Dere, Ekrem; Silva, Maria A De Souza; Huston, Joseph P
2004-01-01
The ability to build higher order multi-modal memories comprising information about the spatio-temporal context of events has been termed 'episodic memory'. Deficits in episodic memory are apparent in a number of neuropsychiatric diseases. Unfortunately, the development of animal models of episodic memory has made little progress. Towards the goal of such a model we devised an object exploration task for mice, providing evidence that rodents can associate object, spatial and temporal information. In our task the mice learned the temporal sequence by which identical objects were introduced into two different contexts. The 'what' component of an episodic memory was operationalized via physically distinct objects; the 'where' component through physically different contexts, and, most importantly, the 'when' component via the context-specific inverted sequence in which four objects were presented. Our results suggest that mice are able to recollect the inverted temporal sequence in which identical objects were introduced into two distinct environments. During two consecutive test trials mice showed an inverse context-specific exploration pattern regarding identical objects that were previously encountered with even frequencies. It seems that the contexts served as discriminative stimuli signaling which of the two sequences are decisive during the two test trials.
A Context Maintenance and Retrieval Model of Organizational Processes in Free Recall
ERIC Educational Resources Information Center
Polyn, Sean M.; Norman, Kenneth A.; Kahana, Michael J.
2009-01-01
The authors present the context maintenance and retrieval (CMR) model of memory search, a generalized version of the temporal context model of M. W. Howard and M. J. Kahana (2002a), which proposes that memory search is driven by an internally maintained context representation composed of stimulus-related and source-related features. In the CMR…
Medial Temporal Lobe Contributions to Cued Retrieval of Items and Contexts
Hannula, Deborah E.; Libby, Laura A.; Yonelinas, Andrew P.; Ranganath, Charan
2013-01-01
Several models have proposed that different regions of the medial temporal lobes contribute to different aspects of episodic memory. For instance, according to one view, the perirhinal cortex represents specific items, parahippocampal cortex represents information regarding the context in which these items were encountered, and the hippocampus represents item-context bindings. Here, we used event-related functional magnetic resonance imaging (fMRI) to test a specific prediction of this model – namely, that successful retrieval of items from context cues will elicit perirhinal recruitment and that successful retrieval of contexts from item cues will elicit parahippocampal cortex recruitment. Retrieval of the bound representation in either case was expected to elicit hippocampal engagement. To test these predictions, we had participants study several item-context pairs (i.e., pictures of objects and scenes, respectively), and then had them attempt to recall items from associated context cues and contexts from associated item cues during a scanned retrieval session. Results based on both univariate and multivariate analyses confirmed a role for hippocampus in content-general relational memory retrieval, and a role for parahippocampal cortex in successful retrieval of contexts from item cues. However, we also found that activity differences in perirhinal cortex were correlated with successful cued recall for both items and contexts. These findings provide partial support for the above predictions and are discussed with respect to several models of medial temporal lobe function. PMID:23466350
NASA Astrophysics Data System (ADS)
Lu, Xiaoguang; Xue, Hui; Jolly, Marie-Pierre; Guetter, Christoph; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew; Zuehlsdorff, Sven; Littmann, Arne; Georgescu, Bogdan; Guehring, Jens
2011-03-01
Cardiac perfusion magnetic resonance imaging (MRI) has proven clinical significance in diagnosis of heart diseases. However, analysis of perfusion data is time-consuming, where automatic detection of anatomic landmarks and key-frames from perfusion MR sequences is helpful for anchoring structures and functional analysis of the heart, leading toward fully automated perfusion analysis. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, i.e., context. Conventional 2D approaches take into account spatial context only. Temporal signals in perfusion data present a strong cue for anchoring. We propose a joint context model to encode both spatial and temporal evidence. In addition, our spatial context is constructed not only based on the landmark of interest, but also the landmarks that are correlated in the neighboring anatomies. A discriminative model is learned through a probabilistic boosting tree. A marginal space learning strategy is applied to efficiently learn and search in a high dimensional parameter space. A fully automatic system is developed to simultaneously detect anatomic landmarks and key frames in both RV and LV from perfusion sequences. The proposed approach was evaluated on a database of 373 cardiac perfusion MRI sequences from 77 patients. Experimental results of a 4-fold cross validation show superior landmark detection accuracies of the proposed joint spatial-temporal approach to the 2D approach that is based on spatial context only. The key-frame identification results are promising.
Postscript: Distinguishing between Temporal Context and Short-Term Store
ERIC Educational Resources Information Center
Howard, Marc W.; Kahana, Michael J.; Sederberg, Per B.
2008-01-01
Space does not allow us to make detailed rebuttals to Davelaar, Usher, Haarmann, and Goshen-Gottstein's criticisms of the temporal context model's (TCM-A's) ability to account for dissociations between immediate and delayed recall nor to explain how TCM could account for list discrimination experiments. We agree that future work is needed to reach…
Medial temporal lobe contributions to cued retrieval of items and contexts.
Hannula, Deborah E; Libby, Laura A; Yonelinas, Andrew P; Ranganath, Charan
2013-10-01
Several models have proposed that different regions of the medial temporal lobes contribute to different aspects of episodic memory. For instance, according to one view, the perirhinal cortex represents specific items, parahippocampal cortex represents information regarding the context in which these items were encountered, and the hippocampus represents item-context bindings. Here, we used event-related functional magnetic resonance imaging (fMRI) to test a specific prediction of this model-namely, that successful retrieval of items from context cues will elicit perirhinal recruitment and that successful retrieval of contexts from item cues will elicit parahippocampal cortex recruitment. Retrieval of the bound representation in either case was expected to elicit hippocampal engagement. To test these predictions, we had participants study several item-context pairs (i.e., pictures of objects and scenes, respectively), and then had them attempt to recall items from associated context cues and contexts from associated item cues during a scanned retrieval session. Results based on both univariate and multivariate analyses confirmed a role for hippocampus in content-general relational memory retrieval, and a role for parahippocampal cortex in successful retrieval of contexts from item cues. However, we also found that activity differences in perirhinal cortex were correlated with successful cued recall for both items and contexts. These findings provide partial support for the above predictions and are discussed with respect to several models of medial temporal lobe function. Copyright © 2013 Elsevier Ltd. All rights reserved.
Towards a functional organization of episodic memory in the medial temporal lobe
Eichenbaum, Howard; Sauvage, Magdalena; Fortin, Norbert; Komorowski, Robert; Lipton, Paul
2011-01-01
Here we describe a model of medial temporal lobe organization in which parallel “what” and “where” processing streams converge within the hippocampus to represent events in the spatio-temporal context in which they occurred; this circuitry also mediates the retrieval of context from event cues and vice versa, which are prototypes of episodic recall. Evidence from studies in animals are reviewed in support of this model, including experiments that distinguish characteristics of episodic recollection from familiarity, neuropsychological and recording studies that have identified a key role for the hippocampus in recollection and in associating events with the context in which they occurred, and distinct roles for parahippocampal region areas in separate “what” and “where” information processing that contributes to recollective and episodic memory. PMID:21810443
Towards a functional organization of episodic memory in the medial temporal lobe.
Eichenbaum, Howard; Sauvage, Magdalena; Fortin, Norbert; Komorowski, Robert; Lipton, Paul
2012-08-01
Here we describe a model of medial temporal lobe organization in which parallel "what" and "where" processing streams converge within the hippocampus to represent events in the spatio-temporal context in which they occurred; this circuitry also mediates the retrieval of context from event cues and vice versa, which are prototypes of episodic recall. Evidence from studies in animals are reviewed in support of this model, including experiments that distinguish characteristics of episodic recollection from familiarity, neuropsychological and recording studies that have identified a key role for the hippocampus in recollection and in associating events with the context in which they occurred, and distinct roles for parahippocampal region areas in separate "what" and "where" information processing that contributes to recollective and episodic memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mondragón, Esther; Gray, Jonathan; Alonso, Eduardo; Bonardi, Charlotte; Jennings, Dómhnall J.
2014-01-01
This paper presents a novel representational framework for the Temporal Difference (TD) model of learning, which allows the computation of configural stimuli – cumulative compounds of stimuli that generate perceptual emergents known as configural cues. This Simultaneous and Serial Configural-cue Compound Stimuli Temporal Difference model (SSCC TD) can model both simultaneous and serial stimulus compounds, as well as compounds including the experimental context. This modification significantly broadens the range of phenomena which the TD paradigm can explain, and allows it to predict phenomena which traditional TD solutions cannot, particularly effects that depend on compound stimuli functioning as a whole, such as pattern learning and serial structural discriminations, and context-related effects. PMID:25054799
Computational Constraints in Cognitive Theories of Forgetting
Ecker, Ullrich K. H.; Lewandowsky, Stephan
2012-01-01
This article highlights some of the benefits of computational modeling for theorizing in cognition. We demonstrate how computational models have been used recently to argue that (1) forgetting in short-term memory is based on interference not decay, (2) forgetting in list-learning paradigms is more parsimoniously explained by a temporal distinctiveness account than by various forms of consolidation, and (3) intrusion asymmetries that appear when information is learned in different contexts can be explained by temporal context reinstatement rather than labilization and reconsolidation processes. PMID:23091467
Computational constraints in cognitive theories of forgetting.
Ecker, Ullrich K H; Lewandowsky, Stephan
2012-01-01
This article highlights some of the benefits of computational modeling for theorizing in cognition. We demonstrate how computational models have been used recently to argue that (1) forgetting in short-term memory is based on interference not decay, (2) forgetting in list-learning paradigms is more parsimoniously explained by a temporal distinctiveness account than by various forms of consolidation, and (3) intrusion asymmetries that appear when information is learned in different contexts can be explained by temporal context reinstatement rather than labilization and reconsolidation processes.
Temporal context processing within hippocampal subfields.
Wang, Fang; Diana, Rachel A
2016-07-01
The episodic memory system can differentiate similar events based on the temporal information associated with the events. Temporal context, which is at least partially determined by the events that precede or follow the critical event, may be a cue to differentiate events. The purpose of the present study is to investigate whether the hippocampal dentate gyrus (DG)/CA3 and CA1 subfields are sensitive to changes in temporal context and, if so, whether the subregions show a linear or threshold-like response to similar temporal contexts. Participants incidentally encoded a series of object picture triplets and 20 of them were included in final analyses. The third picture in each triplet was operationally defined as the target and the first two pictures served as temporal context for the target picture. Each target picture was presented twice with temporal context manipulated to be either repeated, high similarity, low similarity, or new on the second presentation. We extracted beta parameters for the repeated target as a function of the type of temporal context. We expected to see repetition suppression, a reduction in the beta values, in response to repetition of the target. If temporal context information is included in the representation of the target within a given region, this repetition suppression should be greater for target images that were preceded by their original context than for target images preceded by a new context. Neuroimaging results showed that CA1, but not DG/CA3, modifies the target's representation based on its temporal context. Right CA1 did not distinguish high similarity temporal context from repeated context but did distinguish low similarity temporal context from repeated context. These results indicate that CA1 is sensitive to temporal context and suggest that it does not differentiate between a substantially similar temporal context and an identical temporal context. In contrast, DG/CA3 does not appear to process temporal context as defined in the current experiment. Copyright © 2016 Elsevier Inc. All rights reserved.
Persson, Bjorn M; Ainge, James A; O'Connor, Akira R
2016-07-01
Current animal models of episodic memory are usually based on demonstrating integrated memory for what happened, where it happened, and when an event took place. These models aim to capture the testable features of the definition of human episodic memory which stresses the temporal component of the memory as a unique piece of source information that allows us to disambiguate one memory from another. Recently though, it has been suggested that a more accurate model of human episodic memory would include contextual rather than temporal source information, as humans' memory for time is relatively poor. Here, two experiments were carried out investigating human memory for temporal and contextual source information, along with the underlying dual process retrieval processes, using an immersive virtual environment paired with a 'Remember-Know' memory task. Experiment 1 (n=28) showed that contextual information could only be retrieved accurately using recollection, while temporal information could be retrieved using either recollection or familiarity. Experiment 2 (n=24), which used a more difficult task, resulting in reduced item recognition rates and therefore less potential for contamination by ceiling effects, replicated the pattern of results from Experiment 1. Dual process theory predicts that it should only be possible to retrieve source context from an event using recollection, and our results are consistent with this prediction. That temporal information can be retrieved using familiarity alone suggests that it may be incorrect to view temporal context as analogous to other typically used source contexts. This latter finding supports the alternative proposal that time since presentation may simply be reflected in the strength of memory trace at retrieval - a measure ideally suited to trace strength interrogation using familiarity, as is typically conceptualised within the dual process framework. Copyright © 2016 Elsevier Inc. All rights reserved.
Evaluation of spatio-temporal Bayesian models for the spread of infectious diseases in oil palm.
Denis, Marie; Cochard, Benoît; Syahputra, Indra; de Franqueville, Hubert; Tisné, Sébastien
2018-02-01
In the field of epidemiology, studies are often focused on mapping diseases in relation to time and space. Hierarchical modeling is a common flexible and effective tool for modeling problems related to disease spread. In the context of oil palm plantations infected by the fungal pathogen Ganoderma boninense, we propose and compare two spatio-temporal hierarchical Bayesian models addressing the lack of information on propagation modes and transmission vectors. We investigate two alternative process models to study the unobserved mechanism driving the infection process. The models help gain insight into the spatio-temporal dynamic of the infection by identifying a genetic component in the disease spread and by highlighting a spatial component acting at the end of the experiment. In this challenging context, we propose models that provide assumptions on the unobserved mechanism driving the infection process while making short-term predictions using ready-to-use software. Copyright © 2018 Elsevier Ltd. All rights reserved.
Arantes, Joana
2008-06-01
The present research tested the generality of the "context effect" previously reported in experiments using temporal double bisection tasks [e.g., Arantes, J., Machado, A. Context effects in a temporal discrimination task: Further tests of the Scalar Expectancy Theory and Learning-to-Time models. J. Exp. Anal. Behav., in press]. Pigeons learned two temporal discriminations in which all the stimuli appear successively: 1s (red) vs. 4s (green) and 4s (blue) vs. 16s (yellow). Then, two tests were conducted to compare predictions of two timing models, Scalar Expectancy Theory (SET) and the Learning-to-Time (LeT) model. In one test, two psychometric functions were obtained by presenting pigeons with intermediate signal durations (1-4s and 4-16s). Results were mixed. In the critical test, pigeons were exposed to signals ranging from 1 to 16s and followed by the green or the blue key. Whereas SET predicted that the relative response rate to each of these keys should be independent of the signal duration, LeT predicted that the relative response rate to the green key (compared with the blue key) should increase with the signal duration. Results were consistent with LeT's predictions, showing that the context effect is obtained even when subjects do not need to make a choice between two keys presented simultaneously.
ERIC Educational Resources Information Center
Kahana, Michael J.; Sederberg, Per B.; Howard, Marc W.
2008-01-01
The temporal context model posits that search through episodic memory is driven by associations between the multiattribute representations of items and context. Context, in turn, is a recency weighted sum of previous experiences or memories. Because recently processed items are most similar to the current representation of context, M. Usher, E. J.…
A Context-Based Theory of Recency and Contiguity in Free Recall
ERIC Educational Resources Information Center
Sederberg, Per B.; Howard, Marc W.; Kahana, Michael J.
2008-01-01
The authors present a new model of free recall on the basis of M. W. Howard and M. J. Kahana's temporal context model and M. Usher and J. L. McClelland's leaky-accumulator decision model. In this model, contextual drift gives rise to both short-term and long-term recency effects, and contextual retrieval gives rise to short-term and long-term…
Incorporating time and spatial-temporal reasoning into situation management
NASA Astrophysics Data System (ADS)
Jakobson, Gabriel
2010-04-01
Spatio-temporal reasoning plays a significant role in situation management that is performed by intelligent agents (human or machine) by affecting how the situations are recognized, interpreted, acted upon or predicted. Many definitions and formalisms for the notion of spatio-temporal reasoning have emerged in various research fields including psychology, economics and computer science (computational linguistics, data management, control theory, artificial intelligence and others). In this paper we examine the role of spatio-temporal reasoning in situation management, particularly how to resolve situations that are described by using spatio-temporal relations among events and situations. We discuss a model for describing context sensitive temporal relations and show have the model can be extended for spatial relations.
A Nexus Model of the Temporal-Parietal Junction
Carter, R. McKell; Huettel, Scott A.
2013-01-01
The temporal-parietal junction (TPJ) has been proposed to support either specifically social functions or non-specific processes of cognition like memory and attention. To account for diverse prior findings, we propose a Nexus Model for TPJ function: overlap of basic processes produces novel secondary functions at their convergence. We present meta-analytic evidence that is consistent with the anatomical convergence of attention, memory, language, and social processing in the TPJ – leading to a higher-order role in the creation of a social context for behavior. The Nexus Model accounts for recent examples of TPJ contributions specifically to decision making in a social context, and it provides a potential reconciliation for competing claims about TPJ function. PMID:23790322
Evaluating dedicated and intrinsic models of temporal encoding by varying context
Spencer, Rebecca M.C.; Karmarkar, Uma; Ivry, Richard B.
2009-01-01
Two general classes of models have been proposed to account for how people process temporal information in the milliseconds range. Dedicated models entail a mechanism in which time is explicitly encoded; examples include clock–counter models and functional delay lines. Intrinsic models, such as state-dependent networks (SDN), represent time as an emergent property of the dynamics of neural processing. An important property of SDN is that the encoding of duration is context dependent since the representation of an interval will vary as a function of the initial state of the network. Consistent with this assumption, duration discrimination thresholds for auditory intervals spanning 100 ms are elevated when an irrelevant tone is presented at varying times prior to the onset of the test interval. We revisit this effect in two experiments, considering attentional issues that may also produce such context effects. The disruptive effect of a variable context was eliminated or attenuated when the intervals between the irrelevant tone and test interval were made dissimilar or the duration of the test interval was increased to 300 ms. These results indicate how attentional processes can influence the perception of brief intervals, as well as point to important constraints for SDN models. PMID:19487188
Yang, Su; Shi, Shixiong; Hu, Xiaobing; Wang, Minjie
2015-01-01
Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1) Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2) The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3) The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks.
Yang, Su; Shi, Shixiong; Hu, Xiaobing; Wang, Minjie
2015-01-01
Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1) Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2) The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3) The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks. PMID:26496370
Incorporating temporal and clinical reasoning in a new measure of continuity of care.
Spooner, S. A.
1994-01-01
Previously described quantitative methods for measuring continuity of care have assumed that perfect continuity exists when a patient sees only one provider, regardless of the temporal pattern and clinical context of the visits. This paper describes an implementation of a new operational model of continuity--the Temporal Continuity Index--that takes into account time intervals between well visits in a pediatric residency continuity clinic. Ideal continuity in this model is achieved when intervals between visits are appropriate based on the age of the patient and clinical context of the encounters. The fundamental concept in this model is the expectation interval, which contains the length of the maximum ideal follow-up interval for a visit and the maximum follow-up interval. This paper describes an initial implementation of the TCI model and compares TCI calculations to previous quantitative methods and proposes its use as part of the assessment of resident education in outpatient settings. PMID:7950019
How previous experience shapes perception in different sensory modalities
Snyder, Joel S.; Schwiedrzik, Caspar M.; Vitela, A. Davi; Melloni, Lucia
2015-01-01
What has transpired immediately before has a strong influence on how sensory stimuli are processed and perceived. In particular, temporal context can have contrastive effects, repelling perception away from the interpretation of the context stimulus, and attractive effects (TCEs), whereby perception repeats upon successive presentations of the same stimulus. For decades, scientists have documented contrastive and attractive temporal context effects mostly with simple visual stimuli. But both types of effects also occur in other modalities, e.g., audition and touch, and for stimuli of varying complexity, raising the possibility that context effects reflect general computational principles of sensory systems. Neuroimaging shows that contrastive and attractive context effects arise from neural processes in different areas of the cerebral cortex, suggesting two separate operations with distinct functional roles. Bayesian models can provide a functional account of both context effects, whereby prior experience adjusts sensory systems to optimize perception of future stimuli. PMID:26582982
Joint modality fusion and temporal context exploitation for semantic video analysis
NASA Astrophysics Data System (ADS)
Papadopoulos, Georgios Th; Mezaris, Vasileios; Kompatsiaris, Ioannis; Strintzis, Michael G.
2011-12-01
In this paper, a multi-modal context-aware approach to semantic video analysis is presented. Overall, the examined video sequence is initially segmented into shots and for every resulting shot appropriate color, motion and audio features are extracted. Then, Hidden Markov Models (HMMs) are employed for performing an initial association of each shot with the semantic classes that are of interest separately for each modality. Subsequently, a graphical modeling-based approach is proposed for jointly performing modality fusion and temporal context exploitation. Novelties of this work include the combined use of contextual information and multi-modal fusion, and the development of a new representation for providing motion distribution information to HMMs. Specifically, an integrated Bayesian Network is introduced for simultaneously performing information fusion of the individual modality analysis results and exploitation of temporal context, contrary to the usual practice of performing each task separately. Contextual information is in the form of temporal relations among the supported classes. Additionally, a new computationally efficient method for providing motion energy distribution-related information to HMMs, which supports the incorporation of motion characteristics from previous frames to the currently examined one, is presented. The final outcome of this overall video analysis framework is the association of a semantic class with every shot. Experimental results as well as comparative evaluation from the application of the proposed approach to four datasets belonging to the domains of tennis, news and volleyball broadcast video are presented.
Classification with spatio-temporal interpixel class dependency contexts
NASA Technical Reports Server (NTRS)
Jeon, Byeungwoo; Landgrebe, David A.
1992-01-01
A contextual classifier which can utilize both spatial and temporal interpixel dependency contexts is investigated. After spatial and temporal neighbors are defined, a general form of maximum a posterior spatiotemporal contextual classifier is derived. This contextual classifier is simplified under several assumptions. Joint prior probabilities of the classes of each pixel and its spatial neighbors are modeled by the Gibbs random field. The classification is performed in a recursive manner to allow a computationally efficient contextual classification. Experimental results with bitemporal TM data show significant improvement of classification accuracy over noncontextual pixelwise classifiers. This spatiotemporal contextual classifier should find use in many applications of remote sensing, especially when the classification accuracy is important.
The effects of context and musical training on auditory temporal-interval discrimination.
Banai, Karen; Fisher, Shirley; Ganot, Ron
2012-02-01
Non sensory factors such as stimulus context and musical experience are known to influence auditory frequency discrimination, but whether the context effect extends to auditory temporal processing remains unknown. Whether individual experiences such as musical training alter the context effect is also unknown. The goal of the present study was therefore to investigate the effects of stimulus context and musical experience on auditory temporal-interval discrimination. In experiment 1, temporal-interval discrimination was compared between fixed context conditions in which a single base temporal interval was presented repeatedly across all trials and variable context conditions in which one of two base intervals was randomly presented on each trial. Discrimination was significantly better in the fixed than in the variable context conditions. In experiment 2 temporal discrimination thresholds of musicians and non-musicians were compared across 3 conditions: a fixed context condition in which the target interval was presented repeatedly across trials, and two variable context conditions differing in the frequencies used for the tones marking the temporal intervals. Musicians outperformed non-musicians on all 3 conditions, but the effects of context were similar for the two groups. Overall, it appears that, like frequency discrimination, temporal-interval discrimination benefits from having a fixed reference. Musical experience, while improving performance, did not alter the context effect, suggesting that improved discrimination skills among musicians are probably not an outcome of more sensitive contextual facilitation or predictive coding mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.
Temporal and spatial context in the mind and brain.
Howard, Marc W
2017-10-01
Theories of episodic memory have long hypothesized that recollection of a specific instance from one's life is mediated by recovery of a neural state of spatiotemporal context. This paper reviews recent theoretical advances in formal models of spatiotemporal context and a growing body of neurophysiological evidence from human imaging studies and animal work that neural populations in the hippocampus and other brain regions support a representation of spatiotemporal context.
Real time eye tracking using Kalman extended spatio-temporal context learning
NASA Astrophysics Data System (ADS)
Munir, Farzeen; Minhas, Fayyaz ul Amir Asfar; Jalil, Abdul; Jeon, Moongu
2017-06-01
Real time eye tracking has numerous applications in human computer interaction such as a mouse cursor control in a computer system. It is useful for persons with muscular or motion impairments. However, tracking the movement of the eye is complicated by occlusion due to blinking, head movement, screen glare, rapid eye movements, etc. In this work, we present the algorithmic and construction details of a real time eye tracking system. Our proposed system is an extension of Spatio-Temporal context learning through Kalman Filtering. Spatio-Temporal Context Learning offers state of the art accuracy in general object tracking but its performance suffers due to object occlusion. Addition of the Kalman filter allows the proposed method to model the dynamics of the motion of the eye and provide robust eye tracking in cases of occlusion. We demonstrate the effectiveness of this tracking technique by controlling the computer cursor in real time by eye movements.
Context-Dependent Piano Music Transcription With Convolutional Sparse Coding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt
This study presents a novel approach to automatic transcription of piano music in a context-dependent setting. This approach employs convolutional sparse coding to approximate the music waveform as the summation of piano note waveforms (dictionary elements) convolved with their temporal activations (onset transcription). The piano note waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. During transcription, the note waveforms are fixed and their temporal activations are estimated and post-processed to obtain the pitch and onset transcription. This approach works in the time domain, models temporal evolution of piano notes, and estimates pitches and onsetsmore » simultaneously in the same framework. Finally, experiments show that it significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting, in both transcription accuracy and time precision, in various scenarios including synthetic, anechoic, noisy, and reverberant environments.« less
Context-Dependent Piano Music Transcription With Convolutional Sparse Coding
Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt
2016-08-04
This study presents a novel approach to automatic transcription of piano music in a context-dependent setting. This approach employs convolutional sparse coding to approximate the music waveform as the summation of piano note waveforms (dictionary elements) convolved with their temporal activations (onset transcription). The piano note waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. During transcription, the note waveforms are fixed and their temporal activations are estimated and post-processed to obtain the pitch and onset transcription. This approach works in the time domain, models temporal evolution of piano notes, and estimates pitches and onsetsmore » simultaneously in the same framework. Finally, experiments show that it significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting, in both transcription accuracy and time precision, in various scenarios including synthetic, anechoic, noisy, and reverberant environments.« less
Orbito-Frontal Cortex Is Necessary for Temporal Context Memory
ERIC Educational Resources Information Center
Duarte, Audrey; Henson, Richard N.; Knight, Robert T.; Emery, Tina; Graham, Kim S.
2010-01-01
Lesion and neuroimaging studies suggest that orbito-frontal cortex (OFC) supports temporal aspects of episodic memory. However, it is unclear whether OFC contributes to the encoding and/or retrieval of temporal context and whether it is selective for temporal relative to nontemporal (spatial) context memory. We addressed this issue with two…
Temporal Clustering and Sequencing in Short-Term Memory and Episodic Memory
ERIC Educational Resources Information Center
Farrell, Simon
2012-01-01
A model of short-term memory and episodic memory is presented, with the core assumptions that (a) people parse their continuous experience into episodic clusters and (b) items are clustered together in memory as episodes by binding information within an episode to a common temporal context. Along with the additional assumption that information…
An Object-Based Approach to Evaluation of Climate Variability Projections and Predictions
NASA Astrophysics Data System (ADS)
Ammann, C. M.; Brown, B.; Kalb, C. P.; Bullock, R.
2017-12-01
Evaluations of the performance of earth system model predictions and projections are of critical importance to enhance usefulness of these products. Such evaluations need to address specific concerns depending on the system and decisions of interest; hence, evaluation tools must be tailored to inform about specific issues. Traditional approaches that summarize grid-based comparisons of analyses and models, or between current and future climate, often do not reveal important information about the models' performance (e.g., spatial or temporal displacements; the reason behind a poor score) and are unable to accommodate these specific information needs. For example, summary statistics such as the correlation coefficient or the mean-squared error provide minimal information to developers, users, and decision makers regarding what is "right" and "wrong" with a model. New spatial and temporal-spatial object-based tools from the field of weather forecast verification (where comparisons typically focus on much finer temporal and spatial scales) have been adapted to more completely answer some of the important earth system model evaluation questions. In particular, the Method for Object-based Diagnostic Evaluation (MODE) tool and its temporal (three-dimensional) extension (MODE-TD) have been adapted for these evaluations. More specifically, these tools can be used to address spatial and temporal displacements in projections of El Nino-related precipitation and/or temperature anomalies, ITCZ-associated precipitation areas, atmospheric rivers, seasonal sea-ice extent, and other features of interest. Examples of several applications of these tools in a climate context will be presented, using output of the CESM large ensemble. In general, these tools provide diagnostic information about model performance - accounting for spatial, temporal, and intensity differences - that cannot be achieved using traditional (scalar) model comparison approaches. Thus, they can provide more meaningful information that can be used in decision-making and planning. Future extensions and applications of these tools in a climate context will be considered.
A geographic data model for representing ground water systems.
Strassberg, Gil; Maidment, David R; Jones, Norm L
2007-01-01
The Arc Hydro ground water data model is a geographic data model for representing spatial and temporal ground water information within a geographic information system (GIS). The data model is a standardized representation of ground water systems within a spatial database that provides a public domain template for GIS users to store, document, and analyze commonly used spatial and temporal ground water data sets. This paper describes the data model framework, a simplified version of the complete ground water data model that includes two-dimensional and three-dimensional (3D) object classes for representing aquifers, wells, and borehole data, and the 3D geospatial context in which these data exist. The framework data model also includes tabular objects for representing temporal information such as water levels and water quality samples that are related with spatial features.
Action Recognition Using Nonnegative Action Component Representation and Sparse Basis Selection.
Wang, Haoran; Yuan, Chunfeng; Hu, Weiming; Ling, Haibin; Yang, Wankou; Sun, Changyin
2014-02-01
In this paper, we propose using high-level action units to represent human actions in videos and, based on such units, a novel sparse model is developed for human action recognition. There are three interconnected components in our approach. First, we propose a new context-aware spatial-temporal descriptor, named locally weighted word context, to improve the discriminability of the traditionally used local spatial-temporal descriptors. Second, from the statistics of the context-aware descriptors, we learn action units using the graph regularized nonnegative matrix factorization, which leads to a part-based representation and encodes the geometrical information. These units effectively bridge the semantic gap in action recognition. Third, we propose a sparse model based on a joint l2,1-norm to preserve the representative items and suppress noise in the action units. Intuitively, when learning the dictionary for action representation, the sparse model captures the fact that actions from the same class share similar units. The proposed approach is evaluated on several publicly available data sets. The experimental results and analysis clearly demonstrate the effectiveness of the proposed approach.
Prediction of Human Activity by Discovering Temporal Sequence Patterns.
Li, Kang; Fu, Yun
2014-08-01
Early prediction of ongoing human activity has become more valuable in a large variety of time-critical applications. To build an effective representation for prediction, human activities can be characterized by a complex temporal composition of constituent simple actions and interacting objects. Different from early detection on short-duration simple actions, we propose a novel framework for long -duration complex activity prediction by discovering three key aspects of activity: Causality, Context-cue, and Predictability. The major contributions of our work include: (1) a general framework is proposed to systematically address the problem of complex activity prediction by mining temporal sequence patterns; (2) probabilistic suffix tree (PST) is introduced to model causal relationships between constituent actions, where both large and small order Markov dependencies between action units are captured; (3) the context-cue, especially interactive objects information, is modeled through sequential pattern mining (SPM), where a series of action and object co-occurrence are encoded as a complex symbolic sequence; (4) we also present a predictive accumulative function (PAF) to depict the predictability of each kind of activity. The effectiveness of our approach is evaluated on two experimental scenarios with two data sets for each: action-only prediction and context-aware prediction. Our method achieves superior performance for predicting global activity classes and local action units.
Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective.
de Melo, Silas Nogueira; Pereira, Débora V S; Andresen, Martin A; Matias, Lindon Fonseca
2018-05-01
Temporal and spatial patterns of crime in Campinas, Brazil, are analyzed considering the relevance of routine activity theory in a Latin American context. We use geo-referenced criminal event data, 2010-2013, analyzing spatial patterns using census tracts and temporal patterns considering seasons, months, days, and hours. Our analyses include difference in means tests, count-based regression models, and Kulldorff's scan test. We find that crime in Campinas, Brazil, exhibits both temporal and spatial-temporal patterns. However, the presence of these patterns at the different temporal scales varies by crime type. Specifically, not all crime types have statistically significant temporal patterns at all scales of analysis. As such, routine activity theory works well to explain temporal and spatial-temporal patterns of crime in Campinas, Brazil. However, local knowledge of Brazilian culture is necessary for understanding a portion of these crime patterns.
Influence of Temporal Context on Value in the Multiple-Chains and Successive-Encounters Procedures
ERIC Educational Resources Information Center
O'Daly, Matthew; Angulo, Samuel; Gipson, Cassandra; Fantino, Edmund
2006-01-01
This set of studies explored the influence of temporal context across multiple-chain and multiple-successive-encounters procedures. Following training with different temporal contexts, the value of stimuli sharing similar reinforcement schedules was assessed by presenting these stimuli in concurrent probes. The results for the multiple-chain…
Emotional Modulation of Interval Timing and Time Perception
Lake, Jessica I.; LaBar, Kevin S.; Meck, Warren H.
2017-01-01
Like other senses, our perception of time is not veridical, but rather, is modulated by changes in environmental context. Anecdotal experiences suggest that emotions can be powerful modulators of time perception; nevertheless, the functional and neural mechanisms underlying emotion-induced temporal distortions remain unclear. Widely accepted pacemaker-accumulator models of time perception suggest that changes in arousal and attention have unique influences on temporal judgments and contribute to emotional distortions of time perception. However, such models conflict with current views of arousal and attention suggesting that current models of time perception do not adequately explain the variability in emotion-induced temporal distortions. Instead, findings provide support for a new perspective of emotion-induced temporal distortions that emphasizes both the unique and interactive influences of arousal and attention on time perception over time. Using this framework, we discuss plausible functional and neural mechanisms of emotion-induced temporal distortions and how these temporal distortions may have important implications for our understanding of how emotions modulate our perceptual experiences in service of adaptive responding to biologically relevant stimuli. PMID:26972824
Contrast affects flicker and speed perception differently
NASA Technical Reports Server (NTRS)
Thompson, P.; Stone, L. S.
1997-01-01
We have previously shown that contrast affects speed perception, with lower-contrast, drifting gratings perceived as moving slower. In a recent study, we examined the implications of this result on models of speed perception that use the amplitude of the response of linear spatio-temporal filters to determine speed. In this study, we investigate whether the contrast dependence of speed can be understood within the context of models in which speed estimation is made using the temporal frequency of the response of linear spatio-temporal filters. We measured the effect of contrast on flicker perception and found that contrast manipulations produce opposite effects on perceived drift rate and perceived flicker rate, i.e., reducing contrast increases the apparent temporal frequency of counterphase modulated gratings. This finding argues that, if a temporal frequency-based algorithm underlies speed perception, either flicker and speed perception must not be based on the output of the same mechanism or contrast effects on perceived spatial frequency reconcile the disparate effects observed for perceived temporal frequency and speed.
Empathy and contextual social cognition.
Melloni, Margherita; Lopez, Vladimir; Ibanez, Agustin
2014-03-01
Empathy is a highly flexible and adaptive process that allows for the interplay of prosocial behavior in many different social contexts. Empathy appears to be a very situated cognitive process, embedded with specific contextual cues that trigger different automatic and controlled responses. In this review, we summarize relevant evidence regarding social context modulation of empathy for pain. Several contextual factors, such as stimulus reality and personal experience, affectively link with other factors, emotional cues, threat information, group membership, and attitudes toward others to influence the affective, sensorimotor, and cognitive processing of empathy. Thus, we propose that the frontoinsular-temporal network, the so-called social context network model (SCNM), is recruited during the contextual processing of empathy. This network would (1) update the contextual cues and use them to construct fast predictions (frontal regions), (2) coordinate the internal (body) and external milieus (insula), and (3) consolidate the context-target associative learning of empathic processes (temporal sites). Furthermore, we propose these context-dependent effects of empathy in the framework of the frontoinsular-temporal network and examine the behavioral and neural evidence of three neuropsychiatric conditions (Asperger syndrome, schizophrenia, and the behavioral variant of frontotemporal dementia), which simultaneously present with empathy and contextual integration impairments. We suggest potential advantages of a situated approach to empathy in the assessment of these neuropsychiatric disorders, as well as their relationship with the SCNM.
Temporal Ventriloquism in a Purely Temporal Context
ERIC Educational Resources Information Center
Hartcher-O'Brien, Jessica; Alais, David
2011-01-01
This study examines how audiovisual signals are combined in time for a temporal analogue of the ventriloquist effect in a purely temporal context, that is, no spatial grounding of signals or other spatial facilitation. Observers were presented with two successive intervals, each defined by a 1250-ms tone, and indicated in which interval a brief…
Arantes, Joana; Machado, Armando
2008-07-01
Pigeons were trained on two temporal bisection tasks, which alternated every two sessions. In the first task, they learned to choose a red key after a 1-s signal and a green key after a 4-s signal; in the second task, they learned to choose a blue key after a 4-s signal and a yellow key after a 16-s signal. Then the pigeons were exposed to a series of test trials in order to contrast two timing models, Learning-to-Time (LeT) and Scalar Expectancy Theory (SET). The models made substantially different predictions particularly for the test trials in which the sample duration ranged from 1 s to 16 s and the choice keys were Green and Blue, the keys associated with the same 4-s samples: LeT predicted that preference for Green should increase with sample duration, a context effect, but SET predicted that preference for Green should not vary with sample duration. The results were consistent with LeT. The present study adds to the literature the finding that the context effect occurs even when the two basic discriminations are never combined in the same session.
Rajah, M Natasha; Ames, Blaine; D'Esposito, Mark
2008-03-07
Neuroimaging studies have reported increased prefrontal cortex (PFC) activity during temporal context retrieval versus recognition memory. However, it remains unclear if these activations reflect PFC contributions to domain-general executive control processes or domain-specific retrieval processes. To gain a better understanding of the functional roles of these various PFC regions during temporal context retrieval we propose it is necessary to examine PFC activity across tasks from different domains, in which parallel manipulations are included targeting specific cognitive processes. In the current fMRI study, we examined domain-general and domain-specific PFC contributions to temporal context retrieval by increasing stimulus (but maintaining response number) and increasing response number (but maintaining stimulus number) across temporal context memory and ordering control tasks, for faces. The control task required subjects to order faces from youngest to oldest. Our behavioral results indicate that the combination of increased stimulus and response numbers significantly increased task difficulty for temporal context retrieval and ordering tasks. Across domains, increasing stimulus number, while maintaining response numbers, caused greater right lateral premotor cortex (BA 6/8) activity; whereas increasing response number, while maintaining stimulus number, caused greater domain-general left DLPFC (BA 9) and VLPFC (BA 44/45) activity. In addition, we found domain-specific right DLPFC (BA 9) activity only during retrieval events. These results highlight the functional heterogeneity of frontal cortex, and suggest its involvement in temporal context retrieval is related to its role in various cognitive control processes.
Predictive motor control of sensory dynamics in Auditory Active Sensing
Morillon, Benjamin; Hackett, Troy A.; Kajikawa, Yoshinao; Schroeder, Charles E.
2016-01-01
Neuronal oscillations present potential physiological substrates for brain operations that require temporal prediction. We review this idea in the context of auditory perception. Using speech as an exemplar, we illustrate how hierarchically organized oscillations can be used to parse and encode complex input streams. We then consider the motor system as a major source of rhythms (temporal priors) in auditory processing, that act in concert with attention to sharpen sensory representations and link them across areas. We discuss the anatomo-functional pathways that could mediate this audio-motor interaction, and notably the potential role of the somatosensory cortex. Finally, we reposition temporal predictions in the context of internal models, discussing how they interact with feature-based or spatial predictions. We argue that complementary predictions interact synergistically according to the organizational principles of each sensory system, forming multidimensional filters crucial to perception. PMID:25594376
Visualization of Spatio-Temporal Relations in Movement Event Using Multi-View
NASA Astrophysics Data System (ADS)
Zheng, K.; Gu, D.; Fang, F.; Wang, Y.; Liu, H.; Zhao, W.; Zhang, M.; Li, Q.
2017-09-01
Spatio-temporal relations among movement events extracted from temporally varying trajectory data can provide useful information about the evolution of individual or collective movers, as well as their interactions with their spatial and temporal contexts. However, the pure statistical tools commonly used by analysts pose many difficulties, due to the large number of attributes embedded in multi-scale and multi-semantic trajectory data. The need for models that operate at multiple scales to search for relations at different locations within time and space, as well as intuitively interpret what these relations mean, also presents challenges. Since analysts do not know where or when these relevant spatio-temporal relations might emerge, these models must compute statistical summaries of multiple attributes at different granularities. In this paper, we propose a multi-view approach to visualize the spatio-temporal relations among movement events. We describe a method for visualizing movement events and spatio-temporal relations that uses multiple displays. A visual interface is presented, and the user can interactively select or filter spatial and temporal extents to guide the knowledge discovery process. We also demonstrate how this approach can help analysts to derive and explain the spatio-temporal relations of movement events from taxi trajectory data.
Wild, Edward
2005-01-01
The significance of deja vu is widely recognised in the context of temporal lobe epilepsy, and enquiry about deja vu is frequently made in the clinical assessment of patients with possible epilepsy. Deja vu has also been associated with several psychiatric disorders. The historical context of current understanding of deja vu is discussed. The literature reveals deja vu to be a common phenomenon consistent with normality. Several authors have suggested the existence of a "pathological" form of deja vu that differs, qualitatively or quantitatively, from "non-pathological" deja vu. The features of deja vu suggesting neurological or psychiatric pathology are discussed. Several neuroanatomical and psychological models of the deja vu experience are highlighted, implicating the perceptual, mnemonic and affective regions of the lateral temporal cortex, hippocampus and amygdala in the genesis of deja vu. A possible genetic basis for a neurochemical model of deja vu is discussed. Clinical approaches to the patient presenting with possible deja vu are proposed.
A predictive framework for evaluating models of semantic organization in free recall
Morton, Neal W; Polyn, Sean M.
2016-01-01
Research in free recall has demonstrated that semantic associations reliably influence the organization of search through episodic memory. However, the specific structure of these associations and the mechanisms by which they influence memory search remain unclear. We introduce a likelihood-based model-comparison technique, which embeds a model of semantic structure within the context maintenance and retrieval (CMR) model of human memory search. Within this framework, model variants are evaluated in terms of their ability to predict the specific sequence in which items are recalled. We compare three models of semantic structure, latent semantic analysis (LSA), global vectors (GloVe), and word association spaces (WAS), and find that models using WAS have the greatest predictive power. Furthermore, we find evidence that semantic and temporal organization is driven by distinct item and context cues, rather than a single context cue. This finding provides important constraint for theories of memory search. PMID:28331243
A context-based theory of recency and contiguity in free recall
Sederberg, Per B.; Howard, Marc W.; Kahana, Michael J.
2008-01-01
We present a new model of free recall based on Howard and Kahana’s (2002) temporal context model and Usher and McClelland’s (2001) leaky-accumulator decision model. In this model, contextual drift gives rise to both short-term and long-term recency effects, and contextual retrieval gives rise to short-term and long-term contiguity effects, Recall decisions are controlled by a race between competitive leaky-accumulators. The model captures the dynamics of immediate, delayed, and continual distractor free recall, demonstrating that dissociations between short- and long-term recency can naturally arise from a model that uses an internal contextual state as the sole cue for retrieval across time scales. PMID:18954208
Neural activity in the medial temporal lobe reveals the fidelity of mental time travel.
Kragel, James E; Morton, Neal W; Polyn, Sean M
2015-02-18
Neural circuitry in the medial temporal lobe (MTL) is critically involved in mental time travel, which involves the vivid retrieval of the details of past experience. Neuroscientific theories propose that the MTL supports memory of the past by retrieving previously encoded episodic information, as well as by reactivating a temporal code specifying the position of a particular event within an episode. However, the neural computations supporting these abilities are underspecified. To test hypotheses regarding the computational mechanisms supported by different MTL subregions during mental time travel, we developed a computational model that linked a blood oxygenation level-dependent signal to cognitive operations, allowing us to predict human performance in a memory search task. Activity in the posterior MTL, including parahippocampal cortex, reflected how strongly one reactivates the temporal context of a retrieved memory, allowing the model to predict whether the next memory will correspond to a nearby moment in the study episode. A signal in the anterior MTL, including perirhinal cortex, indicated the successful retrieval of list items, without providing information regarding temporal organization. A hippocampal signal reflected both processes, consistent with theories that this region binds item and context information together to form episodic memories. These findings provide evidence for modern theories that describe complementary roles of the hippocampus and surrounding parahippocampal and perirhinal cortices during the retrieval of episodic memories, shaping how humans revisit the past. Copyright © 2015 the authors 0270-6474/15/352914-13$15.00/0.
Quantifying Differential Privacy under Temporal Correlations.
Cao, Yang; Yoshikawa, Masatoshi; Xiao, Yonghui; Xiong, Li
2017-04-01
Differential Privacy (DP) has received increasing attention as a rigorous privacy framework. Many existing studies employ traditional DP mechanisms (e.g., the Laplace mechanism) as primitives, which assume that the data are independent, or that adversaries do not have knowledge of the data correlations. However, continuous generated data in the real world tend to be temporally correlated, and such correlations can be acquired by adversaries. In this paper, we investigate the potential privacy loss of a traditional DP mechanism under temporal correlations in the context of continuous data release. First, we model the temporal correlations using Markov model and analyze the privacy leakage of a DP mechanism when adversaries have knowledge of such temporal correlations. Our analysis reveals that the privacy loss of a DP mechanism may accumulate and increase over time . We call it temporal privacy leakage . Second, to measure such privacy loss, we design an efficient algorithm for calculating it in polynomial time. Although the temporal privacy leakage may increase over time, we also show that its supremum may exist in some cases. Third, to bound the privacy loss, we propose mechanisms that convert any existing DP mechanism into one against temporal privacy leakage. Experiments with synthetic data confirm that our approach is efficient and effective.
Temporal eye movement strategies during naturalistic viewing
Wang, Helena X.; Freeman, Jeremy; Merriam, Elisha P.; Hasson, Uri; Heeger, David J.
2011-01-01
The deployment of eye movements to complex spatiotemporal stimuli likely involves a variety of cognitive factors. However, eye movements to movies are surprisingly reliable both within and across observers. We exploited and manipulated that reliability to characterize observers’ temporal viewing strategies. Introducing cuts and scrambling the temporal order of the resulting clips systematically changed eye movement reliability. We developed a computational model that exhibited this behavior and provided an excellent fit to the measured eye movement reliability. The model assumed that observers searched for, found, and tracked a point-of-interest, and that this process reset when there was a cut. The model did not require that eye movements depend on temporal context in any other way, and it managed to describe eye movements consistently across different observers and two movie sequences. Thus, we found no evidence for the integration of information over long time scales (greater than a second). The results are consistent with the idea that observers employ a simple tracking strategy even while viewing complex, engaging naturalistic stimuli. PMID:22262911
Human Episodic Memory Retrieval Is Accompanied by a Neural Contiguity Effect.
Folkerts, Sarah; Rutishauser, Ueli; Howard, Marc W
2018-04-25
Cognitive psychologists have long hypothesized that experiences are encoded in a temporal context that changes gradually over time. When an episodic memory is retrieved, the state of context is recovered-a jump back in time. We recorded from single units in the medial temporal lobe of epilepsy patients performing an item recognition task. The population vector changed gradually over minutes during presentation of the list. When a probe from the list was remembered with high confidence, the population vector reinstated the temporal context of the original presentation of that probe during study, a neural contiguity effect that provides a possible mechanism for behavioral contiguity effects. This pattern was only observed for well remembered probes; old probes that were not well remembered showed an anti-contiguity effect. These results constitute the first direct evidence that recovery of an episodic memory in humans is associated with retrieval of a gradually changing state of temporal context, a neural "jump back in time" that parallels the act of remembering. SIGNIFICANCE STATEMENT Episodic memory is the ability to relive a specific experience from one's life. For decades, researchers have hypothesized that, unlike other forms of memory that can be described as simple associations between stimuli, episodic memory depends on the recovery of a neural representation of spatiotemporal context. During study of a sequence of stimuli, the brain state of epilepsy patients changed slowly over at least a minute. When the participant remembered a particular event from the list, this gradually changing state was recovered. This provides direct confirmation of the prediction from computational models of episodic memory. The resolution of this point means that the study of episodic memory can focus on the mechanisms by which this representation of spatiotemporal context is maintained and sometimes recovered. Copyright © 2018 the authors 0270-6474/18/384200-12$15.00/0.
NASA Astrophysics Data System (ADS)
Martinez, P.; Kasper, M.; Costille, A.; Sauvage, J. F.; Dohlen, K.; Puget, P.; Beuzit, J. L.
2013-06-01
Context. Observing sequences have shown that the major noise source limitation in high-contrast imaging is the presence of quasi-static speckles. The timescale on which quasi-static speckles evolve is determined by various factors, mechanical or thermal deformations, among others. Aims: Understanding these time-variable instrumental speckles and, especially, their interaction with other aberrations, referred to as the pinning effect, is paramount for the search for faint stellar companions. The temporal evolution of quasi-static speckles is, for instance, required for quantifying the gain expected when using angular differential imaging (ADI) and to determining the interval on which speckle nulling techniques must be carried out. Methods: Following an early analysis of a time series of adaptively corrected, coronagraphic images obtained in a laboratory condition with the high-order test bench (HOT) at ESO Headquarters, we confirm our results with new measurements carried out with the SPHERE instrument during its final test phase in Europe. The analysis of the residual speckle pattern in both direct and differential coronagraphic images enables the characterization of the temporal stability of quasi-static speckles. Data were obtained in a thermally actively controlled environment reproducing realistic conditions encountered at the telescope. Results: The temporal evolution of the quasi-static wavefront error exhibits a linear power law, which can be used to model quasi-static speckle evolution in the context of forthcoming high-contrast imaging instruments, with implications for instrumentation (design, observing strategies, data reduction). Such a model can be used for instance to derive the timescale on which non-common path aberrations must be sensed and corrected. We found in our data that quasi-static wavefront error increases with ~0.7 Å per minute.
Frequency–specific network connectivity increases underlie accurate spatiotemporal memory retrieval
Watrous, Andrew J.; Tandon, Nitin; Connor, Chris; Pieters, Thomas; Ekstrom, Arne D.
2013-01-01
The medial temporal lobes, prefrontal cortex, and parts of parietal cortex form the neural underpinnings of episodic memory, which includes remembering both where and when an event occurred. Yet how these three key regions interact during retrieval of spatial and temporal context remains largely untested. Here, we employed simultaneous electrocorticographical recordings across multiple lobular regions, employing phase synchronization as a measure of network functional connectivity, while patients retrieved spatial and temporal context associated with an episode. Successful memory retrieval was characterized by greater global connectivity compared to incorrect retrieval, with the MTL acting as a convergence hub for these interactions. Spatial vs. temporal context retrieval resulted in prominent differences in both the spectral and temporal patterns of network interactions. These results emphasize dynamic network interactions as central to episodic memory retrieval, providing novel insight into how multiple contexts underlying a single event can be recreated within the same network. PMID:23354333
Wagner, Tyler; Irwin, Brian J.; James R. Bence,; Daniel B. Hayes,
2016-01-01
Monitoring to detect temporal trends in biological and habitat indices is a critical component of fisheries management. Thus, it is important that management objectives are linked to monitoring objectives. This linkage requires a definition of what constitutes a management-relevant “temporal trend.” It is also important to develop expectations for the amount of time required to detect a trend (i.e., statistical power) and for choosing an appropriate statistical model for analysis. We provide an overview of temporal trends commonly encountered in fisheries management, review published studies that evaluated statistical power of long-term trend detection, and illustrate dynamic linear models in a Bayesian context, as an additional analytical approach focused on shorter term change. We show that monitoring programs generally have low statistical power for detecting linear temporal trends and argue that often management should be focused on different definitions of trends, some of which can be better addressed by alternative analytical approaches.
Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.
Limongi, Roberto; Silva, Angélica M
2016-11-01
The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.
Biomechanics meets the ecological niche: the importance of temporal data resolution.
Kearney, Michael R; Matzelle, Allison; Helmuth, Brian
2012-03-15
The emerging field of mechanistic niche modelling aims to link the functional traits of organisms to their environments to predict survival, reproduction, distribution and abundance. This approach has great potential to increase our understanding of the impacts of environmental change on individuals, populations and communities by providing functional connections between physiological and ecological response to increasingly available spatial environmental data. By their nature, such mechanistic models are more data intensive in comparison with the more widely applied correlative approaches but can potentially provide more spatially and temporally explicit predictions, which are often needed by decision makers. A poorly explored issue in this context is the appropriate level of temporal resolution of input data required for these models, and specifically the error in predictions that can be incurred through the use of temporally averaged data. Here, we review how biomechanical principles from heat-transfer and metabolic theory are currently being used as foundations for mechanistic niche models and consider the consequences of different temporal resolutions of environmental data for modelling the niche of a behaviourally thermoregulating terrestrial lizard. We show that fine-scale temporal resolution (daily) data can be crucial for unbiased inference of climatic impacts on survival, growth and reproduction. This is especially so for species with little capacity for behavioural buffering, because of behavioural or habitat constraints, and for detecting temporal trends. However, coarser-resolution data (long-term monthly averages) can be appropriate for mechanistic studies of climatic constraints on distribution and abundance limits in thermoregulating species at broad spatial scales.
Influence of temporal context on value in the multiple-chains and successive-encounters procedures.
O'Daly, Matthew; Angulo, Samuel; Gipson, Cassandra; Fantino, Edmund
2006-05-01
This set of studies explored the influence of temporal context across multiple-chain and multiple-successive-encounters procedures. Following training with different temporal contexts, the value of stimuli sharing similar reinforcement schedules was assessed by presenting these stimuli in concurrent probes. The results for the multiple-chain schedule indicate that temporal context does impact the value of a conditioned reinforcer consistent with delay-reduction theory, such that a stimulus signaling a greater reduction in delay until reinforcement has greater value. Further, nonreinforced stimuli that are concurrently presented with the preferred terminal link also have greater value, consistent with value transfer. The effects of context on value for conditions with the multiple-successive-encounters procedure, however, appear to depend on whether the search schedule or alternate handling schedule was manipulated, as well as on whether the tested stimuli were the rich or lean schedules in their components. Overall, the results help delineate the conditions under which temporal context affects conditioned-reinforcement value (acting as a learning variable) and the conditions under which it does not (acting as a performance variable), an issue of relevance to theories of choice.
HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.
Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B
2017-07-01
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.
Identification of hydrological model parameter variation using ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Deng, Chao; Liu, Pan; Guo, Shenglian; Li, Zejun; Wang, Dingbao
2016-12-01
Hydrological model parameters play an important role in the ability of model prediction. In a stationary context, parameters of hydrological models are treated as constants; however, model parameters may vary with time under climate change and anthropogenic activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and different types of parameter variations, including trend, abrupt change and periodicity. Various levels of observation uncertainty are designed to examine the performance of the EnKF. The results show that the EnKF can successfully capture the temporal variations of the model parameters. The application to the Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is explained by land use and land cover changes due to soil and water conservation measures. In contrast, the application to the Tongtianhe basin shows that the estimated SC has no significant variation during the simulation period of 1982-2013, corresponding to the relatively stationary catchment properties. The evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The proposed method provides an effective tool for quantifying the temporal variations of the model parameters, thereby improving the accuracy and reliability of model simulations and forecasts.
Rajah, M Natasha; Kromas, Michelle; Han, Jung Eun; Pruessner, Jens C
2010-12-01
The ability to retrieve temporal and spatial context information from memory declines with healthy aging. The hippocampus (HC) has been shown to be associated with successful encoding and retrieval of spatio-temporal context, versus item recognition information (Davachi, Mitchell, & Wagner, 2003; Nadel, Samsonovich, Ryan, & Moscovitch, 2000; Ross & Slotnick, 2008). Aging has been linked to volume reduction in the HC (Bouchard, Malykhin, Martin, Hanstock, Emery, Fisher, & Camicioli, 2008; Malykhin, Bouchard, Camicioli, & Coupland, 2008; Raz et al., 2005). As such, age-associated reductions in anterior HC volume may contribute to the context memory deficits observed in older adults. In the current MRI study we investigated whether item recognition, spatial context and temporal context memory performance would be predicted by regional volumes in HC head (HH), body (HB) and tail (HT) volumes, using within group multiple regression analyses in a sample of 19 healthy young (mean age 24.3) and 20 older adults (mean age 67.7). We further examined between age-group differences in the volumes of the same HC sub-regions. Multiple regression analyses revealed that in younger adults both spatial and temporal context retrieval performance was predicted by anterior HC volume. Older age was associated with significant volume reductions in HH and HB, but not HT; and with reduced ability to retrieve spatial and temporal contextual details from episodic memory. However, HC volumes did not predict context retrieval performance in older adults. We conclude that individual differences in anterior, not posterior, HC volumes predict context memory performance in young adults. With age there may be a posterior-to-anterior shift from using HC-related processes, due to HC volume loss, to employing the prefrontal cortex to aid in the performance of cognitively demanding context memory tasks. However, due to concomitant changes in the prefrontal system with age, there are limits to compensation in the aging brain. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeng, Jicai; Zha, Yuanyuan; Zhang, Yonggen; Shi, Liangsheng; Zhu, Yan; Yang, Jinzhong
2017-11-01
Multi-scale modeling of the localized groundwater flow problems in a large-scale aquifer has been extensively investigated under the context of cost-benefit controversy. An alternative is to couple the parent and child models with different spatial and temporal scales, which may result in non-trivial sub-model errors in the local areas of interest. Basically, such errors in the child models originate from the deficiency in the coupling methods, as well as from the inadequacy in the spatial and temporal discretizations of the parent and child models. In this study, we investigate the sub-model errors within a generalized one-way coupling scheme given its numerical stability and efficiency, which enables more flexibility in choosing sub-models. To couple the models at different scales, the head solution at parent scale is delivered downward onto the child boundary nodes by means of the spatial and temporal head interpolation approaches. The efficiency of the coupling model is improved either by refining the grid or time step size in the parent and child models, or by carefully locating the sub-model boundary nodes. The temporal truncation errors in the sub-models can be significantly reduced by the adaptive local time-stepping scheme. The generalized one-way coupling scheme is promising to handle the multi-scale groundwater flow problems with complex stresses and heterogeneity.
Spatio-temporal behaviour of medium-range ensemble forecasts
NASA Astrophysics Data System (ADS)
Kipling, Zak; Primo, Cristina; Charlton-Perez, Andrew
2010-05-01
Using the recently-developed mean-variance of logarithms (MVL) diagram, together with the TIGGE archive of medium-range ensemble forecasts from nine different centres, we present an analysis of the spatio-temporal dynamics of their perturbations, and show how the differences between models and perturbation techniques can explain the shape of their characteristic MVL curves. We also consider the use of the MVL diagram to compare the growth of perturbations within the ensemble with the growth of the forecast error, showing that there is a much closer correspondence for some models than others. We conclude by looking at how the MVL technique might assist in selecting models for inclusion in a multi-model ensemble, and suggest an experiment to test its potential in this context.
Bohn, Kirsten M.; Schmidt-French, Barbara; Ma, Sean T.; Pollak, George D.
2008-01-01
Recent research has shown that some bat species have rich vocal repertoires with diverse syllable acoustics. Few studies, however, have compared vocalizations across different behavioral contexts or examined the temporal emission patterns of vocalizations. In this paper, a comprehensive examination of the vocal repertoire of Mexican free-tailed bats, T. brasiliensis, is presented. Syllable acoustics and temporal emission patterns for 16 types of vocalizations including courtship song revealed three main findings. First, although in some cases syllables are unique to specific calls, other syllables are shared among different calls. Second, entire calls associated with one behavior can be embedded into more complex vocalizations used in entirely different behavioral contexts. Third, when different calls are composed of similar syllables, distinctive temporal emission patterns may facilitate call recognition. These results indicate that syllable acoustics alone do not likely provide enough information for call recognition; rather, the acoustic context and temporal emission patterns of vocalizations may affect meaning. PMID:19045674
Research on target tracking algorithm based on spatio-temporal context
NASA Astrophysics Data System (ADS)
Li, Baiping; Xu, Sanmei; Kang, Hongjuan
2017-07-01
In this paper, a novel target tracking algorithm based on spatio-temporal context is proposed. During the tracking process, the camera shaking or occlusion may lead to the failure of tracking. The proposed algorithm can solve this problem effectively. The method use the spatio-temporal context algorithm as the main research object. We get the first frame's target region via mouse. Then the spatio-temporal context algorithm is used to get the tracking targets of the sequence of frames. During this process a similarity measure function based on perceptual hash algorithm is used to judge the tracking results. If tracking failed, reset the initial value of Mean Shift algorithm for the subsequent target tracking. Experiment results show that the proposed algorithm can achieve real-time and stable tracking when camera shaking or target occlusion.
Quantifying Differential Privacy under Temporal Correlations
Cao, Yang; Yoshikawa, Masatoshi; Xiao, Yonghui; Xiong, Li
2017-01-01
Differential Privacy (DP) has received increasing attention as a rigorous privacy framework. Many existing studies employ traditional DP mechanisms (e.g., the Laplace mechanism) as primitives, which assume that the data are independent, or that adversaries do not have knowledge of the data correlations. However, continuous generated data in the real world tend to be temporally correlated, and such correlations can be acquired by adversaries. In this paper, we investigate the potential privacy loss of a traditional DP mechanism under temporal correlations in the context of continuous data release. First, we model the temporal correlations using Markov model and analyze the privacy leakage of a DP mechanism when adversaries have knowledge of such temporal correlations. Our analysis reveals that the privacy loss of a DP mechanism may accumulate and increase over time. We call it temporal privacy leakage. Second, to measure such privacy loss, we design an efficient algorithm for calculating it in polynomial time. Although the temporal privacy leakage may increase over time, we also show that its supremum may exist in some cases. Third, to bound the privacy loss, we propose mechanisms that convert any existing DP mechanism into one against temporal privacy leakage. Experiments with synthetic data confirm that our approach is efficient and effective. PMID:28883711
Task context and organization in free recall
Polyn, Sean M.; Norman, Kenneth A.; Kahana, Michael J.
2009-01-01
Prior work on organization in free recall has focused on the ways in which semantic and temporal information determine the order in which material is retrieved from memory. Tulving’s theory of ecphory suggests that these organizational effects arise from the interaction of a retrieval cue with the contents of memory. Using the continual-distraction free-recall paradigm (Bjork & Whitten, 1974) to minimize retrieval during the study period, we show that encoding task context can organize recall, suggesting that task-related information is part of the retrieval cue. We interpret these results in terms of the Context Maintenance and Retrieval model (CMR; Polyn, Norman, & Kahana, in press), in which an internal contextual representation, containing semantic, temporal, and source-related information, serves as the retrieval cue and organizes the retrieval of information from memory. We discuss these results in terms of the guided activation theory (Miller & Cohen, 2001) of the role of prefrontal cortex in task performance, as well as the rich neuropsychological literature implicating prefrontal cortex in memory search (e.g, Schacter, 1987). PMID:19524086
Supporting user-defined granularities in a spatiotemporal conceptual model
Khatri, V.; Ram, S.; Snodgrass, R.T.; O'Brien, G. M.
2002-01-01
Granularities are integral to spatial and temporal data. A large number of applications require storage of facts along with their temporal and spatial context, which needs to be expressed in terms of appropriate granularities. For many real-world applications, a single granularity in the database is insufficient. In order to support any type of spatial or temporal reasoning, the semantics related to granularities needs to be embedded in the database. Specifying granularities related to facts is an important part of conceptual database design because under-specifying the granularity can restrict an application, affect the relative ordering of events and impact the topological relationships. Closely related to granularities is indeterminacy, i.e., an occurrence time or location associated with a fact that is not known exactly. In this paper, we present an ontology for spatial granularities that is a natural analog of temporal granularities. We propose an upward-compatible, annotation-based spatiotemporal conceptual model that can comprehensively capture the semantics related to spatial and temporal granularities, and indeterminacy without requiring new spatiotemporal constructs. We specify the formal semantics of this spatiotemporal conceptual model via translation to a conventional conceptual model. To underscore the practical focus of our approach, we describe an on-going case study. We apply our approach to a hydrogeologic application at the United States Geologic Survey and demonstrate that our proposed granularity-based spatiotemporal conceptual model is straightforward to use and is comprehensive.
Exploring the structure and function of temporal networks with dynamic graphlets
Hulovatyy, Y.; Chen, H.; Milenković, T.
2015-01-01
Motivation: With increasing availability of temporal real-world networks, how to efficiently study these data? One can model a temporal network as a single aggregate static network, or as a series of time-specific snapshots, each being an aggregate static network over the corresponding time window. Then, one can use established methods for static analysis on the resulting aggregate network(s), but losing in the process valuable temporal information either completely, or at the interface between different snapshots, respectively. Here, we develop a novel approach for studying a temporal network more explicitly, by capturing inter-snapshot relationships. Results: We base our methodology on well-established graphlets (subgraphs), which have been proven in numerous contexts in static network research. We develop new theory to allow for graphlet-based analyses of temporal networks. Our new notion of dynamic graphlets is different from existing dynamic network approaches that are based on temporal motifs (statistically significant subgraphs). The latter have limitations: their results depend on the choice of a null network model that is required to evaluate the significance of a subgraph, and choosing a good null model is non-trivial. Our dynamic graphlets overcome the limitations of the temporal motifs. Also, when we aim to characterize the structure and function of an entire temporal network or of individual nodes, our dynamic graphlets outperform the static graphlets. Clearly, accounting for temporal information helps. We apply dynamic graphlets to temporal age-specific molecular network data to deepen our limited knowledge about human aging. Availability and implementation: http://www.nd.edu/∼cone/DG. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26072480
NASA Astrophysics Data System (ADS)
Daras, Ilias; Pail, Roland
2017-09-01
Temporal aliasing effects have a large impact on the gravity field accuracy of current gravimetry missions and are also expected to dominate the error budget of Next Generation Gravimetry Missions (NGGMs). This paper focuses on aspects concerning their treatment in the context of Low-Low Satellite-to-Satellite Tracking NGGMs. Closed-loop full-scale simulations are performed for a two-pair Bender-type Satellite Formation Flight (SFF), by taking into account error models of new generation instrument technology. The enhanced spatial sampling and error isotropy enable a further reduction of temporal aliasing errors from the processing perspective. A parameterization technique is adopted where the functional model is augmented by low-resolution gravity field solutions coestimated at short time intervals, while the remaining higher-resolution gravity field solution is estimated at a longer time interval. Fine-tuning the parameterization choices leads to significant reduction of the temporal aliasing effects. The investigations reveal that the parameterization technique in case of a Bender-type SFF can successfully mitigate aliasing effects caused by undersampling of high-frequency atmospheric and oceanic signals, since their most significant variations can be captured by daily coestimated solutions. This amounts to a "self-dealiasing" method that differs significantly from the classical dealiasing approach used nowadays for Gravity Recovery and Climate Experiment processing, enabling NGGMs to retrieve the complete spectrum of Earth's nontidal geophysical processes, including, for the first time, high-frequency atmospheric and oceanic variations.
The effects of context on multidimensional spatial cognitive models. Ph.D. Thesis - Arizona Univ.
NASA Technical Reports Server (NTRS)
Dupnick, E. G.
1979-01-01
Spatial cognitive models obtained by multidimensional scaling represent cognitive structure by defining alternatives as points in a coordinate space based on relevant dimensions such that interstimulus dissimilarities perceived by the individual correspond to distances between the respective alternatives. The dependence of spatial models on the context of the judgments required of the individual was investigated. Context, which is defined as a perceptual interpretation and cognitive understanding of a judgment situation, was analyzed and classified with respect to five characteristics: physical environment, social environment, task definition, individual perspective, and temporal setting. Four experiments designed to produce changes in the characteristics of context and to test the effects of these changes upon individual cognitive spaces are described with focus on experiment design, objectives, statistical analysis, results, and conclusions. The hypothesis is advanced that an individual can be characterized as having a master cognitive space for a set of alternatives. When the context changes, the individual appears to change the dimension weights to give a new spatial configuration. Factor analysis was used in the interpretation and labeling of cognitive space dimensions.
Modeling Geometric-Temporal Context With Directional Pyramid Co-Occurrence for Action Recognition.
Yuan, Chunfeng; Li, Xi; Hu, Weiming; Ling, Haibin; Maybank, Stephen J
2014-02-01
In this paper, we present a new geometric-temporal representation for visual action recognition based on local spatio-temporal features. First, we propose a modified covariance descriptor under the log-Euclidean Riemannian metric to represent the spatio-temporal cuboids detected in the video sequences. Compared with previously proposed covariance descriptors, our descriptor can be measured and clustered in Euclidian space. Second, to capture the geometric-temporal contextual information, we construct a directional pyramid co-occurrence matrix (DPCM) to describe the spatio-temporal distribution of the vector-quantized local feature descriptors extracted from a video. DPCM characterizes the co-occurrence statistics of local features as well as the spatio-temporal positional relationships among the concurrent features. These statistics provide strong descriptive power for action recognition. To use DPCM for action recognition, we propose a directional pyramid co-occurrence matching kernel to measure the similarity of videos. The proposed method achieves the state-of-the-art performance and improves on the recognition performance of the bag-of-visual-words (BOVWs) models by a large margin on six public data sets. For example, on the KTH data set, it achieves 98.78% accuracy while the BOVW approach only achieves 88.06%. On both Weizmann and UCF CIL data sets, the highest possible accuracy of 100% is achieved.
Context Memory Decline in Middle Aged Adults is Related to Changes in Prefrontal Cortex Function
Kwon, Diana; Maillet, David; Pasvanis, Stamatoula; Ankudowich, Elizabeth; Grady, Cheryl L.; Rajah, M. Natasha
2016-01-01
The ability to encode and retrieve spatial and temporal contextual details of episodic memories (context memory) begins to decline at midlife. In the current study, event-related fMRI was used to investigate the neural correlates of context memory decline in healthy middle aged adults (MA) compared with young adults (YA). Participants were scanned while performing easy and hard versions of spatial and temporal context memory tasks. Scans were obtained at encoding and retrieval. Significant reductions in context memory retrieval accuracy were observed in MA, compared with YA. The fMRI results revealed that overall, both groups exhibited similar patterns of brain activity in parahippocampal cortex, ventral occipito-temporal regions and prefrontal cortex (PFC) during encoding. In contrast, at retrieval, there were group differences in ventral occipito-temporal and PFC activity, due to these regions being more activated in MA, compared with YA. Furthermore, only in YA, increased encoding activity in ventrolateral PFC, and increased retrieval activity in occipital cortex, predicted increased retrieval accuracy. In MA, increased retrieval activity in anterior PFC predicted increased retrieval accuracy. These results suggest that there are changes in PFC contributions to context memory at midlife. PMID:25882039
Rapid temporal accumulation in spider fear: Evidence from hierarchical drift diffusion modelling.
Tipples, Jason
2015-12-01
Fear can distort sense of time--making time seem slow or even stand still. Here, I used hierarchical drift diffusion modeling (HDDM; Vandekerckhove, Tuerlinckx, & Lee, 2008, 2011; Wiecki, Sofer, & Frank, 2013) to test the idea that temporal accumulation speeds up during fear. Eighteen high fearful and 23 low fearful participants judged the duration of both feared stimuli (spiders) and nonfeared stimuli (birds) in a temporal bisection task. The drift diffusion modeling results support the main hypothesis. In high but not low fearful individuals, evidence accumulated more rapidly toward a long duration decision-drift rates were higher-for spiders compared with birds. This result and further insights into how fear affects time perception would not have been possible on the basis of analyses of choice proportion data alone. Further results were interpreted in the context of a recent 2-stage model of time perception (Balcı & Simen, 2014). The results highlight the usefulness of diffusion modeling to test process-based explanations of disordered cognition in emotional disorders. (c) 2015 APA, all rights reserved).
Sacchi, Emanuele; Sayed, Tarek; El-Basyouny, Karim
2016-09-01
Recently, important advances in road safety statistics have been brought about by methods able to address issues other than the choice of the best error structure for modeling crash data. In particular, accounting for spatial and temporal interdependence, i.e., the notion that the collision occurrence of a site or unit times depend on those of others, has become an important issue that needs further research. Overall, autoregressive models can be used for this purpose as they can specify that the output variable depends on its own previous values and on a stochastic term. Spatial effects have been investigated and applied mostly in the context of developing safety performance functions (SPFs) to relate crash occurrence to highway characteristics. Hence, there is a need for studies that attempt to estimate the effectiveness of safety countermeasures by including the spatial interdependence of road sites within the context of an observational before-after (BA) study. Moreover, the combination of temporal dynamics and spatial effects on crash frequency has not been explored in depth for SPF development. Therefore, the main goal of this research was to carry out a BA study accounting for spatial effects and temporal dynamics in evaluating the effectiveness of a road safety treatment. The countermeasure analyzed was the installation of traffic signals at unsignalized urban/suburban intersections in British Columbia (Canada). The full Bayes approach was selected as the statistical framework to develop the models. The results demonstrated that zone variation was a major component of total crash variability and that spatial effects were alleviated by clustering intersections together. Finally, the methodology used also allowed estimation of the treatment's effectiveness in the form of crash modification factors and functions with time trends. Copyright © 2016 Elsevier Ltd. All rights reserved.
The role of multisensory interplay in enabling temporal expectations.
Ball, Felix; Michels, Lara E; Thiele, Carsten; Noesselt, Toemme
2018-01-01
Temporal regularities can guide our attention to focus on a particular moment in time and to be especially vigilant just then. Previous research provided evidence for the influence of temporal expectation on perceptual processing in unisensory auditory, visual, and tactile contexts. However, in real life we are often exposed to a complex and continuous stream of multisensory events. Here we tested - in a series of experiments - whether temporal expectations can enhance perception in multisensory contexts and whether this enhancement differs from enhancements in unisensory contexts. Our discrimination paradigm contained near-threshold targets (subject-specific 75% discrimination accuracy) embedded in a sequence of distractors. The likelihood of target occurrence (early or late) was manipulated block-wise. Furthermore, we tested whether spatial and modality-specific target uncertainty (i.e. predictable vs. unpredictable target position or modality) would affect temporal expectation (TE) measured with perceptual sensitivity (d ' ) and response times (RT). In all our experiments, hidden temporal regularities improved performance for expected multisensory targets. Moreover, multisensory performance was unaffected by spatial and modality-specific uncertainty, whereas unisensory TE effects on d ' but not RT were modulated by spatial and modality-specific uncertainty. Additionally, the size of the temporal expectation effect, i.e. the increase in perceptual sensitivity and decrease of RT, scaled linearly with the likelihood of expected targets. Finally, temporal expectation effects were unaffected by varying target position within the stream. Together, our results strongly suggest that participants quickly adapt to novel temporal contexts, that they benefit from multisensory (relative to unisensory) stimulation and that multisensory benefits are maximal if the stimulus-driven uncertainty is highest. We propose that enhanced informational content (i.e. multisensory stimulation) enables the robust extraction of temporal regularities which in turn boost (uni-)sensory representations. Copyright © 2017 Elsevier B.V. All rights reserved.
Short-Term Memory after All: Comment on Sederberg, Howard, and Kahana (2008)
ERIC Educational Resources Information Center
Usher, Marius; Davelaar, Eddy J.; Haarmann, Henk J.; Goshen-Gottstein, Yonatan
2008-01-01
P. B. Sederberg, M. W. Howard, and M. J. Kahana have proposed an updated version of the temporal-context model (TCM-A). In doing so, they accepted the challenge of developing a single-store model to account for the dissociations between short- and long-term recency effects that were reviewed by E. J. Davelaar, Y. Goshen-Gottstein, A. Ashkenazi, H.…
Clark, Caron A C; Fernandez, Fabian; Sakhon, Stella; Spanò, Goffredina; Edgin, Jamie O
2017-06-01
Recent studies have highlighted the dentate gyrus as a region of increased vulnerability in mouse models of Down syndrome (DS). It is unclear to what extent these findings are reflected in the memory profile of people with the condition. We developed a series of novel tasks to probe distinct medial temporal functions in children and young adults with DS, including object, spatial, and temporal order memory. Relative to mental age-matched controls (n = 45), individuals with DS (n = 28) were unimpaired on subtests involving short-term object or configural recall that was divorced from spatial or temporal contexts. By contrast, the DS group had difficulty recalling spatial locations when contextual information was salient and recalling the order in which objects were serially presented. Results are consistent with dysfunction of spatial and temporal contextual pattern separation abilities in individuals with DS, mediated by the hippocampus, including the dentate gyrus. Amidst increasing calls to bridge human and animal work, the memory profile demonstrated here in humans with DS is strikingly similar to that of the Ts65Dn mouse model of DS. The study highlights the trisynaptic circuit as a potentially fruitful intervention target to mitigate cognitive impairments associated with DS. © 2017 Wiley Periodicals, Inc.
Maillet, David; Rajah, M Natasha
2011-10-28
Age-related declines in memory for context have been linked to volume loss in the hippocampal head (HH) with age. However, it remains unclear how this volumetric decline correlates with age-related changes in whole-brain activity during context encoding, and subsequent context retrieval. In the current study we examine this. We collected functional magnetic resonance imaging data in young and older adults during the encoding of item, spatial context and temporal context. HH volume and subsequent retrieval performance was measured in all participants. In young adults only there was a positive three-way correlation between larger HH volumes, better memory retrieval, and increased activity in right hippocampus, right ventrolateral prefrontal cortex (VLPFC) and midline brain regions during episodic encoding. In contrast, older adults exhibited a positive three-way association between HH volume, generalized activity in bilateral hippocampus and dorsolateral PFC across all encoding tasks, and subsequent spatial context retrieval. Young adults also engaged this network, but only during the most difficult temporal context encoding task and activity in this network correlated with subsequent temporal context retrieval. We conclude that age-related volumetric reductions in HH disrupted the structure-function association between the hippocampus and activity in the first general encoding network recruited by young adults. Instead, older adults recruited those brain regions young adults only engaged for the most difficult temporal task, at lower difficulty levels. This altered pattern of association correlated with spatial context retrieval in older adults, but was not sufficient to maintain context memory abilities overall. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Toosi, Tahereh; K Tousi, Ehsan; Esteky, Hossein
2017-08-01
Time is an inseparable component of every physical event that we perceive, yet it is not clear how the brain processes time or how the neuronal representation of time affects our perception of events. Here we asked subjects to perform a visual discrimination task while we changed the temporal context in which the stimuli were presented. We collected electroencephalography (EEG) signals in two temporal contexts. In predictable blocks stimuli were presented after a constant delay relative to a visual cue, and in unpredictable blocks stimuli were presented after variable delays relative to the visual cue. Four subsecond delays of 83, 150, 400, and 800 ms were used in the predictable and unpredictable blocks. We observed that predictability modulated the power of prestimulus alpha oscillations in the parieto-occipital sites: alpha power increased in the 300-ms window before stimulus onset in the predictable blocks compared with the unpredictable blocks. This modulation only occurred in the longest delay period, 800 ms, in which predictability also improved the behavioral performance of the subjects. Moreover, learning the temporal context shaped the prestimulus alpha power: modulation of prestimulus alpha power grew during the predictable block and correlated with performance enhancement. These results suggest that the brain is able to learn the subsecond temporal context of stimuli and use this to enhance sensory processing. Furthermore, the neural correlate of this temporal prediction is reflected in the alpha oscillations. NEW & NOTEWORTHY It is not well understood how the uncertainty in the timing of an external event affects its processing, particularly at subsecond scales. Here we demonstrate how a predictable timing scheme improves visual processing. We found that learning the predictable scheme gradually shaped the prestimulus alpha power. These findings indicate that the human brain is able to extract implicit subsecond patterns in the temporal context of events. Copyright © 2017 the American Physiological Society.
Cerebellum, temporal predictability and the updating of a mental model.
Kotz, Sonja A; Stockert, Anika; Schwartze, Michael
2014-12-19
We live in a dynamic and changing environment, which necessitates that we adapt to and efficiently respond to changes of stimulus form ('what') and stimulus occurrence ('when'). Consequently, behaviour is optimal when we can anticipate both the 'what' and 'when' dimensions of a stimulus. For example, to perceive a temporally expected stimulus, a listener needs to establish a fairly precise internal representation of its external temporal structure, a function ascribed to classical sensorimotor areas such as the cerebellum. Here we investigated how patients with cerebellar lesions and healthy matched controls exploit temporal regularity during auditory deviance processing. We expected modulations of the N2b and P3b components of the event-related potential in response to deviant tones, and also a stronger P3b response when deviant tones are embedded in temporally regular compared to irregular tone sequences. We further tested to what degree structural damage to the cerebellar temporal processing system affects the N2b and P3b responses associated with voluntary attention to change detection and the predictive adaptation of a mental model of the environment, respectively. Results revealed that healthy controls and cerebellar patients display an increased N2b response to deviant tones independent of temporal context. However, while healthy controls showed the expected enhanced P3b response to deviant tones in temporally regular sequences, the P3b response in cerebellar patients was significantly smaller in these sequences. The current data provide evidence that structural damage to the cerebellum affects the predictive adaptation to the temporal structure of events and the updating of a mental model of the environment under voluntary attention. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Cerebellum, temporal predictability and the updating of a mental model
Kotz, Sonja A.; Stockert, Anika; Schwartze, Michael
2014-01-01
We live in a dynamic and changing environment, which necessitates that we adapt to and efficiently respond to changes of stimulus form (‘what’) and stimulus occurrence (‘when’). Consequently, behaviour is optimal when we can anticipate both the ‘what’ and ‘when’ dimensions of a stimulus. For example, to perceive a temporally expected stimulus, a listener needs to establish a fairly precise internal representation of its external temporal structure, a function ascribed to classical sensorimotor areas such as the cerebellum. Here we investigated how patients with cerebellar lesions and healthy matched controls exploit temporal regularity during auditory deviance processing. We expected modulations of the N2b and P3b components of the event-related potential in response to deviant tones, and also a stronger P3b response when deviant tones are embedded in temporally regular compared to irregular tone sequences. We further tested to what degree structural damage to the cerebellar temporal processing system affects the N2b and P3b responses associated with voluntary attention to change detection and the predictive adaptation of a mental model of the environment, respectively. Results revealed that healthy controls and cerebellar patients display an increased N2b response to deviant tones independent of temporal context. However, while healthy controls showed the expected enhanced P3b response to deviant tones in temporally regular sequences, the P3b response in cerebellar patients was significantly smaller in these sequences. The current data provide evidence that structural damage to the cerebellum affects the predictive adaptation to the temporal structure of events and the updating of a mental model of the environment under voluntary attention. PMID:25385781
Little White Lies: Interrogating the (Un)acceptability of Deception in the Context of Dementia.
Seaman, Aaron T; Stone, Anne M
2017-01-01
This metasynthesis surveyed extant literature on deception in the context of dementia and, based on specific inclusion criteria, included 14 articles from 12 research studies. By doing so, the authors accomplished three goals: (a) provided a systematic examination of the literature-to-date on deception in the context of dementia, (b) elucidated the assumptions that have guided this line of inquiry and articulated the way those shape the research findings, and (c) determined directions for future research. In particular, synthesizing across studies allowed the authors to develop a dynamic model comprised of three temporally linear elements-(a) motives, (b) modes, and (c) outcomes that describe how deception emerges communicatively through interaction in the context of dementia. © The Author(s) 2015.
Context Memory Decline in Middle Aged Adults is Related to Changes in Prefrontal Cortex Function.
Kwon, Diana; Maillet, David; Pasvanis, Stamatoula; Ankudowich, Elizabeth; Grady, Cheryl L; Rajah, M Natasha
2016-06-01
The ability to encode and retrieve spatial and temporal contextual details of episodic memories (context memory) begins to decline at midlife. In the current study, event-related fMRI was used to investigate the neural correlates of context memory decline in healthy middle aged adults (MA) compared with young adults (YA). Participants were scanned while performing easy and hard versions of spatial and temporal context memory tasks. Scans were obtained at encoding and retrieval. Significant reductions in context memory retrieval accuracy were observed in MA, compared with YA. The fMRI results revealed that overall, both groups exhibited similar patterns of brain activity in parahippocampal cortex, ventral occipito-temporal regions and prefrontal cortex (PFC) during encoding. In contrast, at retrieval, there were group differences in ventral occipito-temporal and PFC activity, due to these regions being more activated in MA, compared with YA. Furthermore, only in YA, increased encoding activity in ventrolateral PFC, and increased retrieval activity in occipital cortex, predicted increased retrieval accuracy. In MA, increased retrieval activity in anterior PFC predicted increased retrieval accuracy. These results suggest that there are changes in PFC contributions to context memory at midlife. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Dommar, Carlos J; Lowe, Rachel; Robinson, Marguerite; Rodó, Xavier
2014-01-01
Vector-borne diseases, such as dengue, malaria and chikungunya, are increasing across their traditional ranges and continuing to infiltrate new, previously unaffected, regions. The spatio-temporal evolution of these diseases is determined by the interaction of the host and vector, which is strongly dependent on social structures and mobility patterns. We develop an agent-based model (ABM), in which each individual is explicitly represented and vector populations are linked to precipitation estimates in a tropical setting. The model is implemented on both scale-free and regular networks. The spatio-temporal transmission of chikungunya is analysed and the presence of asymptomatic silent spreaders within the population is investigated in the context of implementing travel restrictions during an outbreak. Preventing the movement of symptomatic individuals is found to be an insufficient mechanism to halt the spread of the disease, which can be readily carried to neighbouring nodes via sub-clinical individuals. Furthermore, the impact of topology structure vs. precipitation levels is assessed and precipitation is found to be the dominant factor driving spatio-temporal transmission. Copyright © 2013 Elsevier B.V. All rights reserved.
Temporal Context, Preference, and Resistance to Change
ERIC Educational Resources Information Center
Podlesnik, Christopher A.; Jimenez-Gomez, Corina; Thrailkill, Eric A.; Shahan, Timothy A.
2011-01-01
According to behavioral momentum theory, preference and relative resistance to change in concurrent chains schedules are correlated and reflect the relative conditioned value of discriminative stimuli. In the present study, we explore the generality of this relation by manipulating the temporal context within a concurrent-chains procedure through…
Simulating spatial and temporal context of forest management using hypothetical landscapes
Eric J. Gustafson; Thomas R. Crow
1998-01-01
Spatially explicit models that combine remote sensing with geographic information systems (GIS) offer great promise to land managers because they consider the arrangement of landscape elements in time and space. Their visual and geographic nature facilitate the comparison of alternative landscape designs. Among various activities associated with forest management,...
Postscript: Through TCM, STM Shines Bright
ERIC Educational Resources Information Center
Davelaar, Eddy J.; Usher, Marius; Haarmann, Henk J.; Goshen-Gottstein, Yonatan
2008-01-01
We find the reply by Kahana, Sederberg, and Howard helpful in clarifying the temporal-context model (TCM) function, in particular with regard to the elimination of the recency effect by a difficult distractor under parameters that still enable long-term contiguity effects to emerge. We agree with Kahana et al. that what matters most to the…
ERIC Educational Resources Information Center
Botvinick, Matthew; Plaut, David C.
2004-01-01
In everyday tasks, selecting actions in the proper sequence requires a continuously updated representation of temporal context. Previous models have addressed this problem by positing a hierarchy of processing units, mirroring the roughly hierarchical structure of naturalistic tasks themselves. The present study considers an alternative framework,…
NASA Astrophysics Data System (ADS)
Nallasamy, N. D.; Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.
2014-12-01
Sustainable management of water resources requires reliable estimates of actual evapotranspiration (ET) at fine spatial and temporal resolution. This is significant in the case of rice based irrigation systems, one of the major consumers of surface water resources and where ET forms a major component of water consumption. However huge tradeoff in the spatial and temporal resolution of satellite images coupled with lack of adequate number of cloud free images within a growing season act as major constraints in deriving ET at fine spatial and temporal resolution using remote sensing based energy balance models. The scale at which ET is determined is decided by the spatial and temporal scale of Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which form inputs to energy balance models. In this context, the current study employed disaggregation algorithms (NL-DisTrad and DisNDVI) to generate time series of LST and NDVI images at fine resolution. The disaggregation algorithms aimed at generating LST and NDVI at finer scale by integrating temporal information from concurrent coarse resolution data and spatial information from a single fine resolution image. The temporal frequency of the disaggregated images is further improved by employing composite images of NDVI and LST in the spatio-temporal disaggregation method. The study further employed half-hourly incoming surface insolation and outgoing long wave radiation obtained from the Indian geostationary satellite (Kalpana-1) to convert the instantaneous ET into daily ET and subsequently to the seasonal ET, thereby improving the accuracy of ET estimates. The estimates of ET were validated with field based water balance measurements carried out in Gadana, a subbasin predominated by rice paddy fields, located in Tamil Nadu, India.
Estimating under-five mortality in space and time in a developing world context.
Wakefield, Jon; Fuglstad, Geir-Arne; Riebler, Andrea; Godwin, Jessica; Wilson, Katie; Clark, Samuel J
2018-01-01
Accurate estimates of the under-five mortality rate in a developing world context are a key barometer of the health of a nation. This paper describes a new model to analyze survey data on mortality in this context. We are interested in both spatial and temporal description, that is wishing to estimate under-five mortality rate across regions and years and to investigate the association between the under-five mortality rate and spatially varying covariate surfaces. We illustrate the methodology by producing yearly estimates for subnational areas in Kenya over the period 1980-2014 using data from the Demographic and Health Surveys, which use stratified cluster sampling. We use a binomial likelihood with fixed effects for the urban/rural strata and random effects for the clustering to account for the complex survey design. Smoothing is carried out using Bayesian hierarchical models with continuous spatial and temporally discrete components. A key component of the model is an offset to adjust for bias due to the effects of HIV epidemics. Substantively, there has been a sharp decline in Kenya in the under-five mortality rate in the period 1980-2014, but large variability in estimated subnational rates remains. A priority for future research is understanding this variability. In exploratory work, we examine whether a variety of spatial covariate surfaces can explain the variability in under-five mortality rate. Temperature, precipitation, a measure of malaria infection prevalence, and a measure of nearness to cities were candidates for inclusion in the covariate model, but the interplay between space, time, and covariates is complex.
The Temporal Pole Top-Down Modulates the Ventral Visual Stream During Social Cognition.
Pehrs, Corinna; Zaki, Jamil; Schlochtermeier, Lorna H; Jacobs, Arthur M; Kuchinke, Lars; Koelsch, Stefan
2017-01-01
The temporal pole (TP) has been associated with diverse functions of social cognition and emotion processing. Although the underlying mechanism remains elusive, one possibility is that TP acts as domain-general hub integrating socioemotional information. To test this, 26 participants were presented with 60 empathy-evoking film clips during fMRI scanning. The film clips were preceded by a linguistic sad or neutral context and half of the clips were accompanied by sad music. In line with its hypothesized role, TP was involved in the processing of sad context and furthermore tracked participants' empathic concern. To examine the neuromodulatory impact of TP, we applied nonlinear dynamic causal modeling to a multisensory integration network from previous work consisting of superior temporal gyrus (STG), fusiform gyrus (FG), and amygdala, which was extended by an additional node in the TP. Bayesian model comparison revealed a gating of STG and TP on fusiform-amygdalar coupling and an increase of TP to FG connectivity during the integration of contextual information. Moreover, these backward projections were strengthened by emotional music. The findings indicate that during social cognition, TP integrates information from different modalities and top-down modulates lower-level perceptual areas in the ventral visual stream as a function of integration demands. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Source Memory in Korsakoff Syndrome: Disentangling the Mechanisms of Temporal Confusion.
Brion, Mélanie; de Timary, Philippe; Pitel, Anne-Lise; Maurage, Pierre
2017-03-01
Korsakoff syndrome (KS), most frequently resulting from alcohol dependence (ALC), is characterized by severe anterograde amnesia. It has been suggested that these deficits may extend to other memory components, and notably source memory deficits involved in the disorientation and temporal confusion frequently observed in KS. However, the extent of this source memory impairment in KS and its usefulness for the differential diagnosis between ALC and KS remain unexplored. Nineteen patients with KS were compared with 19 alcohol-dependent individuals and 19 controls in a source memory test exploring temporal context confusions ("continuous recognition task"). Episodic memory and psychopathological comorbidities were controlled for. While no source memory deficit was observed in ALC, KS was associated with a significant presence of temporal context confusion, even when the influence of comorbidities was taken into account. This source memory impairment did not appear to be related to performances on episodic memory or executive functions. Patients with KS displayed source memory deficits, as indexed by temporal context confusions. The absence of a relationship with episodic memory performances seems to indicate that source memory impairment is not a mere by-product of amnesia. As ALC was associated with preserved source memory, the presence of temporal context confusion may serve as a complementary tool for the differential diagnosis between ALC and KS. Copyright © 2017 by the Research Society on Alcoholism.
Rönnberg, Jerker; Lunner, Thomas; Ng, Elaine Hoi Ning; Lidestam, Björn; Zekveld, Adriana Agatha; Sörqvist, Patrik; Lyxell, Björn; Träff, Ulf; Yumba, Wycliffe; Classon, Elisabet; Hällgren, Mathias; Larsby, Birgitta; Signoret, Carine; Pichora-Fuller, M. Kathleen; Rudner, Mary; Danielsson, Henrik; Stenfelt, Stefan
2016-01-01
Abstract Objective: The aims of the current n200 study were to assess the structural relations between three classes of test variables (i.e. HEARING, COGNITION and aided speech-in-noise OUTCOMES) and to describe the theoretical implications of these relations for the Ease of Language Understanding (ELU) model. Study sample: Participants were 200 hard-of-hearing hearing-aid users, with a mean age of 60.8 years. Forty-three percent were females and the mean hearing threshold in the better ear was 37.4 dB HL. Design: LEVEL1 factor analyses extracted one factor per test and/or cognitive function based on a priori conceptualizations. The more abstract LEVEL 2 factor analyses were performed separately for the three classes of test variables. Results: The HEARING test variables resulted in two LEVEL 2 factors, which we labelled SENSITIVITY and TEMPORAL FINE STRUCTURE; the COGNITIVE variables in one COGNITION factor only, and OUTCOMES in two factors, NO CONTEXT and CONTEXT. COGNITION predicted the NO CONTEXT factor to a stronger extent than the CONTEXT outcome factor. TEMPORAL FINE STRUCTURE and SENSITIVITY were associated with COGNITION and all three contributed significantly and independently to especially the NO CONTEXT outcome scores (R2 = 0.40). Conclusions: All LEVEL 2 factors are important theoretically as well as for clinical assessment. PMID:27589015
Rönnberg, Jerker; Lunner, Thomas; Ng, Elaine Hoi Ning; Lidestam, Björn; Zekveld, Adriana Agatha; Sörqvist, Patrik; Lyxell, Björn; Träff, Ulf; Yumba, Wycliffe; Classon, Elisabet; Hällgren, Mathias; Larsby, Birgitta; Signoret, Carine; Pichora-Fuller, M Kathleen; Rudner, Mary; Danielsson, Henrik; Stenfelt, Stefan
2016-11-01
The aims of the current n200 study were to assess the structural relations between three classes of test variables (i.e. HEARING, COGNITION and aided speech-in-noise OUTCOMES) and to describe the theoretical implications of these relations for the Ease of Language Understanding (ELU) model. Participants were 200 hard-of-hearing hearing-aid users, with a mean age of 60.8 years. Forty-three percent were females and the mean hearing threshold in the better ear was 37.4 dB HL. LEVEL1 factor analyses extracted one factor per test and/or cognitive function based on a priori conceptualizations. The more abstract LEVEL 2 factor analyses were performed separately for the three classes of test variables. The HEARING test variables resulted in two LEVEL 2 factors, which we labelled SENSITIVITY and TEMPORAL FINE STRUCTURE; the COGNITIVE variables in one COGNITION factor only, and OUTCOMES in two factors, NO CONTEXT and CONTEXT. COGNITION predicted the NO CONTEXT factor to a stronger extent than the CONTEXT outcome factor. TEMPORAL FINE STRUCTURE and SENSITIVITY were associated with COGNITION and all three contributed significantly and independently to especially the NO CONTEXT outcome scores (R(2) = 0.40). All LEVEL 2 factors are important theoretically as well as for clinical assessment.
NASA Astrophysics Data System (ADS)
Kaiser, Olga; Martius, Olivia; Horenko, Illia
2017-04-01
Regression based Generalized Pareto Distribution (GPD) models are often used to describe the dynamics of hydrological threshold excesses relying on the explicit availability of all of the relevant covariates. But, in real application the complete set of relevant covariates might be not available. In this context, it was shown that under weak assumptions the influence coming from systematically missing covariates can be reflected by a nonstationary and nonhomogenous dynamics. We present a data-driven, semiparametric and an adaptive approach for spatio-temporal regression based clustering of threshold excesses in a presence of systematically missing covariates. The nonstationary and nonhomogenous behavior of threshold excesses is describes by a set of local stationary GPD models, where the parameters are expressed as regression models, and a non-parametric spatio-temporal hidden switching process. Exploiting nonparametric Finite Element time-series analysis Methodology (FEM) with Bounded Variation of the model parameters (BV) for resolving the spatio-temporal switching process, the approach goes beyond strong a priori assumptions made is standard latent class models like Mixture Models and Hidden Markov Models. Additionally, the presented FEM-BV-GPD provides a pragmatic description of the corresponding spatial dependence structure by grouping together all locations that exhibit similar behavior of the switching process. The performance of the framework is demonstrated on daily accumulated precipitation series over 17 different locations in Switzerland from 1981 till 2013 - showing that the introduced approach allows for a better description of the historical data.
Schmitt, Hannah; Ferdinand, Nicola K; Kray, Jutta
2015-06-01
Recent evidence has indicated that neuronal activity related to reward anticipation benefits subsequent stimulus processing, but the effect of penalties remains largely unknown. Since the dual-mechanisms-of-control theory (DMC; Braver & Barch, Neuroscience and Biobehavioral Reviews, 26, 809-81, 2002) assumes that temporal differences in context updating underlie age differences in cognitive control, in this study we investigated whether motivational cues (signaling the chance to win or the risk to lose money, relative to neutral cues) preceding context information in a modified AX-CPT paradigm influence the temporal stages of context processing in younger and older adults. In the behavioral data, younger adults benefited from gain cues, evident in their enhanced context updating, whereas older adults exhibited slowed responding after motivational cues, irrespective of valence. Event-related potentials (ERPs) revealed that the enhanced processing of motivational cues in the P2 and P3b was mainly age-invariant, whereas age-differential effects were found for the ERP correlates of context processing. Younger adults showed improved context maintenance (i.e., a larger negative-going CNV), as well as increased conflict detection (larger N450) and resolution (indicated by a sustained positivity), whenever incorrect responding would lead to a monetary loss. In contrast, motivationally salient cues benefited context representations (in cue-locked P3b amplitudes), but increased working memory demands during response preparation (via a temporally prolonged P3b) in older adults. In sum, motivational valence and salience effects differentially modulated the temporal stages of context processing in younger and older adults. These results are discussed in terms of the DMC theory, recent findings of emotion regulation in old age, and the relationship between cognitive and affective processing.
Samuel, Douglas B.; Widiger, Thomas A.
2012-01-01
An active line of current investigation is how the five-factor model (FFM) of personality disorder might be applied by clinicians and particularly, how clinically useful this model is in comparison to the existing nomenclature. The current study is the first to investigate the temporal consistency of clinicians’ application of the FFM and the DSM-IV-TR to their own patients. Results indicated that FFM ratings were relatively stable over six-months of treatment, supporting their use by clinicians, but also indexed potentially important clinical changes. Additionally, ratings of utility provided by the clinicians suggested that the FFM was more useful for clinical decision making than was the DSM-IV-TR model. We understand the clinical utility findings within the context of previous research indicating that the FFM is most useful among patients who are not prototypic for a personality disorder. PMID:24288580
A social ecological assessment of physical activity among urban adolescents.
Yan, Alice Fang; Voorhees, Carolyn C; Beck, Kenneth H; Wang, Min Qi
2014-05-01
To examine the physical, social and temporal contexts of physical activity, as well as sex variations of the associations among 314 urban adolescents. Three-day physical activity recall measured contextual information of physical activities. Logistic regressions and generalized estimating equation models examined associations among physical activity types and contexts, and sex differences. Active transportation was the most common physical activity. Home/neighborhood and school were the most common physical activity locations. School was the main location for organized physical activity. Boys spent more time on recreational physical activity, regardless of the social context, compared to girls. The average physical activity level was significantly lower for girls than for boys after school. Physical activity promotion interventions need to target physical activity environments and social contexts in a sex-specific manner.
Adaptation to Cognitive Context and Item Information in the Medial Temporal Lobes
ERIC Educational Resources Information Center
Diana, Rachel A.; Yonelinas, Andrew P.; Ranganath, Charan
2012-01-01
The medial temporal lobes (MTL) play an essential role in episodic memory, and accumulating evidence indicates that two MTL subregions--the perirhinal (PRc) and parahippocampal (PHc) cortices--might have different functions. According to the binding of item and context theory ( [16] and [21]), PRc is involved in processing item information, the…
ERIC Educational Resources Information Center
Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico
2008-01-01
These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…
The ADaptation and Anticipation Model (ADAM) of sensorimotor synchronization
van der Steen, M. C. (Marieke); Keller, Peter E.
2013-01-01
A constantly changing environment requires precise yet flexible timing of movements. Sensorimotor synchronization (SMS)—the temporal coordination of an action with events in a predictable external rhythm—is a fundamental human skill that contributes to optimal sensory-motor control in daily life. A large body of research related to SMS has focused on adaptive error correction mechanisms that support the synchronization of periodic movements (e.g., finger taps) with events in regular pacing sequences. The results of recent studies additionally highlight the importance of anticipatory mechanisms that support temporal prediction in the context of SMS with sequences that contain tempo changes. To investigate the role of adaptation and anticipatory mechanisms in SMS we introduce ADAM: an ADaptation and Anticipation Model. ADAM combines reactive error correction processes (adaptation) with predictive temporal extrapolation processes (anticipation) inspired by the computational neuroscience concept of internal models. The combination of simulations and experimental manipulations based on ADAM creates a novel and promising approach for exploring adaptation and anticipation in SMS. The current paper describes the conceptual basis and architecture of ADAM. PMID:23772211
Temporal context memory in high-functioning autism.
Gras-Vincendon, Agnès; Mottron, Laurent; Salamé, Pierre; Bursztejn, Claude; Danion, Jean-Marie
2007-11-01
Episodic memory, i.e. memory for specific episodes situated in space and time, seems impaired in individuals with autism. According to weak central coherence theory, individuals with autism have general difficulty connecting contextual and item information which then impairs their capacity to memorize information in context. This study investigated temporal context memory for visual information in individuals with autism. Eighteen adolescents and adults with high-functioning autism (HFA) or Asperger syndrome (AS) and age- and IQ-matched typically developing participants were tested using a recency judgement task. The performance of the autistic group did not differ from that of the control group, nor did the performance between the AS and HFA groups. We conclude that autism in high-functioning individuals does not impair temporal context memory as assessed on this task. We suggest that individuals with autism are as efficient on this task as typically developing subjects because contextual memory performance here involves more automatic than organizational processing.
Piai, Vitória; Rommers, Joost; Knight, Robert T
2017-09-09
Different frequency bands in the electroencephalogram are postulated to support distinct language functions. Studies have suggested that alpha-beta power decreases may index word-retrieval processes. In context-driven word retrieval, participants hear lead-in sentences that either constrain the final word ('He locked the door with the') or not ('She walked in here with the'). The last word is shown as a picture to be named. Previous studies have consistently found alpha-beta power decreases prior to picture onset for constrained relative to unconstrained sentences, localised to the left lateral-temporal and lateral-frontal lobes. However, the relative contribution of temporal versus frontal areas to alpha-beta power decreases is unknown. We recorded the electroencephalogram from patients with stroke lesions encompassing the left lateral-temporal and inferior-parietal regions or left-lateral frontal lobe and from matched controls. Individual participant analyses revealed a behavioural sentence context facilitation effect in all participants, except for in the two patients with extensive lesions to temporal and inferior parietal lobes. We replicated the alpha-beta power decreases prior to picture onset in all participants, except for in the two same patients with extensive posterior lesions. Thus, whereas posterior lesions eliminated the behavioural and oscillatory context effect, frontal lesions did not. Hierarchical clustering analyses of all patients' lesion profiles, and behavioural and electrophysiological effects identified those two patients as having a unique combination of lesion distribution and context effects. These results indicate a critical role for the left lateral-temporal and inferior parietal lobes, but not frontal cortex, in generating the alpha-beta power decreases underlying context-driven word production. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Afzal, Zubair; Pons, Ewoud; Kang, Ning; Sturkenboom, Miriam C J M; Schuemie, Martijn J; Kors, Jan A
2014-11-29
In order to extract meaningful information from electronic medical records, such as signs and symptoms, diagnoses, and treatments, it is important to take into account the contextual properties of the identified information: negation, temporality, and experiencer. Most work on automatic identification of these contextual properties has been done on English clinical text. This study presents ContextD, an adaptation of the English ConText algorithm to the Dutch language, and a Dutch clinical corpus. We created a Dutch clinical corpus containing four types of anonymized clinical documents: entries from general practitioners, specialists' letters, radiology reports, and discharge letters. Using a Dutch list of medical terms extracted from the Unified Medical Language System, we identified medical terms in the corpus with exact matching. The identified terms were annotated for negation, temporality, and experiencer properties. To adapt the ConText algorithm, we translated English trigger terms to Dutch and added several general and document specific enhancements, such as negation rules for general practitioners' entries and a regular expression based temporality module. The ContextD algorithm utilized 41 unique triggers to identify the contextual properties in the clinical corpus. For the negation property, the algorithm obtained an F-score from 87% to 93% for the different document types. For the experiencer property, the F-score was 99% to 100%. For the historical and hypothetical values of the temporality property, F-scores ranged from 26% to 54% and from 13% to 44%, respectively. The ContextD showed good performance in identifying negation and experiencer property values across all Dutch clinical document types. Accurate identification of the temporality property proved to be difficult and requires further work. The anonymized and annotated Dutch clinical corpus can serve as a useful resource for further algorithm development.
Studying the effect of weather conditions on daily crash counts using a discrete time-series model.
Brijs, Tom; Karlis, Dimitris; Wets, Geert
2008-05-01
In previous research, significant effects of weather conditions on car crashes have been found. However, most studies use monthly or yearly data and only few studies are available analyzing the impact of weather conditions on daily car crash counts. Furthermore, the studies that are available on a daily level do not explicitly model the data in a time-series context, hereby ignoring the temporal serial correlation that may be present in the data. In this paper, we introduce an integer autoregressive model for modelling count data with time interdependencies. The model is applied to daily car crash data, metereological data and traffic exposure data from the Netherlands aiming at examining the risk impact of weather conditions on the observed counts. The results show that several assumptions related to the effect of weather conditions on crash counts are found to be significant in the data and that if serial temporal correlation is not accounted for in the model, this may produce biased results.
Space-for-Time Substitution Works in Everglades Ecological Forecasting Models
Banet, Amanda I.; Trexler, Joel C.
2013-01-01
Space-for-time substitution is often used in predictive models because long-term time-series data are not available. Critics of this method suggest factors other than the target driver may affect ecosystem response and could vary spatially, producing misleading results. Monitoring data from the Florida Everglades were used to test whether spatial data can be substituted for temporal data in forecasting models. Spatial models that predicted bluefin killifish (Lucania goodei) population response to a drying event performed comparably and sometimes better than temporal models. Models worked best when results were not extrapolated beyond the range of variation encompassed by the original dataset. These results were compared to other studies to determine whether ecosystem features influence whether space-for-time substitution is feasible. Taken in the context of other studies, these results suggest space-for-time substitution may work best in ecosystems with low beta-diversity, high connectivity between sites, and small lag in organismal response to the driver variable. PMID:24278368
Relativity theory and time perception: single or multiple clocks?
Buhusi, Catalin V; Meck, Warren H
2009-07-22
Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset) independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock. Rats were trained to time three durations (e.g., 10, 30, and 90 s). When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results. These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context.
Yamada, Tatsuro; Murata, Shingo; Arie, Hiroaki; Ogata, Tetsuya
2016-01-01
To work cooperatively with humans by using language, robots must not only acquire a mapping between language and their behavior but also autonomously utilize the mapping in appropriate contexts of interactive tasks online. To this end, we propose a novel learning method linking language to robot behavior by means of a recurrent neural network. In this method, the network learns from correct examples of the imposed task that are given not as explicitly separated sets of language and behavior but as sequential data constructed from the actual temporal flow of the task. By doing this, the internal dynamics of the network models both language-behavior relationships and the temporal patterns of interaction. Here, "internal dynamics" refers to the time development of the system defined on the fixed-dimensional space of the internal states of the context layer. Thus, in the execution phase, by constantly representing where in the interaction context it is as its current state, the network autonomously switches between recognition and generation phases without any explicit signs and utilizes the acquired mapping in appropriate contexts. To evaluate our method, we conducted an experiment in which a robot generates appropriate behavior responding to a human's linguistic instruction. After learning, the network actually formed the attractor structure representing both language-behavior relationships and the task's temporal pattern in its internal dynamics. In the dynamics, language-behavior mapping was achieved by the branching structure. Repetition of human's instruction and robot's behavioral response was represented as the cyclic structure, and besides, waiting to a subsequent instruction was represented as the fixed-point attractor. Thanks to this structure, the robot was able to interact online with a human concerning the given task by autonomously switching phases.
Representing and querying now-relative relational medical data.
Anselma, Luca; Piovesan, Luca; Stantic, Bela; Terenziani, Paolo
2018-03-01
Temporal information plays a crucial role in medicine. Patients' clinical records are intrinsically temporal. Thus, in Medical Informatics there is an increasing need to store, support and query temporal data (particularly in relational databases), in order, for instance, to supplement decision-support systems. In this paper, we show that current approaches to relational data have remarkable limitations in the treatment of "now-relative" data (i.e., data holding true at the current time). This can severely compromise their applicability in general, and specifically in the medical context, where "now-relative" data are essential to assess the current status of the patients. We propose a theoretically grounded and application-independent relational approach to cope with now-relative data (which can be paired, e.g., with different decision support systems) overcoming such limitations. We propose a new temporal relational representation, which is the first relational model coping with the temporal indeterminacy intrinsic in now-relative data. We also propose new temporal algebraic operators to query them, supporting the distinction between possible and necessary time, and Allen's temporal relations between data. We exemplify the impact of our approach, and study the theoretical and computational properties of the new representation and algebra. Copyright © 2018 Elsevier B.V. All rights reserved.
Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents.
Bürger, Raimund; Chowell, Gerardo; Gavilán, Elvis; Mulet, Pep; Villada, Luis M
2018-02-01
In this article we describe the transmission dynamics of hantavirus in rodents using a spatio-temporal susceptible-exposed-infective-recovered (SEIR) compartmental model that distinguishes between male and female subpopulations [L.J.S. Allen, R.K. McCormack and C.B. Jonsson, Bull. Math. Biol. 68 (2006), 511--524]. Both subpopulations are assumed to differ in their movement with respect to local variations in the densities of their own and the opposite gender group. Three alternative models for the movement of the male individuals are examined. In some cases the movement is not only directed by the gradient of a density (as in the standard diffusive case), but also by a non-local convolution of density values as proposed, in another context, in [R.M. Colombo and E. Rossi, Commun. Math. Sci., 13 (2015), 369--400]. An efficient numerical method for the resulting convection-diffusion-reaction system of partial differential equations is proposed. This method involves techniques of weighted essentially non-oscillatory (WENO) reconstructions in combination with implicit-explicit Runge-Kutta (IMEX-RK) methods for time stepping. The numerical results demonstrate significant differences in the spatio-temporal behavior predicted by the different models, which suggest future research directions.
Adult Plasticity in the Subcortical Auditory Pathway of the Maternal Mouse
Miranda, Jason A.; Shepard, Kathryn N.; McClintock, Shannon K.; Liu, Robert C.
2014-01-01
Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system – motherhood – is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered. PMID:24992362
Adult plasticity in the subcortical auditory pathway of the maternal mouse.
Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C
2014-01-01
Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.
NASA Astrophysics Data System (ADS)
Bertrand, G.
2012-12-01
The genesis of many types of mineral deposits is closely linked to tectonic and petrographic conditions resulting from specific geodynamic contexts. Porphyry deposits, for instance, are associated to calc-alkaline magmatism of subduction zones. In order to better understand the relationships between ore deposit distribution and their tectonic context, and help identifying geodynamic-related criteria of favorability that would, in turn, help mineral exploration, we propose a paleogeographic approach. Paleogeographic reconstructions, based on global or regional plate tectonic models, are crucial tools to assess tectonic and kinematic contexts of the past. We use this approach to study the distribution of porphyry copper deposits along the western Tethyan and Andean subductions since Lower Cretaceous and Paleocene, respectively. For both convergent contexts, databases of porphyry copper deposits, including, among other data, their age and location, were compiled. Spatial and temporal distribution of the deposits is not random and show that they were emplaced in distinct clusters. Five clusters are identified along the western Tethyan suture, from Lower Cretaceous to Pleistocene, and at least three along the Andes, from Paleocene to Miocene. Two clusters in the Aegean-Balkan-Carpathian area, that were emplaced in Upper Cretaceous and Oligo-Miocene, and two others in the Andes, that were emplaced in late Eocene and Miocene, are studied in details and correlated with the past kinematics of the Africa-Eurasia and Nazca-South America plate convergences, respectively. All these clusters are associated with a similar polyphased kinematic context that is closely related to the dynamics of the subductions. This context is characterized by 1) a relatively fast convergence rate, shortly followed by 2) a drastic decrease of this rate. To explain these results, we propose a polyphased genetic model for porphyry copper deposits with 1) a first stage of rapid subduction rate, favoring high melt production in the mantle wedge, by dehydration of the subducted oceanic crust, and increased influx of mafic magmas in the MASH (Melting, Assimilation, Storage, Homogenization) zone, and 2) a subsequent significant decrease in subduction rate, favoring extensional regime within the upper plate and easing upward migration of fertile magmas to the upper crust. This second effect seems to be confirmed in the Aegean-Balkan-Carpathian area where the two clusters are spatially and temporally correlated with known extensional regimes. Although preliminary, these results highlight the control of the geodynamic context, and especially the subduction kinematics, on the spatial and temporal distribution of porphyry copper deposits. This study also confirms that the paleogeographic approach is a promising tool that could help identifying geodynamic and tectonic criteria favoring the genesis of various ore deposit types. Correlatively, ore deposits may be considered, in future studies, as possible markers of past geodynamic contexts.
NASA Astrophysics Data System (ADS)
Nam, W. H.; Bang, N.; Hong, E. M.; Pachepsky, Y. A.; Han, K. H.; Cho, H.; Ok, J.; Hong, S. Y.
2017-12-01
Agricultural drought is defined as a combination of abnormal deficiency of precipitation, increased crop evapotranspiration demands from high-temperature anomalies, and soil moisture deficits during the crop growth period. Soil moisture variability and their spatio-temporal trends is a key component of the hydrological balance, which determines the crop production and drought stresses in the context of agriculture. In 2017, South Korea has identified the extreme drought event, the worst in one hundred years according to the South Korean government. The objective of this study is to quantify agricultural drought impacts using observed and simulated soil moisture, and various drought indices. A soil water balance model is used to simulate the soil water content in the crop root zone under rain-fed (no irrigation) conditions. The model used includes physical process using estimated effective rainfall, infiltration, redistribution in soil water zone, and plant water uptake in the form of actual crop evapotranspiration. Three widely used drought indices, including the Standardized Precipitation Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the Self-Calibrated Palmer Drought Severity Index (SC-PDSI) are compared with the observed and simulated soil moisture in the context of agricultural drought impacts. These results demonstrated that the soil moisture model could be an effective tool to provide improved spatial and temporal drought monitoring for drought policy.
NASA Astrophysics Data System (ADS)
Bertazzon, Stefania
The present research focuses on the interaction of supply and demand of down-hill ski tourism in the province of Alberta. The main hypothesis is that the demand for skiing depends on the socio-economic and demographic characteristics of the population living in the province and outside it. A second, consequent hypothesis is that the development of ski resorts (supply) is a response to the demand for skiing. From the latter derives the hypothesis of a dynamic interaction between supply (ski resorts) and demand (skiers). Such interaction occurs in space, within a range determined by physical distance and the means available to overcome it. The above hypotheses implicitly define interactions that take place in space and evolve over time. The hypotheses are tested by temporal, spatial, and spatio-temporal regression models, using the best available data and the latest commercially available software. The main purpose of this research is to explore analytical techniques to model spatial, temporal, and spatio-temporal dynamics in the context of regional science. The completion of the present research has produced more significant contributions than was originally expected. Many of the unexpected contributions resulted from theoretical and applied needs arising from the application of spatial regression models. Spatial regression models are a new and largely under-applied technique. The models are fairly complex and a considerable amount of preparatory work is needed, prior to their specification and estimation. Most of this work is specific to the field of application. The originality of the solutions devised is increased by the lack of applications in the field of tourism. The scarcity of applications in other fields adds to their value for other applications. The estimation of spatio-temporal models has been only partially attained in the present research. This apparent limitation is due to the novelty and complexity of the analytical methods applied. This opens new directions for further work in the field of spatial analysis, in conjunction with the development of specific software.
Dynamic diaschisis: anatomically remote and context-sensitive human brain lesions.
Price, C J; Warburton, E A; Moore, C J; Frackowiak, R S; Friston, K J
2001-05-15
Functional neuroimaging was used to investigate how lesions to the Broca's area impair neuronal responses in remote undamaged cortical regions. Four patients with speech output problems, but relatively preserved comprehension, were scanned while viewing words relative to consonant letter strings. In normal subjects, this results in left lateralized activation in the posterior inferior frontal, middle temporal, and posterior inferior temporal cortices. Each patient activated normally in the middle temporal region but abnormally in the damaged posterior inferior frontal cortex and the undamaged posterior inferior temporal cortex. In the damaged frontal region, activity was insensitive to the presence of words but in the undamaged posterior inferior temporal region, activity decreased in the presence of words rather than increasing as it did in the normal individuals. The reversal of responses in the left posterior inferior temporal region illustrate the context-sensitive nature of the abnormality and that failure to activate the left posterior temporal region could not simply be accounted for by insufficient demands on the underlying function. We propose that, in normal individuals, visual word presentation changes the effective connectivity among reading areas and, in patients, posterior temporal responses are abnormal when they depend upon inputs from the damaged inferior frontal cortex. Our results serve to introduce the concept of dynamic diaschisis; the anatomically remote and context-sensitive effects of focal brain lesions. Dynamic diaschisis reveals abnormalities of functional integration that may have profound implications for neuropsychological inference, functional anatomy and, vicariously, cognitive rehabilitation.
Not All Order Memory Is Equal: Test Demands Reveal Dissociations in Memory for Sequence Information
ERIC Educational Resources Information Center
Jonker, Tanya R.; MacLeod, Colin M.
2017-01-01
Remembering the order of a sequence of events is a fundamental feature of episodic memory. Indeed, a number of formal models represent temporal context as part of the memory system, and memory for order has been researched extensively. Yet, the nature of the code(s) underlying sequence memory is still relatively unknown. Across 4 experiments that…
NASA Astrophysics Data System (ADS)
Thomas, Yoann; Mazurié, Joseph; Alunno-Bruscia, Marianne; Bacher, Cédric; Bouget, Jean-François; Gohin, Francis; Pouvreau, Stéphane; Struski, Caroline
2011-11-01
In order to assess the potential of various marine ecosystems for shellfish aquaculture and to evaluate their carrying capacities, there is a need to clarify the response of exploited species to environmental variations using robust ecophysiological models and available environmental data. For a large range of applications and comparison purposes, a non-specific approach based on 'generic' individual growth models offers many advantages. In this context, we simulated the response of blue mussel ( Mytilus edulis L.) to the spatio-temporal fluctuations of the environment in Mont Saint-Michel Bay (North Brittany) by forcing a generic growth model based on Dynamic Energy Budgets with satellite-derived environmental data (i.e. temperature and food). After a calibration step based on data from mussel growth surveys, the model was applied over nine years on a large area covering the entire bay. These simulations provide an evaluation of the spatio-temporal variability in mussel growth and also show the ability of the DEB model to integrate satellite-derived data and to predict spatial and temporal growth variability of mussels. Observed seasonal, inter-annual and spatial growth variations are well simulated. The large-scale application highlights the strong link between food and mussel growth. The methodology described in this study may be considered as a suitable approach to account for environmental effects (food and temperature variations) on physiological responses (growth and reproduction) of filter feeders in varying environments. Such physiological responses may then be useful for evaluating the suitability of coastal ecosystems for shellfish aquaculture.
ERIC Educational Resources Information Center
Heroux, Nicholas A.; Robinson-Drummer, Patrese A.; Sanders, Hollie R.; Rosen, Jeffrey B.; Stanton, Mark E.
2017-01-01
The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases. In contrast, learning about the context and the context-shock association…
Van Looy, Kris; Piffady, Jérémy
2017-11-01
Floodplain landscapes are highly fragmented by river regulation resulting in habitat degradation and flood regime perturbation, posing risks to population persistence. Climate change is expected to pose supplementary risks in this context of fragmented landscapes, and especially for river systems adaptation management programs are developed. The association of habitat quality and quantity with the landscape dynamics and resilience to human-induced disturbances is still poorly understood in the context of species survival and colonization processes, but essential to prioritize conservation and restoration actions. We present a modelling approach that elucidates network connectivity and landscape dynamics in spatial and temporal context to identify vital corridors and conservation priorities in the Loire river and its tributaries. Alteration of flooding and flow regimes is believed to be critical to population dynamics in river ecosystems. Still, little is known of critical levels of alteration both spatially and temporally. We applied metapopulation modelling approaches for a dispersal-limited tree species, white elm; and a recruitment-limited tree species, black poplar. In different model steps the connectivity and natural dynamics of the river landscape are confronted with physical alterations (dams/dykes) to species survival and then future scenarios for climatic changes and potential adaptation measures are entered in the model and translated in population persistence over the river basin. For the two tree species we highlighted crucial network zones in relation to habitat quality and connectivity. Where the human impact model already shows currently restricted metapopulation development, climate change is projected to aggravate this persistence perspective substantially. For both species a significant drawback to the basin population is observed, with 1/3 for elm and ¼ for poplar after 25 years already. But proposed adaptation measures prove effective to even bring metapopulation strength and persistence up to a level above the current level. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Frasincar, Flavius; Milea, Viorel; Kaymak, Uzay
The Web Ontology Language (OWL) is the most expressive standard language for modeling ontologies on the Semantic Web. In this chapter, we present the temporal OWL (tOWL) language: a temporal extension of the OWL DL language. tOWL is based on three layers added on top of OWL DL. The first layer is the Concrete Domains layer, which allows the representation of restrictions using concrete domain binary predicates. The second layer is the Time Representation layer, which adds time points, intervals, and Allen's 13 interval relations. The third layer is the Change Representation layer which supports a perdurantist view on the world, and allows the representation of complex temporal axioms, such as state transitions. A Leveraged Buyout process is used to exemplify the different tOWL constructs and show the tOWL applicability in a business context.
NASA Astrophysics Data System (ADS)
Coats, S.; Smerdon, J. E.; Stevenson, S.; Fasullo, J.; Otto-Bliesner, B. L.
2017-12-01
The observational record, which provides only limited sampling of past climate variability, has made it difficult to quantitatively analyze the complex spatio-temporal character of drought. To provide a more complete characterization of drought, machine learning based methods that identify drought in three-dimensional space-time are applied to climate model simulations of the last millennium and future, as well as tree-ring based reconstructions of hydroclimate over the Northern Hemisphere extratropics. A focus is given to the most persistent and severe droughts of the past 1000 years. Analyzing reconstructions and simulations in this context allows for a validation of the spatio-temporal character of persistent and severe drought in climate model simulations. Furthermore, the long records provided by the reconstructions and simulations, allows for sufficient sampling to constrain projected changes to the spatio-temporal character of these features using the reconstructions. Along these lines, climate models suggest that there will be large increases in the persistence and severity of droughts over the coming century, but little change in their spatial extent. These models, however, exhibit biases in the spatio-temporal character of persistent and severe drought over parts of the Northern Hemisphere, which may undermine their usefulness for future projections. Despite these limitations, and in contrast to previous claims, there are no systematic changes in the character of persistent and severe droughts in simulations of the historical interval. This suggests that climate models are not systematically overestimating the hydroclimate response to anthropogenic forcing over this period, with critical implications for confidence in hydroclimate projections.
Temporal expectancy in the context of a theory of visual attention.
Vangkilde, Signe; Petersen, Anders; Bundesen, Claus
2013-10-19
Temporal expectation is expectation with respect to the timing of an event such as the appearance of a certain stimulus. In this paper, temporal expectancy is investigated in the context of the theory of visual attention (TVA), and we begin by summarizing the foundations of this theoretical framework. Next, we present a parametric experiment exploring the effects of temporal expectation on perceptual processing speed in cued single-stimulus letter recognition with unspeeded motor responses. The length of the cue-stimulus foreperiod was exponentially distributed with one of six hazard rates varying between blocks. We hypothesized that this manipulation would result in a distinct temporal expectation in each hazard rate condition. Stimulus exposures were varied such that both the temporal threshold of conscious perception (t0 ms) and the perceptual processing speed (v letters s(-1)) could be estimated using TVA. We found that the temporal threshold t0 was unaffected by temporal expectation, but the perceptual processing speed v was a strikingly linear function of the logarithm of the hazard rate of the stimulus presentation. We argue that the effects on the v values were generated by changes in perceptual biases, suggesting that our perceptual biases are directly related to our temporal expectations.
Lui, Justin T; Hoy, Monica Y
2017-06-01
Background The increasing prevalence of virtual reality simulation in temporal bone surgery warrants an investigation to assess training effectiveness. Objectives To determine if temporal bone simulator use improves mastoidectomy performance. Data Sources Ovid Medline, Embase, and PubMed databases were systematically searched per the PRISMA guidelines. Review Methods Inclusion criteria were peer-reviewed publications that utilized quantitative data of mastoidectomy performance following the use of a temporal bone simulator. The search was restricted to human studies published in English. Studies were excluded if they were in non-peer-reviewed format, were descriptive in nature, or failed to provide surgical performance outcomes. Meta-analysis calculations were then performed. Results A meta-analysis based on the random-effects model revealed an improvement in overall mastoidectomy performance following training on the temporal bone simulator. A standardized mean difference of 0.87 (95% CI, 0.38-1.35) was generated in the setting of a heterogeneous study population ( I 2 = 64.3%, P < .006). Conclusion In the context of a diverse population of virtual reality simulation temporal bone surgery studies, meta-analysis calculations demonstrate an improvement in trainee mastoidectomy performance with virtual simulation training.
The loss of short-term visual representations over time: decay or temporal distinctiveness?
Mercer, Tom
2014-12-01
There has been much recent interest in the loss of visual short-term memories over the passage of time. According to decay theory, visual representations are gradually forgotten as time passes, reflecting a slow and steady distortion of the memory trace. However, this is controversial and decay effects can be explained in other ways. The present experiment aimed to reexamine the maintenance and loss of visual information over the short term. Decay and temporal distinctiveness models were tested using a delayed discrimination task, in which participants compared complex and novel objects over unfilled retention intervals of variable length. Experiment 1 found no significant change in the accuracy of visual memory from 2 to 6 s, but the gap separating trials reliably influenced task performance. Experiment 2 found evidence for information loss at a 10-s retention interval, but temporally separating trials restored the fidelity of visual memory, possibly because temporally isolated representations are distinct from older memory traces. In conclusion, visual representations lose accuracy at some point after 6 s, but only within temporally crowded contexts. These findings highlight the importance of temporal distinctiveness within visual short-term memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Assessing global vegetation activity using spatio-temporal Bayesian modelling
NASA Astrophysics Data System (ADS)
Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.
2016-04-01
This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support our hypothesis. That is, the change of vegetation in space and time may be better understood when modelling vegetation change as both a dynamic and multivariate process. Therefore, future research will focus on a multivariate dynamical spatio-temporal modelling approach. This ongoing research is performed within the context of the project "Global impacts of hydrological and climatic extremes on vegetation" (project acronym: SAT-EX) which is part of the Belgian research programme for Earth Observation Stereo III.
The Eyes Know Time: A Novel Paradigm to Reveal the Development of Temporal Memory
ERIC Educational Resources Information Center
Pathman, Thanujeni; Ghetti, Simona
2014-01-01
Temporal memory in 7-year-olds, 10-year-olds, and young adults (N = 78) was examined introducing a novel eye-movement paradigm. Participants learned object sequences and were tested under three conditions: temporal order, temporal context, and recognition. Age-related improvements in accuracy were found across conditions; accuracy in the temporal…
Sakurai, Y
2002-01-01
This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.
Isabelle, Boulangeat; Damien, Georges; Wilfried, Thuiller
2014-01-01
During the last decade, despite strenuous efforts to develop new models and compare different approaches, few conclusions have been drawn on their ability to provide robust biodiversity projections in an environmental change context. The recurring suggestions are that models should explicitly (i) include spatiotemporal dynamics; (ii) consider multiple species in interactions; and (iii) account for the processes shaping biodiversity distribution. This paper presents a biodiversity model (FATE-HD) that meets this challenge at regional scale by combining phenomenological and process-based approaches and using well-defined plant functional groups. FATE-HD has been tested and validated in a French National Park, demonstrating its ability to simulate vegetation dynamics, structure and diversity in response to disturbances and climate change. The analysis demonstrated the importance of considering biotic interactions, spatio-temporal dynamics, and disturbances in addition to abiotic drivers to simulate vegetation dynamics. The distribution of pioneer trees was particularly improved, as were all undergrowth functional groups. PMID:24214499
Our microbial selves: what ecology can teach us
Gonzalez, Antonio; Clemente, Jose C; Shade, Ashley; Metcalf, Jessica L; Song, Sejin; Prithiviraj, Bharath; Palmer, Brent E; Knight, Rob
2011-01-01
Advances in DNA sequencing have allowed us to characterize microbial communities—including those associated with the human body—at a broader range of spatial and temporal scales than ever before. We can now answer fundamental questions that were previously inaccessible and use well-tested ecological theories to gain insight into changes in the microbiome that are associated with normal development and human disease. Perhaps unsurprisingly, the ecosystems associated with our body follow trends identified in communities at other sites and scales, and thus studies of the microbiome benefit from ecological insight. Here, we assess human microbiome research in the context of ecological principles and models, focusing on diversity, biological drivers of community structure, spatial patterning and temporal dynamics, and suggest key directions for future research that will bring us closer to the goal of building predictive models for personalized medicine. PMID:21720391
A model of the temporal dynamics of multisensory enhancement
Rowland, Benjamin A.; Stein, Barry E.
2014-01-01
The senses transduce different forms of environmental energy, and the brain synthesizes information across them to enhance responses to salient biological events. We hypothesize that the potency of multisensory integration is attributable to the convergence of independent and temporally aligned signals derived from cross-modal stimulus configurations onto multisensory neurons. The temporal profile of multisensory integration in neurons of the deep superior colliculus (SC) is consistent with this hypothesis. The responses of these neurons to visual, auditory, and combinations of visual–auditory stimuli reveal that multisensory integration takes place in real-time; that is, the input signals are integrated as soon as they arrive at the target neuron. Interactions between cross-modal signals may appear to reflect linear or nonlinear computations on a moment-by-moment basis, the aggregate of which determines the net product of multisensory integration. Modeling observations presented here suggest that the early nonlinear components of the temporal profile of multisensory integration can be explained with a simple spiking neuron model, and do not require more sophisticated assumptions about the underlying biology. A transition from nonlinear “super-additive” computation to linear, additive computation can be accomplished via scaled inhibition. The findings provide a set of design constraints for artificial implementations seeking to exploit the basic principles and potency of biological multisensory integration in contexts of sensory substitution or augmentation. PMID:24374382
Pitch and time, tonality and meter: how do musical dimensions combine?
Prince, Jon B; Thompson, William F; Schmuckler, Mark A
2009-10-01
The authors examined how the structural attributes of tonality and meter influence musical pitch-time relations. Listeners heard a musical context followed by probe events that varied in pitch class and temporal position. Tonal and metric hierarchies contributed additively to the goodness-of-fit of probes, with pitch class exerting a stronger influence than temporal position (Experiment 1), even when listeners attempted to ignore pitch (Experiment 2). Speeded classification tasks confirmed this asymmetry. Temporal classification was biased by tonal stability (Experiment 3), but pitch classification was unaffected by temporal position (Experiment 4). Experiments 5 and 6 ruled out explanations based on the presence of pitch classes and temporal positions in the context, unequal stimulus quantity, and discriminability. The authors discuss how typical Western music biases attention toward pitch and distinguish between dimensional discriminability and salience. PsycINFO Database Record (c) 2009 APA, all rights reserved.
A Multi-Temporal Context-Aware System for Competences Management
ERIC Educational Resources Information Center
Rosa, João H.; Barbosa, Jorge L.; Kich, Marcos; Brito, Lucas
2015-01-01
The evolution of computing technology and wireless networks has contributed to the miniaturization of mobile devices and their increase in power, providing services anywhere and anytime. In this scenario, applications have considered the user's contexts to make decisions (Context Awareness). Context-aware applications have enabled new…
Doré, Marie-Claire; Caza, Nicole; Gingras, Nathalie; Rouleau, Nancie
2007-11-01
Findings from the literature consistently revealed episodic memory deficits in adolescents with psychosis. However, the nature of the dysfunction remains unclear. Based on a cognitive neuropsychological approach, a theoretically driven paradigm was used to generate valid interpretations about the underlying memory processes impaired in these patients. A total of 16 inpatient adolescents with psychosis and 19 individually matched controls were assessed using an experimental task designed to measure memory for source and temporal context of studied words. Retrospective confidence judgements for source and temporal context responses were also assessed. On word recognition, patients had more difficulty than controls discriminating target words from neutral distractors. In addition, patients identified both source and temporal context features of recognised items less often than controls. Confidence judgements analyses revealed that the difference between the proportions of correct and incorrect responses made with high confidence was lower in patients than in controls. In addition, the proportion of high-confident responses that were errors was higher in patients compared to controls. These findings suggest impaired relational binding processes in adolescents with psychosis, resulting in a difficulty to create unified memory representations. Our findings on retrospective confidence data point to impaired monitoring of retrieved information that may also impair memory performance in these individuals.
NASA Astrophysics Data System (ADS)
Gonzales, Kalim
It is argued that infants build a foundation for learning about the world through their incidental acquisition of the spatial and temporal regularities surrounding them. A challenge is that learning occurs across multiple contexts whose statistics can greatly differ. Two artificial language studies with 12-month-olds demonstrate that infants come prepared to parse statistics across contexts using the temporal and perceptual features that distinguish one context from another. These results suggest that infants can organize their statistical input with a wider range of features that typically considered. Possible attention, decision making, and memory mechanisms are discussed.
NASA Astrophysics Data System (ADS)
Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Brocca, Luca; Todini, Ezio
2017-08-01
This work extends the multi-temporal approach of the Model Conditional Processor (MCP-MT) to the multi-model case and to the four Truncated Normal Distributions (TNDs) approach, demonstrating the improvement on the single-temporal one. The study is framed in the context of probabilistic Bayesian decision-making that is appropriate to take rational decisions on uncertain future outcomes. As opposed to the direct use of deterministic forecasts, the probabilistic forecast identifies a predictive probability density function that represents a fundamental knowledge on future occurrences. The added value of MCP-MT is the identification of the probability that a critical situation will happen within the forecast lead-time and when, more likely, it will occur. MCP-MT is thoroughly tested for both single-model and multi-model configurations at a gauged site on the Tiber River, central Italy. The stages forecasted by two operative deterministic models, STAFOM-RCM and MISDc, are considered for the study. The dataset used for the analysis consists of hourly data from 34 flood events selected on a time series of six years. MCP-MT improves over the original models' forecasts: the peak overestimation and the rising limb delayed forecast, characterizing MISDc and STAFOM-RCM respectively, are significantly mitigated, with a reduced mean error on peak stage from 45 to 5 cm and an increased coefficient of persistence from 0.53 up to 0.75. The results show that MCP-MT outperforms the single-temporal approach and is potentially useful for supporting decision-making because the exceedance probability of hydrometric thresholds within a forecast horizon and the most probable flooding time can be estimated.
Inferring Human Activity in Mobile Devices by Computing Multiple Contexts.
Chen, Ruizhi; Chu, Tianxing; Liu, Keqiang; Liu, Jingbin; Chen, Yuwei
2015-08-28
This paper introduces a framework for inferring human activities in mobile devices by computing spatial contexts, temporal contexts, spatiotemporal contexts, and user contexts. A spatial context is a significant location that is defined as a geofence, which can be a node associated with a circle, or a polygon; a temporal context contains time-related information that can be e.g., a local time tag, a time difference between geographical locations, or a timespan; a spatiotemporal context is defined as a dwelling length at a particular spatial context; and a user context includes user-related information that can be the user's mobility contexts, environmental contexts, psychological contexts or social contexts. Using the measurements of the built-in sensors and radio signals in mobile devices, we can snapshot a contextual tuple for every second including aforementioned contexts. Giving a contextual tuple, the framework evaluates the posteriori probability of each candidate activity in real-time using a Naïve Bayes classifier. A large dataset containing 710,436 contextual tuples has been recorded for one week from an experiment carried out at Texas A&M University Corpus Christi with three participants. The test results demonstrate that the multi-context solution significantly outperforms the spatial-context-only solution. A classification accuracy of 61.7% is achieved for the spatial-context-only solution, while 88.8% is achieved for the multi-context solution.
A multimodal approach to estimating vigilance using EEG and forehead EOG.
Zheng, Wei-Long; Lu, Bao-Liang
2017-04-01
Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.
Spectro-Temporal Weighting of Loudness
Oberfeld, Daniel; Heeren, Wiebke; Rennies, Jan; Verhey, Jesko
2012-01-01
Real-world sounds like speech or traffic noise typically exhibit spectro-temporal variability because the energy in different spectral regions evolves differently as a sound unfolds in time. However, it is currently not well understood how the energy in different spectral and temporal portions contributes to loudness. This study investigated how listeners weight different temporal and spectral components of a sound when judging its overall loudness. Spectral weights were measured for the combination of three loudness-matched narrowband noises with different center frequencies. To measure temporal weights, 1,020-ms stimuli were presented, which randomly changed in level every 100 ms. Temporal weights were measured for each narrowband noise separately, and for a broadband noise containing the combination of the three noise bands. Finally, spectro-temporal weights were measured with stimuli where the level of the three narrowband noises randomly and independently changed every 100 ms. The data consistently showed that (i) the first 300 ms of the sounds had a greater influence on overall loudness perception than later temporal portions (primacy effect), and (ii) the lowest noise band contributed significantly more to overall loudness than the higher bands. The temporal weights did not differ between the three frequency bands. Notably, the spectral weights and temporal weights estimated from the conditions with only spectral or only temporal variability were very similar to the corresponding weights estimated in the spectro-temporal condition. The results indicate that the temporal and the spectral weighting of the loudness of a time-varying sound are independent processes. The spectral weights remain constant across time, and the temporal weights do not change across frequency. The results are discussed in the context of current loudness models. PMID:23209670
Finding Spatio-Temporal Patterns in Large Sensor Datasets
ERIC Educational Resources Information Center
McGuire, Michael Patrick
2010-01-01
Spatial or temporal data mining tasks are performed in the context of the relevant space, defined by a spatial neighborhood, and the relevant time period, defined by a specific time interval. Furthermore, when mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. This dissertation is…
Temporal expectancy in the context of a theory of visual attention
Vangkilde, Signe; Petersen, Anders; Bundesen, Claus
2013-01-01
Temporal expectation is expectation with respect to the timing of an event such as the appearance of a certain stimulus. In this paper, temporal expectancy is investigated in the context of the theory of visual attention (TVA), and we begin by summarizing the foundations of this theoretical framework. Next, we present a parametric experiment exploring the effects of temporal expectation on perceptual processing speed in cued single-stimulus letter recognition with unspeeded motor responses. The length of the cue–stimulus foreperiod was exponentially distributed with one of six hazard rates varying between blocks. We hypothesized that this manipulation would result in a distinct temporal expectation in each hazard rate condition. Stimulus exposures were varied such that both the temporal threshold of conscious perception (t0 ms) and the perceptual processing speed (v letters s−1) could be estimated using TVA. We found that the temporal threshold t0 was unaffected by temporal expectation, but the perceptual processing speed v was a strikingly linear function of the logarithm of the hazard rate of the stimulus presentation. We argue that the effects on the v values were generated by changes in perceptual biases, suggesting that our perceptual biases are directly related to our temporal expectations. PMID:24018716
Emotion’s Influence on Memory for Spatial and Temporal Context
Schmidt, Katherine; Patnaik, Pooja; Kensinger, Elizabeth A.
2010-01-01
Individuals report remembering emotional items vividly. It is debated whether this report reflects enhanced memory accuracy or a bias to believe emotional memories are vivid. We hypothesized emotion would enhance memory accuracy, improving memory for contextual details. The hallmark of episodic memory is that items are remembered in a spatial and temporal context, so we examined whether an item’s valence (positive, negative) or arousal (high, low) would influence its ability to be remembered with those contextual details. Across two experiments, high-arousal items were remembered with spatial and temporal context more often than low-arousal items. Item valence did not influence memory for those details, although positive high-arousal items were recognized or recalled more often than negative items. These data suggest that emotion does not just bias participants to believe they have a vivid memory; rather, the arousal elicited by an event can benefit memory for some types of contextual details. PMID:21379376
Exploring Temporal Progression of Events Using Eye Tracking.
Welke, Tinka; Raisig, Susanne; Hagendorf, Herbert; van der Meer, Elke
2016-07-01
This study investigates the representation of the temporal progression of events by means of the causal change in a patient. Subjects were asked to verify the relationship between adjectives denoting a source and resulting feature of a patient. The features were presented either chronologically or inversely to a primed event context given by a verb (to cut: long-short vs. short-long). Effects on response time and on eye movement data show that the relationship between features presented chronologically is verified more easily than that between features presented inversely. Post hoc, however, we found that the effects of temporal order occurred only when subjects read the features more than once. Then, the relationship between the features is matched with the causal change implied by the event context (contextual strategy). When subjects read the features only once, subjects respond to the relationship between the features without taking into account the event context. Copyright © 2015 Cognitive Science Society, Inc.
Normalized value coding explains dynamic adaptation in the human valuation process.
Khaw, Mel W; Glimcher, Paul W; Louie, Kenway
2017-11-28
The notion of subjective value is central to choice theories in ecology, economics, and psychology, serving as an integrated decision variable by which options are compared. Subjective value is often assumed to be an absolute quantity, determined in a static manner by the properties of an individual option. Recent neurobiological studies, however, have shown that neural value coding dynamically adapts to the statistics of the recent reward environment, introducing an intrinsic temporal context dependence into the neural representation of value. Whether valuation exhibits this kind of dynamic adaptation at the behavioral level is unknown. Here, we show that the valuation process in human subjects adapts to the history of previous values, with current valuations varying inversely with the average value of recently observed items. The dynamics of this adaptive valuation are captured by divisive normalization, linking these temporal context effects to spatial context effects in decision making as well as spatial and temporal context effects in perception. These findings suggest that adaptation is a universal feature of neural information processing and offer a unifying explanation for contextual phenomena in fields ranging from visual psychophysics to economic choice.
Software Certification for Temporal Properties With Affordable Tool Qualification
NASA Technical Reports Server (NTRS)
Xia, Songtao; DiVito, Benedetto L.
2005-01-01
It has been recognized that a framework based on proof-carrying code (also called semantic-based software certification in its community) could be used as a candidate software certification process for the avionics industry. To meet this goal, tools in the "trust base" of a proof-carrying code system must be qualified by regulatory authorities. A family of semantic-based software certification approaches is described, each different in expressive power, level of automation and trust base. Of particular interest is the so-called abstraction-carrying code, which can certify temporal properties. When a pure abstraction-carrying code method is used in the context of industrial software certification, the fact that the trust base includes a model checker would incur a high qualification cost. This position paper proposes a hybrid of abstraction-based and proof-based certification methods so that the model checker used by a client can be significantly simplified, thereby leading to lower cost in tool qualification.
Sheldon, Signy; Levine, Brian
2015-12-01
During autobiographical memory retrieval, the medial temporal lobes (MTL) relate together multiple event elements, including object (within-item relations) and context (item-context relations) information, to create a cohesive memory. There is consistent support for a functional specialization within the MTL according to these relational processes, much of which comes from recognition memory experiments. In this study, we compared brain activation patterns associated with retrieving within-item relations (i.e., associating conceptual and sensory-perceptual object features) and item-context relations (i.e., spatial relations among objects) with respect to naturalistic autobiographical retrieval. We developed a novel paradigm that cued participants to retrieve information about past autobiographical events, non-episodic within-item relations, and non-episodic item-context relations with the perceptuomotor aspects of retrieval equated across these conditions. We used multivariate analysis techniques to extract common and distinct patterns of activity among these conditions within the MTL and across the whole brain, both in terms of spatial and temporal patterns of activity. The anterior MTL (perirhinal cortex and anterior hippocampus) was preferentially recruited for generating within-item relations later in retrieval whereas the posterior MTL (posterior parahippocampal cortex and posterior hippocampus) was preferentially recruited for generating item-context relations across the retrieval phase. These findings provide novel evidence for functional specialization within the MTL with respect to naturalistic memory retrieval. © 2015 Wiley Periodicals, Inc.
Discovering spatio-temporal models of the spread of West Nile virus.
Orme-Zavaleta, Jennifer; Jorgensen, Jane; D'Ambrosio, Bruce; Altendorf, Eric; Rossignol, Philippe A
2006-04-01
Emerging infectious diseases are characterized by complex interactions among disease agents, vectors, wildlife, humans, and the environment. Since the appearance of West Nile virus (WNV) in New York City in 1999, it has infected over 8,000 people in the United States, resulting in several hundred deaths in 46 contiguous states. The virus is transmitted by mosquitoes and maintained in various bird reservoir hosts. Its unexpected introduction, high morbidity, and rapid spread have left public health agencies facing severe time constraints in a theory-poor environment, dependent largely on observational data collected by independent survey efforts and much uncertainty. Current knowledge may be expressed as a priori constraints on models learned from data. Accordingly, we applied a Bayesian probabilistic relational approach to generate spatially and temporally linked models from heterogeneous data sources. Using data collected from multiple independent sources in Maryland, we discovered the integrated context in which infected birds are plausible indicators for positive mosquito pools and human cases for 2001 and 2002.
Conceptual knowledge in the interpretation of idioms.
Nayak, N P; Gibbs, R W
1990-09-01
The authors examined how people determine the contextual appropriateness of idioms. In Experiment 1, idioms referring to the same temporal stage of a conceptual prototype were judged to be more similar in meaning than idioms referring to different temporal stages. In Experiment 2, idioms in a prototypical temporal sequence were more meaningful than idioms in sentences that violated the temporal sequence. In Experiment 3, idioms referring to the same stage of a conceptual prototype were differentiable on the basis of conceptual information. The conceptual coherence between idioms and contexts facilitated the processing speed of idioms in Experiment 4. Experiment 5 showed that speakers can recover the underlying conceptual metaphors that link an idiom to its figurative meaning. Experiment 6 showed that the metaphoric information reflected in the lexical makeup of idioms also determined the metaphoric appropriateness of idioms in certain contexts.
Crimmins, Theresa M.; Crimmins, Michael A.; Gerst, Katherine L.; Rosemartin, Alyssa H.; Weltzin, Jake F.
2017-01-01
In support of science and society, the USA National Phenology Network (USA-NPN) maintains a rapidly growing, continental-scale, species-rich dataset of plant and animal phenology observations that with over 10 million records is the largest such database in the United States. Contributed voluntarily by professional and citizen scientists, these opportunistically collected observations are characterized by spatial clustering, inconsistent spatial and temporal sampling, and short temporal depth. We explore the potential for developing models of phenophase transitions suitable for use at the continental scale, which could be applied to a wide range of resource management contexts. We constructed predictive models of the onset of breaking leaf buds, leaves, open flowers, and ripe fruits – phenophases that are the most abundant in the database and also relevant to management applications – for all species with available data, regardless of plant growth habit, location, geographic extent, or temporal depth of the observations. We implemented a very basic model formulation - thermal time models with a fixed start date. Sufficient data were available to construct 107 individual species × phenophase models. Of these, fifteen models (14%) met our criteria for model fit and error and were suitable for use across the majority of the species’ geographic ranges. These findings indicate that the USA-NPN dataset holds promise for further and more refined modeling efforts. Further, the candidate models that emerged could be used to produce real-time and short-term forecast maps of the timing of such transitions to directly support natural resource management.
Carey, Ryan M.; Sherwood, William Erik; Shipley, Michael T.; Borisyuk, Alla
2015-01-01
Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks. PMID:25717156
Audiovisual temporal recalibration: space-based versus context-based.
Yuan, Xiangyong; Li, Baolin; Bi, Cuihua; Yin, Huazhan; Huang, Xiting
2012-01-01
Recalibration of perceived simultaneity has been widely accepted to minimise delay between multisensory signals owing to different physical and neural conduct times. With concurrent exposure, temporal recalibration is either contextually or spatially based. Context-based recalibration was recently described in detail, but evidence for space-based recalibration is scarce. In addition, the competition between these two reference frames is unclear. Here, we examined participants who watched two distinct blob-and-tone couples that laterally alternated with one asynchronous and the other synchronous and then judged their perceived simultaneity and sequence when they swapped positions and varied in timing. For low-level stimuli with abundant auditory location cues space-based aftereffects were significantly more apparent (8.3%) than context-based aftereffects (4.2%), but without such auditory cues space-based aftereffects were less apparent (4.4%) and were numerically smaller than context-based aftereffects (6.0%). These results suggested that stimulus level and auditory location cues were both determinants of the recalibration frame. Through such joint judgments and the simple reaction time task, our results further revealed that criteria from perceived simultaneity to successiveness profoundly shifted without accompanying perceptual latency changes across adaptations, hence implying that criteria shifts, rather than perceptual latency changes, accounted for space-based and context-based temporal recalibration.
NASA Astrophysics Data System (ADS)
Quentin, E.; Gómez Albores, M. A.; Díaz Delgado, C.
2009-04-01
The main objective of this research is to propose, by the way of geomatic developments, an integrated tool to analyze and model the spatio-temporal pattern of human diseases related to environmental conditions, in particular the ones that are linked to water resources. The geomatic developments follows four generic steps : requirement analysis, conceptual modeling, geomatic modeling and implementation (in Idrisi GIS software). A first development consists of the preprocessing of water, population and health data in order to facilitate the conversion and validation of tabular data into the required structure for spatio-temporal analysis. Three parallel developments follow : water balance, demographic state and evolution, epidemiological measures (morbidity and mortality rates, diseases burden). The new geomatic modules in their actual state have been tested on various regions of Mexico Republic (Lerma watershed, Chiapas state) focusing on diarrhea and vector borne diseases (dengue and malaria) and considering records over the last decade : a yearly as well as seasonal spreading trend can be observed in correlation with precipitation and temperature data. In an ecohealth perspective, the geomatic approach results particularly appropriate since one of its purposes is the integration of the various spatial themes implied in the study problem, environmental as anthropogenic. By the use of powerful spatial analysis functions, it permits the detection of spatial trends which, combined to the temporal evolution, can be of particularly use for example in climate change context, if sufficiently valid historical data can be obtain.
Staudigl, Tobias; Vollmar, Christian; Noachtar, Soheyl; Hanslmayr, Simon
2015-04-01
A powerful force in human memory is the context in which memories are encoded (Tulving and Thomson, 1973). Several studies suggest that the reinstatement of neural encoding patterns is beneficial for memory retrieval (Manning et al., 2011; Staresina et al., 2012; Jafarpour et al., 2014). However, reinstatement of the original encoding context is not always helpful, for instance, when retrieving a memory in a different contextual situation (Smith and Vela, 2001). It is an open question whether such context-dependent memory effects can be captured by the reinstatement of neural patterns. We investigated this question by applying temporal and spatial pattern similarity analysis in MEG and intracranial EEG in a context-match paradigm. Items (words) were tagged by individual dynamic context stimuli (movies). The results show that beta oscillatory phase in visual regions and the parahippocampal cortex tracks the incidental reinstatement of individual context trajectories on a single-trial level. Crucially, memory benefitted from reinstatement when the encoding and retrieval contexts matched but suffered from reinstatement when the contexts did not match. Copyright © 2015 the authors 0270-6474/15/355373-12$15.00/0.
GRB 080407: An Ultra-long Burst Discovered by the IPN
NASA Technical Reports Server (NTRS)
Cummings, J; Barthelmy, S.; Gehrels, N.; Krimm, H.; Palmer, D.; Palshin, V.; Hurley, K.; Goldsten, J.; Mitrofanov, I. G.; Boynton, W.;
2012-01-01
We present observations of the extremely long GRB 080704 obtained with the instruments of the Interplanetary Network (IPN). The observations reveal two distinct emission episodes, separated by a approx.1500 s long period of quiescence. The total burst duration is about 2100 s. We compare the temporal and spectral characteristics of this burst with those obtained for other ultra-long GRBs and discuss these characteristics in the context of different models.
Femtoscopy in Relativistic Heavy Ion Collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisa, M; Pratt, S; Soltz, R A
2005-07-29
Analyses of two-particle correlations have provided the chief means for determining spatio-temporal characteristics of relativistic heavy ion collisions. We discuss the theoretical formalism behind these studies and the experimental methods used in carrying them out. Recent results from RHIC are put into context in a systematic review of correlation measurements performed over the past two decades. The current understanding of these results are discussed in terms of model comparisons and overall trends.
Treatment of ocean tide aliasing in the context of a next generation gravity field mission
NASA Astrophysics Data System (ADS)
Hauk, Markus; Pail, Roland
2018-07-01
Current temporal gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) suffer from temporal aliasing errors due to undersampling of signal to be recovered (e.g. hydrology), uncertainties in the de-aliasing models (usually atmosphere and ocean) and imperfect ocean tide models. Especially the latter will be one of the most limiting factors in determining high-resolution temporal gravity fields from future gravity missions such as GRACE Follow-On and Next-Generation Gravity Missions (NGGM). In this paper a method to co-parametrize ocean tide parameters of the eight main tidal constituents over time spans of several years is analysed and assessed. Numerical closed-loop simulations of low-low satellite-to-satellite-tracking missions for a single polar pair and a double pair Bender-type formation are performed, using time variable geophysical background models and noise assumptions for new generation instrument technology. Compared to the single pair mission, results show a reduction of tide model errors up to 70 per cent for dedicated tidal constituents due to an enhanced spatial and temporal sampling and error isotropy for the double pair constellation. Extending the observation period from 1 to 3 yr leads to a further reduction of tidal errors up to 60 per cent for certain constituents, and considering non-tidal mass changes during the estimation process leads to reductions of tidal errors between 20 and 80 per cent. As part of a two-step approach, the estimated tide model is used for de-aliasing during gravity field retrieval in a second iteration, resulting in more than 50 per cent reduction of ocean tide aliasing errors for a NGGM Bender-type formation.
Treatment of ocean tide aliasing in the context of a next generation gravity field mission
NASA Astrophysics Data System (ADS)
Hauk, Markus; Pail, Roland
2018-04-01
Current temporal gravity field solutions from GRACE suffer from temporal aliasing errors due to under-sampling of signal to be recovered (e.g. hydrology), uncertainties in the de-aliasing models (usually atmosphere and ocean), and imperfect ocean tide models. Especially the latter will be one of the most limiting factors in determining high resolution temporal gravity fields from future gravity missions such as GRACE Follow-on and Next-Generation Gravity Missions (NGGM). In this paper a method to co-parameterize ocean tide parameters of the 8 main tidal constituents over time spans of several years is analysed and assessed. Numerical closed-loop simulations of low-low satellite-to-satellite-tracking missions for a single polar pair and a double pair Bender-type formation are performed, using time variable geophysical background models and noise assumptions for new generation instrument technology. Compared to the single pair mission, results show a reduction of tide model errors up to 70 per cent for dedicated tidal constituents due to an enhanced spatial and temporal sampling and error isotropy for the double pair constellation. Extending the observation period from one to three years leads to a further reduction of tidal errors up to 60 per cent for certain constituents, and considering non-tidal mass changes during the estimation process leads to reductions of tidal errors between 20 per cent and 80 per cent. As part of a two-step approach, the estimated tide model is used for de-aliasing during gravity field retrieval in a second iteration, resulting in more than 50 per cent reduction of ocean tide aliasing errors for a NGGM Bender-type formation.
NASA Astrophysics Data System (ADS)
Lowe, Rachel; Bailey, Trevor C.; Stephenson, David B.; Graham, Richard J.; Coelho, Caio A. S.; Sá Carvalho, Marilia; Barcellos, Christovam
2011-03-01
This paper considers the potential for using seasonal climate forecasts in developing an early warning system for dengue fever epidemics in Brazil. In the first instance, a generalised linear model (GLM) is used to select climate and other covariates which are both readily available and prove significant in prediction of confirmed monthly dengue cases based on data collected across the whole of Brazil for the period January 2001 to December 2008 at the microregion level (typically consisting of one large city and several smaller municipalities). The covariates explored include temperature and precipitation data on a 2.5°×2.5° longitude-latitude grid with time lags relevant to dengue transmission, an El Niño Southern Oscillation index and other relevant socio-economic and environmental variables. A negative binomial model formulation is adopted in this model selection to allow for extra-Poisson variation (overdispersion) in the observed dengue counts caused by unknown/unobserved confounding factors and possible correlations in these effects in both time and space. Subsequently, the selected global model is refined in the context of the South East region of Brazil, where dengue predominates, by reverting to a Poisson framework and explicitly modelling the overdispersion through a combination of unstructured and spatio-temporal structured random effects. The resulting spatio-temporal hierarchical model (or GLMM—generalised linear mixed model) is implemented via a Bayesian framework using Markov Chain Monte Carlo (MCMC). Dengue predictions are found to be enhanced both spatially and temporally when using the GLMM and the Bayesian framework allows posterior predictive distributions for dengue cases to be derived, which can be useful for developing a dengue alert system. Using this model, we conclude that seasonal climate forecasts could have potential value in helping to predict dengue incidence months in advance of an epidemic in South East Brazil.
de Bruijn, Gert-Jan; Budding, Jeen
2016-08-01
Message framing is a persuasive strategy that has seen mixed evidence for promoting fruit intake intentions, potentially because framed messages for fruit intake have not (a) explicitly compared short-term consequences versus long-term consequences, (b) considered individual-level differences in time perspective, and (c) used alternative measures of fruit intake intentions. In the present online study, the effects of persuasive messages created from temporal context (short term vs. long term) and message frame (gain framed vs. loss framed) were investigated on fruit intake intentions and resolve among a sample of Dutch adults who were categorized as either present oriented or future oriented. For intention and resolve, results showed a significant Type of Frame × Type of Temporal Context interaction, such that gain-framed messages were more persuasive when combined with long-term consequences and loss-framed messages were more persuasive when combined with short-term consequences. The effect sizes for these differences were similar for resolve and intention, but only differences for intentions were significant. No other effects were found. These results demonstrate that message framing theory may usefully consider the inclusion of temporal context of outcomes and alternative motivation measures to maximize their persuasive effects.
Mollen, Saar; Engelen, Susanne; Kessels, Loes T E; van den Putte, Bas
2017-01-01
Current warning labels on cigarette packages are generally focused on long-term losses that can be incurred if one continues smoking. This study compares the effects of these labels against warning labels that stress short-term losses of smoking as well as labels that stress short- and long-term benefits that can be obtained when one quits smoking. A 2 (message frame: gain vs. loss) × 2 (temporal context: short vs. long term) between-subjects experiment was conducted among 132 smokers, with attitude toward quitting smoking and intention to quit smoking, as well as information-seeking behavior and message recall, as the dependent variables. Findings were in line with theory regarding message framing and temporal discounting, showing enhanced effects of gain over loss frames and short-term over long-term consequences on warning labels for attitudes and intentions. In addition, an interaction between message frame and temporal context was found. Especially, gain-framed messages showed stronger effects on intentions to quit smoking than loss-framed messages when warning labels concerned short-term outcomes. Findings suggest that current warning labels, with an emphasis on long-term negative health outcomes, should be reconsidered.
Recalibration of the Multisensory Temporal Window of Integration Results from Changing Task Demands
Mégevand, Pierre; Molholm, Sophie; Nayak, Ashabari; Foxe, John J.
2013-01-01
The notion of the temporal window of integration, when applied in a multisensory context, refers to the breadth of the interval across which the brain perceives two stimuli from different sensory modalities as synchronous. It maintains a unitary perception of multisensory events despite physical and biophysical timing differences between the senses. The boundaries of the window can be influenced by attention and past sensory experience. Here we examined whether task demands could also influence the multisensory temporal window of integration. We varied the stimulus onset asynchrony between simple, short-lasting auditory and visual stimuli while participants performed two tasks in separate blocks: a temporal order judgment task that required the discrimination of subtle auditory-visual asynchronies, and a reaction time task to the first incoming stimulus irrespective of its sensory modality. We defined the temporal window of integration as the range of stimulus onset asynchronies where performance was below 75% in the temporal order judgment task, as well as the range of stimulus onset asynchronies where responses showed multisensory facilitation (race model violation) in the reaction time task. In 5 of 11 participants, we observed audio-visual stimulus onset asynchronies where reaction time was significantly accelerated (indicating successful integration in this task) while performance was accurate in the temporal order judgment task (indicating successful segregation in that task). This dissociation suggests that in some participants, the boundaries of the temporal window of integration can adaptively recalibrate in order to optimize performance according to specific task demands. PMID:23951203
The iMars web-GIS - spatio-temporal data queries and single image web map services
NASA Astrophysics Data System (ADS)
Walter, S. H. G.; Steikert, R.; Schreiner, B.; Sidiropoulos, P.; Tao, Y.; Muller, J.-P.; Putry, A. R. D.; van Gasselt, S.
2017-09-01
We introduce a new approach for a system dedicated to planetary surface change detection by simultaneous visualisation of single-image time series in a multi-temporal context. In the context of the EU FP-7 iMars project we process and ingest vast amounts of automatically co-registered (ACRO) images. The base of the co-registration are the high precision HRSC multi-orbit quadrangle image mosaics, which are based on bundle-block-adjusted multi-orbit HRSC DTMs.
Autobiographical memory of the recent past following frontal cortex or temporal lobe excisions.
Thaiss, Laila; Petrides, Michael
2008-08-01
Previous research has raised questions regarding the necessity of the frontal cortex in autobiographical memory and the role that it plays in actively retrieving contextual information associated with personally relevant events. Autobiographical memory was studied in patients with unilateral excisions restricted to the frontal cortex or temporal lobe involving the amygdalo-hippocampal region and in normal controls using an event-sampling method. We examined accuracy of free recall, use of strategies during retrieval and memory for specific aspects of the autobiographical events, including temporal order. Patients with temporal lobe excisions were impaired in autobiographical recall. By contrast, patients with frontal cortical excisions exhibited normal autobiographical recall but were less likely to use temporal order spontaneously to organize event retrieval. Instruction to organize retrieval by temporal order failed to improve recall in temporal lobe patients and increased the incidence of plausible intrusion errors in left temporal patients. In contrast, patients with frontal cortical excisions now surpassed control subjects in recall of autobiographical events. Furthermore, the retrieval accuracy for the temporal order of diary events was not impaired in these patients. In a subsequent cued recall test, temporal lobe patients were impaired in their memory for the details of the diary events and their context. In conclusion, a basic impairment in autobiographical memory (including memory for temporal context) results from damage to the temporal lobe and not the frontal cortex. Patients with frontal excisions fail to use organizational strategies spontaneously to aid retrieval but can use these effectively if instructed to do so.
Mollo, Giovanna; Jefferies, Elizabeth; Cornelissen, Piers; Gennari, Silvia P
An MEG study investigated the role of context in semantic interpretation by examining the comprehension of ambiguous words in contexts leading to different interpretations. We compared high-ambiguity words in minimally different contexts (to bowl, the bowl) to low-ambiguity counterparts (the tray, to flog). Whole brain beamforming revealed the engagement of left inferior frontal gyrus (LIFG) and posterior middle temporal gyrus (LPMTG). Points of interest analyses showed that both these sites showed a stronger response to verb-contexts by 200 ms post-stimulus and displayed overlapping ambiguity effects that were sustained from 300 ms onwards. The effect of context was stronger for high-ambiguity words than for low-ambiguity words at several different time points, including within the first 100 ms post-stimulus. Unlike LIFG, LPMTG also showed stronger responses to verb than noun contexts in low-ambiguity trials. We argue that different functional roles previously attributed to LIFG and LPMTG are in fact played out at different periods during processing. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Modeling velocity space-time correlations in wind farms
NASA Astrophysics Data System (ADS)
Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael
2016-11-01
Turbulent fluctuations of wind velocities cause power-output fluctuations in wind farms. The statistics of velocity fluctuations can be described by velocity space-time correlations in the atmospheric boundary layer. In this context, it is important to derive simple physics-based models. The so-called Tennekes-Kraichnan random sweeping hypothesis states that small-scale velocity fluctuations are passively advected by large-scale velocity perturbations in a random fashion. In the present work, this hypothesis is used with an additional mean wind velocity to derive a model for the spatial and temporal decorrelation of velocities in wind farms. It turns out that in the framework of this model, space-time correlations are a convolution of the spatial correlation function with a temporal decorrelation kernel. In this presentation, first results on the comparison to large eddy simulations will be presented and the potential of the approach to characterize power output fluctuations of wind farms will be discussed. Acknowledgements: 'Fellowships for Young Energy Scientists' (YES!) of FOM, the US National Science Foundation Grant IIA 1243482, and support by the Max Planck Society.
Zhu, Lin; Lei, Ai-Hua; Zheng, Hong-Yi; Lyu, Long-Bao; Zhang, Zhi-Gang; Zheng, Yong-Tang
2015-09-18
The complex and dynamic vaginal microbial ecosystem is critical to both health and disease of the host. Studies focusing on how vaginal microbiota influences HIV-1 infection may face limitations in selecting proper animal models. Given that northern pig-tailed macaques (Macaca leonina) are susceptible to HIV-1 infection, they may be an optimal animal model for elucidating the mechanisms by which vaginal microbiota contributes to resistance and susceptibility to HIV-1 infection. However, little is known about the composition and temporal variability of vaginal microbiota of the northern pig-tailed macaque. Here, we present a comprehensive catalog of the composition and temporal dynamics of vaginal microbiota of two healthy northern pig-tailed macaques over 19 weeks using 454-pyrosequencing of 16S rRNA genes. We found remarkably high proportions of a diverse array of anaerobic bacteria associated with bacterial vaginosis. Atopobium and Sneathia were dominant genera, and interestingly, we demonstrated the presence of Lactobacillus-dominated vaginal microbiota. Moreover, longitudinal analysis demonstrated that the temporal dynamics of the vaginal microbiota were considerably individualized. Finally, network analysis revealed that vaginal pH may influence the temporal dynamics of the vaginal microbiota, suggesting that inter-subject variability of vaginal bacterial communities could be mirrored in inter-subject variation in correlation profiles of species with each other and with vaginal pH over time. Our results suggest that the northern pig-tailed macaque could be an ideal animal model for prospective investigation of the mechanisms by which vaginal microbiota influence susceptibility and resistance to HIV-1 infection in the context of highly polymicrobial and Lactobacillus-dominated states.
A multimodal approach to estimating vigilance using EEG and forehead EOG
NASA Astrophysics Data System (ADS)
Zheng, Wei-Long; Lu, Bao-Liang
2017-04-01
Objective. Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. Approach. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. Main results. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. Significance. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.
NASA Astrophysics Data System (ADS)
Filk, Thomas
2013-04-01
In this article I investigate several possibilities to define the concept of "temporal non-locality" within the standard framework of quantum theory. In particular, I analyze the notions of "temporally non-local states", "temporally non-local events" and "temporally non-local observables". The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as "clock-representing states" are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.
Emotion's influence on memory for spatial and temporal context.
Schmidt, Katherine; Patnaik, Pooja; Kensinger, Elizabeth A
2011-02-01
Individuals report remembering emotional items vividly. It is debated whether this report reflects enhanced memory accuracy or a bias to believe emotional memories are vivid. We hypothesized emotion would enhance memory accuracy, improving memory for contextual details. The hallmark of episodic memory is that items are remembered in a spatial and temporal context, so we examined whether an item's valence (positive, negative) or arousal (high, low) would influence its ability to be remembered with those contextual details. Across two experiments, high-arousal items were remembered with spatial and temporal context more often than low-arousal items. Item valence did not influence memory for those details, although positive high-arousal items were recognized or recalled more often than negative items. These data suggest that emotion does not just bias participants to believe they have a vivid memory; rather, the arousal elicited by an event can benefit memory for some types of contextual details. © 2010 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business
Akimoto, Yoritaka; Takahashi, Hidetoshi; Gunji, Atsuko; Kaneko, Yuu; Asano, Michiko; Matsuo, Junko; Ota, Miho; Kunugi, Hiroshi; Hanakawa, Takashi; Mazuka, Reiko; Kamio, Yoko
2017-12-01
Irony comprehension requires integration of social contextual information. Previous studies have investigated temporal aspects of irony processing and its neural substrates using psychological/electroencephalogram or functional magnetic resonance imaging methods, but have not clarified the temporospatial neural mechanisms of irony comprehension. Therefore, we used magnetoencephalography to investigate the neural generators of alpha-band (8-13Hz) event-related desynchronization (ERD) occurring from 600 to 900ms following the onset of a critical sentence at which social situational contexts activated ironic representation. We found that the right anterior temporal lobe, which is involved in processing social knowledge and evaluating others' intentions, exhibited stronger alpha ERD following an ironic statement than following a literal statement. We also found that alpha power in the left anterior temporal lobe correlated with the participants' communication abilities. These results elucidate the temporospatial neural mechanisms of language comprehension in social contexts, including non-literal processing. Copyright © 2017 Elsevier Inc. All rights reserved.
Context and Time in Causal Learning: Contingency and Mood Dependent Effects
Msetfi, Rachel M.; Wade, Caroline; Murphy, Robin A.
2013-01-01
Defining cues for instrumental causality are the temporal, spatial and contingency relationships between actions and their effects. In this study, we carried out a series of causal learning experiments that systematically manipulated time and context in positive and negative contingency conditions. In addition, we tested participants categorized as non-dysphoric and mildly dysphoric because depressed mood has been shown to affect the processing of all these causal cues. Findings showed that causal judgements made by non-dysphoric participants were contextualized at baseline and were affected by the temporal spacing of actions and effects only with generative, but not preventative, contingency relationships. Participants categorized as dysphoric made less contextualized causal ratings at baseline but were more sensitive than others to temporal manipulations across the contingencies. These effects were consistent with depression affecting causal learning through the effects of slowed time experience on accrued exposure to the context in which causal events took place. Taken together, these findings are consistent with associative approaches to causal judgement. PMID:23691147
Vogel, Erin A; Rose, Jason P; Crane, Chantal
2018-01-01
Social network sites (SNSs) such as Facebook have become integral in the development and maintenance of interpersonal relationships. Users of SNSs seek social support and validation, often using posts that illustrate how they have changed over time. The purpose of the present research is to examine how the valence and temporal context of an SNS post affect the likelihood of other users providing social support. Participants viewed hypothetical SNS posts and reported their intentions to provide social support to the users. Results revealed that participants were more likely to provide social support for posts that were positive and included temporal context (i.e., depicted improvement over time; Study 1). Furthermore, this research suggests that visual representations of change over time are needed to elicit social support (Study 2). Results are discussed in terms of their practical implications for SNS users and theoretical implications for the literature on social support and social media.
Freedman, Darcy A; Blake, Christine E; Liese, Angela D
2013-01-01
Access to nutritious foods is limited in disenfranchised communities in the United States. Policies are beginning to focus on improving nutritious food access in these contexts; yet, few theories are available to guide this work. We developed a conceptual model of nutritious food access based on the qualitative responses of food consumers in 2 different regions of the American South. Five domains (economic, service delivery, spatial-temporal, social, and personal) and related dimensions of nutritious food access were identified. The conceptual model provides practical guidance to researchers, policy makers, and practitioners working to improve nutritious food access in communities.
Temporal and contextual knowledge in model-based expert systems
NASA Technical Reports Server (NTRS)
Toth-Fejel, Tihamer; Heher, Dennis
1987-01-01
A basic paradigm that allows representation of physical systems with a focus on context and time is presented. Paragon provides the capability to quickly capture an expert's knowledge in a cognitively resonant manner. From that description, Paragon creates a simulation model in LISP, which when executed, verifies that the domain expert did not make any mistakes. The Achille's heel of rule-based systems has been the lack of a systematic methodology for testing, and Paragon's developers are certain that the model-based approach overcomes that problem. The reason this testing is now possible is that software, which is very difficult to test, has in essence been transformed into hardware.
FREEDMAN, DARCY A.; BLAKE, CHRISTINE E.; LIESE, ANGELA D.
2014-01-01
Access to nutritious foods is limited in disenfranchised communities in the United States. Policies are beginning to focus on improving nutritious food access in these contexts; yet, few theories are available to guide this work. We developed a conceptual model of nutritious food access based on the qualitative responses of food consumers in 2 different regions of the American South. Five domains (economic, service delivery, spatial–temporal, social, and personal) and related dimensions of nutritious food access were identified. The conceptual model provides practical guidance to researchers, policy makers, and practitioners working to improve nutritious food access in communities. PMID:24563605
A Deep-Structured Conditional Random Field Model for Object Silhouette Tracking
Shafiee, Mohammad Javad; Azimifar, Zohreh; Wong, Alexander
2015-01-01
In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering. PMID:26313943
The Gaussian copula model for the joint deficit index for droughts
NASA Astrophysics Data System (ADS)
Van de Vyver, H.; Van den Bergh, J.
2018-06-01
The characterization of droughts and their impacts is very dependent on the time scale that is involved. In order to obtain an overall drought assessment, the cumulative effects of water deficits over different times need to be examined together. For example, the recently developed joint deficit index (JDI) is based on multivariate probabilities of precipitation over various time scales from 1- to 12-months, and was constructed from empirical copulas. In this paper, we examine the Gaussian copula model for the JDI. We model the covariance across the temporal scales with a two-parameter function that is commonly used in the specific context of spatial statistics or geostatistics. The validity of the covariance models is demonstrated with long-term precipitation series. Bootstrap experiments indicate that the Gaussian copula model has advantages over the empirical copula method in the context of drought severity assessment: (i) it is able to quantify droughts outside the range of the empirical copula, (ii) provides adequate drought quantification, and (iii) provides a better understanding of the uncertainty in the estimation.
Sagl, Günther; Blaschke, Thomas; Beinat, Euro; Resch, Bernd
2012-01-01
Ubiquitous geo-sensing enables context-aware analyses of physical and social phenomena, i.e., analyzing one phenomenon in the context of another. Although such context-aware analysis can potentially enable a more holistic understanding of spatio-temporal processes, it is rarely documented in the scientific literature yet. In this paper we analyzed the collective human behavior in the context of the weather. We therefore explored the complex relationships between these two spatio-temporal phenomena to provide novel insights into the dynamics of urban systems. Aggregated mobile phone data, which served as a proxy for collective human behavior, was linked with the weather data from climate stations in the case study area, the city of Udine, Northern Italy. To identify and characterize potential patterns within the weather-human relationships, we developed a hybrid approach which integrates several spatio-temporal statistical analysis methods. Thereby we show that explanatory factor analysis, when applied to a number of meteorological variables, can be used to differentiate between normal and adverse weather conditions. Further, we measured the strength of the relationship between the ‘global’ adverse weather conditions and the spatially explicit effective variations in user-generated mobile network traffic for three distinct periods using the Maximal Information Coefficient (MIC). The analyses result in three spatially referenced maps of MICs which reveal interesting insights into collective human dynamics in the context of weather, but also initiate several new scientific challenges. PMID:23012571
Oscillatory patterns in temporal lobe reveal context reinstatement during memory search.
Manning, Jeremy R; Polyn, Sean M; Baltuch, Gordon H; Litt, Brian; Kahana, Michael J
2011-08-02
Psychological theories of memory posit that when people recall a past event, they not only recover the features of the event itself, but also recover information associated with other events that occurred nearby in time. The events surrounding a target event, and the thoughts they evoke, may be considered to represent a context for the target event, helping to distinguish that event from similar events experienced at different times. The ability to reinstate this contextual information during memory search has been considered a hallmark of episodic, or event-based, memory. We sought to determine whether context reinstatement may be observed in electrical signals recorded from the human brain during episodic recall. Analyzing electrocorticographic recordings taken as 69 neurosurgical patients studied and recalled lists of words, we uncovered a neural signature of context reinstatement. Upon recalling a studied item, we found that the recorded patterns of brain activity were not only similar to the patterns observed when the item was studied, but were also similar to the patterns observed during study of neighboring list items, with similarity decreasing reliably with positional distance. The degree to which individual patients displayed this neural signature of context reinstatement was correlated with their tendency to recall neighboring list items successively. These effects were particularly strong in temporal lobe recordings. Our findings show that recalling a past event evokes a neural signature of the temporal context in which the event occurred, thus pointing to a neural basis for episodic memory.
Raghavan, Ram K.; Goodin, Douglas G.; Neises, Daniel; Anderson, Gary A.; Ganta, Roman R.
2016-01-01
This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio–economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio–temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio–economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main–effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate–change impacts on tick–borne diseases are discussed. PMID:26942604
Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R
2016-01-01
This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.
Capturing contextual effects in spectro-temporal receptive fields.
Westö, Johan; May, Patrick J C
2016-09-01
Spectro-temporal receptive fields (STRFs) are thought to provide descriptive images of the computations performed by neurons along the auditory pathway. However, their validity can be questioned because they rely on a set of assumptions that are probably not fulfilled by real neurons exhibiting contextual effects, that is, nonlinear interactions in the time or frequency dimension that cannot be described with a linear filter. We used a novel approach to investigate how a variety of contextual effects, due to facilitating nonlinear interactions and synaptic depression, affect different STRF models, and if these effects can be captured with a context field (CF). Contextual effects were incorporated in simulated networks of spiking neurons, allowing one to define the true STRFs of the neurons. This, in turn, made it possible to evaluate the performance of each STRF model by comparing the estimations with the true STRFs. We found that currently used STRF models are particularly poor at estimating inhibitory regions. Specifically, contextual effects make estimated STRFs dependent on stimulus density in a contrasting fashion: inhibitory regions are underestimated at lower densities while artificial inhibitory regions emerge at higher densities. The CF was found to provide a solution to this dilemma, but only when it is used together with a generalized linear model. Our results therefore highlight the limitations of the traditional STRF approach and provide useful recipes for how different STRF models and stimuli can be used to arrive at reliable quantifications of neural computations in the presence of contextual effects. The results therefore push the purpose of STRF analysis from simply finding an optimal stimulus toward describing context-dependent computations of neurons along the auditory pathway. Copyright © 2016 Elsevier B.V. All rights reserved.
OBSERVATION OF THE 2011-02-15 X2.2 FLARE IN THE HARD X-RAY AND MICROWAVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuroda, Natsuha; Wang, Haimin; Gary, Dale E., E-mail: nk257@njit.edu
2015-07-10
Previous studies have shown that the energy release mechanism of some solar flares follow the Standard magnetic-reconnection model, but the detailed properties of high-energy electrons produced in the flare are still not well understood. We conducted a unique, multi-wavelength study that discloses the spatial, temporal and energy distributions of the accelerated electrons in the X2.2 solar flare on 2011 February 15. We studied the source locations of seven distinct temporal peaks observed in hard X-ray (HXR) and microwave (MW) light curves using the RHESSI in 50–75 keV channels and Nobeyama Radioheliograph in 34 GHz, respectively. We found that the sevenmore » emission peaks did not come from seven spatially distinct sites in HXR and MW, but rather in HXR we observed a sudden change in location only between the second and the third peak, with the same pattern occurring, but evolving more slowly in MW. Comparison between the HXR light curve and the temporal variations in intensity in the two MW source kernels also confirmed that the seven peaks came predominantly from two sources, each with multiple temporal peaks. In addition, we studied the polarization properties of MW sources, and time delay between HXR and MW. We discuss our results in the context of the tether-cutting model.« less
Koplenig, Alexander; Müller-Spitzer, Carolin
2016-01-01
In order to demonstrate why it is important to correctly account for the (serial dependent) structure of temporal data, we document an apparently spectacular relationship between population size and lexical diversity: for five out of seven investigated languages, there is a strong relationship between population size and lexical diversity of the primary language in this country. We show that this relationship is the result of a misspecified model that does not consider the temporal aspect of the data by presenting a similar but nonsensical relationship between the global annual mean sea level and lexical diversity. Given the fact that in the recent past, several studies were published that present surprising links between different economic, cultural, political and (socio-)demographical variables on the one hand and cultural or linguistic characteristics on the other hand, but seem to suffer from exactly this problem, we explain the cause of the misspecification and show that it has profound consequences. We demonstrate how simple transformation of the time series can often solve problems of this type and argue that the evaluation of the plausibility of a relationship is important in this context. We hope that our paper will help both researchers and reviewers to understand why it is important to use special models for the analysis of data with a natural temporal ordering.
A Reliable and Real-Time Tracking Method with Color Distribution
Zhao, Zishu; Han, Yuqi; Xu, Tingfa; Li, Xiangmin; Song, Haiping; Luo, Jiqiang
2017-01-01
Occlusion is a challenging problem in visual tracking. Therefore, in recent years, many trackers have been explored to solve this problem, but most of them cannot track the target in real time because of the heavy computational cost. A spatio-temporal context (STC) tracker was proposed to accelerate the task by calculating context information in the Fourier domain, alleviating the performance in handling occlusion. In this paper, we take advantage of the high efficiency of the STC tracker and employ salient prior model information based on color distribution to improve the robustness. Furthermore, we exploit a scale pyramid for accurate scale estimation. In particular, a new high-confidence update strategy and a re-searching mechanism are used to avoid the model corruption and handle occlusion. Extensive experimental results demonstrate our algorithm outperforms several state-of-the-art algorithms on the OTB2015 dataset. PMID:28994748
Bernstein, Leslie R; Trahiotis, Constantine
2017-02-01
Interaural cross-correlation-based models of binaural processing have accounted successfully for a wide variety of binaural phenomena, including binaural detection, binaural discrimination, and measures of extents of laterality based on interaural temporal disparities, interaural intensitive disparities, and their combination. This report focuses on quantitative accounts of data obtained from binaural detection experiments published over five decades. Particular emphasis is placed on stimulus contexts for which commonly used correlation-based approaches fail to provide adequate explanations of the data. One such context concerns binaural detection of signals masked by certain noises that are narrow-band and/or interaurally partially correlated. It is shown that a cross-correlation-based model that includes stages of peripheral auditory processing can, when coupled with an appropriate decision variable, account well for a wide variety of classic and recently published binaural detection data including those that have, heretofore, proven to be problematic.
Marklund, Petter; Persson, Jonas
2012-11-15
A critical feature of higher cognitive functioning is the capacity to flexibly tailor information processing and behaviors to current situational demands. Recent neurocognitive models have been postulated to account for the dynamic nature of human executive processing by invoking two dissociable cognitive control modes, proactive and reactive control. These may involve partially overlapping, but temporally distinct neural implementation in the prefrontal cortex. Prior brain imaging studies exploring proactive control have mainly used tasks requiring only information about single-items to be retained over unfilled delays. Whether proactive control can also be utilized to facilitate performance in more complex working memory tasks, in which concurrent processing of intervening items and updating is mandatory during contextual cue maintenance remains an open question. To examine this issue and to elucidate the extent to which overlapping neural substrates underlie proactive and reactive control we used fMRI and a modified verbal 3-back paradigm with embedded cues predictive of high-interference trials. This task requires context information to be retained over multiple intervening trials. We found that performance improved with item-specific cues predicting forthcoming lures despite increased working memory load. Temporal dynamics of activation in the right inferior frontal gyrus suggest flexible switching between proactive and reactive control in a context-dependent fashion, with greater sustained responses elicited in the 3-back task involving context maintenance of cue information and greater transient responses elicited in the 3-back task absent of cues. Copyright © 2012 Elsevier Inc. All rights reserved.
JTSA: an open source framework for time series abstractions.
Sacchi, Lucia; Capozzi, Davide; Bellazzi, Riccardo; Larizza, Cristiana
2015-10-01
The evaluation of the clinical status of a patient is frequently based on the temporal evolution of some parameters, making the detection of temporal patterns a priority in data analysis. Temporal abstraction (TA) is a methodology widely used in medical reasoning for summarizing and abstracting longitudinal data. This paper describes JTSA (Java Time Series Abstractor), a framework including a library of algorithms for time series preprocessing and abstraction and an engine to execute a workflow for temporal data processing. The JTSA framework is grounded on a comprehensive ontology that models temporal data processing both from the data storage and the abstraction computation perspective. The JTSA framework is designed to allow users to build their own analysis workflows by combining different algorithms. Thanks to the modular structure of a workflow, simple to highly complex patterns can be detected. The JTSA framework has been developed in Java 1.7 and is distributed under GPL as a jar file. JTSA provides: a collection of algorithms to perform temporal abstraction and preprocessing of time series, a framework for defining and executing data analysis workflows based on these algorithms, and a GUI for workflow prototyping and testing. The whole JTSA project relies on a formal model of the data types and of the algorithms included in the library. This model is the basis for the design and implementation of the software application. Taking into account this formalized structure, the user can easily extend the JTSA framework by adding new algorithms. Results are shown in the context of the EU project MOSAIC to extract relevant patterns from data coming related to the long term monitoring of diabetic patients. The proof that JTSA is a versatile tool to be adapted to different needs is given by its possible uses, both as a standalone tool for data summarization and as a module to be embedded into other architectures to select specific phenotypes based on TAs in a large dataset. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Bowler, Dermot M.; Gaigg, Sebastian B.; Gardiner, John M.
2015-01-01
Adults with autism spectrum disorder (ASD) show intact recognition (supported procedure) but impaired recall (unsupported procedure) of incidentally-encoded context. Because this has not been demonstrated for temporal source, we compared the temporal and spatial source memory of adults with ASD and verbally matched typical adults. Because of…
Validation of the Temporal Satisfaction with Life Scale in a Sample of Chinese University Students
ERIC Educational Resources Information Center
Ye, Shengquan
2007-01-01
The study aims at validating the Temporal Satisfaction With Life Scale (TSWLS; Pavot et al., 1998, "The Temporal Satisfaction With Life Scale", Journal of Personality Assessment 70, pp. 340-354) in a non-western context. Data from 646 Chinese university students (330 females and 316 males) supported the three-factor structure of the…
ERIC Educational Resources Information Center
Todd, Juanita; Finch, Brayden; Smith, Ellen; Budd, Timothy W.; Schall, Ulrich
2011-01-01
Temporal and spectral sound information is processed asymmetrically in the brain with the left-hemisphere showing an advantage for processing the former and the right-hemisphere for the latter. Using monaural sound presentation we demonstrate a context and ability dependent ear-asymmetry in brain measures of temporal change detection. Our measure…
Brian R Miranda; Brian R Sturtevant; Susan I Stewart; Roger B. Hammer
2012-01-01
Most drivers underlying wildfire are dynamic, but at different spatial and temporal scales. We quantified temporal and spatial trends in wildfire patterns over two spatial extents in northern Wisconsin to identify drivers and their change through time. We used spatial point pattern analysis to quantify the spatial pattern of wildfire occurrences, and linear regression...
Attractor concretion as a mechanism for the formation of context representations
Rigotti, Mattia; Ben Dayan Rubin, Daniel; Morrison, Sara E.; Salzman, C. Daniel; Fusi, Stefano
2010-01-01
Complex tasks often require the memory of recent events, the knowledge about the context in which they occur, and the goals we intend to reach. All this information is stored in our mental states. Given a set of mental states, reinforcement learning (RL) algorithms predict the optimal policy that maximizes future reward. RL algorithms assign a value to each already-known state so that discovering the optimal policy reduces to selecting the action leading to the state with the highest value. But how does the brain create representations of these mental states in the first place? We propose a mechanism for the creation of mental states that contain information about the temporal statistics of the events in a particular context. We suggest that the mental states are represented by stable patterns of reverberating activity, which are attractors of the neural dynamics. These representations are built from neurons that are selective to specific combinations of external events (e.g. sensory stimuli) and pre-existent mental states. Consistent with this notion, we find that neurons in the amygdala and in orbito-frontal cortex (OFC) often exhibit this form of mixed selectivity. We propose that activating different mixed selectivity neurons in a fixed temporal order modifies synaptic connections so that conjunctions of events and mental states merge into a single pattern of reverberating activity. This process corresponds to the birth of a new different mental state that encodes a different temporal context. The concretion process depends on temporal contiguity, i.e. on the probability that a combination of an event and mental states follows or precedes the events and states that define a certain context. The information contained in the context thereby allows an animal to assign unambiguously a value to the events that initially appeared in different situations with different meanings. PMID:20100580
Recovering time-varying networks of dependencies in social and biological studies.
Ahmed, Amr; Xing, Eric P
2009-07-21
A plausible representation of the relational information among entities in dynamic systems such as a living cell or a social community is a stochastic network that is topologically rewiring and semantically evolving over time. Although there is a rich literature in modeling static or temporally invariant networks, little has been done toward recovering the network structure when the networks are not observable in a dynamic context. In this article, we present a machine learning method called TESLA, which builds on a temporally smoothed l(1)-regularized logistic regression formalism that can be cast as a standard convex-optimization problem and solved efficiently by using generic solvers scalable to large networks. We report promising results on recovering simulated time-varying networks and on reverse engineering the latent sequence of temporally rewiring political and academic social networks from longitudinal data, and the evolving gene networks over >4,000 genes during the life cycle of Drosophila melanogaster from a microarray time course at a resolution limited only by sample frequency.
de Azevedo Neto, Raymundo Machado; Teixeira, Luis Augusto
2011-05-01
This investigation aimed at assessing the extent to which memory from practice in a specific condition of target displacement modulates temporal errors and movement timing of interceptive movements. We compared two groups practicing with certainty of future target velocity either in unchanged target velocity or in target velocity decrease. Following practice, both experimental groups were probed in the situations of unchanged target velocity and target velocity decrease either under the context of certainty or uncertainty about target velocity. Results from practice showed similar improvement of temporal accuracy between groups, revealing that target velocity decrease did not disturb temporal movement organization when fully predictable. Analysis of temporal errors in the probing trials indicated that both groups had higher timing accuracy in velocity decrease in comparison with unchanged velocity. Effect of practice was detected by increased temporal accuracy of the velocity decrease group in situations of decreased velocity; a trend consistent with the expected effect of practice was observed for temporal errors in the unchanged velocity group and in movement initiation at a descriptive level. An additional point of theoretical interest was the fast adaptation in both groups to a target velocity pattern different from that practiced. These points are discussed under the perspective of integration of vision and motor control by means of an internal forward model of external motion.
Representation and Use of Temporal Information in ONCOCIN
Kahn, Michael G.; Ferguson, Jay C.; Shortliffe, Edward H.; Fagan, Lawrence M.
1985-01-01
The past medical history of a patient is a complex collection of events yet the understanding of these past events is critical for effective medical diagnostic and therapeutic decisions. Although computers can store vast quantities of patient data, diagnostic and therapeutic computer programs have had difficulty in accessing and analyzing collections of patient information that is clinically pertinent to a specific decision facing a particular patient at a given moment in his disease. Without some model of the patient's past, the computer cannot fully interpret the meaning of the available patient data. We present some of the difficulties that were encountered in ONCOCIN, a cancer chemotherapy planning program. This program must be able to reason about the patient's past treatment history in order to generate a therapy plan that is responsive to the problems he or she may have encountered in the past. A design is presented that supports a more intuitive approach to capture and analyze important temporal relationships in a patient's computer record. In order to represent the time course of a patient, we have implemented a structure called the temporal network and a temporal syntax for data storage and retrieval. Using this system, ONCOCIN is able to quickly obtain data that is patient-specific and context-sensitive. Adding the temporal network to the ONCOCIN system has markedly improved the program's handling of complex temporal issues.
Impaired spatial processing in a mouse model of fragile X syndrome.
Ghilan, Mohamed; Bettio, Luis E B; Noonan, Athena; Brocardo, Patricia S; Gil-Mohapel, Joana; Christie, Brian R
2018-05-17
Fragile X syndrome (FXS) is the most common form of inherited intellectual impairment. The Fmr1 -/y mouse model has been previously shown to have deficits in context discrimination tasks but not in the elevated plus-maze. To further characterize this FXS mouse model and determine whether hippocampal-mediated behaviours are affected in these mice, dentate gyrus (DG)-dependent spatial processing and Cornu ammonis 1 (CA1)-dependent temporal order discrimination tasks were evaluated. In agreement with previous findings of long-term potentiation deficits in the DG of this transgenic model of FXS, the results reported here demonstrate that Fmr1 -/y mice perform poorly in the DG-dependent metric change spatial processing task. However, Fmr1 -/y mice did not present deficits in the CA1-dependent temporal order discrimination task, and were able to remember the order in which objects were presented to them to the same extent as their wild-type littermate controls. These data suggest that the previously reported subregional-specific differences in hippocampal synaptic plasticity observed in the Fmr1 -/y mouse model may manifest as selective behavioural deficits in hippocampal-dependent tasks. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zarco-Tejada, P. J.; Hornero, A.; Hernández-Clemente, R.; Beck, P. S. A.
2018-03-01
The operational monitoring of forest decline requires the development of remote sensing methods that are sensitive to the spatiotemporal variations of pigment degradation and canopy defoliation. In this context, the red-edge spectral region (RESR) was proposed in the past due to its combined sensitivity to chlorophyll content and leaf area variation. In this study, the temporal dimension of the RESR was evaluated as a function of forest decline using a radiative transfer method with the PROSPECT and 3D FLIGHT models. These models were used to generate synthetic pine stands simulating decline and recovery processes over time and explore the temporal rate of change of the red-edge chlorophyll index (CI) as compared to the trajectories obtained for the structure-related Normalized Difference Vegetation Index (NDVI). The temporal trend method proposed here consisted of using synthetic spectra to calculate the theoretical boundaries of the subspace for healthy and declining pine trees in the temporal domain, defined by CItime=n/CItime=n+1 vs. NDVItime=n/NDVItime=n+1. Within these boundaries, trees undergoing decline and recovery processes showed different trajectories through this subspace. The method was then validated using three high-resolution airborne hyperspectral images acquired at 40 cm resolution and 260 spectral bands of 6.5 nm full-width half-maximum (FWHM) over a forest with widespread tree decline, along with field-based monitoring of chlorosis and defoliation (i.e., 'decline' status) in 663 trees between the years 2015 and 2016. The temporal rate of change of chlorophyll vs. structural indices, based on reflectance spectra extracted from the hyperspectral images, was different for trees undergoing decline, and aligned towards the decline baseline established using the radiative transfer models. By contrast, healthy trees over time aligned towards the theoretically obtained healthy baseline. The applicability of this temporal trend method to the red-edge bands of the MultiSpectral Imager (MSI) instrument on board Sentinel-2a for operational forest status monitoring was also explored by comparing the temporal rate of change of the Sentinel-2-derived CI over areas with declining and healthy trees. Results demonstrated that the Sentinel-2a red-edge region was sensitive to the temporal dimension of forest condition, as the relationships obtained for pixels in healthy condition deviated from those of pixels undergoing decline.
The neural dynamics of task context in free recall.
Polyn, Sean M; Kragel, James E; Morton, Neal W; McCluey, Joshua D; Cohen, Zachary D
2012-03-01
Multivariate pattern analysis (MVPA) is a powerful tool for relating theories of cognitive function to the neural dynamics observed while people engage in cognitive tasks. Here, we use the Context Maintenance and Retrieval model of free recall (CMR; Polyn et al., 2009a) to interpret variability in the strength of task-specific patterns of distributed neural activity as participants study and recall lists of words. The CMR model describes how temporal and source-related (here, encoding task) information combine in a contextual representation that is responsible for guiding memory search. Each studied word in the free-recall paradigm is associated with one of two encoding tasks (size and animacy) that have distinct neural representations during encoding. We find evidence for the context retrieval hypothesis central to the CMR model: Task-specific patterns of neural activity are reactivated during memory search, as the participant recalls an item previously associated with a particular task. Furthermore, we find that the fidelity of these task representations during study is related to task-shifting, the serial position of the studied item, and variability in the magnitude of the recency effect across participants. The CMR model suggests that these effects may be related to a central parameter of the model that controls the rate that an internal contextual representation integrates information from the surrounding environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ekas, Naomi V.; Braungart-Rieker, Julia M.; Lickenbrock, Diane M.; Zentall, Shannon R.; Maxwell, Scott M.
2010-01-01
The present study investigated temporal associations between putative emotion regulation strategies and negative affect in 20-month-old toddlers. Toddlers’ parent-focused, self-distraction, and toy-focused strategies, as well as negative affect, were rated on a second-by-second basis during laboratory parent-toddler interactions. Longitudinal mixed-effects models were conducted to determine the degree to which behavioral strategy use predicts subsequent negative affect and negative affect predicts subsequent strategy use. Results with mother-toddler and father-toddler dyads indicated that parent-focused strategies with an unresponsive parent were followed by increases in negative affect, whereas toy-focused strategies were followed by decreases in negative affect. Results also indicated that toddler negative affect serves to regulate behavioral strategy use within both parent contexts. PMID:21552335
Rapid accumulation of inhibition accounts for saccades curved away from distractors.
Kehoe, Devin H; Fallah, Mazyar
2017-08-01
Saccades curved toward a distractor are accompanied by a burst of neuronal activation at the distractor locus in the intermediate layers of the superior colliculus (SCi) ~30 ms before the initiation of a saccade. Although saccades curve away from inactivated SCi loci, whether inhibition is restricted to a similar critical epoch for saccades curved away from a distractor remains unclear. We examined this possibility by modeling human saccade curvature as a function of the time between onset of a task irrelevant luminance- or color-modulated distractor and initiation of an impending saccade, referred to as saccade distractor onset asynchrony (SDOA). Our results demonstrated that 70 ms of luminance-modulated distractor processing or 90 ms of color-modulated distractor processing was required to modulate saccade trajectories. As these behavioral, feature-based differences were temporally consistent with the cortically mediated neurophysiological differences in visual onset latencies between luminance and color stimuli observed in the oculomotor and visual system, this method provides a noninvasive means to estimate the timing of peak activation in the oculomotor system. As such, we modeled SDOA functions separately for saccades curved toward and away from distractors and observed that a similar temporal process determined the magnitude of saccade curvatures in both contexts, suggesting that saccades deviate away from a distractor due to a rapid accumulation of inhibition in the critical epoch before saccade initiation. NEW & NOTEWORTHY In this research article, we propose a novel, noninvasive approach to behaviorally model the time course of competitive oculomotor processing. Our results highly resembled those from previously published neurophysiological experiments utilizing similar oculomotor processing contexts, thus validating our approach. Furthermore, this methodology provided new insights into the underlying neural mechanism subserving oculomotor processing given that we applied it to a context with which the neural mechanism is more contentious, and the results clearly favored one view. Copyright © 2017 the American Physiological Society.
Sill, Orriana C; Smith, David M
2012-08-01
In recent years, many animal models of memory have focused on one or more of the various components of episodic memory. For example, the odor sequence memory task requires subjects to remember individual items and events (the odors) and the temporal aspects of the experience (the sequence of odor presentation). The well-known spatial context coding function of the hippocampus, as exemplified by place cell firing, may reflect the "where" component of episodic memory. In the present study, we added a contextual component to the odor sequence memory task by training rats to choose the earlier odor in one context and the later odor in another context and we compared the effects of temporary hippocampal lesions on performance of the original single context task and the new dual context task. Temporary lesions significantly impaired the single context task, although performance remained significantly above chance levels. In contrast, performance dropped all the way to chance when temporary lesions were used in the dual context task. These results demonstrate that rats can learn a dual context version of the odor sequence learning task that requires the use of contextual information along with the requirement to remember the "what" and "when" components of the odor sequence. Moreover, the addition of the contextual component made the task fully dependent on the hippocampus.
Spatial and Temporal Uncertainty of Crop Yield Aggregations
NASA Technical Reports Server (NTRS)
Porwollik, Vera; Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Iizumi, Toshichika; Ray, Deepak K.; Ruane, Alex C.; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe;
2016-01-01
The aggregation of simulated gridded crop yields to national or regional scale requires information on temporal and spatial patterns of crop-specific harvested areas. This analysis estimates the uncertainty of simulated gridded yield time series related to the aggregation with four different harvested area data sets. We compare aggregated yield time series from the Global Gridded Crop Model Inter-comparison project for four crop types from 14 models at global, national, and regional scale to determine aggregation-driven differences in mean yields and temporal patterns as measures of uncertainty. The quantity and spatial patterns of harvested areas differ for individual crops among the four datasets applied for the aggregation. Also simulated spatial yield patterns differ among the 14 models. These differences in harvested areas and simulated yield patterns lead to differences in aggregated productivity estimates, both in mean yield and in the temporal dynamics. Among the four investigated crops, wheat yield (17% relative difference) is most affected by the uncertainty introduced by the aggregation at the global scale. The correlation of temporal patterns of global aggregated yield time series can be as low as for soybean (r = 0.28).For the majority of countries, mean relative differences of nationally aggregated yields account for10% or less. The spatial and temporal difference can be substantial higher for individual countries. Of the top-10 crop producers, aggregated national multi-annual mean relative difference of yields can be up to 67% (maize, South Africa), 43% (wheat, Pakistan), 51% (rice, Japan), and 427% (soybean, Bolivia).Correlations of differently aggregated yield time series can be as low as r = 0.56 (maize, India), r = 0.05*Corresponding (wheat, Russia), r = 0.13 (rice, Vietnam), and r = -0.01 (soybean, Uruguay). The aggregation to sub-national scale in comparison to country scale shows that spatial uncertainties can cancel out in countries with large harvested areas per crop type. We conclude that the aggregation uncertainty can be substantial for crop productivity and production estimations in the context of food security, impact assessment, and model evaluation exercises.
Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.
2013-01-01
Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.
Audio visual speech source separation via improved context dependent association model
NASA Astrophysics Data System (ADS)
Kazemi, Alireza; Boostani, Reza; Sobhanmanesh, Fariborz
2014-12-01
In this paper, we exploit the non-linear relation between a speech source and its associated lip video as a source of extra information to propose an improved audio-visual speech source separation (AVSS) algorithm. The audio-visual association is modeled using a neural associator which estimates the visual lip parameters from a temporal context of acoustic observation frames. We define an objective function based on mean square error (MSE) measure between estimated and target visual parameters. This function is minimized for estimation of the de-mixing vector/filters to separate the relevant source from linear instantaneous or time-domain convolutive mixtures. We have also proposed a hybrid criterion which uses AV coherency together with kurtosis as a non-Gaussianity measure. Experimental results are presented and compared in terms of visually relevant speech detection accuracy and output signal-to-interference ratio (SIR) of source separation. The suggested audio-visual model significantly improves relevant speech classification accuracy compared to existing GMM-based model and the proposed AVSS algorithm improves the speech separation quality compared to reference ICA- and AVSS-based methods.
Shuaib, Aban; Hartwell, Adam; Kiss-Toth, Endre; Holcombe, Mike
2016-01-01
Signal transduction through the Mitogen Activated Protein Kinase (MAPK) pathways is evolutionarily highly conserved. Many cells use these pathways to interpret changes to their environment and respond accordingly. The pathways are central to triggering diverse cellular responses such as survival, apoptosis, differentiation and proliferation. Though the interactions between the different MAPK pathways are complex, nevertheless, they maintain a high level of fidelity and specificity to the original signal. There are numerous theories explaining how fidelity and specificity arise within this complex context; spatio-temporal regulation of the pathways and feedback loops are thought to be very important. This paper presents an agent based computational model addressing multi-compartmentalisation and how this influences the dynamics of MAPK cascade activation. The model suggests that multi-compartmentalisation coupled with periodic MAPK kinase (MAPKK) activation may be critical factors for the emergence of oscillation and ultrasensitivity in the system. Finally, the model also establishes a link between the spatial arrangements of the cascade components and temporal activation mechanisms, and how both contribute to fidelity and specificity of MAPK mediated signalling. PMID:27243235
Temporal prediction errors modulate task-switching performance
Limongi, Roberto; Silva, Angélica M.; Góngora-Costa, Begoña
2015-01-01
We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus’ onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as “executive control” is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching. PMID:26379568
Temporal prediction errors modulate task-switching performance.
Limongi, Roberto; Silva, Angélica M; Góngora-Costa, Begoña
2015-01-01
We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus' onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as "executive control" is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.
Zheng, Hui; Yang, Yang; Land, Kenneth C.
2012-01-01
Two long-standing research problems of interest to sociologists are sources of variations in social inequalities and differential contributions of the temporal dimensions of age, time period, and cohort to variations in social phenomena. Recently, scholars have introduced a model called Variance Function Regression for the study of the former problem, and a model called Hierarchical Age-Period-Cohort regression has been developed for the study of the latter. This article presents an integration of these two models as a means to study the evolution of social inequalities along distinct temporal dimensions. We apply the integrated model to survey data on subjective health status. We find substantial age, period, and cohort effects, as well as gender differences, not only for the conditional mean of self-rated health (i.e., between-group disparities), but also for the variance in this mean (i.e., within-group disparities)—and it is detection of age, period, and cohort variations in the latter disparities that application of the integrated model permits. Net of effects of age and individual-level covariates, in recent decades, cohort differences in conditional means of self-rated health have been less important than period differences that cut across all cohorts. By contrast, cohort differences of variances in these conditional means have dominated period differences. In particular, post-baby boom birth cohorts show significant and increasing levels of within-group disparities. These findings illustrate how the integrated model provides a powerful framework through which to identify and study the evolution of variations in social inequalities across age, period, and cohort temporal dimensions. Accordingly, this model should be broadly applicable to the study of social inequality in many different substantive contexts. PMID:22904570
NASA Astrophysics Data System (ADS)
Sreehari, H.; Nandi, Anuj; Radhika, D.; Iyer, Nirmal; Mandal, Samir
2018-02-01
We report on our attempt to understand the outbursting profile of Galactic Black Hole sources, keeping in mind the evolution of temporal and spectral features during the outburst. We present results of evolution of quasi-periodic oscillations, spectral states and possible connection with jet ejections during the outburst phase. Further, we attempt to connect the observed X-ray variabilities (i.e., `class'/`structured' variabilities, similar to GRS 1915+105) with spectral states of black hole sources. Towards these studies, we consider three black hole sources that have undergone single (XTE J1859+226), a few (IGR J17091-3624) and many (GX 339-4) outbursts since the start of RXTE era. Finally, we model the broadband energy spectra (3-150 keV) of different spectral states using RXTE and NuSTAR observations. Results are discussed in the context of two-component advective flow model, while constraining the mass of the three black hole sources.
Hard Burst Emission from the Soft Gamma Repeater SGR 1900+14
NASA Technical Reports Server (NTRS)
Woods, Peter M.; Kouveliotou, Chryssa; VanParadijs, Jan; Briggs, Michael S.; Hurley, Kevin; Gogus, Ersin; Preece, Robert D.; Giblin, Timothy W.; Thompson, Christopher; Duncan, Robert C.
1999-01-01
We present evidence for burst emission from SGR 1900 + 14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is the emission hard, but the spectra are better fitted by D. Band's gamma-ray burst (GRB) function rather than by the traditional optically thin thermal bremsstrahlung model. We find that the spectral evolution within these hard events obeys a hardness/intensity anticorrelation. Temporally, these events are distinct from typical SGR burst emissions in that they are longer (approximately 1 s) and have relatively smooth profiles. Despite a difference in peak luminosity of approximately > 10(exp 11) between these bursts from SGR 1900 + 14 and cosmological GRBs, there are striking temporal and spectral similarities between the two kinds of bursts, aside from spectral evolution. We outline an interpretation of these events in the context of the magnetar model.
Butts, Daniel A; Weng, Chong; Jin, Jianzhong; Alonso, Jose-Manuel; Paninski, Liam
2011-08-03
Visual neurons can respond with extremely precise temporal patterning to visual stimuli that change on much slower time scales. Here, we investigate how the precise timing of cat thalamic spike trains-which can have timing as precise as 1 ms-is related to the stimulus, in the context of both artificial noise and natural visual stimuli. Using a nonlinear modeling framework applied to extracellular data, we demonstrate that the precise timing of thalamic spike trains can be explained by the interplay between an excitatory input and a delayed suppressive input that resembles inhibition, such that neuronal responses only occur in brief windows where excitation exceeds suppression. The resulting description of thalamic computation resembles earlier models of contrast adaptation, suggesting a more general role for mechanisms of contrast adaptation in visual processing. Thus, we describe a more complex computation underlying thalamic responses to artificial and natural stimuli that has implications for understanding how visual information is represented in the early stages of visual processing.
Measuring Memory and Attention to Preview in Motion.
Jagacinski, Richard J; Hammond, Gordon M; Rizzi, Emanuele
2017-08-01
Objective Use perceptual-motor responses to perturbations to reveal the spatio-temporal detail of memory for the recent past and attention to preview when participants track a winding roadway. Background Memory of the recently passed roadway can be inferred from feedback control models of the participants' manual movement patterns. Similarly, attention to preview of the upcoming roadway can be inferred from feedforward control models of manual movement patterns. Method Perturbation techniques were used to measure these memory and attention functions. Results In a laboratory tracking task, the bandwidth of lateral roadway deviations was found to primarily influence memory for the past roadway rather than attention to preview. A secondary auditory/verbal/vocal memory task resulted in higher velocity error and acceleration error in the tracking task but did not affect attention to preview. Attention to preview was affected by the frequency pattern of sinusoidal perturbations of the roadway. Conclusion Perturbation techniques permit measurement of the spatio-temporal span of memory and attention to preview that affect tracking a winding roadway. They also provide new ways to explore goal-directed forgetting and spatially distributed attention in the context of movement. More generally, these techniques provide sensitive measures of individual differences in cognitive aspects of action. Application Models of driving behavior and assessment of driving skill may benefit from more detailed spatio-temporal measurement of attention to preview.
Brain mechanisms of successful recognition through retrieval of semantic context.
Flegal, Kristin E; Marín-Gutiérrez, Alejandro; Ragland, J Daniel; Ranganath, Charan
2014-08-01
Episodic memory is associated with the encoding and retrieval of context information and with a subjective sense of reexperiencing past events. The neural correlates of episodic retrieval have been extensively studied using fMRI, leading to the identification of a "general recollection network" including medial temporal, parietal, and prefrontal regions. However, in these studies, it is difficult to disentangle the effects of context retrieval from recollection. In this study, we used fMRI to determine the extent to which the recruitment of regions in the recollection network is contingent on context reinstatement. Participants were scanned during a cued recognition test for target words from encoded sentences. Studied target words were preceded by either a cue word studied in the same sentence (thus congruent with encoding context) or a cue word studied in a different sentence (thus incongruent with encoding context). Converging fMRI results from independently defined ROIs and whole-brain analysis showed regional specificity in the recollection network. Activity in hippocampus and parahippocampal cortex was specifically increased during successful retrieval following congruent context cues, whereas parietal and prefrontal components of the general recollection network were associated with confident retrieval irrespective of contextual congruency. Our findings implicate medial temporal regions in the retrieval of semantic context, contributing to, but dissociable from, recollective experience.
What is special about Cygnus X-1?. [evidence for a black hole
NASA Technical Reports Server (NTRS)
Boldt, E. A.; Holt, S. S.; Rothschild, R. E.; Serlemitsos, P. J.
1974-01-01
The X-ray evidence from several experiments is reviewed, with special emphasis on those characteristics which appear to distinguish Cygnus X-1 from other compact X-ray emitting objects. Data are examined within the context of a model in which millisecond bursts are superposed upon shot-noise fluctuations arising from events of durations on the order of a second. Possible spectral-temporal correlations are investigated which provide additional evidence that Cygnus X-1 is very likely a black hole.
Biweekly disturbance capture and attribution: case study in western Alberta grizzly bear habitat
NASA Astrophysics Data System (ADS)
Hilker, Thomas; Coops, Nicholas C.; Gaulton, Rachel; Wulder, Michael A.; Cranston, Jerome; Stenhouse, Gordon
2011-01-01
An increasing number of studies have demonstrated the impact of landscape disturbance on ecosystems. Satellite remote sensing can be used for mapping disturbances, and fusion techniques of sensors with complimentary characteristics can help to improve the spatial and temporal resolution of satellite-based mapping techniques. Classification of different disturbance types from satellite observations is difficult, yet important, especially in an ecological context as different disturbance types might have different impacts on vegetation recovery, wildlife habitats, and food resources. We demonstrate a possible approach for classifying common disturbance types by means of their spatial characteristics. First, landscape level change is characterized on a near biweekly basis through application of a data fusion model (spatial temporal adaptive algorithm for mapping reflectance change) and a number of spatial and temporal characteristics of the predicted disturbance patches are inferred. A regression tree approach is then used to classify disturbance events. Our results show that spatial and temporal disturbance characteristics can be used to classify disturbance events with an overall accuracy of 86% of the disturbed area observed. The date of disturbance was identified as the most powerful predictor of the disturbance type, together with the patch core area, patch size, and contiguity.
ERIC Educational Resources Information Center
Botev, Jean
2016-01-01
The CollaTrEx framework for collaborative context-aware mobile training and exploration is designed for the in-situ collaboration within groups of learners performing together diverse educational activities to explore their environment in a fun and intuitive way. It employs both absolute and relative spatio-temporal context for determining…
Dissociating movement from movement timing in the rat primary motor cortex.
Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A
2014-11-19
Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.
Real-time antenna fault diagnosis experiments at DSS 13
NASA Technical Reports Server (NTRS)
Mellstrom, J.; Pierson, C.; Smyth, P.
1992-01-01
Experimental results obtained when a previously described fault diagnosis system was run online in real time at the 34-m beam waveguide antenna at Deep Space Station (DSS) 13 are described. Experimental conditions and the quality of results are described. A neural network model and a maximum-likelihood Gaussian classifier are compared with and without a Markov component to model temporal context. At the rate of a state update every 6.4 seconds, over a period of roughly 1 hour, the neural-Markov system had zero errors (incorrect state estimates) while monitoring both faulty and normal operations. The overall results indicate that the neural-Markov combination is the most accurate model and has significant practical potential.
Kaplan, C D; Korf, D; Sterk, C
1987-09-01
Snowball sampling is a method that has been used in the social sciences to study sensitive topics, rare traits, personal networks, and social relationships. The method involves the selection of samples utilizing "insider" knowledge and referral chains among subjects who possess common traits that are of research interest. It is especially useful in generating samples for which clinical sampling frames may be difficult to obtain or are biased in some way. In this paper, snowball samples of heroin users in two Dutch cities have been analyzed for the purpose of providing descriptions and limited inferences about the temporal and social contexts of their lifestyles. Two distinct heroin-using populations have been discovered who are distinguished by their life cycle stage. Significant contextual explanations have been found involving the passage from adolescent peer group to criminal occupation, the functioning of network "knots" and "outcroppings," and the frequency of social contact. It is suggested that the snowball sampling method may have utility in studying the temporal and social contexts of other populations of clinical interest.
Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models
NASA Technical Reports Server (NTRS)
Keeler, James D.
1987-01-01
The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.
NASA Technical Reports Server (NTRS)
Keeler, James D.
1988-01-01
The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.
INFERENCE FOR INDIVIDUAL-LEVEL MODELS OF INFECTIOUS DISEASES IN LARGE POPULATIONS.
Deardon, Rob; Brooks, Stephen P; Grenfell, Bryan T; Keeling, Matthew J; Tildesley, Michael J; Savill, Nicholas J; Shaw, Darren J; Woolhouse, Mark E J
2010-01-01
Individual Level Models (ILMs), a new class of models, are being applied to infectious epidemic data to aid in the understanding of the spatio-temporal dynamics of infectious diseases. These models are highly flexible and intuitive, and can be parameterised under a Bayesian framework via Markov chain Monte Carlo (MCMC) methods. Unfortunately, this parameterisation can be difficult to implement due to intense computational requirements when calculating the full posterior for large, or even moderately large, susceptible populations, or when missing data are present. Here we detail a methodology that can be used to estimate parameters for such large, and/or incomplete, data sets. This is done in the context of a study of the UK 2001 foot-and-mouth disease (FMD) epidemic.
Aoki, Kenichi; Feldman, Marcus W.
2013-01-01
The theoretical literature from 1985 to the present on the evolution of learning strategies in variable environments is reviewed, with the focus on deterministic dynamical models that are amenable to local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A rapidly changing environment or frequent migration in a spatially heterogeneous environment favors individual learning over unbiased social learning. However, results are not so straightforward in the context of learning schedules or when biases in social learning are introduced. The three major methods of modeling temporal environmental change – coevolutionary, two-timescale, and information decay – are compared and shown to sometimes yield contradictory results. The so-called Rogers’ paradox is inherent in the two-timescale method as originally applied to the evolution of pure strategies, but is often eliminated when the other methods are used. Moreover, Rogers’ paradox is not observed for the mixed learning strategies and learning schedules that we review. We believe that further theoretical work is necessary on learning schedules and biased social learning, based on models that are logically consistent and empirically pertinent. PMID:24211681
Aoki, Kenichi; Feldman, Marcus W
2014-02-01
The theoretical literature from 1985 to the present on the evolution of learning strategies in variable environments is reviewed, with the focus on deterministic dynamical models that are amenable to local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A rapidly changing environment or frequent migration in a spatially heterogeneous environment favors individual learning over unbiased social learning. However, results are not so straightforward in the context of learning schedules or when biases in social learning are introduced. The three major methods of modeling temporal environmental change--coevolutionary, two-timescale, and information decay--are compared and shown to sometimes yield contradictory results. The so-called Rogers' paradox is inherent in the two-timescale method as originally applied to the evolution of pure strategies, but is often eliminated when the other methods are used. Moreover, Rogers' paradox is not observed for the mixed learning strategies and learning schedules that we review. We believe that further theoretical work is necessary on learning schedules and biased social learning, based on models that are logically consistent and empirically pertinent. Copyright © 2013 Elsevier Inc. All rights reserved.
Knowledge acquisition for temporal abstraction.
Stein, A; Musen, M A; Shahar, Y
1996-01-01
Temporal abstraction is the task of detecting relevant patterns in data over time. The knowledge-based temporal-abstraction method uses knowledge about a clinical domain's contexts, external events, and parameters to create meaningful interval-based abstractions from raw time-stamped clinical data. In this paper, we describe the acquisition and maintenance of domain-specific temporal-abstraction knowledge. Using the PROTEGE-II framework, we have designed a graphical tool for acquiring temporal knowledge directly from expert physicians, maintaining the knowledge in a sharable form, and converting the knowledge into a suitable format for use by an appropriate problem-solving method. In initial tests, the tool offered significant gains in our ability to rapidly acquire temporal knowledge and to use that knowledge to perform automated temporal reasoning.
Dynamic speech representations in the human temporal lobe.
Leonard, Matthew K; Chang, Edward F
2014-09-01
Speech perception requires rapid integration of acoustic input with context-dependent knowledge. Recent methodological advances have allowed researchers to identify underlying information representations in primary and secondary auditory cortex and to examine how context modulates these representations. We review recent studies that focus on contextual modulations of neural activity in the superior temporal gyrus (STG), a major hub for spectrotemporal encoding. Recent findings suggest a highly interactive flow of information processing through the auditory ventral stream, including influences of higher-level linguistic and metalinguistic knowledge, even within individual areas. Such mechanisms may give rise to more abstract representations, such as those for words. We discuss the importance of characterizing representations of context-dependent and dynamic patterns of neural activity in the approach to speech perception research. Copyright © 2014 Elsevier Ltd. All rights reserved.
Predicting forest insect flight activity: A Bayesian network approach
Pawson, Stephen M.; Marcot, Bruce G.; Woodberry, Owen G.
2017-01-01
Daily flight activity patterns of forest insects are influenced by temporal and meteorological conditions. Temperature and time of day are frequently cited as key drivers of activity; however, complex interactions between multiple contributing factors have also been proposed. Here, we report individual Bayesian network models to assess the probability of flight activity of three exotic insects, Hylurgus ligniperda, Hylastes ater, and Arhopalus ferus in a managed plantation forest context. Models were built from 7,144 individual hours of insect sampling, temperature, wind speed, relative humidity, photon flux density, and temporal data. Discretized meteorological and temporal variables were used to build naïve Bayes tree augmented networks. Calibration results suggested that the H. ater and A. ferus Bayesian network models had the best fit for low Type I and overall errors, and H. ligniperda had the best fit for low Type II errors. Maximum hourly temperature and time since sunrise had the largest influence on H. ligniperda flight activity predictions, whereas time of day and year had the greatest influence on H. ater and A. ferus activity. Type II model errors for the prediction of no flight activity is improved by increasing the model’s predictive threshold. Improvements in model performance can be made by further sampling, increasing the sensitivity of the flight intercept traps, and replicating sampling in other regions. Predicting insect flight informs an assessment of the potential phytosanitary risks of wood exports. Quantifying this risk allows mitigation treatments to be targeted to prevent the spread of invasive species via international trade pathways. PMID:28953904
Rosas, Antonio; Peña-Melián, Angel; García-Tabernero, Antonio; Bastir, Markus; De La Rasilla, Marco
2014-12-01
Correspondence between temporal lobe sulcal pattern and bony impressions on the middle cranial fossae (MCF) was analyzed. MCF bone remains (SD-359, SD-315, and SD-1219) from the El Sidrón (Spain) neandertal site are analyzed in this context. Direct comparison of the soft and hard tissues from the same individual was studied by means of: 1) dissection of two human heads; 2) optic (white light) surface scans; 3) computed tomography and magnetic resonance of the same head. The inferior temporal sulcus and gyrus are the features most strongly influencing MCF bone surface. The Superior temporal sulcus and middle temporal and fusiform gyri also leave imprints. Temporal lobe form differs between Homo sapiens and neandertals. A wider and larger post-arcuate fossa (posterior limit of Brodmann area 20 and the anterior portion of area 37) is present in modern humans as compared to neandertals. However other traits of the MCF surface are similar in these two large-brained human groups. A conspicuous variation is appreciated in the more vertical location of the inferior temporal gyrus in H. sapiens. In parallel, structures of the lower surface of the temporal lobe are more sagittally orientated. Grooves accommodating the fusiform and the lower temporal sulci become grossly parallel to the temporal squama. These differences can be understood within the context of a supero-lateral deployment of the lobe in H. sapiens, a pattern previously identified (Bastir et al., Nat Commun 2 (2011) 588-595). Regarding dural sinus pattern, a higher incidence of petrosquamous sinus is detected in neandertal samples. © 2014 Wiley Periodicals, Inc.
Prediction of crime occurrence from multi-modal data using deep learning
Kang, Hyeon-Woo
2017-01-01
In recent years, various studies have been conducted on the prediction of crime occurrences. This predictive capability is intended to assist in crime prevention by facilitating effective implementation of police patrols. Previous studies have used data from multiple domains such as demographics, economics, and education. Their prediction models treat data from different domains equally. These methods have problems in crime occurrence prediction, such as difficulty in discovering highly nonlinear relationships, redundancies, and dependencies between multiple datasets. In order to enhance crime prediction models, we consider environmental context information, such as broken windows theory and crime prevention through environmental design. In this paper, we propose a feature-level data fusion method with environmental context based on a deep neural network (DNN). Our dataset consists of data collected from various online databases of crime statistics, demographic and meteorological data, and images in Chicago, Illinois. Prior to generating training data, we select crime-related data by conducting statistical analyses. Finally, we train our DNN, which consists of the following four kinds of layers: spatial, temporal, environmental context, and joint feature representation layers. Coupled with crucial data extracted from various domains, our fusion DNN is a product of an efficient decision-making process that statistically analyzes data redundancy. Experimental performance results show that our DNN model is more accurate in predicting crime occurrence than other prediction models. PMID:28437486
Prediction of crime occurrence from multi-modal data using deep learning.
Kang, Hyeon-Woo; Kang, Hang-Bong
2017-01-01
In recent years, various studies have been conducted on the prediction of crime occurrences. This predictive capability is intended to assist in crime prevention by facilitating effective implementation of police patrols. Previous studies have used data from multiple domains such as demographics, economics, and education. Their prediction models treat data from different domains equally. These methods have problems in crime occurrence prediction, such as difficulty in discovering highly nonlinear relationships, redundancies, and dependencies between multiple datasets. In order to enhance crime prediction models, we consider environmental context information, such as broken windows theory and crime prevention through environmental design. In this paper, we propose a feature-level data fusion method with environmental context based on a deep neural network (DNN). Our dataset consists of data collected from various online databases of crime statistics, demographic and meteorological data, and images in Chicago, Illinois. Prior to generating training data, we select crime-related data by conducting statistical analyses. Finally, we train our DNN, which consists of the following four kinds of layers: spatial, temporal, environmental context, and joint feature representation layers. Coupled with crucial data extracted from various domains, our fusion DNN is a product of an efficient decision-making process that statistically analyzes data redundancy. Experimental performance results show that our DNN model is more accurate in predicting crime occurrence than other prediction models.
Now for Me, Later for Us? Effects of Group Context on Temporal Discounting
Charlton, Shawn R.; Yi, Richard; Porter, Caitlin; Carter, Anne E.; Bickel, Warren; Rachlin, Howard
2013-01-01
Delayed rewards are less valuable than immediate rewards. This well-established finding has focused almost entirely on individual outcomes. However, are delayed rewards similarly discounted if they are shared by a group? The current article reports on three experiments exploring the effect of group context on delay discounting. Results indicate that discount rates of individual and group rewards were highly correlated, but that respondents were more willing to wait (decreased discounting) for shared outcomes than for individual outcomes. An explanatory model is proposed suggesting that decreased discount rates in group contexts may be due to the way the effects of both delay and social discounting are combined. That is, in a group context, a person values both a future reward (discounted by delay) and a present reward to another person (discounted by the social distance between them). The results are explained by a combined discount function containing a delay factor and a factor representing the social distance between the decision maker and group members. Practical implications of the fact that shared consequences can increase individual self-control are also discussed. PMID:23641123
The effect of memory and context changes on color matches to real objects.
Allred, Sarah R; Olkkonen, Maria
2015-07-01
Real-world color identification tasks often require matching the color of objects between contexts and after a temporal delay, thus placing demands on both perceptual and memory processes. Although the mechanisms of matching colors between different contexts have been widely studied under the rubric of color constancy, little research has investigated the role of long-term memory in such tasks or how memory interacts with color constancy. To investigate this relationship, observers made color matches to real study objects that spanned color space, and we independently manipulated the illumination impinging on the objects, the surfaces in which objects were embedded, and the delay between seeing the study object and selecting its color match. Adding a 10-min delay increased both the bias and variability of color matches compared to a baseline condition. These memory errors were well accounted for by modeling memory as a noisy but unbiased version of perception constrained by the matching methods. Surprisingly, we did not observe significant increases in errors when illumination and surround changes were added to the 10-minute delay, although the context changes alone did elicit significant errors.
The Energy-Dependent X-Ray Timing Characteristics of the Narrow Line Seyfert 1 MKN 766
NASA Technical Reports Server (NTRS)
Markowitz, A.; Papadakis, I.; Arevalo, P.; Turner, T. J.; Miller, L.; Reeves, J. N.
2007-01-01
We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766, obtained from combining data obtained during an XMM-Newton observation spanning six revolutions in 2005 with data obtained from an XMM-Newton long-look in 2001. The PSD shapes and rms-flux relations are found to be consistent between the 2001 and 2005 observations, suggesting the 2005 observation is simply a low-flux extension of the 2001 observation and permitting us to combine the two data sets. The resulting PSD has the highest temporal frequency resolution for any AGN PSD measured to date. Applying a broken power-law model yields break frequencies which increase in temporal frequency with photon energy. Obtaining a good fit when assuming energy-independent break frequencies requires the presence of a Lorentzian at 4.6 +/- 0.4 x 10(exp -4)Hz whose strength increases with photon energy, a behavior seen in black hole X-ray binaries. The cross-spectral properties are measured; temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time. Cross-spectral results are consistent with those for other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.
Exploring the Spatial and Temporal Organization of a Cell’s Proteome
Beck, Martin; Topf, Maya; Frazier, Zachary; Tjong, Harianto; Xu, Min; Zhang, Shihua; Alber, Frank
2013-01-01
To increase our current understanding of cellular processes, such as cell signaling and division, knowledge is needed about the spatial and temporal organization of the proteome at different organizational levels. These levels cover a wide range of length and time scales: from the atomic structures of macromolecules for inferring their molecular function, to the quantitative description of their abundance, and distribution in the cell. Emerging new experimental technologies are greatly increasing the availability of such spatial information on the molecular organization in living cells. This review addresses three fields that have significantly contributed to our understanding of the proteome’s spatial and temporal organization: first, methods for the structure determination of individual macromolecular assemblies, specifically the fitting of atomic structures into density maps generated from electron microscopy techniques; second, research that visualizes the spatial distributions of these complexes within the cellular context using cryo electron tomography techniques combined with computational image processing; and third, methods for the spatial modeling of the dynamic organization of the proteome, specifically those methods for simulating reaction and diffusion of proteins and complexes in crowded intracellular fluids. The long-term goal is to integrate the varied data about a proteome’s organization into a spatially explicit, predictive model of cellular processes. PMID:21094684
Temporal variation and scale in movement-based resource selection functions
Hooten, M.B.; Hanks, E.M.; Johnson, D.S.; Alldredge, M.W.
2013-01-01
A common population characteristic of interest in animal ecology studies pertains to the selection of resources. That is, given the resources available to animals, what do they ultimately choose to use? A variety of statistical approaches have been employed to examine this question and each has advantages and disadvantages with respect to the form of available data and the properties of estimators given model assumptions. A wealth of high resolution telemetry data are now being collected to study animal population movement and space use and these data present both challenges and opportunities for statistical inference. We summarize traditional methods for resource selection and then describe several extensions to deal with measurement uncertainty and an explicit movement process that exists in studies involving high-resolution telemetry data. Our approach uses a correlated random walk movement model to obtain temporally varying use and availability distributions that are employed in a weighted distribution context to estimate selection coefficients. The temporally varying coefficients are then weighted by their contribution to selection and combined to provide inference at the population level. The result is an intuitive and accessible statistical procedure that uses readily available software and is computationally feasible for large datasets. These methods are demonstrated using data collected as part of a large-scale mountain lion monitoring study in Colorado, USA.
A dual-process model of reactions to perceived stigma.
Pryor, John B; Reeder, Glenn D; Yeadon, Christopher; Hesson-McLnnis, Matthew
2004-10-01
The authors propose a theoretical model of individual psychological reactions to perceived stigma. This model suggests that 2 psychological systems may be involved in reactions to stigma across a variety of social contexts. One system is primarily reflexive, or associative, whereas the other is rule based, or reflective. This model assumes a temporal pattern of reactions to the stigmatized, such that initial reactions are governed by the reflexive system, whereas subsequent reactions or "adjustments" are governed by the rule-based system. Support for this model was found in 2 studies. Both studies examined participants' moment-by-moment approach-avoidance reactions to the stigmatized. The 1st involved participants' reactions to persons with HIV/AIDS, and the 2nd, participants' reactions to 15 different stigmatizing conditions. (c) 2004 APA, all rights reserved
Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data
Liu, Hui; Zhang, Fan; Mishra, Shital Kumar; Zhou, Shuigeng; Zheng, Jie
2016-01-01
Modeling of signaling pathways is crucial for understanding and predicting cellular responses to drug treatments. However, canonical signaling pathways curated from literature are seldom context-specific and thus can hardly predict cell type-specific response to external perturbations; purely data-driven methods also have drawbacks such as limited biological interpretability. Therefore, hybrid methods that can integrate prior knowledge and real data for network inference are highly desirable. In this paper, we propose a knowledge-guided fuzzy logic network model to infer signaling pathways by exploiting both prior knowledge and time-series data. In particular, the dynamic time warping algorithm is employed to measure the goodness of fit between experimental and predicted data, so that our method can model temporally-ordered experimental observations. We evaluated the proposed method on a synthetic dataset and two real phosphoproteomic datasets. The experimental results demonstrate that our model can uncover drug-induced alterations in signaling pathways in cancer cells. Compared with existing hybrid models, our method can model feedback loops so that the dynamical mechanisms of signaling networks can be uncovered from time-series data. By calibrating generic models of signaling pathways against real data, our method supports precise predictions of context-specific anticancer drug effects, which is an important step towards precision medicine. PMID:27774993
Rodrigo, María José; Padrón, Iván; de Vega, Manuel; Ferstl, Evelyn C.
2014-01-01
This study examines by means of functional magnetic resonance imaging the neural mechanisms underlying adolescents’ risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17–18, and young adults: 21–22 years old) read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug) or ambiguous situations (e.g., eating a hamburger or a hotdog). Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ), bilateral middle temporal gyrus (MTG), right medial prefrontal cortex, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind (ToM). In addition, brain structures related to cognitive control were active [right anterior cingulate cortex (ACC), bilateral dorsolateral prefrontal cortex (DLPFC), bilateral orbitofrontal cortex], whereas no significant clusters were obtained in the reward system (ventral striatum). Choosing the dangerous option involved a further activation of control areas (ACC) and emotional and social cognition areas (temporal pole). Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in ToM related regions (bilateral MTG) and in motor control regions related to the planning of actions (pre-supplementary motor area). Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others’ perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in social contexts that incorporate the role of emotional and social cognition processes. PMID:24592227
Landsat 8 Data Modeled as DGGS Data Cubes
NASA Astrophysics Data System (ADS)
Sherlock, M. J.; Tripathi, G.; Samavati, F.
2016-12-01
In the context of tracking recent global changes in the Earth's landscape, Landsat 8 provides high-resolution multi-wavelength data with a temporal resolution of sixteen days. Such a live dataset can benefit novel applications in environmental monitoring. However, a temporal analysis of this dataset in its native format is a challenging task mostly due to the huge volume of geospatial images and imperfect overlay of different day Landsat 8 images. We propose the creation of data cubes derived from Landsat 8 data, through the use of a Discrete Global Grid System (DGGS). DGGS referencing of Landsat 8 data provides a cell-based representation of the pixel values for a fixed area on earth, indexed by keys. Having the calibrated cell-based Landsat 8 images can speed up temporal analysis and facilitate parallel processing using distributed systems. In our method, the Landsat 8 dataset hosted on Amazon Web Services (AWS) is downloaded using a web crawler and stored on a filesystem. We apply the cell-based DGGS referencing (using Pyxis SDK) to Landsat 8 images which provide a rhombus based tessellation of equal area cells for our use-case. After this step, the cell-images which overlay perfectly on different days, are stacked in the temporal dimension and stored into data cube units. The depth of the cube represents the number of temporal images of the same cell and can be updated when new images are received each day. Harnessing the regular spatio-temporal structure of data cubes, we want to compress, query, transmit and visualize big Landsat 8 data in an efficient way for temporal analysis.
The Temporal Properties of E-Learning: An Exploratory Study of Academics' Conceptions
ERIC Educational Resources Information Center
Martins, Jorge; Nunes, Miguel Baptista
2016-01-01
Purpose: The purpose of this paper is to present the results of an exploratory study that investigates Portuguese academics' conceptions concerning the temporal properties of e-learning, in the context of traditional Higher Education Institutions. Design/methodology/approach: Grounded Theory methodology was used to systematically analyse data…
Spatio-Temporal Reasoning and Context Awareness
NASA Astrophysics Data System (ADS)
Guesgen, Hans W.; Marsland, Stephen
Smart homes provide many research challenges, but some of the most interesting ones are in dealing with data that monitors human behaviour and that is inherently both spatial and temporal in nature. This means that context becomes all important: a person lying down in front of the fireplace could be perfectly normal behaviour if it was cold and the fire was on, but otherwise it is unusual. In this example, the context can include temporal resolution on various scales (it is winter and therefore probably cold, it is not nighttime when the person would be expected to be in bed rather than the living room) as well as spatial (the person is lying in front of the fireplace) and extra information such as whether or not the fire is lit. It could also include information about how they reached their current situation: if they went from standing to lying very suddenly there would be rather more cause for concern than if they first knelt down and then lowered themselves onto the floor. Representing all of these different temporal and spatial aspects together is a major challenge for smart home research. In this chapter we will provide an overview of some of the methodologies that can be used to deal with these problems. We will also outline our own research agenda in the Massey University Smart Environments (MUSE) group.
THEORETICAL REVIEW The Hippocampus, Time, and Memory Across Scales
Howard, Marc W.; Eichenbaum, Howard
2014-01-01
A wealth of experimental studies with animals have offered insights about how neural networks within the hippocampus support the temporal organization of memories. These studies have revealed the existence of “time cells” that encode moments in time, much as the well-known “place cells” map locations in space. Another line of work inspired by human behavioral studies suggests that episodic memories are mediated by a state of temporal context that changes gradually over long time scales, up to at least a few thousand seconds. In this view, the “mental time travel” hypothesized to support the experience of episodic memory corresponds to a “jump back in time” in which a previous state of temporal context is recovered. We suggest that these 2 sets of findings could be different facets of a representation of temporal history that maintains a record at the last few thousand seconds of experience. The ability to represent long time scales comes at the cost of discarding precise information about when a stimulus was experienced—this uncertainty becomes greater for events further in the past. We review recent computational work that describes a mechanism that could construct such a scale-invariant representation. Taken as a whole, this suggests the hippocampus plays its role in multiple aspects of cognition by representing events embedded in a general spatiotemporal context. The representation of internal time can be useful across nonhippocampal memory systems. PMID:23915126
Risk management in spatio-temporally varying field by true slime mold
NASA Astrophysics Data System (ADS)
Ito, Kentaro; Sumpter, David; Nakagaki, Toshiyuki
Revealing how lower organisms solve complicated problems is a challenging research area, which could reveal the evolutionary origin of biological information processing. Here we report on the ability of a single-celled organism, true slime mold, to find a smart solution of risk management under spatio-temporally varying conditions. We designed test conditions under which there were three food-locations at vertices of equilateral triangle and a toxic light illuminated the organism on alternating halves of the triangle. We found that the organism behavior depended on the period of the repeated illumination, even though the total exposure time was kept the same . A simple mathematical model for the experimental results is proposed from a dynamical system point of view. We discuss our results in the context of a strategy of risk management by Physarum.
Complex Topographic Feature Ontology Patterns
Varanka, Dalia E.; Jerris, Thomas J.
2015-01-01
Semantic ontologies are examined as effective data models for the representation of complex topographic feature types. Complex feature types are viewed as integrated relations between basic features for a basic purpose. In the context of topographic science, such component assemblages are supported by resource systems and found on the local landscape. Ontologies are organized within six thematic modules of a domain ontology called Topography that includes within its sphere basic feature types, resource systems, and landscape types. Context is constructed not only as a spatial and temporal setting, but a setting also based on environmental processes. Types of spatial relations that exist between components include location, generative processes, and description. An example is offered in a complex feature type ‘mine.’ The identification and extraction of complex feature types are an area for future research.
Pluviometric characterization of the Coca river basin by using a stochastic rainfall model
NASA Astrophysics Data System (ADS)
González-Zeas, Dunia; Chávez-Jiménez, Adriadna; Coello-Rubio, Xavier; Correa, Ángel; Martínez-Codina, Ángela
2014-05-01
An adequate design of the hydraulic infrastructures, as well as, the prediction and simulation of a river basin require historical records with a greater temporal and spatial resolution. However, the lack of an extensive network of precipitation data, the short time scale data and the incomplete information provided by the available rainfall stations limit the analysis and design of complex hydraulic engineering systems. As a consequence, it is necessary to develop new quantitative tools in order to face this obstacle imposed by ungauged or poorly gauged basins. In this context, the use of a spatial-temporal rainfall model allows to simulate the historical behavior of the precipitation and at the same time, to obtain long-term synthetic series that preserve the extremal behavior. This paper provides a characterization of the precipitation in the Coca river basin located in Ecuador by using RainSim V3, a robust and well tested stochastic rainfall model based on a spatial-temporal Neyman-Scott rectangular pulses process. A preliminary consistency analysis of the historical rainfall data available has been done in order to identify climatic regions with similar precipitation behavior patterns. Mean and maximum yearly and monthly fields of precipitation of high resolution spaced grids have been obtained through the use of interpolation techniques. According to the climatological similarity, long time series of daily temporal resolution of precipitation have been generated in order to evaluate the model skill in capturing the structure of daily observed precipitation. The results show a good performance of the model in reproducing very well the gross statistics, including the extreme values of rainfall at daily scale. The spatial pattern represented by the observed and simulated precipitation fields highlights the existence of two important regions characterized by different pluviometric comportment, with lower precipitation in the upper part of the basin and higher precipitation in the lower part of the basin.
Well-being and social justice among Moroccan migrants in southern Spain.
Paloma, Virginia; García-Ramírez, Manuel; Camacho, Carlos
2014-09-01
The decision to migrate is normally based on expectations of improving one's actual living conditions and therefore, one's well-being. However, these expectations are not usually met in receiving contexts that relegate newcomers to lower power positions. From a liberating community psychology approach, this study aims to develop a predictive model of the well-being of Moroccan migrants living in southern Spain. Data were collected from a survey sample of 633 migrants (the average age was 31.9 years and 51.8 % were women) from 20 territorial units of Andalusia. Through a process of multilevel regression analysis, this study reveals that the well-being of the Moroccan community is closely determined by the following: (a) the level of social justice in the receiving context (openness to diversity of receiving communities, cultural sensitivity of community services, and residential integration); and (b) the individual strengths of the population (use of active coping strategies, satisfaction with the receiving context, and temporal stability in the new environment). These results empirically support the impact that different ecological levels of analysis have on well-being. Major theoretical contributions of the model and useful suggestions for improving migrant well-being are discussed.
Sols, Ignasi; DuBrow, Sarah; Davachi, Lila; Fuentemilla, Lluís
2017-11-20
Although everyday experiences unfold continuously over time, shifts in context, or event boundaries, can influence how those events come to be represented in memory [1-4]. Specifically, mnemonic binding across sequential representations is more challenging at context shifts, such that successful temporal associations are more likely to be formed within than across contexts [1, 2, 5-9]. However, in order to preserve a subjective sense of continuity, it is important that the memory system bridge temporally adjacent events, even if they occur in seemingly distinct contexts. Here, we used pattern similarity analysis to scalp electroencephalographic (EEG) recordings during a sequential learning task [2, 3] in humans and showed that the detection of event boundaries triggered a rapid memory reinstatement of the just-encoded sequence episode. Memory reactivation was detected rapidly (∼200-800 ms from the onset of the event boundary) and was specific to context shifts that were preceded by an event sequence with episodic content. Memory reinstatement was not observed during the sequential encoding of events within an episode, indicating that memory reactivation was induced specifically upon context shifts. Finally, the degree of neural similarity between neural responses elicited during sequence encoding and at event boundaries correlated positively with participants' ability to later link across sequences of events, suggesting a critical role in binding temporally adjacent events in long-term memory. Current results shed light onto the neural mechanisms that promote episodic encoding not only for information within the event, but also, importantly, in the ability to link across events to create a memory representation of continuous experience. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Imperfect Dopaminergic Error Signal Can Drive Temporal-Difference Learning
Potjans, Wiebke; Diesmann, Markus; Morrison, Abigail
2011-01-01
An open problem in the field of computational neuroscience is how to link synaptic plasticity to system-level learning. A promising framework in this context is temporal-difference (TD) learning. Experimental evidence that supports the hypothesis that the mammalian brain performs temporal-difference learning includes the resemblance of the phasic activity of the midbrain dopaminergic neurons to the TD error and the discovery that cortico-striatal synaptic plasticity is modulated by dopamine. However, as the phasic dopaminergic signal does not reproduce all the properties of the theoretical TD error, it is unclear whether it is capable of driving behavior adaptation in complex tasks. Here, we present a spiking temporal-difference learning model based on the actor-critic architecture. The model dynamically generates a dopaminergic signal with realistic firing rates and exploits this signal to modulate the plasticity of synapses as a third factor. The predictions of our proposed plasticity dynamics are in good agreement with experimental results with respect to dopamine, pre- and post-synaptic activity. An analytical mapping from the parameters of our proposed plasticity dynamics to those of the classical discrete-time TD algorithm reveals that the biological constraints of the dopaminergic signal entail a modified TD algorithm with self-adapting learning parameters and an adapting offset. We show that the neuronal network is able to learn a task with sparse positive rewards as fast as the corresponding classical discrete-time TD algorithm. However, the performance of the neuronal network is impaired with respect to the traditional algorithm on a task with both positive and negative rewards and breaks down entirely on a task with purely negative rewards. Our model demonstrates that the asymmetry of a realistic dopaminergic signal enables TD learning when learning is driven by positive rewards but not when driven by negative rewards. PMID:21589888
From AWE-GEN to AWE-GEN-2d: a high spatial and temporal resolution weather generator
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo
2016-04-01
A new weather generator, AWE-GEN-2d (Advanced WEather GENerator for 2-Dimension grid) is developed following the philosophy of combining physical and stochastic approaches to simulate meteorological variables at high spatial and temporal resolution (e.g. 2 km x 2 km and 5 min for precipitation and cloud cover and 100 m x 100 m and 1 h for other variables variable (temperature, solar radiation, vapor pressure, atmospheric pressure and near-surface wind). The model is suitable to investigate the impacts of climate variability, temporal and spatial resolutions of forcing on hydrological, ecological, agricultural and geomorphological impacts studies. Using appropriate parameterization the model can be used in the context of climate change. Here we present the model technical structure of AWE-GEN-2d, which is a substantial evolution of four preceding models (i) the hourly-point scale Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.) (ii) the Space-Time Realizations of Areal Precipitation (STREAP) model introduced by Paschalis et al. (2013, Water Resour. Res.), (iii) the High-Resolution Synoptically conditioned Weather Generator developed by Peleg and Morin (2014, Water Resour. Res.), and (iv) the Wind-field Interpolation by Non Divergent Schemes presented by Burlando et al. (2007, Boundary-Layer Meteorol.). The AWE-GEN-2d is relatively parsimonious in terms of computational demand and allows generating many stochastic realizations of current and projected climates in an efficient way. An example of model application and testing is presented with reference to a case study in the Wallis region, a complex orography terrain in the Swiss Alps.
Recurrent competition explains temporal effects of attention in MSTd
Layton, Oliver W.; Browning, N. Andrew
2012-01-01
Navigation in a static environment along straight paths without eye movements produces radial optic flow fields. A singularity called the focus of expansion (FoE) specifies the direction of travel (heading) of the observer. Cells in primate dorsal medial superior temporal area (MSTd) respond to radial fields and are therefore thought to be heading-sensitive. Humans frequently shift their focus of attention while navigating, for example, depending on the favorable or threatening context of approaching independently moving objects. Recent neurophysiological studies show that the spatial tuning curves of primate MSTd neurons change based on the difference in visual angle between an attentional prime and the FoE. Moreover, the peak mean population activity in MSTd retreats linearly in time as the distance between the attentional prime and FoE increases. We present a dynamical neural circuit model that demonstrates the same linear temporal peak shift observed electrophysiologically. The model qualitatively matches the neuron tuning curves and population activation profiles. After model MT dynamically pools short-range motion, model MSTd incorporates recurrent competition between units tuned to different radial optic flow templates, and integrates attentional signals from model area frontal eye fields (FEF). In the model, population activity peaks occur when the recurrent competition is most active and uncertainty is greatest about the relative position of the FoE. The nature of attention, multiplicative or non-multiplicative, is largely irrelevant, so long as attention has a Gaussian-like profile. Using an appropriately tuned sigmoidal signal function to modulate recurrent feedback affords qualitative fits of deflections in the population activity that otherwise appear to be low-frequency noise. We predict that these deflections mark changes in the balance of attention between the priming and FoE locations. PMID:23060788
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2010-01-01
Background Chagas disease is a major parasitic disease in Latin America, prevented in part by vector control programs that reduce domestic populations of triatomines. However, the design of control strategies adapted to non-domiciliated vectors, such as Triatoma dimidiata, remains a challenge because it requires an accurate description of their spatio-temporal distributions, and a proper understanding of the underlying dispersal processes. Methodology/Principal Findings We combined extensive spatio-temporal data sets describing house infestation dynamics by T. dimidiata within a village, and spatially explicit population dynamics models in a selection model approach. Several models were implemented to provide theoretical predictions under different hypotheses on the origin of the dispersers and their dispersal characteristics, which we compared with the spatio-temporal pattern of infestation observed in the field. The best models fitted the dynamic of infestation described by a one year time-series, and also predicted with a very good accuracy the infestation process observed during a second replicate one year time-series. The parameterized models gave key insights into the dispersal of these vectors. i) About 55% of the triatomines infesting houses came from the peridomestic habitat, the rest corresponding to immigration from the sylvatic habitat, ii) dispersing triatomines were 5–15 times more attracted by houses than by peridomestic area, and iii) the moving individuals spread on average over rather small distances, typically 40–60 m/15 days. Conclusion/Significance Since these dispersal characteristics are associated with much higher abundance of insects in the periphery of the village, we discuss the possibility that spatially targeted interventions allow for optimizing the efficacy of vector control activities within villages. Such optimization could prove very useful in the context of limited resources devoted to vector control. PMID:20689823
Self-organizing biopsychosocial dynamics and the patient-healer relationship.
Pincus, David
2012-01-01
The patient-healer relationship has an increasing area of interest for complementary and alternative medicine (CAM) researchers. This focus on the interpersonal context of treatment is not surprising as dismantling studies, clinical trials and other linear research designs continually point toward the critical role of context and the broadband biopsychosocial nature of therapeutic responses to CAM. Unfortunately, the same traditional research models and methods that fail to find simple and specific treatment-outcome relations are similarly failing to find simple and specific mechanisms to explain how interpersonal processes influence patient outcomes. This paper presents an overview of some of the key models and methods from nonlinear dynamical systems that are better equipped for empirical testing of CAM outcomes on broadband biopsychosocial processes. Suggestions are made for CAM researchers to assist in modeling the interactions among key process dynamics interacting across biopsychosocial scales: empathy, intra-psychic conflict, physiological arousal, and leukocyte telomerase activity. Finally, some speculations are made regarding the possibility for deeper cross-scale information exchange involving quantum temporal nonlocality. Copyright © 2012 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youngren, M.A.
1989-11-01
An analytic probability model of tactical nuclear warfare in the theater is presented in this paper. The model addresses major problems associated with representing nuclear warfare in the theater. Current theater representations of a potential nuclear battlefield are developed in context of low-resolution, theater-level models or scenarios. These models or scenarios provide insufficient resolution in time and space for modeling a nuclear exchange. The model presented in this paper handles the spatial uncertainty in potentially targeted unit locations by proposing two-dimensional multivariate probability models for the actual and perceived locations of units subordinate to the major (division-level) units represented inmore » theater scenarios. The temporal uncertainty in the activities of interest represented in our theater-level Force Evaluation Model (FORCEM) is handled through probability models of the acquisition and movement of potential nuclear target units.« less
Brain oscillations track the formation of episodic memories in the real world.
Griffiths, Benjamin; Mazaheri, Ali; Debener, Stefan; Hanslmayr, Simon
2016-12-01
Despite the well-known influence of environmental context on episodic memory, little has been done to increase contextual richness within the lab. This leaves a blind spot lingering over the neuronal correlates of episodic memory formation in day-to-day life. To address this, we presented participants with a series of words to memorise along a pre-designated route across campus while a mobile EEG system acquired ongoing neural activity. Replicating lab-based subsequent memory effects (SMEs), we identified significant low to mid frequency power decreases (<30Hz), including beta power decreases over the left inferior frontal gyrus. When investigating the oscillatory correlates of temporal and spatial context binding, we found that items strongly bound to spatial context exhibited significantly greater theta power decreases than items strongly bound to temporal context. These findings expand upon lab-based studies by demonstrating the influence of real world contextual factors that underpin memory formation. Copyright © 2016 Elsevier Inc. All rights reserved.
Brain mechanisms of successful recognition through retrieval of semantic context
Flegal, Kristin E.; Marín-Gutiérrez, Alejandro; Ragland, J. Daniel; Ranganath, Charan
2017-01-01
Episodic memory is associated with the encoding and retrieval of context information, and with a subjective sense of re-experiencing past events. The neural correlates of episodic retrieval have been extensively studied using fMRI, leading to the identification of a “general recollection network” including medial temporal, parietal, and prefrontal regions. However, in these studies, it is difficult to disentangle the effects of context retrieval from recollection. In the present study, we used functional magnetic resonance imaging (fMRI) to determine the extent to which the recruitment of regions in the recollection network is contingent on context reinstatement. Participants were scanned during a cued recognition test for target words from encoded sentences. Studied target words were preceded by either a cue word studied in the same sentence (thus congruent with encoding context), or a cue word studied in a different sentence (thus incongruent with encoding context). Converging fMRI results from independently-defined regions of interest and whole-brain analysis showed regional specificity in the recollection network. Activity in hippocampus and parahippocampal cortex was specifically increased during successful retrieval following congruent context cues, whereas parietal and prefrontal components of the general recollection network were associated with confident retrieval irrespective of contextual congruency. Our findings implicate medial temporal regions in the retrieval of semantic context, contributing to, but dissociable from, recollective experience. PMID:24564467
A buffer model of memory encoding and temporal correlations in retrieval.
Lehman, Melissa; Malmberg, Kenneth J
2013-01-01
Atkinson and Shiffrin's (1968) dual-store model of memory includes structural aspects of memory along with control processes. The rehearsal buffer is a process by which items are kept in mind and long-term episodic traces are formed. The model has been both influential and controversial. Here, we describe a novel variant of Atkinson and Shiffrin's buffer model within the framework of the retrieving effectively from memory theory (REM; Shiffrin & Steyvers, 1997) that accounts for findings previously thought to be difficult for such models to explain. This model assumes a limited-capacity buffer where information is stored about items, along with information about associations between items and between items and the context in which they are studied. The strength of association between items and context is limited by the number of items simultaneously occupying the buffer (Lehman & Malmberg, 2009). The contents of the buffer are managed by complementary processes of rehearsal and compartmentalization (Lehman & Malmberg, 2011). New findings that directly test a priori predictions of the model are reported, including serial position effects and conditional and first recall probabilities in immediate and delayed free recall, in a continuous distractor paradigm, and in experiments using list-length manipulations of single-item and paired-item study lists.
Academic context and perceived mental workload of psychology students.
Rubio-Valdehita, Susana; López-Higes, Ramón; Díaz-Ramiro, Eva
2014-01-01
The excessive workload of university students is an academic stressor. Consequently, it is necessary to evaluate and control the workload in education. This research applies the NASA-TLX scale, as a measure of the workload. The objectives of this study were: (a) to measure the workload levels of a sample of 367 psychology students, (b) to group students according to their positive or negative perception of academic context (AC) and c) to analyze the effects of AC on workload. To assess the perceived AC, we used an ad hoc questionnaire designed according to Demand-Control-Social Support and Effort-Reward Imbalance models. Using cluster analysis, participants were classified into two groups (positive versus negative context). The differences between groups show that a positive AC improves performance (p < .01) and reduces feelings of overload (p < .02), temporal demand (p < .02), and nervousness and frustration (p < .001). Social relationships with peers and teachers, student autonomy and result satisfaction were relevant dimensions of the AC (p < .001 in all cases).
Re-construction of action awareness depends on an internal model of action-outcome timing.
Stenner, Max-Philipp; Bauer, Markus; Machts, Judith; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J
2014-04-01
The subjective time of an instrumental action is shifted towards its outcome. This temporal binding effect is partially retrospective, i.e., occurs upon outcome perception. Retrospective binding is thought to reflect post-hoc inference on agency based on sensory evidence of the action - outcome association. However, many previous binding paradigms cannot exclude the possibility that retrospective binding results from bottom-up interference of sensory outcome processing with action awareness and is functionally unrelated to the processing of the action - outcome association. Here, we keep bottom-up interference constant and use a contextual manipulation instead. We demonstrate a shift of subjective action time by its outcome in a context of variable outcome timing. Crucially, this shift is absent when there is no such variability. Thus, retrospective action binding reflects a context-dependent, model-based phenomenon. Such top-down re-construction of action awareness seems to bias agency attribution when outcome predictability is low. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Re-construction of action awareness depends on an internal model of action-outcome timing
Stenner, Max-Philipp; Bauer, Markus; Machts, Judith; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.
2014-01-01
The subjective time of an instrumental action is shifted towards its outcome. This temporal binding effect is partially retrospective, i.e., occurs upon outcome perception. Retrospective binding is thought to reflect post-hoc inference on agency based on sensory evidence of the action – outcome association. However, many previous binding paradigms cannot exclude the possibility that retrospective binding results from bottom-up interference of sensory outcome processing with action awareness and is functionally unrelated to the processing of the action – outcome association. Here, we keep bottom-up interference constant and use a contextual manipulation instead. We demonstrate a shift of subjective action time by its outcome in a context of variable outcome timing. Crucially, this shift is absent when there is no such variability. Thus, retrospective action binding reflects a context-dependent, model-based phenomenon. Such top-down re-construction of action awareness seems to bias agency attribution when outcome predictability is low. PMID:24555983
Zarco-Tejada, P J; Hornero, A; Hernández-Clemente, R; Beck, P S A
2018-03-01
The operational monitoring of forest decline requires the development of remote sensing methods that are sensitive to the spatiotemporal variations of pigment degradation and canopy defoliation. In this context, the red-edge spectral region (RESR) was proposed in the past due to its combined sensitivity to chlorophyll content and leaf area variation. In this study, the temporal dimension of the RESR was evaluated as a function of forest decline using a radiative transfer method with the PROSPECT and 3D FLIGHT models. These models were used to generate synthetic pine stands simulating decline and recovery processes over time and explore the temporal rate of change of the red-edge chlorophyll index (CI) as compared to the trajectories obtained for the structure-related Normalized Difference Vegetation Index (NDVI). The temporal trend method proposed here consisted of using synthetic spectra to calculate the theoretical boundaries of the subspace for healthy and declining pine trees in the temporal domain, defined by CI time=n /CI time=n+1 vs. NDVI time=n /NDVI time=n+1 . Within these boundaries, trees undergoing decline and recovery processes showed different trajectories through this subspace. The method was then validated using three high-resolution airborne hyperspectral images acquired at 40 cm resolution and 260 spectral bands of 6.5 nm full-width half-maximum (FWHM) over a forest with widespread tree decline, along with field-based monitoring of chlorosis and defoliation (i.e., 'decline' status) in 663 trees between the years 2015 and 2016. The temporal rate of change of chlorophyll vs. structural indices, based on reflectance spectra extracted from the hyperspectral images, was different for trees undergoing decline, and aligned towards the decline baseline established using the radiative transfer models. By contrast, healthy trees over time aligned towards the theoretically obtained healthy baseline . The applicability of this temporal trend method to the red-edge bands of the MultiSpectral Imager (MSI) instrument on board Sentinel-2a for operational forest status monitoring was also explored by comparing the temporal rate of change of the Sentinel-2-derived CI over areas with declining and healthy trees. Results demonstrated that the Sentinel-2a red-edge region was sensitive to the temporal dimension of forest condition, as the relationships obtained for pixels in healthy condition deviated from those of pixels undergoing decline.
Climate change and health modeling: horses for courses.
Ebi, Kristie L; Rocklöv, Joacim
2014-01-01
Mathematical and statistical models are needed to understand the extent to which weather, climate variability, and climate change are affecting current and may affect future health burdens in the context of other risk factors and a range of possible development pathways, and the temporal and spatial patterns of any changes. Such understanding is needed to guide the design and the implementation of adaptation and mitigation measures. Because each model projection captures only a narrow range of possible futures, and because models serve different purposes, multiple models are needed for each health outcome ('horses for courses'). Multiple modeling results can be used to bracket the ranges of when, where, and with what intensity negative health consequences could arise. This commentary explores some climate change and health modeling issues, particularly modeling exposure-response relationships, developing early warning systems, projecting health risks over coming decades, and modeling to inform decision-making. Research needs are also suggested.
Green, Sophie; Lambon Ralph, Matthew A.; Moll, Jorge; Stamatakis, Emmanuel A.; Grafman, Jordan; Zahn, Roland
2010-01-01
It has been hypothesized that the experience of different moral sentiments such as guilt and indignation is underpinned by activation in temporal and fronto-mesolimbic regions and that functional integration between these regions is necessary for the differentiated experience of these moral sentiments. A recent fMRI study revealed that the right superior anterior temporal lobe (ATL) was activated irrespective of the context of moral feelings (guilt or indignation). This region has been associated with context-independent conceptual social knowledge which allows us to make fine-grained differentiations between qualities of social behaviours (e.g. “critical” and “faultfinding”). This knowledge is required to make emotional evaluations of social behaviour. In contrast to the context-independent activation of the ATL, there were context-dependent activations within different fronto-mesolimbic regions for guilt and indignation. However, it is unknown whether functional integration occurs between these regions and whether regional patterns of integration are distinctive for the experience of different moral sentiments. Here, we used fMRI and psychophysiological interaction analysis, an established measure of functional integration to investigate this issue. We found selective functional integration between the right superior ATL and a subgenual cingulate region during the experience of guilt and between the right superior ATL and the lateral orbitofrontal cortex for indignation. Our data provide the first evidence for functional integration of conceptual social knowledge representations in the right superior ATL with representations of different feeling contexts in fronto-mesolimbic regions. We speculate that this functional architecture allows for the conceptually differentiated experience of moral sentiments in healthy individuals. PMID:20493953
Female Presence and Estrous State Influence Mouse Ultrasonic Courtship Vocalizations
Hanson, Jessica L.; Hurley, Laura M.
2012-01-01
The laboratory mouse is an emerging model for context-dependent vocal signaling and reception. Mouse ultrasonic vocalizations are robustly produced in social contexts. In adults, male vocalization during courtship has become a model of interest for signal-receiver interactions. These vocalizations can be grouped into syllable types that are consistently produced by different subspecies and strains of mice. Vocalizations are unique to individuals, vary across development, and depend on social housing conditions. The behavioral significance of different syllable types, including the contexts in which different vocalizations are made and the responses listeners have to different types of vocalizations, is not well understood. We examined the effect of female presence and estrous state on male vocalizations by exploring the use of syllable types and the parameters of syllables during courtship. We also explored correlations between vocalizations and other behaviors. These experimental manipulations produced four main findings: 1) vocalizations varied among males, 2) the production of USVs and an increase in the use of a specific syllable type were temporally related to mounting behavior, 3) the frequency (kHz), bandwidth, and duration of syllables produced by males were influenced by the estrous phase of female partners, and 4) syllable types changed when females were removed. These findings show that mouse ultrasonic courtship vocalizations are sensitive to changes in female phase and presence, further demonstrating the context-sensitivity of these calls. PMID:22815817
Temporal Context Memory in High-Functioning Autism
ERIC Educational Resources Information Center
Gras-Vincendon, Agnes; Mottron, Laurent; Salame, Pierre; Bursztejn, Claude; Danion, Jean-Marie
2007-01-01
Episodic memory, i.e. memory for specific episodes situated in space and time, seems impaired in individuals with autism. According to weak central coherence theory, individuals with autism have general difficulty connecting contextual and item information which then impairs their capacity to memorize information in context. This study…
Temporal Dynamics in Auditory Perceptual Learning: Impact of Sequencing and Incidental Learning
ERIC Educational Resources Information Center
Church, Barbara A.; Mercado, Eduardo, III; Wisniewski, Matthew G.; Liu, Estella H.
2013-01-01
Training can improve perceptual sensitivities. We examined whether the temporal dynamics and the incidental versus intentional nature of training are important. Within the context of a birdsong rate discrimination task, we examined whether the sequencing of pretesting exposure to the stimuli mattered. Easy-to-hard (progressive) sequencing of…
Shifting Temporal Frames in Children's Common Worlds in the Anthropocene
ERIC Educational Resources Information Center
Pacini-Ketchabaw, Veronica; Kummen, Kathleen
2016-01-01
In this article, the authors bring the new temporal theorizations of the Anthropocene into the pedagogical realm by grappling with the shifting time relationships the Anthropocene makes one aware of within the context of children's common worlds. Using an actively inclusive more-than-human common worlds framework that reassembles worlds by…
Endophysical Models Based on Empirical Data
NASA Astrophysics Data System (ADS)
Jahn, Robert G.; Dunne, Brenda J.
2005-10-01
Any proposed endophysical models need to acknowledge a number of subjective correlates that have been well established in such objectively quantifiable experimental contexts as anomalous human/machine interactions and remote perception information acquisition. Most notable of these factors are conscious and unconscious intention; gender disparities; serial position effects; intrinsic uncertainties; elusive replicability; and emotional resonance between the participants and the devices, process, and tasks. Perhaps even more pertinent are the insensitivities of the anomalous effects to spatial and temporal separations of the participants from the physical targets. Inclusion of subjective coordinates in the models, and exclusion of physical distance and time, raise formidable issues of specification, quantification, and dynamical formulation from both the physical and psychological perspectives. A few primitive examples of possible approaches are presented.
Towards Time Automata and Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Hutzler, G.; Klaudel, H.; Wang, D. Y.
2004-01-01
The design of reactive systems must comply with logical correctness (the system does what it is supposed to do) and timeliness (the system has to satisfy a set of temporal constraints) criteria. In this paper, we propose a global approach for the design of adaptive reactive systems, i.e., systems that dynamically adapt their architecture depending on the context. We use the timed automata formalism for the design of the agents' behavior. This allows evaluating beforehand the properties of the system (regarding logical correctness and timeliness), thanks to model-checking and simulation techniques. This model is enhanced with tools that we developed for the automatic generation of code, allowing to produce very quickly a running multi-agent prototype satisfying the properties of the model.
FIACH: A biophysical model for automatic retrospective noise control in fMRI.
Tierney, Tim M; Weiss-Croft, Louise J; Centeno, Maria; Shamshiri, Elhum A; Perani, Suejen; Baldeweg, Torsten; Clark, Christopher A; Carmichael, David W
2016-01-01
Different noise sources in fMRI acquisition can lead to spurious false positives and reduced sensitivity. We have developed a biophysically-based model (named FIACH: Functional Image Artefact Correction Heuristic) which extends current retrospective noise control methods in fMRI. FIACH can be applied to both General Linear Model (GLM) and resting state functional connectivity MRI (rs-fcMRI) studies. FIACH is a two-step procedure involving the identification and correction of non-physiological large amplitude temporal signal changes and spatial regions of high temporal instability. We have demonstrated its efficacy in a sample of 42 healthy children while performing language tasks that include overt speech with known activations. We demonstrate large improvements in sensitivity when FIACH is compared with current methods of retrospective correction. FIACH reduces the confounding effects of noise and increases the study's power by explaining significant variance that is not contained within the commonly used motion parameters. The method is particularly useful in detecting activations in inferior temporal regions which have proven problematic for fMRI. We have shown greater reproducibility and robustness of fMRI responses using FIACH in the context of task induced motion. In a clinical setting this will translate to increasing the reliability and sensitivity of fMRI used for the identification of language lateralisation and eloquent cortex. FIACH can benefit studies of cognitive development in young children, patient populations and older adults. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Sill, Orriana C.; Smith, David M.
2012-01-01
In recent years, many animal models of memory have focused on one or more of the various components of episodic memory. For example, the odor sequence memory task requires subjects to remember individual items and events (the odors) and the temporal aspects of the experience (the sequence of odor presentation). The well-known spatial context coding function of the hippocampus, as exemplified by place cell firing, may reflect the ‘where’ component of episodic memory. In the present study, we added a contextual component to the odor sequence memory task by training rats to choose the earlier odor in one context and the later odor in another context and we compared the effects of temporary hippocampal lesions on performance of the original single context task and the new dual context task. Temporary lesions significantly impaired the single context task, although performance remained significantly above chance levels. In contrast, performance dropped all the way to chance when temporary lesions were used in the dual context task. These results demonstrate that rats can learn a dual context version of the odor sequence learning task which requires the use of contextual information along with the requirement to remember the ‘what’ and ‘when’ components of the odor sequence. Moreover, the additional requirement of context-dependent expression of the ‘what-when’ memory made the task fully dependent on the hippocampus. Moreover, the addition of the contextual component made the task fully dependent on the hippocampus. PMID:22687149
Zhai, Zhiqiang; Song, Guohua; Lu, Hongyu; He, Weinan; Yu, Lei
2017-09-01
Vehicle-specific power (VSP) has been found to be highly correlated with vehicle emissions. It is used in many studies on emission modeling such as the MOVES (Motor Vehicle Emissions Simulator) model. The existing studies develop specific VSP distributions (or OpMode distribution in MOVES) for different road types and various average speeds to represent the vehicle operating modes on road. However, it is still not clear if the facility- and speed-specific VSP distributions are consistent temporally and spatially. For instance, is it necessary to update periodically the database of the VSP distributions in the emission model? Are the VSP distributions developed in the city central business district (CBD) area applicable to its suburb area? In this context, this study examined the temporal and spatial consistency of the facility- and speed-specific VSP distributions in Beijing. The VSP distributions in different years and in different areas are developed, based on real-world vehicle activity data. The root mean square error (RMSE) is employed to quantify the difference between the VSP distributions. The maximum differences of the VSP distributions between different years and between different areas are approximately 20% of that between different road types. The analysis of the carbon dioxide (CO 2 ) emission factor indicates that the temporal and spatial differences of the VSP distributions have no significant impact on vehicle emission estimation, with relative error of less than 3%. The temporal and spatial differences have no significant impact on the development of the facility- and speed-specific VSP distributions for the vehicle emission estimation. The database of the specific VSP distributions in the VSP-based emission models can maintain in terms of time. Thus, it is unnecessary to update the database regularly, and it is reliable to use the history vehicle activity data to forecast the emissions in the future. In one city, the areas with less data can still develop accurate VSP distributions based on better data from other areas.
Todman, L. C.; Fraser, F. C.; Corstanje, R.; Deeks, L. K.; Harris, J. A.; Pawlett, M.; Ritz, K.; Whitmore, A. P.
2016-01-01
There are several conceptual definitions of resilience pertaining to environmental systems and, even if resilience is clearly defined in a particular context, it is challenging to quantify. We identify four characteristics of the response of a system function to disturbance that relate to “resilience”: (1) degree of return of the function to a reference level; (2) time taken to reach a new quasi-stable state; (3) rate (i.e. gradient) at which the function reaches the new state; (4) cumulative magnitude of the function (i.e. area under the curve) before a new state is reached. We develop metrics to quantify these characteristics based on an analogy with a mechanical spring and damper system. Using the example of the response of a soil function (respiration) to disturbance, we demonstrate that these metrics effectively discriminate key features of the dynamic response. Although any one of these characteristics could define resilience, each may lead to different insights and conclusions. The salient properties of a resilient response must thus be identified for different contexts. Because the temporal resolution of data affects the accurate determination of these metrics, we recommend that at least twelve measurements are made over the temporal range for which the response is expected. PMID:27329053
Use of Co-occurrences for Temporal Expressions Annotation
NASA Astrophysics Data System (ADS)
Craveiro, Olga; Macedo, Joaquim; Madeira, Henrique
The annotation or extraction of temporal information from text documents is becoming increasingly important in many natural language processing applications such as text summarization, information retrieval, question answering, etc.. This paper presents an original method for easy recognition of temporal expressions in text documents. The method creates semantically classified temporal patterns, using word co-occurrences obtained from training corpora and a pre-defined seed keywords set, derived from the used language temporal references. A participation on a Portuguese named entity evaluation contest showed promising effectiveness and efficiency results. This approach can be adapted to recognize other type of expressions or languages, within other contexts, by defining the suitable word sets and training corpora.
Some scale considerations for watercourse restoration and rehabilitation
Robert R. Ziemer
1999-01-01
Summary - Appropriate temporal and spatial scales vary between rehabilitation objectives. A scale appropriate within a physical or biological context might not be appropriate within a political or social context. For example, corporations and stockholders consider quarterly profits and losses to be an important measure of corporate health. Politicians often focus on...
Temporal Withdrawal Behaviors in an Educational Policy Context
ERIC Educational Resources Information Center
Rosenblatt, Zehava; Shapira-Lishchinsky, Orly
2017-01-01
Purpose: The purpose of this paper is to investigate the differential relations between two teacher withdrawal behaviors: work absence and lateness, and two types of school ethics: organizational justice (distributive, procedural) and ethical climate (formal, caring), all in the context of school turbulent environment. Design/methodology/approach:…
Landscape Context and Regional Patterns in Arkansas' Forests
Victor A. Rudis
2001-01-01
Abstract - Recent results from Forest Inventory and Analysis (FIA) surveys provided an opportunity to explore the spatial and temporal context for Arkansasâ forests, including associated range, recreation, water, and wildlife habitat resources. Noted were damage agents and multipurpose resource indicators: evidence of human-associated activities (...
Temporal Large-Eddy Simulation
NASA Technical Reports Server (NTRS)
Pruett, C. D.; Thomas, B. C.
2004-01-01
In 1999, Stolz and Adams unveiled a subgrid-scale model for LES based upon approximately inverting (defiltering) the spatial grid-filter operator and termed .the approximate deconvolution model (ADM). Subsequently, the utility and accuracy of the ADM were demonstrated in a posteriori analyses of flows as diverse as incompressible plane-channel flow and supersonic compression-ramp flow. In a prelude to the current paper, a parameterized temporal ADM (TADM) was developed and demonstrated in both a priori and a posteriori analyses for forced, viscous Burger's flow. The development of a time-filtered variant of the ADM was motivated-primarily by the desire for a unifying theoretical and computational context to encompass direct numerical simulation (DNS), large-eddy simulation (LES), and Reynolds averaged Navier-Stokes simulation (RANS). The resultant methodology was termed temporal LES (TLES). To permit exploration of the parameter space, however, previous analyses of the TADM were restricted to Burger's flow, and it has remained to demonstrate the TADM and TLES methodology for three-dimensional flow. For several reasons, plane-channel flow presents an ideal test case for the TADM. Among these reasons, channel flow is anisotropic, yet it lends itself to highly efficient and accurate spectral numerical methods. Moreover, channel-flow has been investigated extensively by DNS, and a highly accurate data base of Moser et.al. exists. In the present paper, we develop a fully anisotropic TADM model and demonstrate its utility in simulating incompressible plane-channel flow at nominal values of Re(sub tau) = 180 and Re(sub tau) = 590 by the TLES method. The TADM model is shown to perform nearly as well as the ADM at equivalent resolution, thereby establishing TLES as a viable alternative to LES. Moreover, as the current model is suboptimal is some respects, there is considerable room to improve TLES.
Oh, Soo Hee; Donaldson, Gail S.; Kong, Ying-Yee
2016-01-01
Objectives Previous studies have documented the benefits of bimodal hearing as compared with a CI alone, but most have focused on the importance of bottom-up, low-frequency cues. The purpose of the present study was to evaluate the role of top-down processing in bimodal hearing by measuring the effect of sentence context on bimodal benefit for temporally interrupted sentences. It was hypothesized that low-frequency acoustic cues would facilitate the use of contextual information in the interrupted sentences, resulting in greater bimodal benefit for the higher context (CUNY) sentences than for the lower context (IEEE) sentences. Design Young normal-hearing listeners were tested in simulated bimodal listening conditions in which noise band vocoded sentences were presented to one ear with or without low-pass (LP) filtered speech or LP harmonic complexes (LPHCs) presented to the contralateral ear. Speech recognition scores were measured in three listening conditions: vocoder-alone, vocoder combined with LP speech, and vocoder combined with LPHCs. Temporally interrupted versions of the CUNY and IEEE sentences were used to assess listeners’ ability to fill in missing segments of speech by using top-down linguistic processing. Sentences were square-wave gated at a rate of 5 Hz with a 50 percent duty cycle. Three vocoder channel conditions were tested for each type of sentence (8, 12, and 16 channels for CUNY; 12, 16, and 32 channels for IEEE) and bimodal benefit was compared for similar amounts of spectral degradation (matched-channel comparisons) and similar ranges of baseline performance. Two gain measures, percentage-point gain and normalized gain, were examined. Results Significant effects of context on bimodal benefit were observed when LP speech was presented to the residual-hearing ear. For the matched-channel comparisons, CUNY sentences showed significantly higher normalized gains than IEEE sentences for both the 12-channel (20 points higher) and 16-channel (18 points higher) conditions. For the individual gain comparisons that used a similar range of baseline performance, CUNY sentences showed bimodal benefits that were significantly higher (7 percentage points, or 15 points normalized gain) than those for IEEE sentences. The bimodal benefits observed here for temporally interrupted speech were considerably smaller than those observed in an earlier study that used continuous speech (Kong et al., 2015). Further, unlike previous findings for continuous speech, no bimodal benefit was observed when LPHCs were presented to the LP ear. Conclusions Findings indicate that linguistic context has a significant influence on bimodal benefit for temporally interrupted speech and support the hypothesis that low-frequency acoustic information presented to the residual-hearing ear facilitates the use of top-down linguistic processing in bimodal hearing. However, bimodal benefit is reduced for temporally interrupted speech as compared to continuous speech, suggesting that listeners’ ability to restore missing speech information depends not only on top-down linguistic knowledge, but also on the quality of the bottom-up sensory input. PMID:27007220
NASA Astrophysics Data System (ADS)
Riddick, S. N.; Blackall, T. D.; Dragosits, U.; Tang, Y. S.; Moring, A.; Daunt, F.; Wanless, S.; Hamer, K. C.; Sutton, M. A.
2017-07-01
Many studies in recent years have highlighted the ecological implications of adding reactive nitrogen (Nr) to terrestrial ecosystems. Seabird colonies represent a situation with concentrated sources of Nr, through excreted and accumulated guano, often occurring in otherwise nutrient-poor areas. To date, there has been little attention given to modelling N flows in this context, and particularly to quantifying the relationship between ammonia (NH3) emissions and meteorology. This paper presents a dynamic mass-flow model (GUANO) that simulates temporal variations in NH3 emissions from seabird guano. While the focus is on NH3 emissions, the model necessarily also treats the interaction with wash-off as far as this affects NH3. The model is validated using NH3 emissions measurements from seabird colonies across a range of climates, from sub-polar to tropical. In simulations for hourly time-resolved data, the model is able to capture the observed dependence of NH3 emission on environmental variables. With temperature and wind speed having the greatest effects on emission for the cases considered. In comparison with empirical data, the percentage of excreted nitrogen that volatilizes as NH3 is found to range from 2% to 67% (based on measurements), with the GUANO model providing a range of 2%-82%. The model provides a tool that can be used to investigate the meteorological dependence of NH3 emissions from seabird guano and provides a starting point to refine models of NH3 emissions from other sources.
Temporal context and the organisational impairment of memory search in schizophrenia.
Polyn, Sean M; McCluey, Joshua D; Morton, Neal W; Woolard, Austin A; Luksik, Andrew S; Heckers, Stephan
2015-01-01
An influential theory of schizophrenic deficits in executive function suggests that patients have difficulty maintaining and utilising an internal contextual representation, whose function is to ensure that stimuli are processed in a task-appropriate manner. In basic research on episodic memory, retrieved-context theories propose that an internal contextual representation is critically involved in memory search, facilitating the retrieval of task-appropriate memories. This contextual machinery is thought to give rise to temporal organisation during free recall: the tendency for successive recall responses to correspond to items from nearby positions on the study list. If patients with schizophrenia have a generalised contextual deficit, then this leads to the prediction that these patients will exhibit reduced temporal organisation in free recall. Using a combination of classic and recently developed organisational measures, we characterised recall organisation in 75 patients with schizophrenia and 72 nondisordered control participants performing a multi-trial free-recall task. Patients with schizophrenia showed diminished temporal organisation, as well as diminished subjective organisation of their recall sequences relative to control participants. The two groups showed similar amounts of semantic organisation during recall. The observation of reduced temporal organisation in the patient group is consistent with the proposal that the memory deficit in schizophrenia can be characterised as a deficit in contextual processing.
Repetition Suppression and Reactivation in Auditory–Verbal Short-Term Recognition Memory
D'Esposito, Mark
2009-01-01
The neural response to stimulus repetition is not uniform across brain regions, stimulus modalities, or task contexts. For instance, it has been observed in many functional magnetic resonance imaging (fMRI) studies that sometimes stimulus repetition leads to a relative reduction in neural activity (repetition suppression), whereas in other cases repetition results in a relative increase in activity (repetition enhancement). In the present study, we hypothesized that in the context of a verbal short-term recognition memory task, repetition-related “increases” should be observed in the same posterior temporal regions that have been previously associated with “persistent activity” in working memory rehearsal paradigms. We used fMRI and a continuous recognition memory paradigm with short lags to examine repetition effects in the posterior and anterior regions of the superior temporal cortex. Results showed that, consistent with our hypothesis, the 2 posterior temporal regions consistently associated with working memory maintenance, also show repetition increases during short-term recognition memory. In contrast, a region in the anterior superior temporal lobe showed repetition suppression effects, consistent with previous research work on perceptual adaptation in the auditory–verbal domain. We interpret these results in light of recent theories of the functional specialization along the anterior and posterior axes of the superior temporal lobe. PMID:18987393
Repetition suppression and reactivation in auditory-verbal short-term recognition memory.
Buchsbaum, Bradley R; D'Esposito, Mark
2009-06-01
The neural response to stimulus repetition is not uniform across brain regions, stimulus modalities, or task contexts. For instance, it has been observed in many functional magnetic resonance imaging (fMRI) studies that sometimes stimulus repetition leads to a relative reduction in neural activity (repetition suppression), whereas in other cases repetition results in a relative increase in activity (repetition enhancement). In the present study, we hypothesized that in the context of a verbal short-term recognition memory task, repetition-related "increases" should be observed in the same posterior temporal regions that have been previously associated with "persistent activity" in working memory rehearsal paradigms. We used fMRI and a continuous recognition memory paradigm with short lags to examine repetition effects in the posterior and anterior regions of the superior temporal cortex. Results showed that, consistent with our hypothesis, the 2 posterior temporal regions consistently associated with working memory maintenance, also show repetition increases during short-term recognition memory. In contrast, a region in the anterior superior temporal lobe showed repetition suppression effects, consistent with previous research work on perceptual adaptation in the auditory-verbal domain. We interpret these results in light of recent theories of the functional specialization along the anterior and posterior axes of the superior temporal lobe.
Social Vocalizations of Big Brown Bats Vary with Behavioral Context
Gadziola, Marie A.; Grimsley, Jasmine M. S.; Faure, Paul A.; Wenstrup, Jeffrey J.
2012-01-01
Bats are among the most gregarious and vocal mammals, with some species demonstrating a diverse repertoire of syllables under a variety of behavioral contexts. Despite extensive characterization of big brown bat (Eptesicus fuscus) biosonar signals, there have been no detailed studies of adult social vocalizations. We recorded and analyzed social vocalizations and associated behaviors of captive big brown bats under four behavioral contexts: low aggression, medium aggression, high aggression, and appeasement. Even limited to these contexts, big brown bats possess a rich repertoire of social vocalizations, with 18 distinct syllable types automatically classified using a spectrogram cross-correlation procedure. For each behavioral context, we describe vocalizations in terms of syllable acoustics, temporal emission patterns, and typical syllable sequences. Emotion-related acoustic cues are evident within the call structure by context-specific syllable types or variations in the temporal emission pattern. We designed a paradigm that could evoke aggressive vocalizations while monitoring heart rate as an objective measure of internal physiological state. Changes in the magnitude and duration of elevated heart rate scaled to the level of evoked aggression, confirming the behavioral state classifications assessed by vocalizations and behavioral displays. These results reveal a complex acoustic communication system among big brown bats in which acoustic cues and call structure signal the emotional state of a caller. PMID:22970247
The cortical organization of lexical knowledge: A dual lexicon model of spoken language processing
Gow, David W.
2012-01-01
Current accounts of spoken language assume the existence of a lexicon where wordforms are stored and interact during spoken language perception, understanding and production. Despite the theoretical importance of the wordform lexicon, the exact localization and function of the lexicon in the broader context of language use is not well understood. This review draws on evidence from aphasia, functional imaging, neuroanatomy, laboratory phonology and behavioral results to argue for the existence of parallel lexica that facilitate different processes in the dorsal and ventral speech pathways. The dorsal lexicon, localized in the inferior parietal region including the supramarginal gyrus, serves as an interface between phonetic and articulatory representations. The ventral lexicon, localized in the posterior superior temporal sulcus and middle temporal gyrus, serves as an interface between phonetic and semantic representations. In addition to their interface roles, the two lexica contribute to the robustness of speech processing. PMID:22498237
Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia
NASA Astrophysics Data System (ADS)
Schlemmer, Alexander; Berg, Sebastian; Lilienkamp, Thomas; Luther, Stefan; Parlitz, Ulrich
2018-05-01
Permutation entropy (PE) is a robust quantity for measuring the complexity of time series. In the cardiac community it is predominantly used in the context of electrocardiogram (ECG) signal analysis for diagnoses and predictions with a major application found in heart rate variability parameters. In this article we are combining spatial and temporal PE to form a spatiotemporal PE that captures both, complexity of spatial structures and temporal complexity at the same time. We demonstrate that the spatiotemporal PE (STPE) quantifies complexity using two datasets from simulated cardiac arrhythmia and compare it to phase singularity analysis and spatial PE (SPE). These datasets simulate ventricular fibrillation (VF) on a two-dimensional and a three-dimensional medium using the Fenton-Karma model. We show that SPE and STPE are robust against noise and demonstrate its usefulness for extracting complexity features at different spatial scales.
A continuous-time neural model for sequential action.
Kachergis, George; Wyatte, Dean; O'Reilly, Randall C; de Kleijn, Roy; Hommel, Bernhard
2014-11-05
Action selection, planning and execution are continuous processes that evolve over time, responding to perceptual feedback as well as evolving top-down constraints. Existing models of routine sequential action (e.g. coffee- or pancake-making) generally fall into one of two classes: hierarchical models that include hand-built task representations, or heterarchical models that must learn to represent hierarchy via temporal context, but thus far lack goal-orientedness. We present a biologically motivated model of the latter class that, because it is situated in the Leabra neural architecture, affords an opportunity to include both unsupervised and goal-directed learning mechanisms. Moreover, we embed this neurocomputational model in the theoretical framework of the theory of event coding (TEC), which posits that actions and perceptions share a common representation with bidirectional associations between the two. Thus, in this view, not only does perception select actions (along with task context), but actions are also used to generate perceptions (i.e. intended effects). We propose a neural model that implements TEC to carry out sequential action control in hierarchically structured tasks such as coffee-making. Unlike traditional feedforward discrete-time neural network models, which use static percepts to generate static outputs, our biological model accepts continuous-time inputs and likewise generates non-stationary outputs, making short-timescale dynamic predictions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
To Tip or Not to Tip: The Case of the Congo Basin Rainforest Realm
NASA Astrophysics Data System (ADS)
Pietsch, S.; Bednar, J. E.; Fath, B. D.; Winter, P. A.
2017-12-01
The future response of the Congo basin rainforest, the second largest tropical carbon reservoir, to climate change is still under debate. Different Climate projections exist stating increase and decrease in rainfall and different changes in rainfall patterns. Within this study we assess all options of climate change possibilities to define the climatic thresholds of Congo basin rainforest stability and assess the limiting conditions for rainforest persistence. We use field data from 199 research plots from the Western Congo basin to calibrate and validate a complex BioGeoChemistry model (BGC-MAN) and assess model performance against an array of possible future climates. Next, we analyze the reasons for the occurrence of tipping points, their spatial and temporal probability of occurrence, will present effects of hysteresis and derive probabilistic spatial-temporal resilience landscapes for the region. Additionally, we will analyze attractors of forest growth dynamics and assess common linear measures for early warning signals of sudden shifts in system dynamics for their robustness in the context of the Congo Basin case, and introduce the correlation integral as a nonlinear measure of risk assessment.
Sevenster, M; Buurman, J; Liu, P; Peters, J F; Chang, P J
2015-01-01
Accumulating quantitative outcome parameters may contribute to constructing a healthcare organization in which outcomes of clinical procedures are reproducible and predictable. In imaging studies, measurements are the principal category of quantitative para meters. The purpose of this work is to develop and evaluate two natural language processing engines that extract finding and organ measurements from narrative radiology reports and to categorize extracted measurements by their "temporality". The measurement extraction engine is developed as a set of regular expressions. The engine was evaluated against a manually created ground truth. Automated categorization of measurement temporality is defined as a machine learning problem. A ground truth was manually developed based on a corpus of radiology reports. A maximum entropy model was created using features that characterize the measurement itself and its narrative context. The model was evaluated in a ten-fold cross validation protocol. The measurement extraction engine has precision 0.994 and recall 0.991. Accuracy of the measurement classification engine is 0.960. The work contributes to machine understanding of radiology reports and may find application in software applications that process medical data.
Gautestad, Arild O
2012-09-07
Animals moving under the influence of spatio-temporal scaling and long-term memory generate a kind of space-use pattern that has proved difficult to model within a coherent theoretical framework. An extended kind of statistical mechanics is needed, accounting for both the effects of spatial memory and scale-free space use, and put into a context of ecological conditions. Simulations illustrating the distinction between scale-specific and scale-free locomotion are presented. The results show how observational scale (time lag between relocations of an individual) may critically influence the interpretation of the underlying process. In this respect, a novel protocol is proposed as a method to distinguish between some main movement classes. For example, the 'power law in disguise' paradox-from a composite Brownian motion consisting of a superposition of independent movement processes at different scales-may be resolved by shifting the focus from pattern analysis at one particular temporal resolution towards a more process-oriented approach involving several scales of observation. A more explicit consideration of system complexity within a statistical mechanical framework, supplementing the more traditional mechanistic modelling approach, is advocated.
Emotional context enhances auditory novelty processing in superior temporal gyrus.
Domínguez-Borràs, Judith; Trautmann, Sina-Alexa; Erhard, Peter; Fehr, Thorsten; Herrmann, Manfred; Escera, Carles
2009-07-01
Visualizing emotionally loaded pictures intensifies peripheral reflexes toward sudden auditory stimuli, suggesting that the emotional context may potentiate responses elicited by novel events in the acoustic environment. However, psychophysiological results have reported that attentional resources available to sounds become depleted, as attention allocation to emotional pictures increases. These findings have raised the challenging question of whether an emotional context actually enhances or attenuates auditory novelty processing at a central level in the brain. To solve this issue, we used functional magnetic resonance imaging to first identify brain activations induced by novel sounds (NOV) when participants made a color decision on visual stimuli containing both negative (NEG) and neutral (NEU) facial expressions. We then measured modulation of these auditory responses by the emotional load of the task. Contrary to what was assumed, activation induced by NOV in superior temporal gyrus (STG) was enhanced when subjects responded to faces with a NEG emotional expression compared with NEU ones. Accordingly, NOV yielded stronger behavioral disruption on subjects' performance in the NEG context. These results demonstrate that the emotional context modulates the excitability of auditory and possibly multimodal novelty cerebral regions, enhancing acoustic novelty processing in a potentially harming environment.
What predicts the strength of simultaneous color contrast?
Ratnasingam, Sivalogeswaran; Anderson, Barton L.
2017-01-01
The perceived color of a uniform image patch depends not only on the spectral content of the light that reaches the eye but also on its context. One of the most extensively studied forms of context dependence is a simultaneous contrast display: a center-surround display containing a homogeneous target embedded in a homogenous surround. A number of models have been proposed to account for the chromatic transformations of targets induced by such surrounds, but they were typically derived in the restricted context of experiments using achromatic targets with surrounds that varied along the cardinal axes of color space. There is currently no theoretical consensus that predicts the target color that produces the largest perceived color difference for two arbitrarily chosen surround colors, or what surround would give the largest color induction for an arbitrarily chosen target. Here, we present a method for assessing simultaneous contrast that avoids some of the methodological issues that arise with nulling and matching experiments and diminishes the contribution of temporal adaption. Observers were presented with pairs of center-surround patterns and ordered them from largest to smallest in perceived dissimilarity. We find that the perceived difference for two arbitrarily chosen surrounds is largest when the target falls on the line connecting the two surrounds in color space. We also find that the magnitude of induction is larger for larger differences between chromatic targets and surrounds of the same hue. Our results are consistent with the direction law (Ekroll & Faul, 2012b), and with a generalization of Kirschmann's fourth law, even for viewing conditions that do not favor temporal adaptation. PMID:28245494
Austin, Samuel H.; Nelms, David L.
2017-01-01
Climate change raises concern that risks of hydrological drought may be increasing. We estimate hydrological drought probabilities for rivers and streams in the United States (U.S.) using maximum likelihood logistic regression (MLLR). Streamflow data from winter months are used to estimate the chance of hydrological drought during summer months. Daily streamflow data collected from 9,144 stream gages from January 1, 1884 through January 9, 2014 provide hydrological drought streamflow probabilities for July, August, and September as functions of streamflows during October, November, December, January, and February, estimating outcomes 5-11 months ahead of their occurrence. Few drought prediction methods exploit temporal links among streamflows. We find MLLR modeling of drought streamflow probabilities exploits the explanatory power of temporally linked water flows. MLLR models with strong correct classification rates were produced for streams throughout the U.S. One ad hoc test of correct prediction rates of September 2013 hydrological droughts exceeded 90% correct classification. Some of the best-performing models coincide with areas of high concern including the West, the Midwest, Texas, the Southeast, and the Mid-Atlantic. Using hydrological drought MLLR probability estimates in a water management context can inform understanding of drought streamflow conditions, provide warning of future drought conditions, and aid water management decision making.
ERIC Educational Resources Information Center
Moore, Sue N.; Murphy, Simon; Tapper, Katy; Moore, Laurence
2010-01-01
Purpose: Social, physical and temporal characteristics are known to influence the eating experience and the effectiveness of nutritional policies. As the school meal service features prominently in UK nutritional and health promotion policy, the paper's aim is to investigate the characteristics of the primary school dining context and their…
A theoretical framework for the incorporation of history in science education
NASA Astrophysics Data System (ADS)
Klassen, James Stephen
This thesis formulates a theoretical framework for the incorporation of history of science in science teaching, which, it is argued, is essential to laying a stable foundation for instructional design and future empirical studies. It is assumed that the historical approach to teaching science no longer needs defending and that contextual methods are a pedagogically sound approach to learning. Various cognitive and learning theories suggest that there are five distinct contexts that are important in engaging learners: the theoretical, practical, social, historical, and affective. On the basis of these five contexts, a model for teaching and learning is constructed, in which the story assumes a major role in engaging the learner affectively. This model is named the Story-Driven Contextual Approach (SDCA). The SDCA is introduced to students by means of a narrative, encouraging students to become actively engaged with the five contexts. In the SDCA, students are seen as novice researchers and the teacher as a research director. The place and nature of the historical science story in science education is a relatively undeveloped area in the literature. This thesis argues that the development of the events in a story proceed in the same fashion as the steps in learning a concept. A structural model of a story consisting of a three-stage temporal sequence, which includes a causative element, is presented and developed. It is argued that the conceptual change process, from a temporal perspective, can also be viewed as a three-stage sequence similar to the story. The story can, in this light, be thought of as the re-enactment of a particular type of learning process. This knowledge about the nature of stories can serve as a guiding principle in the designing and writing of effective stories based on the history of science, which are to be incorporated with the SDCA. The SDCA was tested in a university physics class using a constructed story which portrays the heroic personal and scientific efforts of the nineteenth century physicist Lord Kelvin in laying the first successful trans-Atlantic cable. Students designed and undertook various practical and theoretical exercises in the SDCA and observations on its implementation are reported.
Context Mining of Sedentary Behaviour for Promoting Self-Awareness Using a Smartphone.
Fahim, Muhammad; Baker, Thar; Khattak, Asad Masood; Shah, Babar; Aleem, Saiqa; Chow, Francis
2018-03-15
Sedentary behaviour is increasing due to societal changes and is related to prolonged periods of sitting. There is sufficient evidence proving that sedentary behaviour has a negative impact on people's health and wellness. This paper presents our research findings on how to mine the temporal contexts of sedentary behaviour by utilizing the on-board sensors of a smartphone. We use the accelerometer sensor of the smartphone to recognize user situations (i.e., still or active). If our model confirms that the user context is still, then there is a high probability of being sedentary. Then, we process the environmental sound to recognize the micro-context, such as working on a computer or watching television during leisure time. Our goal is to reduce sedentary behaviour by suggesting preventive interventions to take short breaks during prolonged sitting to be more active. We achieve this goal by providing the visualization to the user, who wants to monitor his/her sedentary behaviour to reduce unhealthy routines for self-management purposes. The main contribution of this paper is two-fold: (i) an initial implementation of the proposed framework supporting real-time context identification; (ii) testing and evaluation of the framework, which suggest that our application is capable of substantially reducing sedentary behaviour and assisting users to be active.
Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex
Procyk, Emmanuel; Dominey, Peter Ford
2016-01-01
Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that reservoir computing is a pertinent framework to model local cortical dynamics and their contribution to higher cognitive function. PMID:27286251
Acute alcohol intoxication among adolescents-the role of the context of drinking.
Grüne, Bettina; Piontek, Daniela; Pogarell, Oliver; Grübl, Armin; Groß, Cornelius; Reis, Olaf; Zimmermann, Ulrich S; Kraus, Ludwig
2017-01-01
This study aims (1) to describe the context of drinking among adolescents with acute alcohol intoxication (AAI) by gender, (2) to explore temporal changes in the context of drinking and (3) to analyse the association between the context of drinking and blood alcohol concentration (BAC). A retrospective chart review of 12- to 17-year-old inpatients with AAI (n = 1441) of the years 2000 to 2006 has been conducted in five participating hospitals in Germany. Gender differences in the context of drinking were tested with t test and chi 2 test. Differences over time were analysed using logistic regressions. Multivariate linear regression was used to predict BAC. Girls and boys differed in admission time, drinking situation, drinking occasion and admission context. No temporal changes in drinking situation and in admission to hospital from public locations or places were found. Higher BAC coincided with male gender and age. Moreover, BAC was higher among patients admitted to hospital from public places and lower among patients who drank for coping. The results suggest gender differences in the context of drinking. The context of drinking needs to be considered in the development and implementation of target group-specific prevention and intervention measures. What is known: • The context of drinking, e.g. when, where, why and with whom is associated with episodic heavy drinking among adolescents. What is new: • Male and female inpatients with acute alcohol intoxication differ with regards to the context of drinking, i.e. in admission time, drinking situation, drinking occasion and admission context. • Being admitted to hospital from public places is associated with higher blood alcohol concentration.
Mozaffari, Brian
2014-01-01
Based on the notion that the brain is equipped with a hierarchical organization, which embodies environmental contingencies across many time scales, this paper suggests that the medial temporal lobe (MTL)-located deep in the hierarchy-serves as a bridge connecting supra- to infra-MTL levels. Bridging the upper and lower regions of the hierarchy provides a parallel architecture that optimizes information flow between upper and lower regions to aid attention, encoding, and processing of quick complex visual phenomenon. Bypassing intermediate hierarchy levels, information conveyed through the MTL "bridge" allows upper levels to make educated predictions about the prevailing context and accordingly select lower representations to increase the efficiency of predictive coding throughout the hierarchy. This selection or activation/deactivation is associated with endogenous attention. In the event that these "bridge" predictions are inaccurate, this architecture enables the rapid encoding of novel contingencies. A review of hierarchical models in relation to memory is provided along with a new theory, Medial-temporal-lobe Conduit for Parallel Connectivity (MCPC). In this scheme, consolidation is considered as a secondary process, occurring after a MTL-bridged connection, which eventually allows upper and lower levels to access each other directly. With repeated reactivations, as contingencies become consolidated, less MTL activity is predicted. Finally, MTL bridging may aid processing transient but structured perceptual events, by allowing communication between upper and lower levels without calling on intermediate levels of representation.
Modulation-Frequency-Specific Adaptation in Awake Auditory Cortex
Beitel, Ralph E.; Vollmer, Maike; Heiser, Marc A.; Schreiner, Christoph E.
2015-01-01
Amplitude modulations are fundamental features of natural signals, including human speech and nonhuman primate vocalizations. Because natural signals frequently occur in the context of other competing signals, we used a forward-masking paradigm to investigate how the modulation context of a prior signal affects cortical responses to subsequent modulated sounds. Psychophysical “modulation masking,” in which the presentation of a modulated “masker” signal elevates the threshold for detecting the modulation of a subsequent stimulus, has been interpreted as evidence of a central modulation filterbank and modeled accordingly. Whether cortical modulation tuning is compatible with such models remains unknown. By recording responses to pairs of sinusoidally amplitude modulated (SAM) tones in the auditory cortex of awake squirrel monkeys, we show that the prior presentation of the SAM masker elicited persistent and tuned suppression of the firing rate to subsequent SAM signals. Population averages of these effects are compatible with adaptation in broadly tuned modulation channels. In contrast, modulation context had little effect on the synchrony of the cortical representation of the second SAM stimuli and the tuning of such effects did not match that observed for firing rate. Our results suggest that, although the temporal representation of modulated signals is more robust to changes in stimulus context than representations based on average firing rate, this representation is not fully exploited and psychophysical modulation masking more closely mirrors physiological rate suppression and that rate tuning for a given stimulus feature in a given neuron's signal pathway appears sufficient to engender context-sensitive cortical adaptation. PMID:25878263
Gómez, Miguel-Ángel; Ortega Toro, Enrique; Furley, Philip
2016-07-01
The aim of the current study was to analyze the temporal effects that unsportsmanlike fouls may have on basketball teams' scoring performance under consideration of context-related variables. The authors analyzed 130 unsportsmanlike fouls from 362 elite basketball games (men's and women's Olympic Games, European and World Championships). The context-related variables studied were score-line, quality of opposition, timeout situation, minutes remaining, and player status. The data were analyzed with linear-regression models. The results showed that both teams (the team that made the foul and the opponent) had similar positive scoring performances during 1 and 3 ball possessions after the unsportsmanlike foul (short-term effect). However, 5 ball possessions after the foul (midterm effect), the team that made the foul had a scoring disadvantage (-0.96) and the opponent team an advantage (0.78). The context-related variable quality of opposition was significant only during 1 ball possession, with negative effects for the team that made the foul and positive effects for the opponent. The final outcome showed a positive effect for score-line when the unsportsmanlike foul was made (0.96) and for quality of opposition (0.64).
Occurrence analysis of daily rainfalls by using non-homogeneous Poissonian processes
NASA Astrophysics Data System (ADS)
Sirangelo, B.; Ferrari, E.; de Luca, D. L.
2009-09-01
In recent years several temporally homogeneous stochastic models have been applied to describe the rainfall process. In particular stochastic analysis of daily rainfall time series may contribute to explain the statistic features of the temporal variability related to the phenomenon. Due to the evident periodicity of the physical process, these models have to be used only to short temporal intervals in which occurrences and intensities of rainfalls can be considered reliably homogeneous. To this aim, occurrences of daily rainfalls can be considered as a stationary stochastic process in monthly periods. In this context point process models are widely used for at-site analysis of daily rainfall occurrence; they are continuous time series models, and are able to explain intermittent feature of rainfalls and simulate interstorm periods. With a different approach, periodic features of daily rainfalls can be interpreted by using a temporally non-homogeneous stochastic model characterized by parameters expressed as continuous functions in the time. In this case, great attention has to be paid to the parsimony of the models, as regards the number of parameters and the bias introduced into the generation of synthetic series, and to the influence of threshold values in extracting peak storm database from recorded daily rainfall heights. In this work, a stochastic model based on a non-homogeneous Poisson process, characterized by a time-dependent intensity of rainfall occurrence, is employed to explain seasonal effects of daily rainfalls exceeding prefixed threshold values. In particular, variation of rainfall occurrence intensity ? (t) is modelled by using Fourier series analysis, in which the non-homogeneous process is transformed into a homogeneous and unit one through a proper transformation of time domain, and the choice of the minimum number of harmonics is evaluated applying available statistical tests. The procedure is applied to a dataset of rain gauges located in different geographical zones of Mediterranean area. Time series have been selected on the basis of the availability of at least 50 years in the time period 1921-1985, chosen as calibration period, and of all the years of observation in the subsequent validation period 1986-2005, whose daily rainfall occurrence process variability is under hypothesis. Firstly, for each time series and for each fixed threshold value, parameters estimation of the non-homogeneous Poisson model is carried out, referred to calibration period. As second step, in order to test the hypothesis that daily rainfall occurrence process preserves the same behaviour in more recent time periods, the intensity distribution evaluated for calibration period is also adopted for the validation period. Starting from this and using a Monte Carlo approach, 1000 synthetic generations of daily rainfall occurrences, of length equal to validation period, have been carried out, and for each simulation sample ?(t) has been evaluated. This procedure is adopted because of the complexity of determining analytical statistical confidence limits referred to the sample intensity ?(t). Finally, sample intensity, theoretical function of the calibration period and 95% statistical band, evaluated by Monte Carlo approach, are matching, together with considering, for each threshold value, the mean square error (MSE) between the theoretical ?(t) and the sample one of recorded data, and his correspondent 95% one tail statistical band, estimated from the MSE values between the sample ?(t) of each synthetic series and the theoretical one. The results obtained may be very useful in the context of the identification and calibration of stochastic rainfall models based on historical precipitation data. Further applications of the non-homogeneous Poisson model will concern the joint analyses of the storm occurrence process with the rainfall height marks, interpreted by using a temporally homogeneous model in proper sub-year intervals.
Integrated, multi-scale, spatial-temporal cell biology--A next step in the post genomic era.
Horwitz, Rick
2016-03-01
New microscopic approaches, high-throughput imaging, and gene editing promise major new insights into cellular behaviors. When coupled with genomic and other 'omic information and "mined" for correlations and associations, a new breed of powerful and useful cellular models should emerge. These top down, coarse-grained, and statistical models, in turn, can be used to form hypotheses merging with fine-grained, bottom up mechanistic studies and models that are the back bone of cell biology. The goal of the Allen Institute for Cell Science is to develop the top down approach by developing a high throughput microscopy pipeline that is integrated with modeling, using gene edited hiPS cell lines in various physiological and pathological contexts. The output of these experiments and models will be an "animated" cell, capable of integrating and analyzing image data generated from experiments and models. Copyright © 2015 Elsevier Inc. All rights reserved.
Green, Sophie; Ralph, Matthew A Lambon; Moll, Jorge; Stamatakis, Emmanuel A; Grafman, Jordan; Zahn, Roland
2010-10-01
It has been hypothesized that the experience of different moral sentiments such as guilt and indignation is underpinned by activation in temporal and fronto-mesolimbic regions and that functional integration between these regions is necessary for the differentiated experience of these moral sentiments. A recent fMRI study revealed that the right superior anterior temporal lobe (ATL) was activated irrespective of the context of moral feelings (guilt or indignation). This region has been associated with context-independent conceptual social knowledge which allows us to make fine-grained differentiations between qualities of social behaviours (e.g. "critical" and "faultfinding"). This knowledge is required to make emotional evaluations of social behaviour. In contrast to the context-independent activation of the ATL, there were context-dependent activations within different fronto-mesolimbic regions for guilt and indignation. However, it is unknown whether functional integration occurs between these regions and whether regional patterns of integration are distinctive for the experience of different moral sentiments. Here, we used fMRI and psychophysiological interaction analysis, an established measure of functional integration to investigate this issue. We found selective functional integration between the right superior ATL and a subgenual cingulate region during the experience of guilt and between the right superior ATL and the lateral orbitofrontal cortex for indignation. Our data provide the first evidence for functional integration of conceptual social knowledge representations in the right superior ATL with representations of different feeling contexts in fronto-mesolimbic regions. We speculate that this functional architecture allows for the conceptually differentiated experience of moral sentiments in healthy individuals. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fillion, Anthony; Bocquet, Marc; Gratton, Serge
2018-04-01
The analysis in nonlinear variational data assimilation is the solution of a non-quadratic minimization. Thus, the analysis efficiency relies on its ability to locate a global minimum of the cost function. If this minimization uses a Gauss-Newton (GN) method, it is critical for the starting point to be in the attraction basin of a global minimum. Otherwise the method may converge to a local extremum, which degrades the analysis. With chaotic models, the number of local extrema often increases with the temporal extent of the data assimilation window, making the former condition harder to satisfy. This is unfortunate because the assimilation performance also increases with this temporal extent. However, a quasi-static (QS) minimization may overcome these local extrema. It accomplishes this by gradually injecting the observations in the cost function. This method was introduced by Pires et al. (1996) in a 4D-Var context. We generalize this approach to four-dimensional strong-constraint nonlinear ensemble variational (EnVar) methods, which are based on both a nonlinear variational analysis and the propagation of dynamical error statistics via an ensemble. This forces one to consider the cost function minimizations in the broader context of cycled data assimilation algorithms. We adapt this QS approach to the iterative ensemble Kalman smoother (IEnKS), an exemplar of nonlinear deterministic four-dimensional EnVar methods. Using low-order models, we quantify the positive impact of the QS approach on the IEnKS, especially for long data assimilation windows. We also examine the computational cost of QS implementations and suggest cheaper algorithms.
Distinct medial temporal networks encode surprise during motivation by reward versus punishment
Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison
2016-01-01
Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. PMID:26854903
Distinct medial temporal networks encode surprise during motivation by reward versus punishment.
Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison
2016-10-01
Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. Copyright © 2016 Elsevier Inc. All rights reserved.
The functional neuroanatomy of language
NASA Astrophysics Data System (ADS)
Hickok, Gregory
2009-09-01
There has been substantial progress over the last several years in understanding aspects of the functional neuroanatomy of language. Some of these advances are summarized in this review. It will be argued that recognizing speech sounds is carried out in the superior temporal lobe bilaterally, that the superior temporal sulcus bilaterally is involved in phonological-level aspects of this process, that the frontal/motor system is not central to speech recognition although it may modulate auditory perception of speech, that conceptual access mechanisms are likely located in the lateral posterior temporal lobe (middle and inferior temporal gyri), that speech production involves sensory-related systems in the posterior superior temporal lobe in the left hemisphere, that the interface between perceptual and motor systems is supported by a sensory-motor circuit for vocal tract actions (not dedicated to speech) that is very similar to sensory-motor circuits found in primate parietal lobe, and that verbal short-term memory can be understood as an emergent property of this sensory-motor circuit. These observations are considered within the context of a dual stream model of speech processing in which one pathway supports speech comprehension and the other supports sensory-motor integration. Additional topics of discussion include the functional organization of the planum temporale for spatial hearing and speech-related sensory-motor processes, the anatomical and functional basis of a form of acquired language disorder, conduction aphasia, the neural basis of vocabulary development, and sentence-level/grammatical processing.
Teige, Catarina; Mollo, Giovanna; Millman, Rebecca; Savill, Nicola; Smallwood, Jonathan; Cornelissen, Piers L; Jefferies, Elizabeth
2018-06-01
Distinct neural processes are thought to support the retrieval of semantic information that is (i) coherent with strongly-encoded aspects of knowledge, and (ii) non-dominant yet relevant for the current task or context. While the brain regions that support readily coherent and more controlled patterns of semantic retrieval are relatively well-characterised, the temporal dynamics of these processes are not well-understood. This study used magnetoencephalography (MEG) and dual-pulse chronometric transcranial magnetic stimulation (cTMS) in two separate experiments to examine temporal dynamics during the retrieval of strong and weak associations. MEG results revealed a dissociation within left temporal cortex: anterior temporal lobe (ATL) showed greater oscillatory response for strong than weak associations, while posterior middle temporal gyrus (pMTG) showed the reverse pattern. Left inferior frontal gyrus (IFG), a site associated with semantic control and retrieval, showed both patterns at different time points. In the cTMS experiment, stimulation of ATL at ∼150 msec disrupted the efficient retrieval of strong associations, indicating a necessary role for ATL in coherent conceptual activations. Stimulation of pMTG at the onset of the second word disrupted the retrieval of weak associations, suggesting this site may maintain information about semantic context from the first word, allowing efficient engagement of semantic control. Together these studies provide converging evidence for a functional dissociation within the temporal lobe, across both tasks and time. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
STRAD Wheel: Web-Based Library for Visualizing Temporal Data.
Fernondez-Prieto, Diana; Naranjo-Valero, Carol; Hernandez, Jose Tiberio; Hagen, Hans
2017-01-01
Recent advances in web development, including the introduction of HTML5, have opened a door for visualization researchers and developers to quickly access larger audiences worldwide. Open source libraries for the creation of interactive visualizations are becoming more specialized but also modular, which makes them easy to incorporate in domain-specific applications. In this context, the authors developed STRAD (Spatio-Temporal-Radar) Wheel, a web-based library that focuses on the visualization and interactive query of temporal data in a compact view with multiple temporal granularities. This article includes two application examples in urban planning to help illustrate the proposed visualization's use in practice.
Rimé, Bernard; Yzerbyt, Vincent; Mahjoub, Abdelwahab
2017-12-01
Participation in social movements and collective action depends upon people's capacity to perceive their societal context. We examined this question in the context of Arab Spring revolutions. In a classic theory of revolution highlighting the role of collective emotions, Brinton (1938) claimed that revolutions, far from chaos, proceed in an orderly sequence involving four stages: euphoria, degradation, terror, and restoration. The emotional climate (EC) as perceived by ordinary Tunisian citizens (2,699 women and 3,816 men) was measured during the 4 years of the Tunisian revolution. A quadratic pattern of perceived EC measures over time provided strong support to Brinton's model. In addition, three different analyses suggested the presence of four distinct stages in the evolution of perceived EC. Third, the socio-political developments in Tunisia during the four stages proved entirely consistent with both Brinton's theoretical model and the perceived EC indicators. Finally, social identification proved closely related to the temporal evolution of positive EC scores. In sum, data from this study not only lend support to the views put forth in an heretofore untested classic theory of revolution but also demonstrate that psychosocial measurements can validly monitor a major process of socio-political transformation. © 2017 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Evin, Guillaume; Favre, Anne-Catherine; Hingray, Benoit
2018-02-01
We present a multi-site stochastic model for the generation of average daily temperature, which includes a flexible parametric distribution and a multivariate autoregressive process. Different versions of this model are applied to a set of 26 stations located in Switzerland. The importance of specific statistical characteristics of the model (seasonality, marginal distributions of standardized temperature, spatial and temporal dependence) is discussed. In particular, the proposed marginal distribution is shown to improve the reproduction of extreme temperatures (minima and maxima). We also demonstrate that the frequency and duration of cold spells and heat waves are dramatically underestimated when the autocorrelation of temperature is not taken into account in the model. An adequate representation of these characteristics can be crucial depending on the field of application, and we discuss potential implications in different contexts (agriculture, forestry, hydrology, human health).
3D Dynamics of Magnetic Flux Ropes Across Scales: Solar Eruptions and Sun-Earth Plasma Coupling
NASA Astrophysics Data System (ADS)
Chen, James
2012-10-01
Central to the understanding of the eruptive phenomena on the Sun and their impact on the terrestrial plasma environment is the dynamics of coronal mass ejections (CMEs)---a 3D magnetic flux rope configuration---and the evolution of their magnetic fields. I will discuss the basic physics of CME eruption and solar flare energy release in the context of the analytic erupting flux rope model of CMEs. In this ideal MHD model, a CME is treated as a 3D flux rope with its two stationary footpoints anchored in the Sun. The model structure is non-axisymmetric and embedded in a model corona/solar wind. The initial flux rope is driven out of equilibrium by ``injection'' of poloidal flux and propagates under the Lorentz hoop force from the Sun to 1 AU, across a wide range of spatial and temporal scales. Comparisons of the model results and recent STEREO observations show that the solutions that best fit the observed CME position-time data (to within 1-2% of data) also correctly replicate the temporal profiles of associated flare X-ray emissions (GOES data) and the in situ magnetic field and plasma data of the CME ejecta at 1 AU where such data are available (e.g., ACE and STEREO/IMPAXCT/PLASTIC data), providing a unified basis of understanding CME dynamics and flare energetics.
Modeling Future Fire danger over North America in a Changing Climate
NASA Astrophysics Data System (ADS)
Jain, P.; Paimazumder, D.; Done, J.; Flannigan, M.
2016-12-01
Fire danger ratings are used to determine wildfire potential due to weather and climate factors. The Fire Weather Index (FWI), part of the Canadian Forest Fire Danger Rating System (CFFDRS), incorporates temperature, relative humidity, windspeed and precipitation to give a daily fire danger rating that is used by wildfire management agencies in an operational context. Studies using GCM output have shown that future wildfire danger will increase in a warming climate. However, these studies are somewhat limited by the coarse spatial resolution (typically 100-400km) and temporal resolution (typically 6-hourly to monthly) of the model output. Future wildfire potential over North America based on FWI is calculated using output from the Weather, Research and Forecasting (WRF) model, which is used to downscale future climate scenarios from the bias-corrected Community Climate System Model (CCSM) under RCP8.5 scenarios at a spatial resolution of 36km. We consider five eleven year time slices: 1990-2000, 2020-2030, 2030-2040, 2050-2060 and 2080-2090. The dynamically downscaled simulation improves determination of future extreme weather by improving both spatial and temporal resolution over most GCM models. To characterize extreme fire weather we calculate annual numbers of spread days (days for which FWI > 19) and annual 99th percentile of FWI. Additionally, an extreme value analysis based on the peaks-over-threshold method allows us to calculate the return values for extreme FWI values.
Santos, Thays Brenner; Kramer-Soares, Juliana Carlota; Favaro, Vanessa Manchim; Oliveira, Maria Gabriela Menezes
2017-10-01
Time plays an important role in conditioning, it is not only possible to associate stimuli with events that overlap, as in delay fear conditioning, but it is also possible to associate stimuli that are discontinuous in time, as shown in trace conditioning for a discrete stimuli. The environment itself can be a powerful conditioned stimulus (CS) and be associated to unconditioned stimulus (US). Thus, the aim of the present study was to determine the parameters in which contextual fear conditioning occurs by the maintenance of a contextual representation over short and long time intervals. The results showed that a contextual representation can be maintained and associated after 5s, even in the absence of a 15s re-exposure to the training context before US delivery. The same effect was not observed with a 24h interval of discontinuity. Furthermore, optimal conditioned response with a 5s interval is produced only when the contexts (of pre-exposure and shock) match. As the pre-limbic cortex (PL) is necessary for the maintenance of a continuous representation of a stimulus, the involvement of the PL in this temporal and contextual processing was investigated. The reversible inactivation of the PL by muscimol infusion impaired the acquisition of contextual fear conditioning with a 5s interval, but not with a 24h interval, and did not impair delay fear conditioning. The data provided evidence that short and long intervals of discontinuity have different mechanisms, thus contributing to a better understanding of PL involvement in contextual fear conditioning and providing a model that considers both temporal and contextual factors in fear conditioning. Copyright © 2017 Elsevier Inc. All rights reserved.
The Interaction of Temporal Generalization Gradients Predicts the Context Effect
ERIC Educational Resources Information Center
de Castro, Ana Catarina; Machado, Armando
2012-01-01
In a temporal double bisection task, animals learn two discriminations. In the presence of Red and Green keys, responses to Red are reinforced after 1-s samples and responses to Green are reinforced after 4-s samples; in the presence of Blue and Yellow keys, responses to Blue are reinforced after 4-s samples and responses to Yellow are reinforced…
ERIC Educational Resources Information Center
Lapping, Claudia
2017-01-01
In the context of ongoing debates about the distinctive temporalities associated with contemporary regulative regimes, this paper explores the interpretive trajectories initiated in contrasting conceptualisations of the politics of time. This exploration is developed through analysis of interview data from a study of unconscious relations in…
Dikker, Suzanne; Silbert, Lauren J; Hasson, Uri; Zevin, Jason D
2014-04-30
Recent research has shown that the degree to which speakers and listeners exhibit similar brain activity patterns during human linguistic interaction is correlated with communicative success. Here, we used an intersubject correlation approach in fMRI to test the hypothesis that a listener's ability to predict a speaker's utterance increases such neural coupling between speakers and listeners. Nine subjects listened to recordings of a speaker describing visual scenes that varied in the degree to which they permitted specific linguistic predictions. In line with our hypothesis, the temporal profile of listeners' brain activity was significantly more synchronous with the speaker's brain activity for highly predictive contexts in left posterior superior temporal gyrus (pSTG), an area previously associated with predictive auditory language processing. In this region, predictability differentially affected the temporal profiles of brain responses in the speaker and listeners respectively, in turn affecting correlated activity between the two: whereas pSTG activation increased with predictability in the speaker, listeners' pSTG activity instead decreased for more predictable sentences. Listeners additionally showed stronger BOLD responses for predictive images before sentence onset, suggesting that highly predictable contexts lead comprehenders to preactivate predicted words.
Cadle, Chelsea E; Zoladz, Phillip R
2015-01-01
Stress induces several temporally guided "waves" of psychobiological responses that differentially influence learning and memory. One way to understand how the temporal dynamics of stress influence these cognitive processes is to consider stress, itself, as a learning experience that influences additional learning and memory. Indeed, research has shown that stress results in electrophysiological and biochemical activity that is remarkably similar to the activity observed as a result of learning. In this review, we will present the idea that when a stressful episode immediately precedes or follows learning, such learning is enhanced because the learned information becomes a part of the stress context and is tagged by the emotional memory being formed. In contrast, when a stressful episode is temporally separated from learning or is experienced prior to retrieval, such learning or memory is impaired because the learning or memory is experienced outside the context of the stress episode or subsequent to a saturation of synaptic plasticity, which renders the retrieval of information improbable. The temporal dynamics of emotional memory formation, along with the neurobiological correlates of the stress response, are discussed to support these hypotheses.
Temporal context, preference, and resistance to change.
Podlesnik, Christopher A; Jimenez-Gomez, Corina; Thrailkill, Eric A; Shahan, Timothy A
2011-09-01
According to behavioral momentum theory, preference and relative resistance to change in concurrent-chains schedules are correlated and reflect the relative conditioned value of discriminative stimuli. In the present study, we explore the generality of this relation by manipulating the temporal context within a concurrent-chains procedure through changes in the duration of the initial links. Consistent with previous findings, preference for a richer terminal link was less extreme with longer initial links across three experiments with pigeons. In Experiment 1, relative resistance to change and preference were related inversely when responding was disrupted with response-independent food presentations during initial links, replicating a previous finding with rats. However, more food was presented with longer initial links, confounding the disrupter and initial-link duration. In Experiment 2, presession feeding was used instead and eliminated the negative relation between relative resistance to change and preference, but relative resistance to change was not sensitive to relative terminal-link reinforcement rates. In Experiment 3, with more extreme relative terminal-link reinforcement rates, increasing initial-link duration similarly decreased preference and relative resistance to change for the richer terminal link. Thus, when conditions of disruption are equal and assessed under the appropriate reinforcement conditions, changes in temporal context impact relative resistance to change and preference similarly.
Wang, Hongqing; Chen, Qin; Hu, Kelin; LaPeyre, Megan K.
2017-01-01
Freshwater and sediment management in estuaries affects water quality, particularly in deltaic estuaries. Furthermore, climate change-induced sea-level rise (SLR) and land subsidence also affect estuarine water quality by changing salinity, circulation, stratification, sedimentation, erosion, residence time, and other physical and ecological processes. However, little is known about how the magnitudes and spatial and temporal patterns in estuarine water quality variables will change in response to freshwater and sediment management in the context of future SLR. In this study, we applied the Delft3D model that couples hydrodynamics and water quality processes to examine the spatial and temporal variations of salinity, total suspended solids, and chlorophyll-α concentration in response to small (142 m3 s−1) and large (7080 m3 s−1) Mississippi River (MR) diversions under low (0.38 m) and high (1.44 m) relative SLR (RSLR = eustatic SLR + subsidence) scenarios in the Breton Sound Estuary, Louisiana, USA. The hydrodynamics and water quality model were calibrated and validated via field observations at multiple stations across the estuary. Model results indicate that the large MR diversion would significantly affect the magnitude and spatial and temporal patterns of the studied water quality variables across the entire estuary, whereas the small diversion tends to influence water quality only in small areas near the diversion. RSLR would also play a significant role on the spatial heterogeneity in estuary water quality by acting as an opposite force to river diversions; however, RSLR plays a greater role than the small-scale diversion on the magnitude and spatial pattern of the water quality parameters in this deltaic estuary.
Raghavan, Ram K.; Hanlon, Cathleen A.; Goodin, Douglas G.; Anderson, Gary A.
2016-01-01
Striped skunks are one of the most important terrestrial reservoirs of rabies virus in North America, and yet the prevalence of rabies among this host is only passively monitored and the disease among this host remains largely unmanaged. Oral vaccination campaigns have not efficiently targeted striped skunks, while periodic spillovers of striped skunk variant viruses to other animals, including some domestic animals, are routinely recorded. In this study we evaluated the spatial and spatio-temporal patterns of infection status among striped skunk cases submitted for rabies testing in the North Central Plains of US in a Bayesian hierarchical framework, and also evaluated potential eco-climatological drivers of such patterns. Two Bayesian hierarchical models were fitted to point-referenced striped skunk rabies cases [n = 656 (negative), and n = 310 (positive)] received at a leading rabies diagnostic facility between the years 2007–2013. The first model included only spatial and temporal terms and a second covariate model included additional covariates representing eco-climatic conditions within a 4km2 home-range area for striped skunks. The better performing covariate model indicated the presence of significant spatial and temporal trends in the dataset and identified higher amounts of land covered by low-intensity developed areas [Odds ratio (OR) = 3.41; 95% Bayesian Credible Intervals (CrI) = 2.08, 3.85], higher level of patch fragmentation (OR = 1.70; 95% CrI = 1.25, 2.89), and diurnal temperature range (OR = 0.54; 95% CrI = 0.27, 0.91) to be important drivers of striped skunk rabies incidence in the study area. Model validation statistics indicated satisfactory performance for both models; however, the covariate model fared better. The findings of this study are important in the context of rabies management among striped skunks in North America, and the relevance of physical and climatological factors as risk factors for skunk to human rabies transmission and the space-time patterns of striped skunk rabies are discussed. PMID:27127994
The role of temporal speech cues in facilitating the fluency of adults who stutter.
Park, Jin; Logan, Kenneth J
2015-12-01
Adults who stutter speak more fluently during choral speech contexts than they do during solo speech contexts. The underlying mechanisms for this effect remain unclear, however. In this study, we examined the extent to which the choral speech effect depended on presentation of intact temporal speech cues. We also examined whether speakers who stutter followed choral signals more closely than typical speakers did. 8 adults who stuttered and 8 adults who did not stutter read 60 sentences aloud during a solo speaking condition and three choral speaking conditions (240 total sentences), two of which featured either temporally altered or indeterminate word duration patterns. Effects of these manipulations on speech fluency, rate, and temporal entrainment with the choral speech signal were assessed. Adults who stutter spoke more fluently in all choral speaking conditions than they did when speaking solo. They also spoke slower and exhibited closer temporal entrainment with the choral signal during the mid- to late-stages of sentence production than the adults who did not stutter. Both groups entrained more closely with unaltered choral signals than they did with altered choral signals. Findings suggest that adults who stutter make greater use of speech-related information in choral signals when talking than adults with typical fluency do. The presence of fluency facilitation during temporally altered choral speech and conversation babble, however, suggests that temporal/gestural cueing alone cannot account for fluency facilitation in speakers who stutter. Other potential fluency enhancing mechanisms are discussed. The reader will be able to (a) summarize competing views on stuttering as a speech timing disorder, (b) describe the extent to which adults who stutter depend on an accurate rendering of temporal information in order to benefit from choral speech, and (c) discuss possible explanations for fluency facilitation in the presence of inaccurate or indeterminate temporal cues. Copyright © 2015 Elsevier Inc. All rights reserved.
Vlachos, Ioannis; Herry, Cyril; Lüthi, Andreas; Aertsen, Ad; Kumar, Arvind
2011-01-01
The basal nucleus of the amygdala (BA) is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS)-related input from the adjacent lateral nucleus (LA) and contextual input from the hippocampus or medial prefrontal cortex (mPFC). We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA) thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories. PMID:21437238
Censored rainfall modelling for estimation of fine-scale extremes
NASA Astrophysics Data System (ADS)
Cross, David; Onof, Christian; Winter, Hugo; Bernardara, Pietro
2018-01-01
Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation, and risk quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In this study, we improve the physical basis for short-duration extreme rainfall estimation by simulating the heavy portion of the rainfall record mechanistically using the Bartlett-Lewis rectangular pulse (BLRP) model. Mechanistic rainfall models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the known phenomenology of rainfall generation. A censored approach to Bartlett-Lewis model calibration is proposed and performed for single-site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each gauge at the 5, 15, and 60 min resolutions, and considerations for censor selection discussed.
Deep hierarchical attention network for video description
NASA Astrophysics Data System (ADS)
Li, Shuohao; Tang, Min; Zhang, Jun
2018-03-01
Pairing video to natural language description remains a challenge in computer vision and machine translation. Inspired by image description, which uses an encoder-decoder model for reducing visual scene into a single sentence, we propose a deep hierarchical attention network for video description. The proposed model uses convolutional neural network (CNN) and bidirectional LSTM network as encoders while a hierarchical attention network is used as the decoder. Compared to encoder-decoder models used in video description, the bidirectional LSTM network can capture the temporal structure among video frames. Moreover, the hierarchical attention network has an advantage over single-layer attention network on global context modeling. To make a fair comparison with other methods, we evaluate the proposed architecture with different types of CNN structures and decoders. Experimental results on the standard datasets show that our model has a more superior performance than the state-of-the-art techniques.
Dankner, Yarden; Shalev, Lilach; Carrasco, Marisa; Yuval-Greenberg, Shlomit
2017-07-01
Knowing when to expect important events to occur is critical for preparing context-appropriate behavior. However, anticipation is inherently complicated to assess because conventional measurements of behavior, such as accuracy and reaction time, are available only after the predicted event has occurred. Anticipatory processes, which occur prior to target onset, are typically measured only retrospectively by these methods. In this study, we utilized a novel approach for assessing temporal expectations through the dynamics of prestimulus saccades. Results showed that saccades of neurotypical participants were inhibited prior to the onset of stimuli that appeared at predictable compared with less predictable times. No such inhibition was found in most participants with attention-deficit/hyperactivity disorder (ADHD), and particularly not in those who experienced difficulties in sustaining attention over time. These findings suggest that individuals with ADHD, especially those with sustained-attention deficits, have diminished ability to benefit from temporal predictability, and this could account for some of their context-inappropriate behaviors.
Influence of emotional content and context on memory in mild Alzheimer's disease.
Perrin, Margaux; Henaff, Marie-Anne; Padovan, Catherine; Faillenot, Isabelle; Merville, Adrien; Krolak-Salmon, Pierre
2012-01-01
Healthy subjects remember emotional stimuli better than neutral, as well as stimuli embedded in an emotional context. This better memory of emotional messages is linked to an amygdalo-hippocampal cooperation taking place in a larger fronto-temporal network particularly sensitive to pathological aging. Amygdala is mainly involved in gist memory of emotional messages. Whether emotional content or context enhances memory in mild Alzheimer's disease (AD) patients is still debated. The aim of the present study is to examine the influence of emotional content and emotional context on the memory in mild AD, and whether this influence is linked to amygdala volume. Fifteen patients affected by mild AD and 15 age-matched controls were submitted to series of negative, positive, and neutral pictures. Each series was embedded in an emotional or neutral sound context. At the end of each series, participants had to freely recall pictures, and answer questions about each picture. Amygdala volumes were measured on patient 3D-MRI scans. In the present study, emotional content significantly favored memory of gist but not of details in healthy elderly and in AD patients. Patients' amygdala volume was positively correlated to emotional content memory effect, implying a reduced memory benefit from emotional content when amygdala was atrophied. A positive context enhanced memory of pictures in healthy elderly, but not in AD, corroborating early fronto-temporal dysfunction and early working memory limitation in this disease.
Daveson, Barbara; O'Callaghan, Clare
2011-01-01
Many references to time or temporality are located within music therapy literature, however little research has been completed regarding this phenomenon. Findings from a modified grounded theory study about clients' experiences and descriptions of time within the context of music therapy are presented here. The study was informed by the constructivist-interpretive paradigm and a grounded-descriptive statement finding resulted. A 2-staged research methodology was used, comprising a deductive-inductive content analysis of information from the public domain, followed by data-mining of information from a minimum of 160 clients and analysis of data from at least 43 of these 160 clients. Information regarding memory experiences, the duration of music therapy effects, recall and retrieval, and experiences of time are identified. Implications for practice are emphasized, in particular the following is stressed (a) the importance of time orientation and temporal connectedness in relation to identity development, (b) temporal strategies within music experience to assist integration, recall, and retrieval of information, and (c) the importance of and the elements involved in time modification. New explanations for music therapy phenomena are shared, and areas for research highlighted. Benefits of using time dynamically to aid therapeutic process are proposed, and it is concluded that temporal experience within the context of music therapy is important in relation to both practice and research.
[Anterograde declarative memory and its models].
Barbeau, E-J; Puel, M; Pariente, J
2010-01-01
Patient H.M.'s recent death provides the opportunity to highlight the importance of his contribution to a better understanding of the anterograde amnesic syndrome. The thorough study of this patient over five decades largely contributed to shape the unitary model of declarative memory. This model holds that declarative memory is a single system that cannot be fractionated into subcomponents. As a system, it depends mainly on medial temporal lobes structures. The objective of this review is to present the main characteristics of different modular models that have been proposed as alternatives to the unitary model. It is also an opportunity to present different patients, who, although less famous than H.M., helped make signification contribution to the field of memory. The characteristics of the five main modular models are presented, including the most recent one (the perceptual-mnemonic model). The differences as well as how these models converge are highlighted. Different possibilities that could help reconcile unitary and modular approaches are considered. Although modular models differ significantly in many aspects, all converge to the notion that memory for single items and semantic memory could be dissociated from memory for complex material and context-rich episodes. In addition, these models converge concerning the involvement of critical brain structures for these stages: Item and semantic memory, as well as familiarity, are thought to largely depend on anterior subhippocampal areas, while relational, context-rich memory and recollective experiences are thought to largely depend on the hippocampal formation. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
The fourth dimension of tool use: temporally enduring artefacts aid primates learning to use tools
Fragaszy, D. M.; Biro, D.; Eshchar, Y.; Humle, T.; Izar, P.; Resende, B.; Visalberghi, E.
2013-01-01
All investigated cases of habitual tool use in wild chimpanzees and capuchin monkeys include youngsters encountering durable artefacts, most often in a supportive social context. We propose that enduring artefacts associated with tool use, such as previously used tools, partly processed food items and residual material from previous activity, aid non-human primates to learn to use tools, and to develop expertise in their use, thus contributing to traditional technologies in non-humans. Therefore, social contributions to tool use can be considered as situated in the three dimensions of Euclidean space, and in the fourth dimension of time. This notion expands the contribution of social context to learning a skill beyond the immediate presence of a model nearby. We provide examples supporting this hypothesis from wild bearded capuchin monkeys and chimpanzees, and suggest avenues for future research. PMID:24101621
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Levente
Interpreting sensor data require knowledge about sensor placement and the surrounding environment. For a single sensor measurement, it is easy to document the context by visual observation, however for millions of sensors reporting data back to a server, the contextual information needs to be automatically extracted from either data analysis or leveraging complimentary data sources. Data layers that overlap spatially or temporally with sensor locations, can be used to extract the context and to validate the measurement. To minimize the amount of data transmitted through the internet, while preserving signal information content, two methods are explored; computation at the edgemore » and compressed sensing. We validate the above methods on wind and chemical sensor data (1) eliminate redundant measurement from wind sensors and (2) extract peak value of a chemical sensor measuring a methane plume. We present a general cloud based framework to validate sensor data based on statistical and physical modeling and contextual data extracted from geospatial data.« less
The fourth dimension of tool use: temporally enduring artefacts aid primates learning to use tools.
Fragaszy, D M; Biro, D; Eshchar, Y; Humle, T; Izar, P; Resende, B; Visalberghi, E
2013-11-19
All investigated cases of habitual tool use in wild chimpanzees and capuchin monkeys include youngsters encountering durable artefacts, most often in a supportive social context. We propose that enduring artefacts associated with tool use, such as previously used tools, partly processed food items and residual material from previous activity, aid non-human primates to learn to use tools, and to develop expertise in their use, thus contributing to traditional technologies in non-humans. Therefore, social contributions to tool use can be considered as situated in the three dimensions of Euclidean space, and in the fourth dimension of time. This notion expands the contribution of social context to learning a skill beyond the immediate presence of a model nearby. We provide examples supporting this hypothesis from wild bearded capuchin monkeys and chimpanzees, and suggest avenues for future research.
Spectral and Timing Diagnostics of Accretion in XRBs
NASA Astrophysics Data System (ADS)
Nowak, M. N.
One of the truly great advantages of the Rossi X-ray Timing Explorer has been its flexible scheduling coupled with the presence of the All Sky Monitor. This has allowed mutliple observations of given objects over a wide range of luminosities that, thanks to the ASM, can be placed within the context of the overall behavior of the source. This has begun to allow us to develop theories of how the accretion flow in black hole candidates changes as a function of state and accretion rate. A number of spectral and temporal correlations have been seen, others have merely been suggested as being probably or possible. In this talk I will review some of these suggestions, and outline those correlations that I think are firm and contrast them to those that I believe are still very speculative. I will discuss these observations in the context of suggested models for the structure, size scale, and dynamics of the accretion flow.
More to it than meets the eye: how eye movements can elucidate the development of episodic memory.
Pathman, Thanujeni; Ghetti, Simona
2016-07-01
The ability to recognise past events along with the contexts in which they occurred is a hallmark of episodic memory, a critical capacity. Eye movements have been shown to track veridical memory for the associations between events and their contexts (relational binding). Such eye-movement effects emerge several seconds before, or in the absence of, explicit response, and are linked to the integrity and function of the hippocampus. Drawing from research from infancy through late childhood, and by comparing to investigations from typical adults, patient populations, and animal models, it seems increasingly clear that eye movements reflect item-item, item-temporal, and item-spatial associations in developmental populations. We analyse this line of work, identify missing pieces in the literature and outline future avenues of research, in order to help elucidate the development of episodic memory.
Physical and Social Contexts of Physical Activity Behaviors of Fifth and Seventh Grade Youth
ERIC Educational Resources Information Center
Saunders, Ruth P.; Dowda, Marsha; Mciver, Kerry; McDonald, Samantha M.; Pate, Russell R.
2018-01-01
Background: The purpose of this study was to characterize the temporal, social, and physical contexts for physical activities commonly reported in a diverse cohort of 753 boys and girls from fifth to seventh grade. Methods: Data were obtained from a multilevel longitudinal study, the Transitions and Activity Changes in Kids. The Physical Activity…
The Perceived Effect of Time on HIV/AIDS Identity Incorporation
ERIC Educational Resources Information Center
Baumgartner, Lisa M.
2012-01-01
Individuals experience disease in a variety of contexts. In this study, I examined how the temporal context (e.g., historical time, social time, chronological age and the passage of time) affected the incorporation of the HIV/AIDS identity into the self. I used semi structured interviews to collect data from 36 individuals living with HIV/AIDS.…
Hemispheric asymmetry in the hierarchical perception of music and speech.
Rosenthal, Matthew A
2016-11-01
The perception of music and speech involves a higher level, cognitive mechanism that allows listeners to form expectations for future music and speech events. This article comprehensively reviews studies on hemispheric differences in the formation of melodic and harmonic expectations in music and selectively reviews studies on hemispheric differences in the formation of syntactic and semantic expectations in speech. On the basis of this review, it is concluded that the higher level mechanism flexibly lateralizes music processing to either hemisphere depending on the expectation generated by a given musical context. When a context generates in the listener an expectation whose elements are sequentially ordered over time, higher level processing is dominant in the left hemisphere. When a context generates in the listener an expectation whose elements are not sequentially ordered over time, higher level processing is dominant in the right hemisphere. This article concludes with a spreading activation model that describes expectations for music and speech in terms of shared temporal and nontemporal representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Normativity unbound: liminality in palliative care ethics.
Braude, Hillel
2012-04-01
This article applies the anthropological concept of liminality to reconceptualize palliative care ethics. Liminality possesses both spatial and temporal dimensions. Both these aspects are analyzed to provide insight into the intersubjective relationship between patient and caregiver in the context of palliative care. Aristotelian practical wisdom, or phronesis, is considered to be the appropriate model for palliative care ethics, provided it is able to account for liminality. Moreover, this article argues for the importance of liminality for providing an ethical structure that grounds the doctrine of double effect and overcomes the impasse of phronesis in the treatment of the terminally ill.
Frate, Ludovico; Acosta, Alicia T R; Cabido, Marcelo; Hoyos, Laura; Carranza, Maria Laura
2015-01-01
The context in which a forest exists strongly influences its function and sustainability. Unveiling the multi-scale nature of forest fragmentation context is crucial to understand how human activities affect the spatial patterns of forests across a range of scales. However, this issue remains almost unexplored in subtropical ecosystems. In this study, we analyzed temporal changes (1979-2010) in forest contexts in the Argentinean dry Chaco at multiple extents. We classified forests over the last three decades based on forest context amount (Pf) and structural connectivity (Pff), which were measured using a moving window approach fixed at eight different extents (from local, ~ 6 ha, to regional, ~ 8300 ha). Specific multi-scale forest context profiles (for the years 1979 and 2010) were defined by projecting Pf vs. Pff mean values and were compared across spatial extents. The distributions of Pf across scales were described by scalograms and their shapes over time were compared. The amount of agricultural land and rangelands across the scales were also analyzed. The dry Chaco has undergone an intensive process of fragmentation, resulting in a shift from landscapes dominated by forests with gaps of rangelands to landscapes where small forest patches are embedded in agricultural lands. Multi-scale fragmentation analysis depicted landscapes in which local exploitation, which perforates forest cover, occurs alongside extensive forest clearings, reducing forests to small and isolated patches surrounded by agricultural lands. In addition, the temporal diminution of Pf's variability along with the increment of the mean slope of the Pf 's scalograms, indicate a simplification of the spatial pattern of forest over time. The observed changes have most likely been the result of the interplay between human activities and environmental constraints, which have shaped the spatial patterns of forests across scales. Based on our results, strategies for the conservation and sustainable management of the dry Chaco should take into account both the context of each habitat location and the scales over which a forest pattern might be preserved, altered or restored.
Frate, Ludovico; Acosta, Alicia T. R.; Cabido, Marcelo; Hoyos, Laura; Carranza, Maria Laura
2015-01-01
The context in which a forest exists strongly influences its function and sustainability. Unveiling the multi-scale nature of forest fragmentation context is crucial to understand how human activities affect the spatial patterns of forests across a range of scales. However, this issue remains almost unexplored in subtropical ecosystems. In this study, we analyzed temporal changes (1979–2010) in forest contexts in the Argentinean dry Chaco at multiple extents. We classified forests over the last three decades based on forest context amount (P f) and structural connectivity (P ff), which were measured using a moving window approach fixed at eight different extents (from local, ~ 6 ha, to regional, ~ 8300 ha). Specific multi-scale forest context profiles (for the years 1979 and 2010) were defined by projecting P f vs. P ff mean values and were compared across spatial extents. The distributions of P f across scales were described by scalograms and their shapes over time were compared. The amount of agricultural land and rangelands across the scales were also analyzed. The dry Chaco has undergone an intensive process of fragmentation, resulting in a shift from landscapes dominated by forests with gaps of rangelands to landscapes where small forest patches are embedded in agricultural lands. Multi-scale fragmentation analysis depicted landscapes in which local exploitation, which perforates forest cover, occurs alongside extensive forest clearings, reducing forests to small and isolated patches surrounded by agricultural lands. In addition, the temporal diminution of P f’s variability along with the increment of the mean slope of the P f ‘s scalograms, indicate a simplification of the spatial pattern of forest over time. The observed changes have most likely been the result of the interplay between human activities and environmental constraints, which have shaped the spatial patterns of forests across scales. Based on our results, strategies for the conservation and sustainable management of the dry Chaco should take into account both the context of each habitat location and the scales over which a forest pattern might be preserved, altered or restored. PMID:26630387
A Novel Temporal Bone Simulation Model Using 3D Printing Techniques.
Mowry, Sarah E; Jammal, Hachem; Myer, Charles; Solares, Clementino Arturo; Weinberger, Paul
2015-09-01
An inexpensive temporal bone model for use in a temporal bone dissection laboratory setting can be made using a commercially available, consumer-grade 3D printer. Several models for a simulated temporal bone have been described but use commercial-grade printers and materials to produce these models. The goal of this project was to produce a plastic simulated temporal bone on an inexpensive 3D printer that recreates the visual and haptic experience associated with drilling a human temporal bone. Images from a high-resolution CT of a normal temporal bone were converted into stereolithography files via commercially available software, with image conversion and print settings adjusted to achieve optimal print quality. The temporal bone model was printed using acrylonitrile butadiene styrene (ABS) plastic filament on a MakerBot 2x 3D printer. Simulated temporal bones were drilled by seven expert temporal bone surgeons, assessing the fidelity of the model as compared with a human cadaveric temporal bone. Using a four-point scale, the simulated bones were assessed for haptic experience and recreation of the temporal bone anatomy. The created model was felt to be an accurate representation of a human temporal bone. All raters felt strongly this would be a good training model for junior residents or to simulate difficult surgical anatomy. Material cost for each model was $1.92. A realistic, inexpensive, and easily reproducible temporal bone model can be created on a consumer-grade desktop 3D printer.
NASA Technical Reports Server (NTRS)
Markowitz, A.; Turner, T. J.; Papadakis, I.; Arevalo, P.; Reeves, J. N.; Miller, L.
2007-01-01
We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766 obtained from a six-revolution XMM-Newton observation in 2005. The resulting PSDs, which have highest temporal frequency resolution for an AGN PSD to date, show breaks which increase in temporal frequency as photon energy increases; break frequencies differ by an average of approx.0.4 in the log between the softest and hardest bands. The consistency of the 2001 and 2005 observations variability properties, namely PSD shapes and the linear rms-flux relation, suggests the 2005 observation is simply a low-flux extension of the 2001 observation. The coherence function is measured to be approx.0.6-0.9 at temporal frequencies below the PSD break, and is lower for relatively larger energy band separation; coherence also drops significantly towards zero above the PSD break frequency. Temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time: lags increase towards longer time scales and as energy separation increases. Cross-spectral properties are the thus consistent with previous measurements for Mkn 766 (Vaughan & Fabian 2003) and other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.
Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms
NASA Astrophysics Data System (ADS)
Bryson, M.; Johnson-Roberson, M.; Murphy, R.
2012-07-01
Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.
NASA Astrophysics Data System (ADS)
Hahn, Markus; Barrois, Björn; Krüger, Lars; Wöhler, Christian; Sagerer, Gerhard; Kummert, Franz
2010-09-01
This study introduces an approach to model-based 3D pose estimation and instantaneous motion analysis of the human hand-forearm limb in the application context of safe human-robot interaction. 3D pose estimation is performed using two approaches: The Multiocular Contracting Curve Density (MOCCD) algorithm is a top-down technique based on pixel statistics around a contour model projected into the images from several cameras. The Iterative Closest Point (ICP) algorithm is a bottom-up approach which uses a motion-attributed 3D point cloud to estimate the object pose. Due to their orthogonal properties, a fusion of these algorithms is shown to be favorable. The fusion is performed by a weighted combination of the extracted pose parameters in an iterative manner. The analysis of object motion is based on the pose estimation result and the motion-attributed 3D points belonging to the hand-forearm limb using an extended constraint-line approach which does not rely on any temporal filtering. A further refinement is obtained using the Shape Flow algorithm, a temporal extension of the MOCCD approach, which estimates the temporal pose derivative based on the current and the two preceding images, corresponding to temporal filtering with a short response time of two or at most three frames. Combining the results of the two motion estimation stages provides information about the instantaneous motion properties of the object. Experimental investigations are performed on real-world image sequences displaying several test persons performing different working actions typically occurring in an industrial production scenario. In all example scenes, the background is cluttered, and the test persons wear various kinds of clothes. For evaluation, independently obtained ground truth data are used. [Figure not available: see fulltext.
3D Printed Pediatric Temporal Bone: A Novel Training Model.
Longfield, Evan A; Brickman, Todd M; Jeyakumar, Anita
2015-06-01
Temporal bone dissection is a fundamental element of otologic training. Cadaveric temporal bones (CTB) are the gold standard surgical training model; however, many institutions do not have ready access to them and their cost can be significant: $300 to $500. Furthermore, pediatric cadaveric temporal bones are not readily available. Our objective is to develop a pediatric temporal bone model. Temporal bone model. Tertiary Children's Hospital. Pediatric patient model. We describe the novel use of a 3D printer for the generation of a plaster training model from a pediatric high- resolution CT temporal bone scan of a normal pediatric temporal bone. Three models were produced and were evaluated. The models utilized multiple colors (white for bone, yellow for the facial nerve) and were of high quality. Two models were drilled as a proof of concept and found to be an acceptable facsimile of the patient's anatomy, rendering all necessary surgical landmarks accurately. The only negative comments pertaining to the 3D printed temporal bone as a training model were the lack of variation in hardness between cortical and cancellous bone, noting a tactile variation from cadaveric temporal bones. Our novel pediatric 3D temporal bone training model is a viable, low-cost training option for previously inaccessible pediatric temporal bone training. Our hope is that, as 3D printers become commonplace, these models could be rapidly reproduced, allowing for trainees to print models of patients before performing surgery on the living patient.
Temporal lobe dual pathology in malignant migrating partial seizures in infancy.
Coppola, Giangennaro; Operto, Francesca Felicia; Auricchio, Gianfranca; D'Amico, Alessandra; Fortunato, Delia; Pascotto, Antonio
2007-06-01
A child had the characteristic clinical and EEG pattern of migrating partial seizures in infancy with left temporal lobe atrophy, hippocampal sclerosis and cortical-subcortical blurring. Seizures were drug-resistant, with recurring episodes of status epilepticus. The child developed microcephaly with arrest of psychomotor development. Focal brain lesions, in the context of migrating partial seizures, have not been previously reported.[Published with video sequences].
The Social and Scientific Temporal Correlates of Genotypic Intelligence and the Flynn Effect
ERIC Educational Resources Information Center
Woodley, Michael A.
2012-01-01
In this study the pattern of temporal variation in innovation rates is examined in the context of Western IQ measures in which historical genotypic gains and losses along with the Flynn effect are considered. It is found that two alternative genotypic IQ estimates based on an increase in IQ from 1455 to 1850 followed by a decrease from 1850 to the…
Spatiotemporal data visualisation for homecare monitoring of elderly people.
Juarez, Jose M; Ochotorena, Jose M; Campos, Manuel; Combi, Carlo
2015-10-01
Elderly people who live alone can be assisted by home monitoring systems that identify risk scenarios such as falls, fatigue symptoms or burglary. Given that these systems have to manage spatiotemporal data, human intervention is required to validate automatic alarms due to the high number of false positives and the need for context interpretation. The goal of this work was to provide tools to support human action, to identify such potential risk scenarios based on spatiotemporal data visualisation. We propose the MTA (multiple temporal axes) model, a visual representation of temporal information of the activity of a single person at different locations. The main goal of this model is to visualize the behaviour of a person in their home, facilitating the identification of health-risk scenarios and repetitive patterns. We evaluate the model's insight capacity compared with other models using a standard evaluation protocol. We also test its practical suitability of the MTA graphical model in a commercial home monitoring system. In particular, we implemented 8VISU, a visualization tool based on MTA. MTA proved to be more than 90% accurate in identify non-risk scenarios, independently of the length of the record visualised. When the spatial complexity was increased (e.g. number of rooms) the model provided good accuracy form up to 5 rooms. Therefore, user preferences and user performance seem to be balanced. Moreover, it also gave high sensitivity levels (over 90%) for 5-8 rooms. Fall is the most recurrent incident for elderly people. The MTA model outperformed the other models considered in identifying fall scenarios (66% of correctness) and was the second best for burglary and fatigue scenarios (36% of correctness). Our experiments also confirm the hypothesis that cyclic models are the most suitable for fatigue scenarios, the Spiral and MTA models obtaining most positive identifications. In home monitoring systems, spatiotemporal visualization is a useful tool for identifying risk and preventing home accidents in elderly people living alone. The MTA model helps the visualisation in different stages of the temporal data analysis process. In particular, its explicit representation of space and movement is useful for identifying potential scenarios of risk, while the spiral structure can be used for the identification of recurrent patterns. The results of the experiments and the experience using the visualization tool 8VISU proof the potential of the MTA graphical model to mine temporal data and to support caregivers using home monitoring infrastructures. Copyright © 2015 Elsevier B.V. All rights reserved.
An information theory account of late frontoparietal ERP positivities in cognitive control.
Barceló, Francisco; Cooper, Patrick S
2018-03-01
ERP research on task switching has revealed distinct transient and sustained positive waveforms (latency circa 300-900 ms) while shifting task rules or stimulus-response (S-R) mappings. However, it remains unclear whether such switch-related positivities show similar scalp topography and index context-updating mechanisms akin to those posed for domain-general (i.e., classic P300) positivities in many task domains. To examine this question, ERPs were recorded from 31 young adults (18-30 years) while they were intermittently cued to switch or repeat their perceptual categorization of Gabor gratings varying in color and thickness (switch task), or else they performed two visually identical control tasks (go/no-go and oddball). Our task cueing paradigm examined two temporarily distinct stages of proactive rule updating and reactive rule execution. A simple information theory model helped us gauge cognitive demands under distinct temporal and task contexts in terms of low-level S-R pathways and higher-order rule updating operations. Task demands modulated domain-general (indexed by classic oddball P3) and switch positivities-indexed by both a cue-locked late positive complex and a sustained positivity ensuing task transitions. Topographic scalp analyses confirmed subtle yet significant split-second changes in the configuration of neural sources for both domain-general P3s and switch positivities as a function of both the temporal and task context. These findings partly meet predictions from information estimates, and are compatible with a family of P3-like potentials indexing functionally distinct neural operations within a common frontoparietal "multiple demand" system during the preparation and execution of simple task rules. © 2016 Society for Psychophysiological Research.
Bonebrake, Timothy C; Boggs, Carol L; Stamberger, Jeannie A; Deutsch, Curtis A; Ehrlich, Paul R
2014-10-22
Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
The future of human cerebral cartography: a novel approach
Frackowiak, Richard; Markram, Henry
2015-01-01
Cerebral cartography can be understood in a limited, static, neuroanatomical sense. Temporal information from electrical recordings contributes information on regional interactions adding a functional dimension. Selective tagging and imaging of molecules adds biochemical contributions. Cartographic detail can also be correlated with normal or abnormal psychological or behavioural data. Modern cerebral cartography is assimilating all these elements. Cartographers continue to collect ever more precise data in the hope that general principles of organization will emerge. However, even detailed cartographic data cannot generate knowledge without a multi-scale framework making it possible to relate individual observations and discoveries. We propose that, in the next quarter century, advances in cartography will result in progressively more accurate drafts of a data-led, multi-scale model of human brain structure and function. These blueprints will result from analysis of large volumes of neuroscientific and clinical data, by a process of reconstruction, modelling and simulation. This strategy will capitalize on remarkable recent developments in informatics and computer science and on the existence of much existing, addressable data and prior, though fragmented, knowledge. The models will instantiate principles that govern how the brain is organized at different levels and how different spatio-temporal scales relate to each other in an organ-centred context. PMID:25823868
Bonebrake, Timothy C.; Boggs, Carol L.; Stamberger, Jeannie A.; Deutsch, Curtis A.; Ehrlich, Paul R.
2014-01-01
Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. PMID:25165769
NASA Astrophysics Data System (ADS)
Gado, Tamer A.; Nguyen, Van-Thanh-Van
2016-04-01
This paper, the second of a two-part paper, investigates the nonstationary behaviour of flood peaks in Quebec (Canada) by analyzing the annual maximum flow series (AMS) available for the common 1966-2001 period from a network of 32 watersheds. Temporal trends in the mean of flood peaks were examined by the nonparametric Mann-Kendall test. The significance of the detected trends over the whole province is also assessed by a bootstrap test that preserves the cross-correlation structure of the network. Furthermore, The LM-NS method (introduced in the first part) is used to parametrically model the AMS, investigating its applicability to real data, to account for temporal trends in the moments of the time series. In this study two probability distributions (GEV & Gumbel) were selected to model four different types of time-varying moments of the historical time series considered, comprising eight competing models. The selected models are: two stationary models (GEV0 & Gumbel0), two nonstationary models in the mean as a linear function of time (GEV1 & Gumbel1), two nonstationary models in the mean as a parabolic function of time (GEV2 & Gumbel2), and two nonstationary models in the mean and the log standard deviation as linear functions of time (GEV11 & Gumbel11). The eight models were applied to flood data available for each watershed and their performance was compared to identify the best model for each location. The comparative methodology involves two phases: (1) a descriptive ability based on likelihood-based optimality criteria such as the Bayesian Information Criterion (BIC) and the deviance statistic; and (2) a predictive ability based on the residual bootstrap. According to the Mann-Kendall test and the LM-NS method, a quarter of the analyzed stations show significant trends in the AMS. All of the significant trends are negative, indicating decreasing flood magnitudes in Quebec. It was found that the LM-NS method could provide accurate flood estimates in the context of nonstationarity. The results have indicated the importance of taking into consideration the nonstationary behaviour of the flood series in order to improve the quality of flood estimation. The results also provided a general impression on the possible impacts of climate change on flood estimation in the Quebec province.
NASA Astrophysics Data System (ADS)
Ferrant, S.; Le Page, M.; Kerr, Y. H.; Selles, A.; Mermoz, S.; Al-Bitar, A.; Muddu, S.; Gascoin, S.; Marechal, J. C.; Durand, P.; Salmon-Monviola, J.; Ceschia, E.; Bustillo, V.
2016-12-01
Nitrogen transfers at agricultural catchment level are intricately linked to water transfers. Agro-hydrological modeling approaches aim at integrating spatial heterogeneity of catchment physical properties together with agricultural practices to spatially estimate the water and nitrogen cycles. As in hydrology, the calibration schemes are designed to optimize the performance of the temporal dynamics and biases in model simulations, while ignoring the simulated spatial pattern. Yet, crop uses, i.e. transpiration and nitrogen exported by harvest, are the main fluxes at the catchment scale, highly variable in space and time. Geo-information time-series of vegetation and water index with multi-spectral optical detection S2 together with surface roughness time series with C-band radar detection S1 are used to reset soil water holding capacity parameters (depth, porosity) and agricultural practices (sowing date, irrigated area extent) of a crop model coupled with a hydrological model. This study takes two agro-hydrological contexts as demonstrators: 1-spatial nitrogen excess estimation in south-west of France, and 2-groundwater extraction for rice irrigation in south-India. Spatio-temporal patterns are involved in respectively surface water contamination due to over-fertilization and local groundwater shortages due to over-pumping for above rice inundation. Optimized Leaf Area Index profiles are simulated at the satellite images pixel level using an agro-hydrological model to reproduce spatial and temporal crop growth dynamics in south-west of France, improving the in-stream nitrogen fluxes by 12%. Accurate detection of irrigated area extents are obtained with the thresholding method based on optical indices, with a kappa of 0.81 for the dry season 2016. The actual monsoon season is monitored and will be presented. These extents drive the groundwater pumping and are highly variable in time (from 2 to 8% of the total area).
Toward improved simulation of river operations through integration with a hydrologic model
Morway, Eric D.; Niswonger, Richard G.; Triana, Enrique
2016-01-01
Advanced modeling tools are needed for informed water resources planning and management. Two classes of modeling tools are often used to this end–(1) distributed-parameter hydrologic models for quantifying supply and (2) river-operation models for sorting out demands under rule-based systems such as the prior-appropriation doctrine. Within each of these two broad classes of models, there are many software tools that excel at simulating the processes specific to each discipline, but have historically over-simplified, or at worse completely neglected, aspects of the other. As a result, water managers reliant on river-operation models for administering water resources need improved tools for representing spatially and temporally varying groundwater resources in conjunctive-use systems. A new tool is described that improves the representation of groundwater/surface-water (GW-SW) interaction within a river-operations modeling context and, in so doing, advances evaluation of system-wide hydrologic consequences of new or altered management regimes.
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
Imamizu, Hiroshi; Kuroda, Tomoe; Yoshioka, Toshinori; Kawato, Mitsuo
2004-02-04
An internal model is a neural mechanism that can mimic the input-output properties of a controlled object such as a tool. Recent research interests have moved on to how multiple internal models are learned and switched under a given context of behavior. Two representative computational models for task switching propose distinct neural mechanisms, thus predicting different brain activity patterns in the switching of internal models. In one model, called the mixture-of-experts architecture, switching is commanded by a single executive called a "gating network," which is different from the internal models. In the other model, called the MOSAIC (MOdular Selection And Identification for Control), the internal models themselves play crucial roles in switching. Consequently, the mixture-of-experts model predicts that neural activities related to switching and internal models can be temporally and spatially segregated, whereas the MOSAIC model predicts that they are closely intermingled. Here, we directly examined the two predictions by analyzing functional magnetic resonance imaging activities during the switching of one common tool (an ordinary computer mouse) and two novel tools: a rotated mouse, the cursor of which appears in a rotated position, and a velocity mouse, the cursor velocity of which is proportional to the mouse position. The switching and internal model activities temporally and spatially overlapped each other in the cerebellum and in the parietal cortex, whereas the overlap was very small in the frontal cortex. These results suggest that switching mechanisms in the frontal cortex can be explained by the mixture-of-experts architecture, whereas those in the cerebellum and the parietal cortex are explained by the MOSAIC model.
Wave-driven sediment mobilization on a storm-controlled continental shelf (Northwest Iberia)
Oberle, Ferdinand; Storlazzi, Curt D.; Hanebuth, Till
2014-01-01
Seafloor sediment mobilization on the inner Northwest Iberian continental shelf is caused largely by ocean surface waves. The temporal and spatial variability in the wave height, wave period, and wave direction has a profound effect on local sediment mobilization, leading to distinct sediment mobilization scenarios. Six grain-size specific sediment mobilization scenarios, representing seasonal average and storm conditions, were simulated with a physics-based numerical model. Model inputs included meteorological and oceanographic data in conjunction with seafloor grain-size and the shelf bathymetric data. The results show distinct seasonal variations, most importantly in wave height, leading to sediment mobilization, specifically on the inner shelf shallower than 30 m water depth where up to 49% of the shelf area is mobilized. Medium to severe storm events are modeled to mobilize up to 89% of the shelf area above 150 m water depth. The frequency of each of these seasonal and storm-related sediment mobilization scenarios is addressed using a decade of meteorological and oceanographic data. The temporal and spatial patterns of the modeled sediment mobilization scenarios are discussed in the context of existing geological and environmental processes and conditions to assist scientific, industrial and environmental efforts that are directly affected by sediment mobilization. Examples, where sediment mobilization plays a vital role, include seafloor nutrient advection, recurrent arrival of oil from oil-spill-laden seafloor sediment, and bottom trawling impacts.
Star formation in a hierarchical model for Cloud Complexes
NASA Astrophysics Data System (ADS)
Sanchez, N.; Parravano, A.
The effects of the external and initial conditions on the star formation processes in Molecular Cloud Complexes are examined in the context of a schematic model. The model considers a hierarchical system with five predefined phases: warm gas, neutral gas, low density molecular gas, high density molecular gas and protostars. The model follows the mass evolution of each substructure by computing its mass exchange with their parent and children. The parent-child mass exchange depends on the radiation density at the interphase, which is produced by the radiation coming from the stars that form at the end of the hierarchical structure, and by the external radiation field. The system is chaotic in the sense that its temporal evolution is very sensitive to small changes in the initial or external conditions. However, global features such as the star formation efficience and the Initial Mass Function are less affected by those variations.
Kirman, C R; Suh, M; Proctor, D M; Hays, S M
2017-06-15
A physiologically based pharmacokinetic (PBPK) model for hexavalent chromium [Cr(VI)] in mice, rats, and humans developed previously (Kirman et al., 2012, 2013), was updated to reflect an improved understanding of the toxicokinetics of the gastrointestinal tract following oral exposures. Improvements were made to: (1) the reduction model, which describes the pH-dependent reduction of Cr(VI) to Cr(III) in the gastrointestinal tract under both fasted and fed states; (2) drinking water pattern simulations, to better describe dosimetry in rodents under the conditions of the NTP cancer bioassay; and (3) parameterize the model to characterize potentially sensitive human populations. Important species differences, sources of non-linear toxicokinetics, and human variation are identified and discussed within the context of human health risk assessment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
van Roekel, Eeske; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Goossens, Luc; Verhagen, Maaike
2015-01-01
The main aim of the present study was to examine state levels of loneliness in adolescence. Both concurrent associations and temporal dynamics between social contexts and state levels of loneliness were examined. Data were collected from 286 adolescents (M[subscript age] = 14.19 years, 59% girls) by using the Experience Sampling Method. Results…
ERIC Educational Resources Information Center
Warrier, Catherine M.; Zatorre, Robert J.
2004-01-01
Pitch constancy, perceiving the same pitch from tones with differing spectral shapes, requires one to extract the fundamental frequency from two sets of harmonics and compare them. We previously showed this difficult task to be easier when tonal context is present, presumably because the context creates a tonal reference point from which to judge…
Nonspatial Sequence Coding in CA1 Neurons
Allen, Timothy A.; Salz, Daniel M.; McKenzie, Sam
2016-01-01
The hippocampus is critical to the memory for sequences of events, a defining feature of episodic memory. However, the fundamental neuronal mechanisms underlying this capacity remain elusive. While considerable research indicates hippocampal neurons can represent sequences of locations, direct evidence of coding for the memory of sequential relationships among nonspatial events remains lacking. To address this important issue, we recorded neural activity in CA1 as rats performed a hippocampus-dependent sequence-memory task. Briefly, the task involves the presentation of repeated sequences of odors at a single port and requires rats to identify each item as “in sequence” or “out of sequence”. We report that, while the animals' location and behavior remained constant, hippocampal activity differed depending on the temporal context of items—in this case, whether they were presented in or out of sequence. Some neurons showed this effect across items or sequence positions (general sequence cells), while others exhibited selectivity for specific conjunctions of item and sequence position information (conjunctive sequence cells) or for specific probe types (probe-specific sequence cells). We also found that the temporal context of individual trials could be accurately decoded from the activity of neuronal ensembles, that sequence coding at the single-cell and ensemble level was linked to sequence memory performance, and that slow-gamma oscillations (20–40 Hz) were more strongly modulated by temporal context and performance than theta oscillations (4–12 Hz). These findings provide compelling evidence that sequence coding extends beyond the domain of spatial trajectories and is thus a fundamental function of the hippocampus. SIGNIFICANCE STATEMENT The ability to remember the order of life events depends on the hippocampus, but the underlying neural mechanisms remain poorly understood. Here we addressed this issue by recording neural activity in hippocampal region CA1 while rats performed a nonspatial sequence memory task. We found that hippocampal neurons code for the temporal context of items (whether odors were presented in the correct or incorrect sequential position) and that this activity is linked with memory performance. The discovery of this novel form of temporal coding in hippocampal neurons advances our fundamental understanding of the neurobiology of episodic memory and will serve as a foundation for our cross-species, multitechnique approach aimed at elucidating the neural mechanisms underlying memory impairments in aging and dementia. PMID:26843637
Mozaffari, Brian
2014-01-01
Based on the notion that the brain is equipped with a hierarchical organization, which embodies environmental contingencies across many time scales, this paper suggests that the medial temporal lobe (MTL)—located deep in the hierarchy—serves as a bridge connecting supra- to infra—MTL levels. Bridging the upper and lower regions of the hierarchy provides a parallel architecture that optimizes information flow between upper and lower regions to aid attention, encoding, and processing of quick complex visual phenomenon. Bypassing intermediate hierarchy levels, information conveyed through the MTL “bridge” allows upper levels to make educated predictions about the prevailing context and accordingly select lower representations to increase the efficiency of predictive coding throughout the hierarchy. This selection or activation/deactivation is associated with endogenous attention. In the event that these “bridge” predictions are inaccurate, this architecture enables the rapid encoding of novel contingencies. A review of hierarchical models in relation to memory is provided along with a new theory, Medial-temporal-lobe Conduit for Parallel Connectivity (MCPC). In this scheme, consolidation is considered as a secondary process, occurring after a MTL-bridged connection, which eventually allows upper and lower levels to access each other directly. With repeated reactivations, as contingencies become consolidated, less MTL activity is predicted. Finally, MTL bridging may aid processing transient but structured perceptual events, by allowing communication between upper and lower levels without calling on intermediate levels of representation. PMID:25426036
Hidden Markov models for fault detection in dynamic systems
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J. (Inventor)
1995-01-01
The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) (vertical bar)/x), 1 less than or equal to i isless than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.
Hidden Markov models for fault detection in dynamic systems
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J. (Inventor)
1993-01-01
The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) perpendicular to x), 1 less than or equal to i is less than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.
Pope, Benjamin D; Gilbert, David M
2013-11-29
The "Replicon Theory" of Jacob, Brenner, and Cuzin has reliably served as the paradigm for regulating the sites where individual replicons initiate replication. Concurrent with the replicon model was Taylor's demonstration that plant and animal chromosomes replicate segmentally in a defined temporal sequence, via cytologically defined units too large to be accounted for by a single replicon. Instead, there seemed to be a program to choreograph when chromosome units replicate during S phase, executed by initiation at clusters of individual replicons within each segment. Here, we summarize recent molecular evidence for the existence of such units, now known as "replication domains", and discuss how the organization of large chromosomes into structural units has added additional layers of regulation to the original replicon model. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tillotson, Michael D.; Kelly, Ryan P.; Duda, Jeff; Hoy, Marshal S.; Kralj, James; Quinn, Thomas P.
2018-01-01
Developing fast, cost-effective assessments of wild animal abundance is an important goal for many researchers, and environmental DNA (eDNA) holds much promise for this purpose. However, the quantitative relationship between species abundance and the amount of DNA present in the environment is likely to vary substantially among taxa and with ecological context. Here, we report a strong quantitative relationship between eDNA concentration and the abundance of spawning sockeye salmon in a small stream in Alaska, USA, where we took temporally- and spatially-replicated samples during the spawning period. This high-resolution dataset suggests that (1) eDNA concentrations vary significantly day-to-day, and likely within hours, in the context of the dynamic biological event of a salmon spawning season; (2) eDNA, as detected by species-specific quantitative PCR probes, seems to be conserved over short distances (tens of meters) in running water, but degrade quickly over larger scales (ca. 1.5 km); and (3) factors other than the mere presence of live, individual fish — such as location within the stream, live/dead ratio, and water temperature — can affect the eDNA-biomass correlation in space or time. A multivariate model incorporating both biotic and abiotic variables accounted for over 75% of the eDNA variance observed, suggesting that where a system is well-characterized, it may be possible to predict species' abundance from eDNA surveys, although we underscore that species- and system-specific variables are likely to limit the generality of any given quantitative model. Nevertheless, these findings provide an important step toward quantitative applications of eDNA in conservation and management.
An effective online data monitoring and saving strategy for large-scale climate simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin
Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less
An effective online data monitoring and saving strategy for large-scale climate simulations
Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin; ...
2018-01-22
Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less
Gautestad, Arild O.
2012-01-01
Animals moving under the influence of spatio-temporal scaling and long-term memory generate a kind of space-use pattern that has proved difficult to model within a coherent theoretical framework. An extended kind of statistical mechanics is needed, accounting for both the effects of spatial memory and scale-free space use, and put into a context of ecological conditions. Simulations illustrating the distinction between scale-specific and scale-free locomotion are presented. The results show how observational scale (time lag between relocations of an individual) may critically influence the interpretation of the underlying process. In this respect, a novel protocol is proposed as a method to distinguish between some main movement classes. For example, the ‘power law in disguise’ paradox—from a composite Brownian motion consisting of a superposition of independent movement processes at different scales—may be resolved by shifting the focus from pattern analysis at one particular temporal resolution towards a more process-oriented approach involving several scales of observation. A more explicit consideration of system complexity within a statistical mechanical framework, supplementing the more traditional mechanistic modelling approach, is advocated. PMID:22456456
Vinken, Kasper; Vogels, Rufin
2017-11-20
In predictive coding theory, the brain is conceptualized as a prediction machine that constantly constructs and updates expectations of the sensory environment [1]. In the context of this theory, Bell et al.[2] recently studied the effect of the probability of task-relevant stimuli on the activity of macaque inferior temporal (IT) neurons and observed a reduced population response to expected faces in face-selective neurons. They concluded that "IT neurons encode long-term, latent probabilistic information about stimulus occurrence", supporting predictive coding. They manipulated expectation by the frequency of face versus fruit stimuli in blocks of trials. With such a design, stimulus repetition is confounded with expectation. As previous studies showed that IT neurons decrease their response with repetition [3], such adaptation (or repetition suppression), instead of expectation suppression as assumed by the authors, could explain their effects. The authors attempted to control for this alternative interpretation with a multiple regression approach. Here we show by using simulation that adaptation can still masquerade as expectation effects reported in [2]. Further, the results from the regression model used for most analyses cannot be trusted, because the model is not uniquely defined. Copyright © 2017 Elsevier Ltd. All rights reserved.
Long short-term memory for speaker generalization in supervised speech separation
Chen, Jitong; Wang, DeLiang
2017-01-01
Speech separation can be formulated as learning to estimate a time-frequency mask from acoustic features extracted from noisy speech. For supervised speech separation, generalization to unseen noises and unseen speakers is a critical issue. Although deep neural networks (DNNs) have been successful in noise-independent speech separation, DNNs are limited in modeling a large number of speakers. To improve speaker generalization, a separation model based on long short-term memory (LSTM) is proposed, which naturally accounts for temporal dynamics of speech. Systematic evaluation shows that the proposed model substantially outperforms a DNN-based model on unseen speakers and unseen noises in terms of objective speech intelligibility. Analyzing LSTM internal representations reveals that LSTM captures long-term speech contexts. It is also found that the LSTM model is more advantageous for low-latency speech separation and it, without future frames, performs better than the DNN model with future frames. The proposed model represents an effective approach for speaker- and noise-independent speech separation. PMID:28679261
Iwata, Saeko; Tsukiura, Takashi
2017-11-01
Episodic memory is defined as memory for personally experienced events, and includes memory content and contextual information of time and space. Previous neuroimaging and neuropsychological studies have demonstrated three possible roles of the temporal context in episodic memory. First, temporal information contributes to the arrangement of temporal order for sequential events in episodic memory, and this process is involved in the lateral prefrontal cortex. The second possible role of temporal information in episodic memory is the segregation between memories of multiple events, which are segregated by cues of different time information. The role of segregation is associated with the orbitofrontal regions including the orbitofrontal cortex and basal forebrain region. Third, temporal information in episodic memory plays an important role in the integration of multiple components into a coherent episodic memory, in which episodic components in the different modalities are combined by temporal information as an index. The role of integration is mediated by the medial temporal lobe including the hippocampus and parahippocampal gyrus. Thus, temporal information in episodic memory could be represented in multiple stages, which are involved in a network of the lateral prefrontal, orbitofrontal, and medial temporal lobe regions.
Self-face recognition in social context.
Sugiura, Motoaki; Sassa, Yuko; Jeong, Hyeonjeong; Wakusawa, Keisuke; Horie, Kaoru; Sato, Shigeru; Kawashima, Ryuta
2012-06-01
The concept of "social self" is often described as a representation of the self-reflected in the eyes or minds of others. Although the appearance of one's own face has substantial social significance for humans, neuroimaging studies have failed to link self-face recognition and the likely neural substrate of the social self, the medial prefrontal cortex (MPFC). We assumed that the social self is recruited during self-face recognition under a rich social context where multiple other faces are available for comparison of social values. Using functional magnetic resonance imaging (fMRI), we examined the modulation of neural responses to the faces of the self and of a close friend in a social context. We identified an enhanced response in the ventral MPFC and right occipitoparietal sulcus in the social context specifically for the self-face. Neural response in the right lateral parietal and inferior temporal cortices, previously claimed as self-face-specific, was unaffected for the self-face but unexpectedly enhanced for the friend's face in the social context. Self-face-specific activation in the pars triangularis of the inferior frontal gyrus, and self-face-specific reduction of activation in the left middle temporal gyrus and the right supramarginal gyrus, replicating a previous finding, were not subject to such modulation. Our results thus demonstrated the recruitment of a social self during self-face recognition in the social context. At least three brain networks for self-face-specific activation may be dissociated by different patterns of response-modulation in the social context, suggesting multiple dynamic self-other representations in the human brain. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Li, Yangdong; Han, Zhen; Liao, Zhongping
2009-10-01
Spatiality, temporality, legality, accuracy and continuality are characteristic of cadastral information, and the cadastral management demands that the cadastral data should be accurate, integrated and updated timely. It's a good idea to build an effective GIS management system to manage the cadastral data which are characterized by spatiality and temporality. Because no sound spatio-temporal data models have been adopted, however, the spatio-temporal characteristics of cadastral data are not well expressed in the existing cadastral management systems. An event-version-based spatio-temporal modeling approach is first proposed from the angle of event and version. Then with the help of it, an event-version-based spatio-temporal cadastral data model is built to represent spatio-temporal cadastral data. At last, the previous model is used in the design and implementation of a spatio-temporal cadastral management system. The result of the application of the system shows that the event-version-based spatio-temporal data model is very suitable for the representation and organization of cadastral data.
Choi, J.; Seong, J.C.; Kim, B.; Usery, E.L.
2008-01-01
A feature relies on three dimensions (space, theme, and time) for its representation. Even though spatiotemporal models have been proposed, they have principally focused on the spatial changes of a feature. In this paper, a feature-based temporal model is proposed to represent the changes of both space and theme independently. The proposed model modifies the ISO's temporal schema and adds new explicit temporal relationship structure that stores temporal topological relationship with the ISO's temporal primitives of a feature in order to keep track feature history. The explicit temporal relationship can enhance query performance on feature history by removing topological comparison during query process. Further, a prototype system has been developed to test a proposed feature-based temporal model by querying land parcel history in Athens, Georgia. The result of temporal query on individual feature history shows the efficiency of the explicit temporal relationship structure. ?? Springer Science+Business Media, LLC 2007.
The influence of context on hemispheric recruitment during metaphor processing
Diaz, Michele T.; Hogstrom, Larson J.
2011-01-01
Although the left hemisphere's prominence in language is well established, less emphasis has been placed on possible roles for the right hemisphere. Behavioral, patient, and neuroimaging research suggests that the right hemisphere may be involved in processing figurative language. Additionally, research has demonstrated that context can modify language processes and facilitate comprehension. Here we investigated how figurativeness and context influenced brain activation, with a specific interest in right hemisphere function. Previous work in our lab indicated that novel stimuli engaged right inferior frontal gyrus and that both novel and familiar metaphors engaged right inferior frontal gyrus and right temporal pole. The Graded Salience Hypothesis (GSH) proposes that context may lessen integration demands, increase the salience of metaphors, and thereby reduce right hemisphere recruitment for metaphors. In the present study, functional Magnetic Resonance Imaging was used to investigate brain function while participants read literal and metaphoric sentences that were preceded by either a congruent or an incongruent literal sentence. Consistent with prior research, all sentences engaged traditional left hemisphere regions. Differences between metaphors and literal sentences were observed, but only in the left hemisphere. In contrast, a main effect of congruence was found in right inferior frontal gyrus, right temporal pole, and dorsal medial prefrontal cortex. Partially consistent with the GSH, our results highlight the strong influence of context on language, demonstrate the importance of the right hemisphere in discourse, and suggest that in a wider discourse context congruence has a greater influence on right hemisphere recruitment than figurativeness. PMID:21568642
NASA Astrophysics Data System (ADS)
Stefaneas, Petros; Vandoulakis, Ioannis M.
2015-12-01
This paper outlines a logical representation of certain aspects of the process of mathematical proving that are important from the point of view of Artificial Intelligence. Our starting-point is the concept of proof-event or proving, introduced by Goguen, instead of the traditional concept of mathematical proof. The reason behind this choice is that in contrast to the traditional static concept of mathematical proof, proof-events are understood as processes, which enables their use in Artificial Intelligence in such contexts, in which problem-solving procedures and strategies are studied. We represent proof-events as problem-centered spatio-temporal processes by means of the language of the calculus of events, which captures adequately certain temporal aspects of proof-events (i.e. that they have history and form sequences of proof-events evolving in time). Further, we suggest a "loose" semantics for the proof-events, by means of Kolmogorov's calculus of problems. Finally, we expose the intented interpretations for our logical model from the fields of automated theorem-proving and Web-based collective proving.
Gui, Dan-Yang; Gan, Tian; Liu, Chao
2016-01-01
Behavioral and neurological studies have revealed that emotions influence moral cognition. Although moral stimuli are emotionally charged, the time course of interactions between emotions and moral judgments remains unknown. In the present study, we investigated the temporal dynamics of the interaction between emotional processes and moral cognition. The results revealed that when making moral judgments, the time course of the event-related potential (ERP) waveform was significantly different between high emotional arousal and low emotional arousal contexts. Different stages of processing were distinguished, showing distinctive interactions between emotional processes and moral reasoning. The precise time course of moral intuition and moral reasoning sheds new light on theoretical models of moral psychology. Specifically, the N1 component (interpreted as representing moral intuition) did not appear to be influenced by emotional arousal. However, the N2 component and late positive potential were strongly affected by emotional arousal; the slow wave was influenced by both emotional arousal and morality, suggesting distinct moral processing at different emotional arousal levels.
The effects of acute nicotine on contextual safety discrimination.
Kutlu, Munir G; Oliver, Chicora; Gould, Thomas J
2014-11-01
Anxiety disorders, such as post-traumatic stress disorder (PTSD), may be related to an inability to distinguish safe versus threatening environments and to extinguish fear memories. Given the high rate of cigarette smoking in patients with PTSD, as well as the recent finding that an acute dose of nicotine impairs extinction of contextual fear memory, we conducted a series of experiments to investigate the effect of acute nicotine in an animal model of contextual safety discrimination. Following saline or nicotine (at 0.0275, 0.045, 0.09 and 0.18 mg/kg) administration, C57BL/6J mice were trained in a contextual discrimination paradigm, in which the subjects received presentations of conditioned stimuli (CS) that co-terminated with a foot-shock in one context (context A (CXA)) and only CS presentations without foot-shock in a different context (context B (CXB)). Therefore, CXA was designated as the 'dangerous context', whereas CXB was designated as the 'safe context'. Our results suggested that saline-treated animals showed a strong discrimination between dangerous and safe contexts, while acute nicotine dose-dependently impaired contextual safety discrimination (Experiment 1). Furthermore, our results demonstrate that nicotine-induced impairment of contextual safety discrimination learning was not a result of increased generalized freezing (Experiment 2) or contingent on the common CS presentations in both contexts (Experiment 3). Finally, our results show that increasing the temporal gap between CXA and CXB during training abolished the impairing effects of nicotine (Experiment 4). The findings of this study may help link nicotine exposure to the safety learning deficits seen in anxiety disorder and PTSD patients. © The Author(s) 2014.
The organisation of spatial and temporal relations in memory.
Rondina, Renante; Curtiss, Kaitlin; Meltzer, Jed A; Barense, Morgan D; Ryan, Jennifer D
2017-04-01
Episodic memories are comprised of details of "where" and "when"; spatial and temporal relations, respectively. However, evidence from behavioural, neuropsychological, and neuroimaging studies has provided mixed interpretations about how memories for spatial and temporal relations are organised-they may be hierarchical, fully interactive, or independent. In the current study, we examined the interaction of memory for spatial and temporal relations. Using explicit reports and eye-tracking, we assessed younger and older adults' memory for spatial and temporal relations of objects that were presented singly across time in unique spatial locations. Explicit change detection of spatial relations was affected by a change in temporal relations, but explicit change detection of temporal relations was not affected by a change in spatial relations. Younger and older adults showed eye movement evidence of incidental memory for temporal relations, but only younger adults showed eye movement evidence of incidental memory for spatial relations. Together, these findings point towards a hierarchical organisation of relational memory. The implications of these findings are discussed in the context of the neural mechanisms that may support such a hierarchical organisation of memory.
Graph distance for complex networks
NASA Astrophysics Data System (ADS)
Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki
2016-10-01
Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions.
Preserved semantic access in global amnesia and hippocampal damage.
Giovagnoli, A R; Erbetta, A; Bugiani, O
2001-12-01
C.B., a right-handed 33-year-old man, presented with anterograde amnesia after acute heart block. Cognitive abilities were normal except for serious impairment of long-term episodic memory. The access to semantic information was fully preserved. Magnetic resonance showed high signal intensity and marked volume loss in the hippocampus bilaterally; the left and right parahippocampal gyrus, lateral occipito-temporal gyrus, inferior temporal gyrus, and lateral temporal cortex were normal. This case underlines that global amnesia associated with hippocampal damage does not affect semantic memory. Although the hippocampus is important in retrieving context-linked information, its role is not so crucial in retrieving semantic contents. Cortical areas surrounding the hippocampus and lateral temporal areas might guide the recall of semantic information.
A review of the main driving factors of forest fire ignition over Europe.
Ganteaume, Anne; Camia, Andrea; Jappiot, Marielle; San-Miguel-Ayanz, Jesus; Long-Fournel, Marlène; Lampin, Corinne
2013-03-01
Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.
A Review of the Main Driving Factors of Forest Fire Ignition Over Europe
NASA Astrophysics Data System (ADS)
Ganteaume, Anne; Camia, Andrea; Jappiot, Marielle; San-Miguel-Ayanz, Jesus; Long-Fournel, Marlène; Lampin, Corinne
2013-03-01
Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.
Andres, Michael; Pelgrims, Barbara; Olivier, Etienne
2013-09-01
Neuropsychological studies showed that manipulatory and semantic knowledge can be independently impaired in patients with upper-limb apraxia, leading to different tool use disorders. The present study aimed to dissociate the brain regions involved in judging the hand configuration or the context associated to tool use. We focussed on the left supramarginalis gyrus (SMG) and left middle temporal gyrus (MTG), whose activation, as evidenced by functional magnetic resonance imaging (fMRI) studies, suggests that they may play a critical role in tool use. The distinctive location of SMG in the dorsal visual stream led us to postulate that this parietal region could play a role in processing incoming information about tools to shape hand posture. In contrast, we hypothesized that MTG, because of its interconnections with several cortical areas involved in semantic memory, could contribute to retrieving semantic information necessary to create a contextual representation of tool use. To test these hypotheses, we used neuronavigated transcranial magnetic stimulation (TMS) to interfere transiently with the function of either left SMG or left MTG in healthy participants performing judgement tasks about either hand configuration or context of tool use. We found that SMG virtual lesions impaired hand configuration but not contextual judgements, whereas MTG lesions selectively interfered with judgements about the context of tool use while leaving hand configuration judgements unaffected. This double dissociation demonstrates that the ability to infer a context of use or a hand posture from tool perception relies on distinct processes, performed in the temporal and parietal regions. The present findings suggest that tool use disorders caused by SMG lesions will be characterized by difficulties in selecting the appropriate hand posture for tool use, whereas MTG lesions will yield difficulties in using tools in the appropriate context. Copyright © 2012. Published by Elsevier Ltd.
Kotevska, Olivera; Kusne, A. Gilad; Samarov, Daniel V.; Lbath, Ahmed; Battou, Abdella
2017-01-01
Today’s cities generate tremendous amounts of data, thanks to a boom in affordable smart devices and sensors. The resulting big data creates opportunities to develop diverse sets of context-aware services and systems, ensuring smart city services are optimized to the dynamic city environment. Critical resources in these smart cities will be more rapidly deployed to regions in need, and those regions predicted to have an imminent or prospective need. For example, crime data analytics may be used to optimize the distribution of police, medical, and emergency services. However, as smart city services become dependent on data, they also become susceptible to disruptions in data streams, such as data loss due to signal quality reduction or due to power loss during data collection. This paper presents a dynamic network model for improving service resilience to data loss. The network model identifies statistically significant shared temporal trends across multivariate spatiotemporal data streams and utilizes these trends to improve data prediction performance in the case of data loss. Dynamics also allow the system to respond to changes in the data streams such as the loss or addition of new information flows. The network model is demonstrated by city-based crime rates reported in Montgomery County, MD, USA. A resilient network is developed utilizing shared temporal trends between cities to provide improved crime rate prediction and robustness to data loss, compared with the use of single city-based auto-regression. A maximum improvement in performance of 7.8% for Silver Spring is found and an average improvement of 5.6% among cities with high crime rates. The model also correctly identifies all the optimal network connections, according to prediction error minimization. City-to-city distance is designated as a predictor of shared temporal trends in crime and weather is shown to be a strong predictor of crime in Montgomery County. PMID:29250476
From Vivaldi to Beatles and back: predicting lateralized brain responses to music.
Alluri, Vinoo; Toiviainen, Petri; Lund, Torben E; Wallentin, Mikkel; Vuust, Peter; Nandi, Asoke K; Ristaniemi, Tapani; Brattico, Elvira
2013-12-01
We aimed at predicting the temporal evolution of brain activity in naturalistic music listening conditions using a combination of neuroimaging and acoustic feature extraction. Participants were scanned using functional Magnetic Resonance Imaging (fMRI) while listening to two musical medleys, including pieces from various genres with and without lyrics. Regression models were built to predict voxel-wise brain activations which were then tested in a cross-validation setting in order to evaluate the robustness of the hence created models across stimuli. To further assess the generalizability of the models we extended the cross-validation procedure by including another dataset, which comprised continuous fMRI responses of musically trained participants to an Argentinean tango. Individual models for the two musical medleys revealed that activations in several areas in the brain belonging to the auditory, limbic, and motor regions could be predicted. Notably, activations in the medial orbitofrontal region and the anterior cingulate cortex, relevant for self-referential appraisal and aesthetic judgments, could be predicted successfully. Cross-validation across musical stimuli and participant pools helped identify a region of the right superior temporal gyrus, encompassing the planum polare and the Heschl's gyrus, as the core structure that processed complex acoustic features of musical pieces from various genres, with or without lyrics. Models based on purely instrumental music were able to predict activation in the bilateral auditory cortices, parietal, somatosensory, and left hemispheric primary and supplementary motor areas. The presence of lyrics on the other hand weakened the prediction of activations in the left superior temporal gyrus. Our results suggest spontaneous emotion-related processing during naturalistic listening to music and provide supportive evidence for the hemispheric specialization for categorical sounds with realistic stimuli. We herewith introduce a powerful means to predict brain responses to music, speech, or soundscapes across a large variety of contexts. © 2013.
Influence of landscape-scale factors in limiting brook trout populations in Pennsylvania streams
Kocovsky, P.M.; Carline, R.F.
2006-01-01
Landscapes influence the capacity of streams to produce trout through their effect on water chemistry and other factors at the reach scale. Trout abundance also fluctuates over time; thus, to thoroughly understand how spatial factors at landscape scales affect trout populations, one must assess the changes in populations over time to provide a context for interpreting the importance of spatial factors. We used data from the Pennsylvania Fish and Boat Commission's fisheries management database to investigate spatial factors that affect the capacity of streams to support brook trout Salvelinus fontinalis and to provide models useful for their management. We assessed the relative importance of spatial and temporal variation by calculating variance components and comparing relative standard errors for spatial and temporal variation. We used binary logistic regression to predict the presence of harvestable-length brook trout and multiple linear regression to assess the mechanistic links between landscapes and trout populations and to predict population density. The variance in trout density among streams was equal to or greater than the temporal variation for several streams, indicating that differences among sites affect population density. Logistic regression models correctly predicted the absence of harvestable-length brook trout in 60% of validation samples. The r 2-value for the linear regression model predicting density was 0.3, indicating low predictive ability. Both logistic and linear regression models supported buffering capacity against acid episodes as an important mechanistic link between landscapes and trout populations. Although our models fail to predict trout densities precisely, their success at elucidating the mechanistic links between landscapes and trout populations, in concert with the importance of spatial variation, increases our understanding of factors affecting brook trout abundance and will help managers and private groups to protect and enhance populations of wild brook trout. ?? Copyright by the American Fisheries Society 2006.
Kotevska, Olivera; Kusne, A Gilad; Samarov, Daniel V; Lbath, Ahmed; Battou, Abdella
2017-01-01
Today's cities generate tremendous amounts of data, thanks to a boom in affordable smart devices and sensors. The resulting big data creates opportunities to develop diverse sets of context-aware services and systems, ensuring smart city services are optimized to the dynamic city environment. Critical resources in these smart cities will be more rapidly deployed to regions in need, and those regions predicted to have an imminent or prospective need. For example, crime data analytics may be used to optimize the distribution of police, medical, and emergency services. However, as smart city services become dependent on data, they also become susceptible to disruptions in data streams, such as data loss due to signal quality reduction or due to power loss during data collection. This paper presents a dynamic network model for improving service resilience to data loss. The network model identifies statistically significant shared temporal trends across multivariate spatiotemporal data streams and utilizes these trends to improve data prediction performance in the case of data loss. Dynamics also allow the system to respond to changes in the data streams such as the loss or addition of new information flows. The network model is demonstrated by city-based crime rates reported in Montgomery County, MD, USA. A resilient network is developed utilizing shared temporal trends between cities to provide improved crime rate prediction and robustness to data loss, compared with the use of single city-based auto-regression. A maximum improvement in performance of 7.8% for Silver Spring is found and an average improvement of 5.6% among cities with high crime rates. The model also correctly identifies all the optimal network connections, according to prediction error minimization. City-to-city distance is designated as a predictor of shared temporal trends in crime and weather is shown to be a strong predictor of crime in Montgomery County.
Henry, Laurence; Craig, Adrian J. F. K.; Lemasson, Alban; Hausberger, Martine
2015-01-01
Turn-taking in conversation appears to be a common feature in various human cultures and this universality raises questions about its biological basis and evolutionary trajectory. Functional convergence is a widespread phenomenon in evolution, revealing sometimes striking functional similarities between very distant species even though the mechanisms involved may be different. Studies on mammals (including non-human primates) and bird species with different levels of social coordination reveal that temporal and structural regularities in vocal interactions may depend on the species' social structure. Here we test the hypothesis that turn-taking and associated rules of conversations may be an adaptive response to the requirements of social life, by testing the applicability of turn-taking rules to an animal model, the European starling. Birdsong has for many decades been considered as one of the best models of human language and starling songs have been well described in terms of vocal production and perception. Starlings do have vocal interactions where alternating patterns predominate. Observational and experimental data on vocal interactions reveal that (1) there are indeed clear temporal and structural regularities, (2) the temporal and structural patterning is influenced by the immediate social context, the general social situation, the individual history, and the internal state of the emitter. Comparison of phylogenetically close species of Sturnids reveals that the alternating pattern of vocal interactions varies greatly according to the species' social structure, suggesting that interactional regularities may have evolved together with social systems. These findings lead to solid bases of discussion on the evolution of communication rules in relation to social evolution. They will be discussed also in terms of processes, at the light of recent neurobiological findings. PMID:26441787
Cappelle, Julien; Gaidet, Nicolas; Iverson, Samuel A; Takekawa, John Y; Newman, Scott H; Fofana, Bouba; Gilbert, Marius
2011-11-15
Characterizing the interface between wild and domestic animal populations is increasingly recognized as essential in the context of emerging infectious diseases (EIDs) that are transmitted by wildlife. More specifically, the spatial and temporal distribution of contact rates between wild and domestic hosts is a key parameter for modeling EIDs transmission dynamics. We integrated satellite telemetry, remote sensing and ground-based surveys to evaluate the spatio-temporal dynamics of indirect contacts between wild and domestic birds to estimate the risk that avian pathogens such as avian influenza and Newcastle viruses will be transmitted between wildlife to poultry. We monitored comb ducks (Sarkidiornis melanotos melanotos) with satellite transmitters for seven months in an extensive Afro-tropical wetland (the Inner Niger Delta) in Mali and characterise the spatial distribution of backyard poultry in villages. We modelled the spatial distribution of wild ducks using 250-meter spatial resolution and 8-days temporal resolution remotely-sensed environmental indicators based on a Maxent niche modelling method. Our results show a strong seasonal variation in potential contact rate between wild ducks and poultry. We found that the exposure of poultry to wild birds was greatest at the end of the dry season and the beginning of the rainy season, when comb ducks disperse from natural water bodies to irrigated areas near villages. Our study provides at a local scale a quantitative evidence of the seasonal variability of contact rate between wild and domestic bird populations. It illustrates a GIS-based methodology for estimating epidemiological contact rates at the wildlife and livestock interface integrating high-resolution satellite telemetry and remote sensing data.
Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes
Paschalis, Athanasios; Fatichi, Simone; Katul, Gabriel G.; ...
2015-08-07
While the importance of ecosystem functioning is undisputed in the context of climate change and Earth system modeling, the role of short-scale temporal variability of hydrometeorological forcing (~1 h) on the related ecosystem processes remains to be fully understood. Additionally, various impacts of meteorological forcing variability on water and carbon fluxes across a range of scales are explored here using numerical simulations. Synthetic meteorological drivers that highlight dynamic features of the short temporal scale in series of precipitation, temperature, and radiation are constructed. These drivers force a mechanistic ecohydrological model that propagates information content into the dynamics of water andmore » carbon fluxes for an ensemble of representative ecosystems. The focus of the analysis is on a cross-scale effect of the short-scale forcing variability on the modeled evapotranspiration and ecosystem carbon assimilation. Interannual variability of water and carbon fluxes is emphasized in the analysis. The main study inferences are summarized as follows: (a) short-scale variability of meteorological input does affect water and carbon fluxes across a wide range of time scales, spanning from the hourly to the annual and longer scales; (b) different ecosystems respond to the various characteristics of the short-scale variability of the climate forcing in various ways, depending on dominant factors limiting system productivity; (c) whenever short-scale variability of meteorological forcing influences primarily fast processes such as photosynthesis, its impact on the slow-scale variability of water and carbon fluxes is small; and (d) whenever short-scale variability of the meteorological forcing impacts slow processes such as movement and storage of water in the soil, the effects of the variability can propagate to annual and longer time scales.« less
Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paschalis, Athanasios; Fatichi, Simone; Katul, Gabriel G.
While the importance of ecosystem functioning is undisputed in the context of climate change and Earth system modeling, the role of short-scale temporal variability of hydrometeorological forcing (~1 h) on the related ecosystem processes remains to be fully understood. Additionally, various impacts of meteorological forcing variability on water and carbon fluxes across a range of scales are explored here using numerical simulations. Synthetic meteorological drivers that highlight dynamic features of the short temporal scale in series of precipitation, temperature, and radiation are constructed. These drivers force a mechanistic ecohydrological model that propagates information content into the dynamics of water andmore » carbon fluxes for an ensemble of representative ecosystems. The focus of the analysis is on a cross-scale effect of the short-scale forcing variability on the modeled evapotranspiration and ecosystem carbon assimilation. Interannual variability of water and carbon fluxes is emphasized in the analysis. The main study inferences are summarized as follows: (a) short-scale variability of meteorological input does affect water and carbon fluxes across a wide range of time scales, spanning from the hourly to the annual and longer scales; (b) different ecosystems respond to the various characteristics of the short-scale variability of the climate forcing in various ways, depending on dominant factors limiting system productivity; (c) whenever short-scale variability of meteorological forcing influences primarily fast processes such as photosynthesis, its impact on the slow-scale variability of water and carbon fluxes is small; and (d) whenever short-scale variability of the meteorological forcing impacts slow processes such as movement and storage of water in the soil, the effects of the variability can propagate to annual and longer time scales.« less
Facilitation drives 65 years of vegetation change in the Sonoran Desert
Butterfield, Bradley J.; Betancourt, Julio L.; Turner, Raymond M.; Briggs, John M.
2010-01-01
Ecological processes of low-productivity ecosystems have long been considered to be driven by abiotic controls with biotic interactions playing an insignificant role. However, existing studies present conflicting evidence concerning the roles of these factors, in part due to the short temporal extent of most data sets and inability to test indirect effects of environmental variables modulated by biotic interactions. Using structural equation modeling to analyze 65 years of perennial vegetation change in the Sonoran Desert, we found that precipitation had a stronger positive effect on recruitment beneath existing canopies than in open microsites due to reduced evaporation rates. Variation in perennial canopy cover had additional facilitative effects on juvenile recruitment, which was indirectly driven by effects of density and precipitation on cover. Mortality was strongly influenced by competition as indicated by negative density-dependence, whereas precipitation had no effect. The combined direct, indirect, and interactive facilitative effects of precipitation and cover on recruitment were substantial, as was the effect of competition on mortality, providing strong evidence for dual control of community dynamics by climate and biotic interactions. Through an empirically derived simulation model, we also found that the positive feedback of density on cover produces unique temporal abundance patterns, buffering changes in abundance from high frequency variation in precipitation, amplifying effects of low frequency variation, and decoupling community abundance from precipitation patterns at high abundance. Such dynamics should be generally applicable to low-productivity systems in which facilitation is important and can only be understood within the context of long-term variation in climatic patterns. This predictive model can be applied to better manage low-productivity ecosystems, in which variation in biogeochemical processes and trophic dynamics may be driven by positive density-dependent feedbacks that influence temporal abundance and productivity patterns.
Baker, Jannah; White, Nicole; Mengersen, Kerrie; Rolfe, Margaret; Morgan, Geoffrey G
2017-01-01
Three variant formulations of a spatiotemporal shared component model are proposed that allow examination of changes in shared underlying factors over time. Models are evaluated within the context of a case study examining hospitalisation rates for five chronic diseases for residents of a regional area in New South Wales: type II diabetes mellitus (DMII), chronic obstructive pulmonary disease (COPD), coronary arterial disease (CAD), hypertension (HT) and congestive heart failure (CHF) between 2001-2006. These represent ambulatory care sensitive (ACS) conditions, often used as a proxy for avoidable hospitalisations. Using a selected model, the effects of socio-economic status (SES) as a shared component are estimated and temporal patterns in the influence of the residual shared spatial component are examined. Choice of model depends upon the application. In the featured application, a model allowing for changing influence of the shared spatial component over time was found to have the best fit and was selected for further analyses. Hospitalisation rates were found to be increasing for COPD and DMII, decreasing for CHF and stable for CAD and HT. SES was substantively associated with hospitalisation rates, with differing degrees of influence for each disease. In general, most of the spatial variation in hospitalisation rates was explained by disease-specific spatial components, followed by the residual shared spatial component. Appropriate selection of a joint disease model allows for the examination of temporal patterns of disease outcomes and shared underlying spatial factors, and distinction between different shared spatial factors.
Adams, Helen; Adger, W Neil; Ahmad, Sate; Ahmed, Ali; Begum, Dilruba; Lázár, Attila N; Matthews, Zoe; Rahman, Mohammed Mofizur; Streatfield, Peter Kim
2016-11-08
Populations in resource dependent economies gain well-being from the natural environment, in highly spatially and temporally variable patterns. To collect information on this, we designed and implemented a 1586-household quantitative survey in the southwest coastal zone of Bangladesh. Data were collected on material, subjective and health dimensions of well-being in the context of natural resource use, particularly agriculture, aquaculture, mangroves and fisheries. The questionnaire included questions on factors that mediate poverty outcomes: mobility and remittances; loans and micro-credit; environmental perceptions; shocks; and women's empowerment. The data are stratified by social-ecological system to take into account spatial dynamics and the survey was repeated with the same respondents three times within a year to incorporate seasonal dynamics. The dataset includes blood pressure measurements and height and weight of men, women and children. In addition, the household listing includes basic data on livelihoods and income for approximately 10,000 households. The dataset facilitates interdisciplinary research on spatial and temporal dynamics of well-being in the context of natural resource dependence in low income countries.
Adams, Helen; Adger, W. Neil; Ahmad, Sate; Ahmed, Ali; Begum, Dilruba; Lázár, Attila N.; Matthews, Zoe; Rahman, Mohammed Mofizur; Streatfield, Peter Kim
2016-01-01
Populations in resource dependent economies gain well-being from the natural environment, in highly spatially and temporally variable patterns. To collect information on this, we designed and implemented a 1586-household quantitative survey in the southwest coastal zone of Bangladesh. Data were collected on material, subjective and health dimensions of well-being in the context of natural resource use, particularly agriculture, aquaculture, mangroves and fisheries. The questionnaire included questions on factors that mediate poverty outcomes: mobility and remittances; loans and micro-credit; environmental perceptions; shocks; and women’s empowerment. The data are stratified by social-ecological system to take into account spatial dynamics and the survey was repeated with the same respondents three times within a year to incorporate seasonal dynamics. The dataset includes blood pressure measurements and height and weight of men, women and children. In addition, the household listing includes basic data on livelihoods and income for approximately 10,000 households. The dataset facilitates interdisciplinary research on spatial and temporal dynamics of well-being in the context of natural resource dependence in low income countries. PMID:27824340
ERIC Educational Resources Information Center
Picard, Laurence; Cousin, Sidonie; Guillery-Girard, Berenere; Eustache, Francis; Piolino, Pascale
2012-01-01
This study investigated the development of all 3 components of episodic memory (EM), as defined by Tulving, namely, core factual content, spatial context, and temporal context. To this end, a novel, ecologically valid test was administered to 109 participants aged 4-16 years. Results showed that each EM component develops at a different rate.…
Context effects and the temporal stability of stated preferences.
Liebe, Ulf; Hundeshagen, Cordula; Beyer, Heiko; Cramon-Taubadel, Stephan von
2016-11-01
In stated preference studies it is assumed that individuals' answers reflect true preferences and are stable over time. We test these two assumptions of validity and reliability using as an example a choice experiment study on ethical consumption that measures preferences for a Peace Product jointly produced by Israeli and Palestinian producers as well as for organic products. In a web survey conducted in Germany, we investigate the validity assumption by manipulating the question context and presenting one group of respondents with questions on anti-Semitic and anti-Arabic attitudes before the choice tasks, and presenting another group with these questions after the choice tasks. In order to test the assumption of temporal stability, the same experimental set-up was repeated in a second survey based on a new sample ten months after the first. However, prior to the second survey an external event, a major violent dispute between Israelis and the Palestinians occurred. Overall, we find evidence for a context effect but not for temporal instability. In both surveys, the placement of the attitudinal questions before the choice tasks has a positive effect on the valuation of products from Israel, Palestinian products and the Peace Product (i.e. a directional context effect). The respondents seem to act according to an anti-discrimination norm. In line with this reasoning, we find an attention shift caused by the attitudinal questions. Organic products are valued much less positively if discriminatory attitudes are surveyed before the choice tasks. Furthermore, despite the violent dispute, stated preferences are very stable over time. This indicates high reliability of stated preference studies and encourages the use of study results by private and public decision makers. Copyright © 2016 Elsevier Inc. All rights reserved.
Incorporating spatial context into the analysis of salmonid habitat relations: Chapter 18
Torgersen, Christian E.; Baxter, Colden V.; Ebersole, J.L.; Gresswell, Bob; Church, Michael; Biron, Pascale M.; Roy, Andre G.
2012-01-01
In this response to the chapter by Lapointe (this volume), we discuss the question of why it is so difficult to predict salmonid-habitat relations in gravel-bed rivers and streams. We acknowledge that this cannot be an exhaustive treatment of the subject and, thus, identify what we believe are several key issues that demonstrate the necessity of incorporating spatial context into the analysis of fish-habitat data. Our emphasis is on spatial context (i.e., scale and location), but it is important to note that the same principles may be applied with some modification to temporal context, which is beyond the scope of this chapter.
The Dark Side of Context: Context Reinstatement Can Distort Memory.
Doss, Manoj K; Picart, Jamila K; Gallo, David A
2018-04-01
It is widely assumed that context reinstatement benefits memory, but our experiments revealed that context reinstatement can systematically distort memory. Participants viewed pictures of objects superimposed over scenes, and we later tested their ability to differentiate these old objects from similar new objects. Context reinstatement was manipulated by presenting objects on the reinstated or switched scene at test. Not only did context reinstatement increase correct recognition of old objects, but it also consistently increased incorrect recognition of similar objects as old ones. This false recognition effect was robust, as it was found in several experiments, occurred after both immediate and delayed testing, and persisted with high confidence even after participants were warned to avoid the distorting effects of context. To explain this memory illusion, we propose that context reinstatement increases the likelihood of confusing conceptual and perceptual information, potentially in medial temporal brain regions that integrate this information.
Interpretation of temporal features in an unusual X-ray and microwave bursts
NASA Technical Reports Server (NTRS)
Mackinnon, A. L.; Costa, J. E. R.; Kaufmann, P.; Dennis, B. R.
1986-01-01
Observations are briefly discussed of an event in which microwave and hard X-ray emissions were not correlated in the accepted way. Two impulsive peaks of roughly equal intensity were observed at three different microwave frequencies. The hard X-ray peaks accompanying these, however, differ in intensity by almost two orders of magnitude. Various possible interpretations of this burst are discussed, in the context of familiar models of these emissions. The most likely explanation is that the electron spectrum in the first burst has a break at about 350 keV. General implications for interpretation of X-rays and microwaves are discussed.
Detecting determinism from point processes.
Andrzejak, Ralph G; Mormann, Florian; Kreuz, Thomas
2014-12-01
The detection of a nonrandom structure from experimental data can be crucial for the classification, understanding, and interpretation of the generating process. We here introduce a rank-based nonlinear predictability score to detect determinism from point process data. Thanks to its modular nature, this approach can be adapted to whatever signature in the data one considers indicative of deterministic structure. After validating our approach using point process signals from deterministic and stochastic model dynamics, we show an application to neuronal spike trains recorded in the brain of an epilepsy patient. While we illustrate our approach in the context of temporal point processes, it can be readily applied to spatial point processes as well.
On a concept of computer game implementation based on a temporal logic
NASA Astrophysics Data System (ADS)
Szymańska, Emilia; Adamek, Marek J.; Mulawka, Jan J.
2017-08-01
Time is a concept which underlies all the contemporary civilization. Therefore, it was necessary to create mathematical tools that allow a precise way to describe the complex time dependencies. One such tool is temporal logic. Its definition, description and characteristics will be presented in this publication. Then the authors will conduct a discussion on the usefulness of this tool in context of creating storyline in computer games such as RPG genre.
Challenging the classical notion of time in cognition: a quantum perspective
Yearsley, James M.; Pothos, Emmanuel M.
2014-01-01
All mental representations change with time. A baseline intuition is that mental representations have specific values at different time points, which may be more or less accessible, depending on noise, forgetting processes, etc. We present a radical alternative, motivated by recent research using the mathematics from quantum theory for cognitive modelling. Such cognitive models raise the possibility that certain possibilities or events may be incompatible, so that perfect knowledge of one necessitates uncertainty for the others. In the context of time-dependence, in physics, this issue is explored with the so-called temporal Bell (TB) or Leggett–Garg inequalities. We consider in detail the theoretical and empirical challenges involved in exploring the TB inequalities in the context of cognitive systems. One interesting conclusion is that we believe the study of the TB inequalities to be empirically more constrained in psychology than in physics. Specifically, we show how the TB inequalities, as applied to cognitive systems, can be derived from two simple assumptions: cognitive realism and cognitive completeness. We discuss possible implications of putative violations of the TB inequalities for cognitive models and our understanding of time in cognition in general. Overall, this paper provides a surprising, novel direction in relation to how time should be conceptualized in cognition. PMID:24598421
Challenging the classical notion of time in cognition: a quantum perspective.
Yearsley, James M; Pothos, Emmanuel M
2014-04-22
All mental representations change with time. A baseline intuition is that mental representations have specific values at different time points, which may be more or less accessible, depending on noise, forgetting processes, etc. We present a radical alternative, motivated by recent research using the mathematics from quantum theory for cognitive modelling. Such cognitive models raise the possibility that certain possibilities or events may be incompatible, so that perfect knowledge of one necessitates uncertainty for the others. In the context of time-dependence, in physics, this issue is explored with the so-called temporal Bell (TB) or Leggett-Garg inequalities. We consider in detail the theoretical and empirical challenges involved in exploring the TB inequalities in the context of cognitive systems. One interesting conclusion is that we believe the study of the TB inequalities to be empirically more constrained in psychology than in physics. Specifically, we show how the TB inequalities, as applied to cognitive systems, can be derived from two simple assumptions: cognitive realism and cognitive completeness. We discuss possible implications of putative violations of the TB inequalities for cognitive models and our understanding of time in cognition in general. Overall, this paper provides a surprising, novel direction in relation to how time should be conceptualized in cognition.
'Right Now, Sophie (∗)Swims in the Pool?!': Brain Potentials of Grammatical Aspect Processing.
Flecken, Monique; Walbert, Kelly; Dijkstra, Ton
2015-01-01
We investigated whether brain potentials of grammatical aspect processing resemble semantic or morpho-syntactic processing, or whether they instead are characterized by an entirely distinct pattern in the same individuals. We studied aspect from the perspective of agreement between the temporal information in the context (temporal adverbials, e.g., Right now) and a morpho-syntactic marker of grammatical aspect (e.g., progressive is swimming). Participants read questions providing a temporal context that was progressive (What is Sophie doing in the pool right now?) or habitual (What does Sophie do in the pool every Monday?). Following a lead-in sentence context such as Right now, Sophie…, we measured event-related brain potentials (ERPs) time-locked to verb phrases in four different conditions, e.g., (a) is swimming (control); (b) (∗)is cooking (semantic violation); (c) (∗)are swimming (morpho-syntactic violation); or (d)?swims (aspect mismatch); …in the pool." The collected ERPs show typical N400 and P600 effects for semantics and morpho-syntax, while aspect processing elicited an Early Negativity (250-350 ms). The aspect-related Negativity was short-lived and had a central scalp distribution with an anterior onset. This differentiates it not only from the semantic N400 effect, but also from the typical LAN (Left Anterior Negativity), that is frequently reported for various types of agreement processing. Moreover, aspect processing did not show a clear P600 modulation. We argue that the specific context for each item in this experiment provided a trigger for agreement checking with temporal information encoded on the verb, i.e., morphological aspect marking. The aspect-related Negativity obtained for aspect agreement mismatches reflects a violated expectation concerning verbal inflection (in the example above, the expected verb phrase was Sophie is X-ing rather than Sophie X-s in condition d). The absence of an additional P600 for aspect processing suggests that the mismatch did not require additional reintegration or processing costs. This is consistent with participants' post hoc grammaticality judgements of the same sentences, which overall show a high acceptability of aspect mismatch sentences.
NASA Astrophysics Data System (ADS)
Baldacci, A.; Corsini, G.; Grasso, R.; Manzella, G.; Allen, J. T.; Cipollini, P.; Guymer, T. H.; Snaith, H. M.
2001-05-01
This paper presents the results of a combined empirical orthogonal function (EOF) analysis of Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature (SST) data and sea-viewing wide field-of-view sensor (SeaWiFS) chlorophyll concentration data over the Alboran Sea (Western Mediterranean), covering a period of 1 year (November 1997-October 1998). The aim of this study is to go beyond the limited temporal extent of available in situ measurements by inferring the temporal and spatial variability of the Alboran Gyre system from long temporal series of satellite observations, in order to gain insight on the interactions between the circulation and the biological activity in the system. In this context, EOF decomposition permits concise and synoptic representation of the effects of physical and biological phenomena traced by SST and chlorophyll concentration. Thus, it is possible to focus the analysis on the most significant phenomena and to understand better the complex interactions between physics and biology at the mesoscale. The results of the EOF analysis of AVHRR-SST and SeaWiFS-chlorophyll concentration data are presented and discussed in detail. These improve and complement the knowledge acquired during the in situ observational campaigns of the MAST-III Observations and Modelling of Eddy scale Geostrophic and Ageostrophic motion (OMEGA) Project.
Eichenbaum, Howard
2013-01-01
Considerable recent work has shown that the hippocampus is critical for remembering the order of events in distinct experiences, a defining feature of episodic memory. Correspondingly, hippocampal neuronal activity can ‘replay’ sequential events in memories and hippocampal neuronal ensembles represent a gradually changing temporal context signal. Most strikingly, single hippocampal neurons – called time cells – encode moments in temporally structured experiences much as the well-known place cells encode locations in spatially structured experiences. These observations bridge largely disconnected literatures on the role of the hippocampus in episodic memory and spatial mapping, and suggest that the fundamental function of the hippocampus is to establish spatio-temporal frameworks for organizing memories. PMID:23318095
NASA Astrophysics Data System (ADS)
Nahlawi, Layan; Goncalves, Caroline; Imani, Farhad; Gaed, Mena; Gomez, Jose A.; Moussa, Madeleine; Gibson, Eli; Fenster, Aaron; Ward, Aaron D.; Abolmaesumi, Purang; Mousavi, Parvin; Shatkay, Hagit
2017-03-01
Recent studies have shown the value of Temporal Enhanced Ultrasound (TeUS) imaging for tissue characterization in transrectal ultrasound-guided prostate biopsies. Here, we present results of experiments designed to study the impact of temporal order of the data in TeUS signals. We assess the impact of variations in temporal order on the ability to automatically distinguish benign prostate-tissue from malignant tissue. We have previously used Hidden Markov Models (HMMs) to model TeUS data, as HMMs capture temporal order in time series. In the work presented here, we use HMMs to model malignant and benign tissues; the models are trained and tested on TeUS signals while introducing variation to their temporal order. We first model the signals in their original temporal order, followed by modeling the same signals under various time rearrangements. We compare the performance of these models for tissue characterization. Our results show that models trained over the original order-preserving signals perform statistically significantly better for distinguishing between malignant and benign tissues, than those trained on rearranged signals. The performance degrades as the amount of temporal-variation increases. Specifically, accuracy of tissue characterization decreases from 85% using models trained on original signals to 62% using models trained and tested on signals that are completely temporally-rearranged. These results indicate the importance of order in characterization of tissue malignancy from TeUS data.
Lymperopoulos, Ilias N
2017-10-01
The interaction of social networks with the external environment gives rise to non-stationary activity patterns reflecting the temporal structure and strength of exogenous influences that drive social dynamical processes far from an equilibrium state. Following a neuro-inspired approach, based on the dynamics of a passive neuronal membrane, and the firing rate dynamics of single neurons and neuronal populations, we build a state-of-the-art model of the collective social response to exogenous interventions. In this regard, we analyze online activity patterns with a view to determining the transfer function of social systems, that is, the dynamic relationship between external influences and the resulting activity. To this end, first we estimate the impulse response (Green's function) of collective activity, and then we show that the convolution of the impulse response with a time-varying external influence field accurately reproduces empirical activity patterns. To capture the dynamics of collective activity when the generating process is in a state of statistical equilibrium, we incorporate into the model a noisy input convolved with the impulse response function, thus precisely reproducing the fluctuations of stationary collective activity around a resting value. The outstanding goodness-of-fit of the model results to empirical observations, indicates that the model explains human activity patterns generated by time-dependent external influences in various socio-economic contexts. The proposed model can be used for inferring the temporal structure and strength of external influences, as well as the inertia of collective social activity. Furthermore, it can potentially predict social activity patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.
Memory states influence value-based decisions.
Duncan, Katherine D; Shohamy, Daphna
2016-11-01
Using memory to guide decisions allows past experience to improve future outcomes. However, the circumstances that modulate how and when memory influences decisions are not well understood. Here, we report that the use of memories to guide decisions depends on the context in which these decisions are made. We show that decisions made in the context of familiar images are more likely to be influenced by past events than are decisions made in the context of novel images (Experiment 1), that this bias persists even when a temporal gap is introduced between the image presentation and the decision (Experiment 2), and that contextual novelty facilitates value learning whereas familiarity facilitates the retrieval and use of previously learned values (Experiment 3). These effects are consistent with neurobiological and computational models of memory, which propose that familiar images evoke a lingering "retrieval state" that facilitates the recollection of other episodic memories. Together, these experiments highlight the importance of episodic memory for decision-making and provide an example of how computational and neurobiological theories can lead to new insights into how and when different types of memories guide our choices. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
2017-01-01
Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167576
Semantic congruence enhances memory of episodic associations: role of theta oscillations.
Atienza, Mercedes; Crespo-Garcia, Maite; Cantero, Jose L
2011-01-01
Growing evidence suggests that theta oscillations play a crucial role in episodic encoding. The present study evaluates whether changes in electroencephalographic theta source dynamics mediate the positive influence of semantic congruence on incidental associative learning. Here we show that memory for episodic associations (face-location) is more accurate when studied under semantically congruent contexts. However, only participants showing RT priming effect in a conceptual priming test (priming group) also gave faster responses when recollecting source information of semantically congruent faces as compared with semantically incongruent faces. This improved episodic retrieval was positively correlated with increases in theta power during the study phase mainly in the bilateral parahippocampal gyrus, left superior temporal gyrus, and left lateral posterior parietal lobe. Reconstructed signals from the estimated sources showed higher theta power for congruent than incongruent faces and also for the priming than the nonpriming group. These results are in agreement with the attention to memory model. Besides directing top-down attention to goal-relevant semantic information during encoding, the dorsal parietal lobe may also be involved in redirecting attention to bottom-up-driven memories thanks to connections between the medial-temporal and the left ventral parietal lobe. The latter function can either facilitate or interfere with encoding of face-location associations depending on whether they are preceded by semantically congruent or incongruent contexts, respectively, because only in the former condition retrieved representations related to the cue and the face are both coherent with the person identity and are both associated with the same location.
ROSAT PSPC observations of NGC 7469 and Ark 120
NASA Technical Reports Server (NTRS)
Brandt, W. N.; Fabian, A. C.; Nandra, K.; Tsuruta, S.
1993-01-01
We present spatial, temporal and spectral analyses of ROSAT Position Sensitive Proportional Counter (PSPC) observations of the Seyfert 1 galaxies NGC 7469 and Ark 120. Both of these sources show evidence for excess emission and more complex 0.1- 2.5 keV spectra than are predicted by simple extrapolations of higher energy power laws. We find that the spectrum of NGC 7469 can be explained by models that have secondary power-law, secondary bremsstrahlung, secondary blackbody or emission-line components. We find evidence for 0.1-2.5 keV intensity variability of NGC 7469. The spectrum of Ark 120 is better described by models with secondary continuum components than by models with sharper spectral features. We discuss the agreement between X-ray and ultraviolet observations of these sources and examine the observations in the context of accretion disc reflection models. The inner parts of discs are likely to be reflective below approximately 0.24 keV, and this reflectivity complicates simple models of the soft excess.
VLF wave growth and discrete emission triggering in the magnetosphere - A feedback model
NASA Technical Reports Server (NTRS)
Helliwell, R. A.; Inan, U. S.
1982-01-01
A simple nonlinear feedback model is presented to explain VLF wave growth and emission triggering observed in VLF transmission experiments. The model is formulated in terms of the interaction of electrons with a slowly varying wave in an inhomogeneous medium as in an unstable feedback amplifier with a delay line; constant frequency oscillations are generated on the magnetic equator, while risers and fallers are generated on the downstream and upstream sides of the equator, respectively. Quantitative expressions are obtained for the stimulated radiation produced by energy exchanged between energetic electrons and waves by Doppler-shifted cyclotron resonance, and feedback between the stimulated radiation and the phase bunched currents is incorporated in terms of a two-port discrete time model. The resulting model is capable of explaining the observed temporal growth and saturation effects, phase advance, retardation or frequency shift during growth in the context of a single parameter depending on the energetic particle distribution function, as well as pretermination triggering.
Martin-Clouaire, Roger; Rellier, Jean-Pierre; Paré, Nakié; Voltz, Marc; Biarnès, Anne
2016-01-01
Many farming-system studies have investigated the design and evaluation of crop-management practices with respect to economic performance and reduction in environmental impacts. In contrast, little research has been devoted to analysing these practices in terms of matching the recurrent context-dependent demand for resources (labour in particular) with those available on the farm. This paper presents Dhivine, a simulation model of operational management of grape production at the vineyard scale. Particular attention focuses on representing a flexible plan, which organises activities temporally, the resources available to the vineyard manager and the process of scheduling and executing the activities. The model relies on a generic production-system ontology used in several agricultural production domains. The types of investigations that the model supports are briefly illustrated. The enhanced realism of the production-management situations simulated makes it possible to examine and understand properties of resource-constrained work-organisation strategies and possibilities for improving them. PMID:26990089
Shaffer, Anne; Lindhiem, Oliver; Kolko, David J; Trentacosta, Christopher J
2013-02-01
In the current study, we examined longitudinal changes in, and bidirectional effects between, parenting practices and child behavior problems in the context of a psychosocial treatment and 3-year follow-up period. The sample comprised 139 parent-child dyads (child ages 6-11) who participated in a modular treatment protocol for early-onset ODD or CD. Parenting practices and child behavior problems were assessed at six time-points using multiple measures and multiple reporters. The data were analyzed using cross-lagged panel analyses. Results indicated robust temporal stabilities of parenting practices and child behavior problems, in the context of treatment-related improvements, but bidirectional effects between parenting practices and child behavior were less frequently detected. Our findings suggest that bidirectional effects are relatively smaller than the temporal stability of each construct for school-age children with ODD/CD and their parents, following a multi-modal clinical intervention that is directed at both parents and children. Implications for treatment and intervention are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efroymson, Rebecca Ann; Dale, Virginia H; Kline, Keith L
Indicators of the environmental sustainability of biofuel production, distribution, and use should be selected, measured, and interpreted with respect to the context in which they are used. These indicators include measures of soil quality, water quality and quantity, greenhouse-gas emissions, biodiversity, air quality, and vegetation productivity. Contextual considerations include the purpose for the sustainability analysis, the particular biofuel production and distribution system (including supply chain, management aspects, and system viability), policy conditions, stakeholder values, location, temporal influences, spatial scale, baselines, and reference scenarios. Recommendations presented in this paper include formulating the problem for particular analyses, selecting appropriate context-specific indicators ofmore » environmental sustainability, and developing indicators that can reflect multiple environmental properties at low cost within a defined context. In addition, contextual considerations such as technical objectives, varying values and perspectives of stakeholder groups, and availability and reliability of data need to be understood and considered. Sustainability indicators for biofuels are most useful if adequate historical data are available, information can be collected at appropriate spatial and temporal scales, organizations are committed to use indicator information in the decision-making process, and indicators can effectively guide behavior toward more sustainable practices.« less
Cubillas, Carmelo P.; Vadillo, Miguel A.; Matute, Helena
2017-01-01
Decades of research in extinction and interference show that contexts can play a critical role at disambiguating the meaning of cues that have been paired with different outcomes at different times. For instance, if a cue x is followed by outcome 1 in the first phase of an experiment and by outcome 2 in a second phase, responses to cue x tend to be consistent with outcome 2 when tested in a context similar to that of the second phase of the experiment. However, if participants are taken back to the original context of the first phase (i.e., ABA renewal) or to a completely new context (i.e., ABC or AAB renewal), their responses to x tend to be more consistent with outcome 1. Although the role of physical and temporal contexts has been well studied, other factors that can also modulate the selective retrieval of information after interference have received less attention. The present series of experiments shows how changes in cue configuration can modulate responding in a similar manner. Across five experiments using a human predictive learning task, we found that adding, removing or replacing elements from a compound cue that had undergone an interference treatment gave rise to a recovery of responding akin to that observed after context changes in AAB renewal. These results are consistent with those of previous studies exploring the effect of changes of cue configuration on interference. Taken together, these studies suggest that a change in cue configuration can have the functional properties of a context change, a finding with important implications for formal models of configural learning and for classical accounts of interference and information retrieval. PMID:28111562
Cubillas, Carmelo P; Vadillo, Miguel A; Matute, Helena
2016-01-01
Decades of research in extinction and interference show that contexts can play a critical role at disambiguating the meaning of cues that have been paired with different outcomes at different times. For instance, if a cue x is followed by outcome 1 in the first phase of an experiment and by outcome 2 in a second phase, responses to cue x tend to be consistent with outcome 2 when tested in a context similar to that of the second phase of the experiment. However, if participants are taken back to the original context of the first phase (i.e., ABA renewal) or to a completely new context (i.e., ABC or AAB renewal), their responses to x tend to be more consistent with outcome 1. Although the role of physical and temporal contexts has been well studied, other factors that can also modulate the selective retrieval of information after interference have received less attention. The present series of experiments shows how changes in cue configuration can modulate responding in a similar manner. Across five experiments using a human predictive learning task, we found that adding, removing or replacing elements from a compound cue that had undergone an interference treatment gave rise to a recovery of responding akin to that observed after context changes in AAB renewal. These results are consistent with those of previous studies exploring the effect of changes of cue configuration on interference. Taken together, these studies suggest that a change in cue configuration can have the functional properties of a context change, a finding with important implications for formal models of configural learning and for classical accounts of interference and information retrieval.
Fundamental deficits of auditory perception in Wernicke's aphasia.
Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen
2013-01-01
This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Grotzer, Tina A.; Powell, Megan M.; Derbiszewska, Katarzyna M.; Courter, Caroline J.; Kamarainen, Amy M.; Metcalf, Shari J.; Dede, Christopher J.
2015-01-01
Reasoning about ecosystems includes consideration of causality over temporal and spatial distances; yet learners typically focus on immediate time frames and local contexts. Teaching students to reason beyond these boundaries has met with some success based upon tests that cue students to the types of reasoning required. Virtual worlds offer an…
Empathy, ToM, and self-other differentiation: an fMRI study of internal states.
Reniers, Renate L E P; Völlm, Birgit A; Elliott, Rebecca; Corcoran, Rhiannon
2014-02-01
This study used functional magnetic resonance imaging to examine the neural substrates of empathy, Theory of Mind (ToM), and self-other differentiation involved in the adaptive understanding of people's internal states. Three conditions were distinguished in both sad and neutral (no obvious emotion) contexts. The empathy condition involved imagining what another person is feeling while the more cognitively loaded ToM condition involved imagining what would make another person feel better. The self-reference condition required participants to imagine how they would feel in someone else's situation. Areas previously implicated in empathy, ToM, and self-other differentiation were identified within the different conditions, regardless of emotional context. Specifically, the frontal and temporal poles responded more strongly for ToM than for empathy. The self-reference condition was associated with stronger dorsolateral prefrontal response than the empathy condition, while the reverse comparison revealed a stronger role for right frontal pole. Activations in frontal pole and orbitofrontal cortex were shared between the three conditions. Contrasts of parameter estimates demonstrated modulation by emotional context. The findings of common and differential patterns of responding observed in prefrontal and temporal regions suggest that within the social cognition network empathy, ToM and self-other differentiation have distinct roles that are responsive to context.
Context Memory in Alzheimer's Disease: The "Who, Where, and When".
El Haj, Mohamad; Antoine, Pascal
2018-03-01
Context memory, a component of episodic system, refers to the ability to retrieve conditions under which an event has occurred, such as who was present during that event and where and when it occurred. Context memory has been found to be compromised in older adults, an issue that we investigated in Alzheimer's disease (AD). Thirty-one participants with AD and 35 older adults were asked to generate three autobiographical events. Afterward, they were asked to remember the names of all people who were evoked during the events, and the names for any location that was mentioned during the events. Participants were also asked to remember the year, season, month and day of the week when the events occurred. Compared to older adults, participants with AD showed lower memory for "who" (p < .001), "where" (p < .05), and "when" (p < .01). Compared to "who" and "where", both participants with AD and older adults showed pronounced difficulties in remembering the "when". these findings highlight difficulties in remembering temporal information as an indication of context memory decline in AD. The difficulties in retrieving temporal information are discussed in terms of timing failures and hippocampal degenerations in AD. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Satellite image time series simulation for environmental monitoring
NASA Astrophysics Data System (ADS)
Guo, Tao
2014-11-01
The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of costly high resolution data can be reduced as much as possible, and it presents an efficient solution with great cost performance to build up an economically operational monitoring service for environment, agriculture, forest, land use investigation, and other applications.
Neurophysiological bases of exponential sensory decay and top-down memory retrieval: a model.
Zylberberg, Ariel; Dehaene, Stanislas; Mindlin, Gabriel B; Sigman, Mariano
2009-01-01
Behavioral observations suggest that multiple sensory elements can be maintained for a short time, forming a perceptual buffer which fades after a few hundred milliseconds. Only a subset of this perceptual buffer can be accessed under top-down control and broadcasted to working memory and consciousness. In turn, single-cell studies in awake-behaving monkeys have identified two distinct waves of response to a sensory stimulus: a first transient response largely determined by stimulus properties and a second wave dependent on behavioral relevance, context and learning. Here we propose a simple biophysical scheme which bridges these observations and establishes concrete predictions for neurophsyiological experiments in which the temporal interval between stimulus presentation and top-down allocation is controlled experimentally. Inspired in single-cell observations, the model involves a first transient response and a second stage of amplification and retrieval, which are implemented biophysically by distinct operational modes of the same circuit, regulated by external currents. We explicitly investigated the neuronal dynamics, the memory trace of a presented stimulus and the probability of correct retrieval, when these two stages were bracketed by a temporal gap. The model predicts correctly the dependence of performance with response times in interference experiments suggesting that sensory buffering does not require a specific dedicated mechanism and establishing a direct link between biophysical manipulations and behavioral observations leading to concrete predictions.
Yuan, N; Comes, H P; Cao, Y N; Guo, R; Zhang, Y H; Qiu, Y X
2015-06-01
Elucidating the demographic and landscape features that determine the genetic effects of habitat fragmentation has become fundamental to research in conservation and evolutionary biology. Land-bridge islands provide ideal study areas for investigating the genetic effects of habitat fragmentation at different temporal and spatial scales. In this context, we compared patterns of nuclear microsatellite variation between insular populations of a shrub of evergreen broad-leaved forest, Loropetalum chinense, from the artificially created Thousand-Island Lake (TIL) and the Holocene-dated Zhoushan Archipelago of Southeast China. Populations from the TIL region harboured higher levels of genetic diversity than those from the Zhoushan Archipelago, but these differences were not significant. There was no correlation between genetic diversity and most island features, excepting a negative effect of mainland-island distance on allelic richness and expected heterozygosity in the Zhoushan Archipelago. In general, levels of gene flow among island populations were moderate to high, and tests of alternative models of population history strongly favoured a gene flow-drift model over a pure drift model in each region. In sum, our results showed no obvious genetic effects of habitat fragmentation due to recent (artificial) or past (natural) island formation. Rather, they highlight the importance of gene flow (most likely via seed) in maintaining genetic variation and preventing inter-population differentiation in the face of habitat 'insularization' at different temporal and spatial scales.
Prediction of User Context Using Smartphone Activity Data
2016-07-22
sophisticated design supports any time - series data of numeric, binary, and nominal variables. Thus, given a set of attributes, we attempt to maximize the...such as the temporal shapes of the time series of the sensor data. In order to verify the advantage of our methodology, we collected a data set of...then, for each timeslot, derives relevant features such as the temporal shapes of the time series of the sensor data. In order to verify the advantage
Unsupervised Sequential Outlier Detection With Deep Architectures.
Lu, Weining; Cheng, Yu; Xiao, Cao; Chang, Shiyu; Huang, Shuai; Liang, Bin; Huang, Thomas
2017-09-01
Unsupervised outlier detection is a vital task and has high impact on a wide variety of applications domains, such as image analysis and video surveillance. It also gains long-standing attentions and has been extensively studied in multiple research areas. Detecting and taking action on outliers as quickly as possible are imperative in order to protect network and related stakeholders or to maintain the reliability of critical systems. However, outlier detection is difficult due to the one class nature and challenges in feature construction. Sequential anomaly detection is even harder with more challenges from temporal correlation in data, as well as the presence of noise and high dimensionality. In this paper, we introduce a novel deep structured framework to solve the challenging sequential outlier detection problem. We use autoencoder models to capture the intrinsic difference between outliers and normal instances and integrate the models to recurrent neural networks that allow the learning to make use of previous context as well as make the learners more robust to warp along the time axis. Furthermore, we propose to use a layerwise training procedure, which significantly simplifies the training procedure and hence helps achieve efficient and scalable training. In addition, we investigate a fine-tuning step to update all parameters set by incorporating the temporal correlation in the sequence. We further apply our proposed models to conduct systematic experiments on five real-world benchmark data sets. Experimental results demonstrate the effectiveness of our model, compared with other state-of-the-art approaches.
Waruru, Anthony; Achia, Thomas N O; Muttai, Hellen; Ng'ang'a, Lucy; Zielinski-Gutierrez, Emily; Ochanda, Boniface; Katana, Abraham; Young, Peter W; Tobias, James L; Juma, Peter; De Cock, Kevin M; Tylleskär, Thorkild
2018-01-01
Using spatial-temporal analyses to understand coverage and trends in elimination of mother-to-child transmission of HIV (e-MTCT) efforts may be helpful in ensuring timely services are delivered to the right place. We present spatial-temporal analysis of seven years of HIV early infant diagnosis (EID) data collected from 12 districts in western Kenya from January 2007 to November 2013, during pre-Option B+ use. We included in the analysis infants up to one year old. We performed trend analysis using extended Cochran-Mantel-Haenszel stratified test and logistic regression models to examine trends and associations of infant HIV status at first diagnosis with: early diagnosis (<8 weeks after birth), age at specimen collection, infant ever having breastfed, use of single dose nevirapine, and maternal antiretroviral therapy status. We examined these covariates and fitted spatial and spatial-temporal semiparametric Poisson regression models to explain HIV-infection rates using R-integrated nested Laplace approximation package. We calculated new infections per 100,000 live births and used Quantum GIS to map fitted MTCT estimates for each district in Nyanza region. Median age was two months, interquartile range 1.5-5.8 months. Unadjusted pooled positive rate was 11.8% in the seven-years period and declined from 19.7% in 2007 to 7.0% in 2013, p < 0.01. Uptake of testing ≤8 weeks after birth was under 50% in 2007 and increased to 64.1% by 2013, p < 0.01. By 2013, the overall standardized MTCT rate was 447 infections per 100,000 live births. Based on Bayesian deviance information criterion comparisons, the spatial-temporal model with maternal and infant covariates was best in explaining geographical variation in MTCT. Improved EID uptake and reduced MTCT rates are indicators of progress towards e-MTCT. Cojoined analysis of time and covariates in a spatial context provides a robust approach for explaining differences in programmatic impact over time. During this pre-Option B+ period, the prevention of mother to child transmission program in this region has not achieved e-MTCT target of ≤50 infections per 100,000 live births. Geographical disparities in program achievements may signify gaps in spatial distribution of e-MTCT efforts and could indicate areas needing further resources and interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaoma; Zhou, Yuyu; Asrar, Ghassem R.
Abstract: Urban heat island (UHI), a major concern worldwide, affects human health and energy use. With current and anticipated rapid urbanization, improved understanding of the response of UHI to urbanization is important for impact analysis and developing effective adaptation measures and mitigation strategies. Current studies mainly focus on a single or a few big cities and knowledge on the response of UHI to urbanization for large areas is very limited. Modelling UHI caused by urbanization for large areas that encompass multiple metropolitans remains a major scientific challenge/opportunity. As a major indicator of urbanization, urban area size lends itself well formore » representation in prognostic models to investigate the impacts of urbanization on UHI and the related socioeconomic and environmental effects. However, we have little knowledge on how UHI responds to the increase of urban area size, namely urban expansion, and its spatial and temporal variation over large areas. In this study, we investigated the relationship between surface UHI (SUHI) and urban area size in the climate and ecological context, and its spatial and temporal variations, based on a panel analysis of about 5000 urban areas of 10 km2 or larger, in the conterminous U.S. We found statistically significant positive relationship between SUHI and urban area size, and doubling the urban area size led to a SUHI increase of higher than 0.7 °C. The response of SUHI to the increase of urban area size shows spatial and temporal variations, with stronger SUHI increase in the Northern region of U.S., and during daytime and summer. Urban area size alone can explain as much as 87% of the variance of SUHI among cities studied, but with large spatial and temporal variations. Urban area size shows higher association with SUHI in regions where the thermal characteristics of land cover surrounding the urban are more homogeneous, such as in Eastern U.S., and in the summer months. This study provides a practical approach for large-scale assessment and modeling of the impact of urbanization on SUHI, both spatially and temporally, for developing mitigation/adaptation measures, especially in anticipated warmer climate conditions for the rest of this century.« less
Achia, Thomas N.O.; Muttai, Hellen; Ng’ang’a, Lucy; Zielinski-Gutierrez, Emily; Ochanda, Boniface; Katana, Abraham; Tobias, James L.; Juma, Peter; De Cock, Kevin M.
2018-01-01
Introduction Using spatial–temporal analyses to understand coverage and trends in elimination of mother-to-child transmission of HIV (e-MTCT) efforts may be helpful in ensuring timely services are delivered to the right place. We present spatial–temporal analysis of seven years of HIV early infant diagnosis (EID) data collected from 12 districts in western Kenya from January 2007 to November 2013, during pre-Option B+ use. Methods We included in the analysis infants up to one year old. We performed trend analysis using extended Cochran–Mantel–Haenszel stratified test and logistic regression models to examine trends and associations of infant HIV status at first diagnosis with: early diagnosis (<8 weeks after birth), age at specimen collection, infant ever having breastfed, use of single dose nevirapine, and maternal antiretroviral therapy status. We examined these covariates and fitted spatial and spatial–temporal semiparametric Poisson regression models to explain HIV-infection rates using R-integrated nested Laplace approximation package. We calculated new infections per 100,000 live births and used Quantum GIS to map fitted MTCT estimates for each district in Nyanza region. Results Median age was two months, interquartile range 1.5–5.8 months. Unadjusted pooled positive rate was 11.8% in the seven-years period and declined from 19.7% in 2007 to 7.0% in 2013, p < 0.01. Uptake of testing ≤8 weeks after birth was under 50% in 2007 and increased to 64.1% by 2013, p < 0.01. By 2013, the overall standardized MTCT rate was 447 infections per 100,000 live births. Based on Bayesian deviance information criterion comparisons, the spatial–temporal model with maternal and infant covariates was best in explaining geographical variation in MTCT. Discussion Improved EID uptake and reduced MTCT rates are indicators of progress towards e-MTCT. Cojoined analysis of time and covariates in a spatial context provides a robust approach for explaining differences in programmatic impact over time. Conclusion During this pre-Option B+ period, the prevention of mother to child transmission program in this region has not achieved e-MTCT target of ≤50 infections per 100,000 live births. Geographical disparities in program achievements may signify gaps in spatial distribution of e-MTCT efforts and could indicate areas needing further resources and interventions. PMID:29576942
Fuzzy branching temporal logic.
Moon, Seong-ick; Lee, Kwang H; Lee, Doheon
2004-04-01
Intelligent systems require a systematic way to represent and handle temporal information containing uncertainty. In particular, a logical framework is needed that can represent uncertain temporal information and its relationships with logical formulae. Fuzzy linear temporal logic (FLTL), a generalization of propositional linear temporal logic (PLTL) with fuzzy temporal events and fuzzy temporal states defined on a linear time model, was previously proposed for this purpose. However, many systems are best represented by branching time models in which each state can have more than one possible future path. In this paper, fuzzy branching temporal logic (FBTL) is proposed to address this problem. FBTL adopts and generalizes concurrent tree logic (CTL*), which is a classical branching temporal logic. The temporal model of FBTL is capable of representing fuzzy temporal events and fuzzy temporal states, and the order relation among them is represented as a directed graph. The utility of FBTL is demonstrated using a fuzzy job shop scheduling problem as an example.
Leone, Alessia; Ferrari, Pier Francesco; Palagi, Elisabetta
2014-01-01
Here, we tested hypotheses about the potential functions of yawning based on its intensity and social contexts. Due to their spectrum intensity of yawns (covered teeth/YW1; uncovered teeth/YW2; uncovered gums/YW3), geladas are a good model species for this purpose. We suggest that yawns of different intensity can bear different information according to the performer, the context and the behavioural pattern temporally associated to the yawn event. YW3, mainly performed by high ranking males during periods of high social tension, was frequently associated with an auditory component and often accompanied by scratching (a measure of anxiety). YW1 and YW2, preferentially performed by females, were frequently associated to lip smacking, an affiliative display. In conclusion, even though a clear-cut functional distinction of geladas' yawn intensity is difficult, YW1 and YW2 seem to be more linked to affiliative social interactions; whereas, YW3 seems to be more linked to agonistic and tension situations. PMID:24500137
Context and competition in the capture of visual attention.
Hickey, Clayton; Theeuwes, Jan
2011-10-01
Competition-based models of visual attention propose that perceptual ambiguity is resolved through inhibition, which is stronger when objects share a greater number of neural receptive fields (RFs). According to this theory, the misallocation of attention to a salient distractor--that is, the capture of attention--can be indexed in RF-scaled interference costs. We used this pattern to investigate distractor-related costs in visual search across several manipulations of temporal context. Distractor costs are generally larger under circumstances in which the distractor can be defined by features that have recently characterised the target, suggesting that capture occurs in these trials. However, our results show that search for a target in the presence of a salient distractor also produces RF-scaled costs when the features defining the target and distractor do not vary from trial to trial. Contextual differences in distractor costs appear to reflect something other than capture, perhaps a qualitative difference in the type of attentional mechanism deployed to the distractor.
EDGE COMPUTING AND CONTEXTUAL INFORMATION FOR THE INTERNET OF THINGS SENSORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Levente
Interpreting sensor data require knowledge about sensor placement and the surrounding environment. For a single sensor measurement, it is easy to document the context by visual observation, however for millions of sensors reporting data back to a server, the contextual information needs to be automatically extracted from either data analysis or leveraging complimentary data sources. Data layers that overlap spatially or temporally with sensor locations, can be used to extract the context and to validate the measurement. To minimize the amount of data transmitted through the internet, while preserving signal information content, two methods are explored; computation at the edgemore » and compressed sensing. We validate the above methods on wind and chemical sensor data (1) eliminate redundant measurement from wind sensors and (2) extract peak value of a chemical sensor measuring a methane plume. We present a general cloud based framework to validate sensor data based on statistical and physical modeling and contextual data extracted from geospatial data.« less
The costs of emotional attention: affective processing inhibits subsequent lexico-semantic analysis.
Ihssen, Niklas; Heim, Sabine; Keil, Andreas
2007-12-01
The human brain has evolved to process motivationally relevant information in an optimized manner. The perceptual benefit for emotionally arousing material, termed motivated attention, is indexed by electrocortical amplification at various levels of stimulus analysis. An outstanding issue, particularly on a neuronal level, refers to whether and how perceptual enhancement for arousing signals translates into modified processing of information presented in temporal or spatial proximity to the affective cue. The present studies aimed to examine facilitation and interference effects of task-irrelevant emotional pictures on subsequent word identification. In the context of forced-choice lexical decision tasks, pictures varying in hedonic valence and emotional arousal preceded word/ pseudoword targets. Across measures and experiments, high-arousing compared to low-arousing pictures were associated with impaired processing of word targets. Arousing pleasant and unpleasant pictures prolonged word reaction times irrespective of stimulus-onset asynchrony (80 msec, 200 msec, 440 msec) and salient semantic category differences (e.g., erotica vs. mutilation pictures). On a neuronal level, interference was reflected in reduced N1 responses (204-264 msec) to both target types. Paralleling behavioral effects, suppression of the late positivity (404-704 msec) was more pronounced for word compared to pseudoword targets. Regional source modeling indicated that early reduction effects originated from inhibited cortical activity in posterior areas of the left inferior temporal cortex associated with orthographic processing. Modeling of later reduction effects argues for interference in distributed semantic networks comprising left anterior temporal and parietal sources. Thus, affective processing interferes with subsequent lexico-semantic analysis along the ventral stream.
NASA Astrophysics Data System (ADS)
Marchand, Pierre; Brisebois, Alexandre; Bédard, Yvan; Edwards, Geoffrey
This paper presents the results obtained with a new type of spatiotemporal topological dimension implemented within a hypercube, i.e., within a multidimensional database (MDDB) structure formed by the conjunction of several thematic, spatial and temporal dimensions. Our goal is to support efficient SpatioTemporal Exploration and Analysis (STEA) in the context of Automatic Position Reporting System (APRS), the worldwide amateur radio system for position report transmission. Mobile APRS stations are equipped with GPS navigation systems to provide real-time positioning reports. Previous research about the multidimensional approach has proved good potential for spatiotemporal exploration and analysis despite a lack of explicit topological operators (spatial, temporal and spatiotemporal). Our project implemented such operators through a hierarchy of operators that are applied to pairs of instances of objects. At the top of the hierarchy, users can use simple operators such as "same place", "same time" or "same time, same place". As they drill down into the hierarchy, more detailed topological operators are made available such as "adjacent immediately after", "touch during" or more detailed operators. This hierarchy is structured according to four levels of granularity based on cognitive models, generalized relationships and formal models of topological relationships. In this paper, we also describe the generic approach which allows efficient STEA within the multidimensional approach. Finally, we demonstrate that such an implementation offers query run times which permit to maintain a "train-of-thought" during exploration and analysis operations as they are compatible with Newell's cognitive band (query runtime<10 s) (Newell, A., 1990. Unified theories of cognition. Harvard University Press, Cambridge MA, 549 p.).
Temporal efficiency evaluation and small-worldness characterization in temporal networks
Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu
2016-01-01
Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks. PMID:27682314
Temporal efficiency evaluation and small-worldness characterization in temporal networks
NASA Astrophysics Data System (ADS)
Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu
2016-09-01
Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks.
Temporal abstraction and temporal Bayesian networks in clinical domains: a survey.
Orphanou, Kalia; Stassopoulou, Athena; Keravnou, Elpida
2014-03-01
Temporal abstraction (TA) of clinical data aims to abstract and interpret clinical data into meaningful higher-level interval concepts. Abstracted concepts are used for diagnostic, prediction and therapy planning purposes. On the other hand, temporal Bayesian networks (TBNs) are temporal extensions of the known probabilistic graphical models, Bayesian networks. TBNs can represent temporal relationships between events and their state changes, or the evolution of a process, through time. This paper offers a survey on techniques/methods from these two areas that were used independently in many clinical domains (e.g. diabetes, hepatitis, cancer) for various clinical tasks (e.g. diagnosis, prognosis). A main objective of this survey, in addition to presenting the key aspects of TA and TBNs, is to point out important benefits from a potential integration of TA and TBNs in medical domains and tasks. The motivation for integrating these two areas is their complementary function: TA provides clinicians with high level views of data while TBNs serve as a knowledge representation and reasoning tool under uncertainty, which is inherent in all clinical tasks. Key publications from these two areas of relevance to clinical systems, mainly circumscribed to the latest two decades, are reviewed and classified. TA techniques are compared on the basis of: (a) knowledge acquisition and representation for deriving TA concepts and (b) methodology for deriving basic and complex temporal abstractions. TBNs are compared on the basis of: (a) representation of time, (b) knowledge representation and acquisition, (c) inference methods and the computational demands of the network, and (d) their applications in medicine. The survey performs an extensive comparative analysis to illustrate the separate merits and limitations of various TA and TBN techniques used in clinical systems with the purpose of anticipating potential gains through an integration of the two techniques, thus leading to a unified methodology for clinical systems. The surveyed contributions are evaluated using frameworks of respective key features. In addition, for the evaluation of TBN methods, a unifying clinical domain (diabetes) is used. The main conclusion transpiring from this review is that techniques/methods from these two areas, that so far are being largely used independently of each other in clinical domains, could be effectively integrated in the context of medical decision-support systems. The anticipated key benefits of the perceived integration are: (a) during problem solving, the reasoning can be directed at different levels of temporal and/or conceptual abstractions since the nodes of the TBNs can be complex entities, temporally and structurally and (b) during model building, knowledge generated in the form of basic and/or complex abstractions, can be deployed in a TBN. Copyright © 2014 Elsevier B.V. All rights reserved.
Lalanne, L; Laprevote, V; Danion, J-M; Bacon, E
2016-06-01
Addictions can be regarded as cognitive disorders related to neurobiological impairments. On the one hand, some cognitive impairments occur as a result of substance intake and withdrawal upon stopping intake, while, on the other hand, cognitive mechanisms are responsible for initiating and maintaining addiction. In this review, we detail the memory and temporal mechanisms involved in this pathology. We reviewed the literature dedicated to the mechanisms of conditioning association between a substance and a context, and the memory and temporal mechanisms involved in the maintenance of addiction. Cognitive impairments in this context are accompanied by both short-term and long-term neurobiological disorders. Drug-context conditioning is dependent on learning abilities in rats and humans, and it is the first step towards the development of an addiction. In fact, with the beginning of an addiction, it is the context associated with the substance intake, which determines the reinforcing factors (such as pleasure in the case of drug consumption) for the development of an addiction. Maintenance of addiction is related to the persistence of this association between context and substance. Furthermore, the impulsiveness of patients renders them unable to delay their gratification. Consequently, even if delayed gratifications are more valuable, patients prefer immediate gratification such as substance use. The memory and temporal mechanisms of addiction are central to the initiation and maintenance of drug addiction. They also affect patients' ability to develop projects for the future. The salience of the memory association between drug and context is accompanied by a decline in autobiographical memories, which become poor and lacking in detail. It is probably these impairments which are responsible for the difficulty that the patients have while investigating their story during psychotherapy. On the other hand, given that even though delayed gratification is greater patients prefer immediate gratification, they have difficulty making plans for the future and constructing their own personality. These cognitive impairments are sustained by neurobiological correlates such as dopamine dysregulation in the short-term and changes in neural plasticity in the cortico-meso-limbic system in the long term. We reviewed full arguments which highlight that addiction is mediated by cognitive mechanisms which are related on the one hand to clinical symptoms and, on the other hand, to neurobiological alterations. According to the literature, memory and time mechanisms seem to be central to the initiation and maintenance of addictive behaviours. More research is needed to improve our knowledge of the cognitive mechanisms of addiction and to develop new tools for treating patients. Copyright © 2015 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Modeling the Violation of Reward Maximization and Invariance in Reinforcement Schedules
La Camera, Giancarlo; Richmond, Barry J.
2008-01-01
It is often assumed that animals and people adjust their behavior to maximize reward acquisition. In visually cued reinforcement schedules, monkeys make errors in trials that are not immediately rewarded, despite having to repeat error trials. Here we show that error rates are typically smaller in trials equally distant from reward but belonging to longer schedules (referred to as “schedule length effect”). This violates the principles of reward maximization and invariance and cannot be predicted by the standard methods of Reinforcement Learning, such as the method of temporal differences. We develop a heuristic model that accounts for all of the properties of the behavior in the reinforcement schedule task but whose predictions are not different from those of the standard temporal difference model in choice tasks. In the modification of temporal difference learning introduced here, the effect of schedule length emerges spontaneously from the sensitivity to the immediately preceding trial. We also introduce a policy for general Markov Decision Processes, where the decision made at each node is conditioned on the motivation to perform an instrumental action, and show that the application of our model to the reinforcement schedule task and the choice task are special cases of this general theoretical framework. Within this framework, Reinforcement Learning can approach contextual learning with the mixture of empirical findings and principled assumptions that seem to coexist in the best descriptions of animal behavior. As examples, we discuss two phenomena observed in humans that often derive from the violation of the principle of invariance: “framing,” wherein equivalent options are treated differently depending on the context in which they are presented, and the “sunk cost” effect, the greater tendency to continue an endeavor once an investment in money, effort, or time has been made. The schedule length effect might be a manifestation of these phenomena in monkeys. PMID:18688266
Modeling the violation of reward maximization and invariance in reinforcement schedules.
La Camera, Giancarlo; Richmond, Barry J
2008-08-08
It is often assumed that animals and people adjust their behavior to maximize reward acquisition. In visually cued reinforcement schedules, monkeys make errors in trials that are not immediately rewarded, despite having to repeat error trials. Here we show that error rates are typically smaller in trials equally distant from reward but belonging to longer schedules (referred to as "schedule length effect"). This violates the principles of reward maximization and invariance and cannot be predicted by the standard methods of Reinforcement Learning, such as the method of temporal differences. We develop a heuristic model that accounts for all of the properties of the behavior in the reinforcement schedule task but whose predictions are not different from those of the standard temporal difference model in choice tasks. In the modification of temporal difference learning introduced here, the effect of schedule length emerges spontaneously from the sensitivity to the immediately preceding trial. We also introduce a policy for general Markov Decision Processes, where the decision made at each node is conditioned on the motivation to perform an instrumental action, and show that the application of our model to the reinforcement schedule task and the choice task are special cases of this general theoretical framework. Within this framework, Reinforcement Learning can approach contextual learning with the mixture of empirical findings and principled assumptions that seem to coexist in the best descriptions of animal behavior. As examples, we discuss two phenomena observed in humans that often derive from the violation of the principle of invariance: "framing," wherein equivalent options are treated differently depending on the context in which they are presented, and the "sunk cost" effect, the greater tendency to continue an endeavor once an investment in money, effort, or time has been made. The schedule length effect might be a manifestation of these phenomena in monkeys.
NASA Astrophysics Data System (ADS)
Aubrecht, Christoph; Steinnocher, Klaus; Humer, Heinrich; Huber, Hermann
2014-05-01
In the context of proactive disaster risk as well as immediate situational crisis management knowledge of locational social aspects in terms of spatio-temporal population distribution dynamics is considered among the most important factors for disaster impact minimization (Aubrecht et al., 2013a). This applies to both the pre-event stage for designing appropriate preparedness measures and to acute crisis situations when an event chain actually unfolds for efficient situation-aware response. The presented DynaPop population dynamics model is developed at the interface of those interlinked crisis stages and aims at providing basic input for social impact evaluation and decision support in crisis management. The model provides the starting point for assessing population exposure dynamics - thus here labeled as DynaPop-X - which can either be applied in a sense of illustrating the changing locations and numbers of affected people at different stages during an event or as ex-ante estimations of probable and maximum expected clusters of affected population (Aubrecht et al., 2013b; Freire & Aubrecht, 2012). DynaPop is implemented via a gridded spatial disaggregation approach and integrates previous efforts on spatio-temporal modeling that account for various aspects of population dynamics such as human mobility and activity patterns that are particularly relevant in picturing the highly dynamic daytime situation (Ahola et al., 2007; Bhaduri, 2008; Cockings et al., 2010). We will present ongoing developments particularly focusing on the implementation logic of the model using the emikat software tool, a data management system initially designed for inventorying and analysis of spatially resolved regional air pollutant emission scenarios. This study was performed in the framework of the EU CRISMA project. CRISMA is funded from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement no. 284552. REFERENCES Ahola, T., Virrantaus, K., Krisp, J.K., Hunter, G.J. (2007) A spatio-temporal population model to support risk assessment and damage analysis for decision-making. International Journal of Geographical Information Science, 21(8), 935-953. Aubrecht, C., Fuchs, S., Neuhold, C. (2013a) Spatio-temporal aspects and dimensions in integrated disaster risk management. Natural Hazards, 68(3), 1205-1216. Aubrecht, C., Özceylan, D., Steinnocher, K., Freire, S. (2013b) Multi-level geospatial modeling of human exposure patterns and vulnerability indicators. Natural Hazards, 68(1), 147-163. Bhaduri, B. (2008) Population distribution during the day. In S. Shekhar & X. Hui, eds., Encyclopedia of GIS. Springer US, 880-885. Cockings, S., Martin, D. & Leung, S. (2010) Population 24/7: building space-time specific population surface models. In M. Haklay, J. Morley, & H. Rahemtulla, eds., Proceedings of the GIS Research UK 18th Annual conference. GISRUK 2010. London, UK, 41-47. Freire, S., Aubrecht, C. (2012) Integrating population dynamics into mapping human exposure to seismic hazard. Natural Hazards and Earth System Sciences, 12(11), 3533-3543.
Temporal self-splitting of optical pulses
NASA Astrophysics Data System (ADS)
Ding, Chaoliang; Koivurova, Matias; Turunen, Jari; Pan, Liuzhan
2018-05-01
We present mathematical models for temporally and spectrally partially coherent pulse trains with Laguerre-Gaussian and Hermite-Gaussian Schell-model statistics as extensions of the standard Gaussian Schell model for pulse trains. We derive propagation formulas of both classes of pulsed fields in linearly dispersive media and in temporal optical systems. It is found that, in general, both types of fields exhibit time-domain self-splitting upon propagation. The Laguerre-Gaussian model leads to multiply peaked pulses, while the Hermite-Gaussian model leads to doubly peaked pulses, in the temporal far field (in dispersive media) or at the Fourier plane of a temporal system. In both model fields the character of the self-splitting phenomenon depends both on the degree of temporal and spectral coherence and on the power spectrum of the field.
Applications of Temporal Graph Metrics to Real-World Networks
NASA Astrophysics Data System (ADS)
Tang, John; Leontiadis, Ilias; Scellato, Salvatore; Nicosia, Vincenzo; Mascolo, Cecilia; Musolesi, Mirco; Latora, Vito
Real world networks exhibit rich temporal information: friends are added and removed over time in online social networks; the seasons dictate the predator-prey relationship in food webs; and the propagation of a virus depends on the network of human contacts throughout the day. Recent studies have demonstrated that static network analysis is perhaps unsuitable in the study of real world network since static paths ignore time order, which, in turn, results in static shortest paths overestimating available links and underestimating their true corresponding lengths. Temporal extensions to centrality and efficiency metrics based on temporal shortest paths have also been proposed. Firstly, we analyse the roles of key individuals of a corporate network ranked according to temporal centrality within the context of a bankruptcy scandal; secondly, we present how such temporal metrics can be used to study the robustness of temporal networks in presence of random errors and intelligent attacks; thirdly, we study containment schemes for mobile phone malware which can spread via short range radio, similar to biological viruses; finally, we study how the temporal network structure of human interactions can be exploited to effectively immunise human populations. Through these applications we demonstrate that temporal metrics provide a more accurate and effective analysis of real-world networks compared to their static counterparts.
NASA Astrophysics Data System (ADS)
Beevers, Lindsay; Collet, Lila
2017-04-01
Over the past decade there have been significant challenges to water management posed by both floods and droughts. In the UK, since 2000 flooding has caused over £5Bn worth of damage, and direct costs from the recent drought (2011-12) are estimated to be between £70-165M, arising from impacts on public and industrial water supply. Projections of future climate change suggest an increase in temperature and precipitation trends which may exacerbate the frequency and severity of such hazards, but there is significant uncertainty associated with these projections. It thus becomes urgent to assess the possible impact of these changes on extreme flows and evaluate the uncertainties related to these projections, particularly changes in the seasonality of such hazards. This paper aims to assess the changes in seasonality of peak and low flows across Great Britain as a result of climate change. It is based on the Future Flow database; an 11-member ensemble of transient river flow projections from January 1951 to December 2098. We analyse the daily river flow over the baseline (1961-1990) and the 2080s (2069-2098) for 281 gauging stations. For each ensemble member, annual maxima (AMAX) and minima (AMIN) are extracted for both time periods for each gauging station. The month of the year the AMAX and AMIN occur respectively are recorded for each of the 30 years in the past and the future time periods. The uncertainty of the AMAX and AMIN occurrence temporally (monthly) is assessed across the 11 ensemble members, as well as the changes to this temporal signal between the baseline and the 2080s. Ultimately, this work gives a national picture (spatially) of high and low flows occurrence temporally and allows the assessment of possible changes in hydrological dynamics as a result of climate change in a statistical framework. Results will quantify the uncertainty related to the Climate Model parameters which are cascaded into the modelling chain. This study highlights the issues facing hydrological cycle management, due to changing spatial and temporal trends in order to anticipate and adapt to hydro-hazard changes in an uncertain context.
Is plant temporal beta diversity of field margins related to changes in management practices?
NASA Astrophysics Data System (ADS)
Alignier, Audrey; Baudry, Jacques
2016-08-01
Field margins have considerable ecological significance in agriculture-dominated landscapes by supporting biodiversity and associated services. However, agricultural changes during mid-20th century led to their drastic loss with a serious threat for biodiversity. Using time-series data, we aimed to get better insights into processes underlying plant patterns of field margins through time by i) quantifying plant temporal beta diversity components, ii) assessing whether the observed changes in plant communities can be related to changes in management practices applied to field margins. During the springs of 1994, 1998 and 2001, we surveyed plant communities and management practices of the same 116 field margins in three contrasted landscapes. We estimated temporal beta diversity in plant communities and partitioned it into its two dissimilarity resultant components, accounting for replacement of species (i.e. turnover) and for the nested gain or loss of species (i.e. nestedness). We then tested whether the observed changes in plant communities between 1994 and 1998 and, between 1998 and 2001 were related to changes in management practices using linear models. Plant communities of field margins exhibited strong temporal beta diversity dominated by turnover. Temporal turnover in plant communities was partly related to changes in management practices, i.e., a decrease of grazing concomitant to an increase of herbicide spraying. However, relationships were not consistent between all landscape contexts nor time period, suggesting that other unmeasured deterministic or stochastic processes could be driving the observed plant patterns. Taken together, our results suggest that maintaining a wide diversity of field margins with contrasted management contribute to maintaining plant diversity at a landscape scale. They underline the value of investigating plant temporal diversity patterns using time-series data and thus, the need to develop long-term studies making it possible to understand ecological processes shaping plant communities in agricultural landscapes.
Soil erodibility for water erosion: A perspective and Chinese experiences
NASA Astrophysics Data System (ADS)
Wang, Bin; Zheng, Fenli; Römkens, Mathias J. M.; Darboux, Frédéric
2013-04-01
Knowledge of soil erodibility is an essential requirement for erosion prediction, conservation planning, and the assessment of sediment related environmental effects of watershed agricultural practices. This paper reviews the status of soil erodibility evaluations and determinations based on 80 years of upland area erosion research mainly in China and the USA. The review synthesizes the general research progress made by discussing the basic concepts of erodibility and its evaluation, determination, and prediction as well as knowledge of its spatio-temporal variations. The authors found that soil erodibility is often inappropriately or inaccurately applied in describing soil loss caused by different soil erosion component processes and mechanisms. Soil erodibility indicators were related to intrinsic soil properties and exogenic erosional forces, measurements, and calculations. The present review describes major needs including: (1) improved definition of erodibility, (2) modified erodibility determinations in erosion models, especially for specific geographical locations and in the context of different erosion sub-processes, (3) advanced methodologies for quantifying erodibilities of different soil erosion sub-processes, and (4) a better understanding of the mechanism that causes temporal variations in soil erodibility. The review also provides a more rational basis for future research on soil erodibility and supports predictive modeling of soil erosion processes and the development of improved conservation practices.
A coupled duration-focused architecture for real-time music-to-score alignment.
Cont, Arshia
2010-06-01
The capacity for real-time synchronization and coordination is a common ability among trained musicians performing a music score that presents an interesting challenge for machine intelligence. Compared to speech recognition, which has influenced many music information retrieval systems, music's temporal dynamics and complexity pose challenging problems to common approximations regarding time modeling of data streams. In this paper, we propose a design for a real-time music-to-score alignment system. Given a live recording of a musician playing a music score, the system is capable of following the musician in real time within the score and decoding the tempo (or pace) of its performance. The proposed design features two coupled audio and tempo agents within a unique probabilistic inference framework that adaptively updates its parameters based on the real-time context. Online decoding is achieved through the collaboration of the coupled agents in a Hidden Hybrid Markov/semi-Markov framework, where prediction feedback of one agent affects the behavior of the other. We perform evaluations for both real-time alignment and the proposed temporal model. An implementation of the presented system has been widely used in real concert situations worldwide and the readers are encouraged to access the actual system and experiment the results.
Stock market context of the Lévy walks with varying velocity
NASA Astrophysics Data System (ADS)
Kutner, Ryszard
2002-11-01
We developed the most general Lévy walks with varying velocity, shorter called the Weierstrass walks (WW) model, by which one can describe both stationary and non-stationary stochastic time series. We considered a non-Brownian random walk where the walker moves, in general, with a velocity that assumes a different constant value between the successive turning points, i.e., the velocity is a piecewise constant function. This model is a kind of Lévy walks where we assume a hierarchical, self-similar in a stochastic sense, spatio-temporal representation of the main quantities such as waiting-time distribution and sojourn probability density (which are principal quantities in the continuous-time random walk formalism). The WW model makes possible to analyze both the structure of the Hurst exponent and the power-law behavior of kurtosis. This structure results from the hierarchical, spatio-temporal coupling between the walker displacement and the corresponding time of the walks. The analysis uses both the fractional diffusion and the super Burnett coefficients. We constructed the diffusion phase diagram which distinguishes regions occupied by classes of different universality. We study only such classes which are characteristic for stationary situations. We thus have a model ready for describing the data presented, e.g., in the form of moving averages; the operation is often used for stochastic time series, especially financial ones. The model was inspired by properties of financial time series and tested for empirical data extracted from the Warsaw stock exchange since it offers an opportunity to study in an unbiased way several features of stock exchange in its early stage.
Dynamical principles in neuroscience
NASA Astrophysics Data System (ADS)
Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.
2006-10-01
Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?
Dynamical principles in neuroscience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.
Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only amore » few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?.« less
NASA Astrophysics Data System (ADS)
Macknick, J.; Miara, A.; Brinkman, G.; Ibanez, E.; Newmark, R. L.
2014-12-01
The reliability of the power sector is highly vulnerable to variability in the availability and temperature of water resources, including those that might result from potential climatic changes or from competition from other users. In the past decade, power plants throughout the United States have had to shut down or curtail generation due to a lack of available water or from elevated water temperatures. These disruptions in power plant performance can have negative impacts on energy security and can be costly to address. Analysis of water-related vulnerabilities requires modeling capabilities with high spatial and temporal resolution. This research provides an innovative approach to energy-water modeling by evaluating the costs and reliability of a power sector region under policy and climate change scenarios that affect water resource availability and temperatures. This work utilizes results from a spatially distributed river water temperature model coupled with a thermoelectric power plant model to provide inputs into an electricity production cost model that operates on a high spatial and temporal resolution. The regional transmission organization ISO-New England, which includes six New England states and over 32 Gigawatts of power capacity, is utilized as a case study. Hydrological data and power plant operations are analyzed over an eleven year period from 2000-2010 under four scenarios that include climate impacts on water resources and air temperatures as well as strict interpretations of regulations that can affect power plant operations due to elevated water temperatures. Results of these model linkages show how the power sector's reliability and economic performance can be affected by changes in water temperatures and water availability. The effective reliability and capacity value of thermal electric generators are quantified and discussed in the context of current as well as potential future water resource characteristics.
Extraction of events and rules of land use/cover change from the policy text
NASA Astrophysics Data System (ADS)
Lin, Guangfa; Xia, Beicheng; Huang, Wangli; Jiang, Huixian; Chen, Youfei
2007-06-01
The database of recording the snapshots of land parcels history is the foundation for the most of the models on simulating land use/cover change (LUCC) process. But the sequences of temporal snapshots are not sufficient to deduce and describe the mechanism of LUCC process. The temporal relationship between scenarios of LUCC we recorded could not be transfer into causal relationship categorically, which was regarded as a key factor in spatial-temporal reasoning. The proprietor of land parcels adapted themselves to the policies from governments and the change of production market, and then made decisions in this or that way. The occurrence of each change of a land parcel in an urban area was often related with one or more decision texts when it was investigated on the local scale with high resolution of the background scene. These decision texts may come from different sections of a hierarchical government system on different levels, such as villages or communities, towns or counties, cities, provinces or even the paramount. All these texts were balance results between advantages and disadvantages of different interest groups. They are the essential forces of LUCC in human dimension. Up to now, a methodology is still wanted for on how to express these forces in a simulation system using GIS as a language. The presented paper was part of our initial research on this topic. The term "Event" is a very important concept in the frame of "Object-Oriented" theory in computer science. While in the domain of temporal GIS, the concept of event was developed in another category. The definitions of the event and their transformation relationship were discussed in this paper on three modeling levels as real world level, conceptual level and programming level. In this context, with a case study of LUCC in recent 30 years in Xiamen city of Fujian province, P. R. China, the paper focused on how to extract information of events and rules from the policy files collected and integrate the information into the LUCC temporal database. The paper concluded by listing the main steps of how to extract events and rules from files and build an event database, and indicating directions for future work about how to develop a spatial-temporal reasoning system on the event-oriented LUCC database.
Multi-material 3D Models for Temporal Bone Surgical Simulation.
Rose, Austin S; Kimbell, Julia S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Buchman, Craig A
2015-07-01
A simulated, multicolor, multi-material temporal bone model can be created using 3-dimensional (3D) printing that will prove both safe and beneficial in training for actual temporal bone surgical cases. As the process of additive manufacturing, or 3D printing, has become more practical and affordable, a number of applications for the technology in the field of Otolaryngology-Head and Neck Surgery have been considered. One area of promise is temporal bone surgical simulation. Three-dimensional representations of human temporal bones were created from temporal bone computed tomography (CT) scans using biomedical image processing software. Multi-material models were then printed and dissected in a temporal bone laboratory by attending and resident otolaryngologists. A 5-point Likert scale was used to grade the models for their anatomical accuracy and suitability as a simulation of cadaveric and operative temporal bone drilling. The models produced for this study demonstrate significant anatomic detail and a likeness to human cadaver specimens for drilling and dissection. Simulated temporal bones created by this process have potential benefit in surgical training, preoperative simulation for challenging otologic cases, and the standardized testing of temporal bone surgical skills. © The Author(s) 2015.
The Pliocene Model Intercomparison Project - Phase 2
NASA Astrophysics Data System (ADS)
Haywood, Alan; Dowsett, Harry; Dolan, Aisling; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark; Hunter, Stephen; Lunt, Daniel; Pound, Matthew; Salzmann, Ulrich
2016-04-01
The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate, and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilised for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilise state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land/ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.
Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing
Jung, Jaewook; Sohn, Gunho; Bang, Kiin; Wichmann, Andreas; Armenakis, Costas; Kada, Martin
2016-01-01
A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process. PMID:27338410
Thaler, Lore; Reich, Galen M; Zhang, Xinyu; Wang, Dinghe; Smith, Graeme E; Tao, Zeng; Abdullah, Raja Syamsul Azmir Bin Raja; Cherniakov, Mikhail; Baker, Christopher J; Kish, Daniel; Antoniou, Michail
2017-08-01
Echolocation is the ability to use sound-echoes to infer spatial information about the environment. Some blind people have developed extraordinary proficiency in echolocation using mouth-clicks. The first step of human biosonar is the transmission (mouth click) and subsequent reception of the resultant sound through the ear. Existing head-related transfer function (HRTF) data bases provide descriptions of reception of the resultant sound. For the current report, we collected a large database of click emissions with three blind people expertly trained in echolocation, which allowed us to perform unprecedented analyses. Specifically, the current report provides the first ever description of the spatial distribution (i.e. beam pattern) of human expert echolocation transmissions, as well as spectro-temporal descriptions at a level of detail not available before. Our data show that transmission levels are fairly constant within a 60° cone emanating from the mouth, but levels drop gradually at further angles, more than for speech. In terms of spectro-temporal features, our data show that emissions are consistently very brief (~3ms duration) with peak frequencies 2-4kHz, but with energy also at 10kHz. This differs from previous reports of durations 3-15ms and peak frequencies 2-8kHz, which were based on less detailed measurements. Based on our measurements we propose to model transmissions as sum of monotones modulated by a decaying exponential, with angular attenuation by a modified cardioid. We provide model parameters for each echolocator. These results are a step towards developing computational models of human biosonar. For example, in bats, spatial and spectro-temporal features of emissions have been used to derive and test model based hypotheses about behaviour. The data we present here suggest similar research opportunities within the context of human echolocation. Relatedly, the data are a basis to develop synthetic models of human echolocation that could be virtual (i.e. simulated) or real (i.e. loudspeaker, microphones), and which will help understanding the link between physical principles and human behaviour.
Zhang, Xinyu; Wang, Dinghe; Tao, Zeng; Abdullah, Raja Syamsul Azmir Bin. Raja; Cherniakov, Mikhail; Kish, Daniel
2017-01-01
Echolocation is the ability to use sound-echoes to infer spatial information about the environment. Some blind people have developed extraordinary proficiency in echolocation using mouth-clicks. The first step of human biosonar is the transmission (mouth click) and subsequent reception of the resultant sound through the ear. Existing head-related transfer function (HRTF) data bases provide descriptions of reception of the resultant sound. For the current report, we collected a large database of click emissions with three blind people expertly trained in echolocation, which allowed us to perform unprecedented analyses. Specifically, the current report provides the first ever description of the spatial distribution (i.e. beam pattern) of human expert echolocation transmissions, as well as spectro-temporal descriptions at a level of detail not available before. Our data show that transmission levels are fairly constant within a 60° cone emanating from the mouth, but levels drop gradually at further angles, more than for speech. In terms of spectro-temporal features, our data show that emissions are consistently very brief (~3ms duration) with peak frequencies 2-4kHz, but with energy also at 10kHz. This differs from previous reports of durations 3-15ms and peak frequencies 2-8kHz, which were based on less detailed measurements. Based on our measurements we propose to model transmissions as sum of monotones modulated by a decaying exponential, with angular attenuation by a modified cardioid. We provide model parameters for each echolocator. These results are a step towards developing computational models of human biosonar. For example, in bats, spatial and spectro-temporal features of emissions have been used to derive and test model based hypotheses about behaviour. The data we present here suggest similar research opportunities within the context of human echolocation. Relatedly, the data are a basis to develop synthetic models of human echolocation that could be virtual (i.e. simulated) or real (i.e. loudspeaker, microphones), and which will help understanding the link between physical principles and human behaviour. PMID:28859082
Contextual and temporal clinical guidelines.
Guarnero, A.; Marzuoli, M.; Molino, G.; Terenziani, P.; Torchio, M.; Vanni, K.
1998-01-01
In this paper, we propose an approach for managing clinical guidelines. We sketch a modular architecture, allowing us to separate conceptually distinct aspects in the management and use of clinical guidelines. In particular, we describe the clinical guidelines knowledge representation module and we sketch the acquisition module. The main focus of the paper is the definition of an expressive formalism for representing clinical guidelines, which allows one to deal with the context dependent character of clinical guidelines and takes into account different temporal aspects. PMID:9929306
Horizontal optokinetic reflex in the opossum Didelphis marsupialis aurita.
Nasi, J P; Bernardes, R F; Volchan, E; Rocha-Miranda, C E; Tecles, M
1989-01-01
Electro-oculographic recordings were performed in 10 opossums. The optokinetic reflex was elicited by projecting a random dot stimulus on a cylindrical screen moving horizontally from left to right or right to left at various constant speeds. Binocular stimulation yielded the same response as the temporal to nasal monocular condition. The nasal to temporal monocular response was always less than that to the opposite direction: 50% at 3 degrees/s and 15% at 18 degrees/s. These results are discussed in a comparative context.
ERIC Educational Resources Information Center
de Meyer, Bernard; And Others
1993-01-01
Four instructional ideas for use in the French second-language classroom are described, including an exercise in the temporal aspect of French past tenses; part of a series on simulating a French village community; a verb tense drill set in the context of a murder mystery; and an exercise in current French street slang. (MSE)
ERIC Educational Resources Information Center
Laursen, Paul B.; Shing, Cecilia M.; Jenkins, David G.
2004-01-01
The power output achieved at peak oxygen consumption (V[O.sub.2]peak) and the time this power can be maintained (i.e., Tmax) have been used in prescribing high-intensity interval training. In this context, the present study examined temporal aspects of the V[O.sub.2] response to exercise at the cycling power that output well trained cyclists…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirman, C.R., E-mail: ckirman@summittoxicology.com
A physiologically based pharmacokinetic (PBPK) model for hexavalent chromium [Cr(VI)] in mice, rats, and humans developed previously (Kirman et al., 2012, 2013), was updated to reflect an improved understanding of the toxicokinetics of the gastrointestinal tract following oral exposures. Improvements were made to: (1) the reduction model, which describes the pH-dependent reduction of Cr(VI) to Cr(III) in the gastrointestinal tract under both fasted and fed states; (2) drinking water pattern simulations, to better describe dosimetry in rodents under the conditions of the NTP cancer bioassay; and (3) parameterize the model to characterize potentially sensitive human populations. Important species differences, sourcesmore » of non-linear toxicokinetics, and human variation are identified and discussed within the context of human health risk assessment. - Highlights: • An improved version of the PBPK model for Cr(VI) toxicokinetics was developed. • The model incorporates data collected to fill important data gaps. • Model predictions for specific age groups and sensitive subpopulations are provided. • Implications to human health risk assessment are discussed.« less
Sicilia, Alvaro; González-Cutre, David
2011-05-01
The purpose of this study was to validate the Spanish version of the Exercise Dependence Scale-Revised (EDS-R). To achieve this goal, a sample of 531 sport center users was used and the psychometric properties of the EDS-R were examined through different analyses. The results supported both the first-order seven-factor model and the higher-order model (seven first-order factors and one second-order factor). The structure of both models was invariant across age. Correlations among the subscales indicated a related factor model, supporting construct validity of the scale. Alpha values over .70 (except for Reduction in Other Activities) and suitable levels of temporal stability were obtained. Users practicing more than three days per week had higher scores in all subscales than the group practicing with a frequency of three days or fewer. The findings of this study provided reliability and validity for the EDS-R in a Spanish context.
The Evaluation of a Temporal Reasoning System in Processing Clinical Discharge Summaries
Zhou, Li; Parsons, Simon; Hripcsak, George
2008-01-01
Context TimeText is a temporal reasoning system designed to represent, extract, and reason about temporal information in clinical text. Objective To measure the accuracy of the TimeText for processing clinical discharge summaries. Design Six physicians with biomedical informatics training served as domain experts. Twenty discharge summaries were randomly selected for the evaluation. For each of the first 14 reports, 5 to 8 clinically important medical events were chosen. The temporal reasoning system generated temporal relations about the endpoints (start or finish) of pairs of medical events. Two experts (subjects) manually generated temporal relations for these medical events. The system and expert-generated results were assessed by four other experts (raters). All of the twenty discharge summaries were used to assess the system’s accuracy in answering time-oriented clinical questions. For each report, five to ten clinically plausible temporal questions about events were generated. Two experts generated answers to the questions to serve as the gold standard. We wrote queries to retrieve answers from system’s output. Measurements Correctness of generated temporal relations, recall of clinically important relations, and accuracy in answering temporal questions. Results The raters determined that 97% of subjects’ 295 generated temporal relations were correct and that 96.5% of the system’s 995 generated temporal relations were correct. The system captured 79% of 307 temporal relations determined to be clinically important by the subjects and raters. The system answered 84% of the temporal questions correctly. Conclusion The system encoded the majority of information identified by experts, and was able to answer simple temporal questions. PMID:17947618
Predicting neuropsychological test performance on the basis of temporal orientation.
Ryan, Joseph J; Glass, Laura A; Bartels, Jared M; Bergner, CariAnn M; Paolo, Anthony M
2009-05-01
Temporal orientation is often disrupted in the context of psychiatric or neurological disease; tests assessing this function are included in most mental status examinations. The present study examined the relationship between scores on the Temporal Orientation Scale (TOS) and performance on a battery of tests that assess memory, language, and cognitive functioning in a sample of patients with Alzheimer's disease (N = 55). Pearson-product moment correlations showed that, in all but two instances, the TOS was significantly correlated with each neuropsychological measure, p values < or = .05. Also, severely disoriented (i.e., TOS score < or = -8) patients were consistently 'impaired' on memory tests but not on tests of language and general cognitive functioning.
Spatio-temporal Bayesian model selection for disease mapping
Carroll, R; Lawson, AB; Faes, C; Kirby, RS; Aregay, M; Watjou, K
2016-01-01
Spatio-temporal analysis of small area health data often involves choosing a fixed set of predictors prior to the final model fit. In this paper, we propose a spatio-temporal approach of Bayesian model selection to implement model selection for certain areas of the study region as well as certain years in the study time line. Here, we examine the usefulness of this approach by way of a large-scale simulation study accompanied by a case study. Our results suggest that a special case of the model selection methods, a mixture model allowing a weight parameter to indicate if the appropriate linear predictor is spatial, spatio-temporal, or a mixture of the two, offers the best option to fitting these spatio-temporal models. In addition, the case study illustrates the effectiveness of this mixture model within the model selection setting by easily accommodating lifestyle, socio-economic, and physical environmental variables to select a predominantly spatio-temporal linear predictor. PMID:28070156
Composing lexical versus functional adjectives: Evidence for uniformity in the left temporal lobe.
Zhang, Linmin; Pylkkänen, Liina
2018-04-24
Featural information (e.g., color or shape) allows interlocutors to focus their attention on the specific items under discussion from the vast set of possibilities in the environment. Intriguingly, when they are used to modify and restrict nouns, adjectives can either carry featural information themselves (e.g., green car) or retrieve featural information from the context (e.g., somebody points at a car and claims that she has the same car or a different car). Do the processing of same/different car and green car share neural correlates? For the composition of nouns with feature-carrying adjectives, prior work revealed early compositional effects (roughly 200 ms after noun onset) in the left anterior temporal lobe. However, although we know that such effects do not extend to cases of numeral quantification, which add no conceptual features to the noun (e.g., two boats), we do not know whether they extend to functional adjectives that themselves introduce no features, but instead reference features in the context. To address this question, we measured magnetoencephalography (MEG) during the processing of five types of noun phrases (NPs): same NPs (e.g., same star), different NPs (e.g., different star), color NPs (e.g., green star), comparative NPs (e.g., larger star), and another NPs (e.g., another star). Our main finding was that between 185 to 240 ms after noun onset, same and different NPs patterned with the color NPs in their elicited left temporal lobe activity, and same NPs even trended toward higher amplitudes than the color NPs. This shows that the mechanism driving combinatory effects in the left temporal cortex does not require the input words to directly name conceptual features, as long as the words reference featural information in the context, and that overlapping neural correlates underlie the composition of featural information from both linguistic and nonlinguistic sources.
NASA Astrophysics Data System (ADS)
Marcozzi, Michael D.
2008-12-01
We consider theoretical and approximation aspects of the stochastic optimal control of ultradiffusion processes in the context of a prototype model for the selling price of a European call option. Within a continuous-time framework, the dynamic management of a portfolio of assets is effected through continuous or point control, activation costs, and phase delay. The performance index is derived from the unique weak variational solution to the ultraparabolic Hamilton-Jacobi equation; the value function is the optimal realization of the performance index relative to all feasible portfolios. An approximation procedure based upon a temporal box scheme/finite element method is analyzed; numerical examples are presented in order to demonstrate the viability of the approach.
UTP and Temporal Logic Model Checking
NASA Astrophysics Data System (ADS)
Anderson, Hugh; Ciobanu, Gabriel; Freitas, Leo
In this paper we give an additional perspective to the formal verification of programs through temporal logic model checking, which uses Hoare and He Unifying Theories of Programming (UTP). Our perspective emphasizes the use of UTP designs, an alphabetised relational calculus expressed as a pre/post condition pair of relations, to verify state or temporal assertions about programs. The temporal model checking relation is derived from a satisfaction relation between the model and its properties. The contribution of this paper is that it shows a UTP perspective to temporal logic model checking. The approach includes the notion of efficiency found in traditional model checkers, which reduced a state explosion problem through the use of efficient data structures
Music perception and cognition: a review of recent cross-cultural research.
Stevens, Catherine J
2012-10-01
Experimental investigations of cross-cultural music perception and cognition reported during the past decade are described. As globalization and Western music homogenize the world musical environment, it is imperative that diverse music and musical contexts are documented. Processes of music perception include grouping and segmentation, statistical learning and sensitivity to tonal and temporal hierarchies, and the development of tonal and temporal expectations. The interplay of auditory, visual, and motor modalities is discussed in light of synchronization and the way music moves via emotional response. Further research is needed to test deep-rooted psychological assumptions about music cognition with diverse materials and groups in dynamic contexts. Although empirical musicology provides keystones to unlock musical structures and organization, the psychological reality of those theorized structures for listeners and performers, and the broader implications for theories of music perception and cognition, awaits investigation. Copyright © 2012 Cognitive Science Society, Inc.
An efficient temporal database design method based on EER
NASA Astrophysics Data System (ADS)
Liu, Zhi; Huang, Jiping; Miao, Hua
2007-12-01
Many existing methods of modeling temporal information are based on logical model, which makes relational schema optimization more difficult and more complicated. In this paper, based on the conventional EER model, the author attempts to analyse and abstract temporal information in the phase of conceptual modelling according to the concrete requirement to history information. Then a temporal data model named BTEER is presented. BTEER not only retains all designing ideas and methods of EER which makes BTEER have good upward compatibility, but also supports the modelling of valid time and transaction time effectively at the same time. In addition, BTEER can be transformed to EER easily and automatically. It proves in practice, this method can model the temporal information well.
Ranganath, Charan
2010-11-01
There is currently an intense debate about the nature of recognition memory and about the roles of medial temporal lobe subregions in recognition memory processes. At a larger level, this debate has been about whether it is appropriate to propose unified theories to explain memory at neural, functional, and phenomenological levels of analysis. Here, I review findings from physiology, functional imaging, and lesion studies in humans, monkeys, and rodents relevant to the roles of medial temporal lobe subregions in recognition memory, as well as in short-term memory and perception. The results from these studies are consistent with the idea that there is functional heterogeneity in the medial temporal lobes, although the differences among medial temporal lobe subregions do not precisely correspond to different types of memory tasks, cognitive processes, or states of awareness. Instead, the evidence is consistent with the idea that medial temporal lobe subregions differ in terms of the kind of information they process and represent, and that these regions collectively support episodic memory by binding item and context information. © 2010 Wiley-Liss, Inc.
A Unified Mathematical Framework for Coding Time, Space, and Sequences in the Hippocampal Region
MacDonald, Christopher J.; Tiganj, Zoran; Shankar, Karthik H.; Du, Qian; Hasselmo, Michael E.; Eichenbaum, Howard
2014-01-01
The medial temporal lobe (MTL) is believed to support episodic memory, vivid recollection of a specific event situated in a particular place at a particular time. There is ample neurophysiological evidence that the MTL computes location in allocentric space and more recent evidence that the MTL also codes for time. Space and time represent a similar computational challenge; both are variables that cannot be simply calculated from the immediately available sensory information. We introduce a simple mathematical framework that computes functions of both spatial location and time as special cases of a more general computation. In this framework, experience unfolding in time is encoded via a set of leaky integrators. These leaky integrators encode the Laplace transform of their input. The information contained in the transform can be recovered using an approximation to the inverse Laplace transform. In the temporal domain, the resulting representation reconstructs the temporal history. By integrating movements, the equations give rise to a representation of the path taken to arrive at the present location. By modulating the transform with information about allocentric velocity, the equations code for position of a landmark. Simulated cells show a close correspondence to neurons observed in various regions for all three cases. In the temporal domain, novel secondary analyses of hippocampal time cells verified several qualitative predictions of the model. An integrated representation of spatiotemporal context can be computed by taking conjunctions of these elemental inputs, leading to a correspondence with conjunctive neural representations observed in dorsal CA1. PMID:24672015
Neural pathways for visual speech perception
Bernstein, Lynne E.; Liebenthal, Einat
2014-01-01
This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA. PMID:25520611
Functional and structural brain correlates of theory of mind and empathy deficits in schizophrenia.
Benedetti, Francesco; Bernasconi, Alessandro; Bosia, Marta; Cavallaro, Roberto; Dallaspezia, Sara; Falini, Andrea; Poletti, Sara; Radaelli, Daniele; Riccaboni, Roberta; Scotti, Giuseppe; Smeraldi, Enrico
2009-10-01
Patients affected by schizophrenia show deficits in social cognition, with abnormal performance on tasks targeting theory of mind (ToM) and empathy (Emp). Brain imaging studies suggested that ToM and Emp depend on the activation of brain networks mainly localized at the superior temporal lobe and temporo-parietal junction. Participants included 24 schizophrenia patients and 20 control subjects. We used brain blood oxygen level dependent fMRI to study the neural responses to tasks targeting ToM and Emp. We then studied voxel-based morphometry of grey matter in areas where diagnosis influenced functional activation to both tasks. Outcomes were analyzed in the context of the general linear model, with global grey matter volume as nuisance covariate for structural MRI. Patients showed worse performance on both tasks. We found significant effects of diagnosis on neural responses to the tasks in a wide cluster in right posterior superior temporal lobe (encompassing BA 22-42), in smaller clusters in left temporo-parietal junction and temporal pole (BA 38 and 39), and in a white matter region adjacent to medial prefrontal cortex (BA 10). A pattern of double dissociation of the effects of diagnosis and task on neural responses emerged. Among these areas, grey matter volume was found to be reduced in right superior temporal lobe regions of patients. Functional and structural abnormalities were observed in areas affected by the schizophrenic process early in the illness course, and known to be crucial for social cognition, suggesting a biological basis for social cognition deficits in schizophrenia.
Temporal and spatial patterns of suicides in Stockholm's subway stations.
Uittenbogaard, Adriaan; Ceccato, Vania
2015-08-01
This paper investigates the potential temporal and spatial variations of suicides in subway stations in Stockholm, Sweden. The study also assesses whether the variation in suicide rates is related to the station environments by controlling for each station's location and a number of contextual factors using regression models and geographical information systems (GIS). Data on accidents are used as references for the analysis of suicides. Findings show that suicides tend to occur during the day and in the spring. They are concentrated in the main transportation hubs but, interestingly, during off-peak hours. However, the highest rates of suicides per passenger are found in Stockholm's subway stations located in the Southern outskirts. More than half of the variation in suicide rates is associated with stations that have walls between the two sides of the platform but still allow some visibility from passers-by. The surrounding environment and socioeconomic context show little effect on suicide rates, but stations embedded in areas with high drug-related crime rates tend to show higher suicide rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Cellular Automata Model for the Study of Landslides
NASA Astrophysics Data System (ADS)
Liucci, Luisa; Suteanu, Cristian; Melelli, Laura
2016-04-01
Power-law scaling has been observed in the frequency distribution of landslide sizes in many regions of the world, for landslides triggered by different factors, and in both multi-temporal and post-event datasets, thus indicating the universal character of this property of landslides and suggesting that the same mechanisms drive the dynamics of mass wasting processes. The reasons for the scaling behavior of landslide sizes are widely debated, since their understanding would improve our knowledge of the spatial and temporal evolution of this phenomenon. Self-Organized Critical (SOC) dynamics and the key role of topography have been suggested as possible explanations. The scaling exponent of the landslide size-frequency distribution defines the probability of landslide magnitudes and it thus represents an important parameter for hazard assessment. Therefore, another - still unanswered - important question concerns the factors on which its value depends. This paper investigates these issues using a Cellular Automata (CA) model. The CA uses a real topographic surface acquired from a Digital Elevation Model to represent the initial state of the system, where the states of cells are defined in terms of altitude. The stability criterion is based on the slope gradient. The system is driven to instability through a temporal decrease of the stability condition of cells, which may be thought of as representing the temporal weakening of soil caused by factors like rainfall. A transition rule defines the way in which instabilities lead to discharge from unstable cells to the neighboring cells, deciding upon the landslide direction and the quantity of mass involved. Both the direction and the transferred mass depend on the local topographic features. The scaling properties of the area-frequency distributions of the resulting landslide series are investigated for several rates of weakening and for different time windows, in order to explore the response of the system to model parameters, and its temporal behavior. Results show that the model reproduces the scaling behavior of real landslide areas; while the value of the scaling exponent is stable over time, it linearly decreases with increasing rate of weakening. This suggests that it is the intensity of the triggering mechanism rather than its duration that affects the probability of landslide magnitudes. A quantitative relationship between the scaling exponent of the area frequency distribution of the generated landslides, on one hand, and the changes regarding the topographic surface affected by landslides, on the other hand, is established. The fact that a similar behavior could be observed in real systems may have useful implications in the context of landslide hazard assessment. These results support the hypotheses that landslides are driven by SOC dynamics, and that topography plays a key role in the scaling properties of their size distribution.
Mesial temporal lobe epilepsy - An overview of surgical techniques.
Muzumdar, Dattatraya; Patil, Manoj; Goel, Atul; Ravat, Sangeeta; Sawant, Nina; Shah, Urvashi
2016-12-01
Mesial temporal lobe epilepsy is one of the commonest indications for epilepsy surgery. Presurgical evaluation for drug resistant epilepsy and identification of appropriate candidates for surgery is essential for optimal seizure freedom. The anatomy of mesial temporal lobe is complex and needs to be understood in the context of the advanced imaging, ictal and interictal Video_EEG monitoring, neuropsychology and psychiatric considerations. The completeness of disconnection of epileptogenic neural networks is paramount and is correlated with the extent of resection of the mesial temporal structures. In the Indian subcontinent, a standard but extended anterior temporal lobectomy is a viable option in view of the diverse socioeconomic, cultural and pathological considerations. The maximum utilization of epilepsy surgery services in this region is also a challenge. There is a need for regional comprehensive epilepsy care teams in a tertiary care academic hospital to form centers of excellence catering to a large population. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Left centro-parieto-temporal response to tool-gesture incongruity: an ERP study.
Chang, Yi-Tzu; Chen, Hsiang-Yu; Huang, Yuan-Chieh; Shih, Wan-Yu; Chan, Hsiao-Lung; Wu, Ping-Yi; Meng, Ling-Fu; Chen, Chen-Chi; Wang, Ching-I
2018-03-13
Action semantics have been investigated in relation to context violation but remain less examined in relation to the meaning of gestures. In the present study, we examined tool-gesture incongruity by event-related potentials (ERPs) and hypothesized that the component N400, a neural index which has been widely used in both linguistic and action semantic congruence, is significant for conditions of incongruence. Twenty participants performed a tool-gesture judgment task, in which they were asked to judge whether the tool-gesture pairs were correct or incorrect, for the purpose of conveying functional expression of the tools. Online electroencephalograms and behavioral performances (the accuracy rate and reaction time) were recorded. The ERP analysis showed a left centro-parieto-temporal N300 effect (220-360 ms) for the correct condition. However, the expected N400 (400-550 ms) could not be differentiated between correct/incorrect conditions. After 700 ms, a prominent late negative complex for the correct condition was also found in the left centro-parieto-temporal area. The neurophysiological findings indicated that the left centro-parieto-temporal area is the predominant region contributing to neural processing for tool-gesture incongruity in right-handers. The temporal dynamics of tool-gesture incongruity are: (1) firstly enhanced for recognizable tool-gesture using patterns, (2) and require a secondary reanalysis for further examination of the highly complicated visual structures of gestures and tools. The evidence from the tool-gesture incongruity indicated altered brain activities attributable to the N400 in relation to lexical and action semantics. The online interaction between gesture and tool processing provided minimal context violation or anticipation effect, which may explain the missing N400.
Sex in Its Daily Relational Context.
Dewitte, Marieke; Van Lankveld, Jacques; Vandenberghe, Sjouke; Loeys, Tom
2015-12-01
The present study measured the daily correlates of sexual behavior in an ecologically valid context by relying on a daily diary approach. Examining the dyadic and multicomponent nature of sexual behavior is essential to create valid models of sexual responding that are better aligned with the day-to-day context of having sex in a relationship. During 3 weeks, heterosexual couples completed, two times a day, an electronic diary to report on mood, own and perceived partner behavior, relational feelings (in the evening), sexual activity, physical intimacy, and masturbation (in the morning). This design allowed testing bidirectional temporal associations between daily context and different types of sexual behavior. Positive mood, displays of positive partner behavior, perceived positive partner behavior, and positive relational feelings predicted more sexual activity and intimacy in men, which then further increased their positive mood, perceived positive partner behavior, and positive feelings about the relationship on the following day. Women showed a similar pattern of predictors regarding sexual activity as men, though the effect of sexual behavior on next-day feelings and behavior was more relationship-oriented rather than affecting personal mood. Intimacy was related to almost all daily variables in women, but related only to own and perceived positive partner behavior and positive relational feelings the next day. Several partner effects also reached significance, and these were more influential in predicting male than female intimacy. Solitary sexual activity showed a different pattern of results than dyadic sexual activity, with men experiencing masturbation as negatively in the context of their relationship. These results confirm the regulatory function of sex and intimacy in maintaining a positive relational climate and indicate that the quality of the everyday relational context is important to get partners in the mood to act in a sexual way. © 2015 International Society for Sexual Medicine.
Superior Temporal Sulcus Disconnectivity During Processing of Metaphoric Gestures in Schizophrenia
Straube, Benjamin; Green, Antonia; Sass, Katharina; Kircher, Tilo
2014-01-01
The left superior temporal sulcus (STS) plays an important role in integrating audiovisual information and is functionally connected to disparate regions of the brain. For the integration of gesture information in an abstract sentence context (metaphoric gestures), intact connectivity between the left STS and the inferior frontal gyrus (IFG) should be important. Patients with schizophrenia have problems with the processing of metaphors (concretism) and show aberrant structural connectivity of long fiber bundles. Thus, we tested the hypothesis that patients with schizophrenia differ in the functional connectivity of the left STS to the IFG for the processing of metaphoric gestures. During functional magnetic resonance imaging data acquisition, 16 patients with schizophrenia (P) and a healthy control group (C) were shown videos of an actor performing gestures in a concrete (iconic, IC) and abstract (metaphoric, MP) sentence context. A psychophysiological interaction analysis based on the seed region from a previous analysis in the left STS was performed. In both groups we found common positive connectivity for IC and MP of the STS seed region to the left middle temporal gyrus (MTG) and left ventral IFG. The interaction of group (C>P) and gesture condition (MP>IC) revealed effects in the connectivity to the bilateral IFG and the left MTG with patients exhibiting lower connectivity for the MP condition. In schizophrenia the left STS is misconnected to the IFG, particularly during the processing of MP gestures. Dysfunctional integration of gestures in an abstract sentence context might be the basis of certain interpersonal communication problems in the patients. PMID:23956120
Brébion, G; Ohlsen, R I; Bressan, R A; David, A S
2012-12-01
Previous research has shown associations between source memory errors and hallucinations in patients with schizophrenia. We bring together here findings from a broad memory investigation to specify better the type of source memory failure that is associated with auditory and visual hallucinations. Forty-one patients with schizophrenia and 43 healthy participants underwent a memory task involving recall and recognition of lists of words, recognition of pictures, memory for temporal and spatial context of presentation of the stimuli, and remembering whether target items were presented as words or pictures. False recognition of words and pictures was associated with hallucination scores. The extra-list intrusions in free recall were associated with verbal hallucinations whereas the intra-list intrusions were associated with a global hallucination score. Errors in discriminating the temporal context of word presentation and the spatial context of picture presentation were associated with auditory hallucinations. The tendency to remember verbal labels of items as pictures of these items was associated with visual hallucinations. Several memory errors were also inversely associated with affective flattening and anhedonia. Verbal and visual hallucinations are associated with confusion between internal verbal thoughts or internal visual images and perception. In addition, auditory hallucinations are associated with failure to process or remember the context of presentation of the events. Certain negative symptoms have an opposite effect on memory errors.
SUTTON, A. J.; KARAGENC, T.; BAKIRCI, S.; SARALI, H.; PEKEL, G.; MEDLEY, G. F.
2012-01-01
SUMMARY A mathematical model that describes the transmission dynamics of Theileria annulata is proposed that consists of 2 host components: the Hyalomma tick population and a compartmental model of T. annulata infection in the cattle population. The model was parameterized using data describing tick infestation and the infection status of cattle in Turkey from 2006 to 2008. The tick attachment rates are highly seasonal and because of the temporal separation of infectious and susceptible ticks virtually all ticks are infected by carrier cattle, so that annual peaks of disease in cattle do not impact on infection in the Hyalomma tick population. The impact of intervention measures that target the tick population both on the host and in the environment and their impact on the transmission of T. annulata were investigated. Interventions that have a limited ‘one-off’ impact and interventions that have a more permanent impact were both considered. The results from the model show the importance of targeting ticks during the period when they have left their first host as nymphs but have yet to feed on their second host. PMID:22309815
NASA Astrophysics Data System (ADS)
Khan, H. F.; Yang, Y. C. E.; Brown, C.
2016-12-01
Economic decision models, such as the cap-and-trade system, have been shown to be useful in the context of groundwater management. A uniformly applied cap-and-trade system can however result in significant spatially and temporally varying hydrogeologic impacts that reduce public welfare. Hydrological challenges associated with the cap-and-trade system for groundwater management include establishing appropriate system boundaries, setting system-wide sustainable yield and limiting third party impacts from extractions. Given these challenges, these economic models need to be supplemented with physically based hydrogeologic models that are able to represent the spatial and temporal heterogeneity in conditions across a region. This investigation assesses third-party impacts and environmental externalities resulting from a cap-and-trade system in a sub-basin of the Republican River Basin, overlying the Ogallala aquifer in the High Plains of the United States. The economic model is coupled with a calibrated physically based groundwater model. The cap-and-trade system is developed using a multi-agent system model where individual benefits of each self-interested agent are maximized subject to bounds on irrigation requirements and water use permits. We then compare the performance of the cap-and-trade system with a smart groundwater market which, in addition to a cap on total groundwater extraction, also incorporates streamflow constraints. The results quantify third-party impacts and environmental externalities resulting from uncontrolled trading. This analysis demonstrates the value added by a well-designed cap-and-trade system able to account for basin-wide heterogeneity in hydrogeologic and ecological conditions by establishing trading limits, managing inter-area transfers and setting exchange rates for permit trading.
Quasi-continuous stochastic simulation framework for flood modelling
NASA Astrophysics Data System (ADS)
Moustakis, Yiannis; Kossieris, Panagiotis; Tsoukalas, Ioannis; Efstratiadis, Andreas
2017-04-01
Typically, flood modelling in the context of everyday engineering practices is addressed through event-based deterministic tools, e.g., the well-known SCS-CN method. A major shortcoming of such approaches is the ignorance of uncertainty, which is associated with the variability of soil moisture conditions and the variability of rainfall during the storm event.In event-based modeling, the sole expression of uncertainty is the return period of the design storm, which is assumed to represent the acceptable risk of all output quantities (flood volume, peak discharge, etc.). On the other hand, the varying antecedent soil moisture conditions across the basin are represented by means of scenarios (e.g., the three AMC types by SCS),while the temporal distribution of rainfall is represented through standard deterministic patterns (e.g., the alternative blocks method). In order to address these major inconsistencies,simultaneously preserving the simplicity and parsimony of the SCS-CN method, we have developed a quasi-continuous stochastic simulation approach, comprising the following steps: (1) generation of synthetic daily rainfall time series; (2) update of potential maximum soil moisture retention, on the basis of accumulated five-day rainfall; (3) estimation of daily runoff through the SCS-CN formula, using as inputs the daily rainfall and the updated value of soil moisture retention;(4) selection of extreme events and application of the standard SCS-CN procedure for each specific event, on the basis of synthetic rainfall.This scheme requires the use of two stochastic modelling components, namely the CastaliaR model, for the generation of synthetic daily data, and the HyetosMinute model, for the disaggregation of daily rainfall to finer temporal scales. Outcomes of this approach are a large number of synthetic flood events, allowing for expressing the design variables in statistical terms and thus properly evaluating the flood risk.
Ekstrom, Arne D; Bookheimer, Susan Y
2007-10-01
Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects of episodic memory in the context of a spatial navigation paradigm. Subjects played a taxi-driver game ("yellowcab"), in which they freely searched for passengers and delivered them to specific landmark stores. Subjects then underwent fMRI scanning as they retrieved landmarks, spatial, and temporal associations from their navigational experience in three separate runs. Consistent with previous findings on item memory, perirhinal cortex activated most strongly during landmark retrieval compared with spatial or temporal source information retrieval. Both hippocampus and parahippocampal cortex activated significantly during retrieval of landmarks, spatial associations, and temporal order. We found, however, a significant dissociation between hippocampal and parahippocampal cortex activations, with spatial retrieval leading to greater parahippocampal activation compared with hippocampus and temporal order retrieval leading to greater hippocampal activation compared with parahippocampal cortex. Our results, coupled with previous findings, demonstrate that the hippocampus and parahippocampal cortex are preferentially recruited during temporal order and spatial association retrieval--key components of episodic "source" memory.
A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys
Jousimo, Jussi; Ovaskainen, Otso
2016-01-01
Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov–Malyshev–Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683
Measuring Sustainability: Deriving Metrics From Objectives (Presentation)
The definition of 'sustain', to keep in existence, provides some insight into the metrics that are required to measure sustainability and adequately respond to assure sustainability. Keeping something in existence implies temporal and spatial contexts and requires metrics that g...
Rogers, Lauren A; Schindler, Daniel E; Lisi, Peter J; Holtgrieve, Gordon W; Leavitt, Peter R; Bunting, Lynda; Finney, Bruce P; Selbie, Daniel T; Chen, Guangjie; Gregory-Eaves, Irene; Lisac, Mark J; Walsh, Patrick B
2013-01-29
Observational data from the past century have highlighted the importance of interdecadal modes of variability in fish population dynamics, but how these patterns of variation fit into a broader temporal and spatial context remains largely unknown. We analyzed time series of stable nitrogen isotopes from the sediments of 20 sockeye salmon nursery lakes across western Alaska to characterize temporal and spatial patterns in salmon abundance over the past ∼500 y. Although some stocks varied on interdecadal time scales (30- to 80-y cycles), centennial-scale variation, undetectable in modern-day catch records and survey data, has dominated salmon population dynamics over the past 500 y. Before 1900, variation in abundance was clearly not synchronous among stocks, and the only temporal signal common to lake sediment records from this region was the onset of commercial fishing in the late 1800s. Thus, historical changes in climate did not synchronize stock dynamics over centennial time scales, emphasizing that ecosystem complexity can produce a diversity of ecological responses to regional climate forcing. Our results show that marine fish populations may alternate between naturally driven periods of high and low abundance over time scales of decades to centuries and suggest that management models that assume time-invariant productivity or carrying capacity parameters may be poor representations of the biological reality in these systems.