectional area (MCSA) of the tibia and forearm were measured using pQCT (peripheral quantitative computed tomography; Stratec XCT 3000, Pforzheim, Germany). No significant group differences were seen in bone-free lean body mass. CTR had significantly (p < 0.05) greater body fat % than RC and RT and significantly (p < 0.05) greater fat mass than RC. Lumbar spine and femoral neck aBMD were significantly (p < 0.05) greater in RT compared to both RC and CTR. RC had significantly (p < 0.05) lower aBMD at the 33% radius site than CTR. Forearm MCSA was significantly (p < 0.05) lower in CTR than in the other groups. No significant differences were seen between groups for vBMD or bone area of the tibia and forearm. In conclusion, resistance-trained men had higher bone density at the central skeletal sites than rock climbers; however, bone quality variables of the peripheral limbs were similar in rock climber and resistance-trained groups.

  19. Relation of adrenal-derived steroids with bone maturation, mineral density and geometry in healthy prepubertal and early pubertal boys.

    PubMed

    Vandewalle, S; Taes, Y; Fiers, T; Toye, K; Van Caenegem, E; Kaufman, J-M; De Schepper, J

    2014-12-01

    Little is known about the effects of adrenal steroids on skeletal maturation and bone mass acquisition in healthy prepubertal boys. To study whether adrenal-derived steroids within the physiological range are associated with skeletal maturation, areal and volumetric bone mineral density (aBMD and vBMD) and bone geometry in healthy prepubertal and early pubertal boys. 98 healthy prepubertal and early pubertal boys (aged 6-14 y) were studied cross-sectionally. Androstenedione (A) and estrone (E1) were determined by liquid chromatography tandem mass spectrometry and DHEAS was determined by immunoassay. Whole body and lumbar spine aBMD and bone area were determined by dual-energy X-ray absorptiometry. Trabecular (distal site) and cortical (proximal site) vBMD and bone geometry were assessed at the non-dominant forearm and leg using peripheral QCT. Skeletal age was determined by X-ray of the left hand. Adrenal-derived steroids (DHEAS, A and E1) are positively associated with bone age in prepubertal and early pubertal children, independently of age. There are no associations between the adrenal-derived steroids and the studied parameters of bone size (lumbar spine and whole body bone area, trabecular or cortical area at the radius or tibia, periosteal circumference and cortical thickness at the radius or tibia) or BMD (aBMD or vBMD). In healthy prepubertal and early pubertal boys, serum adrenal-derived steroid levels, are associated with skeletal maturation, independently of age, but not with bone size or (v)BMD. Our data suggest that adrenal derived steroids are not implicated in the accretion of bone mass before puberty in boys. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Prediction of low bone mass using a combinational approach of cortical and trabecular bone measures from dental panoramic radiographs.

    PubMed

    Kathirvelu, D; Anburajan, M

    2014-09-01

    The aim of this study is to extract cortical and trabecular features of the mandible and to develop a novel combinational model of mandibular cortical thickness, trabecular bone area and age in order to predict low bone mineral density or osteoporosis from a dental panoramic radiograph. The study involved 64 south Indian women (age = 52.5 ± 12.7 years) categorised into two groups (normal and low bone mineral density) based on total femur bone mineral density. The dental panoramic radiographs were obtained by a digital scanner, and measurement of total bone mineral density at the right femur was performed by a dual-energy X-ray absorptiometry scanner. The mandibular cortical thickness and panoramic mandibular index were measured bilaterally, and the mean values were considered. The region of interest of 128 × 128 pixels around the mental foramen region was manually cropped and subjected to pre-processing, normalisation and average threshold-based segmentation to determine trabecular bone area. Multiple linear regression analyses of cortical and trabecular measures along with age were performed to develop a combinational model to classify subjects as normal and low bone mineral density. The proposed approach demonstrated strong correlation (r = 0.76; p < 0.01) against the total bone mineral density and resulted in accuracy, sensitivity and positive predictive values of 0.84, 0.92 and 0.85, respectively; the receiver operating characteristic outcomes disclosed that the area under the curve was 0.89.Our results suggest that the proposed combinational model could be useful to diagnose subjects with low bone mineral density. © IMechE 2014.

  1. Vertical osteoconductivity of sputtered hydroxyapatite-coated mini titanium implants after dura mater elevation: Rabbit calvarial model.

    PubMed

    Wang, Xin; Zakaria, Osama; Madi, Marwa; Kasugai, Shohei

    2015-01-01

    This study evaluated the quantity and quality of newly formed vertical bone induced by sputtered hydroxyapatite-coated titanium implants compared with sandblasted acid-etched implants after dura mater elevation. Hydroxyapatite-coated and non-coated implants (n = 20/group) were used and divided equally into two groups. All implants were randomly placed into rabbit calvarial bone (four implants for each animal) emerging from the inferior cortical layer, displacing the dura mater 3 mm below the original bone. Animals were sacrificed at 4 (n = 5) and 8 (n = 5) weeks post-surgery. Vertical bone height and area were analyzed histologically and radiographically below the original bone. Vertical bone formation was observed in both groups. At 4 and 8 weeks, vertical bone height reached a significantly higher level in the hydroxyapatite compared with the non-coated group (p < 0.05). Vertical bone area was significantly larger in the hydroxyapatite compared with the non-coated group at 4 and 8 weeks (p < 0.05). This study indicates that vertical bone formation can be induced by dura mater elevation and sputtered hydroxyapatite coating can enhance vertical bone formation.

  2. Adolescent exercise associated with long-term superior measures of bone geometry: a cross-sectional DXA and MRI study.

    PubMed

    Kato, T; Yamashita, T; Mizutani, S; Honda, A; Matumoto, M; Umemura, Y

    2009-12-01

    To investigate whether childhood sports participation, particularly weight-bearing sports, has any effect on bone mineral content (BMC), areal bone mineral density (aBMD) and bone geometric characteristics in middle-aged postmenopausal women. Design/ In this cross-sectional comparison of two groups, 46 middle-aged women (mean age, 60.2 (SD 5.6) years; range, 52-73 years) were grouped according to sport participation during growth: weight-bearing sports, including high-impact weight-bearing activities; and low-impact non-weight-bearing sports or no participation. Dual energy X-ray absorptiometry (DXA)-measured BMC, aBMD in the lumbar spine and femur. Magnetic resonance imaging (MRI) determined bone geometric characteristics in the femur, such as femoral mid-diaphyseal cross-sectional area, periosteal and endosteal perimeters and maximum and minimum second moment of area. Postmenopausal middle-aged women with participation in weight-bearing sports during junior high to high school (12-18 years old) displayed significantly greater BMC in both lumbar spine and femoral neck regions, and also significantly greater femoral mid-diaphyseal bone cross-sectional area, periosteal perimeter and maximum and minimum second moment of area than the non-weight-bearing sports group. Adolescent weight-bearing exercise exerts preservational effects on femoral mid-diaphyseal size and shape, while DXA-measured BMC effectively identified the same tendency. Weight-bearing exercise in youth affects bone, and these effects may be preserved as BMC, geometric and structural advantages even after 40 years.

  3. Pressure injury prediction using diffusely scattered light

    NASA Astrophysics Data System (ADS)

    Diaz, David; Lafontant, Alec; Neidrauer, Michael; Weingarten, Michael S.; DiMaria-Ghalili, Rose Ann; Scruggs, Ericka; Rece, Julianne; Fried, Guy W.; Kuzmin, Vladimir L.; Zubkov, Leonid

    2017-02-01

    Pressure injuries (PIs) originate beneath the surface of the skin at the interface between bone and soft tissue. We used diffuse correlation spectroscopy (DCS) and diffuse near-infrared spectroscopy (DNIRS) to predict the development of PIs by measuring dermal and subcutaneous red cell motion and optical absorption and scattering properties in 11 spinal cord injury subjects with only nonbleachable redness in the sacrococcygeal area in a rehabilitation hospital and 20 healthy volunteers. A custom optical probe was developed to obtain continuous DCS and DNIRS data from sacrococcygeal tissue while the subjects were placed in supine and lateral positions to apply pressure from body weight and to release pressure, respectively. Rehabilitation patients were measured up to four times over a two-week period. Three rehabilitation patients developed open PIs (POs) within four weeks and eight patients did not (PNOs). Temporal correlation functions in the area of redness were significantly different (p<0.01) during both baseline and applied pressure stages for POs and PNOs. The results show that our optical method may be used for the early prediction of ulcer progression.

  4. Single versus triple daily activation of the distractor: no significant effects of frequency of distraction on bone regenerate quantity and architecture.

    PubMed

    Djasim, Urville Mardijanto; Wolvius, Eppo Bonne; Van Neck, Johan Wilhelm; Van Wamel, Annemieke; Weinans, Harrie; Van Der Wal, Karel George Hendrik

    2008-04-01

    To study the effect of two different frequencies of distraction on the quantity and architecture of bone regenerate using micro-computed tomography, and to determine whether radiographic and ultrasonographic bone-fill scores provide reliable predictive value for the amount of new bone in the distraction area. Twenty-six skeletally mature rabbits underwent three full days of latency, after which midface distraction was started. Low-frequency group (n=12): a distraction rate of 0.9 mm/d achieved by one daily activation for 11 days to create a 10mm distraction gap. High-frequency group (n=12): idem, but three daily activations were used instead of one. Control group (n=2) underwent no distraction. After 21 days of consolidation, bone-fill in the distraction area was assessed by means of ultrasonography and radiography. Micro-computed tomography was used to quantify new bone formation and bone architecture. Relative bone volume (BV/TV) showed a tendency towards a difference (P=0.09) between the low and high-frequency groups. No significant differences were found for bone architecture. No significant correlation between BV/TV values and bone-fill scores was found. An increase in rhythm from one to three activations daily does not create significantly more bone. Bone-fill score values provided no reliable predictive value for the amount of new bone formation.

  5. Phylogenetic patterns and correlation of key structures for jumping: bone crests and cross-sectional areas of muscles in Leptodactylus (Anura, Leptodactylidae).

    PubMed

    Ponssa, María Laura; Fratani, Jéssica; Abdala, Virginia

    2018-05-01

    Anurans are characterized by their saltatory mode of locomotion, which is associated with a specific morphology. The coordinated action of the muscles and bones of the pelvic girdle is key to the transmission of the force of the hindlimbs to the axial skeleton during jumping. Two features are critical for optimal locomotory performance: the cross-sectional area of muscle and the bone crest attachment sites. The first character is a proxy of the force exerted by the muscle, whereas the crests are muscle attachments sites related to muscle force. The provisory relationship between these features has previously been identified and bone crest size can be used to infer the magnitude and, therefore, muscle force in fossils records. In this work, we explore the correlation between the cross-sectional area of essential muscles to the jumping mechanism (longissimus dorsi, extensor iliotibialis B, tenuissimus, puboischiofemoralis internus B, coccygeo-sacralis and coccygeo-iliacus) and the bone crests where these muscles are inserted (dorsal tubercle, dorsal crest and urostylar crest) in species of the genus Leptodactylus. This genus, along with other leptodactylids, exhibits a diversity of locomotor modes, including jumping, hopping, swimming and burrowing. We therefore analyzed the morphometric variation in the two features, cross-sectional area and bone crest area, expecting a correlation with different locomotor types. Our results showed: (i) a correlation between the urostylar crest and the cross-sectional area of the related muscles; (ii) that the bone crest surface area of urostyle and ilium and the cross-sectional area of the corresponding muscles can be utilized to infer locomotor faculties in leptodactylid frogs; and (iii) that the evolution of both characters demonstrates a general tendency from lower values in leptodactylid ancestors to higher values in the Leptodactylus genus. The results attest to the importance of the comparison of current ecological and phylogenetic analogues as they allow us to infer functionality and behavior in fossil and extant groups based on skeletal evidence. Phylogenetic patterns in character evolution and their correlation with locomotory types could imply that functional restrictions are also inherited in leptodactylid. © 2018 Anatomical Society.

  6. Modifying the osteoblastic niche with zoledronic acid in vivo—Potential implications for breast cancer bone metastasis

    PubMed Central

    Haider, Marie-Therese; Holen, Ingunn; Dear, T. Neil; Hunter, Keith; Brown, Hannah K.

    2014-01-01

    Introduction Bone metastasis is the most common complication of advanced breast cancer. The associated cancer-induced bone disease is treated with bone-sparing agents like zoledronic acid. Clinical trials have shown that zoledronic acid also reduces breast cancer recurrence in bone; potentially by modifying the bone microenvironment surrounding disseminated tumour cells. We have characterised the early effects of zoledronic acid on key cell types of the metastatic niche in vivo, and investigated how these modify the location of breast tumour cells homing to bone. Methods Female mice were treated with a single, clinically achievable dose of zoledronic acid (100 μg/kg) or PBS. Bone integrity, osteoclast and osteoblast activity and number/mm trabecular bone on 1, 3, 5 and 10 days after treatment were assessed using μCT, ELISA (TRAP, PINP) and bone histomorphometry, respectively. The effect of zoledronic acid on osteoblasts was validated in genetically engineered mice with GFP-positive osteoblastic cells. The effects on growth plate cartilage were visualised by toluidine blue staining. For tumour studies, mice were injected i.c. with DID-labelled MDA-MB-231-NW1-luc2 breast cancer cells 5 days after zoledronic acid treatment, followed by assessment of tumour cell homing to bone and soft tissues by multiphoton microscopy, flow cytometry and ex vivo cultures. Results As early as 3 days after treatment, animals receiving zoledronic acid had significantly increased trabecular bone volume vs. control. This rapid bone effect was reflected in a significant reduction in osteoclast and osteoblast number/mm trabecular bone and reduced bone marker serum levels (day 3–5). These results were confirmed in mice expressing GFP in osteoblastic linage cells. Pre-treatment with zoledronic acid caused accumulation of an extra-cellular matrix in the growth plate associated with a trend towards preferential [1] homing of tumour cells to osteoblast-rich areas of bone, but without affecting the total number of tumour cells. The number of circulating tumour cells was reduced in ZOL treated animals. Conclusion A single dose of zoledronic acid caused significant changes in the bone area suggested to contain the metastatic niche. Tumour cells arriving in this modified bone microenvironment appeared to preferentially locate to osteoblast-rich areas, supporting that osteoblasts may be key components of the bone metastasis niche and therefore a potential therapeutic target in breast cancer. PMID:24971713

  7. Secondary Alveolar Bone Grafting in Patients Born With Unilateral Cleft Lip and Palate: A 20-Year Follow-up.

    PubMed

    Jabbari, Fatemeh; Wiklander, Laila; Reiser, Erika; Thor, Andreas; Hakelius, Malin; Nowinski, Daniel

    2018-02-01

    To identify factors of oral health important for the final outcome, after secondary alveolar bone grafting in patients born with unilateral cleft lip and palate and compare occlusal radiographs with cone beam computed tomography (CBCT) in assessment of alveolar bone height. Observational follow-up study. Cleft Lip and Palate Team, Craniofacial Center, Uppsala University Hospital, Sweden. 40 nonsyndromic, Caucasian patients with unilateral complete cleft lip and palate. Clinical examination, CBCT, and occlusal radiographs. Alveolar bone height was evaluated according to Bergland index at a 20-year follow-up. The alveolar bone height in the cleft area was significantly reduced compared to a previously reported 10-year follow-up in the same cohort by total ( P = .045) and by subgroup with dental restoration ( P = .0078). This was positively correlated with the gingival bleeding index (GBI) ( r = 0.51, P = .0008) and presence of dental restorations in the cleft area ( r = 0.45, P = .0170). There was no difference in the Bergland index generated from scoring the alveolar bone height on occlusal radiographs as with the equivalent index on CBCT. Patients rehabilitated with complex dental restoration seems to be at higher risk for progression of bone loss in the cleft area. Supportive periodontal therapy should be implemented after complex dental restorations in cleft patients. Conventional occlusal radiographs provide an adequate image for evaluating postoperative bone height in clinical follow-up.

  8. Inhibitory effects of a bisphosphonate (risedronate) on experimental periodontitis in rats.

    PubMed

    Shoji, K; Horiuchi, H; Shinoda, H

    1995-07-01

    The present study was designed to examine whether systemic administration of a bisphosphonate, risedronate, could prevent alveolar bone resorption in rats with experimental periodontitis. On Day 1, an elastic ring was placed around the neck of the right mandibular 1st molar to induce inflammatory periodontitis. The animals were given daily injections of either 0.9% NaCl (control group), or 0.8, 1.6 or 3.2 mumoles/kg (s.c.) of risedronate (experimental groups) from Days 1 to 7, and were killed on Day 8. Histological examinations and determination of bone mineral density in the interdental area between the 1st and 2nd molars with an image analyzer revealed that the presence of the elastic ring induced a loss of attachment and bone resorption in the control group. Vigorous bone resorption, with appearance of a large number of osteoclasts, was observed in the interdental and bifurcation areas. In the experimental groups, however, the resorption of alveolar bone and the loss of bone mineral content in these areas were prevented in a dose-dependent fashion, especially at doses of 1.6 and 3.2 mumoles/kg. Many osteoclasts were detached from the surface of the alveolar bone and had degenerated appearances, such as rounded shapes, loss of polarity and pyknosis. These results suggest that administration of risedronate is effective in preventing bone resorption in periodontitis.

  9. Cochlear anatomy using micro computed tomography (μCT) imaging

    NASA Astrophysics Data System (ADS)

    Kim, Namkeun; Yoon, Yongjin; Steele, Charles; Puria, Sunil

    2008-02-01

    A novel micro computed tomography (μCT) image processing method was implemented to measure anatomical features of the gerbil and chinchilla cochleas, taking into account the bent modailosis axis. Measurements were made of the scala vestibule (SV) area, the scala tympani (SV) area, and the basilar membrane (BM) width using prepared cadaveric temporal bones. 3-D cochlear structures were obtained from the scanned images using a process described in this study. It was necessary to consider the sharp curvature of mododailosis axis near the basal region. The SV and ST areas were calculated from the μCT reconstructions and compared with existing data obtained by Magnetic Resonance Microscopy (MRM), showing both qualitative and quantitative agreement. In addition to this, the width of the BM, which is the distance between the primary and secondary osseous spiral laminae, is calculated for the two animals and compared with previous data from the MRM method. For the gerbil cochlea, which does not have much cartilage in the osseous spiral lamina, the μCT-based BM width measurements show good agreement with previous data. The chinchilla BM, which contains more cartilage in the osseous spiral lamina than the gerbil, shows a large difference in the BM widths between the μCT and MRM methods. The SV area, ST area, and BM width measurements from this study can be used in building an anatomically based mathematical cochlear model.

  10. Effects of bovine lactoferrin in surgically created bone defects on bone regeneration around implants.

    PubMed

    Görmez, Ulaş; Kürkcü, Mehmet; E Benlidayi, Mehmet; Ulubayram, Kezban; Sertdemir, Yaşar; Dağlioğlu, Kenan

    2015-03-01

    The aim of this experimental study was to evaluate the effect of bovine lactoferrin (bLF)-loaded gelatin microspheres (GM) used in combination with anorganic bovine bone on bone regeneration in surgically created bone defects around tooth implants. Twenty-four uniform bone defects were created in the frontal bone via an extraoral approach in 12 domestic pigs. Twenty-four implants were placed at the center of the defects. In eight animals one of these defects was filled with 0.3 mL anorganic bovine bone while the other was left empty. In four animals, all defects were filled with 3 mg/defect bLF-loaded GM and anorganic bovine bone. All the defects were covered with collagen membranes. All animals were sacrificed after 10 weeks of healing, and the implants with the surrounding bone defects were removed en bloc. Undecalcified sections were prepared for histomorphometric analysis. The mean total area of hard tissue was 26.9 ± 6.0% in the empty defect group, 31.8 ± 8.4% in the graft group, and 47.6 ± 5.0% in the lactoferrin group (P < 0.001). The mean area of newly formed bone was 26.9 ± 6.0% in the empty defect group, 22.4 ± 8.2% in the graft group, and 46.1 ± 5.1% in the lactoferrin group (P < 0.001). The mean residual graft area was 9.4 ± 3.2% in the graft group and 1.5 ± 0.6% in the lactoferrin group (P < 0.001). The mean proportion of bone-implant contact in the defect region was 21.9 ± 8.4% in the empty defect group, 26.9 ± 10.1% in the graft group and 29.9 ± 10.3% in the lactoferrin group (P = 0.143). These data indicate that a combination of 3 mg bLF-loaded GM and bovine-derived HA promotes bone regeneration in defects around implants.

  11. An unusual case of complicated temporal lobe abscess following tympanomastoidectomy

    PubMed Central

    Yin, Tuanfang; Ren, Jihao; Lu, Yongde; Chen, Xing; Wang, Yaowen; Huang, Fengying

    2013-01-01

    We report a unusual case of complicated temporal lobe abscess following tympanomastoidectomy in a 26-year-old Chinese man here. The patient complained of binaural recurrent purulent discharge accompanied by hearing loss more than 10 years, then he received a right tympanomastoidectomy three months ago, but 3 weeks after surgery, he started to experience fierce headache and nausea and so on. The CT and MRI suggested the diagnosis of right temporal lobe abscess and then right temporal lobe abscess was excised. The patient was successfully treated with a right temporal lobe abscess resection and a radical right mastoidectomy. Although the cerebral abscess following radical tympanomastoidectomy are extremely rare, we should pay attention to it. we suggest the main reasons was still suffering from purulent discharge in the ear after the first tympanomastoidectomy, the granulation and cholesteatoma failed to completely remove during the first operation. and even resulted in substantial bone defect. It is well-known that good drainage is a key to reduce intra-cranial complications. PMID:23826430

  12. [Experimental study on the transforming growth factor β3 combined with dental pulp stem cells in early bone integration of implant].

    PubMed

    Guzalinuer, Ababaikeli; Muhetaer, Huojia; Wu, H; Paerhati, Abudureheman

    2018-04-09

    Objective: To establish the experimental model of rabbit mandibular anterior implant repair and evaluate the effects of transforming growth factor (TGF)-β3 and dental pulp stem cells (DPSC) in promoting the bone integration of implant. Methods: The New Zealand rabbits were randomly divided into experimental group, control group and blank group (6 rabbits for each group) . In the experimental group, the implant area was filled with the mixture of TGF-β3, DPSC and Bio-oss powder. In the control group, the implant area was filled with the mixture of DPSC and Bio-oss powder. In the blank group, the implant area was filled with the mixture of phosphate buffer solution and Bio-oss powder. Eighteen New Zealand rabbits were sacrificed in 2 weeks after procedure. The treated alveolar bone tissue was observed. The bone tissue around the implant were estimated by HE staining, immunocytochemical staining and real-time quantitative PCR. Results: The implants were no shedding nor loose. HE staining shows the blank group had a sparse trabecular bone and a small amount of blood vessel around the implant and no obvious new bone formation. The control group showed that the bone trabecula around the implant was sparse and slender, the osteoblasts were arranged linearly around the trabecular bone, a small amount of new bone formation was found around the implant. In the experimental group, there were more thick and dense trabecular bone around the implant, the surrounding osteoblasts were arranged in clusters. The osteoblasts were active and many new bone formed. Typical bone lacunae, bone cells and a large number of new blood vessels can be observed. Immunohistochemistry showed that the proportion of average positive area in the experimental group, control group, blank group were (24.6±5.3) %, (11.3±2.8) % and (7.6±3.8) % respectively. The expression of bone sialoprotein in experimental group were significantly higher than the other 2 groups( P= 0.000). Real-time quantitative PCR results showed that the expression level of Runt-related transcription factor 2 (RUNX2), type Ⅰcollagen (COL-Ⅰ), alkaline phosphatase in the experimental group was higher than in the blank group. The expression level of RUNX2 and COL-Ⅰ in the experimental group was higher than that of the control group ( P= 0.023). Conclusions: TGF-β3 has potential to promote the transformation of DPSC into osteoblasts, which can promote the integration of bone around the implant.

  13. Bone morphogenetic protein-2 and bone therapy: successes and pitfalls.

    PubMed

    Poon, Bonnie; Kha, Tram; Tran, Sally; Dass, Crispin R

    2016-02-01

    Bone morphogenetic proteins (BMPs), more specifically BMP-2, are being increasingly used in orthopaedic surgery due to advanced research into osteoinductive factors that may enhance and improve bone therapy. There are many areas in therapy that BMP-2 is being applied to, including dental treatment, open tibial fractures, cancer and spinal surgery. Within these areas of treatment, there are many reports of successes and pitfalls. This review explores the use of BMP-2 and its successes, pitfalls and future prospects in bone therapy. The PubMed database was consulted to compile this review. With successes in therapy, there were descriptions of a more rapid healing time with no signs of rejection or infection attributed to BMP-2 treatment. Pitfalls included BMP-2 'off-label' use, which lead to various adverse effects. Our search highlighted that optimising treatment with BMP-2 is a direction that many researchers are exploring, with areas of current research interest including concentration and dose of BMP-2, carrier type and delivery. © 2015 Royal Pharmaceutical Society.

  14. Efficacy of low-intensity pulsed ultrasound in the prevention of osteoporosis following spinal cord injury.

    PubMed

    Warden, S J; Bennell, K L; Matthews, B; Brown, D J; McMeeken, J M; Wark, J D

    2001-11-01

    Ultrasound (US), a high-frequency acoustic energy traveling in the form of a mechanical wave, represents a potential site-specific intervention for osteoporosis. Bone is a dynamic tissue that remodels in response to applied mechanical stimuli. As a form of mechanical stimulation, US is anticipated to produce a similar remodeling response. This theory is supported by growing in vitro and in vivo evidence demonstrating an osteogenic effect of pulsed-wave US at low spatial-averaged temporal-averaged intensities. The aim of this study was to investigate whether low-intensity pulsed US could prevent calcaneal osteoporosis in individuals following spinal cord injury (SCI). Fifteen patients with a 1-6 month history of SCI were recruited. Active US was introduced to one heel for 20 min/day, 5 days/week, over 6 weeks. The contralateral heel was simultaneously treated with inactive US. Patients were blind to which heel was being actively treated. Active US pulsed with a 10 microsec burst of 1.0 MHz sine waves repeating at 3.3 kHz. The spatial-averaged temporal-averaged intensity was set at 30 mW/cm(2). Bone status was assessed at baseline and following the intervention period by dual-energy X-ray absorptiometry and quantitative US. SCI resulted in significant bone loss. Bone mineral content decreased by 7.5 +/- 3.0% in inactive US-treated calcanei (p < 0.001). Broadband US attenuation and speed of sound decreased by 8.5 +/- 6.9% (p < 0.001) and 1.5 +/- 1.3% (p < 0.001), respectively. There were no differences between active and inactive US-treated calcanei for any skeletal measure (p > 0.05). These findings confirm the negative skeletal impact of SCI, and demonstrate that US at the dose and mode administered was not a beneficial intervention for SCI-induced osteoporosis. This latter finding may primarily relate to the inability of US to effectively penetrate the outer cortex of bone due to its acoustic properties.

  15. Effect of a Particulate and a Putty-Like Tricalcium Phosphate-Based Bone-grafting Material on Bone Formation, Volume Stability and Osteogenic Marker Expression after Bilateral Sinus Floor Augmentation in Humans

    PubMed Central

    Knabe, Christine; Adel Khattab, Doaa; Kluk, Esther; Struck, Rainer; Stiller, Michael

    2017-01-01

    This study examines the effect of a hyaluronic acid (HyAc) containing tricalcium phosphate putty scaffold material (TCP-P) and of a particulate tricalcium phosphate (TCP-G) graft on bone formation, volume stability and osteogenic marker expression in biopsies sampled 6 months after bilateral sinus floor augmentation (SFA) in 7 patients applying a split-mouth design. 10% autogenous bone chips were added to the grafting material during surgery. The grain size of the TCP granules was 700 to 1400 µm for TCP-G and 125 to 250 µm and 500 to 700 µm (ratio 1:1) for TCP-P. Biopsies were processed for immunohistochemical analysis of resin-embedded sections. Sections were stained for collagen type I (Col I), alkaline phosphatase (ALP), osteocalcin (OC) and bone sialoprotein (BSP). Furthermore, the bone area and biomaterial area fraction were determined histomorphometrically. Cone-beam CT data recorded after SFA and 6 months later were used for calculating the graft volume at these two time points. TCP-P displayed more advantageous surgical handling properties and a significantly greater bone area fraction and smaller biomaterial area fraction. This was accompanied by significantly greater expression of Col I and BSP and in osteoblasts and osteoid and a less pronounced reduction in grafting volume with TCP-P. SFA using both types of materials resulted in formation of sufficient bone volume for facilitating stable dental implant placement with all dental implants having been in function without any complications for 6 years. Since TCP-P displayed superior surgical handling properties and greater bone formation than TCP-G, without the HyAc hydrogel matrix having any adverse effect on bone formation or graft volume stability, TCP-P can be regarded as excellent grafting material for SFA in a clinical setting. The greater bone formation observed with TCP-P may be related to the difference in grain size of the TCP granules and/or the addition of the HyAc. PMID:28758916

  16. Training echo state networks for rotation-invariant bone marrow cell classification.

    PubMed

    Kainz, Philipp; Burgsteiner, Harald; Asslaber, Martin; Ahammer, Helmut

    2017-01-01

    The main principle of diagnostic pathology is the reliable interpretation of individual cells in context of the tissue architecture. Especially a confident examination of bone marrow specimen is dependent on a valid classification of myeloid cells. In this work, we propose a novel rotation-invariant learning scheme for multi-class echo state networks (ESNs), which achieves very high performance in automated bone marrow cell classification. Based on representing static images as temporal sequence of rotations, we show how ESNs robustly recognize cells of arbitrary rotations by taking advantage of their short-term memory capacity. The performance of our approach is compared to a classification random forest that learns rotation-invariance in a conventional way by exhaustively training on multiple rotations of individual samples. The methods were evaluated on a human bone marrow image database consisting of granulopoietic and erythropoietic cells in different maturation stages. Our ESN approach to cell classification does not rely on segmentation of cells or manual feature extraction and can therefore directly be applied to image data.

  17. Concomitant occurrence of cochleosaccular dysplasia and Down's syndrome.

    PubMed

    Walby, A P; Schuknecht, H F

    1984-07-01

    Inherited cochleosaccular dysplasia occurred in a woman coincidentally with Down's syndrome. Study of the right temporal bone revealed abnormalities of the cochlea and saccule consistent with Scheibe 's original description. There was also a short cochlea and small lateral semicircular canal consistent with previous descriptions of Down's syndrome.

  18. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis.

    PubMed

    Das Neves Borges, Patricia; Vincent, Tonia L; Marenzana, Massimo

    2017-01-01

    The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies.

  19. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis

    PubMed Central

    Vincent, Tonia L.; Marenzana, Massimo

    2017-01-01

    Objective The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. Methods OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Results Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Conclusion Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies. PMID:28334010

  20. TU-CD-BRA-11: Application of Bone Suppression Technique to Inspiratory/expiratory Chest Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, R; Sanada, S; Sakuta, K

    Purpose: The bone suppression technique based on advanced image processing can suppress the conspicuity of bones on chest radiographs, creating soft tissue images normally obtained by the dual-energy subtraction technique. This study was performed to investigate the usefulness of bone suppression technique in quantitative analysis of pulmonary function in inspiratory/expiratory chest radiography. Methods: Commercial bone suppression image processing software (ClearRead; Riverain Technologies) was applied to paired inspiratory/expiratory chest radiographs of 107 patients (normal, 33; abnormal, 74) to create corresponding bone suppression images. The abnormal subjects had been diagnosed with pulmonary diseases, such as pneumothorax, pneumonia, emphysema, asthma, and lung cancer.more » After recognition of the lung area, the vectors of respiratory displacement were measured in all local lung areas using a cross-correlation technique. The measured displacement in each area was visualized as displacement color maps. The distribution pattern of respiratory displacement was assessed by comparison with the findings of lung scintigraphy. Results: Respiratory displacement of pulmonary markings (soft tissues) was able to be quantified separately from the rib movements on bone suppression images. The resulting displacement map showed a left-right symmetric distribution increasing from the lung apex to the bottom region of the lung in many cases. However, patients with ventilatory impairments showed a nonuniform distribution caused by decreased displacement of pulmonary markings, which were confirmed to correspond to area with ventilatory impairments found on the lung scintigrams. Conclusion: The bone suppression technique was useful for quantitative analysis of respiratory displacement of pulmonary markings without any interruption of the rib shadows. Abnormal areas could be detected as decreased displacement of pulmonary markings. Inspiratory/expiratory chest radiography combined with the bone suppression technique has potential for predicting local lung function on the basis of dynamic analysis of pulmonary markings. This work was partially supported by Nakatani Foundation, Grant-in-aid for Scientific Research (C) of Ministry of Education, Culture, Sports, Science and Technology, JAPAN (Grant number : 24601007), and Nakatani Foundation, Mitsubishi Foundation, and the he Mitani Foundation for Research and Development. Yasushi Kishitani is a staff of TOYO corporation.« less

  1. Effects of age, vitamin D3, and fructooligosaccharides on bone growth and skeletal integrity of broiler chicks.

    PubMed

    Kim, W K; Bloomfield, S A; Ricke, S C

    2011-11-01

    A study was conducted to evaluate the effects of age, vitamin D(3), and fructooligosaccharides (FOS) on bone mineral density (BMD), bone mineral content (BMC), cortical thickness, cortical and trabecular area, and mechanical properties in broiler chicks using peripheral quantitative computed tomography and mechanical testing. A total of 54 male broiler chicks (1 d old) were placed in battery brooders and fed a corn-soybean starter diet for 7 d. After 7 d, the chicks were randomly assigned to pens of 3 birds each. Each treatment was replicated 3 times. There were 6 treatments: 1) early age control (control 1); 2) control 2; 3) 125 µg/kg of vitamin D(3); 4) 250 µg/kg of vitamin D(3); 5) 2% FOS); and 6) 4% FOS. The control 1 chicks were fed a control broiler diet and killed on d 14 to collect femurs for bone analyses. The remaining groups were killed on d 21. Femurs from 3-wk-old chicks showed greater midshaft cortical BMD, BMC, bone area, thickness, and marrow area than those from 2-wk-old chicks (P = 0.016, 0.0003, 0.0002, 0.01, and 0.0001, respectively). Total, cortical, and trabecular BMD of chick proximal femurs were not influenced by age. However, BMC and bone area were significantly affected by age. The femurs of 2-wk-old chicks exhibited significantly lower stiffness and ultimate load than those of 3-wk-old chicks (P = 0.0001), whereas ultimate stress and elastic modulus of the femurs of 2-wk-old chicks were significantly higher than that of femurs of 3-wk-old chicks (P = 0.0001). Chicks fed 250 µg/kg of vitamin D(3) exhibited significantly greater midshaft cortical BMC (P = 0.04), bone area (P = 0.04), and thickness (P = 0.03) than control 2, 2% FOS, or 4% FOS chicks. In summary, our study suggests that high levels of vitamin D(3) can increase bone growth and mineral deposition in broiler chicks. However, FOS did not have any beneficial effects on bone growth and skeletal integrity. Age is an important factor influencing skeletal integrity and mechanical properties in broiler chicks.

  2. Heavy metal staining, a comparative assessment of gadolinium chloride and osmium tetroxide for inner ear labyrinthine contrast enhancement using X-ray microtomography.

    PubMed

    Wong, Christopher C; Curthoys, Ian S; O'Leary, Stephen J; Jones, Allan S

    2013-01-01

    The use of both gadolinium chloride (GdCl(3)) and osmium tetroxide (OsO(4)) allowed for the visualization of the membranous labyrinth and other intralabyrinthine structures, at different intensities, as compared with the control sample. This initial comparison shows the advantages of GdCl(3) in radiological assessments and OsO(4) in more detailed anatomical studies and pathways of labyrinthine pathogenesis using X-ray microtomography (microCT). To assess an improved OsO(4) staining protocol and compare the staining affinities against GdCl(3). Guinea pig temporal bones were stained with either GdCl(3) (2% w/v) for 7 days or OsO(4) (2% w/v) for 3 days, and scanned in a microCT system. The post-scanned datasets were then assessed in a 3D rendering program. The enhanced soft tissue contrast as presented in the temporal bones stained with either GdCl(3) or OsO(4) allowed for the membranous labyrinth to be visualized throughout the whole specimen. GdCl(3)-stained specimens presented more defined contours of the bone profile in the radiographs, while OsO(4)-stained specimens provided more anatomical detail of individual intralabyrinthine structures, hence allowing spatial relationships to be visualized with ease in a 3D rendering context and 2D axial slice images.

  3. Histological analysis of the alterations on cortical bone channels network after radiotherapy: A rabbit study.

    PubMed

    Rabelo, Gustavo Davi; Beletti, Marcelo Emílio; Dechichi, Paula

    2010-10-01

    The aim of this study was to evaluate the effects of radiotherapy in cortical bone channels network. Fourteen rabbits were divided in two groups and test group received single dose of 15 Gy cobalt-60 radiation in tibia, bilaterally. The animals were sacrificed and a segment of tibia was removed and histologically processed. Histological images were taken and had their bone channels segmented and called regions of interest (ROI). Images were analyzed through developed algorithms using the SCILAB mathematical environment, getting percentage of bone matrix, ROI areas, ROI perimeters, their standard deviations and Lacunarity. The osteocytes and empty lacunae were also counted. Data were evaluated using Kolmogorov-Smirnov, Mann Whitney, and Student's t test (P < 0.05). Significant differences in bone matrix percentage, area and perimeters of the channels, their respective standard deviations and lacunarity were found between groups. In conclusion, the radiotherapy causes reduction of bone matrix and modifies the morphology of bone channels network. © 2010 Wiley-Liss, Inc.

  4. Changes in bone structure of Corriedale sheep with inherited rickets: a peripheral quantitative computed tomography assessment.

    PubMed

    Dittmer, Keren E; Firth, Elwyn C; Thompson, Keith G; Marshall, Jonathan C; Blair, Hugh T

    2011-03-01

    An inherited skeletal disease with gross and microscopic features of rickets has been diagnosed in Corriedale sheep in New Zealand. The aim of this study was to quantify the changes present in tibia from sheep with inherited rickets using peripheral quantitative computed tomography. In affected sheep, scans in the proximal tibia, where metaphysis becomes diaphysis, showed significantly greater trabecular bone mineral content (BMC) and bone mineral density (BMD). The sheep with inherited rickets had significantly greater BMC and bone area in the mid-diaphysis of the proximal tibia compared to control sheep. However, BMD in the mid-diaphysis was significantly less in affected sheep than in controls, due to the greater cortical area and lower voxel density values in affected sheep. From this it was concluded that the increased strain on under-mineralised bone in sheep with inherited rickets led to increased bone mass in an attempt to improve bone strength. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Radiographic absorptiometry method in measurement of localized alveolar bone density changes.

    PubMed

    Kuhl, E D; Nummikoski, P V

    2000-03-01

    The objective of this study was to measure the accuracy and precision of a radiographic absorptiometry method by using an occlusal density reference wedge in quantification of localized alveolar bone density changes. Twenty-two volunteer subjects had baseline and follow-up radiographs taken of mandibular premolar-molar regions with an occlusal density reference wedge in both films and added bone chips in the baseline films. The absolute bone equivalent densities were calculated in the areas that contained bone chips from the baseline and follow-up radiographs. The differences in densities described the masses of the added bone chips that were then compared with the true masses by using regression analysis. The correlation between the estimated and true bone-chip masses ranged from R = 0.82 to 0.94, depending on the background bone density. There was an average 22% overestimation of the mass of the bone chips when they were in low-density background, and up to 69% overestimation when in high-density background. The precision error of the method, which was calculated from duplicate bone density measurements of non-changing areas in both films, was 4.5%. The accuracy of the intraoral radiographic absorptiometry method is low when used for absolute quantification of bone density. However, the precision of the method is good and the correlation is linear, indicating that the method can be used for serial assessment of bone density changes at individual sites.

  6. Syntactic Complexity and Frequency in the Neurocognitive Language System.

    PubMed

    Yang, Yun-Hsuan; Marslen-Wilson, William D; Bozic, Mirjana

    2017-09-01

    Prominent neurobiological models of language follow the widely accepted assumption that language comprehension requires two principal mechanisms: a lexicon storing the sound-to-meaning mapping of words, primarily involving bilateral temporal regions, and a combinatorial processor for syntactically structured items, such as phrases and sentences, localized in a left-lateralized network linking left inferior frontal gyrus (LIFG) and posterior temporal areas. However, recent research showing that the processing of simple phrasal sequences may engage only bilateral temporal areas, together with the claims of distributional approaches to grammar, raise the question of whether frequent phrases are stored alongside individual words in temporal areas. In this fMRI study, we varied the frequency of words and of short and long phrases in English. If frequent phrases are indeed stored, then only less frequent items should generate selective left frontotemporal activation, because memory traces for such items would be weaker or not available in temporal cortex. Complementary univariate and multivariate analyses revealed that, overall, simple words (verbs) and long phrases engaged LIFG and temporal areas, whereas short phrases engaged bilateral temporal areas, suggesting that syntactic complexity is a key factor for LIFG activation. Although we found a robust frequency effect for words in temporal areas, no frequency effects were found for the two phrasal conditions. These findings support the conclusion that long and short phrases are analyzed, respectively, in the left frontal network and in a bilateral temporal network but are not retrieved from memory in the same way as simple words during spoken language comprehension.

  7. LEUKOPENIA IN DEEP X-RAY THERAPY. CONTRIBUTION TO SOME QUESTIONS OF ITS CONDITIONS OR ORIGIN, ITS THERAPY, AND PROPHYLAXIS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, H.; Becker, C.

    1963-03-01

    Of the 1776 patients, treated with deep x-ray therapy because of malignant tumors that were examined, 8% were found to be leukopenic. Age, sex, and preceding radiation did not have dispositional influence on occurrence of leukopenia. Low initial vaiues of leukocytes at the start of radiation, irradiation of a large area of the trunk (trunk volume -dose), level of irradiating dose, and temporal dis tribution do have an assured importance. In the first place, occurrence of leukopenia is related to direct radiation damage to the bone-marrow, other causes are radiogenic leukotoxins and an increased destruction of leukocytes by diapedesis. Themore » only effective therapy for radiogenic leukopenia was interruption or scattering of the radiation. ACTH- treatment can increase the leukocytes temporarily. Prophylaxis of leukopenia by vitamin B/sub 12/ was not successful. (auth)« less

  8. Porous polymethylmethacrylate as bone substitute in the craniofacial area.

    PubMed

    Bruens, Marco L; Pieterman, Herman; de Wijn, Joost R; Vaandrager, J Michael

    2003-01-01

    In craniofacial surgery, alloplastic materials are used for correcting bony defects. Porous polymethylmethacrylate (PMMA) is a biocompatible and nondegradable bone cement. Porous PMMA is formed by the classic bone cement formulation of methylmethacrylate liquid and PMMA powder in which an aqueous biodegradable carboxymethylcellulose gel is dispersed to create pores in the cement when cured. Pores give bone the opportunity to grow in, resulting in a better fixation of the prostheses. We evaluated the long-term results (n = 14), up to 20 years, of augmentations and defect fillings in the craniofacial area, with special interest in possible side effects and bone ingrowth. The evaluation consisted of a questionnaire, a physical examination, and a computed tomography (CT) scan. There were no side effects that could be ascribed to the porous PMMA. Twelve CT scans showed bone ingrowth into the prostheses, proving the validity behind the concept of porous PMMA.

  9. Genetic and Dynamic Analyses of Murine Peak Bone Density

    DTIC Science & Technology

    1999-10-01

    DAMD17-96-1-6309 differences, the location of bone regulatory genes with strong and modifier effects , the mode of inheritance for each gene, the...estimate the cortical cross-sectional area, most likely due to partial volume effects . Thus, the high density bone area was consistently estimated to be...significant or highly significant linkage with BMD; b) 9 Beamer, WG DAMD17-96-1-6309 none of the loci exhibited significant interaction effects by ANOVA

  10. Structural and Mechanical Repair of Diffuse Damage in Cortical Bone in vivo

    PubMed Central

    Seref-Ferlengez, Zeynep; Basta-Pljakic, Jelena; Kennedy, Oran D.; Philemon, Claudy J.; Schaffler, Mitchell B.

    2014-01-01

    Physiological wear and tear causes bone microdamage at several hierarchical levels, and these have different biological consequences. Bone remodeling is widely held to be the mechanism by which bone microdamage is repaired. However, recent studies showed that unlike typical linear microcracks, small crack damage, the clusters of submicron-sized matrix cracks also known as diffuse damage (Dif.Dx), does not activate remodeling. Thus, the fate of diffuse damage in vivo is not known. To examine this, we induced selectively Dif.Dx in rat ulnae in vivo by using end-load ulnar bending creep model. Changes in damage content were assessed by histomorphometry and mechanical testing immediately after loading (i.e., acute loaded) or at 14 days after damage induction (i.e., survival ulnae). Dif.Dx area was markedly reduced over the 14-day survival period after loading (p<0.02). We did not observe any intracortical resorption and there was no increase in cortical bone area in survival ulnae. The reduction in whole bone stiffness in acute loaded ulnae was restored to baseline levels in survival ulnae (p>0.6). Microindentation studies showed that Dif.Dx caused a highly localized reduction in elastic modulus in diffuse damage regions of the ulnar cortex. Moduli in these previously damaged bone areas were restored to control values by 14 days after loading. Our current findings indicate that small crack damage in bone can be repaired without bone remodeling, and suggest that alternative repair mechanisms exist in bone to deal with submicron-sized matrix cracks. Those mechanisms are currently unknown and further investigations are needed to elucidate the mechanisms by which this direct repair occurs. PMID:25042459

  11. The Effects of GATA-1 and NF-E2 Deficiency on Bone Biomechanical, Biochemical, and Mineral Properties

    PubMed Central

    Kacena, Melissa A.; Gundberg, Caren M.; Kacena, William J.; Landis, William J.; Boskey, Adele L.; Bouxsein, Mary L.; Horowitz, Mark C.

    2014-01-01

    Mice deficient in GATA-1 or NF-E2, transcription factors required for normal megakaryocyte (MK) development, have increased numbers of MKs, reduced numbers of platelets, and a striking high bone mass phenotype. Here, we show the bone geometry, microarchitecture, biomechanical, biochemical, and mineral properties from these mutant mice. We found that the outer geometry of the mutant bones was similar to controls, but that both mutants had a striking increase in total bone area (up to a 35% increase) and trabecular bone area (up to a 19% increase). Interestingly, only the NF-E2 deficient mice had a significant increase in cortical bone area (21%) and cortical thickness (27%), which is consistent with the increase in bone mineral density (BMD) seen only in the NF-E2 deficient femurs. Both mutant femurs exhibited significant increases in several biomechanical properties including peak load (up to a 32% increase) and stiffness (up to a 13% increase). Importantly, the data also demonstrate differences between the two mutant mice. GATA-1 deficient femurs break in a ductile manner, whereas NF-E2 deficient femurs are brittle in nature. To better understand these differences, we examined the mineral properties of these bones. Although none of the parameters measured were different between the NF-E2 deficient and control mice, an increase in calcium (21%) and an increase in the mineral/matrix ratio (32%) was observed in GATA-1 deficient mice. These findings appear to contradict biomechanical findings, suggesting the need for further research into the mechanisms by which GATA-1 and NF-E2 deficiency alter the material properties of bone. PMID:23359245

  12. Detection and evaluation of normal and malignant cells using laser-induced fluorescence spectroscopy.

    PubMed

    Khosroshahi, Mohamad E; Rahmani, Mahya

    2012-01-01

    The aim of this research is to study the normalized fluorescence spectra (intensity variations and area under the fluorescence signal), relative quantum yield, extinction coefficient and intracellular properties of normal and malignant human bone cells. Using Laser-Induced Fluorescence Spectroscopy (LIFS) upon excitation of 405 nm, the comparison of emission spectra of bone cells revealed that fluorescence intensity and the area under the spectra of malignant bone cells was less than that of normal. In addition, the area ratio and shape factor were changed. We obtained two emission bands in spectra of normal cells centered at about 486 and 575 nm and for malignant cells about 482 and 586 nm respectively, which are most likely attributed to NADH and riboflavins. Using fluorescein sodium emission spectrum, the relative quantum yield of bone cells is numerically determined.

  13. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery

    NASA Technical Reports Server (NTRS)

    Ishaug-Riley, S. L.; Crane, G. M.; Gurlek, A.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Porous biodegradable poly(DL-lactic-co-glycolic acid) foams were seeded with rat marrow stromal cells and implanted into the rat mesentery to investigate in vivo bone formation at an ectopic site. Cells were seeded at a density of 6.83 x 10(5) cells/cm2 onto polymer foams having pore sizes ranging from either 150 to 300 to 710 microns and cultured for 7 days in vitro prior to implantation. The polymer/cell constructs were harvested after 1, 7, 28, or 49 days in vivo and processed for histology and gel permeation chromatography. Visual observation of hematoxylin and eosin-stained sections and von Kossa-stained sections revealed the formation of mineralized bonelike tissue in the constructs within 7 days postimplantation. Ingrowth of vascular tissue was also found adjacent to the islands of bone, supplying the necessary metabolic requirements to the newly formed tissue. Mineralization and bone tissue formation were investigated by histomorphometry. The average penetration depth of mineralized tissue in the construct ranged from 190 +/- 50 microns for foams with 500-710-microns pores to 370 +/- 160 microns for foams with 150-300-microns pores after 49 days in vivo. The mineralized bone volume per surface area and total bone volume per surface area had maximal values of 0.28 +/- 0.21 mm (500-710-microns pore size, day 28) and 0.038 +/- 0.024 mm (150-300-microns, day 28), respectively. As much as 11% of the foam volume penetrated by bone tissue was filled with mineralized tissue. No significant trends over time were observed for any of the measured values (penetration depth, bone volume/surface area, or percent mineralized bone volume). These results suggest the feasibility of bone formation by osteoblast transplantation in an orthotopic site where not only bone formation from transplanted cells but also ingrowth from adjacent bone may occur.

  14. Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms

    PubMed Central

    Atkins, Ayelet; Dean, Mason N.; Habegger, Maria Laura; Motta, Phillip J.; Ofer, Lior; Repp, Felix; Shipov, Anna; Weiner, Steve; Currey, John D.; Shahar, Ron

    2014-01-01

    A remarkable property of tetrapod bone is its ability to detect and remodel areas where damage has accumulated through prolonged use. This process, believed vital to the long-term health of bone, is considered to be initiated and orchestrated by osteocytes, cells within the bone matrix. It is therefore surprising that most extant fishes (neoteleosts) lack osteocytes, suggesting their bones are not constantly repaired, although many species exhibit long lives and high activity levels, factors that should induce considerable fatigue damage with time. Here, we show evidence for active and intense remodeling occurring in the anosteocytic, elongated rostral bones of billfishes (e.g., swordfish, marlins). Despite lacking osteocytes, this tissue exhibits a striking resemblance to the mature bone of large mammals, bearing structural features (overlapping secondary osteons) indicating intensive tissue repair, particularly in areas where high loads are expected. Billfish osteons are an order of magnitude smaller in diameter than mammalian osteons, however, implying that the nature of damage in this bone may be different. Whereas billfish bone material is as stiff as mammalian bone (unlike the bone of other fishes), it is able to withstand much greater strains (relative deformations) before failing. Our data show that fish bone can exhibit far more complex structure and physiology than previously known, and is apparently capable of localized repair even without the osteocytes believed essential for this process. These findings challenge the unique and primary role of osteocytes in bone remodeling, a basic tenet of bone biology, raising the possibility of an alternative mechanism driving this process. PMID:25331870

  15. Blood flow to long bones indicates activity metabolism in mammals, reptiles and dinosaurs.

    PubMed

    Seymour, Roger S; Smith, Sarah L; White, Craig R; Henderson, Donald M; Schwarz-Wings, Daniela

    2012-02-07

    The cross-sectional area of a nutrient foramen of a long bone is related to blood flow requirements of the internal bone cells that are essential for dynamic bone remodelling. Foramen area increases with body size in parallel among living mammals and non-varanid reptiles, but is significantly larger in mammals. An index of blood flow rate through the foramina is about 10 times higher in mammals than in reptiles, and even higher if differences in blood pressure are considered. The scaling of foramen size correlates well with maximum whole-body metabolic rate during exercise in mammals and reptiles, but less well with resting metabolic rate. This relates to the role of blood flow associated with bone remodelling during and following activity. Mammals and varanid lizards have much higher aerobic metabolic rates and exercise-induced bone remodelling than non-varanid reptiles. Foramen areas of 10 species of dinosaur from five taxonomic groups are generally larger than from mammals, indicating a routinely highly active and aerobic lifestyle. The simple measurement holds possibilities offers the possibility of assessing other groups of extinct and living vertebrates in relation to body size, behaviour and habitat.

  16. Blood flow to long bones indicates activity metabolism in mammals, reptiles and dinosaurs

    PubMed Central

    Seymour, Roger S.; Smith, Sarah L.; White, Craig R.; Henderson, Donald M.; Schwarz-Wings, Daniela

    2012-01-01

    The cross-sectional area of a nutrient foramen of a long bone is related to blood flow requirements of the internal bone cells that are essential for dynamic bone remodelling. Foramen area increases with body size in parallel among living mammals and non-varanid reptiles, but is significantly larger in mammals. An index of blood flow rate through the foramina is about 10 times higher in mammals than in reptiles, and even higher if differences in blood pressure are considered. The scaling of foramen size correlates well with maximum whole-body metabolic rate during exercise in mammals and reptiles, but less well with resting metabolic rate. This relates to the role of blood flow associated with bone remodelling during and following activity. Mammals and varanid lizards have much higher aerobic metabolic rates and exercise-induced bone remodelling than non-varanid reptiles. Foramen areas of 10 species of dinosaur from five taxonomic groups are generally larger than from mammals, indicating a routinely highly active and aerobic lifestyle. The simple measurement holds possibilities offers the possibility of assessing other groups of extinct and living vertebrates in relation to body size, behaviour and habitat. PMID:21733896

  17. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

    PubMed Central

    Kang, Sung-Won; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe

    2015-01-01

    Purpose We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). Materials and Methods The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. Results VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). Conclusion It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method. PMID:25793178

  18. INTERFRAGMENTARY SURFACE AREA AS AN INDEX OF COMMINUTION SEVERITY IN CORTICAL BONE IMPACT

    PubMed Central

    Beardsley, Christina L.; Anderson, Donald D.; Marsh, J. Lawrence; Brown, Thomas D.

    2008-01-01

    Summary A monotonic relationship is expected between energy absorption and fracture surface area generation for brittle solids, based on fracture mechanics principles. It was hypothesized that this relationship is demonstrable in bone, to the point that on a continuous scale, comminuted fractures created with specific levels of energy delivery could be discriminated from one another. Using bovine cortical bone segments in conjunction with digital image analysis of CT fracture data, the surface area freed by controlled impact fracture events was measured. The results demonstrated a statistically significant (p<0.0001) difference in measured de novo surface area between three specimen groups, over a range of input energies from 0.423 to 0.702 J/g. Local material properties were also incorporated into these measurements via CT Hounsfield intensities. This study confirms that comminution severity of bone fractures can indeed be measured on a continuous scale, based on energy absorption. This lays a foundation for similar assessments in human injuries. PMID:15885492

  19. Bone morphogenetic protein 2 and decorin expression in old fracture fragments and surrounding tissues.

    PubMed

    Han, X G; Wang, D K; Gao, F; Liu, R H; Bi, Z G

    2015-09-21

    Bone morphogenetic protein 2 (BMP-2) can promote fracture healing. Although the complex role BMP-2 in bone formation is increasingly understood, the role of endogenous BMP-2 in nonunion remains unclear. Decorin (DCN) can promote the formation of bone matrix and calcium deposition to control bone morphogenesis. In this study, tissue composition and expression of BMP-2 and DCN were detected in different parts of old fracture zones to explore inherent anti-fibrotic ability and osteogenesis. Twenty-three patients were selected, including eight cases of delayed union and 15 cases of nonunion. Average duration of delayed union or nonunion was 15 months. Fracture fragments and surrounding tissues, including bone grafts, marrow cavity contents, and sticking scars, were categorically sampled during surgery. Through observation and histological testing, component comparisons were made between fracture fragments and surrounding tissue. The expression levels of DCN and BMP-2 in different tissues were detected by immunohistochemical staining and real-time polymerase chain reaction. The expression of DCN and BMP- 2 in different parts of the nonunion area showed that, compared with bone graft and marrow cavity contents, sticking scars had the highest expression of BMP-2. Compared with the marrow cavity contents and sticking scars, bone grafts had the highest expression of DCN. The low antifibrotic and osteogenic activity of the nonunion area was associated with non-co-expression of BMP-2 and DCN. Therefore, the co-injection of osteogenic factor BMP and DCN into the nonunion area can improve the induction of bone formation and enhance the conversion of the old scar, thereby achieving better nonunion treatment.

  20. [Analysis of clinical features and treatment outcomes of patients with tuberculous otitis media and mastoiditis].

    PubMed

    Hao, Xin-ping; Gong, Shu-sheng; Li, Yong-xin; Xia, Yin; Zhao, Shou-qin; Zheng, Jun; Zheng, Ya-li; Zhao, Yan-ling; Ma, Xiao-bo

    2010-11-01

    To analyze the clinical features and the surgical treatment outcomes of patients with tuberculous otitis media and mastoiditis. The medical records of 16 patients (18 ears) with tuberculous otitis media and mastoiditis, who received surgery in Beijing Tongren hospital, were reviewed. The common symptoms were otorrhea and hearing loss, and 3 patients demonstrated severe sensorineural hearing loss. Three patients demonstrated a peripheral-type facial palsy. Temporal bone high resolution CT scans demonstrated the entire tympanum and mastoid air cells were occupied by soft tissue. Eleven patients demonstrated bone destruction and sequestra was found in 7 temporal bones. Contemporary pulmonary tuberculosis were diagnosed in 7 of the 16 patients. Surgical removal of disease lesions in combination with anti-tuberculosis treatment were given to 15 patients. Other than 2 cases of tuberculous otitis media and mastoiditis diagnosed by pre-operational biopsy through the perforated tympanic membrane, the remaining 14 cases were diagnosed intra-operatively or post-operatively. No relapse of tuberculosis in the middle ear and mastoid were found after follow-up for more than 1 year, except for the one case that was lost to follow-up. The 3 cases of facial nerve palsy almost recovered to normal. Clinicians should suspect tuberculous otitis media and mastoiditis if clinical findings include refractory otorrhea, total occupation of the tympanic cavity and mastoid ari cells by soft tissue, and erosion of the bone or sequestra as shown by CT. A history of tuberculosis should be asked carefully in order to differentiate tuberculous otitis media and mastoiditis. The patients who received surgery and anti-tuberculosis chemotherapy achieved more rapid healing of the ear.

Top