Sample records for temporal brain code

  1. A Plastic Temporal Brain Code for Conscious State Generation

    PubMed Central

    Dresp-Langley, Birgitta; Durup, Jean

    2009-01-01

    Consciousness is known to be limited in processing capacity and often described in terms of a unique processing stream across a single dimension: time. In this paper, we discuss a purely temporal pattern code, functionally decoupled from spatial signals, for conscious state generation in the brain. Arguments in favour of such a code include Dehaene et al.'s long-distance reverberation postulate, Ramachandran's remapping hypothesis, evidence for a temporal coherence index and coincidence detectors, and Grossberg's Adaptive Resonance Theory. A time-bin resonance model is developed, where temporal signatures of conscious states are generated on the basis of signal reverberation across large distances in highly plastic neural circuits. The temporal signatures are delivered by neural activity patterns which, beyond a certain statistical threshold, activate, maintain, and terminate a conscious brain state like a bar code would activate, maintain, or inactivate the electronic locks of a safe. Such temporal resonance would reflect a higher level of neural processing, independent from sensorial or perceptual brain mechanisms. PMID:19644552

  2. Temporal Processing in the Olfactory System: Can We See a Smell?

    PubMed Central

    Gire, David H.; Restrepo, Diego; Sejnowski, Terrence J.; Greer, Charles; De Carlos, Juan A.; Lopez-Mascaraque, Laura

    2013-01-01

    Sensory processing circuits in the visual and olfactory systems receive input from complex, rapidly changing environments. Although patterns of light and plumes of odor create different distributions of activity in the retina and olfactory bulb, both structures use what appears on the surface similar temporal coding strategies to convey information to higher areas in the brain. We compare temporal coding in the early stages of the olfactory and visual systems, highlighting recent progress in understanding the role of time in olfactory coding during active sensing by behaving animals. We also examine studies that address the divergent circuit mechanisms that generate temporal codes in the two systems, and find that they provide physiological information directly related to functional questions raised by neuroanatomical studies of Ramon y Cajal over a century ago. Consideration of differences in neural activity in sensory systems contributes to generating new approaches to understand signal processing. PMID:23664611

  3. Independent rate and temporal coding in hippocampal pyramidal cells.

    PubMed

    Huxter, John; Burgess, Neil; O'Keefe, John

    2003-10-23

    In the brain, hippocampal pyramidal cells use temporal as well as rate coding to signal spatial aspects of the animal's environment or behaviour. The temporal code takes the form of a phase relationship to the concurrent cycle of the hippocampal electroencephalogram theta rhythm. These two codes could each represent a different variable. However, this requires the rate and phase to vary independently, in contrast to recent suggestions that they are tightly coupled, both reflecting the amplitude of the cell's input. Here we show that the time of firing and firing rate are dissociable, and can represent two independent variables: respectively the animal's location within the place field, and its speed of movement through the field. Independent encoding of location together with actions and stimuli occurring there may help to explain the dual roles of the hippocampus in spatial and episodic memory, or may indicate a more general role of the hippocampus in relational/declarative memory.

  4. Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain.

    PubMed

    Leighton, Laura J; Bredy, Timothy W

    2018-06-07

    Small non-coding RNAs are essential for transcription, translation and gene regulation in all cell types, but are particularly important in neurons, with known roles in neurodevelopment, neuroplasticity and neurological disease. Many small non-coding RNAs are directly involved in the post-transcriptional modification of other RNA species, while others are themselves substrates for modification, or are functionally modulated by modification of their target RNAs. In this review, we explore the known and potential functions of several distinct classes of small non-coding RNAs in the mammalian brain, focusing on the newly recognised interplay between the epitranscriptome and the activity of small RNAs. We discuss the potential for this relationship to influence the spatial and temporal dynamics of gene activation in the brain, and predict that further research in the field of epitranscriptomics will identify interactions between small RNAs and RNA modifications which are essential for higher order brain functions such as learning and memory.

  5. Temporal coding of brain patterns for direct limb control in humans.

    PubMed

    Müller-Putz, Gernot R; Scherer, Reinhold; Pfurtscheller, Gert; Neuper, Christa

    2010-01-01

    For individuals with a high spinal cord injury (SCI) not only the lower limbs, but also the upper extremities are paralyzed. A neuroprosthesis can be used to restore the lost hand and arm function in those tetraplegics. The main problem for this group of individuals, however, is the reduced ability to voluntarily operate device controllers. A brain-computer interface provides a non-manual alternative to conventional input devices by translating brain activity patterns into control commands. We show that the temporal coding of individual mental imagery pattern can be used to control two independent degrees of freedom - grasp and elbow function - of an artificial robotic arm by utilizing a minimum number of EEG scalp electrodes. We describe the procedure from the initial screening to the final application. From eight naïve subjects participating online feedback experiments, four were able to voluntarily control an artificial arm by inducing one motor imagery pattern derived from one EEG derivation only.

  6. Voxel-Based Lesion Symptom Mapping of Coarse Coding and Suppression Deficits in Patients With Right Hemisphere Damage

    PubMed Central

    Tompkins, Connie A.; Meigh, Kimberly M.; Prat, Chantel S.

    2015-01-01

    Purpose This study examined right hemisphere (RH) neuroanatomical correlates of lexical–semantic deficits that predict narrative comprehension in adults with RH brain damage. Coarse semantic coding and suppression deficits were related to lesions by voxel-based lesion symptom mapping. Method Participants were 20 adults with RH cerebrovascular accidents. Measures of coarse coding and suppression deficits were computed from lexical decision reaction times at short (175 ms) and long (1000 ms) prime-target intervals. Lesions were drawn on magnetic resonance imaging images and through normalization were registered on an age-matched brain template. Voxel-based lesion symptom mapping analysis was applied to build a general linear model at each voxel. Z score maps were generated for each deficit, and results were interpreted using automated anatomical labeling procedures. Results A deficit in coarse semantic activation was associated with lesions to the RH posterior middle temporal gyrus, dorsolateral prefrontal cortex, and lenticular nuclei. A maintenance deficit for coarsely coded representations involved the RH temporal pole and dorsolateral prefrontal cortex more medially. Ineffective suppression implicated lesions to the RH inferior frontal gyrus and subcortical regions, as hypothesized, along with the rostral temporal pole. Conclusion Beyond their scientific implications, these lesion–deficit correspondences may help inform the clinical diagnosis and enhance decisions about candidacy for deficit-focused treatment to improve narrative comprehension in individuals with RH damage. PMID:26425785

  7. Voxel-Based Lesion Symptom Mapping of Coarse Coding and Suppression Deficits in Patients With Right Hemisphere Damage.

    PubMed

    Yang, Ying; Tompkins, Connie A; Meigh, Kimberly M; Prat, Chantel S

    2015-11-01

    This study examined right hemisphere (RH) neuroanatomical correlates of lexical-semantic deficits that predict narrative comprehension in adults with RH brain damage. Coarse semantic coding and suppression deficits were related to lesions by voxel-based lesion symptom mapping. Participants were 20 adults with RH cerebrovascular accidents. Measures of coarse coding and suppression deficits were computed from lexical decision reaction times at short (175 ms) and long (1000 ms) prime-target intervals. Lesions were drawn on magnetic resonance imaging images and through normalization were registered on an age-matched brain template. Voxel-based lesion symptom mapping analysis was applied to build a general linear model at each voxel. Z score maps were generated for each deficit, and results were interpreted using automated anatomical labeling procedures. A deficit in coarse semantic activation was associated with lesions to the RH posterior middle temporal gyrus, dorsolateral prefrontal cortex, and lenticular nuclei. A maintenance deficit for coarsely coded representations involved the RH temporal pole and dorsolateral prefrontal cortex more medially. Ineffective suppression implicated lesions to the RH inferior frontal gyrus and subcortical regions, as hypothesized, along with the rostral temporal pole. Beyond their scientific implications, these lesion-deficit correspondences may help inform the clinical diagnosis and enhance decisions about candidacy for deficit-focused treatment to improve narrative comprehension in individuals with RH damage.

  8. A high resolution spatiotemporal atlas of gene expression of the developing mouse brain

    PubMed Central

    Thompson, Carol L.; Ng, Lydia; Menon, Vilas; Martinez, Salvador; Lee, Chang-Kyu; Glattfelder, Katie; Sunkin, Susan M.; Henry, Alex; Lau, Christopher; Dang, Chinh; Garcia-Lopez, Raquel; Martinez-Ferre, Almudena; Pombero, Ana; Rubenstein, John L.R.; Wakeman, Wayne B.; Hohmann, John; Dee, Nick; Sodt, Andrew J.; Young, Rob; Smith, Kimberly; Nguyen, Thuc-Nghi; Kidney, Jolene; Kuan, Leonard; Jeromin, Andreas; Kaykas, Ajamete; Miller, Jeremy; Page, Damon; Orta, Geri; Bernard, Amy; Riley, Zackery; Smith, Simon; Wohnoutka, Paul; Hawrylycz, Mike; Puelles, Luis; Jones, Allan R.

    2015-01-01

    SUMMARY To provide a temporal framework for the genoarchitecture of brain development, in situ hybridization data were generated for embryonic and postnatal mouse brain at 7 developmental stages for ~2100 genes, processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, 7 reference atlases, an ontogenetic ontology, and tools to explore co-expression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified. A temporal shift in the principles governing the molecular organization of the brain was detected, with transient neuromeric, plate-based organization of the brain present at E11.5 and E13.5. Finally, these data provided a transcription factor code that discriminates brain structures and identifies the developmental age of a tissue, providing a foundation for eventual genetic manipulation or tracking of specific brain structures over development. The resource is available as the Allen Developing Mouse Brain Atlas (developingmouse.brain-map.org). PMID:24952961

  9. Amodal Semantic Representations Depend on both Anterior Temporal Lobes: Evidence from Repetitive Transcranial Magnetic Stimulation

    ERIC Educational Resources Information Center

    Pobric, Gorana; Jefferies, Elizabeth; Ralph, Matthew A. Lambon

    2010-01-01

    The key question of how the brain codes the meaning of words and pictures is the focus of vigorous debate. Is there a "semantic hub" in the temporal poles where these different inputs converge to form amodal conceptual representations? Alternatively, are there distinct neural circuits that underpin our comprehension of pictures and words?…

  10. Dynamic state estimation based on Poisson spike trains—towards a theory of optimal encoding

    NASA Astrophysics Data System (ADS)

    Susemihl, Alex; Meir, Ron; Opper, Manfred

    2013-03-01

    Neurons in the nervous system convey information to higher brain regions by the generation of spike trains. An important question in the field of computational neuroscience is how these sensory neurons encode environmental information in a way which may be simply analyzed by subsequent systems. Many aspects of the form and function of the nervous system have been understood using the concepts of optimal population coding. Most studies, however, have neglected the aspect of temporal coding. Here we address this shortcoming through a filtering theory of inhomogeneous Poisson processes. We derive exact relations for the minimal mean squared error of the optimal Bayesian filter and, by optimizing the encoder, obtain optimal codes for populations of neurons. We also show that a class of non-Markovian, smooth stimuli are amenable to the same treatment, and provide results for the filtering and prediction error which hold for a general class of stochastic processes. This sets a sound mathematical framework for a population coding theory that takes temporal aspects into account. It also formalizes a number of studies which discussed temporal aspects of coding using time-window paradigms, by stating them in terms of correlation times and firing rates. We propose that this kind of analysis allows for a systematic study of temporal coding and will bring further insights into the nature of the neural code.

  11. Listening to Brain Microcircuits for Interfacing With External World—Progress in Wireless Implantable Microelectronic Neuroengineering Devices

    PubMed Central

    Nurmikko, Arto V.; Donoghue, John P.; Hochberg, Leigh R.; Patterson, William R.; Song, Yoon-Kyu; Bull, Christopher W.; Borton, David A.; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan

    2011-01-01

    Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature’s amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic “brain-interfaces” within the body, a point of special emphasis of this paper. PMID:21654935

  12. Simultaneous perception of a spoken and a signed language: The brain basis of ASL-English code-blends

    PubMed Central

    Weisberg, Jill; McCullough, Stephen; Emmorey, Karen

    2018-01-01

    Code-blends (simultaneous words and signs) are a unique characteristic of bimodal bilingual communication. Using fMRI, we investigated code-blend comprehension in hearing native ASL-English bilinguals who made a semantic decision (edible?) about signs, audiovisual words, and semantically equivalent code-blends. English and ASL recruited a similar fronto-temporal network with expected modality differences: stronger activation for English in auditory regions of bilateral superior temporal cortex, and stronger activation for ASL in bilateral occipitotemporal visual regions and left parietal cortex. Code-blend comprehension elicited activity in a combination of these regions, and no cognitive control regions were additionally recruited. Furthermore, code-blends elicited reduced activation relative to ASL presented alone in bilateral prefrontal and visual extrastriate cortices, and relative to English alone in auditory association cortex. Consistent with behavioral facilitation observed during semantic decisions, the findings suggest that redundant semantic content induces more efficient neural processing in language and sensory regions during bimodal language integration. PMID:26177161

  13. Listening to Brain Microcircuits for Interfacing With External World-Progress in Wireless Implantable Microelectronic Neuroengineering Devices: Experimental systems are described for electrical recording in the brain using multiple microelectrodes and short range implantable or wearable broadcasting units.

    PubMed

    Nurmikko, Arto V; Donoghue, John P; Hochberg, Leigh R; Patterson, William R; Song, Yoon-Kyu; Bull, Christopher W; Borton, David A; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan

    2010-01-01

    Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature's amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic "brain-interfaces" within the body, a point of special emphasis of this paper.

  14. Body language in the brain: constructing meaning from expressive movement.

    PubMed

    Tipper, Christine M; Signorini, Giulia; Grafton, Scott T

    2015-01-01

    This fMRI study investigated neural systems that interpret body language-the meaningful emotive expressions conveyed by body movement. Participants watched videos of performers engaged in modern dance or pantomime that conveyed specific themes such as hope, agony, lust, or exhaustion. We tested whether the meaning of an affectively laden performance was decoded in localized brain substrates as a distinct property of action separable from other superficial features, such as choreography, kinematics, performer, and low-level visual stimuli. A repetition suppression (RS) procedure was used to identify brain regions that decoded the meaningful affective state of a performer, as evidenced by decreased activity when emotive themes were repeated in successive performances. Because the theme was the only feature repeated across video clips that were otherwise entirely different, the occurrence of RS identified brain substrates that differentially coded the specific meaning of expressive performances. RS was observed bilaterally, extending anteriorly along middle and superior temporal gyri into temporal pole, medially into insula, rostrally into inferior orbitofrontal cortex, and caudally into hippocampus and amygdala. Behavioral data on a separate task indicated that interpreting themes from modern dance was more difficult than interpreting pantomime; a result that was also reflected in the fMRI data. There was greater RS in left hemisphere, suggesting that the more abstract metaphors used to express themes in dance compared to pantomime posed a greater challenge to brain substrates directly involved in decoding those themes. We propose that the meaning-sensitive temporal-orbitofrontal regions observed here comprise a superordinate functional module of a known hierarchical action observation network (AON), which is critical to the construction of meaning from expressive movement. The findings are discussed with respect to a predictive coding model of action understanding.

  15. Progesterone Sharpens Temporal Response Profiles of Sensory Cortical Neurons in Animals Exposed to Traumatic Brain Injury

    PubMed Central

    Allitt, Benjamin J.; Johnstone, Victoria P. A.; Richards, Katrina L.; Yan, Edwin B.

    2017-01-01

    Traumatic brain injury (TBI) initiates a cascade of pathophysiological changes that are both complex and difficult to treat. Progesterone (P4) is a neuroprotective treatment option that has shown excellent preclinical benefits in the treatment of TBI, but these benefits have not translated well in the clinic. We have previously shown that P4 exacerbates the already hypoactive upper cortical responses in the short-term post-TBI and does not reduce upper cortical hyperactivity in the long term, and we concluded that there is no tangible benefit to sensory cortex firing strength. Here we examined the effects of P4 treatment on temporal coding resolution in the rodent sensory cortex in both the short term (4 d) and long term (8 wk) following impact-acceleration–induced TBI. We show that in the short-term postinjury, TBI has no effect on sensory cortex temporal resolution and that P4 also sharpens the response profile in all cortical layers in the uninjured brain and all layers other than layer 2 (L2) in the injured brain. In the long term, TBI broadens the response profile in all cortical layers despite firing rate hyperactivity being localized to upper cortical layers and P4 sharpens the response profile in TBI animals in all layers other than L2 and has no long-term effect in the sham brain. These results indicate that P4 has long-term effects on sensory coding that may translate to beneficial perceptual outcomes. The effects seen here, combined with previous beneficial preclinical data, emphasize that P4 is still a potential treatment option in ameliorating TBI-induced disorders. PMID:28933224

  16. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease.

    PubMed Central

    Buzsáki, György; Watson, Brendon O.

    2012-01-01

    The perpetual activity of the cerebral cortex is largely supported by the variety of oscillations the brain generates, spanning a number of frequencies and anatomical locations, as well as behavioral correlates. First, we review findings from animal studies showing that most forms of brain rhythms are inhibition-based, producing rhythmic volleys of inhibitory inputs to principal cell populations, thereby providing alternating temporal windows of relatively reduced and enhanced excitability in neuronal networks. These inhibition-based mechanisms offer natural temporal frames to group or “chunk” neuronal activity into cell assemblies and sequences of assemblies, with more complex multi-oscillation interactions creating syntactical rules for the effective exchange of information among cortical networks. We then review recent studies in human psychiatric patients demonstrating a variety alterations in neural oscillations across all major psychiatric diseases, and suggest possible future research directions and treatment approaches based on the fundamental properties of brain rhythms. PMID:23393413

  17. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy

    PubMed Central

    Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.

    2015-01-01

    Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID:25552301

  18. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development.

    PubMed

    Hefti, Marco M; Farrell, Kurt; Kim, SoongHo; Bowles, Kathryn R; Fowkes, Mary E; Raj, Towfique; Crary, John F

    2018-01-01

    The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.

  19. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain.

    PubMed

    Higgins, Irina; Stringer, Simon; Schnupp, Jan

    2017-01-01

    The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable.

  20. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain

    PubMed Central

    Stringer, Simon

    2017-01-01

    The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable. PMID:28797034

  1. Predictive Feedback Can Account for Biphasic Responses in the Lateral Geniculate Nucleus

    PubMed Central

    Jehee, Janneke F. M.; Ballard, Dana H.

    2009-01-01

    Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain. PMID:19412529

  2. Temporal predictive mechanisms modulate motor reaction time during initiation and inhibition of speech and hand movement.

    PubMed

    Johari, Karim; Behroozmand, Roozbeh

    2017-08-01

    Skilled movement is mediated by motor commands executed with extremely fine temporal precision. The question of how the brain incorporates temporal information to perform motor actions has remained unanswered. This study investigated the effect of stimulus temporal predictability on response timing of speech and hand movement. Subjects performed a randomized vowel vocalization or button press task in two counterbalanced blocks in response to temporally-predictable and unpredictable visual cues. Results indicated that speech and hand reaction time was decreased for predictable compared with unpredictable stimuli. This finding suggests that a temporal predictive code is established to capture temporal dynamics of sensory cues in order to produce faster movements in responses to predictable stimuli. In addition, results revealed a main effect of modality, indicating faster hand movement compared with speech. We suggest that this effect is accounted for by the inherent complexity of speech production compared with hand movement. Lastly, we found that movement inhibition was faster than initiation for both hand and speech, suggesting that movement initiation requires a longer processing time to coordinate activities across multiple regions in the brain. These findings provide new insights into the mechanisms of temporal information processing during initiation and inhibition of speech and hand movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Altered retrieval of melodic information in congenital amusia: insights from dynamic causal modeling of MEG data.

    PubMed

    Albouy, Philippe; Mattout, Jérémie; Sanchez, Gaëtan; Tillmann, Barbara; Caclin, Anne

    2015-01-01

    Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and short-term memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the short-term memory retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in "Different" trials and to its equivalent (original) tone in "Same" trials were compared between groups using Dynamic Causal Modeling (DCM). DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with notably an increase in "Same" trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain.

  4. Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans

    PubMed Central

    Thomas, Julie; Vanni-Mercier, Giovanna; Dreher, Jean-Claude

    2013-01-01

    Prediction of future rewards and discrepancy between actual and expected outcomes (prediction error) are crucial signals for adaptive behavior. In humans, a number of fMRI studies demonstrated that reward probability modulates these two signals in a large brain network. Yet, the spatio-temporal dynamics underlying the neural coding of reward probability remains unknown. Here, using magnetoencephalography, we investigated the neural dynamics of prediction and reward prediction error computations while subjects learned to associate cues of slot machines with monetary rewards with different probabilities. We showed that event-related magnetic fields (ERFs) arising from the visual cortex coded the expected reward value 155 ms after the cue, demonstrating that reward value signals emerge early in the visual stream. Moreover, a prediction error was reflected in ERF peaking 300 ms after the rewarded outcome and showing decreasing amplitude with higher reward probability. This prediction error signal was generated in a network including the anterior and posterior cingulate cortex. These findings pinpoint the spatio-temporal characteristics underlying reward probability coding. Together, our results provide insights into the neural dynamics underlying the ability to learn probabilistic stimuli-reward contingencies. PMID:24302894

  5. Neural underpinnings of music: the polyrhythmic brain.

    PubMed

    Vuust, Peter; Gebauer, Line K; Witek, Maria A G

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has the remarkable ability to move our minds and bodies. Why do certain rhythms make us want to tap our feet, bop our heads or even get up and dance? And how does the brain process rhythmically complex rhythms during our experiences of music? In this chapter, we describe some common forms of rhythmic complexity in music and propose that the theory of predictive coding can explain how rhythm and rhythmic complexity are processed in the brain. We also consider how this theory may reveal why we feel so compelled by rhythmic tension in music. First, musical-theoretical and neuroscientific frameworks of rhythm are presented, in which rhythm perception is conceptualized as an interaction between what is heard ('rhythm') and the brain's anticipatory structuring of music ('the meter'). Second, three different examples of tension between rhythm and meter in music are described: syncopation, polyrhythm and groove. Third, we present the theory of predictive coding of music, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain's Bayesian minimization of the error between the input to the brain and the brain's prior expectations. Fourth, empirical studies of neural and behavioral effects of syncopation, polyrhythm and groove will be reported, and we propose how these studies can be seen as special cases of the predictive coding theory. Finally, we argue that musical rhythm exploits the brain's general principles of anticipation and propose that pleasure from musical rhythm may be a result of such anticipatory mechanisms.

  6. Semantic representations in the temporal pole predict false memories

    PubMed Central

    Chadwick, Martin J.; Anjum, Raeesa S.; Kumaran, Dharshan; Schacter, Daniel L.; Spiers, Hugo J.; Hassabis, Demis

    2016-01-01

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the “semantic hub” of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories. PMID:27551087

  7. Semantic representations in the temporal pole predict false memories.

    PubMed

    Chadwick, Martin J; Anjum, Raeesa S; Kumaran, Dharshan; Schacter, Daniel L; Spiers, Hugo J; Hassabis, Demis

    2016-09-06

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the "semantic hub" of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories.

  8. What the success of brain imaging implies about the neural code.

    PubMed

    Guest, Olivia; Love, Bradley C

    2017-01-19

    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI's limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI's successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI.

  9. Information theoretic analysis of proprioceptive encoding during finger flexion in the monkey sensorimotor system.

    PubMed

    Witham, Claire L; Baker, Stuart N

    2015-01-01

    There is considerable debate over whether the brain codes information using neural firing rate or the fine-grained structure of spike timing. We investigated this issue in spike discharge recorded from single units in the sensorimotor cortex, deep cerebellar nuclei, and dorsal root ganglia in macaque monkeys trained to perform a finger flexion task. The task required flexion to four different displacements against two opposing torques; the eight possible conditions were randomly interleaved. We used information theory to assess coding of task condition in spike rate, discharge irregularity, and spectral power in the 15- to 25-Hz band during the period of steady holding. All three measures coded task information in all areas tested. Information coding was most often independent between irregularity and 15-25 Hz power (60% of units), moderately redundant between spike rate and irregularity (56% of units redundant), and highly redundant between spike rate and power (93%). Most simultaneously recorded unit pairs coded using the same measure independently (86%). Knowledge of two measures often provided extra information about task, compared with knowledge of only one alone. We conclude that sensorimotor systems use both rate and temporal codes to represent information about a finger movement task. As well as offering insights into neural coding, this work suggests that incorporating spike irregularity into algorithms used for brain-machine interfaces could improve decoding accuracy. Copyright © 2015 the American Physiological Society.

  10. Activity-Dependent Human Brain Coding/Noncoding Gene Regulatory Networks

    PubMed Central

    Lipovich, Leonard; Dachet, Fabien; Cai, Juan; Bagla, Shruti; Balan, Karina; Jia, Hui; Loeb, Jeffrey A.

    2012-01-01

    While most gene transcription yields RNA transcripts that code for proteins, a sizable proportion of the genome generates RNA transcripts that do not code for proteins, but may have important regulatory functions. The brain-derived neurotrophic factor (BDNF) gene, a key regulator of neuronal activity, is overlapped by a primate-specific, antisense long noncoding RNA (lncRNA) called BDNFOS. We demonstrate reciprocal patterns of BDNF and BDNFOS transcription in highly active regions of human neocortex removed as a treatment for intractable seizures. A genome-wide analysis of activity-dependent coding and noncoding human transcription using a custom lncRNA microarray identified 1288 differentially expressed lncRNAs, of which 26 had expression profiles that matched activity-dependent coding genes and an additional 8 were adjacent to or overlapping with differentially expressed protein-coding genes. The functions of most of these protein-coding partner genes, such as ARC, include long-term potentiation, synaptic activity, and memory. The nuclear lncRNAs NEAT1, MALAT1, and RPPH1, composing an RNAse P-dependent lncRNA-maturation pathway, were also upregulated. As a means to replicate human neuronal activity, repeated depolarization of SY5Y cells resulted in sustained CREB activation and produced an inverse pattern of BDNF-BDNFOS co-expression that was not achieved with a single depolarization. RNAi-mediated knockdown of BDNFOS in human SY5Y cells increased BDNF expression, suggesting that BDNFOS directly downregulates BDNF. Temporal expression patterns of other lncRNA-messenger RNA pairs validated the effect of chronic neuronal activity on the transcriptome and implied various lncRNA regulatory mechanisms. lncRNAs, some of which are unique to primates, thus appear to have potentially important regulatory roles in activity-dependent human brain plasticity. PMID:22960213

  11. How do auditory cortex neurons represent communication sounds?

    PubMed

    Gaucher, Quentin; Huetz, Chloé; Gourévitch, Boris; Laudanski, Jonathan; Occelli, Florian; Edeline, Jean-Marc

    2013-11-01

    A major goal in auditory neuroscience is to characterize how communication sounds are represented at the cortical level. The present review aims at investigating the role of auditory cortex in the processing of speech, bird songs and other vocalizations, which all are spectrally and temporally highly structured sounds. Whereas earlier studies have simply looked for neurons exhibiting higher firing rates to particular conspecific vocalizations over their modified, artificially synthesized versions, more recent studies determined the coding capacity of temporal spike patterns, which are prominent in primary and non-primary areas (and also in non-auditory cortical areas). In several cases, this information seems to be correlated with the behavioral performance of human or animal subjects, suggesting that spike-timing based coding strategies might set the foundations of our perceptive abilities. Also, it is now clear that the responses of auditory cortex neurons are highly nonlinear and that their responses to natural stimuli cannot be predicted from their responses to artificial stimuli such as moving ripples and broadband noises. Since auditory cortex neurons cannot follow rapid fluctuations of the vocalizations envelope, they only respond at specific time points during communication sounds, which can serve as temporal markers for integrating the temporal and spectral processing taking place at subcortical relays. Thus, the temporal sparse code of auditory cortex neurons can be considered as a first step for generating high level representations of communication sounds independent of the acoustic characteristic of these sounds. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Long-Term Temporal Imprecision of Information Coding in the Anterior Cingulate Cortex of Mice with Peripheral Inflammation or Nerve Injury

    PubMed Central

    Li, Xiang-Yao; Wang, Ning; Wang, Yong-Jie; Zuo, Zhen-Xing; Koga, Kohei; Luo, Fei

    2014-01-01

    Temporal properties of spike firing in the central nervous system (CNS) are critical for neuronal coding and the precision of information storage. Chronic pain has been reported to affect cognitive and emotional functions, in addition to trigger long-term plasticity in sensory synapses and behavioral sensitization. Less is known about the possible changes in temporal precision of cortical neurons in chronic pain conditions. In the present study, we investigated the temporal precision of action potential firing in the anterior cingulate cortex (ACC) by using both in vivo and in vitro electrophysiological approaches. We found that peripheral inflammation caused by complete Freund's adjuvant (CFA) increased the standard deviation (SD) of spikes latency (also called jitter) of ∼51% of recorded neurons in the ACC of adult rats in vivo. Similar increases in jitter were found in ACC neurons using in vitro brain slices from adult mice with peripheral inflammation or nerve injury. Bath application of glutamate receptor antagonists CNQX and AP5 abolished the enhancement of jitter induced by CFA injection or nerve injury, suggesting that the increased jitter depends on the glutamatergic synaptic transmission. Activation of adenylyl cyclases (ACs) by bath application of forskolin increased jitter, whereas genetic deletion of AC1 abolished the change of jitter caused by CFA inflammation. Our study provides strong evidence for long-term changes of temporal precision of information coding in cortical neurons after peripheral injuries and explains neuronal mechanism for chronic pain caused cognitive and emotional impairment. PMID:25100600

  13. Functional selectivity for face processing in the temporal voice area of early deaf individuals

    PubMed Central

    van Ackeren, Markus J.; Rabini, Giuseppe; Zonca, Joshua; Foa, Valentina; Baruffaldi, Francesca; Rezk, Mohamed; Pavani, Francesco; Rossion, Bruno; Collignon, Olivier

    2017-01-01

    Brain systems supporting face and voice processing both contribute to the extraction of important information for social interaction (e.g., person identity). How does the brain reorganize when one of these channels is absent? Here, we explore this question by combining behavioral and multimodal neuroimaging measures (magneto-encephalography and functional imaging) in a group of early deaf humans. We show enhanced selective neural response for faces and for individual face coding in a specific region of the auditory cortex that is typically specialized for voice perception in hearing individuals. In this region, selectivity to face signals emerges early in the visual processing hierarchy, shortly after typical face-selective responses in the ventral visual pathway. Functional and effective connectivity analyses suggest reorganization in long-range connections from early visual areas to the face-selective temporal area in individuals with early and profound deafness. Altogether, these observations demonstrate that regions that typically specialize for voice processing in the hearing brain preferentially reorganize for face processing in born-deaf people. Our results support the idea that cross-modal plasticity in the case of early sensory deprivation relates to the original functional specialization of the reorganized brain regions. PMID:28652333

  14. Face Coding Is Bilateral in the Female Brain

    PubMed Central

    Proverbio, Alice Mado; Riva, Federica; Martin, Eleonora; Zani, Alberto

    2010-01-01

    Background It is currently believed that face processing predominantly activates the right hemisphere in humans, but available literature is very inconsistent. Methodology/Principal Findings In this study, ERPs were recorded in 50 right-handed women and men in response to 390 faces (of different age and sex), and 130 technological objects. Results showed no sex difference in the amplitude of N170 to objects; a much larger face-specific response over the right hemisphere in men, and a bilateral response in women; a lack of face-age coding effect over the left hemisphere in men, with no differences in N170 to faces as a function of age; a significant bilateral face-age coding effect in women. Conclusions/Significance LORETA reconstruction showed a significant left and right asymmetry in the activation of the fusiform gyrus (BA19), in women and men, respectively. The present data reveal a lesser degree of lateralization of brain functions related to face coding in women than men. In this light, they may provide an explanation of the inconsistencies in the available literature concerning the asymmetric activity of left and right occipito-temporal cortices devoted to face perception during processing of face identity, structure, familiarity or affective content. PMID:20574528

  15. Face coding is bilateral in the female brain.

    PubMed

    Proverbio, Alice Mado; Riva, Federica; Martin, Eleonora; Zani, Alberto

    2010-06-21

    It is currently believed that face processing predominantly activates the right hemisphere in humans, but available literature is very inconsistent. In this study, ERPs were recorded in 50 right-handed women and men in response to 390 faces (of different age and sex), and 130 technological objects. Results showed no sex difference in the amplitude of N170 to objects; a much larger face-specific response over the right hemisphere in men, and a bilateral response in women; a lack of face-age coding effect over the left hemisphere in men, with no differences in N170 to faces as a function of age; a significant bilateral face-age coding effect in women. LORETA reconstruction showed a significant left and right asymmetry in the activation of the fusiform gyrus (BA19), in women and men, respectively. The present data reveal a lesser degree of lateralization of brain functions related to face coding in women than men. In this light, they may provide an explanation of the inconsistencies in the available literature concerning the asymmetric activity of left and right occipito-temporal cortices devoted to face perception during processing of face identity, structure, familiarity or affective content.

  16. Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.

    PubMed

    Limongi, Roberto; Silva, Angélica M

    2016-11-01

    The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.

  17. Temporally precise single-cell resolution optogenetics

    PubMed Central

    Shemesh, Or A.; Tanese, Dimitrii; Zampini, Valeria; Linghu, Changyang; Piatkevich, Kiryl; Ronzitti, Emiliano; Papagiakoumou, Eirini; Boyden, Edward S.; Emiliani, Valentina

    2017-01-01

    Optogenetic control of individual neurons with high temporal precision, within intact mammalian brain circuitry, would enable powerful explorations of how neural circuits operate. Two-photon computer generated holography enables precise sculpting of light, and could in principle enable simultaneous illumination of many neurons in a network, with the requisite temporal precision to simulate accurate neural codes. We designed a high efficacy soma-targeted opsin, finding that fusing the N-terminal 150 residues of kainate receptor subunit 2 (KA2) to the recently discovered high-photocurrent channelrhodopsin CoChR restricted expression of this opsin primarily to the cell body of mammalian cortical neurons. In combination with two-photon holographic stimulation, we found that this somatic CoChR (soCoChR) enabled photostimulation of individual cells in intact cortical circuits with single cell resolution and <1 millisecond temporal precision, and use soCoChR to perform connectivity mapping on intact cortical circuits. PMID:29184208

  18. What the success of brain imaging implies about the neural code

    PubMed Central

    Guest, Olivia; Love, Bradley C

    2017-01-01

    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI’s limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI’s successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI. DOI: http://dx.doi.org/10.7554/eLife.21397.001 PMID:28103186

  19. Objects tell us what action we can expect: dissociating brain areas for retrieval and exploitation of action knowledge during action observation in fMRI

    PubMed Central

    Schubotz, Ricarda I.; Wurm, Moritz F.; Wittmann, Marco K.; von Cramon, D. Yves

    2014-01-01

    Objects are reminiscent of actions often performed with them: knife and apple remind us on peeling the apple or cutting it. Mnemonic representations of object-related actions (action codes) evoked by the sight of an object may constrain and hence facilitate recognition of unrolling actions. The present fMRI study investigated if and how action codes influence brain activation during action observation. The average number of action codes (NAC) of 51 sets of objects was rated by a group of n = 24 participants. In an fMRI study, different volunteers were asked to recognize actions performed with the same objects presented in short videos. To disentangle areas reflecting the storage of action codes from those exploiting them, we showed object-compatible and object-incompatible (pantomime) actions. Areas storing action codes were considered to positively co-vary with NAC in both object-compatible and object-incompatible action; due to its role in tool-related tasks, we here hypothesized left anterior inferior parietal cortex (aIPL). In contrast, areas exploiting action codes were expected to show this correlation only in object-compatible but not incompatible action, as only object-compatible actions match one of the active action codes. For this interaction, we hypothesized ventrolateral premotor cortex (PMv) to join aIPL due to its role in biasing competition in IPL. We found left anterior intraparietal sulcus (IPS) and left posterior middle temporal gyrus (pMTG) to co-vary with NAC. In addition to these areas, action codes increased activity in object-compatible action in bilateral PMv, right IPS, and lateral occipital cortex (LO). Findings suggest that during action observation, the brain derives possible actions from perceived objects, and uses this information to shape action recognition. In particular, the number of expectable actions quantifies the activity level at PMv, IPL, and pMTG, but only PMv reflects their biased competition while observed action unfolds. PMID:25009519

  20. Mapping and Deciphering Neural Codes of NMDA Receptor-Dependent Fear Memory Engrams in the Hippocampus

    PubMed Central

    Tsien, Joe Z.

    2013-01-01

    Mapping and decoding brain activity patterns underlying learning and memory represents both great interest and immense challenge. At present, very little is known regarding many of the very basic questions regarding the neural codes of memory: are fear memories retrieved during the freezing state or non-freezing state of the animals? How do individual memory traces give arise to a holistic, real-time associative memory engram? How are memory codes regulated by synaptic plasticity? Here, by applying high-density electrode arrays and dimensionality-reduction decoding algorithms, we investigate hippocampal CA1 activity patterns of trace fear conditioning memory code in inducible NMDA receptor knockout mice and their control littermates. Our analyses showed that the conditioned tone (CS) and unconditioned foot-shock (US) can evoke hippocampal ensemble responses in control and mutant mice. Yet, temporal formats and contents of CA1 fear memory engrams differ significantly between the genotypes. The mutant mice with disabled NMDA receptor plasticity failed to generate CS-to-US or US-to-CS associative memory traces. Moreover, the mutant CA1 region lacked memory traces for “what at when” information that predicts the timing relationship between the conditioned tone and the foot shock. The degraded associative fear memory engram is further manifested in its lack of intertwined and alternating temporal association between CS and US memory traces that are characteristic to the holistic memory recall in the wild-type animals. Therefore, our study has decoded real-time memory contents, timing relationship between CS and US, and temporal organizing patterns of fear memory engrams and demonstrated how hippocampal memory codes are regulated by NMDA receptor synaptic plasticity. PMID:24302990

  1. The neuronal encoding of information in the brain.

    PubMed

    Rolls, Edmund T; Treves, Alessandro

    2011-11-01

    We describe the results of quantitative information theoretic analyses of neural encoding, particularly in the primate visual, olfactory, taste, hippocampal, and orbitofrontal cortex. Most of the information turns out to be encoded by the firing rates of the neurons, that is by the number of spikes in a short time window. This has been shown to be a robust code, for the firing rate representations of different neurons are close to independent for small populations of neurons. Moreover, the information can be read fast from such encoding, in as little as 20 ms. In quantitative information theoretic studies, only a little additional information is available in temporal encoding involving stimulus-dependent synchronization of different neurons, or the timing of spikes within the spike train of a single neuron. Feature binding appears to be solved by feature combination neurons rather than by temporal synchrony. The code is sparse distributed, with the spike firing rate distributions close to exponential or gamma. A feature of the code is that it can be read by neurons that take a synaptically weighted sum of their inputs. This dot product decoding is biologically plausible. Understanding the neural code is fundamental to understanding not only how the cortex represents, but also processes, information. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Spatio-Temporal Information Analysis of Event-Related BOLD Responses

    PubMed Central

    Alpert, Galit Fuhrmann; Handwerker, Dan; Sun, Felice T.; D’Esposito, Mark; Knight, Robert T.

    2009-01-01

    A new approach for analysis of event related fMRI (BOLD) signals is proposed. The technique is based on measures from information theory and is used both for spatial localization of task related activity, as well as for extracting temporal information regarding the task dependent propagation of activation across different brain regions. This approach enables whole brain visualization of voxels (areas) most involved in coding of a specific task condition, the time at which they are most informative about the condition, as well as their average amplitude at that preferred time. The approach does not require prior assumptions about the shape of the hemodynamic response function (HRF), nor about linear relations between BOLD response and presented stimuli (or task conditions). We show that relative delays between different brain regions can also be computed without prior knowledge of the experimental design, suggesting a general method that could be applied for analysis of differential time delays that occur during natural, uncontrolled conditions. Here we analyze BOLD signals recorded during performance of a motor learning task. We show that during motor learning, the BOLD response of unimodal motor cortical areas precedes the response in higher-order multimodal association areas, including posterior parietal cortex. Brain areas found to be associated with reduced activity during motor learning, predominantly in prefrontal brain regions, are informative about the task typically at significantly later times. PMID:17188515

  3. The structural neuroanatomy of music emotion recognition: Evidence from frontotemporal lobar degeneration

    PubMed Central

    Omar, Rohani; Henley, Susie M.D.; Bartlett, Jonathan W.; Hailstone, Julia C.; Gordon, Elizabeth; Sauter, Disa A.; Frost, Chris; Scott, Sophie K.; Warren, Jason D.

    2011-01-01

    Despite growing clinical and neurobiological interest in the brain mechanisms that process emotion in music, these mechanisms remain incompletely understood. Patients with frontotemporal lobar degeneration (FTLD) frequently exhibit clinical syndromes that illustrate the effects of breakdown in emotional and social functioning. Here we investigated the neuroanatomical substrate for recognition of musical emotion in a cohort of 26 patients with FTLD (16 with behavioural variant frontotemporal dementia, bvFTD, 10 with semantic dementia, SemD) using voxel-based morphometry. On neuropsychological evaluation, patients with FTLD showed deficient recognition of canonical emotions (happiness, sadness, anger and fear) from music as well as faces and voices compared with healthy control subjects. Impaired recognition of emotions from music was specifically associated with grey matter loss in a distributed cerebral network including insula, orbitofrontal cortex, anterior cingulate and medial prefrontal cortex, anterior temporal and more posterior temporal and parietal cortices, amygdala and the subcortical mesolimbic system. This network constitutes an essential brain substrate for recognition of musical emotion that overlaps with brain regions previously implicated in coding emotional value, behavioural context, conceptual knowledge and theory of mind. Musical emotion recognition may probe the interface of these processes, delineating a profile of brain damage that is essential for the abstraction of complex social emotions. PMID:21385617

  4. The structural neuroanatomy of music emotion recognition: evidence from frontotemporal lobar degeneration.

    PubMed

    Omar, Rohani; Henley, Susie M D; Bartlett, Jonathan W; Hailstone, Julia C; Gordon, Elizabeth; Sauter, Disa A; Frost, Chris; Scott, Sophie K; Warren, Jason D

    2011-06-01

    Despite growing clinical and neurobiological interest in the brain mechanisms that process emotion in music, these mechanisms remain incompletely understood. Patients with frontotemporal lobar degeneration (FTLD) frequently exhibit clinical syndromes that illustrate the effects of breakdown in emotional and social functioning. Here we investigated the neuroanatomical substrate for recognition of musical emotion in a cohort of 26 patients with FTLD (16 with behavioural variant frontotemporal dementia, bvFTD, 10 with semantic dementia, SemD) using voxel-based morphometry. On neuropsychological evaluation, patients with FTLD showed deficient recognition of canonical emotions (happiness, sadness, anger and fear) from music as well as faces and voices compared with healthy control subjects. Impaired recognition of emotions from music was specifically associated with grey matter loss in a distributed cerebral network including insula, orbitofrontal cortex, anterior cingulate and medial prefrontal cortex, anterior temporal and more posterior temporal and parietal cortices, amygdala and the subcortical mesolimbic system. This network constitutes an essential brain substrate for recognition of musical emotion that overlaps with brain regions previously implicated in coding emotional value, behavioural context, conceptual knowledge and theory of mind. Musical emotion recognition may probe the interface of these processes, delineating a profile of brain damage that is essential for the abstraction of complex social emotions. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Human auditory steady state responses to binaural and monaural beats.

    PubMed

    Schwarz, D W F; Taylor, P

    2005-03-01

    Binaural beat sensations depend upon a central combination of two different temporally encoded tones, separately presented to the two ears. We tested the feasibility to record an auditory steady state evoked response (ASSR) at the binaural beat frequency in order to find a measure for temporal coding of sound in the human EEG. We stimulated each ear with a distinct tone, both differing in frequency by 40Hz, to record a binaural beat ASSR. As control, we evoked a beat ASSR in response to both tones in the same ear. We band-pass filtered the EEG at 40Hz, averaged with respect to stimulus onset and compared ASSR amplitudes and phases, extracted from a sinusoidal non-linear regression fit to a 40Hz period average. A 40Hz binaural beat ASSR was evoked at a low mean stimulus frequency (400Hz) but became undetectable beyond 3kHz. Its amplitude was smaller than that of the acoustic beat ASSR, which was evoked at low and high frequencies. Both ASSR types had maxima at fronto-central leads and displayed a fronto-occipital phase delay of several ms. The dependence of the 40Hz binaural beat ASSR on stimuli at low, temporally coded tone frequencies suggests that it may objectively assess temporal sound coding ability. The phase shift across the electrode array is evidence for more than one origin of the 40Hz oscillations. The binaural beat ASSR is an evoked response, with novel diagnostic potential, to a signal that is not present in the stimulus, but generated within the brain.

  6. Graph analysis of functional brain networks: practical issues in translational neuroscience

    PubMed Central

    De Vico Fallani, Fabrizio; Richiardi, Jonas; Chavez, Mario; Achard, Sophie

    2014-01-01

    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes. PMID:25180301

  7. Cell-assembly coding in several memory processes.

    PubMed

    Sakurai, Y

    1998-01-01

    The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.

  8. Distributed Representation of Visual Objects by Single Neurons in the Human Brain

    PubMed Central

    Valdez, André B.; Papesh, Megan H.; Treiman, David M.; Smith, Kris A.; Goldinger, Stephen D.

    2015-01-01

    It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. PMID:25834044

  9. Mapping human temporal and parietal neuronal population activity and functional coupling during mathematical cognition

    PubMed Central

    Daitch, Amy L.; Foster, Brett L.; Schrouff, Jessica; Rangarajan, Vinitha; Kaşikçi, Itır; Gattas, Sandra; Parvizi, Josef

    2016-01-01

    Brain areas within the lateral parietal cortex (LPC) and ventral temporal cortex (VTC) have been shown to code for abstract quantity representations and for symbolic numerical representations, respectively. To explore the fast dynamics of activity within each region and the interaction between them, we used electrocorticography recordings from 16 neurosurgical subjects implanted with grids of electrodes over these two regions and tracked the activity within and between the regions as subjects performed three different numerical tasks. Although our results reconfirm the presence of math-selective hubs within the VTC and LPC, we report here a remarkable heterogeneity of neural responses within each region at both millimeter and millisecond scales. Moreover, we show that the heterogeneity of response profiles within each hub mirrors the distinct patterns of functional coupling between them. Our results support the existence of multiple bidirectional functional loops operating between discrete populations of neurons within the VTC and LPC during the visual processing of numerals and the performance of arithmetic functions. These findings reveal information about the dynamics of numerical processing in the brain and also provide insight into the fine-grained functional architecture and connectivity within the human brain. PMID:27821758

  10. Electroencephalography: Subdural Multi-Electrode Brain Chip.

    DTIC Science & Technology

    1995-12-01

    showing a blind subject reading Braille letters that had been inserted into his visual cortex by stimulating appropriate sets of electrodes. The...subject in Dobelle’s experiment 50 had been blind for 10 years and was able to read Braille at 30 letters a minute using a 64 electrode array for...Evans, "’ Braille ’ Reading by a Blind Volunteer by Visual cortex Stimulation," Nature, 259: 111-112 (January 1976). A.K. Engel, et al. "Temporal Coding

  11. Neural correlates of word production stages delineated by parametric modulation of psycholinguistic variables.

    PubMed

    Wilson, Stephen M; Isenberg, Anna Lisette; Hickok, Gregory

    2009-11-01

    Word production is a complex multistage process linking conceptual representations, lexical entries, phonological forms and articulation. Previous studies have revealed a network of predominantly left-lateralized brain regions supporting this process, but many details regarding the precise functions of different nodes in this network remain unclear. To better delineate the functions of regions involved in word production, we used event-related functional magnetic resonance imaging (fMRI) to identify brain areas where blood oxygen level-dependent (BOLD) responses to overt picture naming were modulated by three psycholinguistic variables: concept familiarity, word frequency, and word length, and one behavioral variable: reaction time. Each of these variables has been suggested by prior studies to be associated with different aspects of word production. Processing of less familiar concepts was associated with greater BOLD responses in bilateral occipitotemporal regions, reflecting visual processing and conceptual preparation. Lower frequency words produced greater BOLD signal in left inferior temporal cortex and the left temporoparietal junction, suggesting involvement of these regions in lexical selection and retrieval and encoding of phonological codes. Word length was positively correlated with signal intensity in Heschl's gyrus bilaterally, extending into the mid-superior temporal gyrus (STG) and sulcus (STS) in the left hemisphere. The left mid-STS site was also modulated by reaction time, suggesting a role in the storage of lexical phonological codes.

  12. Role of temporal processing stages by inferior temporal neurons in facial recognition.

    PubMed

    Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Kawano, Kenji

    2011-01-01

    In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT) cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses. In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of face recognition.

  13. Role of Temporal Processing Stages by Inferior Temporal Neurons in Facial Recognition

    PubMed Central

    Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Kawano, Kenji

    2011-01-01

    In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT) cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses. In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of face recognition. PMID:21734904

  14. Distinct cortical codes and temporal dynamics for conscious and unconscious percepts

    PubMed Central

    Salti, Moti; Monto, Simo; Charles, Lucie; King, Jean-Remi; Parkkonen, Lauri; Dehaene, Stanislas

    2015-01-01

    The neural correlates of consciousness are typically sought by comparing the overall brain responses to perceived and unperceived stimuli. However, this comparison may be contaminated by non-specific attention, alerting, performance, and reporting confounds. Here, we pursue a novel approach, tracking the neuronal coding of consciously and unconsciously perceived contents while keeping behavior identical (blindsight). EEG and MEG were recorded while participants reported the spatial location and visibility of a briefly presented target. Multivariate pattern analysis demonstrated that considerable information about spatial location traverses the cortex on blindsight trials, but that starting ≈270 ms post-onset, information unique to consciously perceived stimuli, emerges in superior parietal and superior frontal regions. Conscious access appears characterized by the entry of the perceived stimulus into a series of additional brain processes, each restricted in time, while the failure of conscious access results in the breaking of this chain and a subsequent slow decay of the lingering unconscious activity. DOI: http://dx.doi.org/10.7554/eLife.05652.001 PMID:25997100

  15. A Tale of Two Temporal Coding Strategies: Common and Dissociable Brain Regions Involved in Recency versus Associative Temporal Order Retrieval Strategies.

    PubMed

    Lieberman, Jennifer S; Kyle, Colin T; Schedlbauer, Amber; Stokes, Jared; Ekstrom, Arne D

    2017-04-01

    Numerous studies indicate the importance of the hippocampus to temporal order retrieval. However, behavioral studies suggest that there are different ways to retrieve temporal order information from encoded sequences, one involving an associative strategy (retrieving associations using neighboring items in a list) and another involving a recency strategy (determining which of two items came first). It remains unresolved, however, whether both strategies recruit the hippocampus or only associative strategies, consistent with the hippocampus's role in relational processing. To address this, we developed a paradigm in which we dissociated associative versus recency-based retrieval, involving the same stimulus presentation during retrieval. Associative retrieval involved an increase in RT (and decrease in performance) with greater distances between intervals, consistent with the need to retrieve intervening associations. Recency-based retrieval involved an increase in RT (and decrease in performance) with shorter distances between intervals, suggesting the use of a strength-based coding mechanism to retrieve information. We employed fMRI to determine the neural basis of the different strategies. Both strategies showed significant levels of hippocampal activation and connectivity that did not differ between tasks. In contrast, both univariate and connectivity pattern analyses revealed differences in extrahippocampal areas such as parietal and frontal cortices. A covariate analysis suggested that differences could not be explained by task difficulty alone. Together, these findings suggest that the hippocampus plays a role in both forms of temporal order retrieval, with neocortical networks mediating the different cognitive demands for associative versus recency-based temporal order retrieval.

  16. Development of common neural representations for distinct numerical problems

    PubMed Central

    Chang, Ting-Ting; Rosenberg-Lee, Miriam; Metcalfe, Arron W. S.; Chen, Tianwen; Menon, Vinod

    2015-01-01

    How the brain develops representations for abstract cognitive problems is a major unaddressed question in neuroscience. Here we tackle this fundamental question using arithmetic problem solving, a cognitive domain important for the development of mathematical reasoning. We first examined whether adults demonstrate common neural representations for addition and subtraction problems, two complementary arithmetic operations that manipulate the same quantities. We then examined how the common neural representations for the two problem types change with development. Whole-brain multivoxel representational similarity (MRS) analysis was conducted to examine common coding of addition and subtraction problems in children and adults. We found that adults exhibited significant levels of MRS between the two problem types, not only in the intra-parietal sulcus (IPS) region of the posterior parietal cortex (PPC), but also in ventral temporal-occipital, anterior temporal and dorsolateral prefrontal cortices. Relative to adults, children showed significantly reduced levels of MRS in these same regions. In contrast, no brain areas showed significantly greater MRS between problem types in children. Our findings provide novel evidence that the emergence of arithmetic problem solving skills from childhood to adulthood is characterized by maturation of common neural representations between distinct numerical operations, and involve distributed brain regions important for representing and manipulating numerical quantity. More broadly, our findings demonstrate that representational analysis provides a powerful approach for uncovering fundamental mechanisms by which children develop proficiencies that are a hallmark of human cognition. PMID:26160287

  17. Short-term synaptic plasticity and heterogeneity in neural systems

    NASA Astrophysics Data System (ADS)

    Mejias, J. F.; Kappen, H. J.; Longtin, A.; Torres, J. J.

    2013-01-01

    We review some recent results on neural dynamics and information processing which arise when considering several biophysical factors of interest, in particular, short-term synaptic plasticity and neural heterogeneity. The inclusion of short-term synaptic plasticity leads to enhanced long-term memory capacities, a higher robustness of memory to noise, and irregularity in the duration of the so-called up cortical states. On the other hand, considering some level of neural heterogeneity in neuron models allows neural systems to optimize information transmission in rate coding and temporal coding, two strategies commonly used by neurons to codify information in many brain areas. In all these studies, analytical approximations can be made to explain the underlying dynamics of these neural systems.

  18. Slow cortical potentials and "inner time consciousness" - A neuro-phenomenal hypothesis about the "width of present".

    PubMed

    Northoff, Georg

    2016-05-01

    William James postulated a "stream of consciousness" that presupposes temporal continuity. The neuronal mechanisms underlying the construction of such temporal continuity remain unclear, however, in my contribution, I propose a neuro-phenomenal hypothesis that is based on slow cortical potentials and their extension of the present moment as described in the phenomenal term of "width of present". More specifically, I focus on the way the brain's neural activity needs to be encoded in order to make possible the "stream of consciousness." This leads us again to the low-frequency fluctuations of the brain's neural activity and more specifically to slow cortical potentials (SCPs). Due to their long phase duration as low-frequency fluctuations, SCPs can integrate different stimuli and their associated neural activity from different regions in one converging region. Such integration may be central for consciousness to occur, as it was recently postulated by He and Raichle. They leave open, however, the question of the exact neuronal mechanisms, like the encoding strategy, that make possible the association of the otherwise purely neuronal SCP with consciousness and its phenomenal features. I hypothesize that SCPs allow for linking and connecting different discrete points in physical time by encoding their statistically based temporal differences rather than the single discrete time points by themselves. This presupposes difference-based coding rather than stimulus-based coding. The encoding of such statistically based temporal differences makes it possible to "go beyond" the merely physical features of the stimuli; that is, their single discrete time points and their conduction delays (as related to their neural processing in the brain). This, in turn, makes possible the constitution of "local temporal continuity" of neural activity in one particular region. The concept of "local temporal continuity" signifies the linkage and integration of different discrete time points into one neural activity in a particular region. How does such local temporal continuity predispose the experience of time in consciousness? For that, I turn to phenomenological philosopher Edmund Husserl and his description of what he calls "inner time consciousness" (Husserl and Brough, 1990). One hallmark of humans' "inner time consciousness" is that we experience events and objects in succession and duration in our consciousness; according to Husserl, this amounts to what he calls the "width of [the] present." The concept of the width of present describes the extension of the present beyond the single discrete time point, such as, for instance, when we perceive different tones as a melody. I now hypothesize the degree of the width of present to be directly dependent upon and thus predisposed by the degree of the temporal differences between two (or more) discrete time points as they are encoded into neural activity. I therefore conclude that the SCPs and their encoding of neural activity in terms of temporal differences must be regarded a neural predisposition of consciousness (NPC) as distinguished from a neural correlate of consciousness (NCC). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Neutral lipid-storage disease with myopathy and extended phenotype with novel PNPLA2 mutation.

    PubMed

    Massa, Roberto; Pozzessere, Simone; Rastelli, Emanuele; Serra, Laura; Terracciano, Chiara; Gibellini, Manuela; Bozzali, Marco; Arca, Marcello

    2016-04-01

    Neutral lipid-storage disease with myopathy is caused by mutations in PNPLA2, which produce skeletal and cardiac myopathy. We report a man with multiorgan neutral lipid storage and unusual multisystem clinical involvement, including cognitive impairment. Quantitative brain MRI with voxel-based morphometry and extended neuropsychological assessment were performed. In parallel, the coding sequences and intron/exon boundaries of the PNPLA2 gene were screened by direct sequencing. Neuropsychological assessment revealed global cognitive impairment, and brain MRI showed reduced gray matter volume in the temporal lobes. Molecular characterization revealed a novel homozygous mutation in exon 5 of PNPLA2 (c.714C>A), resulting in a premature stop codon (p.Cys238*). Some PNPLA2 mutations, such as the one described here, may present with an extended phenotype, including brain involvement. In these cases, complete neuropsychological testing, combined with quantitative brain MRI, may help to characterize and quantify cognitive impairment. © 2016 Wiley Periodicals, Inc.

  20. Distinct neuronal coding schemes in memory revealed by selective erasure of fast synchronous synaptic transmission.

    PubMed

    Xu, Wei; Morishita, Wade; Buckmaster, Paul S; Pang, Zhiping P; Malenka, Robert C; Südhof, Thomas C

    2012-03-08

    Neurons encode information by firing spikes in isolation or bursts and propagate information by spike-triggered neurotransmitter release that initiates synaptic transmission. Isolated spikes trigger neurotransmitter release unreliably but with high temporal precision. In contrast, bursts of spikes trigger neurotransmission reliably (i.e., boost transmission fidelity), but the resulting synaptic responses are temporally imprecise. However, the relative physiological importance of different spike-firing modes remains unclear. Here, we show that knockdown of synaptotagmin-1, the major Ca(2+) sensor for neurotransmitter release, abrogated neurotransmission evoked by isolated spikes but only delayed, without abolishing, neurotransmission evoked by bursts of spikes. Nevertheless, knockdown of synaptotagmin-1 in the hippocampal CA1 region did not impede acquisition of recent contextual fear memories, although it did impair the precision of such memories. In contrast, knockdown of synaptotagmin-1 in the prefrontal cortex impaired all remote fear memories. These results indicate that different brain circuits and types of memory employ distinct spike-coding schemes to encode and transmit information. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Semiautomated volumetry of the cerebrum, cerebellum-brain stem, and temporal lobe on brain magnetic resonance images.

    PubMed

    Hayashi, Norio; Sanada, Shigeru; Suzuki, Masayuki; Matsuura, Yukihiro; Kawahara, Kazuhiro; Tsujii, Hideo; Yamamoto, Tomoyuki; Matsui, Osamu

    2008-02-01

    The aim of this study was to develop an automated method of segmenting the cerebrum, cerebellum-brain stem, and temporal lobe simultaneously on magnetic resonance (MR) images. We obtained T1-weighted MR images from 10 normal subjects and 19 patients with brain atrophy. To perform automated volumetry from MR images, we performed the following three steps: (1) segmentation of the brain region; (2) separation between the cerebrum and the cerebellum-brain stem; and (3) segmentation of the temporal lobe. Evaluation was based on the correctly recognized region (CRR) (i.e., the region recognized by both the automated and manual methods). The mean CRRs of the normal and atrophic brains were 98.2% and 97.9% for the cerebrum, 87.9% and 88.5% for the cerebellum-brain stem, and 76.9% and 85.8% for the temporal lobe, respectively. We introduce an automated volumetric method for the cerebrum, cerebellum-brain stem, and temporal lobe on brain MR images. Our method can be applied to not only the normal brain but also the atrophic brain.

  2. Distributed representation of visual objects by single neurons in the human brain.

    PubMed

    Valdez, André B; Papesh, Megan H; Treiman, David M; Smith, Kris A; Goldinger, Stephen D; Steinmetz, Peter N

    2015-04-01

    It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. Copyright © 2015 the authors 0270-6474/15/355180-07$15.00/0.

  3. Infra-red thermometry: the reliability of tympanic and temporal artery readings for predicting brain temperature after severe traumatic brain injury.

    PubMed

    Kirk, Danielle; Rainey, Timothy; Vail, Andy; Childs, Charmaine

    2009-01-01

    Temperature measurement is important during routine neurocritical care especially as differences between brain and systemic temperatures have been observed. The purpose of the study was to determine if infra-red temporal artery thermometry provides a better estimate of brain temperature than tympanic membrane temperature for patients with severe traumatic brain injury. Brain parenchyma, tympanic membrane and temporal artery temperatures were recorded every 15-30 min for five hours during the first seven days after admission. Twenty patients aged 17-76 years were recruited. Brain and tympanic membrane temperature differences ranged from -0.8 degrees C to 2.5 degrees C (mean 0.9 degrees C). Brain and temporal artery temperature differences ranged from -0.7 degrees C to 1.5 degrees C (mean 0.3 degrees C). Tympanic membrane temperature differed from brain temperature by an average of 0.58 degrees C more than temporal artery temperature measurements (95% CI 0.31 degrees C to 0.85 degrees C, P < 0.0001). At temperatures within the normal to febrile range, temporal artery temperature is closer to brain temperature than is tympanic membrane temperature.

  4. Noise-induced hearing loss increases the temporal precision of complex envelope coding by auditory-nerve fibers

    PubMed Central

    Henry, Kenneth S.; Kale, Sushrut; Heinz, Michael G.

    2014-01-01

    While changes in cochlear frequency tuning are thought to play an important role in the perceptual difficulties of people with sensorineural hearing loss (SNHL), the possible role of temporal processing deficits remains less clear. Our knowledge of temporal envelope coding in the impaired cochlea is limited to two studies that examined auditory-nerve fiber responses to narrowband amplitude modulated stimuli. In the present study, we used Wiener-kernel analyses of auditory-nerve fiber responses to broadband Gaussian noise in anesthetized chinchillas to quantify changes in temporal envelope coding with noise-induced SNHL. Temporal modulation transfer functions (TMTFs) and temporal windows of sensitivity to acoustic stimulation were computed from 2nd-order Wiener kernels and analyzed to estimate the temporal precision, amplitude, and latency of envelope coding. Noise overexposure was associated with slower (less negative) TMTF roll-off with increasing modulation frequency and reduced temporal window duration. The results show that at equal stimulus sensation level, SNHL increases the temporal precision of envelope coding by 20–30%. Furthermore, SNHL increased the amplitude of envelope coding by 50% in fibers with CFs from 1–2 kHz and decreased mean response latency by 0.4 ms. While a previous study of envelope coding demonstrated a similar increase in response amplitude, the present study is the first to show enhanced temporal precision. This new finding may relate to the use of a more complex stimulus with broad frequency bandwidth and a dynamic temporal envelope. Exaggerated neural coding of fast envelope modulations may contribute to perceptual difficulties in people with SNHL by acting as a distraction from more relevant acoustic cues, especially in fluctuating background noise. Finally, the results underscore the value of studying sensory systems with more natural, real-world stimuli. PMID:24596545

  5. Temporal dynamics of the knowledge-mediated visual disambiguation process in humans: a magnetoencephalography study.

    PubMed

    Urakawa, Tomokazu; Ogata, Katsuya; Kimura, Takahiro; Kume, Yuko; Tobimatsu, Shozo

    2015-01-01

    Disambiguation of a noisy visual scene with prior knowledge is an indispensable task of the visual system. To adequately adapt to a dynamically changing visual environment full of noisy visual scenes, the implementation of knowledge-mediated disambiguation in the brain is imperative and essential for proceeding as fast as possible under the limited capacity of visual image processing. However, the temporal profile of the disambiguation process has not yet been fully elucidated in the brain. The present study attempted to determine how quickly knowledge-mediated disambiguation began to proceed along visual areas after the onset of a two-tone ambiguous image using magnetoencephalography with high temporal resolution. Using the predictive coding framework, we focused on activity reduction for the two-tone ambiguous image as an index of the implementation of disambiguation. Source analysis revealed that a significant activity reduction was observed in the lateral occipital area at approximately 120 ms after the onset of the ambiguous image, but not in preceding activity (about 115 ms) in the cuneus when participants perceptually disambiguated the ambiguous image with prior knowledge. These results suggested that knowledge-mediated disambiguation may be implemented as early as approximately 120 ms following an ambiguous visual scene, at least in the lateral occipital area, and provided an insight into the temporal profile of the disambiguation process of a noisy visual scene with prior knowledge. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Temporal Organization of the Brain: Neurocognitive Mechanisms and Clinical Implications

    ERIC Educational Resources Information Center

    Dawson, Kim A.

    2004-01-01

    The synchrony between the individual brain and its environment is maintained by a system of internal clocks that together reflect the temporal organization of the organism. Extending the theoretical work of Edelman and others, the temporal organization of the brain is posited as functioning through "'re-entry" and "'temporal tagging"' and binds…

  7. Spatial information outflow from the hippocampal circuit: distributed spatial coding and phase precession in the subiculum.

    PubMed

    Kim, Steve M; Ganguli, Surya; Frank, Loren M

    2012-08-22

    Hippocampal place cells convey spatial information through a combination of spatially selective firing and theta phase precession. The way in which this information influences regions like the subiculum that receive input from the hippocampus remains unclear. The subiculum receives direct inputs from area CA1 of the hippocampus and sends divergent output projections to many other parts of the brain, so we examined the firing patterns of rat subicular neurons. We found a substantial transformation in the subicular code for space from sparse to dense firing rate representations along a proximal-distal anatomical gradient: neurons in the proximal subiculum are more similar to canonical, sparsely firing hippocampal place cells, whereas neurons in the distal subiculum have higher firing rates and more distributed spatial firing patterns. Using information theory, we found that the more distributed spatial representation in the subiculum carries, on average, more information about spatial location and context than the sparse spatial representation in CA1. Remarkably, despite the disparate firing rate properties of subicular neurons, we found that neurons at all proximal-distal locations exhibit robust theta phase precession, with similar spiking oscillation frequencies as neurons in area CA1. Our findings suggest that the subiculum is specialized to compress sparse hippocampal spatial codes into highly informative distributed codes suitable for efficient communication to other brain regions. Moreover, despite this substantial compression, the subiculum maintains finer scale temporal properties that may allow it to participate in oscillatory phase coding and spike timing-dependent plasticity in coordination with other regions of the hippocampal circuit.

  8. An electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study

    PubMed Central

    Kapeller, Christoph; Kamada, Kyousuke; Ogawa, Hiroshi; Prueckl, Robert; Scharinger, Josef; Guger, Christoph

    2014-01-01

    A brain-computer-interface (BCI) allows the user to control a device or software with brain activity. Many BCIs rely on visual stimuli with constant stimulation cycles that elicit steady-state visual evoked potentials (SSVEP) in the electroencephalogram (EEG). This EEG response can be generated with a LED or a computer screen flashing at a constant frequency, and similar EEG activity can be elicited with pseudo-random stimulation sequences on a screen (code-based BCI). Using electrocorticography (ECoG) instead of EEG promises higher spatial and temporal resolution and leads to more dominant evoked potentials due to visual stimulation. This work is focused on BCIs based on visual evoked potentials (VEP) and its capability as a continuous control interface for augmentation of video applications. One 35 year old female subject with implanted subdural grids participated in the study. The task was to select one out of four visual targets, while each was flickering with a code sequence. After a calibration run including 200 code sequences, a linear classifier was used during an evaluation run to identify the selected visual target based on the generated code-based VEPs over 20 trials. Multiple ECoG buffer lengths were tested and the subject reached a mean online classification accuracy of 99.21% for a window length of 3.15 s. Finally, the subject performed an unsupervised free run in combination with visual feedback of the current selection. Additionally, an algorithm was implemented that allowed to suppress false positive selections and this allowed the subject to start and stop the BCI at any time. The code-based BCI system attained very high online accuracy, which makes this approach very promising for control applications where a continuous control signal is needed. PMID:25147509

  9. Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid Fields

    NASA Astrophysics Data System (ADS)

    Monsalve-Mercado, Mauro M.; Leibold, Christian

    2017-07-01

    Space is represented in the mammalian brain by the activity of hippocampal place cells, as well as in their spike-timing correlations. Here, we propose a theory for how this temporal code is transformed to spatial firing rate patterns via spike-timing-dependent synaptic plasticity. The resulting dynamics of synaptic weights resembles well-known pattern formation models in which a lateral inhibition mechanism gives rise to a Turing instability. We identify parameter regimes in which hexagonal firing patterns develop as they have been found in medial entorhinal cortex.

  10. [Brain Mechanisms for Measuring Time: Population Coding of Durations].

    PubMed

    Hayashi, Masamichi J

    2016-11-01

    Temporal processing is crucial in many aspects of our perception and action. While there is mounting evidence for the encoding mechanisms of spatial ("where") and identity ("what") information, those of temporal information ("when") remain largely unknown. Recent studies suggested that, similarly to the basic visual stimulus features such as orientation, motion direction, and numerical quantity, event durations are also represented by a population of neurons that are tuned for specific, preferred durations. This paper first reviews recent psychophysical studies on duration aftereffect. Changes in the three parameters (response gain, shift, and width of tuning curves) are then discussed that may need to be taken into account in the putative duration-channel model. Next, the potential neural basis of the duration channels is examined by overviewing recent neuroimaging and electrophysiological studies on time perception. Finally, this paper proposes a general neural basis of timing that commonly represents time-differences independent of stimulus types (e.g., a single duration v.s. multiple brief events). This extends the idea of the "when pathway" from the perception of temporal order to the general timing mechanisms for the perception of duration, temporal frequency, and synchrony.

  11. Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model

    PubMed Central

    Pissadaki, Eleftheria Kyriaki; Sidiropoulou, Kyriaki; Reczko, Martin; Poirazi, Panayiota

    2010-01-01

    The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code. PMID:21187899

  12. Neuropsychological outcome after traumatic temporal lobe damage.

    PubMed

    Formisano, R; Schmidhuber-Eiler, B; Saltuari, L; Cigany, E; Birbamer, G; Gerstenbrand, F

    1991-01-01

    The most frequent sequelae after severe brain injury include changes in personality traits, disturbances of emotional behaviour and impairment of cognitive functions. In particular, emotional changes and/or verbal and non verbal dysfunctions were found in patients with bilateral or unilateral temporal lobe lesions. The aim of our study is to correlate the localization of the brain damage after severe brain injury, in particular of the temporal lobe, with the cognitive impairment and the emotional and behavioural changes resulting from these lesions. The patients with right temporal lobe lesions showed significantly better scores in verbal intelligence and verbal memory in comparison with patients with left temporal lobe lesions and those with other focal brain lesions or diffuse brain damage. In contradistinction, study of the personality and the emotional changes (MMPI and FAF) failed to demonstrate pathological scores in the 3 groups with different CT lesions, without any significant difference being found between the groups with temporal lesions and those with other focal brain lesions or diffuse brain damage. The severity of the brain injury and the prolongation of the disturbance of consciousness could, in our patients, account for prevalence of congnitive impairment on personality and emotional changes.

  13. Simultaneous and co-localized acousto-optic measurements of spectral and temporal properties of diffusive media

    NASA Astrophysics Data System (ADS)

    Balberg, Michal; Shechter, Revital; Girshovitz, Pinhas; Breskin, Ilan; Fantini, Sergio

    2017-02-01

    Acousto-optic (AO) modulation of light is used to extract both temporal and spectral information of diffusive media such as biological tissue, where they provide measures of blood flow and oxygen saturation of hemoglobin, respectively. The temporal information is extracted from the width of the power spectrum of the light intensity, whereas the spectral information is calculated from the spatial decay of the cross correlation between the light intensity and the generated ultrasonic signal. The ultrasonic signal is a coded phase modulated signal with a narrow autocorrelation, enabling localization of the measurement volume. Two different liquid phantoms are used, with similar scattering but different absorption properties. The difference in absorption calculated with the AO signal is compared to calculations based on the modified Beer Lambert law. As the same AO signal is used to extract both modalities, it might be used to extract hemodynamic related changes in the brain for diagnostic and functional assessment.

  14. Advances in memory research: single-neuron recordings from the human medial temporal lobe aid our understanding of declarative memory.

    PubMed

    Viskontas, Indre V

    2008-12-01

    To gain a complete understanding of how the brain functions, both in illness and good health, data from multiple levels of analysis must be integrated. Technical advances have made direct recordings of neuronal activity deep inside the human brain tractable, providing a rare glimpse into cellular processes during long-term memory formation. Recent findings using intracranial recordings in the medial temporal lobe inform current neural network models of memory, and may lead to a more comprehensive understanding of the neural basis of memory-related processes. These recordings have shown that cells in the hippocampus appear to support declarative learning by distinguishing novel and familiar stimuli via changes in firing patterns. Some cells with highly selective and invariant responses have also been described, and these responses seem to represent abstract concepts such as identity, rather than superficial perceptual features of items. Importantly, however, both selective and globally responsive cells are capable of changing their preferred stimulus depending on the conscious demands of the task. Firing patterns of human medial temporal lobe neurons indicate that cells can be both plastic and stable in terms of the information that they code; although some cells show highly selective and reproducible excitatory responses when presented with a familiar object, other cells change their receptive fields in line with changes in experience and the cognitive environment.

  15. Gap junctions between interneurons are required for normal spatial coding in the hippocampus and short-term spatial memory

    PubMed Central

    Allen, Kevin; Fuchs, Elke C.; Jaschonek, Hannah; Bannerman, David M.; Monyer, Hannah

    2011-01-01

    Gap junctions containing connexin-36 (Cx36) electrically couple interneurons in many brain regions and synchronize their activity. We used Cx36 knockout mice (Cx36−/−) to study the importance of electrical coupling between interneurons for spatial coding in the hippocampus and for different forms of hippocampus-dependent spatial memory. Recordings in behaving mice revealed that the spatial selectivity of hippocampal pyramidal neurons was reduced and less stable in Cx36−/− mice. Altered network activity was reflected in slower theta oscillations in the mutants. Temporal coding, assessed by determining the presence and characteristics of theta phase precession, had different dynamics in Cx36−/− mice compared to controls. At the behavioral level, Cx36−/− mice displayed impaired short-term spatial memory but normal spatial reference memory. These results highlight the functional role of electrically coupled interneurons for spatial coding and cognition. Moreover, they suggest that the precise spatial selectivity of place cells is not essential for normal performance on spatial tasks assessing associative long-term memory. PMID:21525295

  16. Coding rate and duration of vocalizations of the frog, Xenopus laevis.

    PubMed

    Zornik, Erik; Yamaguchi, Ayako

    2012-08-29

    Vocalizations involve complex rhythmic motor patterns, but the underlying temporal coding mechanisms in the nervous system are poorly understood. Using a recently developed whole-brain preparation from which "fictive" vocalizations are readily elicited in vitro, we investigated the cellular basis of temporal complexity of African clawed frogs (Xenopus laevis). Male advertisement calls contain two alternating components--fast trills (∼300 ms) and slow trills (∼700 ms) that contain clicks repeated at ∼60 and ∼30 Hz, respectively. We found that males can alter the duration of fast trills without changing click rates. This finding led us to hypothesize that call rate and duration are regulated by independent mechanisms. We tested this by obtaining whole-cell patch-clamp recordings in the "fictively" calling isolated brain. We discovered a single type of premotor neuron with activity patterns correlated with both the rate and duration of fast trills. These "fast-trill neurons" (FTNs) exhibited long-lasting depolarizations (LLDs) correlated with each fast trill and action potentials that were phase-locked with motor output-neural correlates of call duration and rate, respectively. When depolarized without central pattern generator activation, FTNs produced subthreshold oscillations and action potentials at fast-trill rates, indicating FTN resonance properties are tuned to, and may dictate, the fast-trill rhythm. NMDA receptor (NMDAR) blockade eliminated LLDs in FTNs, and NMDAR activation in synaptically isolated FTNs induced repetitive LLDs. These results suggest FTNs contain an NMDAR-dependent mechanism that may regulate fast-trill duration. We conclude that a single premotor neuron population employs distinct mechanisms to regulate call rate and duration.

  17. Behavioral oscillation in face priming: Prediction about face identity is updated at a theta-band rhythm.

    PubMed

    Wang, Yuanye; Luo, Huan

    2017-01-01

    In order to deal with external world efficiently, the brain constantly generates predictions about incoming sensory inputs, a process known as "predictive coding." Our recent studies, by employing visual priming paradigms in combination with a time-resolved behavioral measurement, reveal that perceptual predictions about simple features (e.g., left or right orientation) return to low sensory areas not continuously but recurrently in a theta-band (3-4Hz) rhythm. However, it remains unknown whether high-level object processing is also mediated by the oscillatory mechanism and if yes at which rhythm the mechanism works. In the present study, we employed a morph-face priming paradigm and the time-resolved behavioral measurements to examine the fine temporal dynamics of face identity priming performance. First, we reveal classical priming effects and a rhythmic trend within the prime-to-probe SOA of 600ms (Experiment 1). Next, we densely sampled the face priming behavioral performances within this SOA range (Experiment 2). Our results demonstrate a significant ~5Hz oscillatory component in the face priming behavioral performances, suggesting that a rhythmic process also coordinates the object-level prediction (i.e., face identity here). In comparison to our previous studies, the results suggest that the rhythm for the high-level object is faster than that for simple features. We propose that the seemingly distinctive priming rhythms might be attributable to that the object-level and simple feature-level predictions return to different stages along the visual pathway (e.g., FFA area for face priming and V1 area for simple feature priming). In summary, the findings support a general theta-band (3-6Hz) temporal organization mechanism in predictive coding, and that such wax-and-waning pattern in predictive coding may aid the brain to be more readily updated for new inputs. © 2017 Elsevier B.V. All rights reserved.

  18. Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.

    PubMed

    Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael

    2010-07-01

    The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain.

  19. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    PubMed Central

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (<8 Hz) oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  20. An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules.

    PubMed

    Mosheiff, Noga; Agmon, Haggai; Moriel, Avraham; Burak, Yoram

    2017-06-01

    Grid cells in the entorhinal cortex encode the position of an animal in its environment with spatially periodic tuning curves with different periodicities. Recent experiments established that these cells are functionally organized in discrete modules with uniform grid spacing. Here we develop a theory for efficient coding of position, which takes into account the temporal statistics of the animal's motion. The theory predicts a sharp decrease of module population sizes with grid spacing, in agreement with the trend seen in the experimental data. We identify a simple scheme for readout of the grid cell code by neural circuitry, that can match in accuracy the optimal Bayesian decoder. This readout scheme requires persistence over different timescales, depending on the grid cell module. Thus, we propose that the brain may employ an efficient representation of position which takes advantage of the spatiotemporal statistics of the encoded variable, in similarity to the principles that govern early sensory processing.

  1. An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules

    PubMed Central

    Mosheiff, Noga; Agmon, Haggai; Moriel, Avraham

    2017-01-01

    Grid cells in the entorhinal cortex encode the position of an animal in its environment with spatially periodic tuning curves with different periodicities. Recent experiments established that these cells are functionally organized in discrete modules with uniform grid spacing. Here we develop a theory for efficient coding of position, which takes into account the temporal statistics of the animal’s motion. The theory predicts a sharp decrease of module population sizes with grid spacing, in agreement with the trend seen in the experimental data. We identify a simple scheme for readout of the grid cell code by neural circuitry, that can match in accuracy the optimal Bayesian decoder. This readout scheme requires persistence over different timescales, depending on the grid cell module. Thus, we propose that the brain may employ an efficient representation of position which takes advantage of the spatiotemporal statistics of the encoded variable, in similarity to the principles that govern early sensory processing. PMID:28628647

  2. Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream

    PubMed Central

    Douglas, Danielle; Newsome, Rachel N; Man, Louisa LY

    2018-01-01

    A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features. PMID:29393853

  3. Adaptation can explain evidence for encoding of probabilistic information in macaque inferior temporal cortex.

    PubMed

    Vinken, Kasper; Vogels, Rufin

    2017-11-20

    In predictive coding theory, the brain is conceptualized as a prediction machine that constantly constructs and updates expectations of the sensory environment [1]. In the context of this theory, Bell et al.[2] recently studied the effect of the probability of task-relevant stimuli on the activity of macaque inferior temporal (IT) neurons and observed a reduced population response to expected faces in face-selective neurons. They concluded that "IT neurons encode long-term, latent probabilistic information about stimulus occurrence", supporting predictive coding. They manipulated expectation by the frequency of face versus fruit stimuli in blocks of trials. With such a design, stimulus repetition is confounded with expectation. As previous studies showed that IT neurons decrease their response with repetition [3], such adaptation (or repetition suppression), instead of expectation suppression as assumed by the authors, could explain their effects. The authors attempted to control for this alternative interpretation with a multiple regression approach. Here we show by using simulation that adaptation can still masquerade as expectation effects reported in [2]. Further, the results from the regression model used for most analyses cannot be trusted, because the model is not uniquely defined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Dynamic Reorganization of Functional Connectivity Reveals Abnormal Temporal Efficiency in Schizophrenia.

    PubMed

    Sun, Yu; Collinson, Simon L; Suckling, John; Sim, Kang

    2018-06-07

    Emerging evidence suggests that schizophrenia is associated with brain dysconnectivity. Nonetheless, the implicit assumption of stationary functional connectivity (FC) adopted in most previous resting-state functional magnetic resonance imaging (fMRI) studies raises an open question of schizophrenia-related aberrations in dynamic properties of resting-state FC. This study introduces an empirical method to examine the dynamic functional dysconnectivity in patients with schizophrenia. Temporal brain networks were estimated from resting-state fMRI of 2 independent datasets (patients/controls = 18/19 and 53/57 for self-recorded dataset and a publicly available replication dataset, respectively) by the correlation of sliding time-windowed time courses among regions of a predefined atlas. Through the newly introduced temporal efficiency approach and temporal random network models, we examined, for the first time, the 3D spatiotemporal architecture of the temporal brain network. We found that although prominent temporal small-world properties were revealed in both groups, temporal brain networks of patients with schizophrenia in both datasets showed a significantly higher temporal global efficiency, which cannot be simply attributable to head motion and sampling error. Specifically, we found localized changes of temporal nodal properties in the left frontal, right medial parietal, and subcortical areas that were associated with clinical features of schizophrenia. Our findings demonstrate that altered dynamic FC may underlie abnormal brain function and clinical symptoms observed in schizophrenia. Moreover, we provide new evidence to extend the dysconnectivity hypothesis in schizophrenia from static to dynamic brain network and highlight the potential of aberrant brain dynamic FC in unraveling the pathophysiologic mechanisms of the disease.

  5. Brain-CODE: A Secure Neuroinformatics Platform for Management, Federation, Sharing and Analysis of Multi-Dimensional Neuroscience Data.

    PubMed

    Vaccarino, Anthony L; Dharsee, Moyez; Strother, Stephen; Aldridge, Don; Arnott, Stephen R; Behan, Brendan; Dafnas, Costas; Dong, Fan; Edgecombe, Kenneth; El-Badrawi, Rachad; El-Emam, Khaled; Gee, Tom; Evans, Susan G; Javadi, Mojib; Jeanson, Francis; Lefaivre, Shannon; Lutz, Kristen; MacPhee, F Chris; Mikkelsen, Jordan; Mikkelsen, Tom; Mirotchnick, Nicholas; Schmah, Tanya; Studzinski, Christa M; Stuss, Donald T; Theriault, Elizabeth; Evans, Kenneth R

    2018-01-01

    Historically, research databases have existed in isolation with no practical avenue for sharing or pooling medical data into high dimensional datasets that can be efficiently compared across databases. To address this challenge, the Ontario Brain Institute's "Brain-CODE" is a large-scale neuroinformatics platform designed to support the collection, storage, federation, sharing and analysis of different data types across several brain disorders, as a means to understand common underlying causes of brain dysfunction and develop novel approaches to treatment. By providing researchers access to aggregated datasets that they otherwise could not obtain independently, Brain-CODE incentivizes data sharing and collaboration and facilitates analyses both within and across disorders and across a wide array of data types, including clinical, neuroimaging and molecular. The Brain-CODE system architecture provides the technical capabilities to support (1) consolidated data management to securely capture, monitor and curate data, (2) privacy and security best-practices, and (3) interoperable and extensible systems that support harmonization, integration, and query across diverse data modalities and linkages to external data sources. Brain-CODE currently supports collaborative research networks focused on various brain conditions, including neurodevelopmental disorders, cerebral palsy, neurodegenerative diseases, epilepsy and mood disorders. These programs are generating large volumes of data that are integrated within Brain-CODE to support scientific inquiry and analytics across multiple brain disorders and modalities. By providing access to very large datasets on patients with different brain disorders and enabling linkages to provincial, national and international databases, Brain-CODE will help to generate new hypotheses about the biological bases of brain disorders, and ultimately promote new discoveries to improve patient care.

  6. Functional localization of a "Time Keeper" function separate from attentional resources and task strategy.

    PubMed

    Tracy, J I; Faro, S H; Mohamed, F B; Pinsk, M; Pinus, A

    2000-03-01

    The functional neuroanatomy of time estimation has not been well-documented. This research investigated the fMRI measured brain response to an explicit, prospective time interval production (TIP) task. The study tested for the presence of brain activity reflecting a primary time keeper function, distinct from the brain systems involved either in conscious strategies to monitor time or attentional resource and other cognitive processes to accomplish the task. In the TIP task participants were given a time interval and asked to indicate when it elapsed. Two control tasks (counting forwards, backwards) were administered, in addition to a dual task format of the TIP task. Whole brain images were collected at 1.5 Tesla. Analyses (n = 6) yielded a statistical parametric map (SPM ¿z¿) reflecting time keeping and not strategy (counting, number manipulation) or attention resource utilization. Additional SPM ¿z¿s involving activation associated with the accuracy and magnitude the of time estimation response are presented. Results revealed lateral cerebellar and inferior temporal lobe activation were associated with primary time keeping. Behavioral data provided evidence that the procedures for the explicit time judgements did not occur automatically and utilized controlled processes. Activation sites associated with accuracy, magnitude, and the dual task provided indications of the other structures involved in time estimation that implemented task components related to controlled processing. The data are consistent with prior proposals that the cerebellum is a repository of codes for time processing, but also implicate temporal lobe structures for this type of time estimation task. Copyright 2000 Academic Press.

  7. Harmonic Brain Modes: A Unifying Framework for Linking Space and Time in Brain Dynamics.

    PubMed

    Atasoy, Selen; Deco, Gustavo; Kringelbach, Morten L; Pearson, Joel

    2018-06-01

    A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at "rest." Here, we introduce the concept of harmonic brain modes-fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.

  8. Developmental trajectories of the fronto-temporal lobes from infancy to early adulthood in healthy individuals.

    PubMed

    Tanaka, Chiaki; Matsui, Mie; Uematsu, Akiko; Noguchi, Kyo; Miyawaki, Toshio

    2012-01-01

    Brain development during early life in healthy individuals is rapid and dynamic, indicating that this period plays a very important role in neural and functional development. The frontal and temporal lobes are known to play a particularly important role in cognition. The study of healthy frontal and temporal lobe development in children is therefore of considerable importance. A better understanding of how these brain regions develop could also aid in the diagnosis and treatment of neurodevelopmental disorders. Some developmental studies have used magnetic resonance imaging (MRI) to examine infant brains, but it remains the case that relatively little is known about cortical brain development in the first few years of life. In the present study we examined whole brain, temporal lobe and frontal lobe developmental trajectories from infancy to early adulthood in healthy individuals, considering gender and brain hemisphere differences. We performed a cross-sectional, longitudinal morphometric MRI study of 114 healthy individuals (54 females and 60 males) aged 1 month to 25 years old (mean age ± SD 8.8 ± 6.9). We measured whole brain, temporal and frontal lobe gray matter (GM)/white matter (WM) volumes, following previously used protocols. There were significant non-linear age-related volume changes in all regions. Peak ages of whole brain, temporal lobe and frontal lobe development occurred around pre-adolescence (9-12 years old). GM volumes for all regions increased significantly as a function of age. Peak age was nevertheless lobe specific, with a pattern of earlier peak ages for females in both temporal and frontal lobes. Growth change in whole brain GM volume was larger in males than in females. However, GM volume growth changes for the temporal and frontal lobes showed a somewhat different pattern. GM volume for both temporal and frontal lobes showed a greater increase in females until around 5-6 years old, at which point this tendency reversed (GM volume changes in males became greater), with male GM volume increasing for a longer time than that of females. WM volume growth changes were similar across regions, all increasing rapidly until early childhood but slowing down thereafter. All regions displayed significant rightward volumetric asymmetry regardless of sex. Furthermore, the right temporal and frontal lobes showed a greater volumetric increase than the left for the first several years, with this tendency reversing at around 6 years of age. In addition, the left frontal and temporal lobes increased in volume for a longer period of time. Taken together, these findings indicated that brain developmental trajectories differ depending on brain region, sex and brain hemisphere. Gender-related factors such as sex hormones and functional laterality may affect brain development. Copyright © 2012 S. Karger AG, Basel.

  9. Non-coding RNAs in cancer brain metastasis

    PubMed Central

    Wu, Kerui; Sharma, Sambad; Venkat, Suresh; Liu, Keqin; Zhou, Xiaobo; Watabe, Kounosuke

    2017-01-01

    More than 90% of cancer death is attributed to metastatic disease, and the brain is one of the major metastatic sites of melanoma, colon, renal, lung and breast cancers. Despite the recent advancement of targeted therapy for cancer, the incidence of brain metastasis is increasing. One reason is that most therapeutic drugs can’t penetrate blood-brain-barrier and tumor cells find the brain as sanctuary site. In this review, we describe the pathophysiology of brain metastases to introduce the latest understandings of metastatic brain malignancies. This review also particularly focuses on non-coding RNAs and their roles in cancer brain metastasis. Furthermore, we discuss the roles of the extracellular vesicles as they are known to transport information between cells to initiate cancer cell-microenvironment communication. The potential clinical translation of non-coding RNAs as a tool for diagnosis and for treatment is also discussed in this review. At the end, the computational aspects of non-coding RNA detection, the sequence and structure calculation and epigenetic regulation of non-coding RNA in brain metastasis are discussed. PMID:26709907

  10. Temporal order processing of syllables in the left parietal lobe.

    PubMed

    Moser, Dana; Baker, Julie M; Sanchez, Carmen E; Rorden, Chris; Fridriksson, Julius

    2009-10-07

    Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere.

  11. Temporal Order Processing of Syllables in the Left Parietal Lobe

    PubMed Central

    Baker, Julie M.; Sanchez, Carmen E.; Rorden, Chris; Fridriksson, Julius

    2009-01-01

    Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere. PMID:19812331

  12. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    DOEpatents

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  13. Electrophysiological models of neural processing.

    PubMed

    Nelson, Mark E

    2011-01-01

    The brain is an amazing information processing system that allows organisms to adaptively monitor and control complex dynamic interactions with their environment across multiple spatial and temporal scales. Mathematical modeling and computer simulation techniques have become essential tools in understanding diverse aspects of neural processing ranging from sub-millisecond temporal coding in the sound localization circuity of barn owls to long-term memory storage and retrieval in humans that can span decades. The processing capabilities of individual neurons lie at the core of these models, with the emphasis shifting upward and downward across different levels of biological organization depending on the nature of the questions being addressed. This review provides an introduction to the techniques for constructing biophysically based models of individual neurons and local networks. Topics include Hodgkin-Huxley-type models of macroscopic membrane currents, Markov models of individual ion-channel currents, compartmental models of neuronal morphology, and network models involving synaptic interactions among multiple neurons.

  14. Understanding The Neural Mechanisms Involved In Sensory Control Of Voice Production

    PubMed Central

    Parkinson, Amy L.; Flagmeier, Sabina G.; Manes, Jordan L.; Larson, Charles R.; Rogers, Bill; Robin, Donald A.

    2012-01-01

    Auditory feedback is important for the control of voice fundamental frequency (F0). In the present study we used neuroimaging to identify regions of the brain responsible for sensory control of the voice. We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. To determine the neural substrates involved in these audio-vocal responses, subjects underwent fMRI scanning while vocalizing with or without pitch-shifted feedback. The comparison of shifted and unshifted vocalization revealed activation bilaterally in the superior temporal gyrus (STG) in response to the pitch shifted feedback. We hypothesize that the STG activity is related to error detection by auditory error cells located in the superior temporal cortex and efference copy mechanisms whereby this region is responsible for the coding of a mismatch between actual and predicted voice F0. PMID:22406500

  15. Gray matter changes in right superior temporal gyrus in criminal psychopaths. Evidence from voxel-based morphometry.

    PubMed

    Müller, Jürgen L; Gänssbauer, Susanne; Sommer, Monika; Döhnel, Katrin; Weber, Tatjana; Schmidt-Wilcke, Tobias; Hajak, Göran

    2008-08-30

    "Psychopathy" according to the PCL-R describes a specific subgroup of antisocial personality disorder with a high risk for criminal relapses. Lesion and imaging studies point towards frontal or temporal brain regions connected with disturbed social behavior, antisocial personality disorder (APD) and psychopathy. Morphologically, some studies described a reduced prefrontal brain volume, whereas others reported on temporal lobe atrophy. To further investigate whether participants with psychopathy according to the Psychopathy Checklist-Revised Version (PCL-R) show abnormalities in brain structure, we used voxel-based morphometry (VBM) to investigate region-specific changes in gray matter in 17 forensic male inpatients with high PCL-R scores (PCL-R>28) and 17 male control subjects with low PCL-R scores (PCL<10). We found significant gray matter reductions in frontal and temporal brain regions in psychopaths compared with controls. In particular, we found a highly significant volume loss in the right superior temporal gyrus. This is the first study to show that psychopathy is associated with a decrease in gray matter in both frontal and temporal brain regions, in particular in the right superior temporal gyrus, supporting the hypothesis that a disturbed frontotemporal network is critically involved in the pathogenesis of psychopathy.

  16. Motor skill failure or flow-experience? Functional brain asymmetry and brain connectivity in elite and amateur table tennis players.

    PubMed

    Wolf, Sebastian; Brölz, Ellen; Keune, Philipp M; Wesa, Benjamin; Hautzinger, Martin; Birbaumer, Niels; Strehl, Ute

    2015-02-01

    Functional hemispheric asymmetry is assumed to constitute one underlying neurophysiological mechanism of flow-experience and skilled psycho-motor performance in table tennis athletes. We hypothesized that when initiating motor execution during motor imagery, elite table tennis players show higher right- than left-hemispheric temporal activity and stronger right temporal-premotor than left temporal-premotor theta coherence compared to amateurs. We additionally investigated, whether less pronounced left temporal cortical activity is associated with more world rank points and more flow-experience. To this aim, electroencephalographic data were recorded in 14 experts and 15 amateur table tennis players. Subjects watched videos of an opponent serving a ball and were instructed to imagine themselves responding with a specific table tennis stroke. Alpha asymmetry scores were calculated by subtracting left from right hemispheric 8-13 Hz alpha power. 4-7 Hz theta coherence was calculated between temporal (T3/T4) and premotor (Fz) cortex. Experts showed a significantly stronger shift towards lower relative left-temporal brain activity compared to amateurs and a significantly stronger right temporal-premotor coherence than amateurs. The shift towards lower relative left-temporal brain activity in experts was associated with more flow-experience and lower relative left temporal activity was correlated with more world rank points. The present findings suggest that skilled psycho-motor performance in elite table tennis players reflect less desynchronized brain activity at the left hemisphere and more coherent brain activity between fronto-temporal and premotor oscillations at the right hemisphere. This pattern probably reflect less interference of irrelevant communication of verbal-analytical with motor-control mechanisms which implies flow-experience and predict world rank in experts. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Brain networks of temporal preparation: A multiple regression analysis of neuropsychological data.

    PubMed

    Triviño, Mónica; Correa, Ángel; Lupiáñez, Juan; Funes, María Jesús; Catena, Andrés; He, Xun; Humphreys, Glyn W

    2016-11-15

    There are only a few studies on the brain networks involved in the ability to prepare in time, and most of them followed a correlational rather than a neuropsychological approach. The present neuropsychological study performed multiple regression analysis to address the relationship between both grey and white matter (measured by magnetic resonance imaging in patients with brain lesion) and different effects in temporal preparation (Temporal orienting, Foreperiod and Sequential effects). Two versions of a temporal preparation task were administered to a group of 23 patients with acquired brain injury. In one task, the cue presented (a red versus green square) to inform participants about the time of appearance (early versus late) of a target stimulus was blocked, while in the other task the cue was manipulated on a trial-by-trial basis. The duration of the cue-target time intervals (400 versus 1400ms) was always manipulated within blocks in both tasks. Regression analysis were conducted between either the grey matter lesion size or the white matter tracts disconnection and the three temporal preparation effects separately. The main finding was that each temporal preparation effect was predicted by a different network of structures, depending on cue expectancy. Specifically, the Temporal orienting effect was related to both prefrontal and temporal brain areas. The Foreperiod effect was related to right and left prefrontal structures. Sequential effects were predicted by both parietal cortex and left subcortical structures. These findings show a clear dissociation of brain circuits involved in the different ways to prepare in time, showing for the first time the involvement of temporal areas in the Temporal orienting effect, as well as the parietal cortex in the Sequential effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Retronasal odor representations in the dorsal olfactory bulb of rats

    PubMed Central

    Gautam, Shree Hari; Verhagen, Justus V.

    2012-01-01

    Animals perceive their olfactory environment not only from odors originating in the external world (orthonasal route) but also from odors released in the oral cavity while eating food (retronasal route). Retronasal olfaction is crucial for the perception of food flavor in humans. However, little is known about the retronasal stimulus coding in the brain. The most basic question is if and how route affects the odor representations at the level of the olfactory bulb (OB), where odor quality codes originate. We used optical calcium imaging of presynaptic dorsal OB responses to odorants in anesthetized rats to ask whether the rat OB could be activated retronasally, and how these responses compare to orthonasal responses under similar conditions. We further investigated the effects of specific odorant properties on orthoversus retronasal response patterns. We found that at a physiologically relevant flow rate retronasal odorants can effectively reach the olfactory receptor neurons, eliciting glomerular response patterns that grossly overlap with those of orthonasal responses, but differ from the orthonasal patterns in the response amplitude and temporal dynamics. Interestingly, such differences correlated well with specific odorant properties. Less volatile odorants yielded relatively smaller responses retronasally, but volatility did not affect relative temporal profiles. More polar odorants responded with relatively longer onset latency and time to peak retronasally, but polarity did not affect relative response magnitudes. These data provide insight into the early stages of retronasal stimulus coding and establish relationships between ortho- and retronasal odor representations in the rat OB. PMID:22674270

  19. Brain-CODE: A Secure Neuroinformatics Platform for Management, Federation, Sharing and Analysis of Multi-Dimensional Neuroscience Data

    PubMed Central

    Vaccarino, Anthony L.; Dharsee, Moyez; Strother, Stephen; Aldridge, Don; Arnott, Stephen R.; Behan, Brendan; Dafnas, Costas; Dong, Fan; Edgecombe, Kenneth; El-Badrawi, Rachad; El-Emam, Khaled; Gee, Tom; Evans, Susan G.; Javadi, Mojib; Jeanson, Francis; Lefaivre, Shannon; Lutz, Kristen; MacPhee, F. Chris; Mikkelsen, Jordan; Mikkelsen, Tom; Mirotchnick, Nicholas; Schmah, Tanya; Studzinski, Christa M.; Stuss, Donald T.; Theriault, Elizabeth; Evans, Kenneth R.

    2018-01-01

    Historically, research databases have existed in isolation with no practical avenue for sharing or pooling medical data into high dimensional datasets that can be efficiently compared across databases. To address this challenge, the Ontario Brain Institute’s “Brain-CODE” is a large-scale neuroinformatics platform designed to support the collection, storage, federation, sharing and analysis of different data types across several brain disorders, as a means to understand common underlying causes of brain dysfunction and develop novel approaches to treatment. By providing researchers access to aggregated datasets that they otherwise could not obtain independently, Brain-CODE incentivizes data sharing and collaboration and facilitates analyses both within and across disorders and across a wide array of data types, including clinical, neuroimaging and molecular. The Brain-CODE system architecture provides the technical capabilities to support (1) consolidated data management to securely capture, monitor and curate data, (2) privacy and security best-practices, and (3) interoperable and extensible systems that support harmonization, integration, and query across diverse data modalities and linkages to external data sources. Brain-CODE currently supports collaborative research networks focused on various brain conditions, including neurodevelopmental disorders, cerebral palsy, neurodegenerative diseases, epilepsy and mood disorders. These programs are generating large volumes of data that are integrated within Brain-CODE to support scientific inquiry and analytics across multiple brain disorders and modalities. By providing access to very large datasets on patients with different brain disorders and enabling linkages to provincial, national and international databases, Brain-CODE will help to generate new hypotheses about the biological bases of brain disorders, and ultimately promote new discoveries to improve patient care. PMID:29875648

  20. Multistability in auditory stream segregation: a predictive coding view

    PubMed Central

    Winkler, István; Denham, Susan; Mill, Robert; Bőhm, Tamás M.; Bendixen, Alexandra

    2012-01-01

    Auditory stream segregation involves linking temporally separate acoustic events into one or more coherent sequences. For any non-trivial sequence of sounds, many alternative descriptions can be formed, only one or very few of which emerge in awareness at any time. Evidence from studies showing bi-/multistability in auditory streaming suggest that some, perhaps many of the alternative descriptions are represented in the brain in parallel and that they continuously vie for conscious perception. Here, based on a predictive coding view, we consider the nature of these sound representations and how they compete with each other. Predictive processing helps to maintain perceptual stability by signalling the continuation of previously established patterns as well as the emergence of new sound sources. It also provides a measure of how well each of the competing representations describes the current acoustic scene. This account of auditory stream segregation has been tested on perceptual data obtained in the auditory streaming paradigm. PMID:22371621

  1. Genome-wide chromatin and gene expression profiling during memory formation and maintenance in adult mice.

    PubMed

    Centeno, Tonatiuh Pena; Shomroni, Orr; Hennion, Magali; Halder, Rashi; Vidal, Ramon; Rahman, Raza-Ur; Bonn, Stefan

    2016-10-11

    Recent evidence suggests that the formation and maintenance of memory requires epigenetic changes. In an effort to understand the spatio-temporal extent of learning and memory-related epigenetic changes we have charted genome-wide histone and DNA methylation profiles, in two different brain regions, two cell types, and three time-points, before and after learning. In this data descriptor we provide detailed information on data generation, give insights into the rationale of experiments, highlight necessary steps to assess data quality, offer guidelines for future use of the data and supply ready-to-use code to replicate the analysis results. The data provides a blueprint of the gene regulatory network underlying short- and long-term memory formation and maintenance. This 'healthy' gene regulatory network of learning can now be compared to changes in neurological or psychiatric diseases, providing mechanistic insights into brain disorders and highlighting potential therapeutic avenues.

  2. Direct Exploration of the Role of the Ventral Anterior Temporal Lobe in Semantic Memory: Cortical Stimulation and Local Field Potential Evidence From Subdural Grid Electrodes

    PubMed Central

    Shimotake, Akihiro; Matsumoto, Riki; Ueno, Taiji; Kunieda, Takeharu; Saito, Satoru; Hoffman, Paul; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu; Takahashi, Ryosuke; Ikeda, Akio; Lambon Ralph, Matthew A.

    2015-01-01

    Semantic memory is a crucial higher cortical function that codes the meaning of objects and words, and when impaired after neurological damage, patients are left with significant disability. Investigations of semantic dementia have implicated the anterior temporal lobe (ATL) region, in general, as crucial for multimodal semantic memory. The potentially crucial role of the ventral ATL subregion has been emphasized by recent functional neuroimaging studies, but the necessity of this precise area has not been selectively tested. The implantation of subdural electrode grids over this subregion, for the presurgical assessment of patients with partial epilepsy or brain tumor, offers the dual yet rare opportunities to record cortical local field potentials while participants complete semantic tasks and to stimulate the functionally identified regions in the same participants to evaluate the necessity of these areas in semantic processing. Across 6 patients, and utilizing a variety of semantic assessments, we evaluated and confirmed that the anterior fusiform/inferior temporal gyrus is crucial in multimodal, receptive, and expressive, semantic processing. PMID:25491206

  3. Reward: commentary. Temporal discounting in conduct disorder: toward an experience-adaptation hypothesis of the role of psychosocial insecurity.

    PubMed

    Sonuga-Barke, Edmund J S

    2014-02-01

    Young people with conduct disorder often experience histories of psychosocial adversity and socioeconomic insecurity. For these individuals, real-world future outcomes are not only delayed in their delivery but also highly uncertain. Under such circumstances, accentuated time preference (extreme favoring of the present over the future) is a rational response to the everyday reality of social and economic transactions. Building on this observation, the author sets out the hypothesis that the exaggerated temporal discounting displayed by individuals with conduct disorder reported by White et al. (2014) is an adaptation to chronic exposure to psychosocial insecurity during development. The author postulates that this adaptation leads to (a) a decision-making bias whereby delay and uncertainty are coded as inseparable characteristics of choice outcomes and/or (b) reprogramming of the brain networks regulating intertemporal decision making. Future research could explore the putative role of environmental exposures to adversity in the development of exaggerated temporal discounting in conduct disorder as well as the mediating role of putative cognitive and neurobiological adaptations.

  4. Toward a clinic of temporality?

    PubMed

    Rivasseau Jonveaux, Thérèse; Batt, Martine; Trognon, Alain

    2017-12-01

    The discovery of time cells has expanded our knowledge in the field of spatial and temporal information coding and the key role of the hippocampus. The internal clock model complemented with the attentional gate model allows a more in-depth understanding of the perception of time. The motor representation of duration is ensured by the basal ganglia, while the cerebellum synchronizes short duration for the movement. The right prefrontal cortex seemingly intervenes in the handling of temporal information in working memory. The temporal lobe ensures the comparison of durations, especially the right lobe for the reference durations and the medial lobe for the reproduction of durations in episodic memory. During normal aging, the hypothesis of slowing of the temporal processor is evoked when noting the perception of the acceleration of the passage of time that seemingly occurs with advancing age. The various studies pertaining specifically to time cognition, albeit heterogeneous in terms of methodology, attest to the wide-ranging disturbances of this cognitive field during the course of numerous disorders, whether psychiatric - depression and schizophrenia notably - or neurological. Hence, perturbations in temporality are observed in focal brain lesions and in subcortical disorders, such as Parkinson's disease or Huntington's chorea. Alzheimer's disease represents a particularly fertile field of exploration with regard to time cognition and temporality. The objectified deconstruction of temporal experience provides insights into the very processes of temporality and their nature: episodic, semantic and procedural. In addition to exploration based on elementary stimuli, one should also consider the time lived, i.e. that of the subject, to better understand cognition as it relates to time. While the temporal dimension permeates the whole cognitive field, it remains largely neglected: integration of a genuine time cognition and temporality clinic in daily practice remains to be implemented.

  5. A "theory of relativity" for cognitive elasticity of time and modality dimensions supporting constant working memory capacity: involvement of harmonics among ultradian clocks?

    PubMed

    Glassman, R B

    2000-02-01

    1. The capacity of working memory (WM) for about 7+/-2 ("the magical number") serially organized simple verbal items may represent a fundamental constant of cognition. Indeed, there is the same capacity for sense of familiarity of a number of recently encountered places, observed in radial maze performance both of lab rats and of humans. 2. Moreover, both species show a peculiar capacity for retaining WM of place over delays. The literature also describes paradoxes of extended time duration in certain human verbal recall tasks. Certain bird species have comparable capacity for delayed recall of about 4 to 8 food caches in a laboratory room. 3. In addition to these paradoxes of the time dimension with WM (still sometimes called "short-term" memory) there are another set of paradoxes of dimensionality for human judgment of magnitudes, noted by Miller in his classic 1956 paper on "the magical number." We are able to reliably refer magnitudes to a rating scale of up to about seven divisions. Remarkably, that finding is largely independent of perceptual modality or even of the extent of a linear interval selected within any given modality. 4. These paradoxes suggest that "the magical number 7+/2" depends on fundamental properties of mammalian brains. 5. This paper theorizes that WM numerosity is conserved as a fundamental constant, by means of elasticity of cognitive dimensionality, including the temporal pace of arrival of significant items of cognitive information. 6. A conjectural neural code for WM item-capacity is proposed here, which extends the hypothetical principle of binding-by-synchrony. The hypothesis is that several coactive frequencies of brain electrical rhythms each mark a WM item. 7. If, indeed, WM does involve a brain wave frequency code (perhaps within the gamma frequency range that has often been suggested with the binding hypothesis) mathematical considerations suggest additional relevance of harmonic relationships. That is, if copresent sinusoids bear harmony-like ratios and are confined within a single octave, then they have fast temporal properties, while avoiding spurious difference rhythms. Therefore, if the present hypothesis is valid, it implies a natural limit on parallel processing of separate items in organismic brains. 8. Similar logic of periodic signals may hold for slower ultradian rhythms, including hypothetical ones that contribute to time-tagging and fresh sense of familiarity of a day's event memories. Similar logic may also hold for spatial periodic functions across brain tissue that, hypothetically, represent cognitive information. Thus, harmonic transitions among temporal and spatial periodic functions are a possible vehicle for the cognitive dimensional elasticity that conserves WM capacity. 9. Supporting roles are proposed of (a) basal ganglia, as a high-capacity cache for traces of recent experience temporarily suspended from active task-relevant processing and (b) of hippocampus as a phase and interval comparator for oscillating signals, whose spatiotemporal dynamics are topologically equivalent to a toroidal grid.

  6. Imagine All the People: How the Brain Creates and Uses Personality Models to Predict Behavior

    PubMed Central

    Hassabis, Demis; Spreng, R. Nathan; Rusu, Andrei A.; Robbins, Clifford A.; Mar, Raymond A.; Schacter, Daniel L.

    2014-01-01

    The behaviors of other people are often central to envisioning the future. The ability to accurately predict the thoughts and actions of others is essential for successful social interactions, with far-reaching consequences. Despite its importance, little is known about how the brain represents people in order to predict behavior. In this functional magnetic resonance imaging study, participants learned the unique personality of 4 protagonists and imagined how each would behave in different scenarios. The protagonists' personalities were composed of 2 traits: Agreeableness and Extraversion. Which protagonist was being imagined was accurately inferred based solely on activity patterns in the medial prefrontal cortex using multivariate pattern classification, providing novel evidence that brain activity can reveal whom someone is thinking about. Lateral temporal and posterior cingulate cortex discriminated between different degrees of agreeableness and extraversion, respectively. Functional connectivity analysis confirmed that regions associated with trait-processing and individual identities were functionally coupled. Activity during the imagination task, and revealed by functional connectivity, was consistent with the default network. Our results suggest that distinct regions code for personality traits, and that the brain combines these traits to represent individuals. The brain then uses this “personality model” to predict the behavior of others in novel situations. PMID:23463340

  7. Simultaneous learning and filtering without delusions: a Bayes-optimal combination of Predictive Inference and Adaptive Filtering.

    PubMed

    Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V

    2015-01-01

    Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.

  8. Mechanism on brain information processing: Energy coding

    NASA Astrophysics Data System (ADS)

    Wang, Rubin; Zhang, Zhikang; Jiao, Xianfa

    2006-09-01

    According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, the authors present a brand new scientific theory that offers a unique mechanism for brain information processing. They demonstrate that the neural coding produced by the activity of the brain is well described by the theory of energy coding. Due to the energy coding model's ability to reveal mechanisms of brain information processing based upon known biophysical properties, they cannot only reproduce various experimental results of neuroelectrophysiology but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, they estimate that the theory has very important consequences for quantitative research of cognitive function.

  9. Cross-language differences in the brain network subserving intelligible speech.

    PubMed

    Ge, Jianqiao; Peng, Gang; Lyu, Bingjiang; Wang, Yi; Zhuo, Yan; Niu, Zhendong; Tan, Li Hai; Leff, Alexander P; Gao, Jia-Hong

    2015-03-10

    How is language processed in the brain by native speakers of different languages? Is there one brain system for all languages or are different languages subserved by different brain systems? The first view emphasizes commonality, whereas the second emphasizes specificity. We investigated the cortical dynamics involved in processing two very diverse languages: a tonal language (Chinese) and a nontonal language (English). We used functional MRI and dynamic causal modeling analysis to compute and compare brain network models exhaustively with all possible connections among nodes of language regions in temporal and frontal cortex and found that the information flow from the posterior to anterior portions of the temporal cortex was commonly shared by Chinese and English speakers during speech comprehension, whereas the inferior frontal gyrus received neural signals from the left posterior portion of the temporal cortex in English speakers and from the bilateral anterior portion of the temporal cortex in Chinese speakers. Our results revealed that, although speech processing is largely carried out in the common left hemisphere classical language areas (Broca's and Wernicke's areas) and anterior temporal cortex, speech comprehension across different language groups depends on how these brain regions interact with each other. Moreover, the right anterior temporal cortex, which is crucial for tone processing, is equally important as its left homolog, the left anterior temporal cortex, in modulating the cortical dynamics in tone language comprehension. The current study pinpoints the importance of the bilateral anterior temporal cortex in language comprehension that is downplayed or even ignored by popular contemporary models of speech comprehension.

  10. Cross-language differences in the brain network subserving intelligible speech

    PubMed Central

    Ge, Jianqiao; Peng, Gang; Lyu, Bingjiang; Wang, Yi; Zhuo, Yan; Niu, Zhendong; Tan, Li Hai; Leff, Alexander P.; Gao, Jia-Hong

    2015-01-01

    How is language processed in the brain by native speakers of different languages? Is there one brain system for all languages or are different languages subserved by different brain systems? The first view emphasizes commonality, whereas the second emphasizes specificity. We investigated the cortical dynamics involved in processing two very diverse languages: a tonal language (Chinese) and a nontonal language (English). We used functional MRI and dynamic causal modeling analysis to compute and compare brain network models exhaustively with all possible connections among nodes of language regions in temporal and frontal cortex and found that the information flow from the posterior to anterior portions of the temporal cortex was commonly shared by Chinese and English speakers during speech comprehension, whereas the inferior frontal gyrus received neural signals from the left posterior portion of the temporal cortex in English speakers and from the bilateral anterior portion of the temporal cortex in Chinese speakers. Our results revealed that, although speech processing is largely carried out in the common left hemisphere classical language areas (Broca’s and Wernicke’s areas) and anterior temporal cortex, speech comprehension across different language groups depends on how these brain regions interact with each other. Moreover, the right anterior temporal cortex, which is crucial for tone processing, is equally important as its left homolog, the left anterior temporal cortex, in modulating the cortical dynamics in tone language comprehension. The current study pinpoints the importance of the bilateral anterior temporal cortex in language comprehension that is downplayed or even ignored by popular contemporary models of speech comprehension. PMID:25713366

  11. Keeping their distance? Odor response patterns along the concentration range

    PubMed Central

    Strauch, Martin; Ditzen, Mathias; Galizia, C. Giovanni

    2012-01-01

    We investigate the interplay of odor identity and concentration coding in the antennal lobe (AL) of the honeybee Apis mellifera. In this primary olfactory center of the honeybee brain, odors are encoded by the spatio-temporal response patterns of olfactory glomeruli. With rising odor concentration, further glomerular responses are recruited into the patterns, which affects distances between the patterns. Based on calcium-imaging recordings, we found that such pattern broadening renders distances between glomerular response patterns closer to chemical distances between the corresponding odor molecules. Our results offer an explanation for the honeybee's improved odor discrimination performance at higher odor concentrations. PMID:23087621

  12. Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury.

    PubMed

    Wright, Matthew J; McArthur, David L; Alger, Jeffry R; Van Horn, Jack; Irimia, Andrei; Filippou, Maria; Glenn, Thomas C; Hovda, David A; Vespa, Paul

    2013-09-01

    Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as 'frontal-temporal' in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis-related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.

  13. Modulation of Gene Expression in Contextual Fear Conditioning in the Rat

    PubMed Central

    Macchi, Monica; Ciampini, Cristina; Bernardi, Rodolfo; Baldi, Elisabetta; Bucherelli, Corrado; Brunelli, Marcello; Scuri, Rossana

    2013-01-01

    In contextual fear conditioning (CFC) a single training leads to long-term memory of context-aversive electrical foot-shocks association. Mid-temporal regions of the brain of trained and naive rats were obtained 2 days after conditioning and screened by two-directional suppression subtractive hybridization. A pool of differentially expressed genes was identified and some of them were randomly selected and confirmed with qRT-PCR assay. These transcripts showed high homology for rat gene sequences coding for proteins involved in different cellular processes. The expression of the selected transcripts was also tested in rats which had freely explored the experimental apparatus (exploration) and in rats to which the same number of aversive shocks had been administered in the same apparatus, but temporally compressed so as to make the association between painful stimuli and the apparatus difficult (shock-only). Some genes resulted differentially expressed only in the rats subjected to CFC, others only in exploration or shock-only rats, whereas the gene coding for translocase of outer mitochondrial membrane 20 protein and nardilysin were differentially expressed in both CFC and exploration rats. For example, the expression of stathmin 1 whose transcripts resulted up regulated was also tested to evaluate the transduction and protein localization after conditioning. PMID:24278235

  14. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing

    PubMed Central

    Kurt, Simone; Sausbier, Matthias; Rüttiger, Lukas; Brandt, Niels; Moeller, Christoph K.; Kindler, Jennifer; Sausbier, Ulrike; Zimmermann, Ulrike; van Straaten, Harald; Neuhuber, Winfried; Engel, Jutta; Knipper, Marlies; Ruth, Peter; Schulze, Holger

    2012-01-01

    Large conductance, voltage- and Ca2+-activated K+ (BK) channels in inner hair cells (IHCs) of the cochlea are essential for hearing. However, germline deletion of BKα, the pore-forming subunit KCNMA1 of the BK channel, surprisingly did not affect hearing thresholds in the first postnatal weeks, even though altered IHC membrane time constants, decreased IHC receptor potential alternating current/direct current ratio, and impaired spike timing of auditory fibers were reported in these mice. To investigate the role of IHC BK channels for central auditory processing, we generated a conditional mouse model with hair cell-specific deletion of BKα from postnatal day 10 onward. This had an unexpected effect on temporal coding in the central auditory system: neuronal single and multiunit responses in the inferior colliculus showed higher excitability and greater precision of temporal coding that may be linked to the improved discrimination of temporally modulated sounds observed in behavioral training. The higher precision of temporal coding, however, was restricted to slower modulations of sound and reduced stimulus-driven activity. This suggests a diminished dynamic range of stimulus coding that is expected to impair signal detection in noise. Thus, BK channels in IHCs are crucial for central coding of the temporal fine structure of sound and for detection of signals in a noisy environment.—Kurt, S., Sausbier, M., Rüttiger, L., Brandt, N., Moeller, C. K., Kindler, J., Sausbier, U., Zimmermann, U., van Straaten, H., Neuhuber, W., Engel, J., Knipper, M., Ruth, P., Schulze, H. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing. PMID:22691916

  15. Decoding the ubiquitous role of microRNAs in neurogenesis.

    PubMed

    Nampoothiri, Sreekala S; Rajanikant, G K

    2017-04-01

    Neurogenesis generates fledgling neurons that mature to form an intricate neuronal circuitry. The delusion on adult neurogenesis was far resolved in the past decade and became one of the largely explored domains to identify multifaceted mechanisms bridging neurodevelopment and neuropathology. Neurogenesis encompasses multiple processes including neural stem cell proliferation, neuronal differentiation, and cell fate determination. Each neurogenic process is specifically governed by manifold signaling pathways, several growth factors, coding, and non-coding RNAs. A class of small non-coding RNAs, microRNAs (miRNAs), is ubiquitously expressed in the brain and has emerged to be potent regulators of neurogenesis. It functions by fine-tuning the expression of specific neurogenic gene targets at the post-transcriptional level and modulates the development of mature neurons from neural progenitor cells. Besides the commonly discussed intrinsic factors, the neuronal morphogenesis is also under the control of several extrinsic temporal cues, which in turn are regulated by miRNAs. This review enlightens on dicer controlled switch from neurogenesis to gliogenesis, miRNA regulation of neuronal maturation and the differential expression of miRNAs in response to various extrinsic cues affecting neurogenesis.

  16. Creating Concepts from Converging Features in Human Cortex

    PubMed Central

    Coutanche, Marc N.; Thompson-Schill, Sharon L.

    2015-01-01

    To make sense of the world around us, our brain must remember the overlapping features of millions of objects. Crucially, it must also represent each object's unique feature-convergence. Some theories propose that an integration area (or “convergence zone”) binds together separate features. We report an investigation of our knowledge of objects' features and identity, and the link between them. We used functional magnetic resonance imaging to record neural activity, as humans attempted to detect a cued fruit or vegetable in visual noise. Crucially, we analyzed brain activity before a fruit or vegetable was present, allowing us to interrogate top-down activity. We found that pattern-classification algorithms could be used to decode the detection target's identity in the left anterior temporal lobe (ATL), its shape in lateral occipital cortex, and its color in right V4. A novel decoding-dependency analysis revealed that identity information in left ATL was specifically predicted by the temporal convergence of shape and color codes in early visual regions. People with stronger feature-and-identity dependencies had more similar top-down and bottom-up activity patterns. These results fulfill three key requirements for a neural convergence zone: a convergence result (object identity), ingredients (color and shape), and the link between them. PMID:24692512

  17. Differential DNA Methylation of MicroRNA Genes in Temporal Cortex from Alzheimer's Disease Individuals.

    PubMed

    Villela, Darine; Ramalho, Rodrigo F; Silva, Aderbal R T; Brentani, Helena; Suemoto, Claudia K; Pasqualucci, Carlos Augusto; Grinberg, Lea T; Krepischi, Ana C V; Rosenberg, Carla

    2016-01-01

    This study investigated for the first time the genomewide DNA methylation changes of noncoding RNA genes in the temporal cortex samples from individuals with Alzheimer's disease (AD). The methylome of 10 AD individuals and 10 age-matched controls were obtained using Illumina 450 K methylation array. A total of 2,095 among the 15,258 interrogated noncoding RNA CpG sites presented differential methylation, 161 of which were associated with miRNA genes. In particular, 10 miRNA CpG sites that were found to be hypermethylated in AD compared to control brains represent transcripts that have been previously associated with the disease. This miRNA set is predicted to target 33 coding genes from the neuregulin receptor complex (ErbB) signaling pathway, which is required for the neurons myelination process. For 6 of these miRNA genes (MIR9-1, MIR9-3, MIR181C, MIR124-1, MIR146B, and MIR451), the hypermethylation pattern is in agreement with previous results from literature that shows downregulation of miR-9, miR-181c, miR-124, miR-146b, and miR-451 in the AD brain. Our data implicate dysregulation of miRNA methylation as contributor to the pathogenesis of AD.

  18. The neural coding of creative idea generation across adolescence and early adulthood

    PubMed Central

    Kleibeuker, Sietske W.; Koolschijn, P. Cédric M. P.; Jolles, Dietsje D.; De Dreu, Carsten K. W.; Crone, Eveline A.

    2013-01-01

    Creativity is considered key to human prosperity, yet the neurocognitive principles underlying creative performance, and their development, are still poorly understood. To fill this void, we examined the neural correlates of divergent thinking in adults (25–30 years) and adolescents (15–17 years). Participants generated alternative uses (AU) or ordinary characteristics (OC) for common objects while brain activity was assessed using fMRI. Adults outperformed adolescents on the number of solutions for AU and OC trials. Contrasting neural activity for AU with OC trials revealed increased recruitment of left angular gyrus, left supramarginal gyrus, and bilateral middle temporal gyrus in both adults and adolescents. When only trials with multiple AU were included in the analysis, participants showed additional left inferior frontal gyrus (IFG)/middle frontal gyrus (MFG) activation for AU compared to OC trials. Correspondingly, individual difference analyses showed a positive correlation between activations for AU relative to OC trials in left IFG/MFG and divergent thinking performance and activations were more pronounced in adults than in adolescents. Taken together, the results of this study demonstrated that creative idea generation involves recruitment of mainly left lateralized parietal and temporal brain regions. Generating multiple creative ideas, a hallmark of divergent thinking, shows additional lateral PFC activation that is not yet optimized in adolescence. PMID:24416008

  19. Sparse representation of whole-brain fMRI signals for identification of functional networks.

    PubMed

    Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming

    2015-02-01

    There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Differential Encoding of Time by Prefrontal and Striatal Network Dynamics.

    PubMed

    Bakhurin, Konstantin I; Goudar, Vishwa; Shobe, Justin L; Claar, Leslie D; Buonomano, Dean V; Masmanidis, Sotiris C

    2017-01-25

    Telling time is fundamental to many forms of learning and behavior, including the anticipation of rewarding events. Although the neural mechanisms underlying timing remain unknown, computational models have proposed that the brain represents time in the dynamics of neural networks. Consistent with this hypothesis, changing patterns of neural activity dynamically in a number of brain areas-including the striatum and cortex-has been shown to encode elapsed time. To date, however, no studies have explicitly quantified and contrasted how well different areas encode time by recording large numbers of units simultaneously from more than one area. Here, we performed large-scale extracellular recordings in the striatum and orbitofrontal cortex of mice that learned the temporal relationship between a stimulus and a reward and reported their response with anticipatory licking. We used a machine-learning algorithm to quantify how well populations of neurons encoded elapsed time from stimulus onset. Both the striatal and cortical networks encoded time, but the striatal network outperformed the orbitofrontal cortex, a finding replicated both in simultaneously and nonsimultaneously recorded corticostriatal datasets. The striatal network was also more reliable in predicting when the animals would lick up to ∼1 s before the actual lick occurred. Our results are consistent with the hypothesis that temporal information is encoded in a widely distributed manner throughout multiple brain areas, but that the striatum may have a privileged role in timing because it has a more accurate "clock" as it integrates information across multiple cortical areas. The neural representation of time is thought to be distributed across multiple functionally specialized brain structures, including the striatum and cortex. However, until now, the neural code for time has not been compared quantitatively between these areas. Here, we performed large-scale recordings in the striatum and orbitofrontal cortex of mice trained on a stimulus-reward association task involving a delay period and used a machine-learning algorithm to quantify how well populations of simultaneously recorded neurons encoded elapsed time from stimulus onset. We found that, although both areas encoded time, the striatum consistently outperformed the orbitofrontal cortex. These results suggest that the striatum may refine the code for time by integrating information from multiple inputs. Copyright © 2017 the authors 0270-6474/17/370854-17$15.00/0.

  1. From perceptual to lexico‐semantic analysis—cortical plasticity enabling new levels of processing

    PubMed Central

    Schlaffke, Lara; Rüther, Naima N.; Heba, Stefanie; Haag, Lauren M.; Schultz, Thomas; Rosengarth, Katharina; Tegenthoff, Martin; Bellebaum, Christian

    2015-01-01

    Abstract Certain kinds of stimuli can be processed on multiple levels. While the neural correlates of different levels of processing (LOPs) have been investigated to some extent, most of the studies involve skills and/or knowledge already present when performing the task. In this study we specifically sought to identify neural correlates of an evolving skill that allows the transition from perceptual to a lexico‐semantic stimulus analysis. Eighteen participants were trained to decode 12 letters of Morse code that were presented acoustically inside and outside of the scanner environment. Morse code was presented in trains of three letters while brain activity was assessed with fMRI. Participants either attended to the stimulus length (perceptual analysis), or evaluated its meaning distinguishing words from nonwords (lexico‐semantic analysis). Perceptual and lexico‐semantic analyses shared a mutual network comprising the left premotor cortex, the supplementary motor area (SMA) and the inferior parietal lobule (IPL). Perceptual analysis was associated with a strong brain activation in the SMA and the superior temporal gyrus bilaterally (STG), which remained unaltered from pre and post training. In the lexico‐semantic analysis post learning, study participants showed additional activation in the left inferior frontal cortex (IFC) and in the left occipitotemporal cortex (OTC), regions known to be critically involved in lexical processing. Our data provide evidence for cortical plasticity evolving with a learning process enabling the transition from perceptual to lexico‐semantic stimulus analysis. Importantly, the activation pattern remains task‐related LOP and is thus the result of a decision process as to which LOP to engage in. Hum Brain Mapp 36:4512–4528, 2015. © 2015 The Authors. Human Brain Mapping Published byWiley Periodicals, Inc. PMID:26304153

  2. Language and Brain Volumes in Children with Epilepsy

    PubMed Central

    Caplan, Rochelle; Levitt, Jennifer; Siddarth, Prabha; Wu, Keng Nei; Gurbani, Suresh; Shields, W. Donald; Sankar, Raman

    2010-01-01

    This study compared the relationship of language skill with fronto-temporal volumes in 69 medically treated epilepsy subjects and 34 healthy children, aged 6.1-16.6 years. It also determined if the patients with linguistic deficits had abnormal volumes and atypical associations between volumes and language skills in these brain regions. The children underwent language testing and magnetic resonance imaging scans at 1.5 Tesla. Brain tissue was segmented and fronto-temporal volumes were computed. Higher mean language scores were significantly associated with larger inferior frontal gyrus, temporal lobe, and posterior superior temporal gyrus gray matter volumes in the epilepsy group and in the children with epilepsy with average language scores. Increased total brain and dorsolateral prefrontal gray and white matter volumes, however, were associated with higher language scores in the healthy controls. Within the epilepsy group, linguistic deficits were related to smaller anterior superior temporal gyrus gray matter volumes and a negative association between language scores and dorsolateral prefrontal gray matter volumes. These findings demonstrate abnormal development of language related brain regions, and imply differential reorganization of brain regions subserving language in children with epilepsy with normal linguistic skills and in those with impaired language. PMID:20149755

  3. Spatiotemporal Computations of an Excitable and Plastic Brain: Neuronal Plasticity Leads to Noise-Robust and Noise-Constructive Computations

    PubMed Central

    Toutounji, Hazem; Pipa, Gordon

    2014-01-01

    It is a long-established fact that neuronal plasticity occupies the central role in generating neural function and computation. Nevertheless, no unifying account exists of how neurons in a recurrent cortical network learn to compute on temporally and spatially extended stimuli. However, these stimuli constitute the norm, rather than the exception, of the brain's input. Here, we introduce a geometric theory of learning spatiotemporal computations through neuronal plasticity. To that end, we rigorously formulate the problem of neural representations as a relation in space between stimulus-induced neural activity and the asymptotic dynamics of excitable cortical networks. Backed up by computer simulations and numerical analysis, we show that two canonical and widely spread forms of neuronal plasticity, that is, spike-timing-dependent synaptic plasticity and intrinsic plasticity, are both necessary for creating neural representations, such that these computations become realizable. Interestingly, the effects of these forms of plasticity on the emerging neural code relate to properties necessary for both combating and utilizing noise. The neural dynamics also exhibits features of the most likely stimulus in the network's spontaneous activity. These properties of the spatiotemporal neural code resulting from plasticity, having their grounding in nature, further consolidate the biological relevance of our findings. PMID:24651447

  4. Cracking the barcode of fullerene-like cortical microcolumns.

    PubMed

    Tozzi, Arturo; Peters, James F; Ori, Ottorino

    2017-03-22

    Artificial neural systems and nervous graph theoretical analysis rely upon the stance that the neural code is embodied in logic circuits, e.g., spatio-temporal sequences of ON/OFF spiking neurons. Nevertheless, this assumption does not fully explain complex brain functions. Here we show how nervous activity, other than logic circuits, could instead depend on topological transformations and symmetry constraints occurring at the micro-level of the cortical microcolumn, i.e., the embryological, anatomical and functional basic unit of the brain. Tubular microcolumns can be flattened in fullerene-like two-dimensional lattices, equipped with about 80 nodes standing for pyramidal neurons where neural computations take place. We show how the countless possible combinations of activated neurons embedded in the lattice resemble a barcode. Despite the fact that further experimental verification is required in order to validate our claim, different assemblies of firing neurons might have the appearance of diverse codes, each one responsible for a single mental activity. A two-dimensional fullerene-like lattice, grounded on simple topological changes standing for pyramidal neurons' activation, not just displays analogies with the real microcolumn's microcircuitry and the neural connectome, but also the potential for the manufacture of plastic, robust and fast artificial networks in robotic forms of full-fledged neural systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Human Performance on the Temporal Bisection Task

    ERIC Educational Resources Information Center

    Kopec, Charles D.; Brody, Carlos D.

    2010-01-01

    The perception and processing of temporal information are tasks the brain must continuously perform. These include measuring the duration of stimuli, storing duration information in memory, recalling such memories, and comparing two durations. How the brain accomplishes these tasks, however, is still open for debate. The temporal bisection task,…

  6. Temporal Lobe and “Default” Hemodynamic Brain Modes Discriminate Between Schizophrenia and Bipolar Disorder

    PubMed Central

    Calhoun, Vince D.; Maciejewski, Paul K.; Pearlson, Godfrey D.; Kiehl, Kent A.

    2009-01-01

    Schizophrenia and bipolar disorder are currently diagnosed on the basis of psychiatric symptoms and longitudinal course. The determination of a reliable, biologically-based diagnostic indicator of these diseases (a biomarker) could provide the groundwork for developing more rigorous tools for differential diagnosis and treatment assignment. Recently, methods have been used to identify distinct sets of brain regions or “spatial modes” exhibiting temporally coherent brain activity. Using functional magnetic resonance imaging (fMRI) data and a multivariate analysis method, independent component analysis, we combined the temporal lobe and the default modes to discriminate subjects with bipolar disorder, chronic schizophrenia, and healthy controls. Temporal lobe and default mode networks were reliably identified in all participants. Classification results on an independent set of individuals revealed an average sensitivity and specificity of 90 and 95%, respectively. The use of coherent brain networks such as the temporal lobe and default mode networks may provide a more reliable measure of disease state than task-correlated fMRI activity. A combination of two such hemodynamic brain networks shows promise as a biomarker for schizophrenia and bipolar disorder. PMID:17894392

  7. Temporal lobe and "default" hemodynamic brain modes discriminate between schizophrenia and bipolar disorder.

    PubMed

    Calhoun, Vince D; Maciejewski, Paul K; Pearlson, Godfrey D; Kiehl, Kent A

    2008-11-01

    Schizophrenia and bipolar disorder are currently diagnosed on the basis of psychiatric symptoms and longitudinal course. The determination of a reliable, biologically-based diagnostic indicator of these diseases (a biomarker) could provide the groundwork for developing more rigorous tools for differential diagnosis and treatment assignment. Recently, methods have been used to identify distinct sets of brain regions or "spatial modes" exhibiting temporally coherent brain activity. Using functional magnetic resonance imaging (fMRI) data and a multivariate analysis method, independent component analysis, we combined the temporal lobe and the default modes to discriminate subjects with bipolar disorder, chronic schizophrenia, and healthy controls. Temporal lobe and default mode networks were reliably identified in all participants. Classification results on an independent set of individuals revealed an average sensitivity and specificity of 90 and 95%, respectively. The use of coherent brain networks such as the temporal lobe and default mode networks may provide a more reliable measure of disease state than task-correlated fMRI activity. A combination of two such hemodynamic brain networks shows promise as a biomarker for schizophrenia and bipolar disorder.

  8. A computational model of prefrontal control in free recall: strategic memory use in the California Verbal Learning Task.

    PubMed

    Becker, Suzanna; Lim, Jean

    2003-08-15

    Several decades of research into the function of the frontal lobes in brain-damaged patients, and more recently in intact individuals using function brain imaging, has delineated the complex executive functions of the frontal cortex. And yet, the mechanisms by which the brain achieves these functions remain poorly understood. Here, we present a computational model of the role of the prefrontal cortex (PFC) in controlled memory use that may help to shed light on the mechanisms underlying one aspect of frontal control: the development and deployment of recall strategies. The model accounts for interactions between the PFC and medial temporal lobe in strategic memory use. The PFC self-organizes its own mnemonic codes using internally derived performance measures. These mnemonic codes serve as retrieval cues by biasing retrieval in the medial temporal lobe memory system. We present data from three simulation experiments that demonstrate strategic encoding and retrieval in the free recall of categorized lists of words. Experiment 1 compares the performance of the model with two control networks to evaluate the contribution of various components of the model. Experiment 2 compares the performance of normal and frontally lesioned models to data from several studies using frontally intact and frontally lesioned individuals, as well as normal, healthy individuals under conditions of divided attention. Experiment 3 compares the model's performance on the recall of blocked and unblocked categorized lists of words to data from Stuss et al. (1994) for individuals with control and frontal lobe lesions. Overall, our model captures a number of aspects of human performance on free recall tasks: an increase in total words recalled and in semantic clustering scores across trials, superiority on blocked lists of related items compared to unblocked lists of related items, and similar patterns of performance across trials in the normal and frontally lesioned models, with poorer overall performance of the lesioned models on all measures. The model also has a number of shortcomings, in light of which we suggest extensions to the model that would enable more sophisticated forms of strategic control.

  9. Spatio-temporal reconstruction of brain dynamics from EEG with a Markov prior.

    PubMed

    Hansen, Sofie Therese; Hansen, Lars Kai

    2017-03-01

    Electroencephalography (EEG) can capture brain dynamics in high temporal resolution. By projecting the scalp EEG signal back to its origin in the brain also high spatial resolution can be achieved. Source localized EEG therefore has potential to be a very powerful tool for understanding the functional dynamics of the brain. Solving the inverse problem of EEG is however highly ill-posed as there are many more potential locations of the EEG generators than EEG measurement points. Several well-known properties of brain dynamics can be exploited to alleviate this problem. More short ranging connections exist in the brain than long ranging, arguing for spatially focal sources. Additionally, recent work (Delorme et al., 2012) argues that EEG can be decomposed into components having sparse source distributions. On the temporal side both short and long term stationarity of brain activation are seen. We summarize these insights in an inverse solver, the so-called "Variational Garrote" (Kappen and Gómez, 2013). Using a Markov prior we can incorporate flexible degrees of temporal stationarity. Through spatial basis functions spatially smooth distributions are obtained. Sparsity of these are inherent to the Variational Garrote solver. We name our method the MarkoVG and demonstrate its ability to adapt to the temporal smoothness and spatial sparsity in simulated EEG data. Finally a benchmark EEG dataset is used to demonstrate MarkoVG's ability to recover non-stationary brain dynamics. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Altered spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder: A resting-state fMRI study.

    PubMed

    Zhu, Xi; He, Zhongqiong; Luo, Cheng; Qiu, Xiangmiao; He, Shixu; Peng, Anjiao; Zhang, Lin; Chen, Lei

    2018-03-15

    To investigate alterations in spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder using resting-state functional magnetic resonance imaging (RS-fMRI). Eighteen MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder (PDD), 17 MRI-negative refractory temporal lobe epilepsy patients without major depressive disorder (nPDD), and 21 matched healthy controls (HC) were recruited from West China Hospital of SiChuan University from April 2016 to June 2017. The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) and 17-item Hamilton Depression Rating Scale were employed to confirm the diagnosis of major depressive disorder and assess the severity of depression. All participants underwent RS-fMRI scans using a 3.0T MRI system. MRI data were compared and analyzed using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) to measure spontaneous brain activity. These two methods were both used to evaluate spontaneous cerebral activity. The PDD group showed significantly altered spontaneous brain activity in the bilateral mesial prefrontal cortex, precuneus, angular gyrus, right parahippocampal gyrus, and right temporal pole. Meanwhile, compared with HC, the nPDD group demonstrated altered spontaneous brain activity in the temporal neocortex but no changes in mesial temporal structures. The PDD group showed regional brain activity alterations in the prefrontal-limbic system and dysfunction of the default mode network. The underlying pathophysiology of PDD may be provided for further studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Representations of Pitch and Timbre Variation in Human Auditory Cortex

    PubMed Central

    2017-01-01

    Pitch and timbre are two primary dimensions of auditory perception, but how they are represented in the human brain remains a matter of contention. Some animal studies of auditory cortical processing have suggested modular processing, with different brain regions preferentially coding for pitch or timbre, whereas other studies have suggested a distributed code for different attributes across the same population of neurons. This study tested whether variations in pitch and timbre elicit activity in distinct regions of the human temporal lobes. Listeners were presented with sequences of sounds that varied in either fundamental frequency (eliciting changes in pitch) or spectral centroid (eliciting changes in brightness, an important attribute of timbre), with the degree of pitch or timbre variation in each sequence parametrically manipulated. The BOLD responses from auditory cortex increased with increasing sequence variance along each perceptual dimension. The spatial extent, region, and laterality of the cortical regions most responsive to variations in pitch or timbre at the univariate level of analysis were largely overlapping. However, patterns of activation in response to pitch or timbre variations were discriminable in most subjects at an individual level using multivoxel pattern analysis, suggesting a distributed coding of the two dimensions bilaterally in human auditory cortex. SIGNIFICANCE STATEMENT Pitch and timbre are two crucial aspects of auditory perception. Pitch governs our perception of musical melodies and harmonies, and conveys both prosodic and (in tone languages) lexical information in speech. Brightness—an aspect of timbre or sound quality—allows us to distinguish different musical instruments and speech sounds. Frequency-mapping studies have revealed tonotopic organization in primary auditory cortex, but the use of pure tones or noise bands has precluded the possibility of dissociating pitch from brightness. Our results suggest a distributed code, with no clear anatomical distinctions between auditory cortical regions responsive to changes in either pitch or timbre, but also reveal a population code that can differentiate between changes in either dimension within the same cortical regions. PMID:28025255

  12. Revisiting place and temporal theories of pitch

    PubMed Central

    2014-01-01

    The nature of pitch and its neural coding have been studied for over a century. A popular debate has revolved around the question of whether pitch is coded via “place” cues in the cochlea, or via timing cues in the auditory nerve. In the most recent incarnation of this debate, the role of temporal fine structure has been emphasized in conveying important pitch and speech information, particularly because the lack of temporal fine structure coding in cochlear implants might explain some of the difficulties faced by cochlear implant users in perceiving music and pitch contours in speech. In addition, some studies have postulated that hearing-impaired listeners may have a specific deficit related to processing temporal fine structure. This article reviews some of the recent literature surrounding the debate, and argues that much of the recent evidence suggesting the importance of temporal fine structure processing can also be accounted for using spectral (place) or temporal-envelope cues. PMID:25364292

  13. Self-government of complex reading and writing brains informed by cingulo-opercular network for adaptive control and working memory components for language learning.

    PubMed

    Richards, Todd L; Abbott, Robert D; Yagle, Kevin; Peterson, Dan; Raskind, Wendy; Berninger, Virginia W

    2017-01-01

    To understand mental self-government of the developing reading and writing brain, correlations of clustering coefficients on fMRI reading or writing tasks with BASC 2 Adaptivity ratings (time 1 only) or working memory components (time 1 before and time 2 after instruction previously shown to improve achievement and change magnitude of fMRI connectivity) were investigated in 39 students in grades 4 to 9 who varied along a continuum of reading and writing skills. A Philips 3T scanner measured connectivity during six leveled fMRI reading tasks (subword-letters and sounds, word-word-specific spellings or affixed words, syntax comprehension-with and without homonym foils or with and without affix foils, and text comprehension) and three fMRI writing tasks-writing next letter in alphabet, adding missing letter in word spelling, and planning for composing. The Brain Connectivity Toolbox generated clustering coefficients based on the cingulo-opercular (CO) network; after controlling for multiple comparisons and movement, significant fMRI connectivity clustering coefficients for CO were identified in 8 brain regions bilaterally (cingulate gyrus, superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, superior temporal gyrus, insula, cingulum-cingulate gyrus, and cingulum-hippocampus). BASC2 Parent Ratings for Adaptivity were correlated with CO clustering coefficients on three reading tasks (letter-sound, word affix judgments and sentence comprehension) and one writing task (writing next letter in alphabet). Before instruction, each behavioral working memory measure (phonology, orthography, morphology, and syntax coding, phonological and orthographic loops for integrating internal language and output codes, and supervisory focused and switching attention) correlated significantly with at least one CO clustering coefficient. After instruction, the patterning of correlations changed with new correlations emerging. Results show that the reading and writing brain's mental government, supported by both CO Adaptive Control and multiple working memory components, had changed in response to instruction during middle childhood/early adolescence.

  14. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula.

    PubMed

    Ince, Robin A A; Giordano, Bruno L; Kayser, Christoph; Rousselet, Guillaume A; Gross, Joachim; Schyns, Philippe G

    2017-03-01

    We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open-source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541-1573, 2017. © 2016 Wiley Periodicals, Inc. 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  15. A unified approach to the study of temporal, correlational, and rate coding.

    PubMed

    Panzeri, S; Schultz, S R

    2001-06-01

    We demonstrate that the information contained in the spike occurrence times of a population of neurons can be broken up into a series of terms, each reflecting something about potential coding mechanisms. This is possible in the coding regime in which few spikes are emitted in the relevant time window. This approach allows us to study the additional information contributed by spike timing beyond that present in the spike counts and to examine the contributions to the whole information of different statistical properties of spike trains, such as firing rates and correlation functions. It thus forms the basis for a new quantitative procedure for analyzing simultaneous multiple neuron recordings and provides theoretical constraints on neural coding strategies. We find a transition between two coding regimes, depending on the size of the relevant observation timescale. For time windows shorter than the timescale of the stimulus-induced response fluctuations, there exists a spike count coding phase, in which the purely temporal information is of third order in time. For time windows much longer than the characteristic timescale, there can be additional timing information of first order, leading to a temporal coding phase in which timing information may affect the instantaneous information rate. In this new framework, we study the relative contributions of the dynamic firing rate and correlation variables to the full temporal information, the interaction of signal and noise correlations in temporal coding, synergy between spikes and between cells, and the effect of refractoriness. We illustrate the utility of the technique by analyzing a few cells from the rat barrel cortex.

  16. Identification and Characterization of Long Non-Coding RNAs Related to Mouse Embryonic Brain Development from Available Transcriptomic Data

    PubMed Central

    He, Hongjuan; Xiu, Youcheng; Guo, Jing; Liu, Hui; Liu, Qi; Zeng, Tiebo; Chen, Yan; Zhang, Yan; Wu, Qiong

    2013-01-01

    Long non-coding RNAs (lncRNAs) as a key group of non-coding RNAs have gained widely attention. Though lncRNAs have been functionally annotated and systematic explored in higher mammals, few are under systematical identification and annotation. Owing to the expression specificity, known lncRNAs expressed in embryonic brain tissues remain still limited. Considering a large number of lncRNAs are only transcribed in brain tissues, studies of lncRNAs in developmental brain are therefore of special interest. Here, publicly available RNA-sequencing (RNA-seq) data in embryonic brain are integrated to identify thousands of embryonic brain lncRNAs by a customized pipeline. A significant proportion of novel transcripts have not been annotated by available genomic resources. The putative embryonic brain lncRNAs are shorter in length, less spliced and show less conservation than known genes. The expression of putative lncRNAs is in one tenth on average of known coding genes, while comparable with known lncRNAs. From chromatin data, putative embryonic brain lncRNAs are associated with active chromatin marks, comparable with known lncRNAs. Embryonic brain expressed lncRNAs are also indicated to have expression though not evident in adult brain. Gene Ontology analysis of putative embryonic brain lncRNAs suggests that they are associated with brain development. The putative lncRNAs are shown to be related to possible cis-regulatory roles in imprinting even themselves are deemed to be imprinted lncRNAs. Re-analysis of one knockdown data suggests that four regulators are associated with lncRNAs. Taken together, the identification and systematic analysis of putative lncRNAs would provide novel insights into uncharacterized mouse non-coding regions and the relationships with mammalian embryonic brain development. PMID:23967161

  17. Learning and coding in biological neural networks

    NASA Astrophysics Data System (ADS)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and theoretical results on the scalability of this rule show that learning with stochastic gradient ascent may be adequately fast to explain learning in the bird. Finally, we address the more general issue of the scalability of stochastic gradient learning on quadratic cost surfaces in linear systems, as a function of system size and task characteristics, by deriving analytical expressions for the learning curves.

  18. Analysis of brain patterns using temporal measures

    DOEpatents

    Georgopoulos, Apostolos

    2015-08-11

    A set of brain data representing a time series of neurophysiologic activity acquired by spatially distributed sensors arranged to detect neural signaling of a brain (such as by the use of magnetoencephalography) is obtained. The set of brain data is processed to obtain a dynamic brain model based on a set of statistically-independent temporal measures, such as partial cross correlations, among groupings of different time series within the set of brain data. The dynamic brain model represents interactions between neural populations of the brain occurring close in time, such as with zero lag, for example. The dynamic brain model can be analyzed to obtain the neurophysiologic assessment of the brain. Data processing techniques may be used to assess structural or neurochemical brain pathologies.

  19. Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu.

    PubMed

    Shaw, Daniel Joel; Mareček, Radek; Brázdil, Milan

    2016-12-01

    Déjà vu (DV) is an eerie phenomenon experienced frequently as an aura of temporal lobe epilepsy, but also reported commonly by healthy individuals. The former pathological manifestation appears to result from aberrant neural activity among brain structures within the medial temporal lobes. Recent studies also implicate medial temporal brain structures in the non-pathological experience of DV, but as one element of a diffuse neuroanatomical correlate; it remains to be seen if neural activity among the medial temporal lobes also underlies this benign manifestation. The present study set out to investigate this. Due to its unpredictable and infrequent occurrence, however, non-pathological DV does not lend itself easily to functional neuroimaging. Instead, we draw on research showing that brain structure covaries among regions that interact frequently as nodes of functional networks. Specifically, we assessed whether grey-matter covariance among structures implicated in non-pathological DV differs according to the frequency with which the phenomenon is experienced. This revealed two diverging patterns of structural covariation: Among the first, comprised primarily of medial temporal structures and the caudate, grey-matter volume becomes more positively correlated with higher frequency of DV experience. The second pattern encompasses medial and lateral temporal structures, among which greater DV frequency is associated with more negatively correlated grey matter. Using a meta-analytic method of co-activation mapping, we demonstrate a higher probability of functional interactions among brain structures constituting the former pattern, particularly during memory-related processes. Our findings suggest that altered neural signalling within memory-related medial temporal brain structures underlies both pathological and non-pathological DV.

  20. 3D scene reconstruction based on multi-view distributed video coding in the Zernike domain for mobile applications

    NASA Astrophysics Data System (ADS)

    Palma, V.; Carli, M.; Neri, A.

    2011-02-01

    In this paper a Multi-view Distributed Video Coding scheme for mobile applications is presented. Specifically a new fusion technique between temporal and spatial side information in Zernike Moments domain is proposed. Distributed video coding introduces a flexible architecture that enables the design of very low complex video encoders compared to its traditional counterparts. The main goal of our work is to generate at the decoder the side information that optimally blends temporal and interview data. Multi-view distributed coding performance strongly depends on the side information quality built at the decoder. At this aim for improving its quality a spatial view compensation/prediction in Zernike moments domain is applied. Spatial and temporal motion activity have been fused together to obtain the overall side-information. The proposed method has been evaluated by rate-distortion performances for different inter-view and temporal estimation quality conditions.

  1. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music

    PubMed Central

    Vuust, Peter; Witek, Maria A. G.

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding (PC) as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of PC, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a PC model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (“rhythm”) and the brain’s anticipatory structuring of music (“meter”). Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the PC theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms. PMID:25324813

  2. A dataset of multiresolution functional brain parcellations in an elderly population with no or mild cognitive impairment.

    PubMed

    Tam, Angela; Dansereau, Christian; Badhwar, AmanPreet; Orban, Pierre; Belleville, Sylvie; Chertkow, Howard; Dagher, Alain; Hanganu, Alexandru; Monchi, Oury; Rosa-Neto, Pedro; Shmuel, Amir; Breitner, John; Bellec, Pierre

    2016-12-01

    We present group eight resolutions of brain parcellations for clusters generated from resting-state functional magnetic resonance images for 99 cognitively normal elderly persons and 129 patients with mild cognitive impairment, pooled from four independent datasets. This dataset was generated as part of the following study: Common Effects of Amnestic Mild Cognitive Impairment on Resting-State Connectivity Across Four Independent Studies (Tam et al., 2015) [1]. The brain parcellations have been registered to both symmetric and asymmetric MNI brain templates and generated using a method called bootstrap analysis of stable clusters (BASC) (Bellec et al., 2010) [2]. We present two variants of these parcellations. One variant contains bihemisphereic parcels (4, 6, 12, 22, 33, 65, 111, and 208 total parcels across eight resolutions). The second variant contains spatially connected regions of interest (ROIs) that span only one hemisphere (10, 17, 30, 51, 77, 199, and 322 total ROIs across eight resolutions). We also present maps illustrating functional connectivity differences between patients and controls for four regions of interest (striatum, dorsal prefrontal cortex, middle temporal lobe, and medial frontal cortex). The brain parcels and associated statistical maps have been publicly released as 3D volumes, available in .mnc and .nii file formats on figshare and on Neurovault. Finally, the code used to generate this dataset is available on Github.

  3. In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee

    PubMed Central

    Rössler, Wolfgang

    2018-01-01

    The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN) convey olfactory information on ~900 projection neurons (PN) in the antennal lobe (AL). To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB). This pathway comprises the medial (m-ALT) and the lateral antennal lobe tract (l-ALT). PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC) that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level. PMID:29351552

  4. Combined electric and acoustic hearing performance with Zebra® speech processor: speech reception, place, and temporal coding evaluation.

    PubMed

    Vaerenberg, Bart; Péan, Vincent; Lesbros, Guillaume; De Ceulaer, Geert; Schauwers, Karen; Daemers, Kristin; Gnansia, Dan; Govaerts, Paul J

    2013-06-01

    To assess the auditory performance of Digisonic(®) cochlear implant users with electric stimulation (ES) and electro-acoustic stimulation (EAS) with special attention to the processing of low-frequency temporal fine structure. Six patients implanted with a Digisonic(®) SP implant and showing low-frequency residual hearing were fitted with the Zebra(®) speech processor providing both electric and acoustic stimulation. Assessment consisted of monosyllabic speech identification tests in quiet and in noise at different presentation levels, and a pitch discrimination task using harmonic and disharmonic intonating complex sounds ( Vaerenberg et al., 2011 ). These tests investigate place and time coding through pitch discrimination. All tasks were performed with ES only and with EAS. Speech results in noise showed significant improvement with EAS when compared to ES. Whereas EAS did not yield better results in the harmonic intonation test, the improvements in the disharmonic intonation test were remarkable, suggesting better coding of pitch cues requiring phase locking. These results suggest that patients with residual hearing in the low-frequency range still have good phase-locking capacities, allowing them to process fine temporal information. ES relies mainly on place coding but provides poor low-frequency temporal coding, whereas EAS also provides temporal coding in the low-frequency range. Patients with residual phase-locking capacities can make use of these cues.

  5. Efficient Prediction Structures for H.264 Multi View Coding Using Temporal Scalability

    NASA Astrophysics Data System (ADS)

    Guruvareddiar, Palanivel; Joseph, Biju K.

    2014-03-01

    Prediction structures with "disposable view components based" hierarchical coding have been proven to be efficient for H.264 multi view coding. Though these prediction structures along with the QP cascading schemes provide superior compression efficiency when compared to the traditional IBBP coding scheme, the temporal scalability requirements of the bit stream could not be met to the fullest. On the other hand, a fully scalable bit stream, obtained by "temporal identifier based" hierarchical coding, provides a number of advantages including bit rate adaptations and improved error resilience, but lacks in compression efficiency when compared to the former scheme. In this paper it is proposed to combine the two approaches such that a fully scalable bit stream could be realized with minimal reduction in compression efficiency when compared to state-of-the-art "disposable view components based" hierarchical coding. Simulation results shows that the proposed method enables full temporal scalability with maximum BDPSNR reduction of only 0.34 dB. A novel method also has been proposed for the identification of temporal identifier for the legacy H.264/AVC base layer packets. Simulation results also show that this enables the scenario where the enhancement views could be extracted at a lower frame rate (1/2nd or 1/4th of base view) with average extraction time for a view component of only 0.38 ms.

  6. Incorporation of feedback during beat synchronization is an index of neural maturation and reading skills.

    PubMed

    Woodruff Carr, Kali; Fitzroy, Ahren B; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2017-01-01

    Speech communication involves integration and coordination of sensory perception and motor production, requiring precise temporal coupling. Beat synchronization, the coordination of movement with a pacing sound, can be used as an index of this sensorimotor timing. We assessed adolescents' synchronization and capacity to correct asynchronies when given online visual feedback. Variability of synchronization while receiving feedback predicted phonological memory and reading sub-skills, as well as maturation of cortical auditory processing; less variable synchronization during the presence of feedback tracked with maturation of cortical processing of sound onsets and resting gamma activity. We suggest the ability to incorporate feedback during synchronization is an index of intentional, multimodal timing-based integration in the maturing adolescent brain. Precision of temporal coding across modalities is important for speech processing and literacy skills that rely on dynamic interactions with sound. Synchronization employing feedback may prove useful as a remedial strategy for individuals who struggle with timing-based language learning impairments. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A novel approach to analyzing fMRI and SNP data via parallel independent component analysis

    NASA Astrophysics Data System (ADS)

    Liu, Jingyu; Pearlson, Godfrey; Calhoun, Vince; Windemuth, Andreas

    2007-03-01

    There is current interest in understanding genetic influences on brain function in both the healthy and the disordered brain. Parallel independent component analysis, a new method for analyzing multimodal data, is proposed in this paper and applied to functional magnetic resonance imaging (fMRI) and a single nucleotide polymorphism (SNP) array. The method aims to identify the independent components of each modality and the relationship between the two modalities. We analyzed 92 participants, including 29 schizophrenia (SZ) patients, 13 unaffected SZ relatives, and 50 healthy controls. We found a correlation of 0.79 between one fMRI component and one SNP component. The fMRI component consists of activations in cingulate gyrus, multiple frontal gyri, and superior temporal gyrus. The related SNP component is contributed to significantly by 9 SNPs located in sets of genes, including those coding for apolipoprotein A-I, and C-III, malate dehydrogenase 1 and the gamma-aminobutyric acid alpha-2 receptor. A significant difference in the presences of this SNP component is found between the SZ group (SZ patients and their relatives) and the control group. In summary, we constructed a framework to identify the interactions between brain functional and genetic information; our findings provide new insight into understanding genetic influences on brain function in a common mental disorder.

  8. Direct Exploration of the Role of the Ventral Anterior Temporal Lobe in Semantic Memory: Cortical Stimulation and Local Field Potential Evidence From Subdural Grid Electrodes.

    PubMed

    Shimotake, Akihiro; Matsumoto, Riki; Ueno, Taiji; Kunieda, Takeharu; Saito, Satoru; Hoffman, Paul; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu; Takahashi, Ryosuke; Ikeda, Akio; Lambon Ralph, Matthew A

    2015-10-01

    Semantic memory is a crucial higher cortical function that codes the meaning of objects and words, and when impaired after neurological damage, patients are left with significant disability. Investigations of semantic dementia have implicated the anterior temporal lobe (ATL) region, in general, as crucial for multimodal semantic memory. The potentially crucial role of the ventral ATL subregion has been emphasized by recent functional neuroimaging studies, but the necessity of this precise area has not been selectively tested. The implantation of subdural electrode grids over this subregion, for the presurgical assessment of patients with partial epilepsy or brain tumor, offers the dual yet rare opportunities to record cortical local field potentials while participants complete semantic tasks and to stimulate the functionally identified regions in the same participants to evaluate the necessity of these areas in semantic processing. Across 6 patients, and utilizing a variety of semantic assessments, we evaluated and confirmed that the anterior fusiform/inferior temporal gyrus is crucial in multimodal, receptive, and expressive, semantic processing. © The Author 2014. Published by Oxford University Press.

  9. Doctor, Teacher, and Stethoscope: Neural Representation of Different Types of Semantic Relations.

    PubMed

    Xu, Yangwen; Wang, Xiaosha; Wang, Xiaoying; Men, Weiwei; Gao, Jia-Hong; Bi, Yanchao

    2018-03-28

    Concepts can be related in many ways. They can belong to the same taxonomic category (e.g., "doctor" and "teacher," both in the category of people) or be associated with the same event context (e.g., "doctor" and "stethoscope," both associated with medical scenarios). How are these two major types of semantic relations coded in the brain? We constructed stimuli from three taxonomic categories (people, manmade objects, and locations) and three thematic categories (school, medicine, and sports) and investigated the neural representations of these two dimensions using representational similarity analyses in human participants (10 men and nine women). In specific regions of interest, the left anterior temporal lobe (ATL) and the left temporoparietal junction (TPJ), we found that, whereas both areas had significant effects of taxonomic information, the taxonomic relations had stronger effects in the ATL than in the TPJ ("doctor" and "teacher" closer in ATL neural activity), with the reverse being true for thematic relations ("doctor" and "stethoscope" closer in TPJ neural activity). A whole-brain searchlight analysis revealed that widely distributed regions, mainly in the left hemisphere, represented the taxonomic dimension. Interestingly, the significant effects of the thematic relations were only observed after the taxonomic differences were controlled for in the left TPJ, the right superior lateral occipital cortex, and other frontal, temporal, and parietal regions. In summary, taxonomic grouping is a primary organizational dimension across distributed brain regions, with thematic grouping further embedded within such taxonomic structures. SIGNIFICANCE STATEMENT How are concepts organized in the brain? It is well established that concepts belonging to the same taxonomic categories (e.g., "doctor" and "teacher") share neural representations in specific brain regions. How concepts are associated in other manners (e.g., "doctor" and "stethoscope," which are thematically related) remains poorly understood. We used representational similarity analyses to unravel the neural representations of these different types of semantic relations by testing the same set of words that could be differently grouped by taxonomic categories or by thematic categories. We found that widely distributed brain areas primarily represented taxonomic categories, with the thematic categories further embedded within the taxonomic structure. Copyright © 2018 the authors 0270-6474/18/383303-15$15.00/0.

  10. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain.

    PubMed

    Broderick, Patricia A

    2013-06-21

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters currently relied upon within the realms of science and medicine. There are myriad applications for the use of NMI to discover clinically relevant diagnoses and treatments for brain disease involving the motor system.

  11. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain

    PubMed Central

    Broderick, Patricia A.

    2013-01-01

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters currently relied upon within the realms of science and medicine. There are myriad applications for the use of NMI to discover clinically relevant diagnoses and treatments for brain disease involving the motor system. PMID:24961434

  12. Encoding of Olfactory Information with Oscillating Neural Assemblies

    NASA Astrophysics Data System (ADS)

    Laurent, Gilles; Davidowitz, Hananel

    1994-09-01

    In the brain, fast oscillations of local field potentials, which are thought to arise from the coherent and rhythmic activity of large numbers of neurons, were observed first in the olfactory system and have since been described in many neocortical areas. The importance of these oscillations in information coding, however, is controversial. Here, local field potential and intracellular recordings were obtained from the antennal lobe and mushroom body of the locust Schistocerca americana. Different odors evoked coherent oscillations in different, but usually overlapping, ensembles of neurons. The phase of firing of individual neurons relative to the population was not dependent on the odor. The components of a coherently oscillating ensemble of neurons changed over the duration of a single exposure to an odor. It is thus proposed that odors are encoded by specific but dynamic assemblies of coherently oscillating neurons. Such distributed and temporal representation of complex sensory signals may facilitate combinatorial coding and associative learning in these, and possibly other, sensory networks.

  13. Network adaptation improves temporal representation of naturalistic stimuli in Drosophila eye: I dynamics.

    PubMed

    Zheng, Lei; Nikolaev, Anton; Wardill, Trevor J; O'Kane, Cahir J; de Polavieja, Gonzalo G; Juusola, Mikko

    2009-01-01

    Because of the limited processing capacity of eyes, retinal networks must adapt constantly to best present the ever changing visual world to the brain. However, we still know little about how adaptation in retinal networks shapes neural encoding of changing information. To study this question, we recorded voltage responses from photoreceptors (R1-R6) and their output neurons (LMCs) in the Drosophila eye to repeated patterns of contrast values, collected from natural scenes. By analyzing the continuous photoreceptor-to-LMC transformations of these graded-potential neurons, we show that the efficiency of coding is dynamically improved by adaptation. In particular, adaptation enhances both the frequency and amplitude distribution of LMC output by improving sensitivity to under-represented signals within seconds. Moreover, the signal-to-noise ratio of LMC output increases in the same time scale. We suggest that these coding properties can be used to study network adaptation using the genetic tools in Drosophila, as shown in a companion paper (Part II).

  14. Processing concrete words: fMRI evidence against a specific right-hemisphere involvement.

    PubMed

    Fiebach, Christian J; Friederici, Angela D

    2004-01-01

    Behavioral, patient, and electrophysiological studies have been taken as support for the assumption that processing of abstract words is confined to the left hemisphere, whereas concrete words are processed also by right-hemispheric brain areas. These are thought to provide additional information from an imaginal representational system, as postulated in the dual-coding theory of memory and cognition. Here we report new event-related fMRI data on the processing of concrete and abstract words in a lexical decision task. While abstract words activated a subregion of the left inferior frontal gyrus (BA 45) more strongly than concrete words, specific activity for concrete words was observed in the left basal temporal cortex. These data as well as data from other neuroimaging studies reviewed here are not compatible with the assumption of a specific right-hemispheric involvement for concrete words. The combined findings rather suggest a revised view of the neuroanatomical bases of the imaginal representational system assumed in the dual-coding theory, at least with respect to word recognition.

  15. Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: I Dynamics

    PubMed Central

    Wardill, Trevor J.; O'Kane, Cahir J.; de Polavieja, Gonzalo G.; Juusola, Mikko

    2009-01-01

    Because of the limited processing capacity of eyes, retinal networks must adapt constantly to best present the ever changing visual world to the brain. However, we still know little about how adaptation in retinal networks shapes neural encoding of changing information. To study this question, we recorded voltage responses from photoreceptors (R1–R6) and their output neurons (LMCs) in the Drosophila eye to repeated patterns of contrast values, collected from natural scenes. By analyzing the continuous photoreceptor-to-LMC transformations of these graded-potential neurons, we show that the efficiency of coding is dynamically improved by adaptation. In particular, adaptation enhances both the frequency and amplitude distribution of LMC output by improving sensitivity to under-represented signals within seconds. Moreover, the signal-to-noise ratio of LMC output increases in the same time scale. We suggest that these coding properties can be used to study network adaptation using the genetic tools in Drosophila, as shown in a companion paper (Part II). PMID:19180196

  16. Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition

    PubMed Central

    Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A.

    2016-01-01

    The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. PMID:26209846

  17. Temporal Processing Ability Is Related to Ear-Asymmetry for Detecting Time Cues in Sound: A Mismatch Negativity (MMN) Study

    ERIC Educational Resources Information Center

    Todd, Juanita; Finch, Brayden; Smith, Ellen; Budd, Timothy W.; Schall, Ulrich

    2011-01-01

    Temporal and spectral sound information is processed asymmetrically in the brain with the left-hemisphere showing an advantage for processing the former and the right-hemisphere for the latter. Using monaural sound presentation we demonstrate a context and ability dependent ear-asymmetry in brain measures of temporal change detection. Our measure…

  18. Brain regions underlying word finding difficulties in temporal lobe epilepsy.

    PubMed

    Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine

    2009-10-01

    Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance. This evidence has highlighted a role for the anterior part of the dominant temporal lobe in oral word production. These conclusions contrast with findings from activation studies involving healthy speakers or acute ischaemic stroke patients, where the region most directly related to word retrieval appears to be the posterior part of the left temporal lobe. To clarify the neural basis of word retrieval in temporal lobe epilepsy, we tested forty-three drug-resistant temporal lobe epilepsy patients (28 left, 15 right). Comprehensive neuropsychological and language assessments were performed. Single spoken word production was elicited with picture or definition stimuli. Detailed analysis allowed the distinction of impaired word retrieval from other possible causes of naming failure. Finally, the neural substrate of the deficit was assessed by correlating word retrieval performance and resting-state brain metabolism in 18 fluoro-2-deoxy-d-glucose-Positron Emission Tomography. Naming difficulties often resulted from genuine word retrieval failures (anomic states), both in picture and in definition tasks. Left temporal lobe epilepsy patients showed considerably worse performance than right temporal lobe epilepsy patients. Performance was poorer in the definition than in the picture task. Across patients and the left temporal lobe epilepsy subgroup, frequency of anomic state was negatively correlated with resting-state brain metabolism in left posterior and basal temporal regions (Brodmann's area 20-37-39). These results show the involvement of posterior temporal regions, within a larger antero-posterior-basal temporal network, in the specific process of word retrieval in temporal lobe epilepsy. A tentative explanation for these findings is that epilepsy induces functional deafferentation between anterior temporal structures devoted to semantic processing and neocortical posterior temporal structures devoted to lexical processing.

  19. Brain State Effects on Layer 4 of the Awake Visual Cortex

    PubMed Central

    Zhuang, Jun; Bereshpolova, Yulia; Stoelzel, Carl R.; Huff, Joseph M.; Hei, Xiaojuan; Alonso, Jose-Manuel

    2014-01-01

    Awake mammals can switch between alert and nonalert brain states hundreds of times per day. Here, we study the effects of alertness on two cell classes in layer 4 of primary visual cortex of awake rabbits: presumptive excitatory “simple” cells and presumptive fast-spike inhibitory neurons (suspected inhibitory interneurons). We show that in both cell classes, alertness increases the strength and greatly enhances the reliability of visual responses. In simple cells, alertness also increases the temporal frequency bandwidth, but preserves contrast sensitivity, orientation tuning, and selectivity for direction and spatial frequency. Finally, alertness selectively suppresses the simple cell responses to high-contrast stimuli and stimuli moving orthogonal to the preferred direction, effectively enhancing mid-contrast borders. Using a population coding model, we show that these effects of alertness in simple cells—enhanced reliability, higher gain, and increased suppression in orthogonal orientation—could play a major role at increasing the speed of cortical feature detection. PMID:24623767

  20. Hyper-resting brain entropy within chronic smokers and its moderation by Sex.

    PubMed

    Li, Zhengjun; Fang, Zhuo; Hager, Nathan; Rao, Hengyi; Wang, Ze

    2016-07-05

    Cigarette smoking is a chronic relapsing brain disorder, and remains a premier cause of morbidity and mortality. Functional neuroimaging has been used to assess differences in the mean strength of brain activity in smokers' brains, however less is known about the temporal dynamics within smokers' brains. Temporal dynamics is a key feature of a dynamic system such as the brain, and may carry information critical to understanding the brain mechanisms underlying cigarette smoking. We measured the temporal dynamics of brain activity using brain entropy (BEN) mapping and compared BEN between chronic non-deprived smokers and non-smoking controls. Because of the known sex differences in neural and behavioral smoking characteristics, comparisons were also made between males and females. Associations between BEN and smoking related clinical measures were assessed in smokers. Our data showed globally higher BEN in chronic smokers compared to controls. The escalated BEN was associated with more years of smoking in the right limbic area and frontal region. Female nonsmokers showed higher BEN than male nonsmokers in prefrontal cortex, insula, and precuneus, but the BEN sex difference in smokers was less pronounced. These findings suggest that BEN mapping may provide a useful tool for probing brain mechanisms related to smoking.

  1. Extensive excitatory network interactions shape temporal processing of communication signals in a model sensory system.

    PubMed

    Ma, Xiaofeng; Kohashi, Tsunehiko; Carlson, Bruce A

    2013-07-01

    Many sensory brain regions are characterized by extensive local network interactions. However, we know relatively little about the contribution of this microcircuitry to sensory coding. Detailed analyses of neuronal microcircuitry are usually performed in vitro, whereas sensory processing is typically studied by recording from individual neurons in vivo. The electrosensory pathway of mormyrid fish provides a unique opportunity to link in vitro studies of synaptic physiology with in vivo studies of sensory processing. These fish communicate by actively varying the intervals between pulses of electricity. Within the midbrain posterior exterolateral nucleus (ELp), the temporal filtering of afferent spike trains establishes interval tuning by single neurons. We characterized pairwise neuronal connectivity among ELp neurons with dual whole cell recording in an in vitro whole brain preparation. We found a densely connected network in which single neurons influenced the responses of other neurons throughout the network. Similarly tuned neurons were more likely to share an excitatory synaptic connection than differently tuned neurons, and synaptic connections between similarly tuned neurons were stronger than connections between differently tuned neurons. We propose a general model for excitatory network interactions in which strong excitatory connections both reinforce and adjust tuning and weak excitatory connections make smaller modifications to tuning. The diversity of interval tuning observed among this population of neurons can be explained, in part, by each individual neuron receiving a different complement of local excitatory inputs.

  2. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation

    PubMed Central

    Farzan, Faranak; Pascual-Leone, Alvaro; Schmahmann, Jeremy D.; Halko, Mark

    2016-01-01

    Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in. PMID:27009405

  3. On the same wavelength: predictable language enhances speaker-listener brain-to-brain synchrony in posterior superior temporal gyrus.

    PubMed

    Dikker, Suzanne; Silbert, Lauren J; Hasson, Uri; Zevin, Jason D

    2014-04-30

    Recent research has shown that the degree to which speakers and listeners exhibit similar brain activity patterns during human linguistic interaction is correlated with communicative success. Here, we used an intersubject correlation approach in fMRI to test the hypothesis that a listener's ability to predict a speaker's utterance increases such neural coupling between speakers and listeners. Nine subjects listened to recordings of a speaker describing visual scenes that varied in the degree to which they permitted specific linguistic predictions. In line with our hypothesis, the temporal profile of listeners' brain activity was significantly more synchronous with the speaker's brain activity for highly predictive contexts in left posterior superior temporal gyrus (pSTG), an area previously associated with predictive auditory language processing. In this region, predictability differentially affected the temporal profiles of brain responses in the speaker and listeners respectively, in turn affecting correlated activity between the two: whereas pSTG activation increased with predictability in the speaker, listeners' pSTG activity instead decreased for more predictable sentences. Listeners additionally showed stronger BOLD responses for predictive images before sentence onset, suggesting that highly predictable contexts lead comprehenders to preactivate predicted words.

  4. Mind the gap: Neural coding of species identity in birdsong prosody.

    PubMed

    Araki, Makoto; Bandi, M M; Yazaki-Sugiyama, Yoko

    2016-12-09

    Juvenile songbirds learn vocal communication from adult tutors of the same species but not from adults of other species. How species-specific learning emerges from the basic features of song prosody remains unknown. In the zebra finch auditory cortex, we discovered a class of neurons that register the silent temporal gaps between song syllables and are distinct from neurons encoding syllable morphology. Behavioral learning and neuronal coding of temporal gap structure resisted song tutoring from other species: Zebra finches fostered by Bengalese finch parents learned Bengalese finch song morphology transposed onto zebra finch temporal gaps. During the vocal learning period, temporal gap neurons fired selectively to zebra finch song. The innate temporal coding of intersyllable silent gaps suggests a neuronal barcode for conspecific vocal learning and social communication in acoustically diverse environments. Copyright © 2016, American Association for the Advancement of Science.

  5. Open Source Tools for Temporally Controlled Rodent Behavior Suitable for Electrophysiology and Optogenetic Manipulations.

    PubMed

    Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs

    2018-01-01

    Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.

  6. Energy coding in biological neural networks

    PubMed Central

    Zhang, Zhikang

    2007-01-01

    According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, we present a brand new scientific theory that offers an unique mechanism for brain information processing. We demonstrate that the neural coding produced by the activity of the brain is well described by our theory of energy coding. Due to the energy coding model’s ability to reveal mechanisms of brain information processing based upon known biophysical properties, we can not only reproduce various experimental results of neuro-electrophysiology, but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, we estimate that the theory has very important consequences for quantitative research of cognitive function. PMID:19003513

  7. Coding of auditory temporal and pitch information by hippocampal individual cells and cell assemblies in the rat.

    PubMed

    Sakurai, Y

    2002-01-01

    This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.

  8. [Successful treatment with anti-epileptic-drug of an 83-year-old man with musical hallucinosis].

    PubMed

    Futamura, Akinori; Katoh, Hirotaka; Kawamura, Mitsuru

    2014-05-01

    An 83-year-old man with 3 years symptomatic hearing loss suddenly experienced musical hallucinosis. He heard children's songs, folk songs, military songs, and the Japanese national anthem for seven months every day. He sometime had paroxysmal nausea, dull headaches and depressive mood. On examination he had no psychosis or neurological symptoms except sensorineural hearing loss in both ears. MRI brain imaging and electroencephalography showed no significant abnormalities, however 123I-IMP brain SPECT showed decreased activity in the right temporal lobe and increased activity in the left temporal and parietal lobes. Late phase 123I-iomazenil brain SPECT showed decreased accumulation in the right temporal lobe compared to the early phase. This indicates right temporal lobe epilepsy. He was diagnosed with epilepsy because of paroxysmal nausea and headache and the laterality of 123I-IMP brain SPECT and 123I-iomazenil brain SPECT. The musical hallucinosis was much reduced by carbamazepine 200mg per day. Nine months after beginning carbamazepine we detected decreased activity in the right temporal lobe and increased activity in left temporal and parietal lobes was improved. We do not believe he had epileptogenic musical hallucinosis because his musical hallusinosis was neither paroxysmal nor lateral. We diagnosed auditory Charles Bonnet syndrome with onset 3 years after sensorineural hearing loss due to reversible epileptic like discharge in temporal and parietal lobes. There is no established treatment for musical hallucinosis, but anti-epileptic drugs may be of some help.

  9. Functional connectivity during phonemic and semantic verbal fluency test: a multi-channel near infrared spectroscopy study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Jung; Sun, Chia-Wei; Chou, Po-Han; Chuang, Ching-Cheng

    2016-03-01

    Verbal fluency tests (VFT) are widely used neuropsychological tests of frontal lobe and have been frequently used in various functional brain mapping studies. There are two versions of VFT based on the type of cue: the letter fluency task (LFT) and the category fluency task (CFT). However, the fundamental aspect of the brain connectivity across spatial regions of the fronto-temporal regions during the VFTs has not been elucidated to date. In this study we hypothesized that different cortical functional connectivity over bilateral fronto-temporal regions can be observed by means of multi-channel fNIRS in the LFT and the CFT respectively. Our results from fNIRS (ETG-4000) showed different patterns of brain functional connectivity consistent with these different cognitive requirements. We demonstrate more brain functional connectivity over frontal and temporal regions during LFT than CFT, and this was in line with previous brain activity studies using fNIRS demonstrating increased frontal and temporal region activation during LFT and CFT and more pronounced frontal activation by the LFT.

  10. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    PubMed

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis.

    PubMed

    Hu, Wen; Wu, Feng; Zhang, Yanchong; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-01-01

    Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.

  12. On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus.

    PubMed

    Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-10-01

    It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. On Initial Brain Activity Mapping of Associative Memory Code in the Hippocampus

    PubMed Central

    Tsien, Joe Z.; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Lei Wang, Phillip; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-01-01

    It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. PMID:23838072

  14. Evolvix BEST Names for semantic reproducibility across code2brain interfaces

    PubMed Central

    Scheuer, Katherine S.; Keel, Seth A.; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C.; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G.; Moog, Cecilia L.; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist‐Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda‐Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L.; Freiberg, Erika; Waters, Noah P.; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M.; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha

    2016-01-01

    Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general‐purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long‐term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder‐brains to reader‐brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. PMID:27918836

  15. The temporal change in the cortical activations due to salty and sweet tastes in humans: fMRI and time-intensity sensory evaluation.

    PubMed

    Nakamura, Yuko; Goto, Tazuko K; Tokumori, Kenji; Yoshiura, Takashi; Kobayashi, Koji; Nakamura, Yasuhiko; Honda, Hiroshi; Ninomiya, Yuzo; Yoshiura, Kazunori

    2012-04-18

    It remains unclear how the cerebral cortex of humans perceives taste temporally, and whether or not such objective data about the brain show a correlation with the current widely used conventional methods of taste-intensity sensory evaluation. The aim of this study was to investigate the difference in the time-intensity profile between salty and sweet tastes in the human brain. The time-intensity profiles of functional MRI (fMRI) data of the human taste cortex were analyzed using finite impulse response analysis for a direct interpretation in terms of the peristimulus time signal. Also, time-intensity sensory evaluations for tastes were performed under the same condition as fMRI to confirm the reliability of the temporal profile in the fMRI data. The time-intensity profile for the brain activations due to a salty taste changed more rapidly than those due to a sweet taste in the human brain cortex and was also similar to the time-intensity sensory evaluation, confirming the reliability of the temporal profile of the fMRI data. In conclusion, the time-intensity profile using finite impulse response analysis for fMRI data showed that there was a temporal difference in the neural responses between salty and sweet tastes over a given period of time. This indicates that there might be taste-specific temporal profiles of activations in the human brain.

  16. Cortical thickness and folding deficits in conduct-disordered adolescents

    PubMed Central

    Hyatt, Christopher J.; Haney-Caron, Emily; Stevens, Michael C.

    2012-01-01

    Background Studies of pediatric conduct disorder (CD) have described frontal and temporal lobe structural abnormalities that parallel findings in antisocial adults. The purpose of this study was to examine previously unexplored cortical thickness and folding as markers for brain abnormalities in “pure CD”-diagnosed adolescents. Based on current fronto-temporal theories, we hypothesized that CD youth would have thinner cortex or less cortical folding in temporal and frontal lobes than control subjects. Methods We obtained T1-weighted brain structure images from n=24 control and n=19 CD participants aged 12–18 years, matched by overall gender and age. We measured group differences in cortical thickness and local gyrification index (regional cortical folding measure) using surface-based morphometry with clusterwise correction for multiple comparisons. Results CD participants, when compared with controls, showed both reduced cortical thickness and folding. Thinner cortex was located primarily in posterior brain regions, including left superior temporal and parietal lobes, temporoparietal junction and paracentral lobule, right superior temporal and parietal lobes, temporoparietal junction and precuneus. Folding deficits were located mainly in anterior brain regions and included left insula, ventro- and dorsomedial prefrontal, anterior cingulate and orbitofrontal cortices, temporal lobe, right superior frontal and parietal lobes and paracentral lobule. Conclusions Our findings generally agree with previous CD volumetric studies, but here show the unique contributions of cortical thickness and folding to gray matter reductions in pure CD in different brain regions. PMID:22209639

  17. Co-Variation of Peripheral Levels of miR-1202 and Brain Activity and Connectivity During Antidepressant Treatment.

    PubMed

    Lopez, Juan Pablo; Pereira, Fabricio; Richard-Devantoy, Stéphane; Berlim, Marcelo; Chachamovich, Eduardo; Fiori, Laura M; Niola, Paola; Turecki, Gustavo; Jollant, Fabrice

    2017-09-01

    MicroRNAs are short non-coding molecules that play a major role in regulating gene expression. Peripheral levels of miR-1202 have been shown to predict and mediate antidepressant response. However, it is not clear to what extent these peripheral measures reflect central neural changes in vivo. We approached this problem with the combined use of peripheral miR-1202 measures and neuroimaging. At baseline and after 8 weeks of desvenlafaxine (50-100 mg die), 20 patients were scanned with 3T magnetic resonance imaging, first at rest then during the Go/NoGo task, a classical test of response inhibition. Blood samples were collected at both time points. During resting state, lower baseline miR-1202 levels were predictive of increased connectivity from T0 to T8 between the posterior cingulate and the prefrontal, parietal, and occipital cortices. Changes in miR-1202 levels following desvenlafaxine treatment were negatively correlated with changes in activity in right precuneus within the default-mode network, and in connectivity between the posterior cingulate and the temporal and prefrontal cortices, and the precuneus. During the Go/NoGo task, baseline miR-1202 levels and changes in these levels were correlated with activity changes in different regions, including bilateral prefrontal, insular, cingulate, and temporal cortices, and left putamen and claustrum. Finally, secondary analyses in a subset of patients showed a trend for a significant correlation between miR-1202 levels and glutamate levels measured by spectroscopy. Changes in peripheral miR-1202 levels were therefore associated with changes in brain activity and connectivity in a network of brain regions associated with depression and antidepressant response. These effects may be mediated by the glutamatergic system.

  18. Disturbed temporal dynamics of brain synchronization in vision loss.

    PubMed

    Bola, Michał; Gall, Carolin; Sabel, Bernhard A

    2015-06-01

    Damage along the visual pathway prevents bottom-up visual input from reaching further processing stages and consequently leads to loss of vision. But perception is not a simple bottom-up process - rather it emerges from activity of widespread cortical networks which coordinate visual processing in space and time. Here we set out to study how vision loss affects activity of brain visual networks and how networks' activity is related to perception. Specifically, we focused on studying temporal patterns of brain activity. To this end, resting-state eyes-closed EEG was recorded from partially blind patients suffering from chronic retina and/or optic-nerve damage (n = 19) and healthy controls (n = 13). Amplitude (power) of oscillatory activity and phase locking value (PLV) were used as measures of local and distant synchronization, respectively. Synchronization time series were created for the low- (7-9 Hz) and high-alpha band (11-13 Hz) and analyzed with three measures of temporal patterns: (i) length of synchronized-/desynchronized-periods, (ii) Higuchi Fractal Dimension (HFD), and (iii) Detrended Fluctuation Analysis (DFA). We revealed that patients exhibit less complex, more random and noise-like temporal dynamics of high-alpha band activity. More random temporal patterns were associated with worse performance in static (r = -.54, p = .017) and kinetic perimetry (r = .47, p = .041). We conclude that disturbed temporal patterns of neural synchronization in vision loss patients indicate disrupted communication within brain visual networks caused by prolonged deafferentation. We propose that because the state of brain networks is essential for normal perception, impaired brain synchronization in patients with vision loss might aggravate the functional consequences of reduced visual input. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis

    DTIC Science & Technology

    2013-07-01

    temporal lobe epilepsy (TLE), a frequently medically intractable and permanent epilepsy syndrome. Unlike many TLE models, which cause global brain injury...addresses the FY10 PRMRP topic area of Epilepsy . Traumatic Brain Injury (TBI) is a well-established etiology of temporal lobe epilepsy (TLE), a...is one of the most common causes of temporal lobe epilepsy (TLE). Changes in inhibitory signaling after CCI include hilar inhibitory neuron loss

  20. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-01-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG–fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099

  1. Neural signatures of lexical tone reading.

    PubMed

    Kwok, Veronica P Y; Wang, Tianfu; Chen, Siping; Yakpo, Kofi; Zhu, Linlin; Fox, Peter T; Tan, Li Hai

    2015-01-01

    Research on how lexical tone is neuroanatomically represented in the human brain is central to our understanding of cortical regions subserving language. Past studies have exclusively focused on tone perception of the spoken language, and little is known as to the lexical tone processing in reading visual words and its associated brain mechanisms. In this study, we performed two experiments to identify neural substrates in Chinese tone reading. First, we used a tone judgment paradigm to investigate tone processing of visually presented Chinese characters. We found that, relative to baseline, tone perception of printed Chinese characters were mediated by strong brain activation in bilateral frontal regions, left inferior parietal lobule, left posterior middle/medial temporal gyrus, left inferior temporal region, bilateral visual systems, and cerebellum. Surprisingly, no activation was found in superior temporal regions, brain sites well known for speech tone processing. In activation likelihood estimation (ALE) meta-analysis to combine results of relevant published studies, we attempted to elucidate whether the left temporal cortex activities identified in Experiment one is consistent with those found in previous studies of auditory lexical tone perception. ALE results showed that only the left superior temporal gyrus and putamen were critical in auditory lexical tone processing. These findings suggest that activation in the superior temporal cortex associated with lexical tone perception is modality-dependent. © 2014 Wiley Periodicals, Inc.

  2. Hyper-resting brain entropy within chronic smokers and its moderation by Sex

    PubMed Central

    Li, Zhengjun; Fang, Zhuo; Hager, Nathan; Rao, Hengyi; Wang, Ze

    2016-01-01

    Cigarette smoking is a chronic relapsing brain disorder, and remains a premier cause of morbidity and mortality. Functional neuroimaging has been used to assess differences in the mean strength of brain activity in smokers’ brains, however less is known about the temporal dynamics within smokers’ brains. Temporal dynamics is a key feature of a dynamic system such as the brain, and may carry information critical to understanding the brain mechanisms underlying cigarette smoking. We measured the temporal dynamics of brain activity using brain entropy (BEN) mapping and compared BEN between chronic non-deprived smokers and non-smoking controls. Because of the known sex differences in neural and behavioral smoking characteristics, comparisons were also made between males and females. Associations between BEN and smoking related clinical measures were assessed in smokers. Our data showed globally higher BEN in chronic smokers compared to controls. The escalated BEN was associated with more years of smoking in the right limbic area and frontal region. Female nonsmokers showed higher BEN than male nonsmokers in prefrontal cortex, insula, and precuneus, but the BEN sex difference in smokers was less pronounced. These findings suggest that BEN mapping may provide a useful tool for probing brain mechanisms related to smoking. PMID:27377552

  3. Disrupted topological properties of brain white matter networks in left temporal lobe epilepsy: a diffusion tensor imaging study.

    PubMed

    Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R

    2014-10-24

    Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions

    PubMed Central

    Laufs, Helmut; Hamandi, Khalid; Salek-Haddadi, Afraim; Kleinschmidt, Andreas K; Duncan, John S; Lemieux, Louis

    2007-01-01

    A cerebral network comprising precuneus, medial frontal, and temporoparietal cortices is less active both during goal-directed behavior and states of reduced consciousness than during conscious rest. We tested the hypothesis that the interictal epileptic discharges affect activity in these brain regions in patients with temporal lobe epilepsy who have complex partial seizures. At the group level, using electroencephalography-correlated functional magnetic resonance imaging in 19 consecutive patients with focal epilepsy, we found common decreases of resting state activity in 9 patients with temporal lobe epilepsy (TLE) but not in 10 patients with extra-TLE. We infer that the functional consequences of TLE interictal epileptic discharges are different from those in extra-TLE and affect ongoing brain function. Activity increases were detected in the ipsilateral hippocampus in patients with TLE, and in subthalamic, bilateral superior temporal and medial frontal brain regions in patients with extra-TLE, possibly indicating effects of different interictal epileptic discharge propagation. PMID:17133385

  5. Premotor neural correlates of predictive motor timing for speech production and hand movement: evidence for a temporal predictive code in the motor system.

    PubMed

    Johari, Karim; Behroozmand, Roozbeh

    2017-05-01

    The predictive coding model suggests that neural processing of sensory information is facilitated for temporally-predictable stimuli. This study investigated how temporal processing of visually-presented sensory cues modulates movement reaction time and neural activities in speech and hand motor systems. Event-related potentials (ERPs) were recorded in 13 subjects while they were visually-cued to prepare to produce a steady vocalization of a vowel sound or press a button in a randomized order, and to initiate the cued movement following the onset of a go signal on the screen. Experiment was conducted in two counterbalanced blocks in which the time interval between visual cue and go signal was temporally-predictable (fixed delay at 1000 ms) or unpredictable (variable between 1000 and 2000 ms). Results of the behavioral response analysis indicated that movement reaction time was significantly decreased for temporally-predictable stimuli in both speech and hand modalities. We identified premotor ERP activities with a left-lateralized parietal distribution for hand and a frontocentral distribution for speech that were significantly suppressed in response to temporally-predictable compared with unpredictable stimuli. The premotor ERPs were elicited approximately -100 ms before movement and were significantly correlated with speech and hand motor reaction times only in response to temporally-predictable stimuli. These findings suggest that the motor system establishes a predictive code to facilitate movement in response to temporally-predictable sensory stimuli. Our data suggest that the premotor ERP activities are robust neurophysiological biomarkers of such predictive coding mechanisms. These findings provide novel insights into the temporal processing mechanisms of speech and hand motor systems.

  6. Parametric fMRI analysis of visual encoding in the human medial temporal lobe.

    PubMed

    Rombouts, S A; Scheltens, P; Machielson, W C; Barkhof, F; Hoogenraad, F G; Veltman, D J; Valk, J; Witter, M P

    1999-01-01

    A number of functional brain imaging studies indicate that the medial temporal lobe system is crucially involved in encoding new information into memory. However, most studies were based on differences in brain activity between encoding of familiar vs. novel stimuli. To further study the underlying cognitive processes, we applied a parametric design of encoding. Seven healthy subjects were instructed to encode complex color pictures into memory. Stimuli were presented in a parametric fashion at different rates, thus representing different loads of encoding. Functional magnetic resonance imaging (fMRI) was used to assess changes in brain activation. To determine the number of pictures successfully stored into memory, recognition scores were determined afterwards. During encoding, brain activation occurred in the medial temporal lobe, comparable to the results obtained by others. Increasing the encoding load resulted in an increase in the number of successfully stored items. This was reflected in a significant increase in brain activation in the left lingual gyrus, in the left and right parahippocampal gyrus, and in the right inferior frontal gyrus. This study shows that fMRI can detect changes in brain activation during variation of one aspect of higher cognitive tasks. Further, it strongly supports the notion that the human medial temporal lobe is involved in encoding novel visual information into memory.

  7. From perceptual to lexico-semantic analysis--cortical plasticity enabling new levels of processing.

    PubMed

    Schlaffke, Lara; Rüther, Naima N; Heba, Stefanie; Haag, Lauren M; Schultz, Thomas; Rosengarth, Katharina; Tegenthoff, Martin; Bellebaum, Christian; Schmidt-Wilcke, Tobias

    2015-11-01

    Certain kinds of stimuli can be processed on multiple levels. While the neural correlates of different levels of processing (LOPs) have been investigated to some extent, most of the studies involve skills and/or knowledge already present when performing the task. In this study we specifically sought to identify neural correlates of an evolving skill that allows the transition from perceptual to a lexico-semantic stimulus analysis. Eighteen participants were trained to decode 12 letters of Morse code that were presented acoustically inside and outside of the scanner environment. Morse code was presented in trains of three letters while brain activity was assessed with fMRI. Participants either attended to the stimulus length (perceptual analysis), or evaluated its meaning distinguishing words from nonwords (lexico-semantic analysis). Perceptual and lexico-semantic analyses shared a mutual network comprising the left premotor cortex, the supplementary motor area (SMA) and the inferior parietal lobule (IPL). Perceptual analysis was associated with a strong brain activation in the SMA and the superior temporal gyrus bilaterally (STG), which remained unaltered from pre and post training. In the lexico-semantic analysis post learning, study participants showed additional activation in the left inferior frontal cortex (IFC) and in the left occipitotemporal cortex (OTC), regions known to be critically involved in lexical processing. Our data provide evidence for cortical plasticity evolving with a learning process enabling the transition from perceptual to lexico-semantic stimulus analysis. Importantly, the activation pattern remains task-related LOP and is thus the result of a decision process as to which LOP to engage in. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

  8. Music acquisition: effects of enculturation and formal training on development.

    PubMed

    Hannon, Erin E; Trainor, Laurel J

    2007-11-01

    Musical structure is complex, consisting of a small set of elements that combine to form hierarchical levels of pitch and temporal structure according to grammatical rules. As with language, different systems use different elements and rules for combination. Drawing on recent findings, we propose that music acquisition begins with basic features, such as peripheral frequency-coding mechanisms and multisensory timing connections, and proceeds through enculturation, whereby everyday exposure to a particular music system creates, in a systematic order of acquisition, culture-specific brain structures and representations. Finally, we propose that formal musical training invokes domain-specific processes that affect salience of musical input and the amount of cortical tissue devoted to its processing, as well as domain-general processes of attention and executive functioning.

  9. Electrical Stimulation in Hippocampus and Entorhinal Cortex Impairs Spatial and Temporal Memory.

    PubMed

    Goyal, Abhinav; Miller, Jonathan; Watrous, Andrew J; Lee, Sang Ah; Coffey, Tom; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn A; Inman, Cory; Sheth, Sameer A; Wanda, Paul A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Jacobs, Joshua

    2018-05-09

    The medial temporal lobe (MTL) is widely implicated in supporting episodic memory and navigation, but its precise functional role in organizing memory across time and space remains elusive. Here we examine the specific cognitive processes implemented by MTL structures (hippocampus and entorhinal cortex) to organize memory by using electrical brain stimulation, leveraging its ability to establish causal links between brain regions and features of behavior. We studied neurosurgical patients of both sexes who performed spatial-navigation and verbal-episodic memory tasks while brain stimulation was applied in various regions during learning. During the verbal memory task, stimulation in the MTL disrupted the temporal organization of encoded memories such that items learned with stimulation tended to be recalled in a more randomized order. During the spatial task, MTL stimulation impaired subjects' abilities to remember items located far away from boundaries. These stimulation effects were specific to the MTL. Our findings thus provide the first causal demonstration in humans of the specific memory processes that are performed by the MTL to encode when and where events occurred. SIGNIFICANCE STATEMENT Numerous studies have implicated the medial temporal lobe (MTL) in encoding spatial and temporal memories, but they have not been able to causally demonstrate the nature of the cognitive processes by which this occurs in real-time. Electrical brain stimulation is able to demonstrate causal links between a brain region and a given function with high temporal precision. By examining behavior in a memory task as subjects received MTL stimulation, we provide the first causal evidence demonstrating the role of the MTL in organizing the spatial and temporal aspects of episodic memory. Copyright © 2018 the authors 0270-6474/18/384471-11$15.00/0.

  10. Reconceptualizing Children's Suggestibility: Bidirectional and Temporal Properties

    ERIC Educational Resources Information Center

    Gilstrap, Livia L.; Ceci, Stephen J.

    2005-01-01

    Forty-one children (3 to 7 years) were exposed to a staged event and later interviewed by 1 of 41 professional interviewers. All interviews were coded with a detailed, mutually exclusive, and exhaustive coding scheme capturing adult behaviors (leading questions vs. neutral) and child behaviors (acquiescence vs. denial) in a temporally organized…

  11. Beyond Molecular Codes: Simple Rules to Wire Complex Brains

    PubMed Central

    Hassan, Bassem A.; Hiesinger, P. Robin

    2015-01-01

    Summary Molecular codes, like postal zip codes, are generally considered a robust way to ensure the specificity of neuronal target selection. However, a code capable of unambiguously generating complex neural circuits is difficult to conceive. Here, we re-examine the notion of molecular codes in the light of developmental algorithms. We explore how molecules and mechanisms that have been considered part of a code may alternatively implement simple pattern formation rules sufficient to ensure wiring specificity in neural circuits. This analysis delineates a pattern-based framework for circuit construction that may contribute to our understanding of brain wiring. PMID:26451480

  12. High density event-related potential data acquisition in cognitive neuroscience.

    PubMed

    Slotnick, Scott D

    2010-04-16

    Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.

  13. A possible role for a paralemniscal auditory pathway in the coding of slow temporal information

    PubMed Central

    Abrams, Daniel A.; Nicol, Trent; Zecker, Steven; Kraus, Nina

    2010-01-01

    Low frequency temporal information present in speech is critical for normal perception, however the neural mechanism underlying the differentiation of slow rates in acoustic signals is not known. Data from the rat trigeminal system suggest that the paralemniscal pathway may be specifically tuned to code low-frequency temporal information. We tested whether this phenomenon occurs in the auditory system by measuring the representation of temporal rate in lemniscal and paralemniscal auditory thalamus and cortex in guinea pig. Similar to the trigeminal system, responses measured in auditory thalamus indicate that slow rates are differentially represented in a paralemniscal pathway. In cortex, both lemniscal and paralemniscal neurons indicated sensitivity to slow rates. We speculate that a paralemniscal pathway in the auditory system may be specifically tuned to code low frequency temporal information present in acoustic signals. These data suggest that somatosensory and auditory modalities have parallel sub-cortical pathways that separately process slow rates and the spatial representation of the sensory periphery. PMID:21094680

  14. Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.

    PubMed

    Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh

    2017-08-15

    Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Audio-tactile integration and the influence of musical training.

    PubMed

    Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C; Pantev, Christo

    2014-01-01

    Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG) to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training.

  16. Left temporal and temporoparietal brain activity depends on depth of word encoding: a magnetoencephalographic study in healthy young subjects.

    PubMed

    Walla, P; Hufnagl, B; Lindinger, G; Imhof, H; Deecke, L; Lang, W

    2001-03-01

    Using a 143-channel whole-head magnetoencephalograph (MEG) we recorded the temporal changes of brain activity from 26 healthy young subjects (14 females) related to shallow perceptual and deep semantic word encoding. During subsequent recognition tests, the subjects had to recognize the previously encoded words which were interspersed with new words. The resulting mean memory performances across all subjects clearly mirrored the different levels of encoding. The grand averaged event-related fields (ERFs) associated with perceptual and semantic word encoding differed significantly between 200 and 550 ms after stimulus onset mainly over left superior temporal and left superior parietal sensors. Semantic encoding elicited higher brain activity than perceptual encoding. Source localization procedures revealed that neural populations of the left temporal and temporoparietal brain areas showed different activity strengths across the whole group of subjects depending on depth of word encoding. We suggest that the higher brain activity associated with deep encoding as compared to shallow encoding was due to the involvement of more neural systems during the processing of visually presented words. Deep encoding required more energy than shallow encoding but for all that led to a better memory performance. Copyright 2001 Academic Press.

  17. Brainstem auditory-evoked potentials as an objective tool for evaluating hearing dysfunction in traumatic brain injury.

    PubMed

    Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F

    2004-03-01

    Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.

  18. Multiple Primary and Histology Coding Rules - SEER

    Cancer.gov

    Download the coding manual and training resources for cases diagnosed from 2007 to 2017. Sites included are lung, breast, colon, melanoma of the skin, head and neck, kidney, renal pelvis/ureter/bladder, benign brain, and malignant brain.

  19. Emergence of an abstract categorical code enabling the discrimination of temporally structured tactile stimuli

    PubMed Central

    Rossi-Pool, Román; Salinas, Emilio; Zainos, Antonio; Alvarez, Manuel; Vergara, José; Parga, Néstor; Romo, Ranulfo

    2016-01-01

    The problem of neural coding in perceptual decision making revolves around two fundamental questions: (i) How are the neural representations of sensory stimuli related to perception, and (ii) what attributes of these neural responses are relevant for downstream networks, and how do they influence decision making? We studied these two questions by recording neurons in primary somatosensory (S1) and dorsal premotor (DPC) cortex while trained monkeys reported whether the temporal pattern structure of two sequential vibrotactile stimuli (of equal mean frequency) was the same or different. We found that S1 neurons coded the temporal patterns in a literal way and only during the stimulation periods and did not reflect the monkeys’ decisions. In contrast, DPC neurons coded the stimulus patterns as broader categories and signaled them during the working memory, comparison, and decision periods. These results show that the initial sensory representation is transformed into an intermediate, more abstract categorical code that combines past and present information to ultimately generate a perceptually informed choice. PMID:27872293

  20. Brain Regions Underlying Word Finding Difficulties in Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine

    2009-01-01

    Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance.…

  1. MEG Evidence for Incremental Sentence Composition in the Anterior Temporal Lobe

    ERIC Educational Resources Information Center

    Brennan, Jonathan R.; Pylkkänen, Liina

    2017-01-01

    Research investigating the brain basis of language comprehension has associated the left anterior temporal lobe (ATL) with sentence-level combinatorics. Using magnetoencephalography (MEG), we test the parsing strategy implemented in this brain region. The number of incremental parse steps from a predictive left-corner parsing strategy that is…

  2. An ultra-sparse code underliesthe generation of neural sequences in a songbird

    NASA Astrophysics Data System (ADS)

    Hahnloser, Richard H. R.; Kozhevnikov, Alexay A.; Fee, Michale S.

    2002-09-01

    Sequences of motor activity are encoded in many vertebrate brains by complex spatio-temporal patterns of neural activity; however, the neural circuit mechanisms underlying the generation of these pre-motor patterns are poorly understood. In songbirds, one prominent site of pre-motor activity is the forebrain robust nucleus of the archistriatum (RA), which generates stereotyped sequences of spike bursts during song and recapitulates these sequences during sleep. We show that the stereotyped sequences in RA are driven from nucleus HVC (high vocal centre), the principal pre-motor input to RA. Recordings of identified HVC neurons in sleeping and singing birds show that individual HVC neurons projecting onto RA neurons produce bursts sparsely, at a single, precise time during the RA sequence. These HVC neurons burst sequentially with respect to one another. We suggest that at each time in the RA sequence, the ensemble of active RA neurons is driven by a subpopulation of RA-projecting HVC neurons that is active only at that time. As a population, these HVC neurons may form an explicit representation of time in the sequence. Such a sparse representation, a temporal analogue of the `grandmother cell' concept for object recognition, eliminates the problem of temporal interference during sequence generation and learning attributed to more distributed representations.

  3. Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders.

    PubMed

    Zhang, Jie; Cheng, Wei; Liu, Zhaowen; Zhang, Kai; Lei, Xu; Yao, Ye; Becker, Benjamin; Liu, Yicen; Kendrick, Keith M; Lu, Guangming; Feng, Jianfeng

    2016-08-01

    SEE MATTAR ET AL DOI101093/AWW151 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Functional brain networks demonstrate significant temporal variability and dynamic reconfiguration even in the resting state. Currently, most studies investigate temporal variability of brain networks at the scale of single (micro) or whole-brain (macro) connectivity. However, the mechanism underlying time-varying properties remains unclear, as the coupling between brain network variability and neural activity is not readily apparent when analysed at either micro or macroscales. We propose an intermediate (meso) scale analysis and characterize temporal variability of the functional architecture associated with a particular region. This yields a topography of variability that reflects the whole-brain and, most importantly, creates an analytical framework to establish the fundamental relationship between variability of regional functional architecture and its neural activity or structural connectivity. We find that temporal variability reflects the dynamical reconfiguration of a brain region into distinct functional modules at different times and may be indicative of brain flexibility and adaptability. Primary and unimodal sensory-motor cortices demonstrate low temporal variability, while transmodal areas, including heteromodal association areas and limbic system, demonstrate the high variability. In particular, regions with highest variability such as hippocampus/parahippocampus, inferior and middle temporal gyrus, olfactory gyrus and caudate are all related to learning, suggesting that the temporal variability may indicate the level of brain adaptability. With simultaneously recorded electroencephalography/functional magnetic resonance imaging and functional magnetic resonance imaging/diffusion tensor imaging data, we also find that variability of regional functional architecture is modulated by local blood oxygen level-dependent activity and α-band oscillation, and is governed by the ratio of intra- to inter-community structural connectivity. Application of the mesoscale variability measure to multicentre datasets of three mental disorders and matched controls involving 1180 subjects reveals that those regions demonstrating extreme, i.e. highest/lowest variability in controls are most liable to change in mental disorders. Specifically, we draw attention to the identification of diametrically opposing patterns of variability changes between schizophrenia and attention deficit hyperactivity disorder/autism. Regions of the default-mode network demonstrate lower variability in patients with schizophrenia, but high variability in patients with autism/attention deficit hyperactivity disorder, compared with respective controls. In contrast, subcortical regions, especially the thalamus, show higher variability in schizophrenia patients, but lower variability in patients with attention deficit hyperactivity disorder. The changes in variability of these regions are also closely related to symptom scores. Our work provides insights into the dynamic organization of the resting brain and how it changes in brain disorders. The nodal variability measure may also be potentially useful as a predictor for learning and neural rehabilitation. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Temporal Coding of Volumetric Imagery

    NASA Astrophysics Data System (ADS)

    Llull, Patrick Ryan

    'Image volumes' refer to realizations of images in other dimensions such as time, spectrum, and focus. Recent advances in scientific, medical, and consumer applications demand improvements in image volume capture. Though image volume acquisition continues to advance, it maintains the same sampling mechanisms that have been used for decades; every voxel must be scanned and is presumed independent of its neighbors. Under these conditions, improving performance comes at the cost of increased system complexity, data rates, and power consumption. This dissertation explores systems and methods capable of efficiently improving sensitivity and performance for image volume cameras, and specifically proposes several sampling strategies that utilize temporal coding to improve imaging system performance and enhance our awareness for a variety of dynamic applications. Video cameras and camcorders sample the video volume (x,y,t) at fixed intervals to gain understanding of the volume's temporal evolution. Conventionally, one must reduce the spatial resolution to increase the framerate of such cameras. Using temporal coding via physical translation of an optical element known as a coded aperture, the compressive temporal imaging (CACTI) camera emonstrates a method which which to embed the temporal dimension of the video volume into spatial (x,y) measurements, thereby greatly improving temporal resolution with minimal loss of spatial resolution. This technique, which is among a family of compressive sampling strategies developed at Duke University, temporally codes the exposure readout functions at the pixel level. Since video cameras nominally integrate the remaining image volume dimensions (e.g. spectrum and focus) at capture time, spectral (x,y,t,lambda) and focal (x,y,t,z) image volumes are traditionally captured via sequential changes to the spectral and focal state of the system, respectively. The CACTI camera's ability to embed video volumes into images leads to exploration of other information within that video; namely, focal and spectral information. The next part of the thesis demonstrates derivative works of CACTI: compressive extended depth of field and compressive spectral-temporal imaging. These works successfully show the technique's extension of temporal coding to improve sensing performance in these other dimensions. Geometrical optics-related tradeoffs, such as the classic challenges of wide-field-of-view and high resolution photography, have motivated the development of mulitscale camera arrays. The advent of such designs less than a decade ago heralds a new era of research- and engineering-related challenges. One significant challenge is that of managing the focal volume (x,y,z ) over wide fields of view and resolutions. The fourth chapter shows advances on focus and image quality assessment for a class of multiscale gigapixel cameras developed at Duke. Along the same line of work, we have explored methods for dynamic and adaptive addressing of focus via point spread function engineering. We demonstrate another form of temporal coding in the form of physical translation of the image plane from its nominal focal position. We demonstrate this technique's capability to generate arbitrary point spread functions.

  5. Intrinsic brain subsystem associated with dietary restraint, disinhibition and hunger: an fMRI study.

    PubMed

    Zhao, Jizheng; Li, Mintong; Zhang, Yi; Song, Huaibo; von Deneen, Karen M; Shi, Yinggang; Liu, Yijun; He, Dongjian

    2017-02-01

    Eating behaviors are closely related to body weight, and eating traits are depicted in three dimensions: dietary restraint, disinhibition, and hunger. The current study aims to explore whether these aspects of eating behaviors are related to intrinsic brain activation, and to further investigate the relationship between the brain activation relating to these eating traits and body weight, as well as the link between function connectivity (FC) of the correlative brain regions and body weight. Our results demonstrated positive associations between dietary restraint and baseline activation of the frontal and the temporal regions (i.e., food reward encoding) and the limbic regions (i.e., homeostatic control, including the hypothalamus). Disinhibition was positively associated with the activation of the frontal motivational system (i.e., OFC) and the premotor cortex. Hunger was positively related to extensive activations in the prefrontal, temporal, and limbic, as well as in the cerebellum. Within the brain regions relating to dietary restraint, weight status was negatively correlated with FC of the left middle temporal gyrus and left inferior temporal gyrus, and was positively associated with the FC of regions in the anterior temporal gyrus and fusiform visual cortex. Weight status was positively associated with the FC within regions in the prefrontal motor cortex and the right ACC serving inhibition, and was negatively related with the FC of regions in the frontal cortical-basal ganglia-thalamic circuits responding to hunger control. Our data depicted an association between intrinsic brain activation and dietary restraint, disinhibition, and hunger, and presented the links of their activations and FCs with weight status.

  6. Short desynchronization episodes prevail in synchronous dynamics of human brain rhythms.

    PubMed

    Ahn, Sungwoo; Rubchinsky, Leonid L

    2013-03-01

    Neural synchronization is believed to be critical for many brain functions. It frequently exhibits temporal variability, but it is not known if this variability has a specific temporal patterning. This study explores these synchronization/desynchronization patterns. We employ recently developed techniques to analyze the fine temporal structure of phase-locking to study the temporal patterning of synchrony of the human brain rhythms. We study neural oscillations recorded by electroencephalograms in α and β frequency bands in healthy human subjects at rest and during the execution of a task. While the phase-locking strength depends on many factors, dynamics of synchrony has a very specific temporal pattern: synchronous states are interrupted by frequent, but short desynchronization episodes. The probability for a desynchronization episode to occur decreased with its duration. The transition matrix between synchronized and desynchronized states has eigenvalues close to 0 and 1 where eigenvalue 1 has multiplicity 1, and therefore if the stationary distribution between these states is perturbed, the system converges back to the stationary distribution very fast. The qualitative similarity of this patterning across different subjects, brain states and electrode locations suggests that this may be a general type of dynamics for the brain. Earlier studies indicate that not all oscillatory networks have this kind of patterning of synchronization/desynchronization dynamics. Thus, the observed prevalence of short (but potentially frequent) desynchronization events (length of one cycle of oscillations) may have important functional implications for the brain. Numerous short desynchronizations (as opposed to infrequent, but long desynchronizations) may allow for a quick and efficient formation and break-up of functionally significant neuronal assemblies.

  7. Short desynchronization episodes prevail in synchronous dynamics of human brain rhythms

    NASA Astrophysics Data System (ADS)

    Ahn, Sungwoo; Rubchinsky, Leonid L.

    2013-03-01

    Neural synchronization is believed to be critical for many brain functions. It frequently exhibits temporal variability, but it is not known if this variability has a specific temporal patterning. This study explores these synchronization/desynchronization patterns. We employ recently developed techniques to analyze the fine temporal structure of phase-locking to study the temporal patterning of synchrony of the human brain rhythms. We study neural oscillations recorded by electroencephalograms in α and β frequency bands in healthy human subjects at rest and during the execution of a task. While the phase-locking strength depends on many factors, dynamics of synchrony has a very specific temporal pattern: synchronous states are interrupted by frequent, but short desynchronization episodes. The probability for a desynchronization episode to occur decreased with its duration. The transition matrix between synchronized and desynchronized states has eigenvalues close to 0 and 1 where eigenvalue 1 has multiplicity 1, and therefore if the stationary distribution between these states is perturbed, the system converges back to the stationary distribution very fast. The qualitative similarity of this patterning across different subjects, brain states and electrode locations suggests that this may be a general type of dynamics for the brain. Earlier studies indicate that not all oscillatory networks have this kind of patterning of synchronization/desynchronization dynamics. Thus, the observed prevalence of short (but potentially frequent) desynchronization events (length of one cycle of oscillations) may have important functional implications for the brain. Numerous short desynchronizations (as opposed to infrequent, but long desynchronizations) may allow for a quick and efficient formation and break-up of functionally significant neuronal assemblies.

  8. Defining traumatic brain injury in children and youth using international classification of diseases version 10 codes: a systematic review protocol.

    PubMed

    Chan, Vincy; Thurairajah, Pravheen; Colantonio, Angela

    2013-11-13

    Although healthcare administrative data are commonly used for traumatic brain injury research, there is currently no consensus or consistency on using the International Classification of Diseases version 10 codes to define traumatic brain injury among children and youth. This protocol is for a systematic review of the literature to explore the range of International Classification of Diseases version 10 codes that are used to define traumatic brain injury in this population. The databases MEDLINE, MEDLINE In-Process, Embase, PsychINFO, CINAHL, SPORTDiscus, and Cochrane Database of Systematic Reviews will be systematically searched. Grey literature will be searched using Grey Matters and Google. Reference lists of included articles will also be searched. Articles will be screened using predefined inclusion and exclusion criteria and all full-text articles that meet the predefined inclusion criteria will be included for analysis. The study selection process and reasons for exclusion at the full-text level will be presented using a PRISMA study flow diagram. Information on the data source of included studies, year and location of study, age of study population, range of incidence, and study purpose will be abstracted into a separate table and synthesized for analysis. All International Classification of Diseases version 10 codes will be listed in tables and the codes that are used to define concussion, acquired traumatic brain injury, head injury, or head trauma will be identified. The identification of the optimal International Classification of Diseases version 10 codes to define this population in administrative data is crucial, as it has implications for policy, resource allocation, planning of healthcare services, and prevention strategies. It also allows for comparisons across countries and studies. This protocol is for a review that identifies the range and most common diagnoses used to conduct surveillance for traumatic brain injury in children and youth. This is an important first step in reaching an appropriate definition using International Classification of Diseases version 10 codes and can inform future work on reaching consensus on the codes to define traumatic brain injury for this vulnerable population.

  9. Natural world physical, brain operational, and mind phenomenal space-time

    NASA Astrophysics Data System (ADS)

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.

    2010-06-01

    Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.

  10. Brain signal complexity rises with repetition suppression in visual learning.

    PubMed

    Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah

    2016-06-21

    Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual areas. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Open Source Tools for Temporally Controlled Rodent Behavior Suitable for Electrophysiology and Optogenetic Manipulations

    PubMed Central

    Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs

    2018-01-01

    Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments. PMID:29867383

  12. Predictive top-down integration of prior knowledge during speech perception.

    PubMed

    Sohoglu, Ediz; Peelle, Jonathan E; Carlyon, Robert P; Davis, Matthew H

    2012-06-20

    A striking feature of human perception is that our subjective experience depends not only on sensory information from the environment but also on our prior knowledge or expectations. The precise mechanisms by which sensory information and prior knowledge are integrated remain unclear, with longstanding disagreement concerning whether integration is strictly feedforward or whether higher-level knowledge influences sensory processing through feedback connections. Here we used concurrent EEG and MEG recordings to determine how sensory information and prior knowledge are integrated in the brain during speech perception. We manipulated listeners' prior knowledge of speech content by presenting matching, mismatching, or neutral written text before a degraded (noise-vocoded) spoken word. When speech conformed to prior knowledge, subjective perceptual clarity was enhanced. This enhancement in clarity was associated with a spatiotemporal profile of brain activity uniquely consistent with a feedback process: activity in the inferior frontal gyrus was modulated by prior knowledge before activity in lower-level sensory regions of the superior temporal gyrus. In parallel, we parametrically varied the level of speech degradation, and therefore the amount of sensory detail, so that changes in neural responses attributable to sensory information and prior knowledge could be directly compared. Although sensory detail and prior knowledge both enhanced speech clarity, they had an opposite influence on the evoked response in the superior temporal gyrus. We argue that these data are best explained within the framework of predictive coding in which sensory activity is compared with top-down predictions and only unexplained activity propagated through the cortical hierarchy.

  13. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula

    PubMed Central

    Giordano, Bruno L.; Kayser, Christoph; Rousselet, Guillaume A.; Gross, Joachim; Schyns, Philippe G.

    2016-01-01

    Abstract We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open‐source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541–1573, 2017. © 2016 Wiley Periodicals, Inc. PMID:27860095

  14. Fast bi-directional prediction selection in H.264/MPEG-4 AVC temporal scalable video coding.

    PubMed

    Lin, Hung-Chih; Hang, Hsueh-Ming; Peng, Wen-Hsiao

    2011-12-01

    In this paper, we propose a fast algorithm that efficiently selects the temporal prediction type for the dyadic hierarchical-B prediction structure in the H.264/MPEG-4 temporal scalable video coding (SVC). We make use of the strong correlations in prediction type inheritance to eliminate the superfluous computations for the bi-directional (BI) prediction in the finer partitions, 16×8/8×16/8×8 , by referring to the best temporal prediction type of 16 × 16. In addition, we carefully examine the relationship in motion bit-rate costs and distortions between the BI and the uni-directional temporal prediction types. As a result, we construct a set of adaptive thresholds to remove the unnecessary BI calculations. Moreover, for the block partitions smaller than 8 × 8, either the forward prediction (FW) or the backward prediction (BW) is skipped based upon the information of their 8 × 8 partitions. Hence, the proposed schemes can efficiently reduce the extensive computational burden in calculating the BI prediction. As compared to the JSVM 9.11 software, our method saves the encoding time from 48% to 67% for a large variety of test videos over a wide range of coding bit-rates and has only a minor coding performance loss. © 2011 IEEE

  15. A shared representation of order between encoding and recognition in visual short-term memory.

    PubMed

    Kalm, Kristjan; Norris, Dennis

    2017-07-15

    Many complex tasks require people to bind individual events into a sequence that can be held in short term memory (STM). For this purpose information about the order of the individual events in the sequence needs to be maintained in an active and accessible form in STM over a period of few seconds. Here we investigated how the temporal order information is shared between the presentation and response phases of an STM task. We trained a classification algorithm on the fMRI activity patterns from the presentation phase of the STM task to predict the order of the items during the subsequent recognition phase. While voxels in a number of brain regions represented positional information during either presentation and recognition phases, only voxels in the lateral prefrontal cortex (PFC) and the anterior temporal lobe (ATL) represented position consistently across task phases. A shared positional code in the ATL might reflect verbal recoding of visual sequences to facilitate the maintenance of order information over several seconds. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Learning of spatio-temporal codes in a coupled oscillator system.

    PubMed

    Orosz, Gábor; Ashwin, Peter; Townley, Stuart

    2009-07-01

    In this paper, we consider a learning strategy that allows one to transmit information between two coupled phase oscillator systems (called teaching and learning systems) via frequency adaptation. The dynamics of these systems can be modeled with reference to a number of partially synchronized cluster states and transitions between them. Forcing the teaching system by steady but spatially nonhomogeneous inputs produces cyclic sequences of transitions between the cluster states, that is, information about inputs is encoded via a "winnerless competition" process into spatio-temporal codes. The large variety of codes can be learned by the learning system that adapts its frequencies to those of the teaching system. We visualize the dynamics using "weighted order parameters (WOPs)" that are analogous to "local field potentials" in neural systems. Since spatio-temporal coding is a mechanism that appears in olfactory systems, the developed learning rules may help to extract information from these neural ensembles.

  17. Optimized temporal pattern of brain stimulation designed by computational evolution

    PubMed Central

    Brocker, David T.; Swan, Brandon D.; So, Rosa Q.; Turner, Dennis A.; Gross, Robert E.; Grill, Warren M.

    2017-01-01

    Brain stimulation is a promising therapy for several neurological disorders, including Parkinson’s disease. Stimulation parameters are selected empirically and are limited to the frequency and intensity of stimulation. We used the temporal pattern of stimulation as a novel parameter of deep brain stimulation to ameliorate symptoms in a parkinsonian animal model and in humans with Parkinson’s disease. We used model-based computational evolution to optimize the stimulation pattern. The optimized pattern produced symptom relief comparable to that from standard high-frequency stimulation (a constant rate of 130 or 185 Hz) and outperformed frequency-matched standard stimulation in the parkinsonian rat and in patients. Both optimized and standard stimulation suppressed abnormal oscillatory activity in the basal ganglia of rats and humans. The results illustrate the utility of model-based computational evolution to design temporal pattern of stimulation to increase the efficiency of brain stimulation in Parkinson’s disease, thereby requiring substantially less energy than traditional brain stimulation. PMID:28053151

  18. Regional and temporal variations in coding of hospital diagnoses referring to upper gastrointestinal and oesophageal bleeding in Germany.

    PubMed

    Langner, Ingo; Mikolajczyk, Rafael; Garbe, Edeltraut

    2011-08-17

    Health insurance claims data are increasingly used for health services research in Germany. Hospital diagnoses in these data are coded according to the International Classification of Diseases, German modification (ICD-10-GM). Due to the historical division into West and East Germany, different coding practices might persist in both former parts. Additionally, the introduction of Diagnosis Related Groups (DRGs) in Germany in 2003/2004 might have changed the coding. The aim of this study was to investigate regional and temporal variations in coding of hospitalisation diagnoses in Germany. We analysed hospitalisation diagnoses for oesophageal bleeding (OB) and upper gastrointestinal bleeding (UGIB) from the official German Hospital Statistics provided by the Federal Statistical Office. Bleeding diagnoses were classified as "specific" (origin of bleeding provided) or "unspecific" (origin of bleeding not provided) coding. We studied regional (former East versus West Germany) differences in incidence of hospitalisations with specific or unspecific coding for OB and UGIB and temporal variations between 2000 and 2005. For each year, incidence ratios of hospitalisations for former East versus West Germany were estimated with log-linear regression models adjusting for age, gender and population density. Significant differences in specific and unspecific coding between East and West Germany and over time were found for both, OB and UGIB hospitalisation diagnoses, respectively. For example in 2002, incidence ratios of hospitalisations for East versus West Germany were 1.24 (95% CI 1.16-1.32) for specific and 0.67 (95% CI 0.60-0.74) for unspecific OB diagnoses and 1.43 (95% CI 1.36-1.51) for specific and 0.83 (95% CI 0.80-0.87) for unspecific UGIB. Regional differences nearly disappeared and time trends were less marked when using combined specific and unspecific diagnoses of OB or UGIB, respectively. During the study period, there were substantial regional and temporal variations in the coding of OB and UGIB diagnoses in hospitalised patients. Possible explanations for the observed regional variations are different coding preferences, further influenced by changes in coding and reimbursement rules. Analysing groups of diagnoses including specific and unspecific codes reduces the influence of varying coding practices.

  19. Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps

    PubMed Central

    Pitzalis, Sabrina; Strappini, Francesca; De Gasperis, Marco; Bultrini, Alessandro; Di Russo, Francesco

    2012-01-01

    Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR). PMID:22558222

  20. Multimodal imaging of temporal processing in typical and atypical language development.

    PubMed

    Kovelman, Ioulia; Wagley, Neelima; Hay, Jessica S F; Ugolini, Margaret; Bowyer, Susan M; Lajiness-O'Neill, Renee; Brennan, Jonathan

    2015-03-01

    New approaches to understanding language and reading acquisition propose that the human brain's ability to synchronize its neural firing rate to syllable-length linguistic units may be important to children's ability to acquire human language. Yet, little evidence from brain imaging studies has been available to support this proposal. Here, we summarize three recent brain imaging (functional near-infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG)) studies from our laboratories with young English-speaking children (aged 6-12 years). In the first study (fNIRS), we used an auditory beat perception task to show that, in children, the left superior temporal gyrus (STG) responds preferentially to rhythmic beats at 1.5 Hz. In the second study (fMRI), we found correlations between children's amplitude rise-time sensitivity, phonological awareness, and brain activation in the left STG. In the third study (MEG), typically developing children outperformed children with autism spectrum disorder in extracting words from rhythmically rich foreign speech and displayed different brain activation during the learning phase. The overall findings suggest that the efficiency with which left temporal regions process slow temporal (rhythmic) information may be important for gains in language and reading proficiency. These findings carry implications for better understanding of the brain's mechanisms that support language and reading acquisition during both typical and atypical development. © 2014 New York Academy of Sciences.

  1. Contrasting Effects of Vocabulary Knowledge on Temporal and Parietal Brain Structure across Lifespan

    ERIC Educational Resources Information Center

    Richardson, Fiona M.; Thomas, Michael S. C.; Filippi, Roberto; Harth, Helen; Price, Cathy J.

    2010-01-01

    Using behavioral, structural, and functional imaging techniques, we demonstrate contrasting effects of vocabulary knowledge on temporal and parietal brain structure in 47 healthy volunteers who ranged in age from 7 to 73 years. In the left posterior supramarginal gyrus, vocabulary knowledge was positively correlated with gray matter density in…

  2. Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis

    PubMed Central

    Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming

    2013-01-01

    Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508

  3. Dynamic Alignment Models for Neural Coding

    PubMed Central

    Kollmorgen, Sepp; Hahnloser, Richard H. R.

    2014-01-01

    Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH). In MPHs, multiple stimulus-response relationships (e.g., receptive fields) are represented by different states or groups of states in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response probabilities. We show that some linear-nonlinear Poisson cascade (LNP) models are a special case of MPHs. We demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus response relationships that are subject to variable timing and involve diverse neural codes. PMID:24625448

  4. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    PubMed

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition.

    PubMed

    Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A

    2016-08-01

    The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Enhanced cortical connectivity in absolute pitch musicians: a model for local hyperconnectivity.

    PubMed

    Loui, Psyche; Li, H Charles; Hohmann, Anja; Schlaug, Gottfried

    2011-04-01

    Connectivity in the human brain has received increased scientific interest in recent years. Although connection disorders can affect perception, production, learning, and memory, few studies have associated brain connectivity with graded variations in human behavior, especially among normal individuals. One group of normal individuals who possess unique characteristics in both behavior and brain structure is absolute pitch (AP) musicians, who can name the appropriate pitch class of any given tone without a reference. Using diffusion tensor imaging and tractography, we observed hyperconnectivity in bilateral superior temporal lobe structures linked to AP possession. Furthermore, volume of tracts connecting left superior temporal gyrus to left middle temporal gyrus predicted AP performance. These findings extend previous reports of exaggerated temporal lobe asymmetry, may explain the higher incidence of AP in special populations, and may provide a model for understanding the heightened connectivity that is thought to underlie savant skills and cases of exceptional creativity.

  7. Enhanced Cortical Connectivity in Absolute Pitch Musicians: A Model for Local Hyperconnectivity

    PubMed Central

    Loui, Psyche; Charles Li, Hui C.; Hohmann, Anja; Schlaug, Gottfried

    2010-01-01

    Connectivity in the human brain has received increased scientific interest in recent years. Although connection disorders can affect perception, production, learning, and memory, few studies have associated brain connectivity with graded variations in human behavior, especially among normal individuals. One group of normal individuals who possess unique characteristics in both behavior and brain structure is absolute pitch (AP) musicians, who can name the appropriate pitch class of any given tone without a reference. Using diffusion tensor imaging and tractography, we observed hyperconnectivity in bilateral superior temporal lobe structures linked to AP possession. Furthermore, volume of tracts connecting left superior temporal gyrus to left middle temporal gyrus predicted AP performance. These findings extend previous reports of exaggerated temporal lobe asymmetry, may explain the higher incidence of AP in developmental disorders, and may provide a model for understanding the heightened connectivity that is thought to underlie savant skills and cases of exceptional creativity. PMID:20515408

  8. Conjugating time and frequency: hemispheric specialization, acoustic uncertainty, and the mustached bat

    PubMed Central

    Washington, Stuart D.; Tillinghast, John S.

    2015-01-01

    A prominent hypothesis of hemispheric specialization for human speech and music states that the left and right auditory cortices (ACs) are respectively specialized for precise calculation of two canonically-conjugate variables: time and frequency. This spectral-temporal asymmetry does not account for sex, brain-volume, or handedness, and is in opposition to closed-system hypotheses that restrict this asymmetry to humans. Mustached bats have smaller brains, but greater ethological pressures to develop such a spectral-temporal asymmetry, than humans. Using the Heisenberg-Gabor Limit (i.e., the mathematical basis of the spectral-temporal asymmetry) to frame mustached bat literature, we show that recent findings in bat AC (1) support the notion that hemispheric specialization for speech and music is based on hemispheric differences in temporal and spectral resolution, (2) discredit closed-system, handedness, and brain-volume theories, (3) underscore the importance of sex differences, and (4) provide new avenues for phonological research. PMID:25926767

  9. Conjugating time and frequency: hemispheric specialization, acoustic uncertainty, and the mustached bat.

    PubMed

    Washington, Stuart D; Tillinghast, John S

    2015-01-01

    A prominent hypothesis of hemispheric specialization for human speech and music states that the left and right auditory cortices (ACs) are respectively specialized for precise calculation of two canonically-conjugate variables: time and frequency. This spectral-temporal asymmetry does not account for sex, brain-volume, or handedness, and is in opposition to closed-system hypotheses that restrict this asymmetry to humans. Mustached bats have smaller brains, but greater ethological pressures to develop such a spectral-temporal asymmetry, than humans. Using the Heisenberg-Gabor Limit (i.e., the mathematical basis of the spectral-temporal asymmetry) to frame mustached bat literature, we show that recent findings in bat AC (1) support the notion that hemispheric specialization for speech and music is based on hemispheric differences in temporal and spectral resolution, (2) discredit closed-system, handedness, and brain-volume theories, (3) underscore the importance of sex differences, and (4) provide new avenues for phonological research.

  10. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  11. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.

    PubMed

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-06-10

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.

  12. Brain mechanisms underlying human communication.

    PubMed

    Noordzij, Matthijs L; Newman-Norlund, Sarah E; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  13. Brain Mechanisms Underlying Human Communication

    PubMed Central

    Noordzij, Matthijs L.; Newman-Norlund, Sarah E.; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C.; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities. PMID:19668699

  14. Magnetoencephalographic responses in relation to temporal and spatial factors of sound fields

    NASA Astrophysics Data System (ADS)

    Soeta, Yoshiharu; Nakagawa, Seiji; Tonoike, Mitsuo; Hotehama, Takuya; Ando, Yoichi

    2004-05-01

    To establish the guidelines based on brain functions for designing sound fields such as a concert hall and an opera house, the activities of the human brain to the temporal and spatial factors of the sound field have been investigated using magnetoencephalography (MEG). MEG is a noninvasive technique for investigating neuronal activity in human brain. First of all, the auditory evoked responses in change of the magnitude of the interaural cross-correlation (IACC) were analyzed. IACC is one of the spatial factors, which has great influence on the degree of subjective preference and diffuseness for sound fields. The results indicated that the peak amplitude of N1m, which was found over the left and right temporal lobes around 100 ms after the stimulus onset, decreased with increasing the IACC. Second, the responses corresponding to subjective preference for one of the typical temporal factors, i.e., the initial delay gap between a direct sound and the first reflection, were investigated. The results showed that the effective duration of the autocorrelation function of MEG between 8 and 13 Hz became longer during presentations of a preferred stimulus. These results indicate that the brain may be relaxed, and repeat a similar temporal rhythm under preferred sound fields.

  15. Region-specific reduction in brain volume in young adults with perinatal hypoxic-ischaemic encephalopathy.

    PubMed

    Bregant, Tina; Rados, Milan; Vasung, Lana; Derganc, Metka; Evans, Alan C; Neubauer, David; Kostovic, Ivica

    2013-11-01

    A severe form of perinatal hypoxic-ischaemic encephalopathy (HIE) carries a high risk of perinatal death and severe neurological sequelae while in mild HIE only discrete cognitive disorders may occur. To compare total brain volumes and region-specific cortical measurements between young adults with mild-moderate perinatal HIE and a healthy control group of the same age. MR imaging was performed in a cohort of 14 young adults (9 males, 5 females) with a history of mild or moderate perinatal HIE. The control group consisted of healthy participants, matched with HIE group by age and gender. Volumetric analysis was done after the processing of MR images using a fully automated CIVET pipeline. We measured gyrification indexes, total brain volume, volume of grey and white matter, and of cerebrospinal fluid. We also measured volume, thickness and area of the cerebral cortex in the parietal, occipital, frontal, and temporal lobe, and of the isthmus cinguli, parahippocampal and cingulated gyrus, and insula. The HIE patient group showed smaller absolute volumetric data. Statistically significant (p < 0.05) reductions of gyrification index in the right hemisphere, of cortical areas in the right temporal lobe and parahippocampal gyrus, of cortical volumes in the right temporal lobe and of cortical thickness in the right isthmus of the cingulate gyrus were found. Comparison between the healthy group and the HIE group of the same gender showed statistically significant changes in the male HIE patients, where a significant reduction was found in whole brain volume; left parietal, bilateral temporal, and right parahippocampal gyrus cortical areas; and bilateral temporal lobe cortical volume. Our analysis of total brain volumes and region-specific corticometric parameters suggests that mild-moderate forms of perinatal HIE lead to reductions in whole brain volumes. In the study reductions were most pronounced in temporal lobe and parahippocampal gyrus. Copyright © 2013 European Paediatric Neurology Society. All rights reserved.

  16. Parametric Coding of the Size and Clutter of Natural Scenes in the Human Brain

    PubMed Central

    Park, Soojin; Konkle, Talia; Oliva, Aude

    2015-01-01

    Estimating the size of a space and its degree of clutter are effortless and ubiquitous tasks of moving agents in a natural environment. Here, we examine how regions along the occipital–temporal lobe respond to pictures of indoor real-world scenes that parametrically vary in their physical “size” (the spatial extent of a space bounded by walls) and functional “clutter” (the organization and quantity of objects that fill up the space). Using a linear regression model on multivoxel pattern activity across regions of interest, we find evidence that both properties of size and clutter are represented in the patterns of parahippocampal cortex, while the retrosplenial cortex activity patterns are predominantly sensitive to the size of a space, rather than the degree of clutter. Parametric whole-brain analyses confirmed these results. Importantly, this size and clutter information was represented in a way that generalized across different semantic categories. These data provide support for a property-based representation of spaces, distributed across multiple scene-selective regions of the cerebral cortex. PMID:24436318

  17. A paradoxical improvement of misreaching in optic ataxia: new evidence for two separate neural systems for visual localization.

    PubMed

    Milner, A D; Paulignan, Y; Dijkerman, H C; Michel, F; Jeannerod, M

    1999-11-07

    We tested a patient (A. T.) with bilateral brain damage to the parietal lobes, whose resulting 'optic ataxia' causes her to make large pointing errors when asked to locate single light emitting diodes presented in her visual field. We report here that, unlike normal individuals, A. T.'s pointing accuracy improved when she was required to wait for 5 s before responding. This counter-intuitive result is interpreted as reflecting the very brief time-scale on which visuomotor control systems in the superior parietal lobe operate. When an immediate response was required, A. T.'s damaged visuomotor system caused her to make large errors; but when a delay was required, a different, more flexible, visuospatial coding system--presumably relatively intact in her brain--came into play, resulting in much more accurate responses. The data are consistent with a dual processing theory whereby motor responses made directly to visual stimuli are guided by a dedicated system in the superior parietal and premotor cortices, while responses to remembered stimuli depend on perceptual processing and may thus crucially involve processing within the temporal neocortex.

  18. Brain systems for assessing the affective value of faces

    PubMed Central

    Said, Christopher P.; Haxby, James V.; Todorov, Alexander

    2011-01-01

    Cognitive neuroscience research on facial expression recognition and face evaluation has proliferated over the past 15 years. Nevertheless, large questions remain unanswered. In this overview, we discuss the current understanding in the field, and describe what is known and what remains unknown. In §2, we describe three types of behavioural evidence that the perception of traits in neutral faces is related to the perception of facial expressions, and may rely on the same mechanisms. In §3, we discuss cortical systems for the perception of facial expressions, and argue for a partial segregation of function in the superior temporal sulcus and the fusiform gyrus. In §4, we describe the current understanding of how the brain responds to emotionally neutral faces. To resolve some of the inconsistencies in the literature, we perform a large group analysis across three different studies, and argue that one parsimonious explanation of prior findings is that faces are coded in terms of their typicality. In §5, we discuss how these two lines of research—perception of emotional expressions and face evaluation—could be integrated into a common, cognitive neuroscience framework. PMID:21536552

  19. Common Neural Representations for Visually Guided Reorientation and Spatial Imagery

    PubMed Central

    Vass, Lindsay K.; Epstein, Russell A.

    2017-01-01

    Abstract Spatial knowledge about an environment can be cued from memory by perception of a visual scene during active navigation or by imagination of the relationships between nonvisible landmarks, such as when providing directions. It is not known whether these different ways of accessing spatial knowledge elicit the same representations in the brain. To address this issue, we scanned participants with fMRI, while they performed a judgment of relative direction (JRD) task that required them to retrieve real-world spatial relationships in response to either pictorial or verbal cues. Multivoxel pattern analyses revealed several brain regions that exhibited representations that were independent of the cues to access spatial memory. Specifically, entorhinal cortex in the medial temporal lobe and the retrosplenial complex (RSC) in the medial parietal lobe coded for the heading assumed on a particular trial, whereas the parahippocampal place area (PPA) contained information about the starting location of the JRD. These results demonstrate the existence of spatial representations in RSC, ERC, and PPA that are common to visually guided navigation and spatial imagery. PMID:26759482

  20. Evolvix BEST Names for semantic reproducibility across code2brain interfaces.

    PubMed

    Loewe, Laurence; Scheuer, Katherine S; Keel, Seth A; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G; Moog, Cecilia L; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist-Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda-Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L; Freiberg, Erika; Waters, Noah P; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha

    2017-01-01

    Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general-purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long-term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder-brains to reader-brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  1. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning.

    PubMed

    Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N

    2016-01-04

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.

  2. Differential temporal control of Foxa.a and Zic-r.b specifies brain versus notochord fate in the ascidian embryo.

    PubMed

    Ikeda, Tatsuro; Satou, Yutaka

    2017-01-01

    In embryos of an invertebrate chordate, Ciona intestinalis, two transcription factors, Foxa.a and Zic-r.b, are required for specification of the brain and the notochord, which are derived from distinct cell lineages. In the brain lineage, Foxa.a and Zic-r.b are expressed with no temporal overlap. In the notochord lineage, Foxa.a and Zic-r.b are expressed simultaneously. In the present study, we found that the temporally non-overlapping expression of Foxa.a and Zic-r.b in the brain lineage was regulated by three repressors: Prdm1-r.a (formerly called BZ1), Prdm1-r.b (BZ2) and Hes.a. In morphant embryos of these three repressor genes, Foxa.a expression was not terminated at the normal time, and Zic-r.b was precociously expressed. Consequently, Foxa.a and Zic-r.b were expressed simultaneously, which led to ectopic activation of Brachyury and its downstream pathways for notochord differentiation. Thus, temporal controls by transcriptional repressors are essential for specification of the two distinct fates of brain and notochord by Foxa.a and Zic-r.b Such a mechanism might enable the repeated use of a limited repertoire of transcription factors in developmental gene regulatory networks. © 2017. Published by The Company of Biologists Ltd.

  3. Modulation of electric brain responses evoked by pitch deviants through transcranial direct current stimulation.

    PubMed

    Royal, Isabelle; Zendel, Benjamin Rich; Desjardins, Marie-Ève; Robitaille, Nicolas; Peretz, Isabelle

    2018-01-31

    Congenital amusia is a neurodevelopmental disorder, characterized by a difficulty detecting pitch deviation that is related to abnormal electrical brain responses. Abnormalities found along the right fronto-temporal pathway between the inferior frontal gyrus (IFG) and the auditory cortex (AC) are the likely neural mechanism responsible for amusia. To investigate the causal role of these regions during the detection of pitch deviants, we applied cathodal (inhibitory) transcranial direct current stimulation (tDCS) over right frontal and right temporal regions during separate testing sessions. We recorded participants' electrical brain activity (EEG) before and after tDCS stimulation while they performed a pitch change detection task. Relative to a sham condition, there was a decrease in P3 amplitude after cathodal stimulation over both frontal and temporal regions compared to pre-stimulation baseline. This decrease was associated with small pitch deviations (6.25 cents), but not large pitch deviations (200 cents). Overall, this demonstrates that using tDCS to disrupt regions around the IFG and AC can induce temporary changes in evoked brain activity when processing pitch deviants. These electrophysiological changes are similar to those observed in amusia and provide causal support for the connection between P3 and fronto-temporal brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Insights into Intrinsic Brain Networks based on Graph Theory and PET in right- compared to left-sided Temporal Lobe Epilepsy.

    PubMed

    Vanicek, Thomas; Hahn, Andreas; Traub-Weidinger, Tatjana; Hilger, Eva; Spies, Marie; Wadsak, Wolfgang; Lanzenberger, Rupert; Pataraia, Ekaterina; Asenbaum-Nan, Susanne

    2016-06-28

    The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [(18)F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [(18)F]FDG PET uptake correlations, in right-sided (RTLE; n = 30) and left-sided TLE (LTLE; n = 32) with healthy controls (HC; n = 31) using graph theory based network analysis. Comparing LTLE and RTLE and patient groups separately to HC, we observed higher lobar connectivity weights in RTLE compared to LTLE for connections of the temporal and the parietal lobe of the contralateral hemisphere (CH). Moreover, especially in RTLE compared to LTLE higher local efficiency were found in the temporal cortices and other brain regions of the CH. The results of this investigation implicate altered metabolic networks in patients with TLE specific to the lateralization of seizure focus, and describe compensatory mechanisms especially in the CH of patients with RTLE. We propose that graph theoretical analysis of metabolic connectivity using [(18)F]FDG-PET offers an important additional modality to explore brain networks.

  5. Neural coding of sound envelope in reverberant environments.

    PubMed

    Slama, Michaël C C; Delgutte, Bertrand

    2015-03-11

    Speech reception depends critically on temporal modulations in the amplitude envelope of the speech signal. Reverberation encountered in everyday environments can substantially attenuate these modulations. To assess the effect of reverberation on the neural coding of amplitude envelope, we recorded from single units in the inferior colliculus (IC) of unanesthetized rabbit using sinusoidally amplitude modulated (AM) broadband noise stimuli presented in simulated anechoic and reverberant environments. Although reverberation degraded both rate and temporal coding of AM in IC neurons, in most neurons, the degradation in temporal coding was smaller than the AM attenuation in the stimulus. This compensation could largely be accounted for by the compressive shape of the modulation input-output function (MIOF), which describes the nonlinear transformation of modulation depth from acoustic stimuli into neural responses. Additionally, in a subset of neurons, the temporal coding of AM was better for reverberant stimuli than for anechoic stimuli having the same modulation depth at the ear. Using hybrid anechoic stimuli that selectively possess certain properties of reverberant sounds, we show that this reverberant advantage is not caused by envelope distortion, static interaural decorrelation, or spectral coloration. Overall, our results suggest that the auditory system may possess dual mechanisms that make the coding of amplitude envelope relatively robust in reverberation: one general mechanism operating for all stimuli with small modulation depths, and another mechanism dependent on very specific properties of reverberant stimuli, possibly the periodic fluctuations in interaural correlation at the modulation frequency. Copyright © 2015 the authors 0270-6474/15/354452-17$15.00/0.

  6. Principles of Temporal Processing Across the Cortical Hierarchy.

    PubMed

    Himberger, Kevin D; Chien, Hsiang-Yun; Honey, Christopher J

    2018-05-02

    The world is richly structured on multiple spatiotemporal scales. In order to represent spatial structure, many machine-learning models repeat a set of basic operations at each layer of a hierarchical architecture. These iterated spatial operations - including pooling, normalization and pattern completion - enable these systems to recognize and predict spatial structure, while robust to changes in the spatial scale, contrast and noisiness of the input signal. Because our brains also process temporal information that is rich and occurs across multiple time scales, might the brain employ an analogous set of operations for temporal information processing? Here we define a candidate set of temporal operations, and we review evidence that they are implemented in the mammalian cerebral cortex in a hierarchical manner. We conclude that multiple consecutive stages of cortical processing can be understood to perform temporal pooling, temporal normalization and temporal pattern completion. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Efficient temporal and interlayer parameter prediction for weighted prediction in scalable high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Tsang, Sik-Ho; Chan, Yui-Lam; Siu, Wan-Chi

    2017-01-01

    Weighted prediction (WP) is an efficient video coding tool that was introduced since the establishment of the H.264/AVC video coding standard, for compensating the temporal illumination change in motion estimation and compensation. WP parameters, including a multiplicative weight and an additive offset for each reference frame, are required to be estimated and transmitted to the decoder by slice header. These parameters cause extra bits in the coded video bitstream. High efficiency video coding (HEVC) provides WP parameter prediction to reduce the overhead. Therefore, WP parameter prediction is crucial to research works or applications, which are related to WP. Prior art has been suggested to further improve the WP parameter prediction by implicit prediction of image characteristics and derivation of parameters. By exploiting both temporal and interlayer redundancies, we propose three WP parameter prediction algorithms, enhanced implicit WP parameter, enhanced direct WP parameter derivation, and interlayer WP parameter, to further improve the coding efficiency of HEVC. Results show that our proposed algorithms can achieve up to 5.83% and 5.23% bitrate reduction compared to the conventional scalable HEVC in the base layer for SNR scalability and 2× spatial scalability, respectively.

  8. Selective attention to temporal features on nested time scales.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2015-02-01

    Meaningful auditory stimuli such as speech and music often vary simultaneously along multiple time scales. Thus, listeners must selectively attend to, and selectively ignore, separate but intertwined temporal features. The current study aimed to identify and characterize the neural network specifically involved in this feature-selective attention to time. We used a novel paradigm where listeners judged either the duration or modulation rate of auditory stimuli, and in which the stimulation, working memory demands, response requirements, and task difficulty were held constant. A first analysis identified all brain regions where individual brain activation patterns were correlated with individual behavioral performance patterns, which thus supported temporal judgments generically. A second analysis then isolated those brain regions that specifically regulated selective attention to temporal features: Neural responses in a bilateral fronto-parietal network including insular cortex and basal ganglia decreased with degree of change of the attended temporal feature. Critically, response patterns in these regions were inverted when the task required selectively ignoring this feature. The results demonstrate how the neural analysis of complex acoustic stimuli with multiple temporal features depends on a fronto-parietal network that simultaneously regulates the selective gain for attended and ignored temporal features. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. The grouping benefit in extinction: overcoming the temporal order bias.

    PubMed

    Rappaport, Sarah J; Riddoch, M Jane; Humphreys, Glyn W

    2011-01-01

    Grouping between contra- and ipsilesional stimuli can alleviate the lateralised bias in spatial extinction (Gilchrist, Humphreys, & Riddoch, 1996; Ward, Goodrich, & Driver, 1994). In the current study we demonstrate for the first time that perceptual grouping can also modulate the spatio/temporal biases in temporal order judgements affecting the temporal as well as the spatial coding of stimuli. Perceived temporal order was assessed by presenting two coloured letter stimuli in either hemi-field temporally segregated by a range of onset-intervals. Items were either identical (grouping condition) or differed in both shape and colour (non-grouping condition). Observers were required to indicate which item appeared second. Patients with visual extinction had a bias against the contralesional item appearing first, but this was modulated by perceptual grouping. When both items were identical in shape and colour the temporal bias against reporting the contralesional item was reduced. The results suggest that grouping can alter the coding of temporal relations between stimuli. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Iconic memory and parietofrontal network: fMRI study using temporal integration.

    PubMed

    Saneyoshi, Ayako; Niimi, Ryosuke; Suetsugu, Tomoko; Kaminaga, Tatsuro; Yokosawa, Kazuhiko

    2011-08-03

    We investigated the neural basis of iconic memory using functional magnetic resonance imaging. The parietofrontal network of selective attention is reportedly relevant to readout from iconic memory. We adopted a temporal integration task that requires iconic memory but not selective attention. The results showed that the task activated the parietofrontal network, confirming that the network is involved in readout from iconic memory. We further tested a condition in which temporal integration was performed by visual short-term memory but not by iconic memory. However, no brain region revealed higher activation for temporal integration by iconic memory than for temporal integration by visual short-term memory. This result suggested that there is no localized brain region specialized for iconic memory per se.

  11. Long-term variability of importance of brain regions in evolving epileptic brain networks

    NASA Astrophysics Data System (ADS)

    Geier, Christian; Lehnertz, Klaus

    2017-04-01

    We investigate the temporal and spatial variability of the importance of brain regions in evolving epileptic brain networks. We construct these networks from multiday, multichannel electroencephalographic data recorded from 17 epilepsy patients and use centrality indices to assess the importance of brain regions. Time-resolved indications of highest importance fluctuate over time to a greater or lesser extent, however, with some periodic temporal structure that can mostly be attributed to phenomena unrelated to the disease. In contrast, relevant aspects of the epileptic process contribute only marginally. Indications of highest importance also exhibit pronounced alternations between various brain regions that are of relevance for studies aiming at an improved understanding of the epileptic process with graph-theoretical approaches. Nonetheless, these findings may guide new developments for individualized diagnosis, treatment, and control.

  12. Assessing hemispheric specialization for processing arithmetic skills in adults: A functional transcranial doppler ultrasonography (fTCD) study.

    PubMed

    Connaughton, Veronica M; Amiruddin, Azhani; Clunies-Ross, Karen L; French, Noel; Fox, Allison M

    2017-05-01

    A major model of the cerebral circuits that underpin arithmetic calculation is the triple-code model of numerical processing. This model proposes that the lateralization of mathematical operations is organized across three circuits: a left-hemispheric dominant verbal code; a bilateral magnitude representation of numbers and a bilateral Arabic number code. This study simultaneously measured the blood flow of both middle cerebral arteries using functional transcranial Doppler ultrasonography to assess hemispheric specialization during the performance of both language and arithmetic tasks. The propositions of the triple-code model were assessed in a non-clinical adult group by measuring cerebral blood flow during the performance of multiplication and subtraction problems. Participants were 17 adults aged between 18-27 years. We obtained laterality indices for each type of mathematical operation and compared these in participants with left-hemispheric language dominance. It was hypothesized that blood flow would lateralize to the left hemisphere during the performance of multiplication operations, but would not lateralize during the performance of subtraction operations. Hemispheric blood flow was significantly left lateralized during the multiplication task, but was not lateralized during the subtraction task. Compared to high spatial resolution neuroimaging techniques previously used to measure cerebral lateralization, functional transcranial Doppler ultrasonography is a cost-effective measure that provides a superior temporal representation of arithmetic cognition. These results provide support for the triple-code model of arithmetic processing and offer complementary evidence that multiplication operations are processed differently in the adult brain compared to subtraction operations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Déjà-vu in temporal lobe epilepsy: metabolic pattern of cortical involvement in patients with normal brain MRI.

    PubMed

    Guedj, Eric; Aubert, Sandrine; McGonigal, Aileen; Mundler, Olivier; Bartolomei, Fabrice

    2010-06-01

    To contribute to the identification of brain regions involved in déjà-vu, we studied the metabolic pattern of cortical involvement in patients with seizures of temporal lobe origin presenting with or without déjà-vu. Using voxel-based analysis of 18FDG-PET brain scans, we compared glucose metabolic rate of 8 patients with déjà-vu, 8 patients without déjà-vu, and 20 age-matched healthy subjects. Patients were selected after comprehensive non-invasive presurgical evaluation, including normal brain MRI and surface electroclinical features compatible with unilateral temporal lobe epilepsy (TLE). Patients with and without déjà-vu did not differ in terms of age, gender, epilepsy lateralization, epilepsy onset, epilepsy duration, and other subjective ictal manifestations. TLE patients with déjà-vu exhibited ipsilateral hypometabolism of superior temporal gyrus and of parahippocampal region, in the vicinity of perirhinal/entorhinal cortex, in comparison either to healthy subjects or to TLE patients without déjà-vu (p<0.05 FDR-corrected). By contrast, no difference was found between patient subgroups for hypometabolism of hippocampus and amygdala. At an individual-level, in comparison to healthy subjects, hypometabolism of both parahippocampal region and superior temporal gyrus was present in 7/8 patients with déjà-vu. Hippocampal metabolism was spared in 3 of these 7 patients. These findings argue for metabolic dysfunction of a medial-lateral temporal network in patients with déjà-vu and normal brain MRI. Within the medial temporal lobe, specific involvement of the parahippocampal region, often in the absence of hippocampal impairment, suggests that the feeling of familiarity during seizures greatly depends on alteration of the recognition memory system. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest

    PubMed Central

    Mlynash, M.; Campbell, D.M.; Leproust, E.M.; Fischbein, N.J.; Bammer, R.; Eyngorn, I.; Hsia, A.W.; Moseley, M.; Wijman, C.A.C.

    2010-01-01

    Background and Purpose Diffusion-weighted MRI (DWI) of the brain is a promising technique to help predict functional outcome in comatose survivors of cardiac arrest. We aimed to evaluate prospectively the temporal-spatial profile of brain apparent diffusion coefficient (ADC) changes in comatose survivors during the first 8 days after cardiac arrest. Methods ADC values were measured by two independent and blinded investigators in predefined brain regions in 18 good and 15 poor outcome patients with 38 brain MRIs, and compared with 14 normal controls. The same brain regions were also assessed qualitatively by two other independent and blinded investigators. Results In poor outcome patients, cortical structures, in particular the occipital and temporal lobes, and the putamen exhibited the most profound ADC reductions, which were noted as early as 1.5 days and reached nadir between 3 to 5 days after the arrest. Conversely, when compared to normal controls, good outcome patients exhibited increased diffusivity, in particular in the hippocampus, temporal and occipital lobes, and corona radiata. By the qualitative MRI readings, one or more cortical gray matter structures were read as moderately-to-severely abnormal in all poor outcome patients imaged beyond 54 hours after the arrest, but not in the three patients imaged earlier. Conclusions Brain DWI changes in comatose post-cardiac arrest survivors in the first week after the arrest are region- and time-dependent and differ between good and poor outcome patients. With the increasing use of MRI in this context, it is important to be aware of these relationships. PMID:20595666

  15. Joint Estimation of Effective Brain Wave Activation Modes Using EEG/MEG Sensor Arrays and Multimodal MRI Volumes.

    PubMed

    Galinsky, Vitaly L; Martinez, Antigona; Paulus, Martin P; Frank, Lawrence R

    2018-04-13

    In this letter, we present a new method for integration of sensor-based multifrequency bands of electroencephalography and magnetoencephalography data sets into a voxel-based structural-temporal magnetic resonance imaging analysis by utilizing the general joint estimation using entropy regularization (JESTER) framework. This allows enhancement of the spatial-temporal localization of brain function and the ability to relate it to morphological features and structural connectivity. This method has broad implications for both basic neuroscience research and clinical neuroscience focused on identifying disease-relevant biomarkers by enhancing the spatial-temporal resolution of the estimates derived from current neuroimaging modalities, thereby providing a better picture of the normal human brain in basic neuroimaging experiments and variations associated with disease states.

  16. A Child's Brain. Part II. The Human Brain: How Every Single Cell is Organized for Action.

    ERIC Educational Resources Information Center

    Sylwester, Robert

    1982-01-01

    The second in a series of three articles concerning children's brain development focuses on the organization of the brain. Aspects of the brain's vertical, neocortex, and temporal organization are discussed and references for further reading are provided. (CJ)

  17. Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex.

    PubMed

    Albouy, Philippe; Mattout, Jérémie; Bouet, Romain; Maby, Emmanuel; Sanchez, Gaëtan; Aguera, Pierre-Emmanuel; Daligault, Sébastien; Delpuech, Claude; Bertrand, Olivier; Caclin, Anne; Tillmann, Barbara

    2013-05-01

    Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a melodic contour task and an easier transposition task); they had to indicate whether sequences of six tones (presented in pairs) were the same or different. Behavioural data indicated that in comparison with control participants, amusics' short-term memory was impaired for the melodic contour task, but not for the transposition task. The major finding was that pitch processing and short-term memory deficits can be traced down to amusics' early brain responses during encoding of the melodic information. Temporal and frontal generators of the N100m evoked by each note of the melody were abnormally recruited in the amusic brain. Dynamic causal modelling of the N100m further revealed decreased intrinsic connectivity in both auditory cortices, increased lateral connectivity between auditory cortices as well as a decreased right fronto-temporal backward connectivity in amusics relative to control subjects. Abnormal functioning of this fronto-temporal network was also shown during the retention interval and the retrieval of melodic information. In particular, induced gamma oscillations in right frontal areas were decreased in amusics during the retention interval. Using voxel-based morphometry, we confirmed morphological brain anomalies in terms of white and grey matter concentration in the right inferior frontal gyrus and the right superior temporal gyrus in the amusic brain. The convergence between functional and structural brain differences strengthens the hypothesis of abnormalities in the fronto-temporal pathway of the amusic brain. Our data provide first evidence of altered functioning of the auditory cortices during pitch perception and memory in congenital amusia. They further support the hypothesis that in neurodevelopmental disorders impacting high-level functions (here musical abilities), abnormalities in cerebral processing can be observed in early brain responses.

  18. A Method for Automatic Extracting Intracranial Region in MR Brain Image

    NASA Astrophysics Data System (ADS)

    Kurokawa, Keiji; Miura, Shin; Nishida, Makoto; Kageyama, Yoichi; Namura, Ikuro

    It is well known that temporal lobe in MR brain image is in use for estimating the grade of Alzheimer-type dementia. It is difficult to use only region of temporal lobe for estimating the grade of Alzheimer-type dementia. From the standpoint for supporting the medical specialists, this paper proposes a data processing approach on the automatic extraction of the intracranial region from the MR brain image. The method is able to eliminate the cranium region with the laplacian histogram method and the brainstem with the feature points which are related to the observations given by a medical specialist. In order to examine the usefulness of the proposed approach, the percentage of the temporal lobe in the intracranial region was calculated. As a result, the percentage of temporal lobe in the intracranial region on the process of the grade was in agreement with the visual sense standards of temporal lobe atrophy given by the medical specialist. It became clear that intracranial region extracted by the proposed method was good for estimating the grade of Alzheimer-type dementia.

  19. Dynamic Repertoire of Intrinsic Brain States Is Reduced in Propofol-Induced Unconsciousness

    PubMed Central

    Liu, Xiping; Pillay, Siveshigan

    2015-01-01

    Abstract The richness of conscious experience is thought to scale with the size of the repertoire of causal brain states, and it may be diminished in anesthesia. We estimated the state repertoire from dynamic analysis of intrinsic functional brain networks in conscious sedated and unconscious anesthetized rats. Functional resonance images were obtained from 30-min whole-brain resting-state blood oxygen level-dependent (BOLD) signals at propofol infusion rates of 20 and 40 mg/kg/h, intravenously. Dynamic brain networks were defined at the voxel level by sliding window analysis of regional homogeneity (ReHo) or coincident threshold crossings (CTC) of the BOLD signal acquired in nine sagittal slices. The state repertoire was characterized by the temporal variance of the number of voxels with significant ReHo or positive CTC. From low to high propofol dose, the temporal variances of ReHo and CTC were reduced by 78%±20% and 76%±20%, respectively. Both baseline and propofol-induced reduction of CTC temporal variance increased from lateral to medial position. Group analysis showed a 20% reduction in the number of unique states at the higher propofol dose. Analysis of temporal variance in 12 anatomically defined regions of interest predicted that the largest changes occurred in visual cortex, parietal cortex, and caudate-putamen. The results suggest that the repertoire of large-scale brain states derived from the spatiotemporal dynamics of intrinsic networks is substantially reduced at an anesthetic dose associated with loss of consciousness. PMID:24702200

  20. Impact of playing American professional football on long-term brain function.

    PubMed

    Amen, Daniel G; Newberg, Andrew; Thatcher, Robert; Jin, Yi; Wu, Joseph; Keator, David; Willeumier, Kristen

    2011-01-01

    The authors recruited 100 active and former National Football League players, representing 27 teams and all positions. Players underwent a clinical history, brain SPECT imaging, qEEG, and multiple neuropsychological measures, including MicroCog. Relative to a healthy-comparison group, players showed global decreased perfusion, especially in the prefrontal, temporal, parietal, and occipital lobes, and cerebellar regions. Quantitative EEG findings were consistent, showing elevated slow waves in the frontal and temporal regions. Significant decreases from normal values were found in most neuropsychological tests. This is the first large-scale brain-imaging study to demonstrate significant differences consistent with a chronic brain trauma pattern in professional football players.

  1. Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults

    PubMed Central

    Arani, Arvin; Murphy, Matthew C; Glaser, Kevin J; Manduca, Armando; Lake, David S; Kruse, Scott; Jack, Clifford R; Ehman, Richard; Huston, John

    2015-01-01

    Changes in tissue composition and cellular architecture have been associated with neurological disease, and these in turn can affect biomechanical properties. Natural biological factors such as aging and an individual’s sex also affect underlying tissue biomechanics in different brain regions. Understanding the normal changes is necessary before determining the efficacy of stiffness imaging for neurological disease diagnosis and therapy monitoring. The objective of this study was to evaluate global and regional changes in brain stiffness as a function of age and sex, using improved MRE acquisition and processing that has been shown to provide median stiffness values that are typically reproducible to within 1% in global measurements and within 2% for regional measurements. Furthermore, this is the first study to report the effects of age and sex over the entire cerebrum volume and over the full frontal, occipital, parietal, temporal, deep gray matter/white matter (insula, deep gray nuclei and white matter tracts), and cerebellum volumes. In 45 volunteers, we observed a significant linear correlation between age and brain stiffness in the cerebrum (P<.0001), frontal lobes (P<.0001), occipital lobes (P=.0005), parietal lobes (P=.0002), and the temporal lobes (P<.0001) of the brain. No significant linear correlation between brain stiffness and age was observed in the cerebellum (P=.74), and the sensory-motor regions (P=.32) of the brain, and a weak linear trend was observed in the deep gray matter/white matter (P=.075). A multiple linear regression model predicted an annual decline of 0.011±0.002 kPa in cerebrum stiffness with a theoretical median age value (76 years old) of 2.56±0.08 kPa. Sexual dimorphism was observed in the temporal (P=.03) and occipital (P=.001) lobes of the brain, but no significant difference was observed in any of the other brain regions (P>.20 for all other regions). The model predicted female occipital and temporal lobes to be 0.23 kPa and 0.09 kPa stiffer than males of the same age, respectively. This study confirms that as the brain ages, there is softening; however, the changes are dependent on region. In addition, stiffness effects due to sex exist in the occipital and temporal lobes. PMID:25698157

  2. Increased resting-state brain entropy in Alzheimer's disease.

    PubMed

    Xue, Shao-Wei; Guo, Yonghu

    2018-03-07

    Entropy analysis of resting-state functional MRI (R-fMRI) is a novel approach to characterize brain temporal dynamics and facilitates the identification of abnormal brain activity caused by several disease conditions. However, Alzheimer's disease (AD)-related brain entropy mapping based on R-fMRI has not been assessed. Here, we measured the sample entropy and voxel-wise connectivity of the network degree centrality (DC) of the intrinsic brain activity acquired by R-fMRI in 26 patients with AD and 26 healthy controls. Compared with the controls, AD patients showed increased entropy in the middle temporal gyrus and the precentral gyrus and also showed decreased DC in the precuneus. Moreover, the magnitude of the negative correlation between local brain activity (entropy) and network connectivity (DC) was increased in AD patients in comparison with healthy controls. These findings provide new evidence on AD-related brain entropy alterations.

  3. Behavioural and brain responses related to Internet search and memory.

    PubMed

    Dong, Guangheng; Potenza, Marc N

    2015-10-01

    The ready availability of data via searches on the Internet has changed how many people seek and perhaps store and recall information, although the brain mechanisms underlying these processes are not well understood. This study investigated brain mechanisms underlying Internet-based vs. non-Internet-based searching. The results showed that Internet searching was associated with lower accuracy in recalling information as compared with traditional book searching. During functional magnetic resonance imaging, Internet searching was associated with less regional brain activation in the left ventral stream, the association area of the temporal-parietal-occipital cortices, and the middle frontal cortex. When comparing novel items with remembered trials, Internet-based searching was associated with higher brain activation in the right orbitofrontal cortex and lower brain activation in the right middle temporal gyrus when facing those novel trials. Brain activations in the middle temporal gyrus were inversely correlated with response times, and brain activations in the orbitofrontal cortex were positively correlated with self-reported search impulses. Taken together, the results suggest that, although Internet-based searching may have facilitated the information-acquisition process, this process may have been performed more hastily and be more prone to difficulties in recollection. In addition, people appear less confident in recalling information learned through Internet searching and that recent Internet searching may promote motivation to use the Internet. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Quantification of brain macrostates using dynamical nonstationarity of physiological time series.

    PubMed

    Latchoumane, Charles-Francois Vincent; Jeong, Jaeseung

    2011-04-01

    The brain shows complex, nonstationarity temporal dynamics, with abrupt micro- and macrostate transitions during its information processing. Detecting and characterizing these transitions in dynamical states of the brain is a critical issue in the field of neuroscience and psychiatry. In the current study, a novel method is proposed to quantify brain macrostates (e.g., sleep stages or cognitive states) from shifts of dynamical microstates or dynamical nonstationarity. A ``dynamical microstate'' is a temporal unit of the information processing in the brain with fixed dynamical parameters and specific spatial distribution. In this proposed approach, a phase-space-based dynamical dissimilarity map (DDM) is used to detect transitions between dynamically stationary microstates in the time series, and Tsallis time-dependent entropy is applied to quantify dynamical patterns of transitions in the DDM. We demonstrate that the DDM successfully detects transitions between microstates of different temporal dynamics in the simulated physiological time series against high levels of noise. Based on the assumption of nonlinear, deterministic brain dynamics, we also demonstrate that dynamical nonstationarity analysis is useful to quantify brain macrostates (sleep stages I, II, III, IV, and rapid eye movement (REM) sleep) from sleep EEGs with an overall accuracy of 77%. We suggest that dynamical nonstationarity is a useful tool to quantify macroscopic mental states (statistical integration) of the brain using dynamical transitions at the microscopic scale in physiological data.

  5. Blast and the Consequences on Traumatic Brain Injury-Multiscale Mechanical Modeling of Brain

    DTIC Science & Technology

    2011-02-17

    blast simulation. LS-DYNA as an explicit FE code has been employed to simulate this multi- material fluid –structure interaction problem. The 3-D head...formulation is implemented to model the air-blast simulation. LS-DYNA as an explicit FE code has been employed to simulate this multi-material fluid ...Biomechanics Study of Influencing Parameters for brain under Impact ............................... 12 5.1 The Impact of Cerebrospinal Fluid

  6. Brain structural changes associated with chronicity and antipsychotic treatment in schizophrenia.

    PubMed

    Tomelleri, Luisa; Jogia, Jigar; Perlini, Cinzia; Bellani, Marcella; Ferro, Adele; Rambaldelli, Gianluca; Tansella, Michele; Frangou, Sophia; Brambilla, Paolo

    2009-12-01

    Accumulating evidence suggest a life-long impact of disease related mechanisms on brain structure in schizophrenia which may be modified by antipsychotic treatment. The aim of the present study was to investigate in a large sample of patients with schizophrenia the effect of illness duration and antipsychotic treatment on brain structure. Seventy-one schizophrenic patients and 79 age and gender matched healthy participants underwent brain magnetic resonance imaging (MRI). All images were processed with voxel based morphometry, using SPM5. Compared to healthy participants, patients showed decrements in gray matter volume in the left medial and left inferior frontal gyrus. In addition, duration of illness was negatively associated with gray matter volume in prefrontal regions bilaterally, in the temporal pole on the left and the caudal superior temporal gyrus on the right. Cumulative exposure to antipsychotics correlated positively with gray matter volumes in the cingulate gyrus for typical agents and in the thalamus for atypical drugs. These findings (a) indicate that structural abnormalities in prefrontal and temporal cortices in schizophrenia are progressive and, (b) suggest that antipsychotic medication has a significant impact on brain morphology.

  7. Cerebrospinal fluid dehydroepiandrosterone levels are correlated with brain dehydroepiandrosterone levels, elevated in Alzheimer's disease, and related to neuropathological disease stage.

    PubMed

    Naylor, Jennifer C; Hulette, Christine M; Steffens, David C; Shampine, Lawrence J; Ervin, John F; Payne, Victoria M; Massing, Mark W; Kilts, Jason D; Strauss, Jennifer L; Calhoun, Patrick S; Calnaido, Rohana P; Blazer, Daniel G; Lieberman, Jeffrey A; Madison, Roger D; Marx, Christine E

    2008-08-01

    It is currently unknown whether cerebrospinal fluid (CSF) neurosteroid levels are related to brain neurosteroid levels in humans. CSF and brain dehydroepiandrosterone (DHEA) levels are elevated in patients with Alzheimer's disease (AD), but it is unclear whether CSF DHEA levels are correlated with brain DHEA levels within the same subject cohort. We therefore determined DHEA and pregnenolone levels in AD patients (n = 25) and cognitively intact control subjects (n = 16) in both CSF and temporal cortex. DHEA and pregnenolone levels were determined by gas chromatography/mass spectrometry preceded by HPLC. Frozen CSF and temporal cortex specimens were provided by the Alzheimer's Disease Research Center at Duke University Medical Center. Data were analyzed by Mann-Whitney U test statistic and Spearman correlational analyses. CSF DHEA levels are positively correlated with temporal cortex DHEA levels (r = 0.59, P < 0.0001) and neuropathological disease stage (Braak and Braak) (r = 0.42, P = 0.007). CSF pregnenolone levels are also positively correlated with temporal cortex pregnenolone levels (r = 0.57, P < 0.0001) and tend to be correlated with neuropathological disease stage (Braak) (r = 0.30, P = 0.06). CSF DHEA levels are elevated (P = 0.032), and pregnenolone levels tend to be elevated (P = 0.10) in patients with AD, compared with cognitively intact control subjects. These findings indicate that CSF DHEA and pregnenolone levels are correlated with temporal cortex brain levels of these neurosteroids and that CSF DHEA is elevated in AD and related to neuropathological disease stage. Neurosteroids may thus be relevant to the pathophysiology of AD.

  8. Auditory Temporal Processing Deficits in Chronic Stroke: A Comparison of Brain Damage Lateralization Effect.

    PubMed

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2016-06-01

    There have been a few reports about the effects of chronic stroke on auditory temporal processing abilities and no reports regarding the effects of brain damage lateralization on these abilities. Our study was performed on 2 groups of chronic stroke patients to compare the effects of hemispheric lateralization of brain damage and of age on auditory temporal processing. Seventy persons with normal hearing, including 25 normal controls, 25 stroke patients with damage to the right brain, and 20 stroke patients with damage to the left brain, without aphasia and with an age range of 31-71 years were studied. A gap-in-noise (GIN) test and a duration pattern test (DPT) were conducted for each participant. Significant differences were found between the 3 groups for GIN threshold, overall GIN percent score, and DPT percent score in both ears (P ≤ .001). For all stroke patients, performance in both GIN and DPT was poorer in the ear contralateral to the damaged hemisphere, which was significant in DPT and in 2 measures of GIN (P ≤ .046). Advanced age had a negative relationship with temporal processing abilities for all 3 groups. In cases of confirmed left- or right-side stroke involving auditory cerebrum damage, poorer auditory temporal processing is associated with the ear contralateral to the damaged cerebral hemisphere. Replication of our results and the use of GIN and DPT tests for the early diagnosis of auditory processing deficits and for monitoring the effects of aural rehabilitation interventions are recommended. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  9. Temporal Differences in MicroRNA Expression Patterns in Astrocytes and Neurons after Ischemic Injury

    PubMed Central

    Ziu, Mateo; Fletcher, Lauren; Rana, Shushan; Jimenez, David F.; Digicaylioglu, Murat

    2011-01-01

    MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that modulate gene translation. Their expression is altered in many central nervous system (CNS) injuries suggesting a role in the cellular response to stress. Current studies in brain tissue have not yet described the cell-specific temporal miRNA expression patterns following ischemic injury. In this study, we analyzed the expression alterations of a set of miRNAs in neurons and astrocytes subjected to 60 minutes of ischemia and collected at different time-points following this injury. To mimic ischemic conditions and reperfusion in vitro, cortical primary neuronal and astrocytic cultures prepared from fetal rats were first placed in oxygen and glucose deprived (OGD) medium for 60 minutes, followed by their transfer into normoxic pre-conditioned medium. Total RNA was extracted at different time-points after the termination of the ischemic insult and the expression levels of miRNAs were measured. In neurons exposed to OGD, expression of miR-29b was upregulated 2-fold within 6 h and up to 4-fold at 24 h post-OGD, whereas induction of miR-21 was upregulated 2-fold after 24 h when compared to expression in neurons under normoxic conditions. In contrast, in astrocytes, miR-29b and miR-21 were upregulated only after 12 h. MiR-30b, 107, and 137 showed expression alteration in astrocytes, but not in neurons. Furthermore, we show that expression of miR-29b was significantly decreased in neurons exposed to Insulin-Like Growth Factor I (IGF-I), a well documented neuroprotectant in ischemic models. Our study indicates that miRNAs expression is altered in neurons and astrocytes after ischemic injury. Furthermore, we found that following OGD, specific miRNAs have unique cell-specific temporal expression patterns in CNS. Therefore the specific role of each miRNA in different intracellular processes in ischemic brain and the relevance of their temporal and spatial expression patterns warrant further investigation that may lead to novel strategies for therapeutic interventions. PMID:21373187

  10. The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme.

    PubMed

    Lisman, John

    2005-01-01

    In the hippocampus, oscillations in the theta and gamma frequency range occur together and interact in several ways, indicating that they are part of a common functional system. It is argued that these oscillations form a coding scheme that is used in the hippocampus to organize the readout from long-term memory of the discrete sequence of upcoming places, as cued by current position. This readout of place cells has been analyzed in several ways. First, plots of the theta phase of spikes vs. position on a track show a systematic progression of phase as rats run through a place field. This is termed the phase precession. Second, two cells with nearby place fields have a systematic difference in phase, as indicated by a cross-correlation having a peak with a temporal offset that is a significant fraction of a theta cycle. Third, several different decoding algorithms demonstrate the information content of theta phase in predicting the animal's position. It appears that small phase differences corresponding to jitter within a gamma cycle do not carry information. This evidence, together with the finding that principle cells fire preferentially at a given gamma phase, supports the concept of theta/gamma coding: a given place is encoded by the spatial pattern of neurons that fire in a given gamma cycle (the exact timing within a gamma cycle being unimportant); sequential places are encoded in sequential gamma subcycles of the theta cycle (i.e., with different discrete theta phase). It appears that this general form of coding is not restricted to readout of information from long-term memory in the hippocampus because similar patterns of theta/gamma oscillations have been observed in multiple brain regions, including regions involved in working memory and sensory integration. It is suggested that dual oscillations serve a general function: the encoding of multiple units of information (items) in a way that preserves their serial order. The relationship of such coding to that proposed by Singer and von der Malsburg is discussed; in their scheme, theta is not considered. It is argued that what theta provides is the absolute phase reference needed for encoding order. Theta/gamma coding therefore bears some relationship to the concept of "word" in digital computers, with word length corresponding to the number of gamma cycles within a theta cycle, and discrete phase corresponding to the ordered "place" within a word. Copyright 2005 Wiley-Liss, Inc.

  11. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors

    PubMed Central

    Raman, Baranidharan; Joseph, Joby; Tang, Jeff; Stopfer, Mark

    2010-01-01

    Odorants are represented as spatiotemporal patterns of spikes in neurons of the antennal lobe (AL, insects) and olfactory bulb (OB, vertebrates). These response patterns have been thought to arise primarily from interactions within the AL/OB, an idea supported, in part, by the assumption that olfactory receptor neurons (ORNs) respond to odorants with simple firing patterns. However, activating the AL directly with simple pulses of current evoked responses in AL neurons that were much less diverse, complex, and enduring than responses elicited by odorants. Similarly, models of the AL driven by simplistic inputs generated relatively simple output. How then are dynamic neural codes for odors generated? Consistent with recent results from several other species, our recordings from locust ORNs showed a great diversity of temporal structure. Further, we found that, viewed as a population, many response features of ORNs were remarkably similar to those observed within the AL. Using a set of computational models constrained by our electrophysiological recordings, we found that the temporal heterogeneity of responses of ORNs critically underlies the generation of spatiotemporal odor codes in the AL. A test then performed in vivo confirmed that, given temporally homogeneous input, the AL cannot create diverse spatiotemporal patterns on its own; however, given temporally heterogeneous input, the AL generated realistic firing patterns. Finally, given the temporally structured input provided by ORNs, we clarified several separate, additional contributions of the AL to olfactory information processing. Thus, our results demonstrate the origin and subsequent reformatting of spatiotemporal neural codes for odors. PMID:20147528

  12. How Does the Sparse Memory “Engram” Neurons Encode the Memory of a Spatial–Temporal Event?

    PubMed Central

    Guan, Ji-Song; Jiang, Jun; Xie, Hong; Liu, Kai-Yuan

    2016-01-01

    Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace) neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace) neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns. PMID:27601979

  13. How Does the Sparse Memory "Engram" Neurons Encode the Memory of a Spatial-Temporal Event?

    PubMed

    Guan, Ji-Song; Jiang, Jun; Xie, Hong; Liu, Kai-Yuan

    2016-01-01

    Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace) neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace) neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns.

  14. JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis

    DTIC Science & Technology

    2014-09-01

    Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a well-established inducer of temporal lobe epilepsy (TLE...INTRODUCTION: This research addresses the FY10 PRMRP topic area of Epilepsy . Traumatic Brain Injury (TBI) is a well- established etiology of temporal ... lobe epilepsy (TLE), a frequently medically intractable and often progressive epilepsy syndrome. Much evidence indicates that abnormalities in

  15. [Resting-state functional magnetic resonance study of brain function changes after TIPS operation in patients with liver cirrhosis].

    PubMed

    Liu, C; Wang, H B; Yu, Y Q; Wang, M Q; Zhang, G B; Xu, L Y; Wu, J M

    2016-12-20

    Objective: To investigate the brain function changes in cirrhosis patients after transjugular intrahepatic portosystemic shunt (TIPS), resting-state functional MRI (rs-fMRI) performed and fractional amplitude of low frequency fluctuation (fALFF) was analyzed. Methods: From January 2014 to February 2016, a total of 96 cirrhotic patients from invasive technology department and infection department in the First Affiliated Hospital of Anhui Medical University were selected , the blood ammonia data of 96 cirrhotic patients with TIPS operation in four groups were collected after 1, 3, 6 and 12 month, and all subjects performed rs-fMRI scans. The rs-fMRI data processed with DPARSF and SPM12 softwares, whole-brain fALFF values were calculated, and One-Way analysis of variance , multiple comparison analysis and correlation analysis were performed. Results: There were brain regions with significant function changes in four groups patients with TIPS operation after 1, 3, 6 and 12 month, including bilateral superior temporal gyrus, right middle temportal gyrus , right hippocampus, right island of inferior frontal gyrus, left fusiform gyrus, left olfactory cortex, left orbital superior frontal gyrus (all P <0.005). Multiple comparison analysis showed that compared with patients in the 1-month follow-up, patients in the 3-month follow-up showed that brain function areas increased in left olfactory cortex, left inferior temporal gyrus, left fusiform gyrus, left orbital middle frontal gyrus, left putamen, left cerebelum, and decreased in left lingual gyrus; patients in the 6-month follow-up showed that brain function areas increased in left middle temportal gyrus, right supramarginal gyrus, right temporal pole, right central operculum, and decreased in left top edge of angular gyrus, left postcentral gyrus; patients in the 12-month follow-up showed that brain function areas increased in right hippocampus, right middle cingulate gyrus, and decreased in right middle temportal gyrus.Compared with patients in the 3-month follow-up, patients in the 6-month follow-up showed that brain function areas increased in left superior temporal gyrus, left middle temporal gyrus, right temporal pole, right island of inferior frontal gyrus, and decreased in left cerebelum, left orbital inferior frontal gyrus; patients in the 12-month follow-up showed that there were no obvious increase and decrease brain function areas.Compared with patients in the 6-month follow-up, patients in the 12-month follow-up showed that there were no obvious increase brain function areas , but brain function areas decreased in bilateral middle temportal gyrus( P <0.001). Brain regions were positively related to blood ammonia in right middle cingulate gyrus, right central operculum, left parahippocampal gyrus, while as brain regions were negatively related to blood ammonia in bilateral medial prefrontal lobe, anterior cingulate and paracingulate gyrus, right top edge of angular gyrus, right middle temportal gyrus, left anterior central gyrus, left posterior central gyrus (all P <0.005). Conclusion: The resting state brain function increased or decreased with course of disease in cirrhosis patients after TIPS operation. The brain activity of limbic system and sensorimotor system all had significant correlation with blood ammonia levels. The blood ammonia level and the function of relative brain regions after 6-month with TIPS operation can be gradually improved.

  16. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients

    PubMed Central

    Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional characteristics on brain network for a stroke. PMID:26656269

  17. Interictal Epileptiform Discharges Impair Word Recall in Multiple Brain Areas

    PubMed Central

    Horak, Peter C.; Meisenhelter, Stephen; Song, Yinchen; Testorf, Markus E.; Kahana, Michael J.; Viles, Weston D.; Bujarski, Krzysztof A.; Connolly, Andrew C.; Robbins, Ashlee A.; Sperling, Michael R.; Sharan, Ashwini D.; Worrell, Gregory A.; Miller, Laura R.; Gross, Robert E.; Davis, Kathryn A.; Roberts, David W.; Lega, Bradley; Sheth, Sameer A.; Zaghloul, Kareem A.; Stein, Joel M.; Das, Sandhitsu R.; Rizzuto, Daniel S.; Jobst, Barbara C.

    2016-01-01

    Summary Objectives Interictal epileptiform discharges (IEDs) have been linked to memory impairment, but the spatial and temporal dynamics of this relationship remain elusive. In the present study, we aim to systematically characterize the brain areas and times at which IEDs affect memory. Methods Eighty epilepsy patients participated in a delayed free recall task while undergoing intracranial EEG monitoring. We analyzed the locations and timing of IEDs relative to the behavioral data in order to measure their effects on memory. Results Overall IED rates did not correlate with task performance across subjects (r = 0.03, p = 0.8). However, at a finer temporal scale, within-subject memory was negatively affected by IEDs during the encoding and recall periods of the task but not during the rest and distractor periods (p < 0.01, p < 0.001, p = 0.3, and p = 0.8 respectively). The effects of IEDs during encoding and recall were stronger in the left hemisphere than in the right (p < 0.05). Out of six brain areas analyzed, IEDs in the inferior temporal, medial temporal, and parietal areas significantly affected memory (false discovery rate < 0.05). Significance These findings reveal a network of brain areas sensitive to IEDs with key nodes in temporal as well as parietal lobes. They also demonstrate the time-dependent effects of IEDs in this network on memory. PMID:27935031

  18. Cortical Neural Computation by Discrete Results Hypothesis

    PubMed Central

    Castejon, Carlos; Nuñez, Angel

    2016-01-01

    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called “Discrete Results” (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of “Discrete Results” is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel “Discrete Results” concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS) interneuron may be a key element in our hypothesis providing the basis for this computation. PMID:27807408

  19. Cortical Neural Computation by Discrete Results Hypothesis.

    PubMed

    Castejon, Carlos; Nuñez, Angel

    2016-01-01

    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called "Discrete Results" (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of "Discrete Results" is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel "Discrete Results" concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS) interneuron may be a key element in our hypothesis providing the basis for this computation.

  20. Coding Strategies and Implementations of Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han

    This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others. This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system. Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity. Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.

  1. Face-elicited ERPs and affective attitude: brain electric microstate and tomography analyses.

    PubMed

    Pizzagalli, D; Lehmann, D; Koenig, T; Regard, M; Pascual-Marqui, R D

    2000-03-01

    Although behavioral studies have demonstrated that normative affective traits modulate the processing of facial and emotionally charged stimuli, direct electrophysiological evidence for this modulation is still lacking. Event-related potential (ERP) data associated with personal, traitlike approach- or withdrawal-related attitude (assessed post-recording and 14 months later) were investigated in 18 subjects during task-free (i.e. unrequested, spontaneous) emotional evaluation of faces. Temporal and spatial aspects of 27 channel ERP were analyzed with microstate analysis and low resolution electromagnetic tomography (LORETA), a new method to compute 3 dimensional cortical current density implemented in the Talairach brain atlas. Microstate analysis showed group differences 132-196 and 196-272 ms poststimulus, with right-shifted electric gravity centers for subjects with negative affective attitude. During these (over subjects reliably identifiable) personality-modulated, face-elicited microstates, LORETA revealed activation of bilateral occipito-temporal regions, reportedly associated with facial configuration extraction processes. Negative compared to positive affective attitude showed higher activity right temporal; positive compared to negative attitude showed higher activity left temporo-parieto-occipital. These temporal and spatial aspects suggest that the subject groups differed in brain activity at early, automatic, stimulus-related face processing steps when structural face encoding (configuration extraction) occurs. In sum, the brain functional microstates associated with affect-related personality features modulate brain mechanisms during face processing already at early information processing stages.

  2. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  3. Acute marijuana effects on rCBF and cognition: a PET study.

    PubMed

    O'Leary, D S; Block, R I; Flaum, M; Schultz, S K; Boles Ponto, L L; Watkins, G L; Hurtig, R R; Andreasen, N C; Hichwa, R D

    2000-11-27

    The effects of smoking marijuana on cognition and brain function were assessed with PET using H2(15)O. Regional cerebral blood flow (rCBF) was measured in five recreational users before and after smoking a marijuana cigarette, as they repeatedly performed an auditory attention task. Blood flow increased following smoking in a number of paralimbic brain regions (e.g. orbital frontal lobes, insula, temporal poles) and in anterior cingulate and cerebellum. Large reductions in rCBF were observed in temporal lobe regions that are sensitive to auditory attention effects. Brain regions showing increased rCBF may mediate the intoxicating and mood-related effects of smoking marijuana, whereas reduction of task-related rCBF in temporal lobe cortices may account for the impaired cognitive functions associated with acute intoxication.

  4. Upregulation of transcription factor NRF2-mediated oxidative stress response pathway in rat brain under short-term chronic hypobaric hypoxia.

    PubMed

    Sethy, Niroj Kumar; Singh, Manjulata; Kumar, Rajesh; Ilavazhagan, Govindasamy; Bhargava, Kalpana

    2011-03-01

    Exposure to high altitude (and thus hypobaric hypoxia) induces electrophysiological, metabolic, and morphological modifications in the brain leading to several neurological clinical syndromes. Despite the known fact that hypoxia episodes in brain are a common factor for many neuropathologies, limited information is available on the underlying cellular and molecular mechanisms. In this study, we investigated the temporal effect of short-term (0-12 h) chronic hypobaric hypoxia on global gene expression of rat brain followed by detailed canonical pathway analysis and regulatory network identification. Our analysis revealed significant alteration of 33, 17, 53, 81, and 296 genes (p < 0.05, <1.5-fold) after 0.5, 1, 3, 6, and 12 h of hypoxia, respectively. Biological processes like regulation, metabolic, and transport pathways are temporally activated along with anti- and proinflammatory signaling networks like PI3K/AKT, NF-κB, ERK/MAPK, IL-6 and IL-8 signaling. Irrespective of exposure durations, nuclear factor (erythroid-derived 2)-like 2 (NRF2)-mediated oxidative stress response pathway and genes were detected at all time points suggesting activation of NRF2-ARE antioxidant defense system. The results were further validated by assessing the expression levels of selected genes in temporal as well as brain regions with quantitative RT-PCR and western blot. In conclusion, our whole brain approach with temporal monitoring of gene expression patterns during hypobaric hypoxia has resulted in (1) deciphering sequence of pathways and signaling networks activated during onset of hypoxia, and (2) elucidation of NRF2-orchestrated antioxidant response as a major intrinsic defense mechanism. The results of this study will aid in better understanding and management of hypoxia-induced brain pathologies.

  5. Orthographic Coding: Brain Activation for Letters, Symbols, and Digits.

    PubMed

    Carreiras, Manuel; Quiñones, Ileana; Hernández-Cabrera, Juan Andrés; Duñabeitia, Jon Andoni

    2015-12-01

    The present experiment investigates the input coding mechanisms of 3 common printed characters: letters, numbers, and symbols. Despite research in this area, it is yet unclear whether the identity of these 3 elements is processed through the same or different brain pathways. In addition, some computational models propose that the position-in-string coding of these elements responds to general flexible mechanisms of the visual system that are not character-specific, whereas others suggest that the position coding of letters responds to specific processes that are different from those that guide the position-in-string assignment of other types of visual objects. Here, in an fMRI study, we manipulated character position and character identity through the transposition or substitution of 2 internal elements within strings of 4 elements. Participants were presented with 2 consecutive visual strings and asked to decide whether they were the same or different. The results showed: 1) that some brain areas responded more to letters than to numbers and vice versa, suggesting that processing may follow different brain pathways; 2) that the left parietal cortex is involved in letter identity, and critically in letter position coding, specifically contributing to the early stages of the reading process; and that 3) a stimulus-specific mechanism for letter position coding is operating during orthographic processing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Characteristics of voxel prediction power in full-brain Granger causality analysis of fMRI data

    NASA Astrophysics Data System (ADS)

    Garg, Rahul; Cecchi, Guillermo A.; Rao, A. Ravishankar

    2011-03-01

    Functional neuroimaging research is moving from the study of "activations" to the study of "interactions" among brain regions. Granger causality analysis provides a powerful technique to model spatio-temporal interactions among brain regions. We apply this technique to full-brain fMRI data without aggregating any voxel data into regions of interest (ROIs). We circumvent the problem of dimensionality using sparse regression from machine learning. On a simple finger-tapping experiment we found that (1) a small number of voxels in the brain have very high prediction power, explaining the future time course of other voxels in the brain; (2) these voxels occur in small sized clusters (of size 1-4 voxels) distributed throughout the brain; (3) albeit small, these clusters overlap with most of the clusters identified with the non-temporal General Linear Model (GLM); and (4) the method identifies clusters which, while not determined by the task and not detectable by GLM, still influence brain activity.

  7. Task relevance modulates the behavioural and neural effects of sensory predictions

    PubMed Central

    Friston, Karl J.; Nobre, Anna C.

    2017-01-01

    The brain is thought to generate internal predictions to optimize behaviour. However, it is unclear whether predictions signalling is an automatic brain function or depends on task demands. Here, we manipulated the spatial/temporal predictability of visual targets, and the relevance of spatial/temporal information provided by auditory cues. We used magnetoencephalography (MEG) to measure participants’ brain activity during task performance. Task relevance modulated the influence of predictions on behaviour: spatial/temporal predictability improved spatial/temporal discrimination accuracy, but not vice versa. To explain these effects, we used behavioural responses to estimate subjective predictions under an ideal-observer model. Model-based time-series of predictions and prediction errors (PEs) were associated with dissociable neural responses: predictions correlated with cue-induced beta-band activity in auditory regions and alpha-band activity in visual regions, while stimulus-bound PEs correlated with gamma-band activity in posterior regions. Crucially, task relevance modulated these spectral correlates, suggesting that current goals influence PE and prediction signalling. PMID:29206225

  8. Three-dimensional grammar in the brain: Dissociating the neural correlates of natural sign language and manually coded spoken language.

    PubMed

    Jednoróg, Katarzyna; Bola, Łukasz; Mostowski, Piotr; Szwed, Marcin; Boguszewski, Paweł M; Marchewka, Artur; Rutkowski, Paweł

    2015-05-01

    In several countries natural sign languages were considered inadequate for education. Instead, new sign-supported systems were created, based on the belief that spoken/written language is grammatically superior. One such system called SJM (system językowo-migowy) preserves the grammatical and lexical structure of spoken Polish and since 1960s has been extensively employed in schools and on TV. Nevertheless, the Deaf community avoids using SJM for everyday communication, its preferred language being PJM (polski język migowy), a natural sign language, structurally and grammatically independent of spoken Polish and featuring classifier constructions (CCs). Here, for the first time, we compare, with fMRI method, the neural bases of natural vs. devised communication systems. Deaf signers were presented with three types of signed sentences (SJM and PJM with/without CCs). Consistent with previous findings, PJM with CCs compared to either SJM or PJM without CCs recruited the parietal lobes. The reverse comparison revealed activation in the anterior temporal lobes, suggesting increased semantic combinatory processes in lexical sign comprehension. Finally, PJM compared with SJM engaged left posterior superior temporal gyrus and anterior temporal lobe, areas crucial for sentence-level speech comprehension. We suggest that activity in these two areas reflects greater processing efficiency for naturally evolved sign language. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The medial temporal lobe-conduit of parallel connectivity: a model for attention, memory, and perception.

    PubMed

    Mozaffari, Brian

    2014-01-01

    Based on the notion that the brain is equipped with a hierarchical organization, which embodies environmental contingencies across many time scales, this paper suggests that the medial temporal lobe (MTL)-located deep in the hierarchy-serves as a bridge connecting supra- to infra-MTL levels. Bridging the upper and lower regions of the hierarchy provides a parallel architecture that optimizes information flow between upper and lower regions to aid attention, encoding, and processing of quick complex visual phenomenon. Bypassing intermediate hierarchy levels, information conveyed through the MTL "bridge" allows upper levels to make educated predictions about the prevailing context and accordingly select lower representations to increase the efficiency of predictive coding throughout the hierarchy. This selection or activation/deactivation is associated with endogenous attention. In the event that these "bridge" predictions are inaccurate, this architecture enables the rapid encoding of novel contingencies. A review of hierarchical models in relation to memory is provided along with a new theory, Medial-temporal-lobe Conduit for Parallel Connectivity (MCPC). In this scheme, consolidation is considered as a secondary process, occurring after a MTL-bridged connection, which eventually allows upper and lower levels to access each other directly. With repeated reactivations, as contingencies become consolidated, less MTL activity is predicted. Finally, MTL bridging may aid processing transient but structured perceptual events, by allowing communication between upper and lower levels without calling on intermediate levels of representation.

  10. Temporal Coupling with Cortex Distinguishes Spontaneous Neuronal Activities in Identified Basal Ganglia-Recipient and Cerebellar-Recipient Zones of the Motor Thalamus

    PubMed Central

    Nakamura, Kouichi C.; Sharott, Andrew; Magill, Peter J.

    2014-01-01

    Neurons of the motor thalamus mediate basal ganglia and cerebellar influences on cortical activity. To elucidate the net result of γ-aminobutyric acid-releasing or glutamatergic bombardment of the motor thalamus by basal ganglia or cerebellar afferents, respectively, we recorded the spontaneous activities of thalamocortical neurons in distinct identified “input zones” in anesthetized rats during defined cortical activity states. Unexpectedly, the mean rates and brain state dependencies of the firing of neurons in basal ganglia-recipient zone (BZ) and cerebellar-recipient zone (CZ) were matched during slow-wave activity (SWA) and cortical activation. However, neurons were distinguished during SWA by their firing regularities, low-threshold spike bursts and, more strikingly, by the temporal coupling of their activities to ongoing cortical oscillations. The firing of neurons across the BZ was stronger and more precisely phase-locked to cortical slow (∼1 Hz) oscillations, although both neuron groups preferentially fired at the same phase. In contrast, neurons in BZ and CZ fired at different phases of cortical spindles (7–12 Hz), but with similar strengths of coupled firing. Thus, firing rates do not reflect the predicted inhibitory–excitatory imbalance across the motor thalamus, and input zone-specific temporal coding through oscillatory synchronization with the cortex could partly mediate the different roles of basal ganglia and cerebellum in behavior. PMID:23042738

  11. Anatomical origin of déjà vu and vivid 'memories' in human temporal lobe epilepsy.

    PubMed

    Bancaud, J; Brunet-Bourgin, F; Chauvel, P; Halgren, E

    1994-02-01

    Jackson (Brain 1898; 21: 580-90) observed that seizures arising in the medial temporal lobe may result in a 'dreamy state', consisting of vivid memory-like hallucinations, and/or the sense of having previously lived through exactly the same situation (déjà vu). Penfield demonstrated that the dreamy state can sometimes be evoked by electrical stimulation of the lateral temporal neocortex, especially the superior temporal gyrus. Halgren et al. (Brain 1978; 101: 83-117) showed that the dreamy state can be evoked by stimulation of the hippocampal formation and amygdala and Gloor (Brain 1990; 113: 1673-94) has suggested that it is evoked by lateral stimulation only when the resulting after-discharge spreads medially. In order to resolve the relative importance of these areas, we considered the mental phenomena observed in epileptic patients with electrodes stereotaxically implanted into different brain areas for seizure localization prior to surgical treatment. Sixteen patients, all with seizures involving the temporal lobe, experienced the dreamy state either as a result of spontaneous seizures (nine dreamy states in six patients), or due to electrical stimulation (43 in 14) or to chemical activation (five in three). Déjà vu and hallucinations of scenes were often evoked by different stimulations of the same electrode in the same patient. As Jackson had also observed, the dreamy state could occur alone but was often associated with epigastric phenomena and fear, and followed by loss of contact and oro-alimentary automatisms, and then by simple gestural automatisms, all characteristic of partial seizures beginning in the medial temporal lobe. Furthermore, as also emphasized by Jackson, the dreamy state was seldom associated with sensory illusions. Stimulation of either the neocortex (15 occurrences), anterior hippocampus (17) or amygdala (10) could evoke a dreamy state. However, since fewer hippocampal and amygdala leads were stimulated than temporal neocortical, the proportion of medial temporal electrodes where dreamy states could be evoked was much higher than in the neocortex. Most responsive lateral temporal sites were located in the superior temporal gyrus, rather than the middle temporal gyrus which was significantly less responsive. In 85% of dreamy states evoked by medial temporal lobe stimulation, the discharge spread to the temporal neocortex; and in 53% of dreamy states evoked by lateral temporal stimulation, the discharge spread medially. Considering all dreamy states, the amygdala was involved (as the stimulated structure, or as the site of ictal- or after-discharge) in 73% of cases, the anterior hippocampus in 83% and the temporal neocortex in 88%.(ABSTRACT TRUNCATED AT 400 WORDS)

  12. Unaware Processing of Tools in the Neural System for Object-Directed Action Representation.

    PubMed

    Tettamanti, Marco; Conca, Francesca; Falini, Andrea; Perani, Daniela

    2017-11-01

    The hypothesis that the brain constitutively encodes observed manipulable objects for the actions they afford is still debated. Yet, crucial evidence demonstrating that, even in the absence of perceptual awareness, the mere visual appearance of a manipulable object triggers a visuomotor coding in the action representation system including the premotor cortex, has hitherto not been provided. In this fMRI study, we instantiated reliable unaware visual perception conditions by means of continuous flash suppression, and we tested in 24 healthy human participants (13 females) whether the visuomotor object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices is activated even under subliminal perceptual conditions. We found consistent activation in the target visuomotor cortices, both with and without perceptual awareness, specifically for pictures of manipulable versus non-manipulable objects. By means of a multivariate searchlight analysis, we also found that the brain activation patterns in this visuomotor network enabled the decoding of manipulable versus non-manipulable object picture processing, both with and without awareness. These findings demonstrate the intimate neural coupling between visual perception and motor representation that underlies manipulable object processing: manipulable object stimuli specifically engage the visuomotor object-directed action representation system, in a constitutive manner that is independent from perceptual awareness. This perceptuo-motor coupling endows the brain with an efficient mechanism for monitoring and planning reactions to external stimuli in the absence of awareness. SIGNIFICANCE STATEMENT Our brain constantly encodes the visual information that hits the retina, leading to a stimulus-specific activation of sensory and semantic representations, even for objects that we do not consciously perceive. Do these unconscious representations encompass the motor programming of actions that could be accomplished congruently with the objects' functions? In this fMRI study, we instantiated unaware visual perception conditions, by dynamically suppressing the visibility of manipulable object pictures with mondrian masks. Despite escaping conscious perception, manipulable objects activated an object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices. This demonstrates that visuomotor encoding occurs independently of conscious object perception. Copyright © 2017 the authors 0270-6474/17/3710712-13$15.00/0.

  13. Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.

    PubMed

    Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Proskovec, Amy L; McDermott, Timothy J; Wilson, Tony W

    2017-10-01

    The dynamic allocation of neural resources to discrete features within a visual scene enables us to react quickly and accurately to salient environmental circumstances. A network of bilateral cortical regions is known to subserve such visuospatial attention functions; however the oscillatory and functional connectivity dynamics of information coding within this network are not fully understood. Particularly, the coding of information within prototypical attention-network hubs and the subsecond functional connections formed between these hubs have not been adequately characterized. Herein, we use the precise temporal resolution of magnetoencephalography (MEG) to define spectrally specific functional nodes and connections that underlie the deployment of attention in visual space. Twenty-three healthy young adults completed a visuospatial discrimination task designed to elicit multispectral activity in visual cortex during MEG, and the resulting data were preprocessed and reconstructed in the time-frequency domain. Oscillatory responses were projected to the cortical surface using a beamformer, and time series were extracted from peak voxels to examine their temporal evolution. Dynamic functional connectivity was then computed between nodes within each frequency band of interest. We find that visual attention network nodes are defined functionally by oscillatory frequency, that the allocation of attention to the visual space dynamically modulates functional connectivity between these regions on a millisecond timescale, and that these modulations significantly correlate with performance on a spatial discrimination task. We conclude that functional hubs underlying visuospatial attention are segregated not only anatomically but also by oscillatory frequency, and importantly that these oscillatory signatures promote dynamic communication between these hubs. Hum Brain Mapp 38:5128-5140, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Epidemiologic studies of electric and magnetic fields and cancer: strategies for extending knowledge.

    PubMed Central

    Savitz, D A

    1993-01-01

    Epidemiologic research concerning electric and magnetic fields in relation to cancer has focused on the potential etiologic roles of residential exposure on childhood cancer and occupational exposure on adult leukemia and brain cancer. Future residential studies must concentrate on exposure assessment that is enhanced by developing models of historical exposure, assessment of the relation between magnetic fields and wire codes, and consideration of alternate exposure indices. Study design issues deserving attention include possible biases in random digit dialing control selection, consideration of the temporal course of exposure and disease, and acquisition of the necessary information to assess the potential value of ecologic studies. Highest priorities are comprehensive evaluation of exposure patterns and sources and examination of the sociology and geography of residential wire codes. Future occupational studies should also concentrate on improved exposure assessment with increased attention to nonutility worker populations and development of historical exposure indicators that are superior to job titles alone. Potential carcinogens in the workplace that could act as confounders need to be more carefully examined. The temporal relation between exposure and disease and possible effect modification by other workplace agents should be incorporated into future studies. The most pressing need is for measurement of exposure patterns in a variety of worker populations and performance of traditional epidemiologic evaluations of cancer occurrence. The principal source of bias toward the null is nondifferential misclassification of exposure with improvements expected to enhance any true etiologic association that is present. Biases away from the null might include biased control selection in residential studies and chemical carcinogens acting as confounders in occupational studies. PMID:8206046

  15. Tuberculous brain abscess and subdural empyema in an immunocompetent child: Significance of AFB staining in aspirated pus

    PubMed Central

    Vijayakumar, B.; Sarin, K.; Mohan, Girija

    2012-01-01

    Tuberculous brain abscess and subdural empyema are extremely rare manifestations of central nervous system tuberculosis. Here, we report a case of an 11-year-old immunocompetent child who developed temporal lobe abscess and subdural empyema following chronic otitis media. A right temporal craniotomy was performed and the abscess was excised. The Ziehl Nielsen staining of the aspirated pus from the temporal lobe abscess yielded acid fast bacilli. Prompt administration of antituberculous treatment resulted in complete recovery of the child. Even though the subdural abscess was not drained, we presume that to be of tubercular aetiology. Ours is probably the first case of brain abscess and subdural empyema due to Mycobacterium tuberculosis reported in the same child. This case is being reported because of its rarity and to stress the importance of routine staining for tubercle bacilli in all cases of brain abscess, especially in endemic areas, as it is difficult to differentiate tuberculous from pyogenic abscess clinically as well as histopathologically. PMID:22566728

  16. Tuberculous brain abscess and subdural empyema in an immunocompetent child: Significance of AFB staining in aspirated pus.

    PubMed

    Vijayakumar, B; Sarin, K; Mohan, Girija

    2012-04-01

    Tuberculous brain abscess and subdural empyema are extremely rare manifestations of central nervous system tuberculosis. Here, we report a case of an 11-year-old immunocompetent child who developed temporal lobe abscess and subdural empyema following chronic otitis media. A right temporal craniotomy was performed and the abscess was excised. The Ziehl Nielsen staining of the aspirated pus from the temporal lobe abscess yielded acid fast bacilli. Prompt administration of antituberculous treatment resulted in complete recovery of the child. Even though the subdural abscess was not drained, we presume that to be of tubercular aetiology. Ours is probably the first case of brain abscess and subdural empyema due to Mycobacterium tuberculosis reported in the same child. This case is being reported because of its rarity and to stress the importance of routine staining for tubercle bacilli in all cases of brain abscess, especially in endemic areas, as it is difficult to differentiate tuberculous from pyogenic abscess clinically as well as histopathologically.

  17. A stereoscopic system for viewing the temporal evolution of brain activity clusters in response to linguistic stimuli

    NASA Astrophysics Data System (ADS)

    Forbes, Angus; Villegas, Javier; Almryde, Kyle R.; Plante, Elena

    2014-03-01

    In this paper, we present a novel application, 3D+Time Brain View, for the stereoscopic visualization of functional Magnetic Resonance Imaging (fMRI) data gathered from participants exposed to unfamiliar spoken languages. An analysis technique based on Independent Component Analysis (ICA) is used to identify statistically significant clusters of brain activity and their changes over time during different testing sessions. That is, our system illustrates the temporal evolution of participants' brain activity as they are introduced to a foreign language through displaying these clusters as they change over time. The raw fMRI data is presented as a stereoscopic pair in an immersive environment utilizing passive stereo rendering. The clusters are presented using a ray casting technique for volume rendering. Our system incorporates the temporal information and the results of the ICA into the stereoscopic 3D rendering, making it easier for domain experts to explore and analyze the data.

  18. Using fNIRS to Examine Occipital and Temporal Responses to Stimulus Repetition in Young Infants: Evidence of Selective Frontal Cortex Involvement

    PubMed Central

    Emberson, Lauren L.; Cannon, Grace; Palmeri, Holly; Richards, John E.; Aslin, Richard N.

    2016-01-01

    How does the developing brain respond to recent experience? Repetition suppression (RS) is a robust and well-characterized response of to recent experience found, predominantly, in the perceptual cortices of the adult brain. We use functional near-infrared spectroscopy (fNIRS) to investigate how perceptual (temporal and occipital) and frontal cortices in the infant brain respond to auditory and visual stimulus repetitions (spoken words and faces). In Experiment 1, we find strong evidence of repetition suppression in the frontal cortex but only for auditory stimuli. In perceptual cortices, we find only suggestive evidence of auditory RS in the temporal cortex and no evidence of visual RS in any ROI. In Experiments 2 and 3, we replicate and extend these findings. Overall, we provide the first evidence that infant and adult brains respond differently to stimulus repetition. We suggest that the frontal lobe may support the development of RS in perceptual cortices. PMID:28012401

  19. Decoding brain cancer dynamics: a quantitative histogram-based approach using temporal MRI

    NASA Astrophysics Data System (ADS)

    Zhou, Mu; Hall, Lawrence O.; Goldgof, Dmitry B.; Russo, Robin; Gillies, Robert J.; Gatenby, Robert A.

    2015-03-01

    Brain tumor heterogeneity remains a challenge for probing brain cancer evolutionary dynamics. In light of evolution, it is a priority to inspect the cancer system from a time-domain perspective since it explicitly tracks the dynamics of cancer variations. In this paper, we study the problem of exploring brain tumor heterogeneity from temporal clinical magnetic resonance imaging (MRI) data. Our goal is to discover evidence-based knowledge from such temporal imaging data, where multiple clinical MRI scans from Glioblastoma multiforme (GBM) patients are generated during therapy. In particular, we propose a quantitative histogram-based approach that builds a prediction model to measure the difference in histograms obtained from pre- and post-treatment. The study could significantly assist radiologists by providing a metric to identify distinctive patterns within each tumor, which is crucial for the goal of providing patient-specific treatments. We examine the proposed approach for a practical application - clinical survival group prediction. Experimental results show that our approach achieved 90.91% accuracy.

  20. Human Amygdala Represents the Complete Spectrum of Subjective Valence

    PubMed Central

    Jin, Jingwen; Zelano, Christina; Gottfried, Jay A.

    2015-01-01

    Although the amygdala is a major locus for hedonic processing, how it encodes valence information is poorly understood. Given the hedonic potency of odor stimuli and the amygdala's anatomical proximity to the peripheral olfactory system, we combined high-resolution fMRI with pattern-based multivariate techniques to examine how valence information is encoded in the amygdala. Ten human subjects underwent fMRI scanning while smelling 9 odorants that systematically varied in perceived valence. Representational similarity analyses showed that amygdala codes the entire dimension of valence, ranging from pleasantness to unpleasantness. This unidimensional representation significantly correlated with self-reported valence ratings but not with intensity ratings. Furthermore, within-trial valence representations evolved over time, prioritizing earlier differentiation of unpleasant stimuli. Together, these findings underscore the idea that both spatial and temporal features uniquely encode pleasant and unpleasant odor valence in the amygdala. The availability of a unidimensional valence code in the amygdala, distributed in both space and time, would create greater flexibility in determining the pleasantness or unpleasantness of stimuli, providing a mechanism by which expectation, context, attention, and learning could influence affective boundaries for guiding behavior. SIGNIFICANCE STATEMENT Our findings elucidate the mechanisms of affective processing in the amygdala by demonstrating that this brain region represents the entire valence dimension from pleasant to unpleasant. An important implication of this unidimensional valence code is that pleasant and unpleasant valence cannot coexist in the amygdale because overlap of fMRI ensemble patterns for these two valence extremes obscures their unique content. This functional architecture, whereby subjective valence maps onto a pattern continuum between pleasant and unpleasant poles, offers a robust mechanism by which context, expectation, and experience could alter the set-point for valence-based behavior. Finally, identification of spatial and temporal differentiation of valence in amygdala may shed new insights into individual differences in emotional responding, with potential relevance for affective disorders. PMID:26558785

  1. Effect of intravenous gadolinium-DTPA on diffusion-weighted imaging of brain tumors: a short temporal interval assessment.

    PubMed

    Li, Xiang; Qu, Jin-Rong; Luo, Jun-Peng; Li, Jing; Zhang, Hong-Kai; Shao, Nan-Nan; Kwok, Keith; Zhang, Shou-Ning; Li, Yan-le; Liu, Cui-Cui; Zee, Chi-Shing; Li, Hai-Liang

    2014-09-01

    To determine the effect of intravenous administration of gadolinium (Gd) contrast medium (Gd-DTPA) on diffusion-weighted imaging (DWI) for the evaluation of normal brain parenchyma vs. brain tumor following a short temporal interval. Forty-four DWI studies using b values of 0 and 1000 s/mm(2) were performed before, immediately after, 1 min after, 3 min after, and 5 min after the administration of Gd-DTPA on 62 separate lesions including 15 meningioma, 17 glioma and 30 metastatic lesions. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) values of the brain tumor lesions and normal brain tissues were measured on pre- and postcontrast images. Statistical analysis using paired t-test between precontrast and postcontrast data were obtained on three brain tumors and normal brain tissue. The SNR and CNR of brain tumors and the SNR of normal brain tissue showed no statistical differences between pre- and postcontrast (P > 0.05). The ADC values on the three cases of brain tumors demonstrated significant initial increase on the immediate time point (P < 0.01) and decrease on following the 1 min time point (P < 0.01) after contrast. Significant decrease of ADC value was still found at 3min and 5min time point in the meningioma group (P < 0.01) with gradual normalization over time. The ADC values of normal brain tissues demonstrated significant initial elevation on the immediately postcontrast DWI sequence (P < 0.01). Contrast medium can cause a slight but statistically significant change on the ADC value within a short temporal interval after the contrast administration. The effect is both time and lesion-type dependent. © 2013 Wiley Periodicals, Inc.

  2. Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues

    PubMed Central

    Zheng, Y.

    2013-01-01

    Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues. PMID:23636724

  3. Gender effects on age-related changes in brain structure.

    PubMed

    Xu, J; Kobayashi, S; Yamaguchi, S; Iijima, K; Okada, K; Yamashita, K

    2000-01-01

    Previous reports have suggested that brain atrophy is associated with aging and that there are gender differences in brain atrophy with aging. These reports, however, neither exclude silent brain lesions in "healthy subjects" nor divide the brain into subregions. The aim of this study is to clarify the effect of gender on age-related changes in brain subregions by MR imaging. A computer-assisted system was used to calculate the brain matter area index (BMAI) of various regions of the brain from MR imaging of 331 subjects without brain lesions. There was significantly more brain atrophy with aging in the posterior parts of the right frontal lobe in male subjects than there was in female subjects. Age-related atrophy in the middle part of the right temporal lobe, the left basal ganglia, the parietal lobe, and the cerebellum also was found in male subjects, but not in female subjects. In the temporal lobe, thalamus, parieto-occipital lobe, and cerebellum, brain volume in the left hemisphere is significantly smaller than in the right hemisphere; sex and age did not affect the hemisphere differences of brain volume in these regions. The effect of gender on brain atrophy with aging varied in different subregions of the brain. There was more brain atrophy with aging in male subjects than in female subjects.

  4. Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics.

    PubMed

    He, Bin; Sohrabpour, Abbas; Brown, Emery; Liu, Zhongming

    2018-06-04

    Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.

  5. Towards the utilization of EEG as a brain imaging tool.

    PubMed

    Michel, Christoph M; Murray, Micah M

    2012-06-01

    Recent advances in signal analysis have engendered EEG with the status of a true brain mapping and brain imaging method capable of providing spatio-temporal information regarding brain (dys)function. Because of the increasing interest in the temporal dynamics of brain networks, and because of the straightforward compatibility of the EEG with other brain imaging techniques, EEG is increasingly used in the neuroimaging community. However, the full capability of EEG is highly underestimated. Many combined EEG-fMRI studies use the EEG only as a spike-counter or an oscilloscope. Many cognitive and clinical EEG studies use the EEG still in its traditional way and analyze grapho-elements at certain electrodes and latencies. We here show that this way of using the EEG is not only dangerous because it leads to misinterpretations, but it is also largely ignoring the spatial aspects of the signals. In fact, EEG primarily measures the electric potential field at the scalp surface in the same way as MEG measures the magnetic field. By properly sampling and correctly analyzing this electric field, EEG can provide reliable information about the neuronal activity in the brain and the temporal dynamics of this activity in the millisecond range. This review explains some of these analysis methods and illustrates their potential in clinical and experimental applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Resting-state functional brain connectivity: lessons from functional near-infrared spectroscopy.

    PubMed

    Niu, Haijing; He, Yong

    2014-04-01

    Resting-state functional near-infrared spectroscopy (R-fNIRS) is an active area of interest and is currently attracting considerable attention as a new imaging tool for the study of resting-state brain function. Using variations in hemodynamic concentration signals, R-fNIRS measures the brain's low-frequency spontaneous neural activity, combining the advantages of portability, low-cost, high temporal sampling rate and less physical burden to participants. The temporal synchronization of spontaneous neuronal activity in anatomically separated regions is referred to as resting-state functional connectivity (RSFC). In the past several years, an increasing body of R-fNIRS RSFC studies has led to many important findings about functional integration among local or whole-brain regions by measuring inter-regional temporal synchronization. Here, we summarize recent advances made in the R-fNIRS RSFC methodologies, from the detection of RSFC (e.g., seed-based correlation analysis, independent component analysis, whole-brain correlation analysis, and graph-theoretical topological analysis), to the assessment of RSFC performance (e.g., reliability, repeatability, and validity), to the application of RSFC in studying normal development and brain disorders. The literature reviewed here suggests that RSFC analyses based on R-fNIRS data are valid and reliable for the study of brain function in healthy and diseased populations, thus providing a promising imaging tool for cognitive science and clinics.

  7. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun

    2018-06-01

    Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be extended to any subsequent brain connectivity analyses used to construct the associated dynamic brain networks.

  8. Only time will tell - why temporal information is essential for our neuroscientific understanding of semantics.

    PubMed

    Hauk, Olaf

    2016-08-01

    Theoretical developments about the nature of semantic representations and processes should be accompanied by a discussion of how these theories can be validated on the basis of empirical data. Here, I elaborate on the link between theory and empirical research, highlighting the need for temporal information in order to distinguish fundamental aspects of semantics. The generic point that fast cognitive processes demand fast measurement techniques has been made many times before, although arguably more often in the psychophysiological community than in the metabolic neuroimaging community. Many reviews on the neuroscience of semantics mostly or even exclusively focus on metabolic neuroimaging data. Following an analysis of semantics in terms of the representations and processes involved, I argue that fundamental theoretical debates about the neuroscience of semantics can only be concluded on the basis of data with sufficient temporal resolution. Any "semantic effect" may result from a conflation of long-term memory representations, retrieval and working memory processes, mental imagery, and episodic memory. This poses challenges for all neuroimaging modalities, but especially for those with low temporal resolution. It also throws doubt on the usefulness of contrasts between meaningful and meaningless stimuli, which may differ on a number of semantic and non-semantic dimensions. I will discuss the consequences of this analysis for research on the role of convergence zones or hubs and distributed modal brain networks, top-down modulation of task and context as well as interactivity between levels of the processing hierarchy, for example in the framework of predictive coding.

  9. fMRI brain response during sentence reading comprehension in children with benign epilepsy with centro-temporal spikes.

    PubMed

    Malfait, D; Tucholka, A; Mendizabal, S; Tremblay, J; Poulin, C; Oskoui, M; Srour, M; Carmant, L; Major, P; Lippé, S

    2015-11-01

    Children with benign epilepsy with centro-temporal spikes (BECTS) often have language problems. Abnormal epileptic activity is found in central and temporal brain regions, which are involved in reading and semantic and syntactic comprehension. Using functional magnetic resonance imaging (fMRI), we examined reading networks in BECTS children with a new sentence reading comprehension task involving semantic and syntactic processing. Fifteen children with BECTS (age=11y 1m ± 16 m; 12 boys) and 18 healthy controls (age=11 y 8m ± 20 m; 11 boys) performed an fMRI reading comprehension task in which they read a pair of syntactically complex sentences and decided whether the target sentence (the second sentence in the pair) was true or false with respect to the first sentence. All children also underwent an exhaustive neuropsychological assessment. We demonstrated weaknesses in several cognitive domains in BECTS children. During the sentence reading fMRI task, left inferior frontal regions and bilateral temporal areas were activated in BECTS children and healthy controls. However, additional brain regions such as the left hippocampus and precuneus were activated in BECTS children. Moreover, specific activation was found in the left caudate and putamen in BECTS children but not in healthy controls. Cognitive results and accuracy during the fMRI task were associated with specific brain activation patterns. BECTS children recruited a wider network to perform the fMRI sentence reading comprehension task, with specific activation in the left dorsal striatum. BECTS cognitive performance differently predicted functional activation in frontal and temporal regions compared to controls, suggesting differences in brain network organisation that contribute to reading comprehension. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  10. Time-dependence of graph theory metrics in functional connectivity analysis

    PubMed Central

    Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J.; Haneef, Zulfi; Stern, John M.

    2016-01-01

    Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. PMID:26518632

  11. Time-dependence of graph theory metrics in functional connectivity analysis.

    PubMed

    Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J; Haneef, Zulfi; Stern, John M

    2016-01-15

    Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Breakdown in the temporal and spatial organization of spontaneous brain activity during general anesthesia.

    PubMed

    Zhang, Jianfeng; Huang, Zirui; Chen, Yali; Zhang, Jun; Ghinda, Diana; Nikolova, Yuliya; Wu, Jinsong; Xu, Jianghui; Bai, Wenjie; Mao, Ying; Yang, Zhong; Duncan, Niall; Qin, Pengmin; Wang, Hao; Chen, Bing; Weng, Xuchu; Northoff, Georg

    2018-05-01

    Which temporal features that can characterize different brain states (i.e., consciousness or unconsciousness) is a fundamental question in the neuroscience of consciousness. Using resting-state functional magnetic resonance imaging (rs-fMRI), we investigated the spatial patterns of two temporal features: the long-range temporal correlations (LRTCs), measured by power-law exponent (PLE), and temporal variability, measured by standard deviation (SD) during wakefulness and anesthetic-induced unconsciousness. We found that both PLE and SD showed global reductions across the whole brain during anesthetic state comparing to wakefulness. Importantly, the relationship between PLE and SD was altered in anesthetic state, in terms of a spatial "decoupling." This decoupling was mainly driven by a spatial pattern alteration of the PLE, rather than the SD, in the anesthetic state. Our results suggest differential physiological grounds of PLE and SD and highlight the functional importance of the topographical organization of LRTCs in maintaining an optimal spatiotemporal configuration of the neural dynamics during normal level of consciousness. The central role of the spatial distribution of LRTCs, reflecting temporo-spatial nestedness, may support the recently introduced temporo-spatial theory of consciousness (TTC). © 2018 Wiley Periodicals, Inc.

  13. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala.

    PubMed

    Inagaki, Mikio; Fujita, Ichiro

    2011-07-13

    Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.

  14. Subclinical seizures as a pitfall in 18F-FDG PET imaging of temporal lobe epilepsy.

    PubMed

    Tafti, Bashir Akhavan; Mandelkern, Mark; Berenji, Gholam Reza

    2014-09-01

    A 61-year-old man with history of heroin abuse, hepatitis B, hepatitis C, and hypertension was evaluated for seizures. MRI findings were concerning for temporal epilepsy. A brain 18F-FDG PET study showed a hypermetabolic focus in the left temporal lobe, although the patient was asymptomatic during the scan. Later review of electroencephalography recordings revealed a subclinical seizure during imaging. A whole-body 18F-FDG PET scan performed 4 days later for cancer screening purposes, during which the electroencephalography tracings were normal, showed no abnormal metabolic activity in the brain.

  15. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS)

    PubMed Central

    Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom sound perception and potentially serve as an objective measure of central neural pathology. PMID:28604786

  16. Effects of age and sex on developmental neural networks of visual-spatial attention allocation.

    PubMed

    Rubia, Katya; Hyde, Zoe; Halari, Rozmin; Giampietro, Vincent; Smith, Anna

    2010-06-01

    Compared to our understanding of the functional maturation of brain networks underlying complex cognitive abilities, hardly anything is known of the neurofunctional development of simpler cognitive abilities such as visuo-spatial attention allocation. Furthermore, nothing is known on the effect of gender on the functional development of attention allocation. This study employed event related functional magnetic resonance imaging to investigate effects of age, sex, and sex by age interactions on the brain activation of 63 males and females, between 13 to 38years, during a visual-spatial oddball task. Behaviourally, with increasing age, speed was traded for accuracy, indicative of a less impulsive performance style in older subjects. Increasing age was associated with progressively increased activation in typical areas of selective attention of lateral fronto-striatal and temporo-parietal brain regions. Sex difference analysis showed enhanced activation in right-hemispheric inferior frontal and superior temporal regions in females, and in left-hemispheric inferior temporo-parietal regions in males. Importantly, the age by sex interaction findings showed that these sex-dimorphic patterns of brain activation may be the result of underlying sex differences in the functional maturation of these brain regions, as females had sex-specific progressive age-correlations in the same right inferior fronto-striato-temporal areas, while male-specific age-correlations were in left medial temporal and parietal areas. The findings demonstrate progressive functional maturation of fronto-striato-parieto-temporal networks of the relatively simple function of attention allocation between early adolescence and mid-adulthood. They furthermore show that sex-dimorphic patterns of enhanced reliance on right inferior frontal, striatal and superior temporal regions in females and of left temporo-parietal regions in males during attention allocation may be the result of underlying sex differences in the functional maturation of these brain regions. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Fidelity of the ensemble code for visual motion in primate retina.

    PubMed

    Frechette, E S; Sher, A; Grivich, M I; Petrusca, D; Litke, A M; Chichilnisky, E J

    2005-07-01

    Sensory experience typically depends on the ensemble activity of hundreds or thousands of neurons, but little is known about how populations of neurons faithfully encode behaviorally important sensory information. We examined how precisely speed of movement is encoded in the population activity of magnocellular-projecting parasol retinal ganglion cells (RGCs) in macaque monkey retina. Multi-electrode recordings were used to measure the activity of approximately 100 parasol RGCs simultaneously in isolated retinas stimulated with moving bars. To examine how faithfully the retina signals motion, stimulus speed was estimated directly from recorded RGC responses using an optimized algorithm that resembles models of motion sensing in the brain. RGC population activity encoded speed with a precision of approximately 1%. The elementary motion signal was conveyed in approximately 10 ms, comparable to the interspike interval. Temporal structure in spike trains provided more precise speed estimates than time-varying firing rates. Correlated activity between RGCs had little effect on speed estimates. The spatial dispersion of RGC receptive fields along the axis of motion influenced speed estimates more strongly than along the orthogonal direction, as predicted by a simple model based on RGC response time variability and optimal pooling. on and off cells encoded speed with similar and statistically independent variability. Simulation of downstream speed estimation using populations of speed-tuned units showed that peak (winner take all) readout provided more precise speed estimates than centroid (vector average) readout. These findings reveal how faithfully the retinal population code conveys information about stimulus speed and the consequences for motion sensing in the brain.

  18. Neural imaging in songbirds using fiber optic fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Nooshabadi, Fatemeh; Hearn, Gentry; Lints, Thierry; Maitland, Kristen C.

    2012-02-01

    The song control system of juvenile songbirds is an important model for studying the developmental acquisition and generation of complex learned vocal motor sequences, two processes that are fundamental to human speech and language. To understand the neural mechanisms underlying song production, it is critical to characterize the activity of identified neurons in the song control system when the bird is singing. Neural imaging in unrestrained singing birds, although technically challenging, will advance our understanding of neural ensemble coding mechanisms in this system. We are exploring the use of a fiber optic microscope for functional imaging in the brain of behaving and singing birds in order to better understand the contribution of a key brain nucleus (high vocal center nucleus; HVC) to temporal aspects of song motor control. We have constructed a fluorescence microscope with LED illumination, a fiber bundle for transmission of fluorescence excitation and emission light, a ~2x GRIN lens, and a CCD for image acquisition. The system has 2 μm resolution, 375 μm field of view, 200 μm working distance, and 1 mm outer diameter. As an initial characterization of this setup, neurons in HVC were imaged using the fiber optic microscope after injection of quantum dots or fluorescent retrograde tracers into different song nuclei. A Lucid Vivascope confocal microscope was used to confirm the imaging results. Long-term imaging of the activity of these neurons in juvenile birds during singing may lead us to a better understanding of the central motor codes for song and the central mechanism by which auditory experience modifies song motor commands to enable vocal learning and imitation.

  19. Anticipated and zero-lag synchronization in motifs of delay-coupled systems

    NASA Astrophysics Data System (ADS)

    Mirasso, Claudio R.; Carelli, Pedro V.; Pereira, Tiago; Matias, Fernanda S.; Copelli, Mauro

    2017-11-01

    Anticipated and zero-lag synchronization have been observed in different scientific fields. In the brain, they might play a fundamental role in information processing, temporal coding and spatial attention. Recent numerical work on anticipated and zero-lag synchronization studied the role of delays. However, an analytical understanding of the conditions for these phenomena remains elusive. In this paper, we study both phenomena in systems with small delays. By performing a phase reduction and studying phase locked solutions, we uncover the functional relation between the delay, excitation and inhibition for the onset of anticipated synchronization in a sender-receiver-interneuron motif. In the case of zero-lag synchronization in a chain motif, we determine the stability conditions. These analytical solutions provide an excellent prediction of the phase-locked regimes of Hodgkin-Huxley models and Roessler oscillators.

  20. Spatiotemporal patterns of ERP based on combined ICA-LORETA analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacai; Guo, Taomei; Xu, Yaqin; Zhao, Xiaojie; Yao, Li

    2007-03-01

    In contrast to the FMRI methods widely used up to now, this method try to understand more profoundly how the brain systems work under sentence processing task map accurately the spatiotemporal patterns of activity of the large neuronal populations in the human brain from the analysis of ERP data recorded on the brain scalp. In this study, an event-related brain potential (ERP) paradigm to record the on-line responses to the processing of sentences is chosen as an example. In order to give attention to both utilizing the ERPs' temporal resolution of milliseconds and overcoming the insensibility of cerebral location ERP sources, we separate these sources in space and time based on a combined method of independent component analysis (ICA) and low-resolution tomography (LORETA) algorithms. ICA blindly separate the input ERP data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. And then the spatial maps associated with each ICA component are analyzed, with use of LORETA to uniquely locate its cerebral sources throughout the full brain according to the assumption that neighboring neurons are simultaneously and synchronously activated. Our results show that the cerebral computation mechanism underlies content words reading is mediated by the orchestrated activity of several spatially distributed brain sources located in the temporal, frontal, and parietal areas, and activate at distinct time intervals and are grouped into different statistically independent components. Thus ICA-LORETA analysis provides an encouraging and effective method to study brain dynamics from ERP.

  1. High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study.

    PubMed

    Schiltz, Kolja; Witzel, Joachim G; Bausch-Hölterhoff, Josef; Bogerts, Bernhard

    2013-10-01

    The aim of this study was to determine the frequency and extent of brain anomalies in a large sample of incarcerated violent offenders not previously considered neuropsychiatrically ill, in comparison with non-violent offenders and non-offending controls. MRI and CT brain scans from 287 male prison inmates (162 violent and 125 non-violent) not diagnosed as mentally ill before that were obtained due to headache, vertigo or psychological complaints during imprisonment were assessed and compared to 52 non-criminal controls. Brain scans were rated qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1) or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex and medial temporal structures bilaterally as well as third ventricle. Overall, offenders displayed a significantly higher rate of morphological abnormality, with the violent offenders scoring significantly higher than non-violent offenders and controls. This difference was statistically detectable for frontal/parietal cortex, medial temporal structures, third ventricle and the left but not the right lateral ventricle. The remarkable prevalence of brain pathology in convicted violent prisoners detectable by neuroradiological routine assessment not only highlights the importance of frontal and temporal structures in the control of social, and specifically of violent behaviour, but also raises questions on the legal culpability of violent offenders with brain abnormalities. The high proportion of undetected presence of structural brain damage emphasizes the need that in violent criminals, the comprehensive routine neuropsychiatric assessment usually performed in routine forensic psychiatric expertises should be complemented with brain imaging.

  2. The Nature and Neural Correlates of Semantic Association versus Conceptual Similarity

    PubMed Central

    Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A.

    2015-01-01

    The ability to represent concepts and the relationships between them is critical to human cognition. How does the brain code relationships between items that share basic conceptual properties (e.g., dog and wolf) while simultaneously representing associative links between dissimilar items that co-occur in particular contexts (e.g., dog and bone)? To clarify the neural bases of these semantic components in neurologically intact participants, both types of semantic relationship were investigated in an fMRI study optimized for anterior temporal lobe (ATL) coverage. The clear principal finding was that the same core semantic network (ATL, superior temporal sulcus, ventral prefrontal cortex) was equivalently engaged when participants made semantic judgments on the basis of association or conceptual similarity. Direct comparisons revealed small, weaker differences for conceptual similarity > associative decisions (e.g., inferior prefrontal cortex) and associative > conceptual similarity (e.g., ventral parietal cortex) which appear to reflect graded differences in task difficulty. Indeed, once reaction time was entered as a covariate into the analysis, no associative versus category differences remained. The paper concludes with a discussion of how categorical/feature-based and associative relationships might be represented within a single, unified semantic system. PMID:25636912

  3. Tracing Activity Across the Whole Brain Neural Network with Optogenetic Functional Magnetic Resonance Imaging

    PubMed Central

    Lee, Jin Hyung

    2011-01-01

    Despite the overwhelming need, there has been a relatively large gap in our ability to trace network level activity across the brain. The complex dense wiring of the brain makes it extremely challenging to understand cell-type specific activity and their communication beyond a few synapses. Recent development of the optogenetic functional magnetic resonance imaging (ofMRI) provides a new impetus for the study of brain circuits by enabling causal tracing of activities arising from defined cell types and firing patterns across the whole brain. Brain circuit elements can be selectively triggered based on their genetic identity, cell body location, and/or their axonal projection target with temporal precision while the resulting network response is monitored non-invasively with unprecedented spatial and temporal accuracy. With further studies including technological innovations to bring ofMRI to its full potential, ofMRI is expected to play an important role in our system-level understanding of the brain circuit mechanism. PMID:22046160

  4. Temporal orienting precedes intersensory attention and has opposing effects on early evoked brain activity.

    PubMed

    Keil, Julian; Pomper, Ulrich; Feuerbach, Nele; Senkowski, Daniel

    2017-03-01

    Intersensory attention (IA) describes the process of directing attention to a specific modality. Temporal orienting (TO) characterizes directing attention to a specific moment in time. Previously, studies indicated that these two processes could have opposite effects on early evoked brain activity. The exact time-course and processing stages of both processes are still unknown. In this human electroencephalography study, we investigated the effects of IA and TO on visuo-tactile stimulus processing within one paradigm. IA was manipulated by presenting auditory cues to indicate whether participants should detect visual or tactile targets in visuo-tactile stimuli. TO was manipulated by presenting stimuli block-wise at fixed or variable inter-stimulus intervals. We observed that TO affects evoked activity to visuo-tactile stimuli prior to IA. Moreover, we found that TO reduces the amplitude of early evoked brain activity, whereas IA enhances it. Using beamformer source-localization, we observed that IA increases neural responses in sensory areas of the attended modality whereas TO reduces brain activity in widespread cortical areas. Based on these findings we derive an updated working model for the effects of temporal and intersensory attention on early evoked brain activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Spatio-Temporal Progression of Cortical Activity Related to Continuous Overt and Covert Speech Production in a Reading Task.

    PubMed

    Brumberg, Jonathan S; Krusienski, Dean J; Chakrabarti, Shreya; Gunduz, Aysegul; Brunner, Peter; Ritaccio, Anthony L; Schalk, Gerwin

    2016-01-01

    How the human brain plans, executes, and monitors continuous and fluent speech has remained largely elusive. For example, previous research has defined the cortical locations most important for different aspects of speech function, but has not yet yielded a definition of the temporal progression of involvement of those locations as speech progresses either overtly or covertly. In this paper, we uncovered the spatio-temporal evolution of neuronal population-level activity related to continuous overt speech, and identified those locations that shared activity characteristics across overt and covert speech. Specifically, we asked subjects to repeat continuous sentences aloud or silently while we recorded electrical signals directly from the surface of the brain (electrocorticography (ECoG)). We then determined the relationship between cortical activity and speech output across different areas of cortex and at sub-second timescales. The results highlight a spatio-temporal progression of cortical involvement in the continuous speech process that initiates utterances in frontal-motor areas and ends with the monitoring of auditory feedback in superior temporal gyrus. Direct comparison of cortical activity related to overt versus covert conditions revealed a common network of brain regions involved in speech that may implement orthographic and phonological processing. Our results provide one of the first characterizations of the spatiotemporal electrophysiological representations of the continuous speech process, and also highlight the common neural substrate of overt and covert speech. These results thereby contribute to a refined understanding of speech functions in the human brain.

  6. Concomitant fractional anisotropy and volumetric abnormalities in temporal lobe epilepsy: cross-sectional evidence for progressive neurologic injury.

    PubMed

    Keller, Simon S; Schoene-Bake, Jan-Christoph; Gerdes, Jan S; Weber, Bernd; Deppe, Michael

    2012-01-01

    In patients with temporal lobe epilepsy and associated hippocampal sclerosis (TLEhs) there are brain abnormalities extending beyond the presumed epileptogenic zone as revealed separately in conventional magnetic resonance imaging (MRI) and MR diffusion tensor imaging (DTI) studies. However, little is known about the relation between macroscopic atrophy (revealed by volumetric MRI) and microstructural degeneration (inferred by DTI). For 62 patients with unilateral TLEhs and 68 healthy controls, we determined volumes and mean fractional anisotropy (FA) of ipsilateral and contralateral brain structures from T1-weighted and DTI data, respectively. We report significant volume atrophy and FA alterations of temporal lobe, subcortical and callosal regions, which were more diffuse and bilateral in patients with left TLEhs relative to right TLEhs. We observed significant relationships between volume loss and mean FA, particularly of the thalamus and putamen bilaterally. When corrected for age, duration of epilepsy was significantly correlated with FA loss of an anatomically plausible route - including ipsilateral parahippocampal gyrus and temporal lobe white matter, the thalamus bilaterally, and posterior regions of the corpus callosum that contain temporal lobe fibres - that may be suggestive of progressive brain degeneration in response to recurrent seizures. Chronic TLEhs is associated with interrelated DTI-derived and volume-derived brain degenerative abnormalities that are influenced by the duration of the disorder and the side of seizure onset. This work confirms previously contradictory findings by employing multi-modal imaging techniques in parallel in a large sample of patients.

  7. Spatio-Temporal Progression of Cortical Activity Related to Continuous Overt and Covert Speech Production in a Reading Task

    PubMed Central

    Brumberg, Jonathan S.; Krusienski, Dean J.; Chakrabarti, Shreya; Gunduz, Aysegul; Brunner, Peter; Ritaccio, Anthony L.; Schalk, Gerwin

    2016-01-01

    How the human brain plans, executes, and monitors continuous and fluent speech has remained largely elusive. For example, previous research has defined the cortical locations most important for different aspects of speech function, but has not yet yielded a definition of the temporal progression of involvement of those locations as speech progresses either overtly or covertly. In this paper, we uncovered the spatio-temporal evolution of neuronal population-level activity related to continuous overt speech, and identified those locations that shared activity characteristics across overt and covert speech. Specifically, we asked subjects to repeat continuous sentences aloud or silently while we recorded electrical signals directly from the surface of the brain (electrocorticography (ECoG)). We then determined the relationship between cortical activity and speech output across different areas of cortex and at sub-second timescales. The results highlight a spatio-temporal progression of cortical involvement in the continuous speech process that initiates utterances in frontal-motor areas and ends with the monitoring of auditory feedback in superior temporal gyrus. Direct comparison of cortical activity related to overt versus covert conditions revealed a common network of brain regions involved in speech that may implement orthographic and phonological processing. Our results provide one of the first characterizations of the spatiotemporal electrophysiological representations of the continuous speech process, and also highlight the common neural substrate of overt and covert speech. These results thereby contribute to a refined understanding of speech functions in the human brain. PMID:27875590

  8. Schizotypal Perceptual Aberrations of Time: Correlation between Score, Behavior and Brain Activity

    PubMed Central

    Arzy, Shahar; Mohr, Christine; Molnar-Szakacs, Istvan; Blanke, Olaf

    2011-01-01

    A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances – including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS) scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS) similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum. PMID:21267456

  9. Neuronal cell fate specification by the molecular convergence of different spatio-temporal cues on a common initiator terminal selector gene

    PubMed Central

    Stratmann, Johannes

    2017-01-01

    The extensive genetic regulatory flows underlying specification of different neuronal subtypes are not well understood at the molecular level. The Nplp1 neuropeptide neurons in the developing Drosophila nerve cord belong to two sub-classes; Tv1 and dAp neurons, generated by two distinct progenitors. Nplp1 neurons are specified by spatial cues; the Hox homeotic network and GATA factor grn, and temporal cues; the hb -> Kr -> Pdm -> cas -> grh temporal cascade. These spatio-temporal cues combine into two distinct codes; one for Tv1 and one for dAp neurons that activate a common terminal selector feedforward cascade of col -> ap/eya -> dimm -> Nplp1. Here, we molecularly decode the specification of Nplp1 neurons, and find that the cis-regulatory organization of col functions as an integratory node for the different spatio-temporal combinatorial codes. These findings may provide a logical framework for addressing spatio-temporal control of neuronal sub-type specification in other systems. PMID:28414802

  10. The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information

    PubMed Central

    Bendor, Daniel

    2015-01-01

    In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843

  11. Robust Nonlinear Neural Codes

    NASA Astrophysics Data System (ADS)

    Yang, Qianli; Pitkow, Xaq

    2015-03-01

    Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.

  12. Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia.

    PubMed

    Brans, Rachel G H; van Haren, Neeltje E M; van Baal, G Caroline M; Schnack, Hugo G; Kahn, René S; Hulshoff Pol, Hilleke E

    2008-11-01

    Structural brain abnormalities have consistently been found in schizophrenia, with increased familial risk for the disease associated with these abnormalities. Some brain volume changes are progressive over the course of the illness. Whether these progressive brain volume changes are mediated by genetic or disease-related factors is unknown. To investigate whether genetic and/or environmental factors are associated with progressive brain volume changes in schizophrenia. Longitudinal 5-year follow-up in monozygotic (MZ) and dizygotic (DZ) twin pairs discordant for schizophrenia and healthy comparison twin pairs using brain magnetic resonance imaging. Participants were recruited from the twin pair cohort at the University Medical Center Utrecht. A total of 92 participants completed the study: 9 MZ and 10 DZ twin pairs discordant for schizophrenia and 14 MZ and 13 DZ healthy twin pairs. Percentage volume changes of the whole brain; cerebral gray and white matter of the frontal, temporal, parietal, and occipital lobes; cerebellum; and lateral and third ventricles over time between and within twin pairs were compared using repeated measures analysis of covariance. Structural equation modeling was applied to estimate contributions of additive genetic and common and unique environmental factors. Significant decreases over time in whole brain and frontal and temporal lobe volumes were found in patients with schizophrenia and their unaffected co-twins compared with control twins. Bivariate structural equation modeling using cross-trait/cross-twin correlations revealed significant additive genetic influences on the correlations between schizophrenia liability and progressive whole brain (66%; 95% confidence interval [CI], 51%-100%), frontal lobe (76%; 95% CI, 54%-100%), and temporal lobe (79%; CI, 56%-100%) volume change. The progressive brain volume loss found in patients with schizophrenia and their unaffected co-twins is at least partly attributable to genetic factors related to the illness.

  13. Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping.

    PubMed

    Gao, Xiaoqing; Gentile, Francesco; Rossion, Bruno

    2018-06-01

    Defining the neural basis of perceptual categorization in a rapidly changing natural environment with low-temporal resolution methods such as functional magnetic resonance imaging (fMRI) is challenging. Here, we present a novel fast periodic stimulation (FPS)-fMRI approach to define face-selective brain regions with natural images. Human observers are presented with a dynamic stream of widely variable natural object images alternating at a fast rate (6 images/s). Every 9 s, a short burst of variable face images contrasting with object images in pairs induces an objective face-selective neural response at 0.111 Hz. A model-free Fourier analysis achieves a twofold increase in signal-to-noise ratio compared to a conventional block-design approach with identical stimuli and scanning duration, allowing to derive a comprehensive map of face-selective areas in the ventral occipito-temporal cortex, including the anterior temporal lobe (ATL), in all individual brains. Critically, periodicity of the desired category contrast and random variability among widely diverse images effectively eliminates the contribution of low-level visual cues, and lead to the highest values (80-90%) of test-retest reliability in the spatial activation map yet reported in imaging higher level visual functions. FPS-fMRI opens a new avenue for understanding brain function with low-temporal resolution methods.

  14. Effects of active music therapy on the normal brain: fMRI based evidence.

    PubMed

    Raglio, Alfredo; Galandra, Caterina; Sibilla, Luisella; Esposito, Fabrizio; Gaeta, Francesca; Di Salle, Francesco; Moro, Luca; Carne, Irene; Bastianello, Stefano; Baldi, Maurizia; Imbriani, Marcello

    2016-03-01

    The aim of this study was to investigate the neurophysiological bases of Active Music Therapy (AMT) and its effects on the normal brain. Twelve right-handed, healthy, non-musician volunteers were recruited. The subjects underwent 2 AMT sessions based on the free sonorous-music improvisation using rhythmic and melodic instruments. After these sessions, each subject underwent 2 fMRI scan acquisitions while listening to a Syntonic (SP) and an A-Syntonic (AP) Production from the AMT sessions. A 3 T Discovery MR750 scanner with a 16-channel phased array head coil was used, and the image analysis was performed with Brain Voyager QX 2.8. The listening to SP vs AP excerpts mainly activated: (1) the right middle temporal gyrus and right superior temporal sulcus, (2) the right middle frontal gyrus and in particular the right precentral gyrus, (3) the bilateral precuneus, (4) the left superior temporal sulcus and (5) the left middle temporal gyrus. These results are consistent with the psychological bases of the AMT approach and with the activation of brain areas involved in memory and autobiographical processes, and also in personal or interpersonal significant experiences. Further studies are required to confirm these findings and to explain possible effects of AMT in clinical settings.

  15. Post-traumatic stress disorder: a right temporal lobe syndrome?

    NASA Astrophysics Data System (ADS)

    Engdahl, B.; Leuthold, A. C.; Tan, H.-R. M.; Lewis, S. M.; Winskowski, A. M.; Dikel, T. N.; Georgopoulos, A. P.

    2010-12-01

    In a recent paper (Georgopoulos et al 2010 J. Neural Eng. 7 016011) we reported on the power of the magnetoencephalography (MEG)-based synchronous neural interactions (SNI) test to differentiate post-traumatic stress disorder (PTSD) subjects from healthy control subjects and to classify them with a high degree of accuracy. Here we show that the main differences in cortical communication circuitry between these two groups lie in the miscommunication of temporal and parietal and/or parieto-occipital right hemispheric areas with other brain areas. This lateralized temporal-posterior pattern of miscommunication was very similar but was attenuated in patients with PTSD in remission. These findings are consistent with observations (Penfield 1958 Proc. Natl Acad. Sci. USA 44 51-66, Penfield and Perot 1963 Brain 86 595-696, Gloor 1990 Brain 113 1673-94, Banceaud et al 1994 Brain 117 71-90, Fried 1997 J. Neuropsychiatry Clin. Neurosci. 9 420-8) that electrical stimulation of the temporal cortex in awake human subjects, mostly in the right hemisphere, can elicit the re-enactment and re-living of past experiences. Based on these facts, we attribute our findings to the re-experiencing component of PTSD and hypothesize that it reflects an involuntarily persistent activation of interacting neural networks involved in experiential consolidation.

  16. Using Abbreviated Injury Scale (AIS) codes to classify Computed Tomography (CT) features in the Marshall System.

    PubMed

    Lesko, Mehdi M; Woodford, Maralyn; White, Laura; O'Brien, Sarah J; Childs, Charmaine; Lecky, Fiona E

    2010-08-06

    The purpose of Abbreviated Injury Scale (AIS) is to code various types of Traumatic Brain Injuries (TBI) based on their anatomical location and severity. The Marshall CT Classification is used to identify those subgroups of brain injured patients at higher risk of deterioration or mortality. The purpose of this study is to determine whether and how AIS coding can be translated to the Marshall Classification Initially, a Marshall Class was allocated to each AIS code through cross-tabulation. This was agreed upon through several discussion meetings with experts from both fields (clinicians and AIS coders). Furthermore, in order to make this translation possible, some necessary assumptions with regards to coding and classification of mass lesions and brain swelling were essential which were all approved and made explicit. The proposed method involves two stages: firstly to determine all possible Marshall Classes which a given patient can attract based on allocated AIS codes; via cross-tabulation and secondly to assign one Marshall Class to each patient through an algorithm. This method can be easily programmed in computer softwares and it would enable future important TBI research programs using trauma registry data.

  17. Using Abbreviated Injury Scale (AIS) codes to classify Computed Tomography (CT) features in the Marshall System

    PubMed Central

    2010-01-01

    Background The purpose of Abbreviated Injury Scale (AIS) is to code various types of Traumatic Brain Injuries (TBI) based on their anatomical location and severity. The Marshall CT Classification is used to identify those subgroups of brain injured patients at higher risk of deterioration or mortality. The purpose of this study is to determine whether and how AIS coding can be translated to the Marshall Classification Methods Initially, a Marshall Class was allocated to each AIS code through cross-tabulation. This was agreed upon through several discussion meetings with experts from both fields (clinicians and AIS coders). Furthermore, in order to make this translation possible, some necessary assumptions with regards to coding and classification of mass lesions and brain swelling were essential which were all approved and made explicit. Results The proposed method involves two stages: firstly to determine all possible Marshall Classes which a given patient can attract based on allocated AIS codes; via cross-tabulation and secondly to assign one Marshall Class to each patient through an algorithm. Conclusion This method can be easily programmed in computer softwares and it would enable future important TBI research programs using trauma registry data. PMID:20691038

  18. Cannabinoid Receptor 1 Gene Polymorphisms and Marijuana Misuse Interactions On White Matter and Cognitive Deficits in Schizophrenia

    PubMed Central

    Ho, Beng-Choon; Wassink, Thomas H.; Ziebell, Steven; Andreasen, Nancy C.

    2011-01-01

    Marijuana exposure during the critical period of adolescent brain maturation may disrupt neuro-modulatory influences of endocannabinoids and increase schizophrenia susceptibility. Cannabinoid receptor 1 (CB1/CNR1) is the principal brain receptor mediating marijuana effects. No study to-date has systematically investigated the impact of CNR1 on quantitative phenotypic features in schizophrenia and inter-relationships with marijuana misuse. We genotyped 235 schizophrenia patients using 12 tag single nucleotide polymorphisms (tSNPs) that account for most of CB1 coding region genetic variability. Patients underwent a high-resolution anatomic brain magnetic resonance scan and cognitive assessment. Almost a quarter of the sample met DSM marijuana abuse (14%) or dependence (8%) criteria. Effects of CNR1 tSNPs and marijuana abuse/dependence on brain volumes and neurocognition were assessed using ANCOVA, including co-morbid alcohol/non-marijuana illicit drug misuse as covariates. Significant main effects of CNR1 tSNPs (rs7766029, rs12720071, and rs9450898) were found in white matter (WM) volumes. Patients with marijuana abuse/dependence had smaller fronto-temporal WM volumes than patients without heavy marijuana use. More interestingly, there were significant rs12720071 genotype-by-marijuana use interaction effects on WM volumes and neurocognitive impairment; suggestive of gene-environment interactions for conferring phenotypic abnormalities in schizophrenia. In this comprehensive evaluation of genetic variants distributed across the CB1 locus, CNR1 genetic polymorphisms were associated with WM brain volume variation among schizophrenia patients. Our findings suggest that heavy cannabis use in the context of specific CNR1 genotypes may contribute to greater WM volume deficits and cognitive impairment, which could in turn increase schizophrenia risk. PMID:21420833

  19. The BDNF Val66Met Polymorphism Influences Reading Ability and Patterns of Neural Activation in Children.

    PubMed

    Jasińska, Kaja K; Molfese, Peter J; Kornilov, Sergey A; Mencl, W Einar; Frost, Stephen J; Lee, Maria; Pugh, Kenneth R; Grigorenko, Elena L; Landi, Nicole

    2016-01-01

    Understanding how genes impact the brain's functional activation for learning and cognition during development remains limited. We asked whether a common genetic variant in the BDNF gene (the Val66Met polymorphism) modulates neural activation in the young brain during a critical period for the emergence and maturation of the neural circuitry for reading. In animal models, the bdnf variation has been shown to be associated with the structure and function of the developing brain and in humans it has been associated with multiple aspects of cognition, particularly memory, which are relevant for the development of skilled reading. Yet, little is known about the impact of the Val66Met polymorphism on functional brain activation in development, either in animal models or in humans. Here, we examined whether the BDNF Val66Met polymorphism (dbSNP rs6265) is associated with children's (age 6-10) neural activation patterns during a reading task (n = 81) using functional magnetic resonance imaging (fMRI), genotyping, and standardized behavioral assessments of cognitive and reading development. Children homozygous for the Val allele at the SNP rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and phonological memory, tasks that have a strong memory component. Consistent with these behavioral findings, Met allele carriers showed greater activation in reading-related brain regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal gyrus as well as greater activation in the hippocampus during a word and pseudoword reading task. Increased engagement of memory and spoken language regions for Met allele carriers relative to Val/Val homozygotes during reading suggests that Met carriers have to exert greater effort required to retrieve phonological codes.

  20. Temporal Dynamics Assessment of Spatial Overlap Pattern of Functional Brain Networks Reveals Novel Functional Architecture of Cerebral Cortex.

    PubMed

    Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhao, Shijie; Zhang, Shu; Zhang, Wei; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming

    2018-06-01

    Various studies in the brain mapping field have demonstrated that there exist multiple concurrent functional networks that are spatially overlapped and interacting with each other during specific task performance to jointly realize the total brain function. Assessing such spatial overlap patterns of functional networks (SOPFNs) based on functional magnetic resonance imaging (fMRI) has thus received increasing interest for brain function studies. However, there are still two crucial issues to be addressed. First, the SOPFNs are assessed over the entire fMRI scan assuming the temporal stationarity, while possibly time-dependent dynamics of the SOPFNs is not sufficiently explored. Second, the SOPFNs are assessed within individual subjects, while group-wise consistency of the SOPFNs is largely unknown. To address the two issues, we propose a novel computational framework of group-wise sparse representation of whole-brain fMRI temporal segments to assess the temporal dynamic spatial patterns of SOPFNs that are consistent across different subjects. Experimental results based on the recently publicly released Human Connectome Project grayordinate task fMRI data demonstrate that meaningful SOPFNs exhibiting dynamic spatial patterns across different time periods are effectively and robustly identified based on the reconstructed concurrent functional networks via the proposed framework. Specifically, those SOPFNs locate significantly more on gyral regions than on sulcal regions across different time periods. These results reveal novel functional architecture of cortical gyri and sulci. Moreover, these results help better understand functional dynamics mechanisms of cerebral cortex in the future.

  1. A genome-wide supported psychiatric risk variant in NCAN influences brain function and cognitive performance in healthy subjects.

    PubMed

    Raum, Heidelore; Dietsche, Bruno; Nagels, Arne; Witt, Stephanie H; Rietschel, Marcella; Kircher, Tilo; Krug, Axel

    2015-01-01

    The A allele of the single nucleotide polymorphism (SNP) rs1064395 in the NCAN gene has recently been identified as a susceptibility factor for bipolar disorder and schizophrenia. NCAN encodes neurocan, a brain-specific chondroitin sulfate proteoglycan that is thought to influence neuronal adhesion and migration. Several lines of research suggest an impact of NCAN on neurocognitive functioning. In the present study, we investigated the effects of rs1064395 genotype on neural processing and cognitive performance in healthy subjects. Brain activity was measured with functional magnetic resonance imaging (fMRI) during an overt semantic verbal fluency task in 110 healthy subjects who were genotyped for the NCAN SNP rs1064395. Participants additionally underwent comprehensive neuropsychological testing. Whole brain analyses revealed that NCAN risk status, defined as AA or AG genotype, was associated with a lack of task-related deactivation in a large left lateral temporal cluster extending from the middle temporal gyrus to the temporal pole. Regarding neuropsychological measures, risk allele carriers demonstrated poorer immediate and delayed verbal memory performance when compared to subjects with GG genotype. Better verbal memory performance was significantly associated with greater deactivation of the left temporal cluster during the fMRI task in subjects with GG genotype. The current data demonstrate that common genetic variation in NCAN influences both neural processing and cognitive performance in healthy subjects. Our study provides new evidence for a specific genetic influence on human brain function. © 2014 Wiley Periodicals, Inc.

  2. Hierarchical random cellular neural networks for system-level brain-like signal processing.

    PubMed

    Kozma, Robert; Puljic, Marko

    2013-09-01

    Sensory information processing and cognition in brains are modeled using dynamic systems theory. The brain's dynamic state is described by a trajectory evolving in a high-dimensional state space. We introduce a hierarchy of random cellular automata as the mathematical tools to describe the spatio-temporal dynamics of the cortex. The corresponding brain model is called neuropercolation which has distinct advantages compared to traditional models using differential equations, especially in describing spatio-temporal discontinuities in the form of phase transitions. Phase transitions demarcate singularities in brain operations at critical conditions, which are viewed as hallmarks of higher cognition and awareness experience. The introduced Monte-Carlo simulations obtained by parallel computing point to the importance of computer implementations using very large-scale integration (VLSI) and analog platforms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Entracking as a Brain Stem Code for Pitch: The Butte Hypothesis.

    PubMed

    Joris, Philip X

    2016-01-01

    The basic nature of pitch is much debated. A robust code for pitch exists in the auditory nerve in the form of an across-fiber pooled interspike interval (ISI) distribution, which resembles the stimulus autocorrelation. An unsolved question is how this representation can be "read out" by the brain. A new view is proposed in which a known brain-stem property plays a key role in the coding of periodicity, which I refer to as "entracking", a contraction of "entrained phase-locking". It is proposed that a scalar rather than vector code of periodicity exists by virtue of coincidence detectors that code the dominant ISI directly into spike rate through entracking. Perfect entracking means that a neuron fires one spike per stimulus-waveform repetition period, so that firing rate equals the repetition frequency. Key properties are invariance with SPL and generalization across stimuli. The main limitation in this code is the upper limit of firing (~ 500 Hz). It is proposed that entracking provides a periodicity tag which is superimposed on a tonotopic analysis: at low SPLs and fundamental frequencies > 500 Hz, a spectral or place mechanism codes for pitch. With increasing SPL the place code degrades but entracking improves and first occurs in neurons with low thresholds for the spectral components present. The prediction is that populations of entracking neurons, extended across characteristic frequency, form plateaus ("buttes") of firing rate tied to periodicity.

  4. Functional connectivity evidence of cortico-cortico inhibition in temporal lobe epilepsy.

    PubMed

    Tracy, Joseph I; Osipowicz, Karol; Spechler, Philip; Sharan, Ashwini; Skidmore, Christopher; Doucet, Gaelle; Sperling, Michael R

    2014-01-01

    Epileptic seizures can initiate a neural circuit and lead to aberrant neural communication with brain areas outside the epileptogenic region. We focus on interictal activity in focal temporal lobe epilepsy and evaluate functional connectivity (FC) differences that emerge as function of bilateral versus strictly unilateral epileptiform activity. We assess the strength of FC at rest between the ictal and non-ictal temporal lobes, in addition to whole brain connectivity with the ictal temporal lobe. Results revealed strong connectivity between the temporal lobes for both patient groups, but this did not vary as a function of unilateral versus bilateral interictal status. Both the left and right unilateral temporal lobe groups showed significant anti-correlated activity in regions outside the epileptogenic temporal lobe, primarily involving the contralateral (non-ictal/non-pathologic) hemisphere, with precuneus involvement prominent. The bilateral groups did not show this contralateral anti-correlated activity. This anti-correlated connectivity may represent a form of protective and adaptive inhibition, helping to constrain epileptiform activity to the pathologic temporal lobe. The absence of this activity in the bilateral groups may be indicative of flawed inhibitory mechanisms, helping to explain their more widespread epileptiform activity. Our data suggest that the location and build up of epilepsy networks in the brain are not truly random, and are not limited to the formation of strictly epileptogenic networks. Functional networks may develop to take advantage of the regulatory function of structures such as the precuneus to instantiate an anti-correlated network, generating protective cortico-cortico inhibition for the purpose of limiting seizure spread or epileptogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  5. Functional Connectivity Evidence of Cortico-Cortico Inhibition in Temporal Lobe Epilepsy

    PubMed Central

    Tracy, Joseph I.; Osipowicz, Karol; Spechler, Philip; Sharan, Ashwini; Skidmore, Christopher; Doucet, Gaelle; Sperling, Michael R.

    2012-01-01

    Epileptic seizures can initiate a neural circuit and lead to aberrant neural communication with brain areas outside the epileptogenic region. We focus on interictal activity in focal temporal lobe epilepsy and evaluate functional connectivity differences that emerge as function of bilateral versus strictly unilateral epileptiform activity. We assess the strength of functional connectivity at rest between the ictal and non-ictal temporal lobes, in addition to whole brain connectivity with the ictal temporal lobe. Results revealed strong connectivity between the temporal lobes for both patient groups, but this did not vary as a function of unilateral versus bilateral interictal status. Both the left and right unilateral temporal lobe groups showed significant anti-correlated activity in regions outside the epileptogenic temporal lobe, primarily involving the contralateral (non-ictal/non-pathologic) hemisphere, with precuneus involvement prominent. The bilateral groups did not show this contralateral anti-correlated activity. This anti-correlated connectivity may represent a form of protective and adaptive inhibition, helping to constrain epileptiform activity to the pathologic temporal lobe. The absence of this activity in the bilateral groups may be indicative of flawed inhibitory mechanisms, helping to explain their more widespread epileptiform activity. Our data suggest that the location and build up of epilepsy networks in the brain are not truly random, and are not limited to the formation of strictly epileptogenic networks. Functional networks may develop to take advantage of the regulatory function of structures such as the precuneus to instantiate an anti-correlated network, generating protective cortico-cortico inhibition for the purpose of limiting seizure spread or epileptogenesis. PMID:22987774

  6. Sensory Coding by Cerebellar Mossy Fibres through Inhibition-Driven Phase Resetting and Synchronisation

    PubMed Central

    Holtzman, Tahl; Jörntell, Henrik

    2011-01-01

    Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex. PMID:22046297

  7. Spatiotemporal analysis of single-trial EEG of emotional pictures based on independent component analysis and source location

    NASA Astrophysics Data System (ADS)

    Liu, Jiangang; Tian, Jie

    2007-03-01

    The present study combined the Independent Component Analysis (ICA) and low-resolution brain electromagnetic tomography (LORETA) algorithms to identify the spatial distribution and time course of single-trial EEG record differences between neural responses to emotional stimuli vs. the neutral. Single-trial multichannel (129-sensor) EEG records were collected from 21 healthy, right-handed subjects viewing the emotion emotional (pleasant/unpleasant) and neutral pictures selected from International Affective Picture System (IAPS). For each subject, the single-trial EEG records of each emotional pictures were concatenated with the neutral, and a three-step analysis was applied to each of them in the same way. First, the ICA was performed to decompose each concatenated single-trial EEG records into temporally independent and spatially fixed components, namely independent components (ICs). The IC associated with artifacts were isolated. Second, the clustering analysis classified, across subjects, the temporally and spatially similar ICs into the same clusters, in which nonparametric permutation test for Global Field Power (GFP) of IC projection scalp maps identified significantly different temporal segments of each emotional condition vs. neutral. Third, the brain regions accounted for those significant segments were localized spatially with LORETA analysis. In each cluster, a voxel-by-voxel randomization test identified significantly different brain regions between each emotional condition vs. the neutral. Compared to the neutral, both emotional pictures elicited activation in the visual, temporal, ventromedial and dorsomedial prefrontal cortex and anterior cingulated gyrus. In addition, the pleasant pictures activated the left middle prefrontal cortex and the posterior precuneus, while the unpleasant pictures activated the right orbitofrontal cortex, posterior cingulated gyrus and somatosensory region. Our results were well consistent with other functional imaging studies, while revealed temporal dynamics of emotional processing of specific brain structure with high temporal resolution.

  8. Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes

    PubMed Central

    Costa, Tommaso; Cauda, Franco; Crini, Manuella; Tatu, Mona-Karina; Celeghin, Alessia; de Gelder, Beatrice

    2014-01-01

    The different temporal dynamics of emotions are critical to understand their evolutionary role in the regulation of interactions with the surrounding environment. Here, we investigated the temporal dynamics underlying the perception of four basic emotions from complex scenes varying in valence and arousal (fear, disgust, happiness and sadness) with the millisecond time resolution of Electroencephalography (EEG). Event-related potentials were computed and each emotion showed a specific temporal profile, as revealed by distinct time segments of significant differences from the neutral scenes. Fear perception elicited significant activity at the earliest time segments, followed by disgust, happiness and sadness. Moreover, fear, disgust and happiness were characterized by two time segments of significant activity, whereas sadness showed only one long-latency time segment of activity. Multidimensional scaling was used to assess the correspondence between neural temporal dynamics and the subjective experience elicited by the four emotions in a subsequent behavioral task. We found a high coherence between these two classes of data, indicating that psychological categories defining emotions have a close correspondence at the brain level in terms of neural temporal dynamics. Finally, we localized the brain regions of time-dependent activity for each emotion and time segment with the low-resolution brain electromagnetic tomography. Fear and disgust showed widely distributed activations, predominantly in the right hemisphere. Happiness activated a number of areas mostly in the left hemisphere, whereas sadness showed a limited number of active areas at late latency. The present findings indicate that the neural signature of basic emotions can emerge as the byproduct of dynamic spatiotemporal brain networks as investigated with millisecond-range resolution, rather than in time-independent areas involved uniquely in the processing one specific emotion. PMID:24214921

  9. Why the Brain Knows More than We Do: Non-Conscious Representations and Their Role in the Construction of Conscious Experience

    PubMed Central

    Dresp-Langley, Birgitta

    2011-01-01

    Scientific studies have shown that non-conscious stimuli and representations influence information processing during conscious experience. In the light of such evidence, questions about potential functional links between non-conscious brain representations and conscious experience arise. This article discusses neural model capable of explaining how statistical learning mechanisms in dedicated resonant circuits could generate specific temporal activity traces of non-conscious representations in the brain. How reentrant signaling, top-down matching, and statistical coincidence of such activity traces may lead to the progressive consolidation of temporal patterns that constitute the neural signatures of conscious experience in networks extending across large distances beyond functionally specialized brain regions is then explained. PMID:24962683

  10. Representations of temporal information in short-term memory: Are they modality-specific?

    PubMed

    Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M

    2016-10-01

    Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Functional organization for musical consonance and tonal pitch hierarchy in human auditory cortex.

    PubMed

    Bidelman, Gavin M; Grall, Jeremy

    2014-11-01

    Pitch relationships in music are characterized by their degree of consonance, a hierarchical perceptual quality that distinguishes how pleasant musical chords/intervals sound to the ear. The origins of consonance have been debated since the ancient Greeks. To elucidate the neurobiological mechanisms underlying these musical fundamentals, we recorded neuroelectric brain activity while participants listened passively to various chromatic musical intervals (simultaneously sounding pitches) varying in their perceptual pleasantness (i.e., consonance/dissonance). Dichotic presentation eliminated acoustic and peripheral contributions that often confound explanations of consonance. We found that neural representations for pitch in early human auditory cortex code perceptual features of musical consonance and follow a hierarchical organization according to music-theoretic principles. These neural correlates emerge pre-attentively within ~ 150 ms after the onset of pitch, are segregated topographically in superior temporal gyrus with a rightward hemispheric bias, and closely mirror listeners' behavioral valence preferences for the chromatic tone combinations inherent to music. A perceptual-based organization implies that parallel to the phonetic code for speech, elements of music are mapped within early cerebral structures according to higher-order, perceptual principles and the rules of Western harmony rather than simple acoustic attributes. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer's disease

    PubMed Central

    Khermesh, Khen; D'Erchia, Anna Maria; Barak, Michal; Annese, Anita; Wachtel, Chaim; Levanon, Erez Y.; Picardi, Ernesto; Eisenberg, Eli

    2016-01-01

    Adenosine to inosine (A-to-I) RNA editing, catalyzed by the ADAR enzyme family, acts on dsRNA structures within pre-mRNA molecules. Editing of the coding part of the mRNA may lead to recoding, amino acid substitution in the resulting protein, possibly modifying its biochemical and biophysical properties. Altered RNA editing patterns have been observed in various neurological pathologies. Here, we present a comprehensive study of recoding by RNA editing in Alzheimer's disease (AD), the most common cause of irreversible dementia. We have used a targeted resequencing approach supplemented by a microfluidic-based high-throughput PCR coupled with next-generation sequencing to accurately quantify A-to-I RNA editing levels in a preselected set of target sites, mostly located within the coding sequence of synaptic genes. Overall, editing levels decreased in AD patients’ brain tissues, mainly in the hippocampus and to a lesser degree in the temporal and frontal lobes. Differential RNA editing levels were observed in 35 target sites within 22 genes. These results may shed light on a possible association between the neurodegenerative processes typical for AD and deficient RNA editing. PMID:26655226

  13. The Relative Importance of Spatial Versus Temporal Structure in the Perception of Biological Motion: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Hirai, Masahiro; Hiraki, Kazuo

    2006-01-01

    We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and…

  14. Temporal sequence learning in winner-take-all networks of spiking neurons demonstrated in a brain-based device.

    PubMed

    McKinstry, Jeffrey L; Edelman, Gerald M

    2013-01-01

    Animal behavior often involves a temporally ordered sequence of actions learned from experience. Here we describe simulations of interconnected networks of spiking neurons that learn to generate patterns of activity in correct temporal order. The simulation consists of large-scale networks of thousands of excitatory and inhibitory neurons that exhibit short-term synaptic plasticity and spike-timing dependent synaptic plasticity. The neural architecture within each area is arranged to evoke winner-take-all (WTA) patterns of neural activity that persist for tens of milliseconds. In order to generate and switch between consecutive firing patterns in correct temporal order, a reentrant exchange of signals between these areas was necessary. To demonstrate the capacity of this arrangement, we used the simulation to train a brain-based device responding to visual input by autonomously generating temporal sequences of motor actions.

  15. Human performance on the temporal bisection task.

    PubMed

    Kopec, Charles D; Brody, Carlos D

    2010-12-01

    The perception and processing of temporal information are tasks the brain must continuously perform. These include measuring the duration of stimuli, storing duration information in memory, recalling such memories, and comparing two durations. How the brain accomplishes these tasks, however, is still open for debate. The temporal bisection task, which requires subjects to compare temporal stimuli to durations held in memory, is perfectly suited to address these questions. Here we perform a meta-analysis of human performance on the temporal bisection task collected from 148 experiments spread across 18 independent studies. With this expanded data set we are able to show that human performance on this task contains a number of significant peculiarities, which in total no single model yet proposed has been able to explain. Here we present a simple 2-step decision model that is capable of explaining all the idiosyncrasies seen in the data. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. The Role of Competitive Inhibition and Top-Down Feedback in Binding during Object Recognition

    PubMed Central

    Wyatte, Dean; Herd, Seth; Mingus, Brian; O’Reilly, Randall

    2012-01-01

    How does the brain bind together visual features that are processed concurrently by different neurons into a unified percept suitable for processes such as object recognition? Here, we describe how simple, commonly accepted principles of neural processing can interact over time to solve the brain’s binding problem. We focus on mechanisms of neural inhibition and top-down feedback. Specifically, we describe how inhibition creates competition among neural populations that code different features, effectively suppressing irrelevant information, and thus minimizing illusory conjunctions. Top-down feedback contributes to binding in a similar manner, but by reinforcing relevant features. Together, inhibition and top-down feedback contribute to a competitive environment that ensures only the most appropriate features are bound together. We demonstrate this overall proposal using a biologically realistic neural model of vision that processes features across a hierarchy of interconnected brain areas. Finally, we argue that temporal synchrony plays only a limited role in binding – it does not simultaneously bind multiple objects, but does aid in creating additional contrast between relevant and irrelevant features. Thus, our overall theory constitutes a solution to the binding problem that relies only on simple neural principles without any binding-specific processes. PMID:22719733

  17. Functional Characterization of the Human Speech Articulation Network.

    PubMed

    Basilakos, Alexandra; Smith, Kimberly G; Fillmore, Paul; Fridriksson, Julius; Fedorenko, Evelina

    2018-05-01

    A number of brain regions have been implicated in articulation, but their precise computations remain debated. Using functional magnetic resonance imaging, we examine the degree of functional specificity of articulation-responsive brain regions to constrain hypotheses about their contributions to speech production. We find that articulation-responsive regions (1) are sensitive to articulatory complexity, but (2) are largely nonoverlapping with nearby domain-general regions that support diverse goal-directed behaviors. Furthermore, premotor articulation regions show selectivity for speech production over some related tasks (respiration control), but not others (nonspeech oral-motor [NSO] movements). This overlap between speech and nonspeech movements concords with electrocorticographic evidence that these regions encode articulators and their states, and with patient evidence whereby articulatory deficits are often accompanied by oral-motor deficits. In contrast, the superior temporal regions show strong selectivity for articulation relative to nonspeech movements, suggesting that these regions play a specific role in speech planning/production. Finally, articulation-responsive portions of posterior inferior frontal gyrus show some selectivity for articulation, in line with the hypothesis that this region prepares an articulatory code that is passed to the premotor cortex. Taken together, these results inform the architecture of the human articulation system.

  18. Neural coordination can be enhanced by occasional interruption of normal firing patterns: a self-optimizing spiking neural network model.

    PubMed

    Woodward, Alexander; Froese, Tom; Ikegami, Takashi

    2015-02-01

    The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attraction. However, so far it is not clear to what extent this process of self-optimization is also operative in real brains. Here we demonstrate that it can be transferred to more biologically plausible neural networks by implementing a self-optimizing spiking neural network model. In addition, by using this spiking neural network to emulate a Hopfield network with Hebbian learning, we attempt to make a connection between rate-based and temporal coding based neural systems. Although further work is required to make this model more realistic, it already suggests that the efficacy of the self-optimizing process is independent from the simplifying assumptions of a conventional Hopfield network. We also discuss natural and cultural processes that could be responsible for occasional alteration of neural firing patterns in actual brains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Differences in visual vs. verbal memory impairments as a result of focal temporal lobe damage in patients with traumatic brain injury.

    PubMed

    Ariza, Mar; Pueyo, Roser; Junqué, Carme; Mataró, María; Poca, María Antonia; Mena, Maria Pau; Sahuquillo, Juan

    2006-09-01

    The aim of the present study was to determine whether the type of lesion in a sample of moderate and severe traumatic brain injury (TBI) was related to material-specific memory impairment. Fifty-nine patients with TBI were classified into three groups according to whether the site of the lesion was right temporal, left temporal or diffuse. Six-months post-injury, visual (Warrington's Facial Recognition Memory Test and Rey's Complex Figure Test) and verbal (Rey's Auditory Verbal Learning Test) memories were assessed. Visual memory deficits assessed by facial memory were associated with right temporal lobe lesion, whereas verbal memory performance assessed with a list of words was related to left temporal lobe lesion. The group with diffuse injury showed both verbal and visual memory impairment. These results suggest a material-specific memory impairment in moderate and severe TBI after focal temporal lesions and a non-specific memory impairment after diffuse damage.

  20. Relationship of Temporal Lobe Volumes to Neuropsychological Test Performance in Healthy Children

    PubMed Central

    Wells, Carolyn T.; Matson, Melissa A.; Kates, Wendy R.; Hay, Trisha; Horska, Alena

    2008-01-01

    Ecological validity of neuropsychological assessment includes the ability of tests to predict real-world functioning and/or covary with brain structures. Studies have examined the relationship between adaptive skills and test performance, with less focus on the association between regional brain volumes and neurobehavioral function in healthy children. The present study examined the relationship between temporal lobe gray matter volumes and performance on two neuropsychological tests hypothesized to measure temporal lobe functioning (Visual Perception-VP; Peabody Picture Vocabulary Test, Third Edition-PPVT-III) in 48 healthy children ages 5-18 years. After controlling for age and gender, left and right temporal and left occipital volumes were significant predictors of VP. Left and right frontal and temporal volumes were significant predictors of PPVT-III. Temporal volume emerged as the strongest lobar correlate with both tests. These results provide convergent and discriminant validity supporting VP as a measure of the “what” system; but suggest the PPVT-III as a complex measure of receptive vocabulary, potentially involving executive function demands. PMID:18513844

  1. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    PubMed

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity.

  2. Input-Dependent Frequency Modulation of Cortical Gamma Oscillations Shapes Spatial Synchronization and Enables Phase Coding

    PubMed Central

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-01-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25–80Hz) may play a significant role in information processing, for example by neural grouping (‘binding’) and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity. PMID:25679780

  3. Transformation of the neural code for tactile detection from thalamus to cortex.

    PubMed

    Vázquez, Yuriria; Salinas, Emilio; Romo, Ranulfo

    2013-07-09

    To understand how sensory-driven neural activity gives rise to perception, it is essential to characterize how various relay stations in the brain encode stimulus presence. Neurons in the ventral posterior lateral (VPL) nucleus of the somatosensory thalamus and in primary somatosensory cortex (S1) respond to vibrotactile stimulation with relatively slow modulations (∼100 ms) of their firing rate. In addition, faster modulations (∼10 ms) time-locked to the stimulus waveform are observed in both areas, but their contribution to stimulus detection is unknown. Furthermore, it is unclear whether VPL and S1 neurons encode stimulus presence with similar accuracy and via the same response features. To address these questions, we recorded single neurons while trained monkeys judged the presence or absence of a vibrotactile stimulus of variable amplitude, and their activity was analyzed with a unique decoding method that is sensitive to the time scale of the firing rate fluctuations. We found that the maximum detection accuracy of single neurons is similar in VPL and S1. However, VPL relies more heavily on fast rate modulations than S1, and as a consequence, the neural code in S1 is more tolerant: its performance degrades less when the readout method or the time scale of integration is suboptimal. Therefore, S1 neurons implement a more robust code, one less sensitive to the temporal integration window used to infer stimulus presence downstream. The differences between VPL and S1 responses signaling the appearance of a stimulus suggest a transformation of the neural code from thalamus to cortex.

  4. Aberrant topological patterns of brain structural network in temporal lobe epilepsy.

    PubMed

    Yasuda, Clarissa Lin; Chen, Zhang; Beltramini, Guilherme Coco; Coan, Ana Carolina; Morita, Marcia Elisabete; Kubota, Bruno; Bergo, Felipe; Beaulieu, Christian; Cendes, Fernando; Gross, Donald William

    2015-12-01

    Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of cortical/subcortical morphology. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  5. Breakdown of long-range temporal correlations in brain oscillations during general anesthesia.

    PubMed

    Krzemiński, Dominik; Kamiński, Maciej; Marchewka, Artur; Bola, Michał

    2017-10-01

    Consciousness has been hypothesized to emerge from complex neuronal dynamics, which prevails when brain operates in a critical state. Evidence supporting this hypothesis comes mainly from studies investigating neuronal activity on a short time-scale of seconds. However, a key aspect of criticality is presence of scale-free temporal dependencies occurring across a wide range of time-scales. Indeed, robust long-range temporal correlations (LRTCs) are found in neuronal oscillations during conscious states, but it is not known how LRTCs are affected by loss of consciousness. To further test a relation between critical dynamics and consciousness, we investigated LRTCs in electrocorticography signals recorded from four macaque monkeys during resting wakefulness and general anesthesia induced by various anesthetics (ketamine, medetomidine, or propofol). Detrended Fluctuation Analysis was used to estimate LRTCs in amplitude fluctuations (envelopes) of band-pass filtered signals. We demonstrate two main findings. First, during conscious states all lateral cortical regions are characterized by significant LRTCs of alpha-band activity (7-14 Hz). LRTCs are stronger in the eyes-open than eyes-closed state, but in both states they form a spatial gradient, with anterior brain regions exhibiting stronger LRTCs than posterior regions. Second, we observed a substantial decrease of LRTCs during loss of consciousness, the magnitude of which was associated with the baseline (i.e. pre-anesthesia) state of the brain. Specifically, brain regions characterized by strongest LRTCs during a wakeful baseline exhibited greatest decreases during anesthesia (i.e. "the rich got poorer"), which consequently disturbed the posterior-anterior gradient. Therefore, our results suggest that general anesthesia affects mainly brain areas characterized by strongest LRTCs during wakefulness, which might account for lack of capacities for extensive temporal integration during loss of consciousness. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Temporal Code-Driven Stimulation: Definition and Application to Electric Fish Signaling

    PubMed Central

    Lareo, Angel; Forlim, Caroline G.; Pinto, Reynaldo D.; Varona, Pablo; Rodriguez, Francisco de Borja

    2016-01-01

    Closed-loop activity-dependent stimulation is a powerful methodology to assess information processing in biological systems. In this context, the development of novel protocols, their implementation in bioinformatics toolboxes and their application to different description levels open up a wide range of possibilities in the study of biological systems. We developed a methodology for studying biological signals representing them as temporal sequences of binary events. A specific sequence of these events (code) is chosen to deliver a predefined stimulation in a closed-loop manner. The response to this code-driven stimulation can be used to characterize the system. This methodology was implemented in a real time toolbox and tested in the context of electric fish signaling. We show that while there are codes that evoke a response that cannot be distinguished from a control recording without stimulation, other codes evoke a characteristic distinct response. We also compare the code-driven response to open-loop stimulation. The discussed experiments validate the proposed methodology and the software toolbox. PMID:27766078

  7. Temporal Code-Driven Stimulation: Definition and Application to Electric Fish Signaling.

    PubMed

    Lareo, Angel; Forlim, Caroline G; Pinto, Reynaldo D; Varona, Pablo; Rodriguez, Francisco de Borja

    2016-01-01

    Closed-loop activity-dependent stimulation is a powerful methodology to assess information processing in biological systems. In this context, the development of novel protocols, their implementation in bioinformatics toolboxes and their application to different description levels open up a wide range of possibilities in the study of biological systems. We developed a methodology for studying biological signals representing them as temporal sequences of binary events. A specific sequence of these events (code) is chosen to deliver a predefined stimulation in a closed-loop manner. The response to this code-driven stimulation can be used to characterize the system. This methodology was implemented in a real time toolbox and tested in the context of electric fish signaling. We show that while there are codes that evoke a response that cannot be distinguished from a control recording without stimulation, other codes evoke a characteristic distinct response. We also compare the code-driven response to open-loop stimulation. The discussed experiments validate the proposed methodology and the software toolbox.

  8. A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system.

    PubMed

    Dicke, Ulrike; Ewert, Stephan D; Dau, Torsten; Kollmeier, Birger

    2007-01-01

    Periodic amplitude modulations (AMs) of an acoustic stimulus are presumed to be encoded in temporal activity patterns of neurons in the cochlear nucleus. Physiological recordings indicate that this temporal AM code is transformed into a rate-based periodicity code along the ascending auditory pathway. The present study suggests a neural circuit for the transformation from the temporal to the rate-based code. Due to the neural connectivity of the circuit, bandpass shaped rate modulation transfer functions are obtained that correspond to recorded functions of inferior colliculus (IC) neurons. In contrast to previous modeling studies, the present circuit does not employ a continuously changing temporal parameter to obtain different best modulation frequencies (BMFs) of the IC bandpass units. Instead, different BMFs are yielded from varying the number of input units projecting onto different bandpass units. In order to investigate the compatibility of the neural circuit with a linear modulation filterbank analysis as proposed in psychophysical studies, complex stimuli such as tones modulated by the sum of two sinusoids, narrowband noise, and iterated rippled noise were processed by the model. The model accounts for the encoding of AM depth over a large dynamic range and for modulation frequency selective processing of complex sounds.

  9. Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.

    PubMed

    Cheng, Lin; Zhu, Yang; Sun, Junfeng; Deng, Lifu; He, Naying; Yang, Yang; Ling, Huawei; Ayaz, Hasan; Fu, Yi; Tong, Shanbao

    2018-01-25

    Task-related reorganization of functional connectivity (FC) has been widely investigated. Under classic static FC analysis, brain networks under task and rest have been demonstrated a general similarity. However, brain activity and cognitive process are believed to be dynamic and adaptive. Since static FC inherently ignores the distinct temporal patterns between rest and task, dynamic FC may be more a suitable technique to characterize the brain's dynamic and adaptive activities. In this study, we adopted [Formula: see text]-means clustering to investigate task-related spatiotemporal reorganization of dynamic brain networks and hypothesized that dynamic FC would be able to reveal the link between resting-state and task-state brain organization, including broadly similar spatial patterns but distinct temporal patterns. In order to test this hypothesis, this study examined the dynamic FC in default-mode network (DMN) and motor-related network (MN) using Blood-Oxygenation-Level-Dependent (BOLD)-fMRI data from 26 healthy subjects during rest (REST) and a hand closing-and-opening (HCO) task. Two principal FC states in REST and one principal FC state in HCO were identified. The first principal FC state in REST was found similar to that in HCO, which appeared to represent intrinsic network architecture and validated the broadly similar spatial patterns between REST and HCO. However, the second FC principal state in REST with much shorter "dwell time" implied the transient functional relationship between DMN and MN during REST. In addition, a more frequent shifting between two principal FC states indicated that brain network dynamically maintained a "default mode" in the motor system during REST, whereas the presence of a single principal FC state and reduced FC variability implied a more temporally stable connectivity during HCO, validating the distinct temporal patterns between REST and HCO. Our results further demonstrated that dynamic FC analysis could offer unique insights in understanding how the brain reorganizes itself during rest and task states, and the ways in which the brain adaptively responds to the cognitive requirements of tasks.

  10. Functional brain microstate predicts the outcome in a visuospatial working memory task.

    PubMed

    Muthukrishnan, Suriya-Prakash; Ahuja, Navdeep; Mehta, Nalin; Sharma, Ratna

    2016-11-01

    Humans have limited capacity of processing just up to 4 integrated items of information in the working memory. Thus, it is inevitable to commit more errors when challenged with high memory loads. However, the neural mechanisms that determine the accuracy of response at high memory loads still remain unclear. High temporal resolution of Electroencephalography (EEG) technique makes it the best tool to resolve the temporal dynamics of brain networks. EEG-defined microstate is the quasi-stable scalp electrical potential topography that represents the momentary functional state of brain. Thus, it has been possible to assess the information processing currently performed by the brain using EEG microstate analysis. We hypothesize that the EEG microstate preceding the trial could determine its outcome in a visuospatial working memory (VSWM) task. Twenty-four healthy participants performed a high memory load VSWM task, while their brain activity was recorded using EEG. Four microstate maps were found to represent the functional brain state prior to the trials in the VSWM task. One pre-trial microstate map was found to determine the accuracy of subsequent behavioural response. The intracranial generators of the pre-trial microstate map that determined the response accuracy were localized to the visuospatial processing areas at bilateral occipital, right temporal and limbic cortices. Our results imply that the behavioural outcome in a VSWM task could be determined by the intensity of activation of memory representations in the visuospatial processing brain regions prior to the trial. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Central Brain Circuitry for Color-Vision-Modulated Behaviors.

    PubMed

    Longden, Kit D

    2016-10-24

    Color is famous for not existing in the external world: our brains create the perception of color from the spatial and temporal patterns of the wavelength and intensity of light. For an intangible quality, we have detailed knowledge of its origins and consequences. Much is known about the organization and evolution of the first phases of color processing, the filtering of light in the eye and processing in the retina, and about the final phases, the roles of color in behavior and natural selection. To understand how color processing in the central brain has evolved, we need well-defined pathways or circuitry where we can gauge how color contributes to the computations involved in specific behaviors. Examples of such pathways or circuitry that are dedicated to processing color cues are rare, despite the separation of color and luminance pathways early in the visual system of many species, and despite the traditional definition of color as being independent of luminance. This minireview presents examples in which color vision contributes to behaviors dominated by other visual modalities, examples that are not part of the canon of color vision circuitry. The pathways and circuitry process a range of chromatic properties of objects and their illumination, and are taken from a variety of species. By considering how color processing complements luminance processing, rather than being independent of it, we gain an additional way to account for the diversity of color coding in the central brain, its consequences for specific behaviors and ultimately the evolution of color vision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The Impact of Reading Intervention on Brain Responses Underlying Language in Children With Autism.

    PubMed

    Murdaugh, Donna L; Deshpande, Hrishikesh D; Kana, Rajesh K

    2016-01-01

    Deficits in language comprehension have been widely reported in children with autism spectrum disorders (ASD), with behavioral and neuroimaging studies finding increased reliance on visuospatial processing to aid in language comprehension. However, no study to date, has taken advantage of this strength in visuospatial processing to improve language comprehension difficulties in ASD. This study used a translational neuroimaging approach to test the role of a visual imagery-based reading intervention in improving the brain circuitry underlying language processing in children with ASD. Functional magnetic resonance imaging (MRI), in a longitudinal study design, was used to investigate intervention-related change in sentence comprehension, brain activation, and functional connectivity in three groups of participants (age 8-13 years): an experimental group of ASD children (ASD-EXP), a wait-list control group of ASD children (ASD-WLC), and a group of typically developing control children. After intervention, the ASD-EXP group showed significant increase in activity in visual and language areas and right-hemisphere language area homologues, putamen, and thalamus, suggestive of compensatory routes to increase proficiency in reading comprehension. Additionally, ASD children who had the most improvement in reading comprehension after intervention showed greater functional connectivity between left-hemisphere language areas, the middle temporal gyrus and inferior frontal gyrus while reading high imagery sentences. Thus, the findings of this study, which support the principles of dual coding theory [Paivio 2007], suggest the potential of a strength-based reading intervention in changing brain responses and facilitating better reading comprehension in ASD children. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  13. Brain structural changes and their correlation with vascular disease in type 2 diabetes mellitus patients: a voxel-based morphometric study.

    PubMed

    Wang, Chunxia; Fu, Kailiang; Liu, Huaijun; Xing, Fei; Zhang, Songyun

    2014-08-15

    Voxel-based morphometry has been used in the study of alterations in brain structure in type 1 diabetes mellitus patients. These changes are associated with clinical indices. The age at onset, pathogenesis, and treatment of type 1 diabetes mellitus are different from those for type 2 diabetes mellitus. Thus, type 1 and type 2 diabetes mellitus may have different impacts on brain structure. Only a few studies of the alterations in brain structure in type 2 diabetes mellitus patients using voxel-based morphometry have been conducted, with inconsistent results. We detected subtle changes in the brain structure of 23 cases of type 2 diabetes mellitus, and demonstrated that there was no significant difference between the total volume of gray and white matter of the brain of type 2 diabetes mellitus patients and that in controls. Regional atrophy of gray matter mainly occurred in the right temporal and left occipital cortex, while regional atrophy of white matter involved the right temporal lobe and the right cerebellar hemisphere. The ankle-brachial index in patients with type 2 diabetes mellitus strongly correlated with the volume of brain regions in the default mode network. The ankle-brachial index, followed by the level of glycosylated hemoglobin, most strongly correlated with the volume of gray matter in the right temporal lobe. These data suggest that voxel-based morphometry could detect small structural changes in patients with type 2 diabetes mellitus. Early macrovascular atherosclerosis may play a crucial role in subtle brain atrophy in type 2 diabetes mellitus patients, with chronic hyperglycemia playing a lesser role.

  14. Seizure Control and Memory Impairment Are Related to Disrupted Brain Functional Integration in Temporal Lobe Epilepsy.

    PubMed

    Park, Chang-Hyun; Choi, Yun Seo; Jung, A-Reum; Chung, Hwa-Kyoung; Kim, Hyeon Jin; Yoo, Jeong Hyun; Lee, Hyang Woon

    2017-01-01

    Brain functional integration can be disrupted in patients with temporal lobe epilepsy (TLE), but the clinical relevance of this disruption is not completely understood. The authors hypothesized that disrupted functional integration over brain regions remote from, as well as adjacent to, the seizure focus could be related to clinical severity in terms of seizure control and memory impairment. Using resting-state functional MRI data acquired from 48 TLE patients and 45 healthy controls, the authors mapped functional brain networks and assessed changes in a network parameter of brain functional integration, efficiency, to examine the distribution of disrupted functional integration within and between brain regions. The authors assessed whether the extent of altered efficiency was influenced by seizure control status and whether the degree of altered efficiency was associated with the severity of memory impairment. Alterations in the efficiency were observed primarily near the subcortical region ipsilateral to the seizure focus in TLE patients. The extent of regional involvement was greater in patients with poor seizure control: it reached the frontal, temporal, occipital, and insular cortices in TLE patients with poor seizure control, whereas it was limited to the limbic and parietal cortices in TLE patients with good seizure control. Furthermore, TLE patients with poor seizure control experienced more severe memory impairment, and this was associated with lower efficiency in the brain regions with altered efficiency. These findings indicate that the distribution of disrupted brain functional integration is clinically relevant, as it is associated with seizure control status and comorbid memory impairment.

  15. Temporal profile of brain response to alprazolam in patients with generalized anxiety disorder.

    PubMed

    Brown, Gregory G; Ostrowitzki, Susanne; Stein, Murray B; von Kienlin, Markus; Liu, Thomas T; Simmons, Alan; Wierenga, Christina; Stein, Orah Y; Bruns, Andreas; Bischoff-Grethe, Amanda; Paulus, Martin

    2015-09-30

    This study investigated the temporal pattern of brain response to emotional stimuli during 28 days of alprazolam treatment among patients with generalized anxiety disorder (GAD) randomized 2:1 to drug or placebo in a double-blind design. Functional magnetic resonance imaging scans obtained during an emotion face matching task (EFMT) and an affective stimulus expectancy task (STIMEX) were performed at baseline, one hour after initial drug administration and 28 days later. Alprazolam significantly reduced scores on the Hamilton Anxiety Scale and the Penn State Worry Questionnaire after one week and 28 days of treatment. Brain activation in the amygdala during the EFMT and in the insula during the STIMEX was reduced one hour after alprazolam administration but returned to baseline levels at Day 28. Exploratory analyses revealed significant treatment differences in brain activity during the STIMEX on Day 28 in frontal lobe, caudate nucleus, middle temporal gyrus, secondary visual cortex, and supramarginal gyrus. These results are consistent with the notion that the neural mechanisms supporting sustained treatment effects of benzodiazepines in GAD differ from those underlying their acute effects. Published by Elsevier Ireland Ltd.

  16. Cortical thinning in type 2 diabetes mellitus and recovering effects of insulin therapy.

    PubMed

    Chen, Zhiye; Sun, Jie; Yang, Yang; Lou, Xin; Wang, Yulin; Wang, Yan; Ma, Lin

    2015-02-01

    The purpose of this study was to explore the brain structural changes in type 2 diabetes and the effect of insulin on the brain using a surface-based cortical thickness analysis. High-resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI were obtained from 11 patients with type 2 diabetes before and after insulin therapy. The cortical thickness over the entire brain was calculated, and cross-sectional and longitudinal surface-based cortical thickness analyses were also performed. Regional cortical thinning was demonstrated in the middle temporal gyrus, posterior cingulate gyrus, precuneus, right lateral occipital gyrus and entorhinal cortex bilaterally for patients with type 2 diabetes mellitus compared with normal controls. Cortical thickening was seen in the middle temporal gyrus, entorhinal cortex and left inferior temporal gyrus bilaterally after patients underwent 1 year of insulin therapy. These findings suggest that insulin therapy may have recovering effects on the brain cortex in type 2 diabetes mellitus. The precise mechanism should be investigated further. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Neuroanatomical and Cognitive Mediators of Age-Related Differences in Episodic Memory

    PubMed Central

    Head, Denise; Rodrigue, Karen M.; Kennedy, Kristen M.; Raz, Naftali

    2009-01-01

    Aging is associated with declines in episodic memory. In this study, the authors used a path analysis framework to explore the mediating role of differences in brain structure, executive functions, and processing speed in age-related differences in episodic memory. Measures of regional brain volume (prefrontal gray and white matter, caudate, hippocampus, visual cortex), executive functions (working memory, inhibitory control, task switching, temporal processing), processing speed, and episodic memory were obtained in a sample of young and older adults. As expected, age was linked to reduction in regional brain volumes and cognitive performance. Moreover, neural and cognitive factors completely mediated age differences in episodic memory. Whereas hippocampal shrinkage directly affected episodic memory, prefrontal volumetric reductions influenced episodic memory via limitations in working memory and inhibitory control. Age-related slowing predicted reduced efficiency in temporal processing, working memory, and inhibitory control. Lastly, poorer temporal processing directly affected episodic memory. No direct effects of age on episodic memory remained once these factors were taken into account. These analyses highlight the value of a multivariate approach with the understanding of complex relationships in cognitive and brain aging. PMID:18590361

  18. Explaining how brain stimulation can evoke memories.

    PubMed

    Jacobs, Joshua; Lega, Bradley; Anderson, Christopher

    2012-03-01

    An unexplained phenomenon in neuroscience is the discovery that electrical stimulation in temporal neocortex can cause neurosurgical patients to spontaneously experience memory retrieval. Here we provide the first detailed examination of the neural basis of stimulation-induced memory retrieval by probing brain activity in a patient who reliably recalled memories of his high school (HS) after stimulation at a site in his left temporal lobe. After stimulation, this patient performed a customized memory task in which he was prompted to retrieve information from HS and non-HS topics. At the one site where stimulation evoked HS memories, remembering HS information caused a distinctive pattern of neural activity compared with retrieving non-HS information. Together, these findings suggest that the patient had a cluster of neurons in his temporal lobe that help represent the "high school-ness" of the current cognitive state. We believe that stimulation here evoked HS memories because it altered local neural activity in a way that partially mimicked the normal brain state for HS memories. More broadly, our findings suggest that brain stimulation can evoke memories by recreating neural patterns from normal cognition.

  19. TauG-guidance of transients in expressive musical performance.

    PubMed

    Schogler, Benjaman; Pepping, Gert-Jan; Lee, David N

    2008-08-01

    The sounds in expressive musical performance, and the movements that produce them, offer insight into temporal patterns in the brain that generate expression. To gain understanding of these brain patterns, we analyzed two types of transient sounds, and the movements that produced them, during a vocal duet and a bass solo. The transient sounds studied were inter-tone f (0)(t)-glides (the continuous change in fundamental frequency, f (0)(t), when gliding from one tone to the next), and attack intensity-glides (the continuous rise in sound intensity when attacking, or initiating, a tone). The temporal patterns of the inter-tone f (0)(t)-glides and attack intensity-glides, and of the movements producing them, all conformed to the mathematical function, tau (G)(t) (called tauG), predicted by General Tau Theory, and assumed to be generated in the brain. The values of the parameters of the tau (G)(t) function were modulated by the performers when they modulated musical expression. Thus the tau (G)(t) function appears to be a fundamental of brain activity entailed in the generation of expressive temporal patterns of movement and sound.

  20. Tau mRNA 3'UTR-to-CDS ratio is increased in Alzheimer disease.

    PubMed

    García-Escudero, Vega; Gargini, Ricardo; Martín-Maestro, Patricia; García, Esther; García-Escudero, Ramón; Avila, Jesús

    2017-08-10

    Neurons frequently show an imbalance in expression of the 3' untranslated region (3'UTR) relative to the coding DNA sequence (CDS) region of mature messenger RNAs (mRNA). The ratio varies among different cells or parts of the brain. The Map2 protein levels per cell depend on the 3'UTR-to-CDS ratio rather than the total mRNA amount, which suggests powerful regulation of protein expression by 3'UTR sequences. Here we found that MAPT (the microtubule-associated protein tau gene) 3'UTR levels are particularly high with respect to other genes; indeed, the 3'UTR-to-CDS ratio of MAPT is balanced in healthy brain in mouse and human. The tau protein accumulates in Alzheimer diseased brain. We nonetheless observed that the levels of RNA encoding MAPT/tau were diminished in these patients' brains. To explain this apparently contradictory result, we studied MAPT mRNA stoichiometry in coding and non-coding regions, and found that the 3'UTR-to-CDS ratio was higher in the hippocampus of Alzheimer disease patients, with higher tau protein but lower total mRNA levels. Our data indicate that changes in the 3'UTR-to-CDS ratio have a regulatory role in the disease. Future research should thus consider not only mRNA levels, but also the ratios between coding and non-coding regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of sensorineural hearing loss on temporal coding of narrowband and broadband signals in the auditory periphery

    PubMed Central

    Henry, Kenneth S.; Heinz, Michael G.

    2013-01-01

    People with sensorineural hearing loss have substantial difficulty understanding speech under degraded listening conditions. Behavioral studies suggest that this difficulty may be caused by changes in auditory processing of the rapidly-varying temporal fine structure (TFS) of acoustic signals. In this paper, we review the presently known effects of sensorineural hearing loss on processing of TFS and slower envelope modulations in the peripheral auditory system of mammals. Cochlear damage has relatively subtle effects on phase locking by auditory-nerve fibers to the temporal structure of narrowband signals under quiet conditions. In background noise, however, sensorineural loss does substantially reduce phase locking to the TFS of pure-tone stimuli. For auditory processing of broadband stimuli, sensorineural hearing loss has been shown to severely alter the neural representation of temporal information along the tonotopic axis of the cochlea. Notably, auditory-nerve fibers innervating the high-frequency part of the cochlea grow increasingly responsive to low-frequency TFS information and less responsive to temporal information near their characteristic frequency (CF). Cochlear damage also increases the correlation of the response to TFS across fibers of varying CF, decreases the traveling-wave delay between TFS responses of fibers with different CFs, and can increase the range of temporal modulation frequencies encoded in the periphery for broadband sounds. Weaker neural coding of temporal structure in background noise and degraded coding of broadband signals along the tonotopic axis of the cochlea are expected to contribute considerably to speech perception problems in people with sensorineural hearing loss. PMID:23376018

  2. Lesion network localization of criminal behavior

    PubMed Central

    Darby, R. Ryan; Horn, Andreas; Fox, Michael D.

    2018-01-01

    Following brain lesions, previously normal patients sometimes exhibit criminal behavior. Although rare, these cases can lend unique insight into the neurobiological substrate of criminality. Here we present a systematic mapping of lesions with known temporal association to criminal behavior, identifying 17 lesion cases. The lesion sites were spatially heterogeneous, including the medial prefrontal cortex, orbitofrontal cortex, and different locations within the bilateral temporal lobes. No single brain region was damaged in all cases. Because lesion-induced symptoms can come from sites connected to the lesion location and not just the lesion location itself, we also identified brain regions functionally connected to each lesion location. This technique, termed lesion network mapping, has recently identified regions involved in symptom generation across a variety of lesion-induced disorders. All lesions were functionally connected to the same network of brain regions. This criminality-associated connectivity pattern was unique compared with lesions causing four other neuropsychiatric syndromes. This network includes regions involved in morality, value-based decision making, and theory of mind, but not regions involved in cognitive control or empathy. Finally, we replicated our results in a separate cohort of 23 cases in which a temporal relationship between brain lesions and criminal behavior was implied but not definitive. Our results suggest that lesions in criminals occur in different brain locations but localize to a unique resting state network, providing insight into the neurobiology of criminal behavior. PMID:29255017

  3. The modulation of EEG variability between internally- and externally-driven cognitive states varies with maturation and task performance

    PubMed Central

    Willatt, Stephanie E.; Cortese, Filomeno; Protzner, Andrea B.

    2017-01-01

    Increasing evidence suggests that brain signal variability is an important measure of brain function reflecting information processing capacity and functional integrity. In this study, we examined how maturation from childhood to adulthood affects the magnitude and spatial extent of state-to-state transitions in brain signal variability, and how this relates to cognitive performance. We looked at variability changes between resting-state and task (a symbol-matching task with three levels of difficulty), and within trial (fixation, post-stimulus, and post-response). We calculated variability with multiscale entropy (MSE), and additionally examined spectral power density (SPD) from electroencephalography (EEG) in children aged 8–14, and in adults aged 18–33. Our results suggest that maturation is characterized by increased local information processing (higher MSE at fine temporal scales) and decreased long-range interactions with other neural populations (lower MSE at coarse temporal scales). Children show MSE changes that are similar in magnitude, but greater in spatial extent when transitioning between internally- and externally-driven brain states. Additionally, we found that in children, greater changes in task difficulty were associated with greater magnitude of modulation in MSE. Our results suggest that the interplay between maturational and state-to-state changes in brain signal variability manifest across different spatial and temporal scales, and influence information processing capacity in the brain. PMID:28750035

  4. Task-Based Core-Periphery Organization of Human Brain Dynamics

    PubMed Central

    Bassett, Danielle S.; Wymbs, Nicholas F.; Rombach, M. Puck; Porter, Mason A.; Mucha, Peter J.; Grafton, Scott T.

    2013-01-01

    As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify properties that enable robust learning of a motor skill. We measure brain activity during motor sequencing and characterize network properties based on coherent activity between brain regions. Using recently developed algorithms to detect time-evolving communities, we find that the complex reconfiguration patterns of the brain's putative functional modules that control learning can be described parsimoniously by the combined presence of a relatively stiff temporal core that is composed primarily of sensorimotor and visual regions whose connectivity changes little in time and a flexible temporal periphery that is composed primarily of multimodal association regions whose connectivity changes frequently. The separation between temporal core and periphery changes over the course of training and, importantly, is a good predictor of individual differences in learning success. The core of dynamically stiff regions exhibits dense connectivity, which is consistent with notions of core-periphery organization established previously in social networks. Our results demonstrate that core-periphery organization provides an insightful way to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior. PMID:24086116

  5. Using regional homogeneity to reveal altered spontaneous activity in patients with mild cognitive impairment.

    PubMed

    Wang, Yumei; Zhao, Xiaochuan; Xu, Shunjiang; Yu, Lulu; Wang, Lan; Song, Mei; Yang, Linlin; Wang, Xueyi

    2015-01-01

    Most patients with mild cognitive impairment (MCI) are thought to be in an early stage of Alzheimer's disease (AD). Resting-state functional magnetic resonance imaging reflects spontaneous brain activity and/or the endogenous/background neurophysiological process of the human brain. Regional homogeneity (ReHo) rapidly maps regional brain activity across the whole brain. In the present study, we used the ReHo index to explore whole brain spontaneous activity pattern in MCI. Our results showed that MCI subjects displayed an increased ReHo index in the paracentral lobe, precuneus, and postcentral and a decreased ReHo index in the medial temporal gyrus and hippocampus. Impairments in the medial temporal gyrus and hippocampus may serve as important markers distinguishing MCI from healthy aging. Moreover, the increased ReHo index observed in the postcentral and paracentral lobes might indicate compensation for the cognitive function losses in individuals with MCI.

  6. Using Regional Homogeneity to Reveal Altered Spontaneous Activity in Patients with Mild Cognitive Impairment

    PubMed Central

    Wang, Yumei; Zhao, Xiaochuan; Xu, Shunjiang; Yu, Lulu; Wang, Lan; Song, Mei; Yang, Linlin; Wang, Xueyi

    2015-01-01

    Most patients with mild cognitive impairment (MCI) are thought to be in an early stage of Alzheimer's disease (AD). Resting-state functional magnetic resonance imaging reflects spontaneous brain activity and/or the endogenous/background neurophysiological process of the human brain. Regional homogeneity (ReHo) rapidly maps regional brain activity across the whole brain. In the present study, we used the ReHo index to explore whole brain spontaneous activity pattern in MCI. Our results showed that MCI subjects displayed an increased ReHo index in the paracentral lobe, precuneus, and postcentral and a decreased ReHo index in the medial temporal gyrus and hippocampus. Impairments in the medial temporal gyrus and hippocampus may serve as important markers distinguishing MCI from healthy aging. Moreover, the increased ReHo index observed in the postcentral and paracentral lobes might indicate compensation for the cognitive function losses in individuals with MCI. PMID:25738156

  7. The brain connectome as a personalized biomarker of seizure outcomes after temporal lobectomy.

    PubMed

    Bonilha, Leonardo; Jensen, Jens H; Baker, Nathaniel; Breedlove, Jesse; Nesland, Travis; Lin, Jack J; Drane, Daniel L; Saindane, Amit M; Binder, Jeffrey R; Kuzniecky, Ruben I

    2015-05-05

    We examined whether individual neuronal architecture obtained from the brain connectome can be used to estimate the surgical success of anterior temporal lobectomy (ATL) in patients with temporal lobe epilepsy (TLE). We retrospectively studied 35 consecutive patients with TLE who underwent ATL. The structural brain connectome was reconstructed from all patients using presurgical diffusion MRI. Network links in patients were standardized as Z scores based on connectomes reconstructed from healthy controls. The topography of abnormalities in linkwise elements of the connectome was assessed on subnetworks linking ipsilateral temporal with extratemporal regions. Predictive models were constructed based on the individual prevalence of linkwise Z scores >2 and based on presurgical clinical data. Patients were more likely to achieve postsurgical seizure freedom if they exhibited fewer abnormalities within a subnetwork composed of the ipsilateral hippocampus, amygdala, thalamus, superior frontal region, lateral temporal gyri, insula, orbitofrontal cortex, cingulate, and lateral occipital gyrus. Seizure-free surgical outcome was predicted by neural architecture alone with 90% specificity (83% accuracy), and by neural architecture combined with clinical data with 94% specificity (88% accuracy). Individual variations in connectome topography, combined with presurgical clinical data, may be used as biomarkers to better estimate surgical outcomes in patients with TLE. © 2015 American Academy of Neurology.

  8. Analysis of Memory Codes and Cumulative Rehearsal in Observational Learning

    ERIC Educational Resources Information Center

    Bandura, Albert; And Others

    1974-01-01

    The present study examined the influence of memory codes varying in meaningfulness and retrievability and cumulative rehearsal on retention of observationally learned responses over increasing temporal intervals. (Editor)

  9. The APOE ε4 Allele Is Associated with Lower Selenium Levels in the Brain: Implications for Alzheimer's Disease.

    PubMed

    R Cardoso, Bárbara; Hare, Dominic J; Lind, Monica; McLean, Catriona A; Volitakis, Irene; Laws, Simon M; Masters, Colin L; Bush, Ashley I; Roberts, Blaine R

    2017-07-19

    The antioxidant activity of selenium, which is mainly conferred by its incorporation into dedicated selenoproteins, has been suggested as a possible neuroprotective approach for mitigating neuronal loss in Alzheimer's disease. However, there is inconsistent information with respect to selenium levels in the Alzheimer's disease brain. We examined the concentration and cellular compartmentalization of selenium in the temporal cortex of Alzheimer's disease and control brain tissue. We found that Alzheimer's disease was associated with decreased selenium concentration in both soluble (i.e., cytosolic) and insoluble (i.e., plaques and tangles) fractions of brain homogenates. The presence of the APOE ε4 allele correlated with lower total selenium levels in the temporal cortex and a higher concentration of soluble selenium. Additionally, we found that age significantly contributed to lower selenium concentrations in the peripheral membrane-bound and vesicular fractions. Our findings suggest a relevant interaction between APOE ε4 and selenium delivery into brain, and show changes in cellular selenium distribution in the Alzheimer's disease brain.

  10. A thesaurus for a neural population code

    PubMed Central

    Ganmor, Elad; Segev, Ronen; Schneidman, Elad

    2015-01-01

    Information is carried in the brain by the joint spiking patterns of large groups of noisy, unreliable neurons. This noise limits the capacity of the neural code and determines how information can be transmitted and read-out. To accurately decode, the brain must overcome this noise and identify which patterns are semantically similar. We use models of network encoding noise to learn a thesaurus for populations of neurons in the vertebrate retina responding to artificial and natural videos, measuring the similarity between population responses to visual stimuli based on the information they carry. This thesaurus reveals that the code is organized in clusters of synonymous activity patterns that are similar in meaning but may differ considerably in their structure. This organization is highly reminiscent of the design of engineered codes. We suggest that the brain may use this structure and show how it allows accurate decoding of novel stimuli from novel spiking patterns. DOI: http://dx.doi.org/10.7554/eLife.06134.001 PMID:26347983

  11. Fiber-array based optogenetic prosthetic system for stimulation therapy

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Cote, Chris; Tejeda, Hector; Mohanty, Samarendra

    2012-02-01

    Recent advent of optogenetics has enabled activation of genetically-targeted neuronal cells using low intensity blue light with high temporal precision. Since blue light is attenuated rapidly due to scattering and absorption in neural tissue, optogenetic treatment of neurological disorders may require stimulation of specific cell types in multiple regions of the brain. Further, restoration of certain neural functions (vision, and auditory etc) requires accurate spatio-temporal stimulation patterns rather than just precise temporal stimulation. In order to activate multiple regions of the central nervous system in 3D, here, we report development of an optogenetic prosthetic comprising of array of fibers coupled to independently-controllable LEDs. This design avoids direct contact of LEDs with the brain tissue and thus does not require electrical and heat isolation, which can non-specifically stimulate and damage the local brain regions. The intensity, frequency, and duty cycle of light pulses from each fiber in the array was controlled independently using an inhouse developed LabView based program interfaced with a microcontroller driving the individual LEDs. While the temporal profile of the light pulses was controlled by varying the current driving the LED, the beam profile emanating from each fiber tip could be sculpted by microfabrication of the fiber tip. The fiber array was used to stimulate neurons, expressing channelrhodopsin-2, in different locations within the brain or retina. Control of neural activity in the mice cortex, using the fiber-array based prosthetic, is evaluated from recordings made with multi-electrode array (MEA). We also report construction of a μLED array based prosthetic for spatio-temporal stimulation of cortex.

  12. Tuberculous temporal brain abscess mimicking otogenic pyogenic abscess.

    PubMed

    Muzumdar, D; Balasubramaniam, S; Melkundi, S

    2009-01-01

    Tuberculous brain abscess is a rare manifestation of central nervous system tuberculosis. We report the case of a tuberculous temporal lobe abscess in a 14-year-old female child that mimicked an otogenic pyogenic brain abscess. The patient had no prior history of tuberculosis. She had chronic otitis media and presented with signs of raised intracranial tension. Radiological imaging was suggestive of an acute pyogenic left temporal lobe abscess. A left temporal craniotomy was performed and the abscess was completely excised. Histological examination was consistent with a chronic abscess, and bacterial cultures were negative. A left radical mastoidectomy was also carried out. However, she presented with repeated abscess formation at the same site over the next 8 weeks, which was refractory to surgical therapy and broad-spectrum antibiotic administration. Furthermore, the purulent exudate showed strong positivity in the PCR test for tubercular bacilli. After administration of antituberculous treatment, she showed gradual clinical and radiological improvement. At follow-up after 2 years, she is asymptomatic. CT imaging at 2 years showed total resolution of abscess. Tuberculous abscess in the temporal lobe following otogenic infection has not been reported in the pediatric population. Although rare, the possibility of tuberculous etiology should be borne in mind as a differential diagnosis of acute abscess of otogenic origin, especially in endemic areas where the incidence of chronic otitis media as well as tuberculosis is high. The pathogenesis and treatment of tuberculous brain abscess in children is reviewed in light of the current literature on the subject. Copyright 2009 S. Karger AG, Basel.

  13. Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information.

    PubMed

    Nahman-Averbuch, Hadas; Martucci, Katherine T; Granovsky, Yelena; Weissman-Fogel, Irit; Yarnitsky, David; Coghill, Robert C

    2014-12-01

    The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional magnetic resonance imaging during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula, and secondary somatosensory cortex. OA produced reduced activity in the primary somatosensory cortex but was associated with greater activation in the anterior insula, dorsolateral prefrontal cortex, intraparietal sulcus, and inferior parietal lobule relative to CPM. In the brain stem, CPM consistently produced reductions in activity, while OA produced increases in activity. Conjunction analysis confirmed that CPM-related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs temporal filtering of nociceptive information. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  14. Concomitant Fractional Anisotropy and Volumetric Abnormalities in Temporal Lobe Epilepsy: Cross-Sectional Evidence for Progressive Neurologic Injury

    PubMed Central

    Gerdes, Jan S.; Weber, Bernd; Deppe, Michael

    2012-01-01

    Background In patients with temporal lobe epilepsy and associated hippocampal sclerosis (TLEhs) there are brain abnormalities extending beyond the presumed epileptogenic zone as revealed separately in conventional magnetic resonance imaging (MRI) and MR diffusion tensor imaging (DTI) studies. However, little is known about the relation between macroscopic atrophy (revealed by volumetric MRI) and microstructural degeneration (inferred by DTI). Methodology/Principal Findings For 62 patients with unilateral TLEhs and 68 healthy controls, we determined volumes and mean fractional anisotropy (FA) of ipsilateral and contralateral brain structures from T1-weighted and DTI data, respectively. We report significant volume atrophy and FA alterations of temporal lobe, subcortical and callosal regions, which were more diffuse and bilateral in patients with left TLEhs relative to right TLEhs. We observed significant relationships between volume loss and mean FA, particularly of the thalamus and putamen bilaterally. When corrected for age, duration of epilepsy was significantly correlated with FA loss of an anatomically plausible route - including ipsilateral parahippocampal gyrus and temporal lobe white matter, the thalamus bilaterally, and posterior regions of the corpus callosum that contain temporal lobe fibres - that may be suggestive of progressive brain degeneration in response to recurrent seizures. Conclusions/Significance Chronic TLEhs is associated with interrelated DTI-derived and volume-derived brain degenerative abnormalities that are influenced by the duration of the disorder and the side of seizure onset. This work confirms previously contradictory findings by employing multi-modal imaging techniques in parallel in a large sample of patients. PMID:23071638

  15. View-Independent Working Memory Representations of Artificial Shapes in Prefrontal and Posterior Regions of the Human Brain.

    PubMed

    Christophel, Thomas B; Allefeld, Carsten; Endisch, Christian; Haynes, John-Dylan

    2018-06-01

    Traditional views of visual working memory postulate that memorized contents are stored in dorsolateral prefrontal cortex using an adaptive and flexible code. In contrast, recent studies proposed that contents are maintained by posterior brain areas using codes akin to perceptual representations. An important question is whether this reflects a difference in the level of abstraction between posterior and prefrontal representations. Here, we investigated whether neural representations of visual working memory contents are view-independent, as indicated by rotation-invariance. Using functional magnetic resonance imaging and multivariate pattern analyses, we show that when subjects memorize complex shapes, both posterior and frontal brain regions maintain the memorized contents using a rotation-invariant code. Importantly, we found the representations in frontal cortex to be localized to the frontal eye fields rather than dorsolateral prefrontal cortices. Thus, our results give evidence for the view-independent storage of complex shapes in distributed representations across posterior and frontal brain regions.

  16. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing.

    PubMed

    Ciullo, Valentina; Vecchio, Daniela; Gili, Tommaso; Spalletta, Gianfranco; Piras, Federica

    2018-01-01

    The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition) or onset (temporal condition) were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation. Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between explicit and implicit temporal orienting processes was considered at the long interval, we found that explicit processes were related to centrality measures of the bilateral inferior parietal lobule. Degree centrality of the same region in the left hemisphere covaried with behavioral measures indexing the process of attentional re-orienting. These results represent a crucial step forward the ordinary predictive processing description, as we identified the patterns of connectivity characterizing the brain organization associated with the ability to generate and update temporal expectancies in case of contextual violations.

  17. Brain volume change and cognitive trajectories in aging.

    PubMed

    Fletcher, Evan; Gavett, Brandon; Harvey, Danielle; Farias, Sarah Tomaszewski; Olichney, John; Beckett, Laurel; DeCarli, Charles; Mungas, Dan

    2018-05-01

    Examine how longitudinal cognitive trajectories relate to brain baseline measures and change in lobar volumes in a racially/ethnically and cognitively diverse sample of older adults. Participants were 460 older adults enrolled in a longitudinal aging study. Cognitive outcomes were measures of episodic memory, semantic memory, executive function, and spatial ability derived from the Spanish and English Neuropsychological Assessment Scales (SENAS). Latent variable multilevel modeling of the four cognitive outcomes as parallel longitudinal processes identified intercepts for each outcome and a second order global change factor explaining covariance among the highly correlated slopes. We examined how baseline brain volumes (lobar gray matter, hippocampus, and white matter hyperintensity) and change in brain volumes (lobar gray matter) were associated with cognitive intercepts and global cognitive change. Lobar volumes were dissociated into global and specific components using latent variable methods. Cognitive change was most strongly associated with brain gray matter volume change, with strong independent effects of global gray matter change and specific temporal lobe gray matter change. Baseline white matter hyperintensity and hippocampal volumes had significant incremental effects on cognitive decline beyond gray matter change. Baseline lobar gray matter was related to cognitive decline, but did not contribute beyond gray matter change. Cognitive decline was strongly influenced by gray matter volume change and, especially, temporal lobe change. The strong influence of temporal lobe gray matter change on cognitive decline may reflect involvement of temporal lobe structures that are critical for late life cognitive health but also are vulnerable to diseases of aging. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Epidemiologic studies of electric and magnetic fields and cancer: Strategies for extending knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savitz, D.A.

    1993-12-01

    Epidemiologic research concerning electric and magnetic fields in relation to cancer has focused on the potential etiologic roles of residential exposure on childhood cancer and occupational exposure on adult leukemia and brain cancer. Future residential studies must concentrate on exposure assessment that is enhanced by developing models of historical exposure, assessment of the relation between magnetic fields and wire codes, and consideration of alternate exposure indices. Study design issues deserving attention include possible biases in random digit dialing control selection, consideration of the temporal course of exposure and disease, and acquisition of the necessary information to assess the potential valuemore » of ecologic studies. Highest priorities are comprehensive evaluation of exposure patterns and sources and examination of the sociology and geography of residential wire codes. Future occupational studies should also concentrate on improved exposure assessment with increased attention to nonutility worker populations and development of historical exposure indicators that are superior to job titles alone. Potential carcinogens in the workplace that could act as confounders need to be more carefully examined. The temporal relation between exposure and disease and possible effect modification by other workplace agents should be incorporated into future studies. The most pressing need is for measurement of exposure patterns in a variety of worker populations and performance of traditional epidemiologic evaluations of cancer occurrence. The principal source of bias toward the null is nondifferential misclassification of exposure with improvements expected to enhance any true etiologic association that is present. Biases away from the null might include biased control selection in residential studies and chemical carcinogens acting as confounders in occupational studies. 51 refs., 1 tab.« less

  19. Thalamotemporal alteration and postoperative seizures in temporal lobe epilepsy

    PubMed Central

    Richardson, Mark P.; Schoene‐Bake, Jan‐Christoph; O'Muircheartaigh, Jonathan; Elkommos, Samia; Kreilkamp, Barbara; Goh, Yee Yen; Marson, Anthony G.; Elger, Christian; Weber, Bernd

    2015-01-01

    Objective There are competing explanations for persistent postoperative seizures after temporal lobe surgery. One is that 1 or more particular subtypes of mesial temporal lobe epilepsy (mTLE) exist that are particularly resistant to surgery. We sought to identify a common brain structural and connectivity alteration in patients with persistent postoperative seizures using preoperative quantitative magnetic resonance imaging and diffusion tensor imaging (DTI). Methods We performed a series of studies in 87 patients with mTLE (47 subsequently rendered seizure free, 40 who continued to experience postoperative seizures) and 80 healthy controls. We investigated the relationship between imaging variables and postoperative seizure outcome. All patients had unilateral temporal lobe seizure onset, had ipsilateral hippocampal sclerosis as the only brain lesion, and underwent amygdalohippocampectomy. Results Quantitative imaging factors found not to be significantly associated with persistent seizures were volumes of ipsilateral and contralateral mesial temporal lobe structures, generalized brain atrophy, and extent of resection. There were nonsignificant trends for larger amygdala and entorhinal resections to be associated with improved outcome. However, patients with persistent seizures had significant atrophy of bilateral dorsomedial and pulvinar thalamic regions, and significant alterations of DTI‐derived thalamotemporal probabilistic paths bilaterally relative to those patients rendered seizure free and controls, even when corrected for extent of mesial temporal lobe resection. Interpretation Patients with bihemispheric alterations of thalamotemporal structural networks may represent a subtype of mTLE that is resistant to temporal lobe surgery. Increasingly sensitive multimodal imaging techniques should endeavor to transform these group‐based findings to individualize prediction of patient outcomes. Ann Neurol 2015;77:760–774 PMID:25627477

  20. Recruitment of Language-, Emotion- and Speech-Timing Associated Brain Regions for Expressing Emotional Prosody: Investigation of Functional Neuroanatomy with fMRI

    PubMed Central

    Mitchell, Rachel L. C.; Jazdzyk, Agnieszka; Stets, Manuela; Kotz, Sonja A.

    2016-01-01

    We aimed to progress understanding of prosodic emotion expression by establishing brain regions active when expressing specific emotions, those activated irrespective of the target emotion, and those whose activation intensity varied depending on individual performance. BOLD contrast data were acquired whilst participants spoke non-sense words in happy, angry or neutral tones, or performed jaw-movements. Emotion-specific analyses demonstrated that when expressing angry prosody, activated brain regions included the inferior frontal and superior temporal gyri, the insula, and the basal ganglia. When expressing happy prosody, the activated brain regions also included the superior temporal gyrus, insula, and basal ganglia, with additional activation in the anterior cingulate. Conjunction analysis confirmed that the superior temporal gyrus and basal ganglia were activated regardless of the specific emotion concerned. Nevertheless, disjunctive comparisons between the expression of angry and happy prosody established that anterior cingulate activity was significantly higher for angry prosody than for happy prosody production. Degree of inferior frontal gyrus activity correlated with the ability to express the target emotion through prosody. We conclude that expressing prosodic emotions (vs. neutral intonation) requires generic brain regions involved in comprehending numerous aspects of language, emotion-related processes such as experiencing emotions, and in the time-critical integration of speech information. PMID:27803656

  1. Differences in Brain Function and Changes with Intervention in Children with Poor Spelling and Reading Abilities

    PubMed Central

    Gebauer, Daniela; Fink, Andreas; Kargl, Reinhard; Reishofer, Gernot; Koschutnig, Karl; Purgstaller, Christian; Fazekas, Franz; Enzinger, Christian

    2012-01-01

    Previous fMRI studies in English-speaking samples suggested that specific interventions may alter brain function in language-relevant networks in children with reading and spelling difficulties, but this research strongly focused on reading impaired individuals. Only few studies so far investigated characteristics of brain activation associated with poor spelling ability and whether a specific spelling intervention may also be associated with distinct changes in brain activity patterns. We here investigated such effects of a morpheme-based spelling intervention on brain function in 20 children with comparatively poor spelling and reading abilities using repeated fMRI. Relative to 10 matched controls, children with comparatively poor spelling and reading abilities showed increased activation in frontal medial and right hemispheric regions and decreased activation in left occipito-temporal regions prior to the intervention, during processing of a lexical decision task. After five weeks of intervention, spelling and reading comprehension significantly improved in the training group, along with increased activation in the left temporal, parahippocampal and hippocampal regions. Conversely, the waiting group showed increases in right posterior regions. Our findings could indicate an increased left temporal activation associated with the recollection of the new learnt morpheme-based strategy related to successful training. PMID:22693600

  2. Volumetric structural brain abnormalities in men with schizophrenia or antisocial personality disorder.

    PubMed

    Barkataki, Ian; Kumari, Veena; Das, Mrigendra; Taylor, Pamela; Sharma, Tonmoy

    2006-05-15

    Brain abnormalities are found in association with antisocial personality disorder and schizophrenia, the two mental disorders most implicated in violent behaviour. Structural magnetic resonance imaging was used to investigate the whole brain, cerebellum, temporal lobe, lateral ventricles, caudate nucleus, putamen, thalamus, hippocampus, amygdala and the prefrontal, pre-motor, sensorimotor, occipito-parietal regions in 13 men with antisocial personality disorder, 13 men with schizophrenia and a history of violence, 15 men with schizophrenia without violent history and 15 healthy non-violent men. Compared to controls, the antisocial personality disorder group displayed reductions in whole brain volume and temporal lobe as well as increases in putamen volume. Both schizophrenia groups regardless of violence history exhibited increased lateral ventricle volume, while the schizophrenia group with violent history showed further abnormalities including reduced whole brain and hippocampal volumes and increased putamen size. The findings suggest that individuals with antisocial personality disorder as well as those with schizophrenia and a history of violence have common neural abnormalities, but also show neuro-anatomical differences. The processes by which they came to apparently common ground may, however, differ. The finding of temporal lobe reductions prevalent among those with antisocial personality disorder and hippocampal reduction in the violent men with schizophrenia contributes support for the importance of this region in mediating violent behaviour.

  3. On the Characterization of the Spatio-Temporal Profiles of Brain Activity Associated with Face Naming and the Tip-of-the-Tongue State: A Magnetoencephalographic (MEG) Study

    ERIC Educational Resources Information Center

    Lindin, Monica; Diaz, Fernando; Capilla, Almudena; Ortiz, Tomas; Maestu, Fernando

    2010-01-01

    The tip-of-the-tongue state (TOT) in face naming is a transient state of difficulty in access to a person's name along with the conviction that the name is known. The aim of the present study was to characterize the spatio-temporal course of brain activation in the successful naming and TOT states, by means of magnetoencephalography, during a…

  4. Learning Temporal Statistics for Sensory Predictions in Aging.

    PubMed

    Luft, Caroline Di Bernardi; Baker, Rosalind; Goldstone, Aimee; Zhang, Yang; Kourtzi, Zoe

    2016-03-01

    Predicting future events based on previous knowledge about the environment is critical for successful everyday interactions. Here, we ask which brain regions support our ability to predict the future based on implicit knowledge about the past in young and older age. Combining behavioral and fMRI measurements, we test whether training on structured temporal sequences improves the ability to predict upcoming sensory events; we then compare brain regions involved in learning predictive structures between young and older adults. Our behavioral results demonstrate that exposure to temporal sequences without feedback facilitates the ability of young and older adults to predict the orientation of an upcoming stimulus. Our fMRI results provide evidence for the involvement of corticostriatal regions in learning predictive structures in both young and older learners. In particular, we showed learning-dependent fMRI responses for structured sequences in frontoparietal regions and the striatum (putamen) for young adults. However, for older adults, learning-dependent activations were observed mainly in subcortical (putamen, thalamus) regions but were weaker in frontoparietal regions. Significant correlations of learning-dependent behavioral and fMRI changes in these regions suggest a strong link between brain activations and behavioral improvement rather than general overactivation. Thus, our findings suggest that predicting future events based on knowledge of temporal statistics engages brain regions involved in implicit learning in both young and older adults.

  5. Plastic brain mechanisms for attaining auditory temporal order judgment proficiency.

    PubMed

    Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas

    2010-04-15

    Accurate perception of the order of occurrence of sensory information is critical for the building up of coherent representations of the external world from ongoing flows of sensory inputs. While some psychophysical evidence reports that performance on temporal perception can improve, the underlying neural mechanisms remain unresolved. Using electrical neuroimaging analyses of auditory evoked potentials (AEPs), we identified the brain dynamics and mechanism supporting improvements in auditory temporal order judgment (TOJ) during the course of the first vs. latter half of the experiment. Training-induced changes in brain activity were first evident 43-76 ms post stimulus onset and followed from topographic, rather than pure strength, AEP modulations. Improvements in auditory TOJ accuracy thus followed from changes in the configuration of the underlying brain networks during the initial stages of sensory processing. Source estimations revealed an increase in the lateralization of initially bilateral posterior sylvian region (PSR) responses at the beginning of the experiment to left-hemisphere dominance at its end. Further supporting the critical role of left and right PSR in auditory TOJ proficiency, as the experiment progressed, responses in the left and right PSR went from being correlated to un-correlated. These collective findings provide insights on the neurophysiologic mechanism and plasticity of temporal processing of sounds and are consistent with models based on spike timing dependent plasticity. Copyright 2010 Elsevier Inc. All rights reserved.

  6. The medial temporal lobe—conduit of parallel connectivity: a model for attention, memory, and perception

    PubMed Central

    Mozaffari, Brian

    2014-01-01

    Based on the notion that the brain is equipped with a hierarchical organization, which embodies environmental contingencies across many time scales, this paper suggests that the medial temporal lobe (MTL)—located deep in the hierarchy—serves as a bridge connecting supra- to infra—MTL levels. Bridging the upper and lower regions of the hierarchy provides a parallel architecture that optimizes information flow between upper and lower regions to aid attention, encoding, and processing of quick complex visual phenomenon. Bypassing intermediate hierarchy levels, information conveyed through the MTL “bridge” allows upper levels to make educated predictions about the prevailing context and accordingly select lower representations to increase the efficiency of predictive coding throughout the hierarchy. This selection or activation/deactivation is associated with endogenous attention. In the event that these “bridge” predictions are inaccurate, this architecture enables the rapid encoding of novel contingencies. A review of hierarchical models in relation to memory is provided along with a new theory, Medial-temporal-lobe Conduit for Parallel Connectivity (MCPC). In this scheme, consolidation is considered as a secondary process, occurring after a MTL-bridged connection, which eventually allows upper and lower levels to access each other directly. With repeated reactivations, as contingencies become consolidated, less MTL activity is predicted. Finally, MTL bridging may aid processing transient but structured perceptual events, by allowing communication between upper and lower levels without calling on intermediate levels of representation. PMID:25426036

  7. Temporal Lobe Seizure

    MedlinePlus

    ... period of confusion and difficulty speaking Inability to recall what occurred during the seizure Unawareness of having ... of the brain that's responsible for learning and memory (hippocampus) to shrink. Brain cell loss in this ...

  8. Detrended fluctuation analysis of human brain electroencephalogram

    NASA Astrophysics Data System (ADS)

    Pan, C. P.; Zheng, B.; Wu, Y. Z.; Wang, Y.; Tang, X. W.

    2004-08-01

    With the detrended fluctuation analysis, we investigate dynamics of human brain electroencephalogram. Long-range temporal correlation and scaling behavior are observed, and certain characteristic of the Alzheimer's disease is revealed.

  9. Common Sense Beliefs about the Central Self, Moral Character, and the Brain

    PubMed Central

    Fernandez-Duque, Diego; Schwartz, Barry

    2016-01-01

    To assess lay beliefs about self and brain, we probed people's opinions about the central self, in relation to morality, willful control, and brain relevance. In study 1, 172 participants compared the central self to the peripheral self. The central self, construed at this abstract level, was seen as more brain-based than the peripheral self, less changeable through willful control, and yet more indicative of moral character. In study 2, 210 participants described 18 specific personality traits on 6 dimensions: centrality to self, moral relevance, willful control, brain dependence, temporal stability, and desirability. Consistent with Study 1, centrality to the self, construed at this more concrete level, was positively correlated to brain dependence. Centrality to the self was also correlated to desirability and temporal stability, but not to morality or willful control. We discuss differences and similarities between abstract (Study 1) and concrete (Study 2) levels of construal of the central self, and conclude that in contemporary American society people readily embrace the brain as the underlying substrate of who they truly are. PMID:26793140

  10. Common Sense Beliefs about the Central Self, Moral Character, and the Brain.

    PubMed

    Fernandez-Duque, Diego; Schwartz, Barry

    2015-01-01

    To assess lay beliefs about self and brain, we probed people's opinions about the central self, in relation to morality, willful control, and brain relevance. In study 1, 172 participants compared the central self to the peripheral self. The central self, construed at this abstract level, was seen as more brain-based than the peripheral self, less changeable through willful control, and yet more indicative of moral character. In study 2, 210 participants described 18 specific personality traits on 6 dimensions: centrality to self, moral relevance, willful control, brain dependence, temporal stability, and desirability. Consistent with Study 1, centrality to the self, construed at this more concrete level, was positively correlated to brain dependence. Centrality to the self was also correlated to desirability and temporal stability, but not to morality or willful control. We discuss differences and similarities between abstract (Study 1) and concrete (Study 2) levels of construal of the central self, and conclude that in contemporary American society people readily embrace the brain as the underlying substrate of who they truly are.

  11. SPATIAL NEGLECT AND ATTENTION NETWORKS

    PubMed Central

    Corbetta, Maurizio; Shulman, Gordon L.

    2013-01-01

    Unilateral spatial neglect is a common neurological syndrome following predominantly right hemisphere injuries to ventral fronto-parietal cortex. We propose that neglect reflects deficits in the coding of saliency, control of spatial attention, and representation within an egocentric frame of reference, in conjunction with non-spatial deficits of reorienting, target detection, and arousal/vigilance. In contrast to theories that link spatial neglect to structural damage of specific brain regions, we argue that neglect is better explained by the physiological dysfunction of distributed cortical networks. The ventral lesions in right parietal, temporal, and frontal cortex that cause neglect directly impair non-spatial functions and hypoactivate the right hemisphere, inducing abnormalities in task-evoked activity and functional connectivity of a dorsal frontal-parietal network that controls spatial attention. The anatomy and right hemisphere dominance of neglect follows from the anatomy and laterality of the ventral regions that interact with the dorsal attention network. PMID:21692662

  12. Effects of prior information on decoding degraded speech: an fMRI study.

    PubMed

    Clos, Mareike; Langner, Robert; Meyer, Martin; Oechslin, Mathias S; Zilles, Karl; Eickhoff, Simon B

    2014-01-01

    Expectations and prior knowledge are thought to support the perceptual analysis of incoming sensory stimuli, as proposed by the predictive-coding framework. The current fMRI study investigated the effect of prior information on brain activity during the decoding of degraded speech stimuli. When prior information enabled the comprehension of the degraded sentences, the left middle temporal gyrus and the left angular gyrus were activated, highlighting a role of these areas in meaning extraction. In contrast, the activation of the left inferior frontal gyrus (area 44/45) appeared to reflect the search for meaningful information in degraded speech material that could not be decoded because of mismatches with the prior information. Our results show that degraded sentences evoke instantaneously different percepts and activation patterns depending on the type of prior information, in line with prediction-based accounts of perception. Copyright © 2012 Wiley Periodicals, Inc.

  13. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.

    PubMed

    Berezutskaya, Julia; Freudenburg, Zachary V; Güçlü, Umut; van Gerven, Marcel A J; Ramsey, Nick F

    2017-08-16

    Despite a large body of research, we continue to lack a detailed account of how auditory processing of continuous speech unfolds in the human brain. Previous research showed the propagation of low-level acoustic features of speech from posterior superior temporal gyrus toward anterior superior temporal gyrus in the human brain (Hullett et al., 2016). In this study, we investigate what happens to these neural representations past the superior temporal gyrus and how they engage higher-level language processing areas such as inferior frontal gyrus. We used low-level sound features to model neural responses to speech outside of the primary auditory cortex. Two complementary imaging techniques were used with human participants (both males and females): electrocorticography (ECoG) and fMRI. Both imaging techniques showed tuning of the perisylvian cortex to low-level speech features. With ECoG, we found evidence of propagation of the temporal features of speech sounds along the ventral pathway of language processing in the brain toward inferior frontal gyrus. Increasingly coarse temporal features of speech spreading from posterior superior temporal cortex toward inferior frontal gyrus were associated with linguistic features such as voice onset time, duration of the formant transitions, and phoneme, syllable, and word boundaries. The present findings provide the groundwork for a comprehensive bottom-up account of speech comprehension in the human brain. SIGNIFICANCE STATEMENT We know that, during natural speech comprehension, a broad network of perisylvian cortical regions is involved in sound and language processing. Here, we investigated the tuning to low-level sound features within these regions using neural responses to a short feature film. We also looked at whether the tuning organization along these brain regions showed any parallel to the hierarchy of language structures in continuous speech. Our results show that low-level speech features propagate throughout the perisylvian cortex and potentially contribute to the emergence of "coarse" speech representations in inferior frontal gyrus typically associated with high-level language processing. These findings add to the previous work on auditory processing and underline a distinctive role of inferior frontal gyrus in natural speech comprehension. Copyright © 2017 the authors 0270-6474/17/377906-15$15.00/0.

  14. A novel multiple description scalable coding scheme for mobile wireless video transmission

    NASA Astrophysics Data System (ADS)

    Zheng, Haifeng; Yu, Lun; Chen, Chang Wen

    2005-03-01

    We proposed in this paper a novel multiple description scalable coding (MDSC) scheme based on in-band motion compensation temporal filtering (IBMCTF) technique in order to achieve high video coding performance and robust video transmission. The input video sequence is first split into equal-sized groups of frames (GOFs). Within a GOF, each frame is hierarchically decomposed by discrete wavelet transform. Since there is a direct relationship between wavelet coefficients and what they represent in the image content after wavelet decomposition, we are able to reorganize the spatial orientation trees to generate multiple bit-streams and employed SPIHT algorithm to achieve high coding efficiency. We have shown that multiple bit-stream transmission is very effective in combating error propagation in both Internet video streaming and mobile wireless video. Furthermore, we adopt the IBMCTF scheme to remove the redundancy for inter-frames along the temporal direction using motion compensated temporal filtering, thus high coding performance and flexible scalability can be provided in this scheme. In order to make compressed video resilient to channel error and to guarantee robust video transmission over mobile wireless channels, we add redundancy to each bit-stream and apply error concealment strategy for lost motion vectors. Unlike traditional multiple description schemes, the integration of these techniques enable us to generate more than two bit-streams that may be more appropriate for multiple antenna transmission of compressed video. Simulate results on standard video sequences have shown that the proposed scheme provides flexible tradeoff between coding efficiency and error resilience.

  15. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.

    PubMed

    Xie, Jianwen; Douglas, Pamela K; Wu, Ying Nian; Brody, Arthur L; Anderson, Ariana E

    2017-04-15

    Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001). The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Genetics Home Reference: GRN-related frontotemporal dementia

    MedlinePlus

    ... temporal lobes . The frontal lobes are involved in reasoning, planning, judgment, and problem-solving, while the temporal ... MND. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain. 2008 Mar; ...

  17. Using individual differences to test the role of temporal and place cues in coding frequency modulation

    PubMed Central

    Whiteford, Kelly L.; Oxenham, Andrew J.

    2015-01-01

    The question of how frequency is coded in the peripheral auditory system remains unresolved. Previous research has suggested that slow rates of frequency modulation (FM) of a low carrier frequency may be coded via phase-locked temporal information in the auditory nerve, whereas FM at higher rates and/or high carrier frequencies may be coded via a rate-place (tonotopic) code. This hypothesis was tested in a cohort of 100 young normal-hearing listeners by comparing individual sensitivity to slow-rate (1-Hz) and fast-rate (20-Hz) FM at a carrier frequency of 500 Hz with independent measures of phase-locking (using dynamic interaural time difference, ITD, discrimination), level coding (using amplitude modulation, AM, detection), and frequency selectivity (using forward-masking patterns). All FM and AM thresholds were highly correlated with each other. However, no evidence was obtained for stronger correlations between measures thought to reflect phase-locking (e.g., slow-rate FM and ITD sensitivity), or between measures thought to reflect tonotopic coding (fast-rate FM and forward-masking patterns). The results suggest that either psychoacoustic performance in young normal-hearing listeners is not limited by peripheral coding, or that similar peripheral mechanisms limit both high- and low-rate FM coding. PMID:26627783

  18. Using individual differences to test the role of temporal and place cues in coding frequency modulation.

    PubMed

    Whiteford, Kelly L; Oxenham, Andrew J

    2015-11-01

    The question of how frequency is coded in the peripheral auditory system remains unresolved. Previous research has suggested that slow rates of frequency modulation (FM) of a low carrier frequency may be coded via phase-locked temporal information in the auditory nerve, whereas FM at higher rates and/or high carrier frequencies may be coded via a rate-place (tonotopic) code. This hypothesis was tested in a cohort of 100 young normal-hearing listeners by comparing individual sensitivity to slow-rate (1-Hz) and fast-rate (20-Hz) FM at a carrier frequency of 500 Hz with independent measures of phase-locking (using dynamic interaural time difference, ITD, discrimination), level coding (using amplitude modulation, AM, detection), and frequency selectivity (using forward-masking patterns). All FM and AM thresholds were highly correlated with each other. However, no evidence was obtained for stronger correlations between measures thought to reflect phase-locking (e.g., slow-rate FM and ITD sensitivity), or between measures thought to reflect tonotopic coding (fast-rate FM and forward-masking patterns). The results suggest that either psychoacoustic performance in young normal-hearing listeners is not limited by peripheral coding, or that similar peripheral mechanisms limit both high- and low-rate FM coding.

  19. Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder.

    PubMed

    Song, Jingkuan; Zhang, Hanwang; Li, Xiangpeng; Gao, Lianli; Wang, Meng; Hong, Richang

    2018-07-01

    Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed self-supervised video hashing (SSVH), which is able to capture the temporal nature of videos in an end-to-end learning to hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary auto-encoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world data sets show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the current best performance on the task of unsupervised video retrieval.

  20. Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder

    NASA Astrophysics Data System (ADS)

    Song, Jingkuan; Zhang, Hanwang; Li, Xiangpeng; Gao, Lianli; Wang, Meng; Hong, Richang

    2018-07-01

    Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed Self-Supervised Video Hashing (SSVH), that is able to capture the temporal nature of videos in an end-to-end learning-to-hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos; and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary autoencoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world datasets (FCVID and YFCC) show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the currently best performance on the task of unsupervised video retrieval.

  1. Trends in incidence of primary brain cancer in New Zealand, 1995 to 2010.

    PubMed

    Kim, Stella J-H; Ioannides, Sally J; Elwood, J Mark

    2015-04-01

    Case-control studies have linked mobile phone use to an increased risk of glioma in the most exposed brain areas, the temporal and parietal lobes, although inconsistently. We examined time trends in the incidence rates of brain malignancies in New Zealand from 1995 to 2010. Data from the New Zealand Cancer Registry was used to calculate incidence rates of primary brain cancer, by age, gender, morphology and anatomical site. Log-linear regression analysis was used to assess trends in the annual incidence of primary brain cancer; annual percentage changes and their 95% confidence intervals were estimated. No consistent increases in all primary brain cancer, glioma, or temporal or parietal lobe glioma were seen. At ages 10-69, the incidence of all brain cancers declined significantly. Incidence of glioma increased at ages over 70. In New Zealand, there has been no consistent increase in incidence rates of primary brain cancers. An increase in glioma at ages over 70 is likely to be due to improvements in diagnosis. As with any such studies, a small effect, or one with a latent period of more than 10 to 15 years, cannot be excluded. © 2015 Public Health Association of Australia.

  2. 77 FR 45363 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... in laboratory animal models of Parkinson's disease and protects several types of neurons in the brain... novel peptides that was found to be reduced in human middle temporal gyrus of Alzheimer's disease brains... role in neuroprotective effects of GDNF in human brain. The NIDA inventors have also developed antibody...

  3. Temporally structured replay of neural activity in a model of entorhinal cortex, hippocampus and postsubiculum

    PubMed Central

    Hasselmo, Michael E.

    2008-01-01

    The spiking activity of hippocampal neurons during REM sleep exhibits temporally structured replay of spiking occurring during previously experienced trajectories (Louie and Wilson, 2001). Here, temporally structured replay of place cell activity during REM sleep is modeled in a large-scale network simulation of grid cells, place cells and head direction cells. During simulated waking behavior, the movement of the simulated rat drives activity of a population of head direction cells that updates the activity of a population of entorhinal grid cells. The population of grid cells drives the activity of place cells coding individual locations. Associations between location and movement direction are encoded by modification of excitatory synaptic connections from place cells to speed modulated head direction cells. During simulated REM sleep, the population of place cells coding an experienced location activates the head direction cells coding the associated movement direction. Spiking of head direction cells then causes frequency shifts within the population of entorhinal grid cells to update a phase representation of location. Spiking grid cells then activate new place cells that drive new head direction activity. In contrast to models that perform temporally compressed sequence retrieval similar to sharp wave activity, this model can simulate data on temporally structured replay of hippocampal place cell activity during REM sleep at time scales similar to those observed during waking. These mechanisms could be important for episodic memory of trajectories. PMID:18973557

  4. Non-contact assessment of melanin distribution via multispectral temporal illumination coding

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Scharfenberger, Christian; Wong, Alexander; Clausi, David A.

    2015-03-01

    Melanin is a pigment that is highly absorptive in the UV and visible electromagnetic spectra. It is responsible for perceived skin tone, and protects against harmful UV effects. Abnormal melanin distribution is often an indicator for melanoma. We propose a novel approach for non-contact melanin distribution via multispectral temporal illumination coding to estimate the two-dimensional melanin distribution based on its absorptive characteristics. In the proposed system, a novel multispectral, cross-polarized, temporally-coded illumination sequence is synchronized with a camera to measure reflectance under both multispectral and ambient illumination. This allows us to eliminate the ambient illumination contribution from the acquired reflectance measurements, and also to determine the melanin distribution in an observed region based on the spectral properties of melanin using the Beer-Lambert law. Using this information, melanin distribution maps can be generated for objective, quantitative assessment of skin type of individuals. We show that the melanin distribution map correctly identifies areas with high melanin densities (e.g., nevi).

  5. Memory Outcomes Following Selective versus Nonselective Temporal Lobe Removal: A Systematic Review

    ERIC Educational Resources Information Center

    Girgis, Fady

    2012-01-01

    The surgical removal of brain tissue for the treatment of temporal lobe epilepsy can be either nonselective, as with an anterior temporal lobectomy (ATL), or selective, as with a selective amygdalohippocampectomy (SAH). Although seizure outcomes are similar with both procedures, cognitive and memory outcomes remain a matter of debate. This study…

  6. Brain profiling and clinical-neuroscience.

    PubMed

    Peled, Avi

    2006-01-01

    The current psychiatric diagnostic system, the diagnostic statistic manual, has recently come under increasing criticism. The major reason for the shortcomings of the current psychiatric diagnosis is the lack of a scientific brain-related etiological knowledge about mental disorders. The advancement toward such knowledge is further hampered by the lack of a theoretical framework or "language" that translates clinical findings of mental disorders to brain disturbances and insufficiencies. Here such a theoretical construct is proposed based on insights from neuroscience and neural-computation models. Correlates between clinical manifestations and presumed neuronal network disturbances are proposed in the form of a practical diagnostic system titled "Brain Profiling". Three dimensions make-up brain profiling, "neural complexity disorders", "neuronal resilience insufficiency", and "context-sensitive processing decline". The first dimension relates to disturbances occurring to fast neuronal activations in the millisecond range, it incorporates connectivity and hierarchical imbalances appertaining typically to psychotic and schizophrenic clinical manifestations. The second dimension relates to disturbances that alter slower changes namely long-term synaptic modulations, and incorporates disturbances to optimization and constraint satisfactions within relevant neuronal circuitry. Finally, the level of internal representations related to personality disorders is presented by a "context-sensitive process decline" as the third dimension. For practical use of brain profiling diagnosis a consensual list of psychiatric clinical manifestations provides a "diagnostic input vector", clinical findings are coded 1 for "detection" and 0 for "non-detection", 0.5 is coded for "questionable". The entries are clustered according to their presumed neuronal dynamic relationships and coefficients determine their relevance to the specific related brain disturbance. Relevant equations calculate and normalize the different values attributed to relevant brain disturbances culminating in a three-digit estimation representing the three diagnostic dimensions. brain profiling has the promise for a future brain-related diagnosis. It offers testable predictions about the etiology of mental disorders because being brain-related it lends readily to brain imaging investigations. Being presented also as a one-point representation in a three-dimensional space, multiple follow-up diagnoses trace a trajectory representing an easy-to-see clinical history of the patient. Additional, more immediate, advantages involve reduced stigma because it relaters the disorder to the brain not the person, in addition the three-digit diagnostic code is clinically informative unlike the DSM codes that have no clinical relevance. To conclude, brain profiling diagnosis of mental disorders could be a bold new step toward a "clinical-neuroscience" substituting "psychiatry".

  7. The problem with brain GUTs: conflation of different senses of "prediction" threatens metaphysical disaster.

    PubMed

    Anderson, Michael L; Chemero, Tony

    2013-06-01

    Clark appears to be moving toward epistemic internalism, which he once rightly rejected. This results from a double over-interpretation of predictive coding's significance. First, Clark argues that predictive coding offers a Grand Unified Theory (GUT) of brain function. Second, he over-reads its epistemic import, perhaps even conflating causal and epistemic mediators. We argue instead for a plurality of neurofunctional principles.

  8. Local Brain Activity Differences Between Herpes Zoster and Postherpetic Neuralgia Patients: A Resting-State Functional MRI Study.

    PubMed

    Cao, Song; Li, Ying; Deng, Wenwen; Qin, Bangyong; Zhang, Yi; Xie, Peng; Yuan, Jie; Yu, Buwei; Yu, Tian

    2017-07-01

    Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), both of which are painful diseases. PHN patients suffer chronic pain and emotional disorders. Previous studies showed that the PHN brain displayed abnormal activity and structural change, but the difference in brain activity between HZ and PHN is still not known. To identify regional brain activity changes in HZ and PHN brains with resting-state functional magnetic resonance imaging (rs-fMRI) technique, and to observe the differences between HZ and PHN patients. Observational study. University hospital. Regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) methods were employed to analysis resting-state brain activity. Seventy-three age and gender matched patients (50 HZ, 23 PHN) and 55 healthy controls were enrolled. ReHo and fALFF changes were analyzed to detect the functional abnormality in HZ and PHN brains. Compared with healthy controls, HZ and PHN patients exhibited abnormal ReHo and fALFF values in classic pain-related brain regions (such as the frontal lobe, thalamus, insular, and cerebellum) as well as the brainstem, limbic lobe, and temporal lobe. When HZ developed to PHN, the activity in the vast area of the cerebellum significantly increased while that of some regions in the occipital lobe, temporal lobe, parietal lobe, and limbic lobe showed an apparent decrease. (a) Relatively short pain duration (mean 12.2 months) and small sample size (n = 23) for PHN group. (b) Comparisons at different time points (with paired t-tests) for each patient may minimize individual differences. HZ and PHN induced local brain activity changed in the pain matrix, brainstem, and limbic system. HZ chronification induced functional change in the cerebellum, occipital lobe, temporal lobe, parietal lobe, and limbic lobe. These brain activity changes may be correlated with HZ-PHN transition. Herpes zoster, postherpetic neuralgia, resting-state fMRI (rs-fMRI), regional homogeneity (ReHo), fractional aptitude of low-frequency fluctuation (fALFF).

  9. A Coded Structured Light System Based on Primary Color Stripe Projection and Monochrome Imaging

    PubMed Central

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-01-01

    Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy. PMID:24129018

  10. A coded structured light system based on primary color stripe projection and monochrome imaging.

    PubMed

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-10-14

    Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.

  11. Representational geometry: integrating cognition, computation, and the brain

    PubMed Central

    Kriegeskorte, Nikolaus; Kievit, Rogier A.

    2013-01-01

    The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure. PMID:23876494

  12. Correlation of vocals and lyrics with left temporal musicogenic epilepsy.

    PubMed

    Tseng, Wei-En J; Lim, Siew-Na; Chen, Lu-An; Jou, Shuo-Bin; Hsieh, Hsiang-Yao; Cheng, Mei-Yun; Chang, Chun-Wei; Li, Han-Tao; Chiang, Hsing-I; Wu, Tony

    2018-03-15

    Whether the cognitive processing of music and speech relies on shared or distinct neuronal mechanisms remains unclear. Music and language processing in the brain are right and left temporal functions, respectively. We studied patients with musicogenic epilepsy (ME) that was specifically triggered by popular songs to analyze brain hyperexcitability triggered by specific stimuli. The study included two men and one woman (all right-handed, aged 35-55 years). The patients had sound-triggered left temporal ME in response to popular songs with vocals, but not to instrumental, classical, or nonvocal piano solo versions of the same song. Sentimental lyrics, high-pitched singing, specificity/familiarity, and singing in the native language were the most significant triggering factors. We found that recognition of the human voice and analysis of lyrics are important causal factors in left temporal ME and provide observational evidence that sounds with speech structure are predominantly processed in the left temporal lobe. A literature review indicated that language-associated stimuli triggered ME in the left temporal epileptogenic zone at a nearly twofold higher rate compared with the right temporal region. Further research on ME may enhance understanding of the cognitive neuroscience of music. © 2018 New York Academy of Sciences.

  13. Differentiability of simulated MEG hippocampal, medial temporal and neocortical temporal epileptic spike activity.

    PubMed

    Stephen, Julia M; Ranken, Doug M; Aine, Cheryl J; Weisend, Michael P; Shih, Jerry J

    2005-12-01

    Previous studies have shown that magnetoencephalography (MEG) can measure hippocampal activity, despite the cylindrical shape and deep location in the brain. The current study extended this work by examining the ability to differentiate the hippocampal subfields, parahippocampal cortex, and neocortical temporal sources using simulated interictal epileptic activity. A model of the hippocampus was generated on the MRIs of five subjects. CA1, CA3, and dentate gyrus of the hippocampus were activated as well as entorhinal cortex, presubiculum, and neocortical temporal cortex. In addition, pairs of sources were activated sequentially to emulate various hypotheses of mesial temporal lobe seizure generation. The simulated MEG activity was added to real background brain activity from the five subjects and modeled using a multidipole spatiotemporal modeling technique. The waveforms and source locations/orientations for hippocampal and parahippocampal sources were differentiable from neocortical temporal sources. In addition, hippocampal and parahippocampal sources were differentiated to varying degrees depending on source. The sequential activation of hippocampal and parahippocampal sources was adequately modeled by a single source; however, these sources were not resolvable when they overlapped in time. These results suggest that MEG has the sensitivity to distinguish parahippocampal and hippocampal spike generators in mesial temporal lobe epilepsy.

  14. Distinct neural mechanisms for reading Arabic vs verbal numbers: an ERP study.

    PubMed

    Proverbio, Alice Mado; Bianco, Marco; de Benedetto, Francesco

    2018-05-12

    In this EEG/ERP study, 16 volunteers were asked to compare the numerical equality of 360 pairs of multi-digit numbers presented in Arabic or verbal format. Behavioural data showed faster and more accurate responses for digit targets, with a right hand/left hemisphere advantage only for verbal numerals. Occipito-temporal N1, peaking at approximately 180 ms, was strongly left-lateralized during verbal number processing and bilateral during digit processing. A LORETA (low resolution electromagnetic tomography) source reconstruction performed at the N1 latency stage (155-185 ms) revealed greater brain activation during coding of Arabic than of verbal stimuli. Digit perceptual coding was associated with the activation of the right angular gyrus (rAG), the left fusiform gyrus (FG, BA37), and left and right superior and medial frontal areas. N1 sources for verbal numerals included the left FG (BA37), the precuneus (BA31), the parahippocampal area and a small right prefrontal activation. In addition, verbal numerals elicited a late frontocentral negativity, possibly reflecting stimulus unfamiliarity or complexity. Overall, the data suggest distinct mechanisms for number reading through ciphers (digits) or words. Information about quantity was accessed earlier and more accurately if numbers were in a nonlinguistic code. Indeed, it can be speculated that numerosity processing would involve circuits originally involved in processing space (i.e.,rAG/rIPS). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Bitter Taste Stimuli Induce Differential Neural Codes in Mouse Brain

    PubMed Central

    Wilson, David M.; Boughter, John D.; Lemon, Christian H.

    2012-01-01

    A growing literature suggests taste stimuli commonly classified as “bitter” induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes) was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total), including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA), presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5) were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05) to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05) from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among “bitter” stimuli, data that challenge a strict monoguesia model for the bitter quality. PMID:22844505

  16. Gesture in the developing brain

    PubMed Central

    Dick, Anthony Steven; Goldin-Meadow, Susan; Solodkin, Ana; Small, Steven L.

    2011-01-01

    Speakers convey meaning not only through words, but also through gestures. Although children are exposed to co-speech gestures from birth, we do not know how the developing brain comes to connect meaning conveyed in gesture with speech. We used functional magnetic resonance imaging (fMRI) to address this question and scanned 8- to 11-year-old children and adults listening to stories accompanied by hand movements, either meaningful co-speech gestures or meaningless self-adaptors. When listening to stories accompanied by both types of hand movements, both children and adults recruited inferior frontal, inferior parietal, and posterior temporal brain regions known to be involved in processing language not accompanied by hand movements. There were, however, age-related differences in activity in posterior superior temporal sulcus (STSp), inferior frontal gyrus, pars triangularis (IFGTr), and posterior middle temporal gyrus (MTGp) regions previously implicated in processing gesture. Both children and adults showed sensitivity to the meaning of hand movements in IFGTr and MTGp, but in different ways. Finally, we found that hand movement meaning modulates interactions between STSp and other posterior temporal and inferior parietal regions for adults, but not for children. These results shed light on the developing neural substrate for understanding meaning contributed by co-speech gesture. PMID:22356173

  17. An Update of the Classical and Novel Methods Used for Measuring Fast Neurotransmitters During Normal and Brain Altered Function

    PubMed Central

    Cifuentes Castro, Victor Hugo; López Valenzuela, Carmen Lucía; Salazar Sánchez, Juan Carlos; Peña, Kenia Pardo; López Pérez, Silvia J.; Ibarra, Jorge Ortega; Villagrán, Alberto Morales

    2014-01-01

    To understand better the cerebral functions, several methods have been developed to study the brain activity, they could be related with morphological, electrophysiological, molecular and neurochemical techniques. Monitoring neurotransmitter concentration is a key role to know better how the brain works during normal or pathological conditions, as well as for studying the changes in neurotransmitter concentration with the use of several drugs that could affect or reestablish the normal brain activity. Immediate response of the brain to environmental conditions is related with the release of the fast acting neurotransmission by glutamate (Glu), γ-aminobutyric acid (GABA) and acetylcholine (ACh) through the opening of ligand-operated ion channels. Neurotransmitter release is mainly determined by the classical microdialysis technique, this is generally coupled to high performance liquid chromatography (HPLC). Detection of neurotransmitters can be done by fluorescence, optical density, electrochemistry or other detection systems more sophisticated. Although the microdialysis method is the golden technique to monitor the brain neurotransmitters, it has a poor temporal resolution. Recently, with the use of biosensor the drawback of temporal resolution has been improved considerably, however other inconveniences have merged, such as stability, reproducibility and the lack of reliable biosensors mainly for GABA. The aim of this review is to show the important advances in the different ways to measure neurotransmitter concentrations; both with the use of classic techniques as well as with the novel methods and alternant approaches to improve the temporal resolution. PMID:25977677

  18. Illumination-compensated non-contact imaging photoplethysmography via dual-mode temporally coded illumination

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Scharfenberger, Christian; Wong, Alexander; Clausi, David A.

    2015-03-01

    Non-contact camera-based imaging photoplethysmography (iPPG) is useful for measuring heart rate in conditions where contact devices are problematic due to issues such as mobility, comfort, and sanitation. Existing iPPG methods analyse the light-tissue interaction of either active or passive (ambient) illumination. Many active iPPG methods assume the incident ambient light is negligible to the active illumination, resulting in high power requirements, while many passive iPPG methods assume near-constant ambient conditions. These assumptions can only be achieved in environments with controlled illumination and thus constrain the use of such devices. To increase the number of possible applications of iPPG devices, we propose a dual-mode active iPPG system that is robust to changes in ambient illumination variations. Our system uses a temporally-coded illumination sequence that is synchronized with the camera to measure both active and ambient illumination interaction for determining heart rate. By subtracting the ambient contribution, the remaining illumination data can be attributed to the controlled illuminant. Our device comprises a camera and an LED illuminant controlled by a microcontroller. The microcontroller drives the temporal code via synchronizing the frame captures and illumination time at the hardware level. By simulating changes in ambient light conditions, experimental results show our device is able to assess heart rate accurately in challenging lighting conditions. By varying the temporal code, we demonstrate the trade-off between camera frame rate and ambient light compensation for optimal blood pulse detection.

  19. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takaya, Shigetoshi; Kuperberg, Gina R.; Tufts Univ., Medford, MA

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less

  20. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    DOE PAGES

    Takaya, Shigetoshi; Kuperberg, Gina R.; Tufts Univ., Medford, MA; ...

    2015-09-15

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less

  1. Radiation brain dose to vascular surgeons during fluoroscopically guided interventions is not effectively reduced by wearing lead equivalent surgical caps.

    PubMed

    Kirkwood, Melissa L; Arbique, Gary M; Guild, Jeffrey B; Zeng, Katie; Xi, Yin; Rectenwald, John; Anderson, Jon A; Timaran, Carlos

    2018-03-12

    Radiation to the interventionalist's brain during fluoroscopically guided interventions (FGIs) may increase the incidence of cerebral neoplasms. Lead equivalent surgical caps claim to reduce radiation brain doses by 50% to 95%. We sought to determine the efficacy of the RADPAD (Worldwide Innovations & Technologies, Lenexa, Kan) No Brainer surgical cap (0.06 mm lead equivalent at 90 kVp) in reducing radiation dose to the surgeon's and trainee's head during FGIs and to a phantom to determine relative brain dose reductions. Optically stimulated, luminescent nanoDot detectors (Landauer, Glenwood, Ill) inside and outside of the cap at the left temporal position were used to measure cap attenuation during FGIs. To check relative brain doses, nanoDot detectors were placed in 15 positions within an anthropomorphic head phantom (ATOM model 701; CIRS, Norfolk, Va). The phantom was positioned to represent a primary operator performing femoral access. Fluorography was performed on a plastic scatter phantom at 80 kVp for an exposure of 5 Gy reference air kerma with or without the hat. For each brain location, the percentage dose reduction with the hat was calculated. Means and standard errors were calculated using a pooled linear mixed model with repeated measurements. Anatomically similar locations were combined into five groups: upper brain, upper skull, midbrain, eyes, and left temporal position. This was a prospective, single-center study that included 29 endovascular aortic aneurysm procedures. The average procedure reference air kerma was 2.6 Gy. The hat attenuation at the temporal position for the attending physician and fellow was 60% ± 20% and 33% ± 36%, respectively. The equivalent phantom measurements demonstrated an attenuation of 71% ± 2.0% (P < .0001). In the interior phantom locations, attenuation was statistically significant for the skull (6% ± 1.4%) and upper brain (7.2% ± 1.0%; P < .0001) but not for the middle brain (1.4% ± 1.0%; P = .15) or the eyes (-1.5% ± 1.4%; P = .28). The No Brainer surgical cap attenuates direct X rays at the superficial temporal location; however, the majority of radiation to an interventionalist's brain originates from scatter radiation from angles not shadowed by the cap as demonstrated by the trivial percentage brain dose reductions measured in the phantom. Radiation protective caps have minimal clinical relevance. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  2. Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy.

    PubMed

    Strauss, Kenneth I; Elisevich, Kost V

    2016-10-13

    Epilepsy patients have distinct immune/inflammatory cell profiles and inflammatory mediator levels in the blood. Although the neural origin of inflammatory cells and mediators has been implied, few studies have measured these inflammatory components in the human brain itself. This study examines the brain levels of chemokines (8), cytokines (14), and vascular injury mediators (3) suspected of being altered in epilepsy. Soluble protein extracts of fresh frozen resected hippocampus, entorhinal cortex, and temporal cortex from 58 medically refractory mesial temporal lobe epilepsy subjects and 4 nonepileptic neurosurgical subjects were assayed for 25 inflammation-related mediators using ultrasensitive low-density arrays. Brain mediator levels were compared between regions and between epileptic and nonepileptic cases, showing a number of regional and possible epilepsy-associated differences. Eotaxin, interferon-γ, interleukin (IL)-2, IL-4, IL-12 p70, IL-17A, tumor necrosis factor-α, and intercellular adhesion molecule (ICAM)-1 levels were highest in the hippocampus, the presumptive site of epileptogenesis. Surprisingly, IL-1β and IL-1α were lowest in the hippocampus, compared to cortical regions. In the temporal cortex, IL-1β, IL-8, and MIP-1α levels were highest, compared to the entorhinal cortex and the hippocampus. The most pronounced epilepsy-associated differences were decreased levels of eotaxin, IL-1β, C-reactive protein, and vascular cell adhesion molecule (VCAM)-1 and increased IL-12 p70 levels. Caution must be used in interpreting these results, however, because nonepileptic subjects were emergent neurosurgical cases, not a control group. Correlation analyses of each mediator in each brain region yielded valuable insights into the regulation of these mediator levels in the brain. Over 70 % of the associations identified were between different mediators in a single brain region, providing support for local control of mediator levels. Correlations of different mediators in different brain regions suggested more distributed control mechanisms, particularly in the hippocampus. Interestingly, only four mediators showed robust correlations between the brain regions, yet levels in three of these were significantly different between regions, indicating both global and local controls for these mediators. Both brain region-specific and epilepsy-associated changes in inflammation-related mediators were detected. Correlations in mediator levels within and between brain regions indicated local and global regulation, respectively. The hippocampus showed the majority of interregional associations, suggesting a focus of inflammatory control between these regions.

  3. A young infant with musicogenic epilepsy.

    PubMed

    Lin, Kuang-Lin; Wang, Huei-Shyong; Kao, Pan-Fu

    2003-05-01

    Musicogenic epilepsy is a relatively rare form of epilepsy. In its pure form, it is characterized by epileptic seizures that are provoked exclusively by listening to music. The usual type of seizure is partial complex or generalized tonic-clonic. Precipitating factors are quite specific, such as listening to only one composition or the actual playing of music on an instrument. However, simple sound also can be a trigger. We report a 6-month-old infant with musicogenic epilepsy. She manifested right-sided focal seizures with occasional generalization. The seizures were frequently triggered by loud music, especially that by the Beatles. The interictal electroencephalography results were normal. Ictal spikes were present throughout the left temporal area during continuous electroencephalograpic monitoring. Brain magnetic resonance imaging results were normal, whereas single-photon emission computed tomography of the brain revealed hypoperfusion of the left temporal area. The young age and epileptogenic left temporal lobe lesion in this patient with musicogenic epilepsy were unusual characteristics. Theoretically, three levels of integration are involved in music processing in the brain. The involved integration of this infant's brain may be the sensory level rather than the emotional level. Nevertheless, the personal musicality and musical style of the Beatles might play an important role in this patient's epilepsy.

  4. Adolescent drinking and brain morphometry: A co-twin control analysis.

    PubMed

    Wilson, Sylia; Malone, Stephen M; Thomas, Kathleen M; Iacono, William G

    2015-12-01

    Developmental changes in structure and functioning are thought to make the adolescent brain particularly sensitive to the negative effects of alcohol. Although alcohol use disorders are relatively rare in adolescence, the initiation of alcohol use, including problematic use, becomes increasingly prevalent during this period. The present study examined associations between normative drinking (alcohol initiation, binge drinking, intoxication) and brain morphometry in a sample of 96 adolescent monozygotic twins. A priori regions of interest included 11 subcortical and 20 cortical structures implicated in the existing empirical literature as associated with normative alcohol use in adolescence. In addition, co-twin control analyses were used to disentangle risk for alcohol use from consequences of alcohol exposure on the developing brain. Results indicated significant associations reflecting preexisting vulnerability toward problematic alcohol use, including reduced volume of the amygdala, increased volume of the cerebellum, and reduced cortical volume and thickness in several frontal and temporal regions, including the superior and middle frontal gyri, pars triangularis, and middle and inferior temporal gyri. Results also indicated some associations consistent with a neurotoxic effect of alcohol exposure, including reduced volume of the ventral diencephalon and the middle temporal gyrus. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Detection of whole-brain abnormalities in temporal lobe epilepsy using tensor-based morphometry with DARTEL

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Lv, Bin; Li, Meng; Jin, Zhengyu

    2009-10-01

    Tensor-based morphometry (TBM) is an automated technique for detecting the anatomical differences between populations by examining the gradients of the deformation fields used to nonlinearly warp MR images. The purpose of this study was to investigate the whole-brain volume changes between the patients with unilateral temporal lobe epilepsy (TLE) and the controls using TBM with DARTEL, which could achieve more accurate inter-subject registration of brain images. T1-weighted images were acquired from 21 left-TLE patients, 21 right-TLE patients and 21 healthy controls, which were matched in age and gender. The determinants of the gradient of deformation fields at voxel level were obtained to quantify the expansion or contraction for individual images relative to the template, and then logarithmical transformation was applied on it. A whole brain analysis was performed using general lineal model (GLM), and the multiple comparison was corrected by false discovery rate (FDR) with p<0.05. For left-TLE patients, significant volume reductions were found in hippocampus, cingulate gyrus, precentral gyrus, right temporal lobe and cerebellum. These results potentially support the utility of TBM with DARTEL to study the structural changes between groups.

  6. Grey matter correlates of susceptibility to scams in community-dwelling older adults.

    PubMed

    Duke Han, S; Boyle, Patricia A; Yu, Lei; Arfanakis, Konstantinos; James, Bryan D; Fleischman, Debra A; Bennett, David A

    2016-06-01

    Susceptibility to scams is a significant issue among older adults, even among those with intact cognition. Age-related changes in brain macrostructure may be associated with susceptibility to scams; however, this has yet to be explored. Based on previous work implicating frontal and temporal lobe functioning as important in decision making, we tested the hypothesis that susceptibility to scams is associated with smaller grey matter volume in frontal and temporal lobe regions in a large community-dwelling cohort of non-demented older adults. Participants (N = 327, mean age = 81.55, mean education = 15.30, 78.9 % female) completed a self-report measure used to assess susceptibility to scams and an MRI brain scan. Results indicated an inverse association between overall grey matter and susceptibility to scams in models adjusted for age, education, and sex; and in models further adjusted for cognitive function. No significant associations were observed for white matter, cerebrospinal fluid, or total brain volume. Models adjusted for age, education, and sex revealed seven clusters showing smaller grey matter in the right parahippocampal/hippocampal/fusiform, left middle temporal, left orbitofrontal, right ventromedial prefrontal, right middle temporal, right precuneus, and right dorsolateral prefrontal regions. In models further adjusted for cognitive function, results revealed three significant clusters showing smaller grey matter in the right parahippocampal/hippocampal/fusiform, right hippocampal, and right middle temporal regions. Lower grey matter concentration in specific brain regions may be associated with susceptibility to scams, even after adjusting for cognitive ability. Future research is needed to determine whether grey matter reductions in these regions may be a biomarker for susceptibility to scams in old age.

  7. Exploring the roles of spectral detail and intonation contour in speech intelligibility: an FMRI study.

    PubMed

    Kyong, Jeong S; Scott, Sophie K; Rosen, Stuart; Howe, Timothy B; Agnew, Zarinah K; McGettigan, Carolyn

    2014-08-01

    The melodic contour of speech forms an important perceptual aspect of tonal and nontonal languages and an important limiting factor on the intelligibility of speech heard through a cochlear implant. Previous work exploring the neural correlates of speech comprehension identified a left-dominant pathway in the temporal lobes supporting the extraction of an intelligible linguistic message, whereas the right anterior temporal lobe showed an overall preference for signals clearly conveying dynamic pitch information [Johnsrude, I. S., Penhune, V. B., & Zatorre, R. J. Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain, 123, 155-163, 2000; Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406, 2000]. The current study combined modulations of overall intelligibility (through vocoding and spectral inversion) with a manipulation of pitch contour (normal vs. falling) to investigate the processing of spoken sentences in functional MRI. Our overall findings replicate and extend those of Scott et al. [Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406, 2000], where greater sentence intelligibility was predominately associated with increased activity in the left STS, and the greatest response to normal sentence melody was found in right superior temporal gyrus. These data suggest a spatial distinction between brain areas associated with intelligibility and those involved in the processing of dynamic pitch information in speech. By including a set of complexity-matched unintelligible conditions created by spectral inversion, this is additionally the first study reporting a fully factorial exploration of spectrotemporal complexity and spectral inversion as they relate to the neural processing of speech intelligibility. Perhaps surprisingly, there was little evidence for an interaction between the two factors-we discuss the implications for the processing of sound and speech in the dorsolateral temporal lobes.

  8. Incidence of Traumatic Brain Injury Across the Full Disease Spectrum: A Population-Based Medical Record Review Study

    PubMed Central

    Leibson, Cynthia L.; Brown, Allen W.; Ransom, Jeanine E.; Diehl, Nancy N.; Perkins, Patricia K.; Mandrekar, Jay; Malec, James F.

    2012-01-01

    Background Extremely few objective estimates of traumatic brain injury incidence include all ages, both sexes, all injury mechanisms, and the full spectrum from very mild to fatal events. Methods We used unique Rochester Epidemiology Project medical records-linkage resources, including highly sensitive and specific diagnostic coding, to identify all Olmsted County, MN, residents with diagnoses suggestive of traumatic brain injury regardless of age, setting, insurance, or injury mechanism. Provider-linked medical records for a 16% random sample were reviewed for confirmation as definite, probable, possible (symptomatic), or no traumatic brain injury. We estimated incidence per 100,000 person-years for 1987–2000 and compared these record-review rates with rates obtained using Centers for Disease Control and Prevention (CDC) data-systems approach. For the latter, we identified all Olmsted County residents with any CDC-specified diagnosis codes recorded on hospital/emergency department administrative claims or death certificates 1987–2000. Results Of sampled individuals, 1257 met record-review criteria for incident traumatic brain injury; 56% were ages 16–64 years, 56% were male, 53% were symptomatic. Mechanism, sex, and diagnostic certainty differed by age. The incidence rate per 100,000 person-years was 558 (95% confidence interval = 528–590) versus 341 (331–350) using the CDC data system approach. The CDC approach captured only 40% of record-review cases. Seventy-four percent of missing cases presented to hospital/emergency department; none had CDC-specified codes assigned on hospital/emergency department administrative claims or death certificates; 66% were symptomatic. Conclusions Capture of symptomatic traumatic brain injuries requires a wider range of diagnosis codes, plus sampling strategies to avoid high rates of false-positive events. PMID:21968774

  9. Fast depth decision for HEVC inter prediction based on spatial and temporal correlation

    NASA Astrophysics Data System (ADS)

    Chen, Gaoxing; Liu, Zhenyu; Ikenaga, Takeshi

    2016-07-01

    High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the compression accuracy, the partition sizes ranging is from 4x4 to 64x64 in HEVC. However, the manifold partition sizes dramatically increase the encoding complexity. This paper proposes a fast depth decision based on spatial and temporal correlation. Spatial correlation utilize the code tree unit (CTU) Splitting information and temporal correlation utilize the motion vector predictor represented CTU in inter prediction to determine the maximum depth in each CTU. Experimental results show that the proposed method saves about 29.1% of the original processing time with 0.9% of BD-bitrate increase on average.

  10. Neural representations of the sense of self

    PubMed Central

    Klemm, William R.

    2011-01-01

    The brain constructs representations of what is sensed and thought about in the form of nerve impulses that propagate in circuits and network assemblies (Circuit Impulse Patterns, CIPs). CIP representations of which humans are consciously aware occur in the context of a sense of self. Thus, research on mechanisms of consciousness might benefit from a focus on how a conscious sense of self is represented in brain. Like all senses, the sense of self must be contained in patterns of nerve impulses. Unlike the traditional senses that are registered by impulse flow in relatively simple, pauci-synaptic projection pathways, the sense of self is a system- level phenomenon that may be generated by impulse patterns in widely distributed complex and interacting circuits. The problem for researchers then is to identify the CIPs that are unique to conscious experience. Also likely to be of great relevance to constructing the representation of self are the coherence shifts in activity timing relations among the circuits. Consider that an embodied sense of self is generated and contained as unique combinatorial temporal patterns across multiple neurons in each circuit that contributes to constructing the sense of self. As with other kinds of CIPs, those representing the sense of self can be learned from experience, stored in memory, modified by subsequent experiences, and expressed in the form of decisions, choices, and commands. These CIPs are proposed here to be the actual physical basis for conscious thought and the sense of self. When active in wakefulness or dream states, the CIP representations of self act as an agent of the brain, metaphorically as an avatar. Because the selfhood CIP patterns may only have to represent the self and not directly represent the inner and outer worlds of embodied brain, the self representation should have more degrees of freedom than subconscious mind and may therefore have some capacity for a free-will mind of its own. S everal lines of evidence for this theory are reviewed. Suggested new research includes identifying distinct combinatorially coded impulse patterns and their temporal coherence shifts in defined circuitry, such as neocortical microcolumns. This task might be facilitated by identifying the micro-topography of field-potential oscillatory coherences among various regions and between different frequencies associated with specific conscious mentation. Other approaches can include identifying the changes in discrete conscious operations produced by focal trans-cranial magnetic stimulation. PMID:21826192

  11. Spike Timing Matters in Novel Neuronal Code Involved in Vibrotactile Frequency Perception.

    PubMed

    Birznieks, Ingvars; Vickery, Richard M

    2017-05-22

    Skin vibrations sensed by tactile receptors contribute significantly to the perception of object properties during tactile exploration [1-4] and to sensorimotor control during object manipulation [5]. Sustained low-frequency skin vibration (<60 Hz) evokes a distinct tactile sensation referred to as flutter whose frequency can be clearly perceived [6]. How afferent spiking activity translates into the perception of frequency is still unknown. Measures based on mean spike rates of neurons in the primary somatosensory cortex are sufficient to explain performance in some frequency discrimination tasks [7-11]; however, there is emerging evidence that stimuli can be distinguished based also on temporal features of neural activity [12, 13]. Our study's advance is to demonstrate that temporal features are fundamental for vibrotactile frequency perception. Pulsatile mechanical stimuli were used to elicit specified temporal spike train patterns in tactile afferents, and subsequently psychophysical methods were employed to characterize human frequency perception. Remarkably, the most salient temporal feature determining vibrotactile frequency was not the underlying periodicity but, rather, the duration of the silent gap between successive bursts of neural activity. This burst gap code for frequency represents a previously unknown form of neural coding in the tactile sensory system, which parallels auditory pitch perception mechanisms based on purely temporal information where longer inter-pulse intervals receive higher perceptual weights than short intervals [14]. Our study also demonstrates that human perception of stimuli can be determined exclusively by temporal features of spike trains independent of the mean spike rate and without contribution from population response factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Penetrating brain injury caused by nail guns: two case reports and a review of the literature.

    PubMed

    Luo, Wei; Liu, Hai; Hao, Shuyu; Zhang, Ying; Li, Jingsheng; Liu, Baiyun

    2012-01-01

    To the best of the authors' knowledge, there are few case reports of penetrating brain injuries (PBI) caused by nail guns and these have usually involved incomplete penetration of the skull. Complete penetration of a nail into the intracranial cavity is extremely rare. Here, two such cases are presented. In the first, the nail entered through the right temporal bone, lodged in the right temporal lobe and was removed via craniotomy with intra-operative ultrasound guidance. In the second, the nail destroyed the left parietal bone, damaged the left internal capsule and lodged in the left temporal lobe near the left petrous apex and the brain stem. According to the latest literature retrieval, this is the first reported case of nail-gun injury to the internal capsule. The position of the nail precluded removal without further neurologic damage. Treatment strategies designed to optimize outcome, with or without surgery, and possible complications are discussed in this report.

  13. Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data.

    PubMed

    Calhoun, V D; Adali, T; Pearlson, G D; Kiehl, K A

    2006-04-01

    Event-related potential (ERP) studies of the brain's response to infrequent, target (oddball) stimuli elicit a sequence of physiological events, the most prominent and well studied being a complex, the P300 (or P3) peaking approximately 300 ms post-stimulus for simple stimuli and slightly later for more complex stimuli. Localization of the neural generators of the human oddball response remains challenging due to the lack of a single imaging technique with good spatial and temporal resolution. Here, we use independent component analyses to fuse ERP and fMRI modalities in order to examine the dynamics of the auditory oddball response with high spatiotemporal resolution across the entire brain. Initial activations in auditory and motor planning regions are followed by auditory association cortex and motor execution regions. The P3 response is associated with brainstem, temporal lobe, and medial frontal activity and finally a late temporal lobe "evaluative" response. We show that fusing imaging modalities with different advantages can provide new information about the brain.

  14. Brain perfusion correlates of visuoperceptual deficits in Mild Cognitive Impairment and mild Alzheimer’s disease

    PubMed Central

    Alegret, Montserrat; Vinyes-Junqué, Georgina; Boada, Mercè; Martínez-Lage, Pablo; Cuberas, Gemma; Espinosa, Ana; Roca, Isabel; Hernández, Isabel; Valero, Sergi; Rosende-Roca, Maitée; Mauleón, Ana; Becker, James T.; Tárraga, Lluís

    2012-01-01

    Background Visuoperceptual processing is impaired early in the clinical course of Alzheimer’s disease (AD). The 15-Objects Test (15-OT) detects such subtle performance deficits in Mild Cognitive Impairment (MCI) and mild AD. Reduced brain perfusion in the temporal, parietal and prefrontal regions have been found in early AD and MCI patients. Objectives To confirm the role of the 15-OT in the diagnosis of MCI and AD, and to investigate the brain perfusion correlates of visuoperceptual dysfunction (15-OT) in subjects with MCI, AD and normal aging. Methods Forty-two AD, 42 MCI and 42 healthy elderly control (EC) subjects underwent a brain Single Photon Emission Tomography (SPECT) and separately completed the 15-OT. An analysis of variance compared 15-OT scores between groups. SPM5 was used to analyse the SPECT data. Results 15-OT performace was impaired in the MCI and AD patients. In terms of the SPECT scans, AD patients showed reduced perfusion in temporal-parietal regions, while the MCI subjects had decreased perfusion in the middle and posterior cingulate. When MCI and AD groups were compared, a significant brain perfusion reduction was found in temporo-parietal regions. In the whole sample, 15-OT performance was significantly correlated with the clinical dementia rating scores, and with the perfusion in the bilateral posterior cingulate and the right temporal pole, with no significant correlation in each separate group. Conclusion Our findings suggest that the 15-OT performance provides a useful gradation of impairment from normal aging to AD, and it seems to be related to perfusion in the bilateral posterior cingulate and the right temporal pole. PMID:20555146

  15. fMRI during natural sleep as a method to study brain function during early childhood.

    PubMed

    Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric

    2007-12-01

    Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.

  16. Network-Level Analysis of Cortical Thickness of the Epileptic Brain

    PubMed Central

    Raj, A; Mueller, S.G; Young, K; Laxer, K.D.; Weiner, M

    2010-01-01

    Temporal lobe epilepsy (TLE) characterized by an epileptogenic focus in the medial temporal lobe is the most common form of focal epilepsy. However, the seizures are not confined to the temporal lobe but can spread to other, anatomically connected brain regions where they can cause similar structural abnormalities as observed in the focus. The aim of this study was to derive whole brain networks from volumetric data and obtain network-centric measures which can capture cortical thinning characteristic for TLE and can be used for classifying a given MRI into TLE or normal, and to obtain additional summary statistics which relate to the extent and spread of the disease. T1 weighted whole brain images were acquired on a 4T magnet in 13 patients with TLE with mesial temporal lobe sclerosis (TLE-MTS), 14 patients with TLE with normal MRI (TLE-no) and 30 controls. Mean cortical thickness and curvature measurements were obtained using the Freesurfer software. These values were used to derive a graph, or network, for each subject. The nodes of the graph are brain regions, and edges represent disease progression paths. We show how to obtain summary statistics like mean, median and variance defined for these networks and to perform exploratory analyses like correlation and classification. Our results indicate that the proposed network approach can improve accuracy of classifying subjects into 2 groups (control and TLE), from 78% for non-network classifiers to 93% using the proposed approach. We also obtain network “peakiness” values using statistical measures like entropy and complexity - this appears to be a good characterizer of the disease, and may have utility in surgical planning. PMID:20553893

  17. Clinical studies of photodynamic therapy for malignant brain tumors: facial nerve palsy after temporal fossa photoillumination

    NASA Astrophysics Data System (ADS)

    Muller, Paul J.; Wilson, Brian C.; Lilge, Lothar D.; Varma, Abhay; Bogaards, Arjen; Fullagar, Tim; Fenstermaker, Robert; Selker, Robert; Abrams, Judith

    2003-06-01

    In two randomized prospective studies of brain tumor PDT more than 180 patients have been accrued. At the Toronto site we recognized two patients who developed a lower motor neuron (LMN) facial paralysis in the week following the PDT treatment. In both cases a temporal lobectomy was undertaken and the residual tumor cavity was photo-illuminated. The surface illuminated included the temporal fossa floor, thus potentially exposing the facial nerve to the effect of PDT. The number of frontal, temporal, parietal, and occipital tumors in this cohort was 39, 24, 12 and 4, respectively. Of the 24 temporal tumors 18 were randomized to Photofrin-PDT. Of these 18 a temporal lobectomy was carried out exposing the middle fossa floor as part of the tumor resection. In two of the 10 patients where the lobectomy was carried out and the fossa floor was exposed to light there occurred a postoperative facial palsy. Both patients recovered facial nerve function in 6 and 12 weeks, respectively. 46 J/cm2 were used in the former and 130 J/cm2 in the latter. We did not encounter a single post-operative LMN facial plasy in the 101 phase 2 patients treated with Photofrin-PDT. Among 688 supratentorial brain tumor operations in the last decade involving all pathologies and all locations no case of early post-operative LMN facial palsy was identified in the absence of PDT. One further patient who had a with post-PDT facial palsy was identified at the Denver site. Although it is possible that these patients had incidental Bell's palsy, we now recommend shielding the temporal fossa floor during PDT.

  18. Brain resting-state networks in adolescents with high-functioning autism: Analysis of spatial connectivity and temporal neurodynamics.

    PubMed

    Bernas, Antoine; Barendse, Evelien M; Aldenkamp, Albert P; Backes, Walter H; Hofman, Paul A M; Hendriks, Marc P H; Kessels, Roy P C; Willems, Frans M J; de With, Peter H N; Zinger, Svitlana; Jansen, Jacobus F A

    2018-02-01

    Autism spectrum disorder (ASD) is mainly characterized by functional and communication impairments as well as restrictive and repetitive behavior. The leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, which can be assessed using functional magnetic resonance imaging (fMRI). Even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic, or resting-state, connectivity. Global default connectivity in individuals with autism versus controls is not well characterized, especially for a high-functioning young population. The aim of this study is to test whether high-functioning adolescents with ASD (HFA) have an abnormal resting-state functional connectivity. We performed spatial and temporal analyses on resting-state networks (RSNs) in 13 HFA adolescents and 13 IQ- and age-matched controls. For the spatial analysis, we used probabilistic independent component analysis (ICA) and a permutation statistical method to reveal the RSN differences between the groups. For the temporal analysis, we applied Granger causality to find differences in temporal neurodynamics. Controls and HFA display very similar patterns and strengths of resting-state connectivity. We do not find any significant differences between HFA adolescents and controls in the spatial resting-state connectivity. However, in the temporal dynamics of this connectivity, we did find differences in the causal effect properties of RSNs originating in temporal and prefrontal cortices. The results show a difference between HFA and controls in the temporal neurodynamics from the ventral attention network to the salience-executive network: a pathway involving cognitive, executive, and emotion-related cortices. We hypothesized that this weaker dynamic pathway is due to a subtle trigger challenging the cognitive state prior to the resting state.

  19. Software Certification for Temporal Properties With Affordable Tool Qualification

    NASA Technical Reports Server (NTRS)

    Xia, Songtao; DiVito, Benedetto L.

    2005-01-01

    It has been recognized that a framework based on proof-carrying code (also called semantic-based software certification in its community) could be used as a candidate software certification process for the avionics industry. To meet this goal, tools in the "trust base" of a proof-carrying code system must be qualified by regulatory authorities. A family of semantic-based software certification approaches is described, each different in expressive power, level of automation and trust base. Of particular interest is the so-called abstraction-carrying code, which can certify temporal properties. When a pure abstraction-carrying code method is used in the context of industrial software certification, the fact that the trust base includes a model checker would incur a high qualification cost. This position paper proposes a hybrid of abstraction-based and proof-based certification methods so that the model checker used by a client can be significantly simplified, thereby leading to lower cost in tool qualification.

  20. Long non-coding RNA H19 contributes to apoptosis of hippocampal neurons by inhibiting let-7b in a rat model of temporal lobe epilepsy.

    PubMed

    Han, Chun-Lei; Ge, Ming; Liu, Yun-Peng; Zhao, Xue-Min; Wang, Kai-Liang; Chen, Ning; Hu, Wei; Zhang, Jian-Guo; Li, Liang; Meng, Fan-Gang

    2018-05-23

    Temporal lobe epilepsy (TLE) is one of the most common types of intractable epilepsy, characterized by hippocampal neuron damage and hippocampal sclerosis. Long noncoding RNAs (lncRNAs) have been increasingly recognized as posttranscriptional regulators. However, their expression levels and functions in TLE remain largely unknown. In the present study, TLE rat model is used to explore the expression profiles of lncRNAs in the hippocampus of epileptic rats using microarray analysis. Our results demonstrate that H19 is the most pronouncedly differentiated lncRNA, significantly upregulated in the latent period of TLE. Moreover, the in vivo studies using gain- and loss-of-function approaches reveal that the overexpression of H19 aggravates SE-induced neuron apoptosis in the hippocampus, while inhibition of H19 protects the rats from SE-induced cellular injury. Finally, we show that H19 might function as a competing endogenous RNA to sponge microRNA let-7b in the regulation of cellular apoptosis. Overall, our study reveals a novel lncRNA H19-mediated mechanism in seizure-induced neural damage and provides a new target in developing lncRNA-based strategies to reduce seizure-induced brain injury.

  1. Adaptation to changes in higher-order stimulus statistics in the salamander retina.

    PubMed

    Tkačik, Gašper; Ghosh, Anandamohan; Schneidman, Elad; Segev, Ronen

    2014-01-01

    Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the brain. While adaptive changes in retinal processing to the variations of the mean luminance level and second-order stimulus statistics have been documented before, no such measurements have been performed when higher-order moments of the light distribution change. We therefore measured the ganglion cell responses in the tiger salamander retina to controlled changes in the second (contrast), third (skew) and fourth (kurtosis) moments of the light intensity distribution of spatially uniform temporally independent stimuli. The skew and kurtosis of the stimuli were chosen to cover the range observed in natural scenes. We quantified adaptation in ganglion cells by studying linear-nonlinear models that capture well the retinal encoding properties across all stimuli. We found that the encoding properties of retinal ganglion cells change only marginally when higher-order statistics change, compared to the changes observed in response to the variation in contrast. By analyzing optimal coding in LN-type models, we showed that neurons can maintain a high information rate without large dynamic adaptation to changes in skew or kurtosis. This is because, for uncorrelated stimuli, spatio-temporal summation within the receptive field averages away non-gaussian aspects of the light intensity distribution.

  2. Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain

    PubMed Central

    2012-01-01

    Background Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. Results By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3’ UTR structures and correlated expression patterns. Conclusions Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function. PMID:22651826

  3. Temporal lobe epilepsy: origin and significance of simple and complex auras.

    PubMed Central

    Taylor, D C; Lochery, M

    1987-01-01

    The aura experience of 88 patients with temporal lobe epilepsy was recorded, classified and analysed. Despite the great richness of the 215 experiences described, correlations with left or right brain, nature of lesion, age of onset, etc. were only apparent when a classification into three aura groups was used. "Simple primitive" auras as sole auras were more likely with early onset epilepsy, in lower IQ patients, in males, from the right temporal lobe, and with mesial temporal sclerosis. Exclusively "intellectual" auras were confined to a group of high IQ males. The number of aura experiences described per person correlated with Verbal IQ for males but not females, but also varied with side, sex, and nature of lesion. The results are discussed in terms of the necessary conditions for aura and their relevance and in relationship to the results of brain stimulation studies by Penfield and others. PMID:3612148

  4. Disturbed prefrontal and temporal brain function during emotion and cognition interaction in criminal psychopathy.

    PubMed

    Müller, Jürgen L; Sommer, Monika; Döhnel, Katrin; Weber, Tatjana; Schmidt-Wilcke, Tobias; Hajak, Göran

    2008-01-01

    Impaired emotional responsiveness has been revealed as a hallmark of psychopathy. In spite of an increasing database on emotion processing, studies on cognitive function and in particular on the impact of emotion on cognition in psychopathy are rare. We used pictures from the International Affective Picture Set (IAPS) and a Simon Paradigm to address emotion-cognition interaction while functional and structural imaging data were obtained in 12 healthy controls and 10 psychopaths. We found an impaired emotion-cognition interaction in psychopaths that correlated with a changed prefrontal and temporal brain activation. With regard to the temporal cortex, it is shown that structure and function of the right superior temporal gyrus is disturbed in psychopathy, supporting a neurobiological approach to psychopathy, in which structure and function of the right STG may be important. (c) 2008 John Wiley & Sons, Ltd.

  5. Levels of word processing and incidental memory: dissociable mechanisms in the temporal lobe.

    PubMed

    Castillo, E M; Simos, P G; Davis, R N; Breier, J; Fitzgerald, M E; Papanicolaou, A C

    2001-11-16

    Word recall is facilitated when deep (e.g. semantic) processing is applied during encoding. This fact raises the question of the existence of specific brain mechanisms supporting different levels of information processing that can modulate incidental memory performance. In this study we obtained spatiotemporal brain activation profiles, using magnetic source imaging, from 10 adult volunteers as they performed a shallow (phonological) processing task and a deep (semantic) processing task. When phonological analysis of the word stimuli into their constituent phonemes was required, activation was largely restricted to the posterior portion of the left superior temporal gyrus (area 22). Conversely, when access to lexical/semantic representations was required, activation was found predominantly in the left middle temporal gyrus and medial temporal cortex. The differential engagement of each mechanism during word encoding was associated with dramatic changes in subsequent incidental memory performance.

  6. Obligatory and facultative brain regions for voice-identity recognition.

    PubMed

    Roswandowitz, Claudia; Kappes, Claudia; Obrig, Hellmuth; von Kriegstein, Katharina

    2018-01-01

    Recognizing the identity of others by their voice is an important skill for social interactions. To date, it remains controversial which parts of the brain are critical structures for this skill. Based on neuroimaging findings, standard models of person-identity recognition suggest that the right temporal lobe is the hub for voice-identity recognition. Neuropsychological case studies, however, reported selective deficits of voice-identity recognition in patients predominantly with right inferior parietal lobe lesions. Here, our aim was to work towards resolving the discrepancy between neuroimaging studies and neuropsychological case studies to find out which brain structures are critical for voice-identity recognition in humans. We performed a voxel-based lesion-behaviour mapping study in a cohort of patients (n = 58) with unilateral focal brain lesions. The study included a comprehensive behavioural test battery on voice-identity recognition of newly learned (voice-name, voice-face association learning) and familiar voices (famous voice recognition) as well as visual (face-identity recognition) and acoustic control tests (vocal-pitch and vocal-timbre discrimination). The study also comprised clinically established tests (neuropsychological assessment, audiometry) and high-resolution structural brain images. The three key findings were: (i) a strong association between voice-identity recognition performance and right posterior/mid temporal and right inferior parietal lobe lesions; (ii) a selective association between right posterior/mid temporal lobe lesions and voice-identity recognition performance when face-identity recognition performance was factored out; and (iii) an association of right inferior parietal lobe lesions with tasks requiring the association between voices and faces but not voices and names. The results imply that the right posterior/mid temporal lobe is an obligatory structure for voice-identity recognition, while the inferior parietal lobe is only a facultative component of voice-identity recognition in situations where additional face-identity processing is required. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  7. Decoding multiple sound categories in the human temporal cortex using high resolution fMRI.

    PubMed

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C M

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain's representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the fMRI images over items, because the irrelevant variations between different items of the same sound category are reduced and in turn the proportion of signals relevant to sound categorization increases.

  8. Male and female voices activate distinct regions in the male brain.

    PubMed

    Sokhi, Dilraj S; Hunter, Michael D; Wilkinson, Iain D; Woodruff, Peter W R

    2005-09-01

    In schizophrenia, auditory verbal hallucinations (AVHs) are likely to be perceived as gender-specific. Given that functional neuro-imaging correlates of AVHs involve multiple brain regions principally including auditory cortex, it is likely that those brain regions responsible for attribution of gender to speech are invoked during AVHs. We used functional magnetic resonance imaging (fMRI) and a paradigm utilising 'gender-apparent' (unaltered) and 'gender-ambiguous' (pitch-scaled) male and female voice stimuli to test the hypothesis that male and female voices activate distinct brain areas during gender attribution. The perception of female voices, when compared with male voices, affected greater activation of the right anterior superior temporal gyrus, near the superior temporal sulcus. Similarly, male voice perception activated the mesio-parietal precuneus area. These different gender associations could not be explained by either simple pitch perception or behavioural response because the activations that we observed were conjointly activated by both 'gender-apparent' and 'gender-ambiguous' voices. The results of this study demonstrate that, in the male brain, the perception of male and female voices activates distinct brain regions.

  9. Brain Activation for Language Dual-Tasking: Listening to Two People Speak at the Same Time and a Change in Network Timing

    PubMed Central

    Buchweitz, Augusto; Keller, Timothy A.; Meyler, Ann; Just, Marcel Adam

    2011-01-01

    The study used fMRI to investigate brain activation in participants who were able to listen to and successfully comprehend two people speaking at the same time (dual-tasking). The study identified brain mechanisms associated with high-level, concurrent dual-tasking, as compared to comprehending a single message. Results showed an increase in the functional connectivity among areas of the language network in the dual task. The increase in synchronization of brain activation for dual-tasking was brought about primarily by a change in the timing of left inferior frontal gyrus (LIFG) activation relative to posterior temporal activation, bringing the LIFG activation into closer correspondence with temporal activation. The results show that the change in LIFG timing was greater in participants with lower working memory capacity, and that recruitment of additional activation in the dual-task occurred only in the areas adjacent to the language network that was activated in the single task. The shift in LIFG activation may be a brain marker of how the brain adapts to high-level dual-tasking. PMID:21618666

  10. Alterations in Normal Aging Revealed by Cortical Brain Network Constructed Using IBASPM.

    PubMed

    Li, Wan; Yang, Chunlan; Shi, Feng; Wang, Qun; Wu, Shuicai; Lu, Wangsheng; Li, Shaowu; Nie, Yingnan; Zhang, Xin

    2018-04-16

    Normal aging has been linked with the decline of cognitive functions, such as memory and executive skills. One of the prominent approaches to investigate the age-related alterations in the brain is by examining the cortical brain connectome. IBASPM is a toolkit to realize individual atlas-based volume measurement. Hence, this study seeks to determine what further alterations can be revealed by cortical brain networks formed by IBASPM-extracted regional gray matter volumes. We found the reduced strength of connections between the superior temporal pole and middle temporal pole in the right hemisphere, global hubs as the left fusiform gyrus and right Rolandic operculum in the young and aging groups, respectively, and significantly reduced inter-module connection of one module in the aging group. These new findings are consistent with the phenomenon of normal aging mentioned in previous studies and suggest that brain network built with the IBASPM could provide supplementary information to some extent. The individualization of morphometric features extraction deserved to be given more attention in future cortical brain network research.

  11. A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation

    PubMed Central

    Habas, Piotr A.; Kim, Kio; Corbett-Detig, James M.; Rousseau, Francois; Glenn, Orit A.; Barkovich, A. James; Studholme, Colin

    2010-01-01

    Modeling and analysis of MR images of the developing human brain is a challenge due to rapid changes in brain morphology and morphometry. We present an approach to the construction of a spatiotemporal atlas of the fetal brain with temporal models of MR intensity, tissue probability and shape changes. This spatiotemporal model is created from a set of reconstructed MR images of fetal subjects with different gestational ages. Groupwise registration of manual segmentations and voxelwise nonlinear modeling allow us to capture the appearance, disappearance and spatial variation of brain structures over time. Applying this model to atlas-based segmentation, we generate age-specific MR templates and tissue probability maps and use them to initialize automatic tissue delineation in new MR images. The choice of model parameters and the final performance are evaluated using clinical MR scans of young fetuses with gestational ages ranging from 20.57 to 24.71 weeks. Experimental results indicate that quadratic temporal models can correctly capture growth-related changes in the fetal brain anatomy and provide improvement in accuracy of atlas-based tissue segmentation. PMID:20600970

  12. [Functional magnetic resonance imaging of brain of college students with internet addiction].

    PubMed

    DU, Wanping; Liu, Jun; Gao, Xunping; Li, Lingjiang; Li, Weihui; Li, Xin; Zhang, Yan; Zhou, Shunke

    2011-08-01

    To explore the functional locations of brain regions related to internet addiction (IA)with task-functional magnetic resonance imaging (fMRI). Nineteen college students who had internet game addition and 19 controls accepted the stimuli of videos via computer. The 3.0 Tesla MRI was used to record the Results of echo plannar imaging. The block design method was used. Intragroup and intergroup analysis Results in the 2 groups were obtained. The differences between the 2 groups were analyzed. The internet game videos markedly activated the brain regions of the college students who had or had no internet game addiction. Compared with the control group, the IA group showed increased activation in the right superior parietal lobule, right insular lobe, right precuneus, right cingulated gyrus, and right superior temporal gyrus. Internet game tasks can activate the vision, space, attention and execution center which are composed of temporal occipital gyrus and frontal parietal gyrus. Abnormal brain function and lateral activation of the right brain may exist in IA.

  13. The temporal structures and functional significance of scale-free brain activity

    PubMed Central

    He, Biyu J.; Zempel, John M.; Snyder, Abraham Z.; Raichle, Marcus E.

    2010-01-01

    SUMMARY Scale-free dynamics, with a power spectrum following P ∝ f-β, are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with β being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications. PMID:20471349

  14. Disrupted Structural and Functional Networks and Their Correlation with Alertness in Right Temporal Lobe Epilepsy: A Graph Theory Study.

    PubMed

    Jiang, Wenyu; Li, Jianping; Chen, Xuemei; Ye, Wei; Zheng, Jinou

    2017-01-01

    Previous studies have shown that temporal lobe epilepsy (TLE) involves abnormal structural or functional connectivity in specific brain areas. However, limited comprehensive studies have been conducted on TLE associated changes in the topological organization of structural and functional networks. Additionally, epilepsy is associated with impairment in alertness, a fundamental component of attention. In this study, structural networks were constructed using diffusion tensor imaging tractography, and functional networks were obtained from resting-state functional MRI temporal series correlations in 20 right temporal lobe epilepsy (rTLE) patients and 19 healthy controls. Global network properties were computed by graph theoretical analysis, and correlations were assessed between global network properties and alertness. The results from these analyses showed that rTLE patients exhibit abnormal small-world attributes in structural and functional networks. Structural networks shifted toward more regular attributes, but functional networks trended toward more random attributes. After controlling for the influence of the disease duration, negative correlations were found between alertness, small-worldness, and the cluster coefficient. However, alertness did not correlate with either the characteristic path length or global efficiency in rTLE patients. Our findings show that disruptions of the topological construction of brain structural and functional networks as well as small-world property bias are associated with deficits in alertness in rTLE patients. These data suggest that reorganization of brain networks develops as a mechanism to compensate for altered structural and functional brain function during disease progression.

  15. Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks.

    PubMed

    Calhoun, Vince D; Kiehl, Kent A; Pearlson, Godfrey D

    2008-07-01

    Brain regions which exhibit temporally coherent fluctuations, have been increasingly studied using functional magnetic resonance imaging (fMRI). Such networks are often identified in the context of an fMRI scan collected during rest (and thus are called "resting state networks"); however, they are also present during (and modulated by) the performance of a cognitive task. In this article, we will refer to such networks as temporally coherent networks (TCNs). Although there is still some debate over the physiological source of these fluctuations, TCNs are being studied in a variety of ways. Recent studies have examined ways TCNs can be used to identify patterns associated with various brain disorders (e.g. schizophrenia, autism or Alzheimer's disease). Independent component analysis (ICA) is one method being used to identify TCNs. ICA is a data driven approach which is especially useful for decomposing activation during complex cognitive tasks where multiple operations occur simultaneously. In this article we review recent TCN studies with emphasis on those that use ICA. We also present new results showing that TCNs are robust, and can be consistently identified at rest and during performance of a cognitive task in healthy individuals and in patients with schizophrenia. In addition, multiple TCNs show temporal and spatial modulation during the cognitive task versus rest. In summary, TCNs show considerable promise as potential imaging biological markers of brain diseases, though each network needs to be studied in more detail. (c) 2008 Wiley-Liss, Inc.

  16. Modulation of Temporally Coherent Brain Networks Estimated Using ICA at Rest and During Cognitive Tasks

    PubMed Central

    Calhoun, Vince D.; Kiehl, Kent A.; Pearlson, Godfrey D.

    2009-01-01

    Brain regions which exhibit temporally coherent fluctuations, have been increasingly studied using functional magnetic resonance imaging (fMRI). Such networks are often identified in the context of an fMRI scan collected during rest (and thus are called “resting state networks”); however, they are also present during (and modulated by) the performance of a cognitive task. In this article, we will refer to such networks as temporally coherent networks (TCNs). Although there is still some debate over the physiological source of these fluctuations, TCNs are being studied in a variety of ways. Recent studies have examined ways TCNs can be used to identify patterns associated with various brain disorders (e.g. schizophrenia, autism or Alzheimer’s disease). Independent component analysis (ICA) is one method being used to identify TCNs. ICA is a data driven approach which is especially useful for decomposing activation during complex cognitive tasks where multiple operations occur simultaneously. In this article we review recent TCN studies with emphasis on those that use ICA. We also present new results showing that TCNs are robust, and can be consistently identified at rest and during performance of a cognitive task in healthy individuals and in patients with schizophrenia. In addition, multiple TCNs show temporal and spatial modulation during the cognitive task versus rest. In summary, TCNs show considerable promise as potential imaging biological markers of brain diseases, though each network needs to be studied in more detail. PMID:18438867

  17. Brain State Is a Major Factor in Preseizure Hippocampal Network Activity and Influences Success of Seizure Intervention

    PubMed Central

    Ewell, Laura A.; Liang, Liang; Armstrong, Caren; Soltész, Ivan; Leutgeb, Stefan

    2015-01-01

    Neural dynamics preceding seizures are of interest because they may shed light on mechanisms of seizure generation and could be predictive. In healthy animals, hippocampal network activity is shaped by behavioral brain state and, in epilepsy, seizures selectively emerge during specific brain states. To determine the degree to which changes in network dynamics before seizure are pathological or reflect ongoing fluctuations in brain state, dorsal hippocampal neurons were recorded during spontaneous seizures in a rat model of temporal lobe epilepsy. Seizures emerged from all brain states, but with a greater likelihood after REM sleep, potentially due to an observed increase in baseline excitability during periods of REM compared with other brains states also characterized by sustained theta oscillations. When comparing the firing patterns of the same neurons across brain states associated with and without seizures, activity dynamics before seizures followed patterns typical of the ongoing brain state, or brain state transitions, and did not differ until the onset of the electrographic seizure. Next, we tested whether disparate activity patterns during distinct brain states would influence the effectiveness of optogenetic curtailment of hippocampal seizures in a mouse model of temporal lobe epilepsy. Optogenetic curtailment was significantly more effective for seizures preceded by non-theta states compared with seizures that emerged from theta states. Our results indicate that consideration of behavioral brain state preceding a seizure is important for the appropriate interpretation of network dynamics leading up to a seizure and for designing effective seizure intervention. SIGNIFICANCE STATEMENT Hippocampal single-unit activity is strongly shaped by behavioral brain state, yet this relationship has been largely ignored when studying activity dynamics before spontaneous seizures in medial temporal lobe epilepsy. In light of the increased attention on using single-unit activity for the prediction of seizure onset and closed-loop seizure intervention, we show a need for monitoring brain state to interpret correctly whether changes in neural activity before seizure onset is pathological or normal. Moreover, we also find that the brain state preceding a seizure determines the success of therapeutic interventions to curtail seizure duration. Together, these findings suggest that seizure prediction and intervention will be more successful if tailored for the specific brain states from which seizures emerge. PMID:26609157

  18. Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology.

    PubMed

    Schultz, Wolfram

    2004-04-01

    Neurons in a small number of brain structures detect rewards and reward-predicting stimuli and are active during the expectation of predictable food and liquid rewards. These neurons code the reward information according to basic terms of various behavioural theories that seek to explain reward-directed learning, approach behaviour and decision-making. The involved brain structures include groups of dopamine neurons, the striatum including the nucleus accumbens, the orbitofrontal cortex and the amygdala. The reward information is fed to brain structures involved in decision-making and organisation of behaviour, such as the dorsolateral prefrontal cortex and possibly the parietal cortex. The neural coding of basic reward terms derived from formal theories puts the neurophysiological investigation of reward mechanisms on firm conceptual grounds and provides neural correlates for the function of rewards in learning, approach behaviour and decision-making.

  19. Spatial and Temporal Episodic Memory Retrieval Recruit Dissociable Functional Networks in the Human Brain

    ERIC Educational Resources Information Center

    Ekstrom, Arne D.; Bookheimer, Susan Y.

    2007-01-01

    Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects…

  20. Spontaneous alterations of regional brain activity in patients with adult generalized anxiety disorder

    PubMed Central

    Xia, Likun; Li, Shumei; Wang, Tianyue; Guo, Yaping; Meng, Lihong; Feng, Yunping; Cui, Yu; Wang, Fan; Ma, Jian; Jiang, Guihua

    2017-01-01

    Objective We aimed to examine how spontaneous brain activity might be related to the pathophysiology of generalized anxiety disorder (GAD). Patients and methods Using resting-state functional MRI, we examined spontaneous regional brain activity in 31 GAD patients (mean age, 36.87±9.16 years) and 36 healthy control participants (mean age, 39.53±8.83 years) matched for age, education, and sex from December 2014 to October 2015. We performed a two-sample t-test on the voxel-based analysis of the regional homogeneity (ReHo) maps. We used Pearson correlation analysis to compare scores from the Hamilton Anxiety Rating Scale, Hamilton Depression Rating Scale, State–Trait Anxiety Scale-Trait Scale, and mean ReHo values. Results We found abnormal spontaneous activity in multiple regions of brain in GAD patients, especially in the sensorimotor cortex and emotional regions. GAD patients showed decreased ReHo values in the right orbital middle frontal gyrus, left anterior cingulate cortex, right middle frontal gyrus, and bilateral supplementary motor areas, with increased ReHo values in the left middle temporal gyrus, left superior temporal gyrus, and right superior occipital gyrus. The ReHo value of the left middle temporal gyrus correlated positively with the Hamilton Anxiety Rating Scale scores. Conclusion These results suggest that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of GAD. PMID:28790831

  1. Information properties of morphologically complex words modulate brain activity during word reading.

    PubMed

    Hakala, Tero; Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta

    2018-06-01

    Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well-defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito-temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole-word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  2. The BDNF Val66Met Polymorphism Influences Reading Ability and Patterns of Neural Activation in Children

    PubMed Central

    Jasińska, Kaja K.; Molfese, Peter J.; Kornilov, Sergey A.; Mencl, W. Einar; Frost, Stephen J.; Lee, Maria; Pugh, Kenneth R.; Grigorenko, Elena L.; Landi, Nicole

    2016-01-01

    Understanding how genes impact the brain’s functional activation for learning and cognition during development remains limited. We asked whether a common genetic variant in the BDNF gene (the Val66Met polymorphism) modulates neural activation in the young brain during a critical period for the emergence and maturation of the neural circuitry for reading. In animal models, the bdnf variation has been shown to be associated with the structure and function of the developing brain and in humans it has been associated with multiple aspects of cognition, particularly memory, which are relevant for the development of skilled reading. Yet, little is known about the impact of the Val66Met polymorphism on functional brain activation in development, either in animal models or in humans. Here, we examined whether the BDNF Val66Met polymorphism (dbSNP rs6265) is associated with children’s (age 6–10) neural activation patterns during a reading task (n = 81) using functional magnetic resonance imaging (fMRI), genotyping, and standardized behavioral assessments of cognitive and reading development. Children homozygous for the Val allele at the SNP rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and phonological memory, tasks that have a strong memory component. Consistent with these behavioral findings, Met allele carriers showed greater activation in reading–related brain regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal gyrus as well as greater activation in the hippocampus during a word and pseudoword reading task. Increased engagement of memory and spoken language regions for Met allele carriers relative to Val/Val homozygotes during reading suggests that Met carriers have to exert greater effort required to retrieve phonological codes. PMID:27551971

  3. Temporal lobe surgery in childhood and neuroanatomical predictors of long-term declarative memory outcome

    PubMed Central

    Skirrow, Caroline; Cross, J. Helen; Harrison, Sue; Cormack, Francesca; Harkness, William; Coleman, Rosie; Meierotto, Ellen; Gaiottino, Johanna; Vargha-Khadem, Faraneh

    2015-01-01

    The temporal lobes play a prominent role in declarative memory function, including episodic memory (memory for events) and semantic memory (memory for facts and concepts). Surgical resection for medication-resistant and well-localized temporal lobe epilepsy has good prognosis for seizure freedom, but is linked to memory difficulties in adults, especially when the removal is on the left side. Children may benefit most from surgery, because brain plasticity may facilitate post-surgical reorganization, and seizure cessation may promote cognitive development. However, the long-term impact of this intervention in children is not known. We examined memory function in 53 children (25 males, 28 females) who were evaluated for epilepsy surgery: 42 underwent unilateral temporal lobe resections (25 left, 17 right, mean age at surgery 13.8 years), 11 were treated only pharmacologically. Average follow-up was 9 years (range 5–15). Post-surgical change in visual and verbal episodic memory, and semantic memory at follow-up were examined. Pre- and post-surgical T1-weighted MRI brain scans were analysed to extract hippocampal and resection volumes, and evaluate post-surgical temporal lobe integrity. Language lateralization indices were derived from functional magnetic resonance imaging. There were no significant pre- to postoperative decrements in memory associated with surgery. In contrast, gains in verbal episodic memory were seen after right temporal lobe surgery, and visual episodic memory improved after left temporal lobe surgery, indicating a functional release in the unoperated temporal lobe after seizure reduction or cessation. Pre- to post-surgical change in memory function was not associated with any indices of brain structure derived from MRI. However, better verbal memory at follow-up was linked to greater post-surgical residual hippocampal volumes, most robustly in left surgical participants. Better semantic memory at follow-up was associated with smaller resection volumes and greater temporal pole integrity after left temporal surgery. Results were independent of post-surgical intellectual function and language lateralization. Our findings indicate post-surgical, hemisphere-dependent material-specific improvement in memory functions in the intact temporal lobe. However, outcome was linked to the anatomical integrity of the temporal lobe memory system, indicating that compensatory mechanisms are constrained by the amount of tissue which remains in the operated temporal lobe. Careful tailoring of resections for children undergoing epilepsy surgery may enhance long-term memory outcome. PMID:25392199

  4. Grouping in Short-Term Memory: Do Oscillators Code the Positions of Items?

    ERIC Educational Resources Information Center

    Ng, Honey L. H.; Maybery, Murray T.

    2005-01-01

    According to several current models of short-term memory, items are retained in order by associating them with positional codes. The models differ as to whether temporal oscillators provide those codes. The authors examined errors in recall of sequences comprising 2 groups of 4 consonants. A critical manipulation was the precise timing of items…

  5. Studying frequency processing of the brain to enhance long-term memory and develop a human brain protocol.

    PubMed

    Friedrich, Wernher; Du, Shengzhi; Balt, Karlien

    2015-01-01

    The temporal lobe in conjunction with the hippocampus is responsible for memory processing. The gamma wave is involved with this process. To develop a human brain protocol, a better understanding of the relationship between gamma and long-term memory is vital. A more comprehensive understanding of the human brain and specific analogue waves it uses will support the development of a human brain protocol. Fifty-eight participants aged between 6 and 60 years participated in long-term memory experiments. It is envisaged that the brain could be stimulated through binaural beats (sound frequency) at 40 Hz (gamma) to enhance long-term memory capacity. EEG recordings have been transformed to sound and then to an information standard, namely ASCII. Statistical analysis showed a proportional relationship between long-term memory and gamma activity. Results from EEG recordings indicate a pattern. The pattern was obtained through the de-codification of an EEG recording to sound and then to ASCII. Stimulation of gamma should enhance long term memory capacity. More research is required to unlock the human brains' protocol key. This key will enable the processing of information directly to and from human memory via gamma, the hippocampus and the temporal lobe.

  6. MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging

    NASA Astrophysics Data System (ADS)

    Cooper, Robert J.; Magee, Elliott; Everdell, Nick; Magazov, Salavat; Varela, Marta; Airantzis, Dimitrios; Gibson, Adam P.; Hebden, Jeremy C.

    2014-05-01

    We detail the design, construction and performance of the second generation UCL time-resolved optical tomography system, known as MONSTIR II. Intended primarily for the study of the newborn brain, the system employs 32 source fibres that sequentially transmit picosecond pulses of light at any four wavelengths between 650 and 900 nm. The 32 detector channels each contain an independent photo-multiplier tube and temporally correlated photon-counting electronics that allow the photon transit time between each source and each detector position to be measured with high temporal resolution. The system's response time, temporal stability, cross-talk, and spectral characteristics are reported. The efficacy of MONSTIR II is demonstrated by performing multi-spectral imaging of a simple phantom.

  7. Qualities of Single Electrode Stimulation as a Function of Rate and Place of Stimulation with a Cochlear Implant

    PubMed Central

    Landsberger, David M.; Vermeire, Katrien; Claes, Annes; Van Rompaey, Vincent; Van de Heyning, Paul

    2015-01-01

    Objectives Although it has been previously shown that changes in temporal coding produce changes in pitch in all cochlear regions, research has suggested that temporal coding might be best encoded in relatively apical locations. We hypothesized that although temporal coding may provide useable information at any cochlear location, low rates of stimulation might provide better sound quality in apical regions that are more likely to encode temporal information in the normal ear. In the present study, sound qualities of single electrode pulse trains were scaled to provide insight into the combined effects of cochlear location and stimulation rate on sound quality. Design Ten long term users of MED-EL cochlear implants with 31 mm electrode arrays (Standard or FLEXSOFT) were asked to scale the sound quality of single electrode pulse trains in terms of how “Clean”, “Noisy”, “High”, and “Annoying” they sounded. Pulse trains were presented on most electrodes between 1 and 12 representing the entire range of the long electrode array at stimulation rates of 100, 150, 200, 400, or 1500 pulses per second. Results While high rates of stimulation are scaled as having a “Clean” sound quality across the entire array, only the most apical electrodes (typically 1 through 3) were considered “Clean” at low rates. Low rates on electrodes 6 through 12 were not rated as “Clean” while the low rate quality of electrodes 4 and 5 were typically in between. Scaling of “Noisy” responses provided an approximately inverse pattern as “Clean” responses. “High” responses show the trade-off between rate and place of stimulation on pitch. Because “High” responses did not correlate with “Clean” responses, subjects were not rating sound quality based on pitch. Conclusions If explicit temporal coding is to be provided in a cochlear implant, it is likely to sound better when provided apically. Additionally, the finding that low rates sound clean only at apical places of stimulation is consistent with previous findings that a change in rate of stimulation corresponds to an equivalent change in perceived pitch at apical locations. Collectively, the data strongly suggests that temporal coding with a cochlear implant is optimally provided by electrodes placed well into the second cochlear turn. PMID:26583480

  8. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  9. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  10. The θ-γ neural code.

    PubMed

    Lisman, John E; Jensen, Ole

    2013-03-20

    Theta and gamma frequency oscillations occur in the same brain regions and interact with each other, a process called cross-frequency coupling. Here, we review evidence for the following hypothesis: that the dual oscillations form a code for representing multiple items in an ordered way. This form of coding has been most clearly demonstrated in the hippocampus, where different spatial information is represented in different gamma subcycles of a theta cycle. Other experiments have tested the functional importance of oscillations and their coupling. These involve correlation of oscillatory properties with memory states, correlation with memory performance, and effects of disrupting oscillations on memory. Recent work suggests that this coding scheme coordinates communication between brain regions and is involved in sensory as well as memory processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Monitoring Sub-Saharan African Physician Migration and Recruitment Post-Adoption of the WHO Code of Practice: Temporal and Geographic Patterns in the United States

    PubMed Central

    Tankwanchi, Akhenaten Benjamin Siankam; Vermund, Sten H.; Perkins, Douglas D.

    2015-01-01

    Data monitoring is a key recommendation of the WHO Global Code of Practice on the International Recruitment of Health Personnel, a global framework adopted in May 2010 to address health workforce retention in resource-limited countries and the ethics of international migration. Using data on African-born and African-educated physicians in the 2013 American Medical Association Physician Masterfile (AMA Masterfile), we monitored Sub-Saharan African (SSA) physician recruitment into the physician workforce of the United States (US) post-adoption of the WHO Code of Practice. From the observed data, we projected to 2015 with linear regression, and we mapped migrant physicians’ locations using GPS Visualizer and ArcGIS. The 2013 AMA Masterfile identified 11,787 active SSA-origin physicians, representing barely 1.3% (11,787/940,456) of the 2013 US physician workforce, but exceeding the total number of physicians reported by WHO in 34 SSA countries (N = 11,519). We estimated that 15.7% (1,849/11,787) entered the US physician workforce after the Code of Practice was adopted. Compared to pre-Code estimates from 2002 (N = 7,830) and 2010 (N = 9,938), the annual admission rate of SSA émigrés into the US physician workforce is increasing. This increase is due in large part to the growing number of SSA-born physicians attending medical schools outside SSA, representing a trend towards younger migrants. Projection estimates suggest that there will be 12,846 SSA migrant physicians in the US physician workforce in 2015, and over 2,900 of them will be post-Code recruits. Most SSA migrant physicians are locating to large urban US areas where physician densities are already the highest. The Code of Practice has not slowed the SSA-to-US physician migration. To stem the physician “brain drain”, it is essential to incentivize professional practice in SSA and diminish the appeal of US migration with bolder interventions targeting primarily early-career (age ≤ 35) SSA physicians. PMID:25875010

  12. Nonspatial Sequence Coding in CA1 Neurons

    PubMed Central

    Allen, Timothy A.; Salz, Daniel M.; McKenzie, Sam

    2016-01-01

    The hippocampus is critical to the memory for sequences of events, a defining feature of episodic memory. However, the fundamental neuronal mechanisms underlying this capacity remain elusive. While considerable research indicates hippocampal neurons can represent sequences of locations, direct evidence of coding for the memory of sequential relationships among nonspatial events remains lacking. To address this important issue, we recorded neural activity in CA1 as rats performed a hippocampus-dependent sequence-memory task. Briefly, the task involves the presentation of repeated sequences of odors at a single port and requires rats to identify each item as “in sequence” or “out of sequence”. We report that, while the animals' location and behavior remained constant, hippocampal activity differed depending on the temporal context of items—in this case, whether they were presented in or out of sequence. Some neurons showed this effect across items or sequence positions (general sequence cells), while others exhibited selectivity for specific conjunctions of item and sequence position information (conjunctive sequence cells) or for specific probe types (probe-specific sequence cells). We also found that the temporal context of individual trials could be accurately decoded from the activity of neuronal ensembles, that sequence coding at the single-cell and ensemble level was linked to sequence memory performance, and that slow-gamma oscillations (20–40 Hz) were more strongly modulated by temporal context and performance than theta oscillations (4–12 Hz). These findings provide compelling evidence that sequence coding extends beyond the domain of spatial trajectories and is thus a fundamental function of the hippocampus. SIGNIFICANCE STATEMENT The ability to remember the order of life events depends on the hippocampus, but the underlying neural mechanisms remain poorly understood. Here we addressed this issue by recording neural activity in hippocampal region CA1 while rats performed a nonspatial sequence memory task. We found that hippocampal neurons code for the temporal context of items (whether odors were presented in the correct or incorrect sequential position) and that this activity is linked with memory performance. The discovery of this novel form of temporal coding in hippocampal neurons advances our fundamental understanding of the neurobiology of episodic memory and will serve as a foundation for our cross-species, multitechnique approach aimed at elucidating the neural mechanisms underlying memory impairments in aging and dementia. PMID:26843637

  13. Population responses in primary auditory cortex simultaneously represent the temporal envelope and periodicity features in natural speech.

    PubMed

    Abrams, Daniel A; Nicol, Trent; White-Schwoch, Travis; Zecker, Steven; Kraus, Nina

    2017-05-01

    Speech perception relies on a listener's ability to simultaneously resolve multiple temporal features in the speech signal. Little is known regarding neural mechanisms that enable the simultaneous coding of concurrent temporal features in speech. Here we show that two categories of temporal features in speech, the low-frequency speech envelope and periodicity cues, are processed by distinct neural mechanisms within the same population of cortical neurons. We measured population activity in primary auditory cortex of anesthetized guinea pig in response to three variants of a naturally produced sentence. Results show that the envelope of population responses closely tracks the speech envelope, and this cortical activity more closely reflects wider bandwidths of the speech envelope compared to narrow bands. Additionally, neuronal populations represent the fundamental frequency of speech robustly with phase-locked responses. Importantly, these two temporal features of speech are simultaneously observed within neuronal ensembles in auditory cortex in response to clear, conversation, and compressed speech exemplars. Results show that auditory cortical neurons are adept at simultaneously resolving multiple temporal features in extended speech sentences using discrete coding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Representational geometry: integrating cognition, computation, and the brain.

    PubMed

    Kriegeskorte, Nikolaus; Kievit, Rogier A

    2013-08-01

    The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Herpes zoster chronification to postherpetic neuralgia induces brain activity and grey matter volume change

    PubMed Central

    Cao, Song; Qin, Bangyong; Zhang, Yi; Yuan, Jie; Fu, Bao; Xie, Peng; Song, Ganjun; Li, Ying; Yu, Tian

    2018-01-01

    Objective: Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), which is a chronic neuropathic pain (NP). Whether the chronification from HZ to PHN induced brain functional or structural change is unknown and no study compared the changes of the same brains of patients who transited from HZ to PHN. We minimized individual differences and observed whether the chronification of HZ to PHN induces functional and pain duration dependent grey matter volume (GMV) change in HZ-PHN patients. Methods: To minimize individual differences induced error, we enrolled 12 patients with a transition from HZ to PHN. The functional and structural changes of their brains between the two states were identified with resting-state functional MRI (rs-fMRI) technique (i.e., the regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) method) and the voxel based morphometry (VBM) technology respectively. The correlations between MRI parameters (i.e., ΔReHo, ΔfALFF and ΔVBM) and Δpain duration were analyzed too. Results: Compared with HZ brains, PHN brains exhibited abnormal ReHo, fALFF and VBM values in pain matrix (the frontal lobe, parietal lobe, thalamus, limbic lobe and cerebellum) as well as the occipital lobe and temporal lobe. Nevertheless, the activity of vast area of cerebellum and frontal lobe significantly increased while that of occipital lobe and limbic lobe showed apparent decrease when HZ developed to PHN. In addition, PHN brain showed decreased GMV in the frontal lobe, the parietal lobe and the occipital lobe but increased in the cerebellum and the temporal lobe. Correlation analyses showed that some of the ReHo, fALFF and VBM differential areas (such as the cerebellum posterior lobe, the thalamus extra-nuclear and the middle temporal gyrus) correlated well with Δpain duration. Conclusions: HZ chronification induced functional and structural change in cerebellum, occipital lobe, temporal lobe, parietal lobe and limbic lobe. These changes may be correlated with HZ-PHN chronification. In addition, these changes could be reasons of refractory chronic pain of PHN. PMID:29423004

  16. Glomerular latency coding in artificial olfaction.

    PubMed

    Yamani, Jaber Al; Boussaid, Farid; Bermak, Amine; Martinez, Dominique

    2011-01-01

    Sensory perception results from the way sensory information is subsequently transformed in the brain. Olfaction is a typical example in which odor representations undergo considerable changes as they pass from olfactory receptor neurons (ORNs) to second-order neurons. First, many ORNs expressing the same receptor protein yet presenting heterogeneous dose-response properties converge onto individually identifiable glomeruli. Second, onset latency of glomerular activation is believed to play a role in encoding odor quality and quantity in the context of fast information processing. Taking inspiration from the olfactory pathway, we designed a simple yet robust glomerular latency coding scheme for processing gas sensor data. The proposed bio-inspired approach was evaluated using an in-house SnO(2) sensor array. Glomerular convergence was achieved by noting the possible analogy between receptor protein expressed in ORNs and metal catalyst used across the fabricated gas sensor array. Ion implantation was another technique used to account both for sensor heterogeneity and enhanced sensitivity. The response of the gas sensor array was mapped into glomerular latency patterns, whose rank order is concentration-invariant. Gas recognition was achieved by simply looking for a "match" within a library of spatio-temporal spike fingerprints. Because of its simplicity, this approach enables the integration of sensing and processing onto a single-chip.

  17. Neuroanatomical substrates of action perception and understanding: an anatomic likelihood estimation meta-analysis of lesion-symptom mapping studies in brain injured patients

    PubMed Central

    Urgesi, Cosimo; Candidi, Matteo; Avenanti, Alessio

    2014-01-01

    Several neurophysiologic and neuroimaging studies suggested that motor and perceptual systems are tightly linked along a continuum rather than providing segregated mechanisms supporting different functions. Using correlational approaches, these studies demonstrated that action observation activates not only visual but also motor brain regions. On the other hand, brain stimulation and brain lesion evidence allows tackling the critical question of whether our action representations are necessary to perceive and understand others’ actions. In particular, recent neuropsychological studies have shown that patients with temporal, parietal, and frontal lesions exhibit a number of possible deficits in the visual perception and the understanding of others’ actions. The specific anatomical substrates of such neuropsychological deficits however, are still a matter of debate. Here we review the existing literature on this issue and perform an anatomic likelihood estimation meta-analysis of studies using lesion-symptom mapping methods on the causal relation between brain lesions and non-linguistic action perception and understanding deficits. The meta-analysis encompassed data from 361 patients tested in 11 studies and identified regions in the inferior frontal cortex, the inferior parietal cortex and the middle/superior temporal cortex, whose damage is consistently associated with poor performance in action perception and understanding tasks across studies. Interestingly, these areas correspond to the three nodes of the action observation network that are strongly activated in response to visual action perception in neuroimaging research and that have been targeted in previous brain stimulation studies. Thus, brain lesion mapping research provides converging causal evidence that premotor, parietal and temporal regions play a crucial role in action recognition and understanding. PMID:24910603

  18. Abnormal functional activation and maturation of ventromedial prefrontal cortex and cerebellum during temporal discounting in autism spectrum disorder.

    PubMed

    Murphy, Clodagh M; Christakou, Anastasia; Giampietro, Vincent; Brammer, Michael; Daly, Eileen M; Ecker, Christine; Johnston, Patrick; Spain, Debbie; Robertson, Dene M; Murphy, Declan G; Rubia, Katya

    2017-11-01

    People with autism spectrum disorder (ASD) have poor decision-making and temporal foresight. This may adversely impact on their everyday life, mental health, and productivity. However, the neural substrates underlying poor choice behavior in people with ASD, or its' neurofunctional development from childhood to adulthood, are unknown. Despite evidence of atypical structural brain development in ASD, investigation of functional brain maturation in people with ASD is lacking. This cross-sectional developmental fMRI study investigated the neural substrates underlying performance on a temporal discounting (TD) task in 38 healthy (11-35 years old) male adolescents and adults with ASD and 40 age, sex, and IQ-matched typically developing healthy controls. Most importantly, we assessed group differences in the neurofunctional maturation of TD across childhood and adulthood. Males with ASD had significantly poorer task performance and significantly lower brain activation in typical regions that mediate TD for delayed choices, in predominantly right hemispheric regions of ventrolateral/dorsolateral prefrontal cortices, ventromedial prefrontal cortex, striatolimbic regions, and cerebellum. Importantly, differential activation in ventromedial frontal cortex and cerebellum was associated with abnormal functional brain maturation; controls, in contrast to people with ASD, showed progressively increasing activation with increasing age in these regions; which furthermore was associated with performance measures and clinical ASD measures (stereotyped/restricted interests). Findings provide first cross-sectional evidence that reduced activation of TD mediating brain regions in people with ASD during TD is associated with abnormal functional brain development in these regions between childhood and adulthood, and this is related to poor task performance and clinical measures of ASD. Hum Brain Mapp 38:5343-5355, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Autism, the superior temporal sulcus and social perception.

    PubMed

    Zilbovicius, Monica; Meresse, Isabelle; Chabane, Nadia; Brunelle, Francis; Samson, Yves; Boddaert, Nathalie

    2006-07-01

    The most common clinical sign of autism spectrum disorders (ASD) is social interaction impairment, which is associated with communication deficits and stereotyped behaviors. Based on recent brain-imaging results, our hypothesis is that abnormalities in the superior temporal sulcus (STS) are highly implicated in ASD. STS abnormalities are characterized by decreased gray matter concentration, rest hypoperfusion and abnormal activation during social tasks. STS anatomical and functional anomalies occurring during early brain development could constitute the first step in the cascade of neural dysfunction underlying ASD. We will focus this review on the STS, which has been highly implicated in social cognition. We will review recent data on the contribution of the STS to normal social cognition and review brain-imaging data implicating this area in ASD. This review is part of the INMED/TINS special issue "Nature and nurture in brain development and neurological disorders", based on presentations at the annual INMED/TINS symposium (http://inmednet.com/).

  20. Sensitivity to musical structure in the human brain

    PubMed Central

    McDermott, Josh H.; Norman-Haignere, Sam; Kanwisher, Nancy

    2012-01-01

    Evidence from brain-damaged patients suggests that regions in the temporal lobes, distinct from those engaged in lower-level auditory analysis, process the pitch and rhythmic structure in music. In contrast, neuroimaging studies targeting the representation of music structure have primarily implicated regions in the inferior frontal cortices. Combining individual-subject fMRI analyses with a scrambling method that manipulated musical structure, we provide evidence of brain regions sensitive to musical structure bilaterally in the temporal lobes, thus reconciling the neuroimaging and patient findings. We further show that these regions are sensitive to the scrambling of both pitch and rhythmic structure but are insensitive to high-level linguistic structure. Our results suggest the existence of brain regions with representations of musical structure that are distinct from high-level linguistic representations and lower-level acoustic representations. These regions provide targets for future research investigating possible neural specialization for music or its associated mental processes. PMID:23019005

Top