Xiong, Wei Feng; Qiu, Shi Jun; Wang, Hong Zhuo; Lv, Xiao Fei
2013-01-01
To detect radiation-induced changes of temporal lobe normal-appearing white mater (NAWM) following radiation therapy (RT) for nasopharyngeal carcinoma (NPC). Seventy-five H(1)-MR spectroscopy and diffusion-tensor imaging (DTI) examinations were performed in 55 patients before and after receiving fractionated radiation therapy (total dose; 66-75GY). We divided the dataset into six groups, a pre-RT control group and five other groups based on time after completion of RT. N-acetylaspartic acid (NAA)/choline (Cho), NAA/creatine (Cr), Cho/Cr, mean diffusibility (MD), functional anisotropy (FA), radial diffusibility (λ(⊥)), and axial diffusibility (λ(||)) were calculated. NAA/Cho and NAA/Cr decreased and λ(⊥) increased significantly within 1 year after RT compared with pre-RT. After 1 year, NAA/Cho, NAA/Cr, and λ(⊥) were not significantly different from pre-RT. In all post-RT groups, FA decreased significantly. λ(||) decreased within 9 months after RT compared with pre-RT, but was not significantly different from pre-RT more than 9 months after RT. DTI and H(1)-MR spectroscopy can be used to detect early radiation-induced changes of temporal lobe NAWM following radiation therapy for NPC. Metabolic alterations and water diffusion characteristics of temporal lobe NAWM in patients with NPC after RT were dynamic and transient. Copyright © 2012 Wiley Periodicals, Inc.
Cai, Stephen S; von Coelln, Rainer; Kouo, Theresa J
2016-12-01
Imaging findings of adult-onset mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is poorly documented. The authors present a 48-year-old woman with subacute onset of word-finding difficulties and right arm stiffness. Magnetic resonance imaging performed 2 weeks prior revealed left temporal lobe diffusion and fluid-attenuated inversion recovery hyperintensity predominantly involving the cortex. The apparent diffusion coefficient map showed preserved signal in the temporal cortex. Subsequent magnetic resonance imagings demonstrated a new diffusion signal abnormality extending to the left parietal cortex and occipital cortex with resolving diffusion hyperintensity in the temporal lobe. MR spectroscopy showed scattered areas of lactate deposition. Diagnosis of MELAS syndrome was confirmed by genetic analysis. Fluctuating, migratory stroke-like lesions with a predilection for the parietal, temporal, and occipital cortex that do not conform to a vascular territory and a lactate spike at 1.3 ppm on MR spectroscopy are characteristic of MELAS syndrome. Preserved signal intensity on apparent diffusion coefficient is useful to distinguish MELAS syndrome from ischemic infarction where the signal is typically reduced.
Quantitative Characterization of Tissue Microstructure with Temporal Diffusion Spectroscopy
Xu, Junzhong; Does, Mark D.; Gore, John C.
2009-01-01
The signals recorded by diffusion-weighted magnetic resonance imaging (DWI) are dependent on the micro-structural properties of biological tissues, so it is possible to obtain quantitative structural information non-invasively from such measurements. Oscillating gradient spin echo (OGSE) methods have the ability to probe the behavior of water diffusion over different time scales and the potential to detect variations in intracellular structure. To assist in the interpretation of OGSE data, analytical expressions have been derived for diffusion-weighted signals with OGSE methods for restricted diffusion in some typical structures, including parallel planes, cylinders and spheres, using the theory of temporal diffusion spectroscopy. These analytical predictions have been confirmed with computer simulations. These expressions suggest how OGSE signals from biological tissues should be analyzed to characterize tissue microstructure, including how to estimate cell nuclear sizes. This approach provides a model to interpret diffusion data obtained from OGSE measurements that can be used for applications such as monitoring tumor response to treatment in vivo. PMID:19616979
Characterization of Tissue Structure at Varying Length Scales Using Temporal Diffusion Spectroscopy
Gore, John C.; Xu, Junzhong; Colvin, Daniel C.; Yankeelov, Thomas E.; Parsons, Edward C.; Does, Mark D.
2011-01-01
The concepts, theoretical behavior and experimental applications of temporal diffusion spectroscopy are reviewed and illustrated. Temporal diffusion spectra are obtained by using oscillating gradient waveforms in diffusion-weighted measurements, and represent the manner in which various spectral components of molecular velocity correlations vary in different geometrical structures that restrict or hinder free movements. Measurements made at different gradient frequencies reveal information on the scale of restrictions or hindrances to free diffusion, and the shape of a spectrum reveals the relative contributions of spatial restrictions at different distance scales. Such spectra differ from other so-called diffusion spectra which depict spatial frequencies and are defined at a fixed diffusion time. Experimentally, oscillating gradients at moderate frequency are more feasible for exploring restrictions at very short distances, which in tissues correspond to structures smaller than cells. We describe the underlying concepts of temporal diffusion spectra and provide analytical expressions for the behavior of the diffusion coefficient as a function of gradient frequency in simple geometries with different dimensions. Diffusion in more complex model media that mimic tissues has been simulated using numerical methods. Experimental measurements of diffusion spectra have been obtained in suspensions of particles and cells, as well as in vivo in intact animals. An observation of particular interest is the increased contrast and heterogeneity observed in tumors using oscillating gradients at moderate frequency compared to conventional pulse gradient methods, and the potential for detecting changes in tumors early in their response to treatment. Computer simulations suggest that diffusion spectral measurements may be sensitive to intracellular structures such as nuclear size, and that changes in tissue diffusion properties may be measured before there are changes in cell density. PMID:20677208
Diffuse Optics for Tissue Monitoring and Tomography
Durduran, T; Choe, R; Baker, W B; Yodh, A G
2015-01-01
This review describes the diffusion model for light transport in tissues and the medical applications of diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The theoretical basis for near-infrared or diffuse optical spectroscopy (NIRS or DOS, respectively) is developed, and the basic elements of diffuse optical tomography (DOT) are outlined. We also discuss diffuse correlation spectroscopy (DCS), a technique whereby temporal correlation functions of diffusing light are transported through tissue and are used to measure blood flow. Essential instrumentation is described, and representative brain and breast functional imaging and monitoring results illustrate the workings of these new tissue diagnostics. PMID:26120204
Jian, Zhongping; Pearce, Jeremy; Mittleman, Daniel M
2003-07-18
We describe observations of the amplitude and phase of an electric field diffusing through a three-dimensional random medium, using terahertz time-domain spectroscopy. These measurements are spatially resolved with a resolution smaller than the speckle spot size and temporally resolved with a resolution better than one optical cycle. By computing correlation functions between fields measured at different positions and with different temporal delays, it is possible to obtain information about individual scattering events experienced by the diffusing field. This represents a new method for characterizing a multiply scattered wave.
NASA Astrophysics Data System (ADS)
Ulyanov, Sergey; Ulianova, Onega; Filonova, Nadezhda; Moiseeva, Yulia; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Kalduzova, Irina; Larionova, Olga; Utz, Sergey; Feodorova, Valentina
2018-04-01
Theory of diffusing wave spectroscopy has been firstly adapted to the problem of rapid detection of Chlamydia trachomatis bacteria in blood samples of Chlamydia patients. Formula for correlation function of temporal fluctuations of speckle intensity is derived for the case of small number of scattering events. Dependence of bandwidth of spectrum on average number of scatterers is analyzed. Set-up for detection of the presence of C. trachomatis cells in aqueous suspension is designed. Good agreement between theoretical results and experimental data is shown. Possibility of detection of the presence of C. trachomatis cells in probing volume using diffusing wave spectroscopy with a small number of scatterers is successfully demonstrated for the first time.
Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement
Durduran, Turgut; Yodh, Arjun G.
2013-01-01
Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in brain with an emphasis on the underlying physical ideas, common instrumentation and validation. Then we describe recent clinical research that employs DCS-measured CBF as a biomarker of patient well-being, and as an indicator of hemodynamic and metabolic response to functional stimuli. PMID:23770408
In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy.
Jiang, Xiaoyu; Li, Hua; Xie, Jingping; McKinley, Eliot T; Zhao, Ping; Gore, John C; Xu, Junzhong
2017-07-01
A temporal diffusion MRI spectroscopy based approach has been developed to quantify cancer cell size and density in vivo. A novel imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED) method selects a specific limited diffusion spectral window for an accurate quantification of cell sizes ranging from 10 to 20 μm in common solid tumors. In practice, it is achieved by a combination of a single long diffusion time pulsed gradient spin echo (PGSE) and three low-frequency oscillating gradient spin echo (OGSE) acquisitions. To validate our approach, hematoxylin and eosin staining and immunostaining of cell membranes, in concert with whole slide imaging, were used to visualize nuclei and cell boundaries, and hence, enabled accurate estimates of cell size and cellularity. Based on a two compartment model (incorporating intra- and extracellular spaces), accurate estimates of cell sizes were obtained in vivo for three types of human colon cancers. The IMPULSED-derived apparent cellularities showed a stronger correlation (r = 0.81; P < 0.0001) with histology-derived cellularities than conventional ADCs (r = -0.69; P < 0.03). The IMPULSED approach samples a specific region of temporal diffusion spectra with enhanced sensitivity to length scales of 10-20 μm, and enables measurements of cell sizes and cellularities in solid tumors in vivo. Magn Reson Med 78:156-164, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Notelaers, Kristof; Smisdom, Nick; Rocha, Susana; Janssen, Daniel; Meier, Jochen C; Rigo, Jean-Michel; Hofkens, Johan; Ameloot, Marcel
2012-12-01
The spatio-temporal membrane behavior of glycine receptors (GlyRs) is known to be of influence on receptor homeostasis and functionality. In this work, an elaborate fluorimetric strategy was applied to study the GlyR α3K and L isoforms. Previously established differential clustering, desensitization and synaptic localization of these isoforms imply that membrane behavior is crucial in determining GlyR α3 physiology. Therefore diffusion and aggregation of homomeric α3 isoform-containing GlyRs were studied in HEK 293 cells. A unique combination of multiple diffraction-limited ensemble average methods and subdiffraction single particle techniques was used in order to achieve an integrated view of receptor properties. Static measurements of aggregation were performed with image correlation spectroscopy (ICS) and, single particle based, direct stochastic optical reconstruction microscopy (dSTORM). Receptor diffusion was measured by means of raster image correlation spectroscopy (RICS), temporal image correlation spectroscopy (TICS), fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT). The results show a significant difference in diffusion coefficient and cluster size between the isoforms. This reveals a positive correlation between desensitization and diffusion and disproves the notion that receptor aggregation is a universal mechanism for accelerated desensitization. The difference in diffusion coefficient between the clustering GlyR α3L and the non-clustering GlyR α3K cannot be explained by normal diffusion. SPT measurements indicate that the α3L receptors undergo transient trapping and directed motion, while the GlyR α3K displays mild hindered diffusion. These findings are suggestive of differential molecular interaction of the isoforms after incorporation in the membrane. Copyright © 2012 Elsevier B.V. All rights reserved.
Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J.; Freiberg, Arvi; Köhler, Jürgen
2014-01-01
We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy. PMID:24806933
Multiple Light Scattering Probes of Soft Materials
NASA Astrophysics Data System (ADS)
Scheffold, Frank
2007-02-01
I will discuss both static and dynamic properties of diffuse waves. In practical applications the optical properties of colloidal systems play an important role, for example in commercial products such as sunscreen lotions, food (drinks), coatings but also in medicine for example in cataract formation (eye lens turbidity). It is thus of importance to know the key parameters governing optical turbidity from the single to the multiple scattering regime. Temporal fluctuations of multiply scattered light are studied with photon correlation spectroscopy (Diffusing Wave Spectroscopy). This DWS method and its various implementations will be treated.
Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.
2016-01-01
We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264
NASA Astrophysics Data System (ADS)
Digman, Michelle
Fluorescence fluctuation spectroscopy has evolved from single point detection of molecular diffusion to a family of microscopy imaging correlation tools (i.e. ICS, RICS, STICS, and kICS) useful in deriving spatial-temporal dynamics of proteins in living cells The advantage of the imaging techniques is the simultaneous measurement of all points in an image with a frame rate that is increasingly becoming faster with better sensitivity cameras and new microscopy modalities such as the sheet illumination technique. A new frontier in this area is now emerging towards a high level of mapping diffusion rates and protein dynamics in the 2 and 3 dimensions. In this talk, I will discuss the evolution of fluctuation analysis from the single point source to mapping diffusion in whole cells and the technology behind this technique. In particular, new methods of analysis exploit correlation of molecular fluctuations originating from measurement of fluctuation correlations at distant points (pair correlation analysis) and methods that exploit spatial averaging of fluctuations in small regions (iMSD). For example the pair correlation fluctuation (pCF) analyses done between adjacent pixels in all possible radial directions provide a window into anisotropic molecular diffusion. Similar to the connectivity atlas of neuronal connections from the MRI diffusion tensor imaging these new tools will be used to map the connectome of protein diffusion in living cells. For biological reaction-diffusion systems, live single cell spatial-temporal analysis of protein dynamics provides a mean to observe stochastic biochemical signaling in the context of the intracellular environment which may lead to better understanding of cancer cell invasion, stem cell differentiation and other fundamental biological processes. National Institutes of Health Grant P41-RRO3155.
Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy.
Gröner, Nadine; Capoulade, Jérémie; Cremer, Christoph; Wachsmuth, Malte
2010-09-27
The intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is used to describe diffusion, transport and photo-physical processes quantitatively. As an alternative to FCS, spatially resolved measurements of mobilities can be implemented using a CLSM by utilizing the spatio-temporal information inscribed into the image by the scan process, referred to as raster image correlation spectroscopy (RICS). Here we present and discuss an extended approach, multiple scan speed image correlation spectroscopy (msICS), which benefits from the advantages of RICS, i.e. the use of widely available instrumentation and the extraction of spatially resolved mobility information, without the need of a priori knowledge of diffusion properties. In addition, msICS covers a broad dynamic range, generates correlation data comparable to FCS measurements, and allows to derive two-dimensional maps of diffusion coefficients. We show the applicability of msICS to fluorophores in solution and to free EGFP in living cells.
Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy.
Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O
2010-12-22
The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.
Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J; Freiberg, Arvi; Köhler, Jürgen
2014-05-06
We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut
2014-01-01
The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.
Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut
2014-01-01
The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.
Modified Beer-Lambert law for blood flow.
Baker, Wesley B; Parthasarathy, Ashwin B; Busch, David R; Mesquita, Rickson C; Greenberg, Joel H; Yodh, A G
2014-11-01
We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.
Establishing the diffuse correlation spectroscopy signal relationship with blood flow.
Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A
2016-07-01
Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.
Modified Beer-Lambert law for blood flow
Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.
2014-01-01
We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues. PMID:25426330
Schneider, Falk; Waithe, Dominic; Galiani, Silvia; Bernardino de la Serna, Jorge; Sezgin, Erdinc; Eggeling, Christian
2018-06-19
The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED-FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED-FCS measurement method, line interleaved excitation scanning STED-FCS (LIESS-FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS-FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS-FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.
Shang, Yu; Li, Ting; Yu, Guoqiang
2017-01-01
Blood flow is one such available observable promoting a wealth of physiological insight both individually and in combination with other metrics. Near-infrared diffuse correlation spectroscopy (DCS) and, to a lesser extent, diffuse correlation tomography (DCT), have increasingly received interest over the past decade as noninvasive methods for tissue blood flow measurements and imaging. DCS/DCT offers several attractive features for tissue blood flow measurements/imaging such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth (up to several centimeters). This review first introduces the basic principle and instrumentation of DCS/DCT, followed by presenting clinical application examples of DCS/DCT for the diagnosis and therapeutic monitoring of diseases in a variety of organs/tissues including brain, skeletal muscle, and tumor. Clinical study results demonstrate technical versatility of DCS/DCT in providing important information for disease diagnosis and intervention monitoring. PMID:28199219
Multiscale Spectroscopy of Diffusing Molecules in Crowded Environments
NASA Astrophysics Data System (ADS)
Heikal, Ahmed A.
2015-06-01
Living cells are known to be crowded with organelles, biomembranes, and macromolecules such as proteins, DNA, RNA, and actin filaments. It is believed that such macromolecular crowding affect biomolecular diffusion, protein-protein and protein-substrate interaction, and protein folding. In this contribution, I will discuss our recent results on rotational and translational diffusion of small and large molecules in crowded environments using time-resolved anisotropy and fluorescence correlation spectroscopy methods. In these studies, rhodamine green and enhanced green fluorescent protein are used as fluorescent probes diffusing in buffers enriched with biomimetic crowding agents such as Ficoll-70, bovine serum albumin (BSA), and ovalbumin. Controlled experiments on pure and glycerol-rich buffers were carried out as environments with variable, homogeneous viscosity. Our results indicate that the microviscosity differs from the corresponding bulk viscosity, depending on the nature of crowding agents (i.e., proteins versus polymers), the concentration of crowding agents and spatio-temporal scaling of our experimental approach. Our findings provide a foundation for fluorescence-based studies of diffusion and binding of biomolecules in the crowded milieu of living cells.
NASA Astrophysics Data System (ADS)
Vidovič, Luka; Milanič, Matija; Majaron, Boris
2015-07-01
We combine pulsed photothermal radiometry (PPTR) depth profiling with diffuse reflectance spectroscopy (DRS) measurements for a comprehensive analysis of bruise evolution in vivo. While PPTR enables extraction of detailed depth distribution and concentration profiles of selected absorbers (e.g. melanin, hemoglobin), DRS provides information in a wide range of visible wavelengths and thus offers an additional insight into dynamics of the hemoglobin degradation products. Combining the two approaches enables us to quantitatively characterize bruise evolution dynamics. Our results indicate temporal variations of the bruise evolution parameters in the course of bruise self-healing process. The obtained parameter values and trends represent a basis for a future development of an objective technique for bruise age determination.
NASA Astrophysics Data System (ADS)
Belau, Markus; Ninck, Markus; Hering, Gernot; Spinelli, Lorenzo; Contini, Davide; Torricelli, Alessandro; Gisler, Thomas
2010-09-01
We introduce a method for noninvasively measuring muscle contraction in vivo, based on near-infrared diffusing-wave spectroscopy (DWS). The method exploits the information about time-dependent shear motions within the contracting muscle that are contained in the temporal autocorrelation function g(1)(τ,t) of the multiply scattered light field measured as a function of lag time, τ, and time after stimulus, t. The analysis of g(1)(τ,t) measured on the human M. biceps brachii during repetitive electrical stimulation, using optical properties measured with time-resolved reflectance spectroscopy, shows that the tissue dynamics giving rise to the speckle fluctuations can be described by a combination of diffusion and shearing. The evolution of the tissue Cauchy strain e(t) shows a strong correlation with the force, indicating that a significant part of the shear observed with DWS is due to muscle contraction. The evolution of the DWS decay time shows quantitative differences between the M. biceps brachii and the M. gastrocnemius, suggesting that DWS allows to discriminate contraction of fast- and slow-twitch muscle fibers.
Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience.
Kim, Sally A; Schwille, Petra
2003-10-01
Based on time-averaging fluctuation analysis of small fluorescent molecular ensembles in equilibrium, fluorescence correlation spectroscopy has recently been applied to investigate processes in the intracellular milieu. The exquisite sensitivity of fluorescence correlation spectroscopy provides access to a multitude of measurement parameters (rates of diffusion, local concentration, states of aggregation and molecular interactions) in real time with fast temporal and high spatial resolution. The introduction of dual-color cross-correlation, imaging, two-photon excitation, and coincidence analysis coupled with fluorescence correlation spectroscopy has expanded the utility of the technique to encompass a wide range of promising applications in living cells that may provide unprecedented insight into understanding the molecular mechanisms of intracellular neurobiological processes.
Image correlation microscopy for uniform illumination.
Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L
2010-01-01
Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.
Cortexin diffusion in human eye sclera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genina, Elina A; Bashkatov, A N; Tuchin, Valerii V
2011-05-31
Investigation of the diffusion of cytamines, a typical representative of which is cortexin, is important for evaluating the drug dose, necessary to provide sufficient concentration of the preparation in the inner tissues of the eye. In the present paper, the cortexin diffusion rate in the eye sclera is measured using the methods of optical coherence tomography (OCT) and reflectance spectroscopy. The technique for determining the diffusion coefficient is based on the registration of temporal dependence of the eye sclera scattering parameters caused by partial replacement of interstitial fluid with the aqueous cortexin solution, which reduces the level of the OCTmore » signal and decreases the reflectance of the sclera. The values of the cortexin diffusion coefficient obtained using two independent optical methods are in good agreement. (optical technologies in biophysics and medicine)« less
Sharma, Dharmendar Kumar; Hirata, Shuzo; Bujak, Lukasz; Biju, Vasudevanpillai; Kameyama, Tatsuya; Kishi, Marino; Torimoto, Tsukasa; Vacha, Martin
2016-07-14
Ternary I-III-VI semiconductor nanocrystals have been explored as non-toxic alternatives to II-VI semiconductors for optoelectronic and sensing applications, but large photoluminescence spectral width and moderate brightness restrict their practical use. Here, using single-particle photoluminescence spectroscopy on nanocrystals of (AgIn)xZn2(1-x)S2 we show that the photoluminescence band is inhomogeneously broadened and that size distribution is the dominant factor in the broadening. The residual homogeneous linewidth of individual nanocrystals reaches up to 75% of the ensemble spectral width. Single nanocrystals undergo spectral diffusion which also contributes to the inhomogeneous band. Excitation with two lasers with energies above and below the bandgap reveals coexistence of two emitting donor states within one particle. Spectral diffusion in such particles is due to temporal activation and deactivation of one such state. Filling of a trap state with a lower-energy laser enables optical modulation of photoluminescence intermittency (blinking) and leads to an almost two-fold increase in brightness.
Computationally effective solution of the inverse problem in time-of-flight spectroscopy.
Kamran, Faisal; Abildgaard, Otto H A; Subash, Arman A; Andersen, Peter E; Andersson-Engels, Stefan; Khoptyar, Dmitry
2015-03-09
Photon time-of-flight (PTOF) spectroscopy enables the estimation of absorption and reduced scattering coefficients of turbid media by measuring the propagation time of short light pulses through turbid medium. The present investigation provides a comparison of the assessed absorption and reduced scattering coefficients from PTOF measurements of intralipid 20% and India ink-based optical phantoms covering a wide range of optical properties relevant for biological tissues and dairy products. Three different models are used to obtain the optical properties by fitting to measured temporal profiles: the Liemert-Kienle model (LKM), the diffusion model (DM) and a white Monte-Carlo (WMC) simulation-based algorithm. For the infinite space geometry, a very good agreement is found between the LKM and WMC, while the results obtained by the DM differ, indicating that the LKM can provide accurate estimation of the optical parameters beyond the limits of the diffusion approximation in a computational effective and accurate manner. This result increases the potential range of applications for PTOF spectroscopy within industrial and biomedical applications.
Gold Nanorods as Plasmonic Sensors for Particle Diffusion.
Wulf, Verena; Knoch, Fabian; Speck, Thomas; Sönnichsen, Carsten
2016-12-01
Plasmonic gold nanoparticles are normally used as sensor to detect analytes permanently bound to their surface. If the interaction between the analyte and the nanosensor surface is negligible, it only diffuses through the sensor's sensing volume, causing a small temporal shift of the plasmon resonance position. By using a very sensitive and fast detection scheme, we are able to detect these small fluctuations in the plasmon resonance. With the help of a theoretical model consistent with our detection geometry, we determine the analyte's diffusion coefficient. The method is verified by observing the trends upon changing diffusor size and medium viscosity, and the diffusion coefficients obtained were found to reflect reduced diffusion close to a solid interface. Our method, which we refer to as NanoPCS (for nanoscale plasmon correlation spectroscopy), is of practical importance for any application involving the diffusion of analytes close to nanoparticles.
Position-sensitive scanning fluorescence correlation spectroscopy.
Skinner, Joseph P; Chen, Yan; Müller, Joachim D
2005-08-01
Fluorescence correlation spectroscopy (FCS) uses a stationary laser beam to illuminate a small sample volume and analyze the temporal behavior of the fluorescence fluctuations within the stationary observation volume. In contrast, scanning FCS (SFCS) collects the fluorescence signal from a moving observation volume by scanning the laser beam. The fluctuations now contain both temporal and spatial information about the sample. To access the spatial information we synchronize scanning and data acquisition. Synchronization allows us to evaluate correlations for every position along the scanned trajectory. We use a circular scan trajectory in this study. Because the scan radius is constant, the phase angle is sufficient to characterize the position of the beam. We introduce position-sensitive SFCS (PSFCS), where correlations are calculated as a function of lag time and phase. We present the theory of PSFCS and derive expressions for diffusion, diffusion in the presence of flow, and for immobilization. To test PSFCS we compare experimental data with theory. We determine the direction and speed of a flowing dye solution and the position of an immobilized particle. To demonstrate the feasibility of the technique for applications in living cells we present data of enhanced green fluorescent protein measured in the nucleus of COS cells.
Staaf, Elina; Bagawath-Singh, Sunitha; Johansson, Sofia
2017-02-01
Fluorescence correlation spectroscopy (FCS) is a powerful technique for studying the diffusion of molecules within biological membranes with high spatial and temporal resolution. FCS can quantify the molecular concentration and diffusion coefficient of fluorescently labeled molecules in the cell membrane. This technique has the ability to explore the molecular diffusion characteristics of molecules in the plasma membrane of immune cells in steady state (i.e., without processes affecting the result during the actual measurement time). FCS is suitable for studying the diffusion of proteins that are expressed at levels typical for most endogenous proteins. Here, a straightforward and robust method to determine the diffusion rate of cell membrane proteins on primary lymphocytes is demonstrated. An effective way to perform measurements on antibody-stained live cells and commonly occurring observations after acquisition are described. The recent advancements in the development of photo-stable fluorescent dyes can be utilized by conjugating the antibodies of interest to appropriate dyes that do not bleach extensively during the measurements. Additionally, this allows for the detection of slowly diffusing entities, which is a common feature of proteins expressed in cell membranes. The analysis procedure to extract molecular concentration and diffusion parameters from the generated autocorrelation curves is highlighted. In summary, a basic protocol for FCS measurements is provided; it can be followed by immunologists with an understanding of confocal microscopy but with no other previous experience of techniques for measuring dynamic parameters, such as molecular diffusion rates.
Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy
NASA Astrophysics Data System (ADS)
Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina
2015-03-01
Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.
Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy.
Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina
2015-03-09
Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.
NASA Astrophysics Data System (ADS)
Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W.
2013-08-01
We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for spatio-temporal ICS (STICS) that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and intercellular adhesion molecule 1 (ICAM-1) ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrin-ligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.
NASA Astrophysics Data System (ADS)
Yuvchenko, S. A.; Tzyipin, D. V.; Isaeva, A. A.; Isaeva, E. A.; Ushakova, O. V.; Macheev, M. S.; Zimnyakov, D. A.
2018-04-01
The temporal evolution of the metastable and unstable foams had been studied. Diffusion wave spectroscopy was chosen as the diagnostic method, with calculation of the correlation time of the fluctuations in the intensity of the probing radiation. It was established that the correlation time increases with the time according to the power law with different parameters, depending on the type of the evolution and was found to be equal to 0.5 for the case of the metastable and to 2,52 for the unstable foam. It was also determined that the behaviour of the correlation time agrees well with the evolution of the characteristic dimensions of the scatterers in the form of bubbles in the medium, which can be used for contactless monitoring of the foaming processes in the production of the foam-like materials for various applications, for example, in the synthesis of the biocompatible polymer matrices - scaffolds.
Konugolu Venkata Sekar, S; Mosca, S; Tannert, S; Valentini, G; Martelli, F; Binzoni, T; Prokazov, Y; Turbin, E; Zuschratter, W; Erdmann, R; Pifferi, A
2018-05-01
We present a time domain diffuse Raman spectrometer for depth probing of highly scattering media. The system is based on, to the best of our knowledge, a novel time-correlated single-photon counting (TCSPC) camera that simultaneously acquires both spectral and temporal information of Raman photons. A dedicated non-contact probe was built, and time domain Raman measurements were performed on a tissue mimicking bilayer phantom. The fluorescence contamination of the Raman signal was eliminated by early time gating (0-212 ps) the Raman photons. Depth sensitivity is achieved by time gating Raman photons at different delays with a gate width of 106 ps. Importantly, the time domain can provide time-dependent depth sensitivity leading to a high contrast between two layers of Raman signal. As a result, an enhancement factor of 2170 was found for our bilayer phantom which is much higher than the values obtained by spatial offset Raman spectroscopy (SORS), frequency offset Raman spectroscopy (FORS), or hybrid FORS-SORS on a similar phantom.
Pressure injury prediction using diffusely scattered light
NASA Astrophysics Data System (ADS)
Diaz, David; Lafontant, Alec; Neidrauer, Michael; Weingarten, Michael S.; DiMaria-Ghalili, Rose Ann; Scruggs, Ericka; Rece, Julianne; Fried, Guy W.; Kuzmin, Vladimir L.; Zubkov, Leonid
2017-02-01
Pressure injuries (PIs) originate beneath the surface of the skin at the interface between bone and soft tissue. We used diffuse correlation spectroscopy (DCS) and diffuse near-infrared spectroscopy (DNIRS) to predict the development of PIs by measuring dermal and subcutaneous red cell motion and optical absorption and scattering properties in 11 spinal cord injury subjects with only nonbleachable redness in the sacrococcygeal area in a rehabilitation hospital and 20 healthy volunteers. A custom optical probe was developed to obtain continuous DCS and DNIRS data from sacrococcygeal tissue while the subjects were placed in supine and lateral positions to apply pressure from body weight and to release pressure, respectively. Rehabilitation patients were measured up to four times over a two-week period. Three rehabilitation patients developed open PIs (POs) within four weeks and eight patients did not (PNOs). Temporal correlation functions in the area of redness were significantly different (p<0.01) during both baseline and applied pressure stages for POs and PNOs. The results show that our optical method may be used for the early prediction of ulcer progression.
Analysis of diffusion and binding in cells using the RICS approach.
Digman, Michelle A; Gratton, Enrico
2009-04-01
The movement of macromolecules in cells is assumed to occur either through active transport or by diffusion. However, the determination of the diffusion coefficients in cells using fluctuation methods or FRAP frequently give diffusion coefficient that are orders of magnitude smaller than the diffusion coefficients measured for the same macromolecule in solution. It is assumed that the cell internal viscosity is partially responsible for this decrease in the apparent diffusion. When the apparent diffusion is too slow to be due to cytoplasm viscosity, it is assumed that weak binding of the macromolecules to immobile or quasi immobile structures is taking place. In this article, we derive equations for fitting of the RICS (Raster-scan Image Correlations Spectroscopy) data in cells to a model that includes transient binding to immobile structures, and we show that under some conditions, the spatio-temporal correlation provided by the RICS approach can distinguish the process of diffusion and weak binding. We apply the method to determine the diffusion in the cytoplasm and binding of Focal Adhesion Kinase-EGFP to adhesions in MEF cells.
NASA Astrophysics Data System (ADS)
Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas
2016-12-01
Fluorescence correlation spectroscopy relies on temporal autocorrelation analysis of fluorescence intensity fluctuations that spontaneously arise in systems at equilibrium due to molecular motion and changes of state that cause changes in fluorescence, such as triplet state transition, photoisomerization and other photophysical transformations, to determine the rates of these processes. The stability of a fluorescent molecule against dark state conversion is of particular concern for chromophores intended to be used as reference tags for comparing diffusion processes on multiple time scales. In this work, we analyzed properties of two fluorescent proteins, the photoswitchable Dreiklang and its parental eGFP, in solvents of different viscosity to vary the diffusion time through the observation volume element by several orders of magnitude. In contrast to eGFP, Dreiklang undergoes a dark-state conversion on the time scale of tens to hundreds of microseconds under conditions of intense fluorescence excitation, which results in artificially shortened diffusion times if the diffusional motion through the observation volume is sufficiently slowed down. Such photophysical quenching processes have also been observed in FCS studies on other photoswitchable fluorescent proteins including Citrine, from which Dreiklang was derived by genetic engineering. This property readily explains the discrepancies observed previously between the diffusion times of eGFP- and Dreiklang-labeled plasma membrane protein complexes.
Mesoscale Polymer Dissolution Probed by Raman Spectroscopy and Molecular Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Tsun-Mei; Xantheas, Sotiris S.; Vasdekis, Andreas E.
2016-10-13
The diffusion of various solvents into a polystyrene (PS) matrix was probed experimentally by monitoring the temporal profiles of the Raman spectra and theoretically from molecular dynamics (MD) simulations of the binary system. The simulation results assist in providing a fundamental, molecular level connection between the mixing/dissolution processes and the difference = solvent – PS in the values of the Hildebrand parameter () between the two components of the binary systems: solvents having similar values of with PS (small ) exhibit fast diffusion into the polymer matrix, whereas the diffusion slows down considerably when the ’s are different (large ).more » To this end, the Hildebrand parameter was identified as a useful descriptor that governs the process of mixing in polymer – solvent binary systems. The experiments also provide insight into further refinements of the models specific to non-Fickian diffusion phenomena that need to be used in the simulations.« less
NASA Astrophysics Data System (ADS)
Steinberg, Idan; Harbater, Osnat; Gannot, Israel
2014-07-01
The diffusion approximation is useful for many optical diagnostics modalities, such as near-infrared spectroscopy. However, the simple normal incidence, semi-infinite layer model may prove lacking in estimation of deep-tissue optical properties such as required for monitoring cerebral hemodynamics, especially in neonates. To answer this need, we present an analytical multilayered, oblique incidence diffusion model. Initially, the model equations are derived in vector-matrix form to facilitate fast and simple computation. Then, the spatiotemporal reflectance predicted by the model for a complex neonate head is compared with time-resolved Monte Carlo (TRMC) simulations under a wide range of physiologically feasible parameters. The high accuracy of the multilayer model is demonstrated in that the deviation from TRMC simulations is only a few percent even under the toughest conditions. We then turn to solve the inverse problem and estimate the oxygen saturation of deep brain tissues based on the temporal and spatial behaviors of the reflectance. Results indicate that temporal features of the reflectance are more sensitive to deep-layer optical parameters. The accuracy of estimation is shown to be more accurate and robust than the commonly used single-layer diffusion model. Finally, the limitations of such approaches are discussed thoroughly.
Tivnan, Matthew; Gurjar, Rajan; Wolf, David E; Vishwanath, Karthik
2015-08-12
Diffuse Correlation Spectroscopy (DCS) is a well-established optical technique that has been used for non-invasive measurement of blood flow in tissues. Instrumentation for DCS includes a correlation device that computes the temporal intensity autocorrelation of a coherent laser source after it has undergone diffuse scattering through a turbid medium. Typically, the signal acquisition and its autocorrelation are performed by a correlation board. These boards have dedicated hardware to acquire and compute intensity autocorrelations of rapidly varying input signal and usually are quite expensive. Here we show that a Raspberry Pi minicomputer can acquire and store a rapidly varying time-signal with high fidelity. We show that this signal collected by a Raspberry Pi device can be processed numerically to yield intensity autocorrelations well suited for DCS applications. DCS measurements made using the Raspberry Pi device were compared to those acquired using a commercial hardware autocorrelation board to investigate the stability, performance, and accuracy of the data acquired in controlled experiments. This paper represents a first step toward lowering the instrumentation cost of a DCS system and may offer the potential to make DCS become more widely used in biomedical applications.
Tivnan, Matthew; Gurjar, Rajan; Wolf, David E.; Vishwanath, Karthik
2015-01-01
Diffuse Correlation Spectroscopy (DCS) is a well-established optical technique that has been used for non-invasive measurement of blood flow in tissues. Instrumentation for DCS includes a correlation device that computes the temporal intensity autocorrelation of a coherent laser source after it has undergone diffuse scattering through a turbid medium. Typically, the signal acquisition and its autocorrelation are performed by a correlation board. These boards have dedicated hardware to acquire and compute intensity autocorrelations of rapidly varying input signal and usually are quite expensive. Here we show that a Raspberry Pi minicomputer can acquire and store a rapidly varying time-signal with high fidelity. We show that this signal collected by a Raspberry Pi device can be processed numerically to yield intensity autocorrelations well suited for DCS applications. DCS measurements made using the Raspberry Pi device were compared to those acquired using a commercial hardware autocorrelation board to investigate the stability, performance, and accuracy of the data acquired in controlled experiments. This paper represents a first step toward lowering the instrumentation cost of a DCS system and may offer the potential to make DCS become more widely used in biomedical applications. PMID:26274961
NASA Astrophysics Data System (ADS)
Reina, Francesco; Galiani, Silvia; Shrestha, Dilip; Sezgin, Erdinc; de Wit, Gabrielle; Cole, Daniel; Lagerholm, B. Christoffer; Kukura, Philipp; Eggeling, Christian
2018-06-01
Observation techniques with high spatial and temporal resolution, such as single-particle tracking based on interferometric scattering (iSCAT) microscopy, and fluorescence correlation spectroscopy applied on a super-resolution STED microscope (STED-FCS), have revealed new insights of the molecular organization of membranes. While delivering complementary information, there are still distinct differences between these techniques, most prominently the use of fluorescent dye tagged probes for STED-FCS and a need for larger scattering gold nanoparticle tags for iSCAT. In this work, we have used lipid analogues tagged with a hybrid fluorescent tag–gold nanoparticle construct, to directly compare the results from STED-FCS and iSCAT measurements of phospholipid diffusion on a homogeneous supported lipid bilayer (SLB). These comparative measurements showed that while the mode of diffusion remained free, at least at the spatial (>40 nm) and temporal (50 ⩽ t ⩽ 100 ms) scales probed, the diffussion coefficient was reduced by 20- to 60-fold when tagging with 20 and 40 nm large gold particles as compared to when using dye tagged lipid analogues. These FCS measurements of hybrid fluorescent tag–gold nanoparticle labeled lipids also revealed that commercially supplied streptavidin-coated gold nanoparticles contain large quantities of free streptavidin. Finally, the values of apparent diffusion coefficients obtained by STED-FCS and iSCAT differed by a factor of 2–3 across the techniques, while relative differences in mobility between different species of lipid analogues considered were identical in both approaches. In conclusion, our experiments reveal that large and potentially cross-linking scattering tags introduce a significant slow-down in diffusion on SLBs but no additional bias, and our labeling approach creates a new way of exploiting complementary information from STED-FCS and iSCAT measurements.
NASA Astrophysics Data System (ADS)
Fennel, Franziska; Lochbrunner, Stefan
2015-10-01
Exciton annihilation dynamics in a disordered organic model system is investigated by ultrafast absorption spectroscopy. We show that the temporal evolution of the exciton density can be quantitatively understood by applying Förster energy transfer theory to describe the diffusion of the excitons as well as the annihilation step itself. To this end, previous formulations of Förster theory are extended to account for the inhomogeneous distribution of the S0-S1 transition energies resulting in an effective exciton diffusion constant. Two annihilation pathways are considered, the direct transfer of an exciton between two excited molecules and diffusive motion by multiple transfer steps towards a second exciton preceding the annihilation event. One pathway can be emphasized with respect to the other by tuning the exciton diffusion constant via the chromophore concentration. The investigated system allows one to extract all relevant parameters for the description and provides in this way a proof that the annihilation dynamics can be entirely understood and modeled by Förster energy transfer.
Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel
2015-10-01
Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Penjweini, Rozhin; Deville, Sarah; Haji Maghsoudi, Omid; Notelaers, Kristof; Ethirajan, Anitha; Ameloot, Marcel
2017-07-19
In this study, we investigate in human cervical epithelial HeLa cells the intracellular dynamics and the mutual interaction with the organelles of the poly-l-lactic acid nanoparticles (PLLA NPs) carrying the naturally occurring hydrophobic photosensitizer hypericin. Temporal and spatiotemporal image correlation spectroscopy was used for the assessment of the intracellular diffusion and directed motion of the nanocarriers by tracking the hypericin fluorescence. Using image cross-correlation spectroscopy and specific fluorescent labelling of endosomes, lysosomes and mitochondria, the NPs dynamics in association with the cell organelles was studied. Static colocalization experiments were interpreted according to the Manders' overlap coefficient. Nanoparticles associate with a small fraction of the whole-organelle population. The organelles moving with NPs exhibit higher directed motion compared to those moving without them. The rate of the directed motion drops substantially after the application of nocodazole. The random component of the organelle motions is not influenced by the NPs. Image correlation and cross-correlation spectroscopy are most appropriate to unravel the motion of the PLLA nanocarrier and to demonstrate that the rate of the directed motion of organelles is influenced by their interaction with the nanocarriers. Not all PLLA-hypericin NPs are associated with organelles. © 2017 Royal Pharmaceutical Society.
Beppu, Takaaki; Inoue, Takashi; Nishimoto, Hideaki; Nakamura, Shinichi; Nakazato, Yoichi; Ogasawara, Kuniaki; Ogawa, Akira
2007-10-01
Primary granulomatous angiitis of the central nervous system (CNS) is extremely rare. Its preoperative diagnosis is difficult as the condition displays nonspecific features on routine neuroimaging investigations. In this paper, the authors report findings of magnetic resonance (MR) spectroscopy and fractional anisotropy (FA) with diffusion tensor MR imaging in a case of granulomatous angiitis of the CNS. A 30-year-old man presented with morning headaches and grand mal seizures. An MR image revealed a mass resembling glioblastoma in the right temporal lobe. Magnetic resonance spectroscopy showed a high choline/creatine (Cho/Cr) ratio indicative of a malignant neoplasm, accompanied by a slight elevation of glutamate and glutamine. The FA value was very low, which is inconsistent with malignant glioma. The mass was totally removed surgically. Histologically, the peripheral lesion of the mass consisted of a rough accumulation of fat granule cells, infiltration of inflammatory cells, and distribution of capillary vessels. Some vessels within the lesion were replaced by granulomas. The histological diagnosis was granulomatous angiitis of the CNS. The MIB-1-positive rate of the granuloma was approximately 5%. Both MR spectroscopy and FA were unable to accurately diagnose granulomatous angiitis of the CNS prior to surgery; however, elevated Cho/Cr and glutamate and glutamine shown by MR spectroscopy may indicate the moderate proliferation potential of the granuloma and the inflammatory process, respectively, in this condition. Although the low FA value in the present case enabled the authors to rule out a diagnosis of glioblastoma, FA values in inflammatory lesions require careful interpretation.
Chen, Ke; Wang, Wenfang; Chen, Jianming; Wen, Jinhui; Lai, Tianshu
2012-02-13
A transmission-grating-modulated time-resolved pump-probe absorption spectroscopy is developed and formularized. The spectroscopy combines normal time-resolved pump-probe absorption spectroscopy with a binary transmission grating, is sensitive to the spatiotemporal evolution of photoinjected carriers, and has extensive applicability in the study of diffusion transport dynamics of photoinjected carriers. This spectroscopy has many advantages over reported optical methods to measure diffusion dynamics, such as simple experimental setup and operation, and high detection sensitivity. The measurement of diffusion dynamics is demonstrated on bulk intrinsic GaAs films. A carrier density dependence of carrier diffusion coefficient is obtained and agrees well with reported results.
Can we develop pathology-specific MRI contrast for "MR-negative" epilepsy?
Feindel, Kirk W
2013-05-01
Recent improvements in magnetic resonance imaging (MRI) hardware, software, and analysis routines are helping to put cases of "MR-negative" epilepsy on the decline. However, most standard-of-care MRI relies on careful manipulation and presentation of T1, T2, and diffusion-weighted contrast, which characterize the behavior of water in "bulk" tissue rather than providing pathology-specific contrast. Research efforts in MR physics continue to identify and develop novel theory, and methods such as diffusional kurtosis imaging (DKI) and temporal diffusion spectroscopy that can better characterize tissue substructure, and chemical exchange saturation transfer (CEST) that can target underlying biochemical processes. The potential role of each technique in targeting pathologies implicated in "MR-negative" epilepsy is outlined herein. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Coherent X-ray Scattering from Liquid-Air Interfaces
NASA Astrophysics Data System (ADS)
Shpyrko, Oleg
Advances in synchrotron x-ray scattering techniques allow studies of structure and dynamics of liquid surfaces with unprecedented resolution. I will review x-ray scattering measurements of thermally excited capillary fluctuations in liquids, thin polymer liquid films and polymer surfaces in confined geometry. X-ray Diffuse scattering profile due to Debye-Waller like roughening of the surface allows to probe the distribution of capillary fluctuations over a wide range of length scales, while using X-ray Photon Correlation Spectroscopy (XPCS) one is able to directly couple to nanoscale dynamics of these surface fluctuations, over a wide range of temporal and spacial scales. I will also discuss recent XPCS measurements of lateral diffusion dynamics in Langmuir monolayers assembled at the liquid-air interface. This research was supported by NSF CAREER Grant 0956131.
Guo, Canyong; Luo, Xuefang; Zhou, Xiaohua; Shi, Beijia; Wang, Juanjuan; Zhao, Jinqi; Zhang, Xiaoxia
2017-06-05
Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60-1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62-2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs. Copyright © 2017 Elsevier B.V. All rights reserved.
Analyzing Intracellular Binding and Diffusion with Continuous Fluorescence Photobleaching
Wachsmuth, Malte; Weidemann, Thomas; Müller, Gabriele; Hoffmann-Rohrer, Urs W.; Knoch, Tobias A.; Waldeck, Waldemar; Langowski, Jörg
2003-01-01
Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of ∼13 s. PMID:12719264
Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching.
Wachsmuth, Malte; Weidemann, Thomas; Müller, Gabriele; Hoffmann-Rohrer, Urs W; Knoch, Tobias A; Waldeck, Waldemar; Langowski, Jörg
2003-05-01
Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of approximately 13 s.
Assessment of sacrococcygeal pressure ulcers using diffuse correlation spectroscopy
NASA Astrophysics Data System (ADS)
Diaz, David; Lafontant, Alec; Neidrauer, Michael; Weingarten, Michael S.; DiMaria-Ghalili, Rose Ann; Fried, Guy W.; Rece, Julianne; Lewin, Peter A.; Zubkov, Leonid
2016-03-01
Microcirculation is essential for proper supply of oxygen and nutritive substances to the biological tissue and the removal of waste products of metabolism. The determination of microcirculatory blood flow (mBF) is therefore of substantial interest to clinicians for assessing tissue health; particularly in pressure ulceration and suspected deep tissue injury. The goal of this pilot clinical study was to assess deep-tissue pressure ulceration by non-invasively measuring mBF using Diffuse Correlation Spectroscopy (DCS). DCS provides information about the flow of red blood cells in the capillary network by measuring the temporal autocorrelation function of scattering light intensity. A novel optical probe was developed in order to obtain measurements under the load of the subject's body as pressure is applied (ischemia) and then released (reperfusion) on sacrococcygeal tissue in a hospital bed. Prior to loading measurements, baseline readings of the sacral region were obtained by measuring the subjects in a side-lying position. DCS measurements from the sacral region of twenty healthy volunteers have been compared to those of two patients who initially had similar non-blanchable redness. The temporal autocorrelation function of scattering light intensity of the patient whose redness later disappeared was similar to that of the average healthy subject. The second patient, whose redness developed into an advanced pressure ulcer two weeks later, had a substantial decrease in blood flow while under the loading position compared to healthy subjects. Preliminary results suggest the developed system may potentially predict whether non-blanchable redness will manifest itself as advanced ulceration or dissipate over time.
Kopitzki, Klaus; Oldag, Andreas; Sweeney-Reed, Catherine M; Machts, Judith; Veit, Maria; Kaufmann, Jörn; Hinrichs, Hermann; Heinze, Hans-Jochen; Kollewe, Katja; Petri, Susanne; Mohammadi, Bahram; Dengler, Reinhard; Kupsch, Andreas R; Vielhaber, Stefan
2016-01-01
Aim of the present study was to investigate potential impairment of non-motor areas in amyotrophic lateral sclerosis (ALS) using near-infrared spectroscopy (NIRS) and diffusion tensor imaging (DTI). In particular, we evaluated whether homotopic resting-state functional connectivity (rs-FC) of non-motor associated cortical areas correlates with clinical parameters and disease-specific degeneration of the corpus callosum (CC) in ALS. Interhemispheric homotopic rs-FC was assessed in 31 patients and 30 healthy controls (HCs) for 8 cortical sites, from prefrontal to occipital cortex, using NIRS. DTI was performed in a subgroup of 21 patients. All patients were evaluated for cognitive dysfunction in the executive, memory, and visuospatial domains. ALS patients displayed an altered spatial pattern of correlation between homotopic rs-FC values when compared to HCs ( p = 0.000013). In patients without executive dysfunction a strong correlation existed between the rate of motor decline and homotopic rs-FC of the anterior temporal lobes (ATLs) (ρ = - 0.85, p = 0.0004). Furthermore, antero-temporal homotopic rs-FC correlated with fractional anisotropy in the central corpus callosum (CC), corticospinal tracts (CSTs), and forceps minor as determined by DTI ( p < 0.05). The present study further supports involvement of non-motor areas in ALS. Our results render homotopic rs-FC as assessed by NIRS a potential clinical marker for disease progression rate in ALS patients without executive dysfunction and a potential anatomical marker for ALS-specific degeneration of the CC and CSTs.
NASA Astrophysics Data System (ADS)
Ding, Xuemei; Wang, Bingyuan; Liu, Dongyuan; Zhang, Yao; He, Jie; Zhao, Huijuan; Gao, Feng
2018-02-01
During the past two decades there has been a dramatic rise in the use of functional near-infrared spectroscopy (fNIRS) as a neuroimaging technique in cognitive neuroscience research. Diffuse optical tomography (DOT) and optical topography (OT) can be employed as the optical imaging techniques for brain activity investigation. However, most current imagers with analogue detection are limited by sensitivity and dynamic range. Although photon-counting detection can significantly improve detection sensitivity, the intrinsic nature of sequential excitations reduces temporal resolution. To improve temporal resolution, sensitivity and dynamic range, we develop a multi-channel continuous-wave (CW) system for brain functional imaging based on a novel lock-in photon-counting technique. The system consists of 60 Light-emitting device (LED) sources at three wavelengths of 660nm, 780nm and 830nm, which are modulated by current-stabilized square-wave signals at different frequencies, and 12 photomultiplier tubes (PMT) based on lock-in photon-counting technique. This design combines the ultra-high sensitivity of the photon-counting technique with the parallelism of the digital lock-in technique. We can therefore acquire the diffused light intensity for all the source-detector pairs (SD-pairs) in parallel. The performance assessments of the system are conducted using phantom experiments, and demonstrate its excellent measurement linearity, negligible inter-channel crosstalk, strong noise robustness and high temporal resolution.
NASA Astrophysics Data System (ADS)
Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.
2003-07-01
Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a patient with peripheral vascular disease (PVD) were found.
Multiparametric Breast MRI of Breast Cancer
Rahbar, Habib; Partridge, Savannah C.
2015-01-01
Synopsis Breast MRI has increased in popularity over the past two decades due to evidence for its high sensitivity for cancer detection. Current clinical MRI approaches rely on the use of a dynamic contrast enhanced (DCE-MRI) acquisition that facilitates morphologic and semi-quantitative kinetic assessments of breast lesions. The use of more functional and quantitative parameters, such as pharmacokinetic features from high temporal resolution DCE-MRI, apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) on diffusion weighted MRI, and choline concentrations on MR spectroscopy, hold promise to broaden the utility of MRI and improve its specificity. However, due to wide variations in approach among centers for measuring these parameters and the considerable technical challenges, robust multicenter data supporting their routine use is not yet available, limiting current applications of many of these tools to research purposes. PMID:26613883
NASA Astrophysics Data System (ADS)
Piao, Daqing; Ramadan, Mohammad; Park, Aaron; Bartels, Kenneth E.; Patel, Sanjay G.
2017-10-01
Inadvertent injury to important anatomic structures is a significant risk in minimally invasive surgery (MIS) that potentially requires conversion to an open procedure, which results in increased morbidity and mortality. Surgeons operating minimal-invasively currently do not have an easy-to-use, real-time device to aid in intraoperative identification of important anatomic structures that underlie tissue planes. We demonstrate freehand diffuse optical spectroscopy (DOS) imaging for intraoperatively identifying major underlying veins and arteries. An applicator probe that can be affixed to and detached from an 8-mm laparoscopic instrument has been developed. The 10-mm DOS source-detector separation renders sampling of tissue heterogeneities a few millimeters deep. DOS spectra acquired consecutively during freehand movement of the applicator probe on the tissue surface are displayed as a temporal and spectral image to assist in spatially resolved identification of the underlying structures. Open surgery identifications of the vena cava and aorta underlying peritoneal fat of ˜4 mm in thickness using the applicator probe under room light were demonstrated repeatedly in multiple pigs in vivo.
NASA Astrophysics Data System (ADS)
Li, Jun; Ninck, Markus; Gisler, Thomas
2009-07-01
Changes in scalp and cortical blood flow induced by voluntary hyperventilation are investigated by near-infrared diffusing-wave spectroscopy. The temporal intensity autocorrelation function g(2) (τ) of multiply scattered light is recorded from the forehead of subjects during hyperventilation. Blood flow within the sampled tissue volume is estimated by the mean decay rate of g(2) (τ) . Data measured from six subjects show that the pattern of the hemodynamic response during 50 s hyperventilation is rather complicated: within the first 10 s, in three subjects an initial increase in blood flow is observed; from 10 s to 20 s, the mean blood flow is smaller than its baseline value for all six subjects; for the duration from 20 s to 30 s, the blood flow increases again. However, after 30 s the change is not consistent across subjects. Further study on one of these subjects by using two receivers probing the blood flow in the cortex and in the superficial layers simultaneously, reveals that during hyperventilation, the direction of change in blood flow within the scalp is opposite to the one in the brain. This helps to understand the complicated hemodynamic response observed in our measurements.
Study of diffusion coefficient of anhydrous trehalose glasses by using PFG-NMR spectroscopy
NASA Astrophysics Data System (ADS)
Kwon, Hyun-Joung; Takekawa, Reiji; Kawamura, Junichi; Tokuyama, Michio
2013-02-01
We investigated the temperature dependent long time self-diffusion coefficient of the anhydrous trehalose supercooled liquids by using pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. At the same temperature ranges, the diffusion coefficient convoluted from the α-relaxation time as Einstein-Smoluchowski relaxation, measured by using the dielectric loss spectroscopy are well overlapped with diffusion coefficients within experimental error. The temperature dependent diffusion coefficients obtained from different methods are normalized by fictive temperature and well satisfied the single master curve, proposed by Tokuyama.
NASA Astrophysics Data System (ADS)
Andrade, Débora M.; Clausen, Mathias P.; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E.; Hell, Stefan W.; Lagerholm, B. Christoffer; Eggeling, Christian
2015-06-01
Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes.
Andrade, Débora M; Clausen, Mathias P; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E; Hell, Stefan W; Lagerholm, B Christoffer; Eggeling, Christian
2015-06-29
Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes.
Andrade, Débora M.; Clausen, Mathias P.; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E.; Hell, Stefan W.; Lagerholm, B. Christoffer; Eggeling, Christian
2015-01-01
Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes. PMID:26118385
Diffuse Optical Tomography for Brain Imaging: Theory
NASA Astrophysics Data System (ADS)
Yuan, Zhen; Jiang, Huabei
Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.
Observation of copper atoms behavior in a vacuum arc discharge using laser spectroscopy
NASA Astrophysics Data System (ADS)
Sung, Y. M.; Hayashi, Y.; Okraku-Yirenkyi, Y.; Otsubo, M.; Honda, C.; Sakoda, T.
2003-01-01
In order to investigate the most important parameters influencing the breaking characteristic of a vacuum circuit breaker (VCB), the behavior of copper (Cu) particles emitted from electrodes designed as an imitation of a vacuum valve of the VCB was observed. The temporal-spatial intensity distributions due to Cu particles in an excited state or a neutral state were measured using the laser induced fluorescence (LIF) technique and a charge coupled device camera attached with a special filter. The diffusion velocity of a Cu atom was also investigated by evaluating a Doppler shift of the LIF signal. The results showed that most Cu particles were emitted from the anode and were in an excited state or an ionized state during an arc discharge. Also, Cu particles were distributed between electrodes even after the discharge chocked, and its diffusion velocity in the direction of the cathode from the anode was about 2.6 km/s.
Favard, Cyril; Wenger, Jérôme; Lenne, Pierre-François; Rigneault, Hervé
2011-03-02
Many efforts have been undertaken over the last few decades to characterize the diffusion process in model and cellular lipid membranes. One of the techniques developed for this purpose, fluorescence correlation spectroscopy (FCS), has proved to be a very efficient approach, especially if the analysis is extended to measurements on different spatial scales (referred to as FCS diffusion laws). In this work, we examine the relevance of FCS diffusion laws for probing the behavior of a pure lipid and a lipid mixture at temperatures below, within and above the phase transitions, both experimentally and numerically. The accuracy of the microscopic description of the lipid mixtures found here extends previous work to a more complex model in which the geometry is unknown and the molecular motion is driven only by the thermodynamic parameters of the system itself. For multilamellar vesicles of both pure lipid and lipid mixtures, the FCS diffusion laws recorded at different temperatures exhibit large deviations from pure Brownian motion and reveal the existence of nanodomains. The variation of the mean size of these domains with temperature is in perfect correlation with the enthalpy fluctuation. This study highlights the advantages of using FCS diffusion laws in complex lipid systems to describe their temporal and spatial structure. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Johansson, Johannes D; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut
2016-02-01
A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma.
Wang, H-Z; Qiu, S-J; Lv, X-F; Wang, Y-Y; Liang, Y; Xiong, W-F; Ouyang, Z-B
2012-04-01
To investigate the metabolic characteristics of the temporal lobes following radiation therapy for nasopharyngeal carcinoma using diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy ((1)H-MRS). DTI and (1)H-MRS were performed in 48 patients after radiotherapy for nasopharyngeal carcinoma and in 24 healthy, age-matched controls. All patients and controls had normal findings on conventional MRI. Apparent diffusion coefficient (ADC), fractional anisotropy (FA), three eigenvalues λ1, λ2, λ3, N-acetylaspartic acid (NAA)/choline (Cho), NAA/creatinine (Cr), and Cho/Cr were measured in both temporal lobes. Patients were divided into three groups according to time after completion of radiotherapy: group 1, less than 6 months; group 2, 6-12 months; group 3, more than 12 months. Mean values for each parameter were compared using one-way analysis of variance (ANOVA). Mean FA in group 1 was significantly lower compared to group 3 and the control group (p < 0.05). Group-wise comparisons of apparent diffusion coefficient (ADC) values among all the groups were not significantly different. Eigenvalue λ1 was significantly lower in groups 1 and 3 compared to the control group (p < 0.05). NAA/Cho and NAA/Cr were significantly lower in each group compared to the control group (p < 0.01 for both). The decrease in NAA/Cho was greatest in group 1. There were no significant between-group differences regarding Cho/Cr. A combination of DTI and (1)H-MRS can be used to detect radiation-induced brain injury, in patients treated for nasopharyngeal carcinoma. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Hebert, Benedict; Costantino, Santiago; Wiseman, Paul W
2005-05-01
We introduce a new extension of image correlation spectroscopy (ICS) and image cross-correlation spectroscopy (ICCS) that relies on complete analysis of both the temporal and spatial correlation lags for intensity fluctuations from a laser-scanning microscopy image series. This new approach allows measurement of both diffusion coefficients and velocity vectors (magnitude and direction) for fluorescently labeled membrane proteins in living cells through monitoring of the time evolution of the full space-time correlation function. By using filtering in Fourier space to remove frequencies associated with immobile components, we are able to measure the protein transport even in the presence of a large fraction (>90%) of immobile species. We present the background theory, computer simulations, and analysis of measurements on fluorescent microspheres to demonstrate proof of principle, capabilities, and limitations of the method. We demonstrate mapping of flow vectors for mixed samples containing fluorescent microspheres with different emission wavelengths using space time image cross-correlation. We also present results from two-photon laser-scanning microscopy studies of alpha-actinin/enhanced green fluorescent protein fusion constructs at the basal membrane of living CHO cells. Using space-time image correlation spectroscopy (STICS), we are able to measure protein fluxes with magnitudes of mum/min from retracting lamellar regions and protrusions for adherent cells. We also demonstrate the measurement of correlated directed flows (magnitudes of mum/min) and diffusion of interacting alpha5 integrin/enhanced cyan fluorescent protein and alpha-actinin/enhanced yellow fluorescent protein within living CHO cells. The STICS method permits us to generate complete transport maps of proteins within subregions of the basal membrane even if the protein concentration is too high to perform single particle tracking measurements.
NASA Astrophysics Data System (ADS)
Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas
2016-02-01
Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time scale as the diffusion of the labeled complexes through the detection volume (1- 100 ms). Since the origin of this quenching process is currently unclear, care has to be taken when the Dreiklang label is intended to be used in FCS applications.
NASA Astrophysics Data System (ADS)
Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas
2015-12-01
Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time scale as the diffusion of the labeled complexes through the detection volume (1- 100 ms). Since the origin of this quenching process is currently unclear, care has to be taken when the Dreiklang label is intended to be used in FCS applications.
Deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase-epitaxy n-GaAs
NASA Technical Reports Server (NTRS)
Partin, D. L.; Chen, J. W.; Milnes, A. G.; Vassamillet, L. F.
1979-01-01
The paper presents deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase epitaxy n-GaAs. Nickel diffused into VPE n-GaAs reduces the hole diffusion length L sub p from 4.3 to 1.1 microns. Deep-level transient spectroscopy was used to identify energy levels in Ni-diffused GaAs; the as-grown VPE GaAs contains traces of these levels and an electron trap. Ni diffusion reduces the concentration of this level by an amount that matches the increase in concentration of each of the two Ni-related levels. A technique for measuring minority-carrier capture cross sections was developed, which indicates that L sub p in Ni-diffused VPE n-GaAs is controlled by the E sub c - 0.39 eV defect level.
Diffuse reflectance spectroscopy of pre- and post-treated oral submucous fibrosis: an in vivo study
NASA Astrophysics Data System (ADS)
Sivabalan, S.; Ponranjini Vedeswari, C.; Jayachandran, S.; Koteeswaran, D.; Pravda, C.; Aruna, P.; Ganesan, S.
2010-02-01
Oral submucous fibrosis (OSF) is a high risk precancerous condition characterized by changes in the connective tissue fibers of the lamina propria and deeper parts leading to stiffness of the mucosa and restricted mouth opening, fibrosis of the lining mucosa of the upper digestive tract involving the oral cavity, oro- and hypo-pharynx and the upper two-thirds of the oesophagus. Optical reflectance measurements have been used to extract diagnostic information from a variety of tissue types, in vivo. We apply diffuse reflectance spectroscopy to quantitatively monitor tumour response to chemotherapy. Twenty patients with submucous fibrosis were diagnosed with diffuse reflectance spectroscopy and treated with the chemotherapy drug, Dexamethasone sodium phosphate and Hyaluronidase injection for seven weeks and after the treatment they were again subjected to the diffuse reflectance spectroscopy. The major observed spectral alterations on pre and post treated submucous fibrosis is an increase in the diffuse reflectance from 450 to 600 nm. Normal mucosa has showed higher reflectance when compared to the pre and post-treated cases. The spectral changes were quantified and correlated to conventional diagnostic results viz., maximum mouth opening, tongue protrusion and burning sensation. The results of this study suggest that the diffuse reflectance spectroscopy may also be considered as complementary optical techniques to monitor oral tissue transformation.
NASA Astrophysics Data System (ADS)
Fantini, Sergio; Sassaroli, Angelo; Kainerstorfer, Jana M.; Tgavalekos, Kristen T.; Zang, Xuan
2016-03-01
We describe the general principles and initial results of coherent hemodynamics spectroscopy (CHS), which is a new technique for the quantitative assessment of cerebral hemodynamics on the basis of dynamic near-infrared spectroscopy (NIRS) measurements. The two components of CHS are (1) dynamic measurements of coherent cerebral hemodynamics in the form of oscillations at multiple frequencies (frequency domain) or temporal transients (time domain), and (2) their quantitative analysis with a dynamic mathematical model that relates the concentration and oxygen saturation of hemoglobin in tissue to cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO2). In particular, CHS can provide absolute measurements and dynamic monitoring of CBF, and quantitative measures of cerebral autoregulation. We report initial results of CBF measurements in hemodialysis patients, where we found a lower CBF (54 +/- 16 ml/(100 g-min)) compared to a group of healthy controls (95 +/- 11 ml/(100 g-min)). We also report CHS measurements of cerebral autoregulation, where a quantitative index of autoregulation (its cutoff frequency) was found to be significantly greater in healthy subjects during hyperventilation (0.034 +/- 0.005 Hz) than during normal breathing (0.017 +/- 0.002 Hz). We also present our approach to depth resolved CHS, based on multi-distance, frequency-domain NIRS data and a two-layer diffusion model, to enhance sensitivity to cerebral tissue. CHS offers a potentially powerful approach to the quantitative assessment and continuous monitoring of local brain perfusion at the microcirculation level, with prospective brain mapping capabilities of research and clinical significance.
Huang, J; Friedland, R P; Auchus, A P
2007-01-01
Diffusion tensor imaging (DTI) is a sensitive technique for studying cerebral white matter. We used DTI to characterize microstructural white matter changes and their associations with cognitive dysfunction in Alzheimer disease (AD) and mild cognitive impairment (MCI). We studied elderly subjects with mild AD (n = 6), MCI (n = 11), or normal cognition (n = 8). A standardized clinical and neuropsychological evaluation was conducted on each subject. DTI images were acquired, and fractional anisotropy (FA), axial diffusivity (DA), and radial diffusivity (DR) of normal-appearing white matter (NAWM) in frontal, temporal, parietal, and occipital lobes were determined. These diffusion measurements were compared across the 3 groups, and significant differences were further examined for correlations with tests of cognitive function. Compared with normal controls, AD subjects demonstrated decreased FA and increased DR in the temporal, parietal, and frontal NAWM and decreased DA in temporal NAWM. MCI subjects also showed decreased FA and decreased DA in temporal NAWM, with decreased FA and increased DR in parietal NAWM. Diffusion measurements showed no differences in occipital NAWM. Across all subjects, temporal lobe FA and DR correlated with episodic memory, frontal FA and DR correlated with executive function, and parietal DR significantly correlated with visuospatial ability. We found evidence for functionally relevant microstructural changes in the NAWM of patients with AD and MCI. These changes were present in brain regions serving higher cortical functions, but not in regions serving primary functions, and are consistent with a hypothesized loss of axonal processes in the temporal lobe.
Kaur, Gurpreet; Costa, Mauro W; Nefzger, Christian M; Silva, Juan; Fierro-González, Juan Carlos; Polo, Jose M; Bell, Toby D M; Plachta, Nicolas
2013-01-01
Transcription factors use diffusion to search the DNA, yet the mechanisms controlling transcription factor diffusion during mammalian development remain poorly understood. Here we combine photoactivation and fluorescence correlation spectroscopy to study transcription factor diffusion in developing mouse embryos. We show that the pluripotency-associated transcription factor Oct4 displays both fast and Brownian and slower subdiffusive behaviours that are controlled by DNA interactions. Following cell lineage specification, the slower DNA-interacting diffusion fraction distinguishes pluripotent from extraembryonic cell nuclei. Similar to Oct4, Sox2 shows slower diffusion in pluripotent cells while Cdx2 displays opposite dynamics, suggesting that slow diffusion may represent a general feature of transcription factors in lineages where they are essential. Slow Oct4 subdiffusive behaviours are conserved in embryonic stem cells and induced pluripotent stem cells (iPS cells), and lost during differentiation. We also show that Oct4 diffusion depends on its interaction with ERG-associated protein with SET domain. Photoactivation and fluorescence correlation spectroscopy provides a new intravital approach to study transcription factor diffusion in complex in vivo systems.
Chin, Wei-Chien-Benny; Wen, Tzai-Hung; Sabel, Clive E; Wang, I-Hsiang
2017-10-03
A diffusion process can be considered as the movement of linked events through space and time. Therefore, space-time locations of events are key to identify any diffusion process. However, previous clustering analysis methods have focused only on space-time proximity characteristics, neglecting the temporal lag of the movement of events. We argue that the temporal lag between events is a key to understand the process of diffusion movement. Using the temporal lag could help to clarify the types of close relationships. This study aims to develop a data exploration algorithm, namely the TrAcking Progression In Time And Space (TaPiTaS) algorithm, for understanding diffusion processes. Based on the spatial distance and temporal interval between cases, TaPiTaS detects sub-clusters, a group of events that have high probability of having common sources, identifies progression links, the relationships between sub-clusters, and tracks progression chains, the connected components of sub-clusters. Dengue Fever cases data was used as an illustrative case study. The location and temporal range of sub-clusters are presented, along with the progression links. TaPiTaS algorithm contributes a more detailed and in-depth understanding of the development of progression chains, namely the geographic diffusion process.
Diffusion pore imaging with generalized temporal gradient profiles.
Laun, Frederik B; Kuder, Tristan A
2013-09-01
In porous material research, one main interest of nuclear magnetic resonance diffusion (NMR) experiments is the determination of the shape of pores. While it has been a longstanding question if this is in principle achievable, it has been shown recently that it is indeed possible to perform NMR-based diffusion pore imaging. In this work we present a generalization of these previous results. We show that the specific temporal gradient profiles that were used so far are not unique as more general temporal diffusion gradient profiles may be used. These temporal gradient profiles may consist of any number of "short" gradient pulses, which fulfil the short-gradient approximation. Additionally, "long" gradient pulses of small amplitude may be present, which can be used to fulfil the rephasing condition for the complete profile. Some exceptions exist. For example, classical q-space gradients consisting of two short gradient pulses of opposite sign cannot be used as the phase information is lost due to the temporal antisymmetry of this profile. Copyright © 2013 Elsevier Inc. All rights reserved.
In vivo soft tissue differentiation by diffuse reflectance spectroscopy: preliminary results
NASA Astrophysics Data System (ADS)
Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Schmidt, Michael; Douplik, Alexandre
Remote laser surgery does not provide haptic feedback to operate layer by layer and preserve vulnerable anatomical structures like nerve tissue or blood vessels. The aim of this study is identification of soft tissue in vivo by diffuse reflectance spectroscopy to set the base for a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Various soft tissues can be identified by diffuse reflectance spectroscopy in vivo. The results may set the base for a feedback system to prevent nerve damage during oral and maxillofacial laser surgery.
NASA Astrophysics Data System (ADS)
Orlova, A. G.; Kirillin, M. Yu.; Volovetsky, A. B.; Shilyagina, N. Yu.; Sergeeva, E. A.; Golubiatnikov, G. Yu.; Turchin, I. V.
2017-07-01
Using diffuse optical spectroscopy the level of oxygenation and hemoglobin concentration in experimental tumor in comparison with normal muscle tissue of mice have been studied. Subcutaneously growing SKBR-3 was used as a tumor model. Continuous wave fiber probe diffuse optical spectroscopy system was employed. Optical properties extraction approach was based on diffusion approximation. Decreased blood oxygen saturation level and increased total hemoglobin content were demonstrated in the neoplasm. The main reason of such differences between tumor and norm was significant elevation of deoxyhemoglobin concentration in SKBR-3. The method can be useful for diagnosis of tumors as well as for study of blood flow parameters of tumor models with different angiogenic properties.
Reconstruction of stochastic temporal networks through diffusive arrival times
NASA Astrophysics Data System (ADS)
Li, Xun; Li, Xiang
2017-06-01
Temporal networks have opened a new dimension in defining and quantification of complex interacting systems. Our ability to identify and reproduce time-resolved interaction patterns is, however, limited by the restricted access to empirical individual-level data. Here we propose an inverse modelling method based on first-arrival observations of the diffusion process taking place on temporal networks. We describe an efficient coordinate-ascent implementation for inferring stochastic temporal networks that builds in particular but not exclusively on the null model assumption of mutually independent interaction sequences at the dyadic level. The results of benchmark tests applied on both synthesized and empirical network data sets confirm the validity of our algorithm, showing the feasibility of statistically accurate inference of temporal networks only from moderate-sized samples of diffusion cascades. Our approach provides an effective and flexible scheme for the temporally augmented inverse problems of network reconstruction and has potential in a broad variety of applications.
Reconstruction of stochastic temporal networks through diffusive arrival times
Li, Xun; Li, Xiang
2017-01-01
Temporal networks have opened a new dimension in defining and quantification of complex interacting systems. Our ability to identify and reproduce time-resolved interaction patterns is, however, limited by the restricted access to empirical individual-level data. Here we propose an inverse modelling method based on first-arrival observations of the diffusion process taking place on temporal networks. We describe an efficient coordinate-ascent implementation for inferring stochastic temporal networks that builds in particular but not exclusively on the null model assumption of mutually independent interaction sequences at the dyadic level. The results of benchmark tests applied on both synthesized and empirical network data sets confirm the validity of our algorithm, showing the feasibility of statistically accurate inference of temporal networks only from moderate-sized samples of diffusion cascades. Our approach provides an effective and flexible scheme for the temporally augmented inverse problems of network reconstruction and has potential in a broad variety of applications. PMID:28604687
Henry, B I; Langlands, T A M; Wearne, S L
2006-09-01
We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps then the long time asymptotic limit has a standard linear reaction kinetics term but a fractional order temporal derivative operating on a nonstandard diffusion term. Results from the above two models are compared with a phenomenological model with standard linear reaction kinetics and a fractional order temporal derivative operating on a standard diffusion term. We have also developed further extensions of the CTRW model to include more general reaction dynamics.
Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin-ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.
2015-01-01
Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. PMID:25727920
Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; ...
2015-03-02
Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more » Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less
Following 18O uptake in scCO2–H2O mixtures with Raman spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windisch, Charles F.; Schaef, Herbert T.; Martin, Paul F.
2012-03-01
The kinetics of 18O/16O isotopic exchange in scCO2 containing liquid water was followed with Raman spectroscopy using a specially designed high-pressure optical cell. Characteristic bands from the C16O18O and C18O2 molecules were identified in the supercritical phase and measured in the spectra as a function of time after introducing liquid H218O into scC16O2. Temporal dependence indicated the isotopic exchange was diffusion-limited in our cell for both molecules, and that the chemical reactions within the liquid phase were comparatively rapid. However, the ratio of concentrations of the 18O-labeled CO2 molecules, C18O2/C16O18O, was much higher than expected in the supercritical phase, suggestingmore » the role of an intermediate step, possibly desorption, in moderating the concentrations of these species in the liquid water phase.« less
Indium diffusion through high-k dielectrics in high-k/InP stacks
NASA Astrophysics Data System (ADS)
Dong, H.; Cabrera, W.; Galatage, R. V.; Santosh KC, Brennan, B.; Qin, X.; McDonnell, S.; Zhernokletov, D.; Hinkle, C. L.; Cho, K.; Chabal, Y. J.; Wallace, R. M.
2013-08-01
Evidence of indium diffusion through high-k dielectric (Al2O3 and HfO2) films grown on InP (100) by atomic layer deposition is observed by angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The analysis establishes that In-out diffusion occurs and results in the formation of a POx rich interface.
Joshi, Tirtha Raj; Hakel, Peter; Hsu, Scott C.; ...
2017-03-22
In this article, we report the first direct experimental evidence of interspecies ion separation in direct-drive inertial confinement fusion experiments performed at the OMEGA laser facility via spectrally, temporally, and spatially resolved imaging x-ray-spectroscopy data [S. C. Hsu et al., Europhys. Lett. 115, 65001 (2016)]. These experiments were designed based on the expectation that interspecies ion thermo-diffusion would be the strongest for species with a large mass and charge difference. The targets were spherical plastic shells filled with D2 and a trace amount of Ar (0.1% or 1% by atom). Ar K-shell spectral features were observed primarily between the timemore » of first-shock convergence and slightly before the neutron bang time, using a time- and space-integrated spectrometer, a streaked crystal spectrometer, and two gated multi-monochromatic x-ray imagers fielded along quasi-orthogonal lines of sight. Detailed spectroscopic analyses of spatially resolved Ar K-shell lines reveal the deviation from the initial 1% Ar gas fill and show both Ar-concentration enhancement and depletion at different times and radial positions of the implosion. The experimental results are interpreted using radiation-hydrodynamic simulations that include recently implemented, first-principles models of interspecies ion diffusion. Lastly, the experimentally inferred Ar-atom fraction profiles agree reasonably with calculated profiles associated with the incoming and rebounding first shock.« less
NASA Astrophysics Data System (ADS)
Zhu, Liang; Wang, Youguo
2018-07-01
In this paper, a rumor diffusion model with uncertainty of human behavior under spatio-temporal diffusion framework is established. Take physical significance of spatial diffusion into account, a diffusion threshold is set under which the rumor is not a trend topic and only spreads along determined physical connections. Heterogeneity of degree distribution and distance distribution has also been considered in theoretical model at the same time. The global existence and uniqueness of classical solution are proved with a Lyapunov function and an approximate classical solution in form of infinite series is constructed with a system of eigenfunction. Simulations and numerical solutions both on Watts-Strogatz (WS) network and Barabási-Albert (BA) network display the variation of density of infected connections from spatial and temporal dimensions. Relevant results show that the density of infected connections is dominated by network topology and uncertainty of human behavior at threshold time. With increase of social capability, rumor diffuses to the steady state in a higher speed. And the variation trends of diffusion size with uncertainty are diverse on different artificial networks.
k-space image correlation to probe the intracellular dynamics of gold nanoparticles
NASA Astrophysics Data System (ADS)
Bouzin, M.; Sironi, L.; Chirico, G.; D'Alfonso, L.; Inverso, D.; Pallavicini, P.; Collini, M.
2016-04-01
The collective action of dynein, kinesin and myosin molecular motors is responsible for the intracellular active transport of cargoes, vesicles and organelles along the semi-flexible oriented filaments of the cytoskeleton. The overall mobility of the cargoes upon binding and unbinding to motor proteins can be modeled as an intermittency between Brownian diffusion in the cell cytoplasm and active ballistic excursions along actin filaments or microtubules. Such an intermittent intracellular active transport, exhibited by star-shaped gold nanoparticles (GNSs, Gold Nanostars) upon internalization in HeLa cancer cells, is investigated here by combining live-cell time-lapse confocal reflectance microscopy and the spatio-temporal correlation, in the reciprocal Fourier space, of the acquired image sequences. At first, the analytical theoretical framework for the investigation of a two-state intermittent dynamics is presented for Fourier-space Image Correlation Spectroscopy (kICS). Then simulated kICS correlation functions are employed to evaluate the influence of, and sensitivity to, all the kinetic and dynamic parameters the model involves (the transition rates between the diffusive and the active transport states, the diffusion coefficient and drift velocity of the imaged particles). The optimal procedure for the analysis of the experimental data is outlined and finally exploited to derive whole-cell maps for the parameters underlying the GNSs super-diffusive dynamics. Applied here to the GNSs subcellular trafficking, the proposed kICS analysis can be adopted for the characterization of the intracellular (super-) diffusive dynamics of any fluorescent or scattering biological macromolecule.
Pell, Gaby S; Briellmann, Regula S; Lawrence, Kate M; Glencross, Deborah; Wellard, R Mark; Berkovic, Samuel F; Jackson, Graeme D
2010-01-15
Twin studies offer the opportunity to determine the relative contribution of genes versus environment in traits of interest. Here, we investigate the extent to which variance in brain structure is reduced in monozygous twins with identical genetic make-up. We investigate whether using twins as compared to a control population reduces variability in a number of common magnetic resonance (MR) structural measures, and we investigate the location of areas under major genetic influences. This is fundamental to understanding the benefit of using twins in studies where structure is the phenotype of interest. Twenty-three pairs of healthy MZ twins were compared to matched control pairs. Volume, T2 and diffusion MR imaging were performed as well as spectroscopy (MRS). Images were compared using (i) global measures of standard deviation and effect size, (ii) voxel-based analysis of similarity and (iii) intra-pair correlation. Global measures indicated a consistent increase in structural similarity in twins. The voxel-based and correlation analyses indicated a widespread pattern of increased similarity in twin pairs, particularly in frontal and temporal regions. The areas of increased similarity were most widespread for the diffusion trace and least widespread for T2. MRS showed consistent reduction in metabolite variation that was significant in the temporal lobe N-acetylaspartate (NAA). This study has shown the distribution and magnitude of reduced variability in brain volume, diffusion, T2 and metabolites in twins. The data suggest that evaluation of twins discordant for disease is indeed a valid way to attribute genetic or environmental influences to observed abnormalities in patients since evidence is provided for the underlying assumption of decreased variability in twins.
NASA Astrophysics Data System (ADS)
Xu, Ronald; Qiang, Bo; Liu, Jun
2005-04-01
Recent advances in diffuse optical imaging and spectroscopy (DOIS) allow the noninvasive measurement of local changes in cerebral oxygenation and hemodynamics. Available DOIS devices fall into three categories: time domain (TD), frequency domain (FD) and continuous wave (CW). The TD and FD devices have potential for high spatial resolution, high temporal resolution and high accuracy measurement, but the instrument cost and the hardware size prevent their wide clinical application. Furthermore, the presence of the low scattering cerebrospinal fluid layer (CSF) and its thickness variation during motion challenges quantitative, continuous monitoring of the cortex layer oxygenation and blood content. MRI has been used to provide a priori knowledge of the head anatomy that helps the NIR image reconstruction. However, the technology is expensive and lacks portability. This paper proposes a method that combines the accuracy of a TD/FD system and the portability of a CW device. With the optical baseline measured by a TD or FD device and the layer thickness characterized by an ultrasound transducer, a conventional CW system may be able to quantify the cortex layer optical absorption with high accuracy. In this paper, the feasibility of using ultrasound guided CW spectroscopy to monitor brain activities was studied on a multi layer head model using Monte Carlo simulation and order of magnitude analysis. A forward algorithm based on diffuse approximation and 2D Fourier Transform was used to optimize the source detector separation. Both analytical and neuron network approaches were developed for inverse calculation of the cortex layer absorption in real time. An ultrasound transducer was used to monitor the thickness of different layers surrounding the cerebral cortex. The concept of ultrasound guided CW spectroscopy was demonstrated by numerical simulation on a 2 layer head model and the use of the ultrasound transducer for layer thickness characterization was verified by animal and bench top results.
Sanborn, Matthew R; Edsell, Mark E; Kim, Meeri N; Mesquita, Rickson; Putt, Mary E; Imray, Chris; Yow, Heng; Wilson, Mark H; Yodh, Arjun G; Grocott, Mike; Martin, Daniel S
2015-06-01
Alterations in cerebral blood flow (CBF) and cerebral oxygenation are implicated in altitude-associated diseases. We assessed the dynamic changes in CBF and peripheral and cerebral oxygenation engendered by ascent to altitude with partial acclimatization and hyperventilation using a combination of near-infrared spectroscopy, transcranial Doppler ultrasound, and diffuse correlation spectroscopy. Peripheral (Spo2) and cerebral (Scto2) oxygenation, end-tidal carbon dioxide (ETCO2), and cerebral hemodynamics were studied in 12 subjects using transcranial Doppler and diffuse correlation spectroscopy (DCS) at 75 m and then 2 days and 7 days after ascending to 4559 m above sea level. After obtaining baseline measurements, subjects hyperventilated to reduce baseline ETCO2 by 50%, and a further set of measurements were obtained. Cerebral oxygenation and peripheral oxygenation showed a divergent response, with cerebral oxygenation decreasing at day 2 and decreasing further at day 7 at altitude, whereas peripheral oxygenation decreased on day 2 before partially rebounding on day 7. Cerebral oxygenation decreased after hyperventilation at sea level (Scto2 from 68.8% to 63.5%; P<.001), increased after hyperventilation after 2 days at altitude (Scto2 from 65.6% to 69.9%; P=.001), and did not change after hyperventilation after 7 days at altitude (Scto2 from 62.2% to 63.3%; P=.35). An intensification of the normal cerebral hypocapnic vasoconstrictive response occurred after partial acclimatization in the setting of divergent peripheral and cerebral oxygenation. This may help explain why hyperventilation fails to improve cerebral oxygenation after partial acclimatization as it does after initial ascent. The use of DCS is feasible at altitude and provides a direct measure of CBF indices with high temporal resolution. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Serag, Maged F.; Abadi, Maram; Habuchi, Satoshi
2014-01-01
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields. PMID:25283876
Ariza, Mar; Pueyo, Roser; Junqué, Carme; Mataró, María; Poca, María Antonia; Mena, Maria Pau; Sahuquillo, Juan
2006-09-01
The aim of the present study was to determine whether the type of lesion in a sample of moderate and severe traumatic brain injury (TBI) was related to material-specific memory impairment. Fifty-nine patients with TBI were classified into three groups according to whether the site of the lesion was right temporal, left temporal or diffuse. Six-months post-injury, visual (Warrington's Facial Recognition Memory Test and Rey's Complex Figure Test) and verbal (Rey's Auditory Verbal Learning Test) memories were assessed. Visual memory deficits assessed by facial memory were associated with right temporal lobe lesion, whereas verbal memory performance assessed with a list of words was related to left temporal lobe lesion. The group with diffuse injury showed both verbal and visual memory impairment. These results suggest a material-specific memory impairment in moderate and severe TBI after focal temporal lesions and a non-specific memory impairment after diffuse damage.
Shoga, Janty S; Graham, Brian T; Wang, Liyun; Price, Christopher
2017-10-01
Articular cartilage is an avascular tissue; diffusive transport is critical for its homeostasis. While numerous techniques have been used to quantify diffusivity within porous, hydrated tissues and tissue engineered constructs, these techniques have suffered from issues regarding invasiveness and spatial resolution. In the present study, we implemented and compared two separate correlation spectroscopy techniques, fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS), for the direct, and minimally-invasive quantification of fluorescent solute diffusion in agarose and articular cartilage. Specifically, we quantified the diffusional properties of fluorescein and Alexa Fluor 488-conjugated dextrans (3k and 10k) in aqueous solutions, agarose gels of varying concentration (i.e. 1, 3, 5%), and in different zones of juvenile bovine articular cartilage explants (i.e. superficial, middle, and deep). In agarose, properties of solute diffusion obtained via FCS and RICS were inversely related to molecule size, gel concentration, and applied strain. In cartilage, the diffusional properties of solutes were similarly dependent upon solute size, cartilage zone, and compressive strain; findings that agree with work utilizing other quantification techniques. In conclusion, this study established the utility of FCS and RICS as simple and minimally invasive techniques for quantifying microscale solute diffusivity within agarose constructs and articular cartilage explants.
Time-dependent diffusion MRI in cancer: tissue modeling and applications
NASA Astrophysics Data System (ADS)
Reynaud, Olivier
2017-11-01
In diffusion weighted imaging (DWI), the apparent diffusion coefficient has been recognized as a useful and sensitive surrogate for cell density, paving the way for non-invasive tumor staging, and characterization of treatment efficacy in cancer. However, microstructural parameters, such as cell size, density and/or compartmental diffusivities affect diffusion in various fashions, making of conventional DWI a sensitive but non-specific probe into changes happening at cellular level. Alternatively, tissue complexity can be probed and quantified using the time dependence of diffusion metrics, sometimes also referred to as temporal diffusion spectroscopy when only using oscillating diffusion gradients. Time-dependent diffusion (TDD) is emerging as a strong candidate for specific and non-invasive tumor characterization. Despite the lack of a general analytical solution for all diffusion times / frequencies, TDD can be probed in various regimes where systems simplify in order to extract relevant information about tissue microstructure. The fundamentals of TDD are first reviewed (a) in the short time regime, disentangling structural and diffusive tissue properties, and (b) near the tortuosity limit, assuming weakly heterogeneous media near infinitely long diffusion times. Focusing on cell bodies (as opposed to neuronal tracts), a simple but realistic model for intracellular diffusion can offer precious insight on diffusion inside biological systems, at all times. Based on this approach, the main three geometrical models implemented so far (IMPULSED, POMACE, VERDICT) are reviewed. Their suitability to quantify cell size, intra- and extracellular spaces (ICS and ECS) and diffusivities are assessed. The proper modeling of tissue membrane permeability – hardly a newcomer in the field, but lacking applications - and its impact on microstructural estimates are also considered. After discussing general issues with tissue modeling and microstructural parameter estimation (i.e. fitting), potential solutions are detailed. The in vivo applications of this new, non-invasive, specific approach in cancer are reviewed, ranging from the characterization of gliomas in rodent brains and observation of time-dependence in breast tissue lesions and prostate cancer, to the recent preclinical evaluation of new treatments efficacy. It is expected that clinical applications of TDD will strongly benefit the community in terms of non-invasive cancer screening.
Branzoli, Francesca; Ercan, Ece; Valabrègue, Romain; Wood, Emily T; Buijs, Mathijs; Webb, Andrew; Ronen, Itamar
2016-11-01
Diffusion-tensor imaging and single voxel diffusion-weighted magnetic resonance spectroscopy were used at 7T to explore in vivo age-related microstructural changes in the corpus callosum. Sixteen healthy elderly (age range 60-71 years) and 13 healthy younger controls (age range 23-32 years) were included in the study. In healthy elderly, we found lower water fractional anisotropy and higher water mean diffusivity and radial diffusivity in the corpus callosum, indicating the onset of demyelination processes with healthy aging. These changes were not associated with a concomitant significant difference in the cytosolic diffusivity of the intra-axonal metabolite N-acetylaspartate (p = 0.12), the latter representing a pure measure of intra-axonal integrity. It was concluded that the possible intra-axonal changes associated with normal aging processes are below the detection level of diffusion-weighted magnetic resonance spectroscopy in our experiment (e.g., smaller than 10%) in the age range investigated. Lower axial diffusivity of total creatine was observed in the elderly group (p = 0.058), possibly linked to a dysfunction in the energy metabolism associated with a deficit in myelin synthesis. Copyright © 2016 Elsevier Inc. All rights reserved.
An Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene
Zhong, Kehua; Yang, Yanmin; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao
2017-01-01
The Li+ diffusion coefficients in Li+-adsorbed graphene systems were determined by combining first-principle calculations based on density functional theory with Kinetic Monte Carlo simulations. The calculated results indicate that the interactions between Li ions have a very important influence on lithium diffusion. Based on energy barriers directly obtained from first-principle calculations for single-Li+ and two-Li+ adsorbed systems, a new equation predicting energy barriers with more than two Li ions was deduced. Furthermore, it is found that the temperature dependence of Li+ diffusion coefficients fits well to the Arrhenius equation, rather than meeting the equation from electrochemical impedance spectroscopy applied to estimate experimental diffusion coefficients. Moreover, the calculated results also reveal that Li+ concentration dependence of diffusion coefficients roughly fits to the equation from electrochemical impedance spectroscopy in a low concentration region; however, it seriously deviates from the equation in a high concentration region. So, the equation from electrochemical impedance spectroscopy technique could not be simply used to estimate the Li+ diffusion coefficient for all Li+-adsorbed graphene systems with various Li+ concentrations. Our work suggests that interactions between Li ions, and among Li ion and host atoms will influence the Li+ diffusion, which determines that the Li+ intercalation dependence of Li+ diffusion coefficient should be changed and complex. PMID:28773122
Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi
2016-01-01
Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident. PMID:27301319
NASA Astrophysics Data System (ADS)
Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi
2016-06-01
Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.
Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi
2016-06-15
Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.
NASA Astrophysics Data System (ADS)
Marrocco, Michele
2007-11-01
Fluorescence correlation spectroscopy is fundamental in many physical, chemical and biological studies of molecular diffusion. However, the concept of fluorescence correlation is founded on the assumption that the analytical description of the correlation decay of diffusion can be achieved if the spatial profile of the detected volume obeys a three-dimensional Gaussian distribution. In the present Letter, the analytical result is instead proven for the fundamental Gaussian-Lorentzian profile.
3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes.
Didenko, Tatiana; Boelens, Rolf; Rüdiger, Stefan G D
2011-01-01
The translational diffusion coefficient is a sensitive parameter to probe conformational changes in proteins and protein-protein interactions. Pulsed-field gradient NMR spectroscopy allows one to measure the translational diffusion with high accuracy. Two-dimensional (2D) heteronuclear NMR spectroscopy combined with diffusion-ordered spectroscopy (DOSY) provides improved resolution and therefore selectivity when compared with a conventional 1D readout. Here, we show that a combination of selective isotope labelling, 2D ¹H-¹³C methyl-TROSY (transverse relaxation-optimised spectroscopy) and DOSY allows one to study diffusion properties of large protein complexes. We propose that a 3D DOSY-heteronuclear multiple quantum coherence (HMQC) pulse sequence, that uses the TROSY effect of the HMQC sequence for ¹³C methyl-labelled proteins, is highly suitable for measuring the diffusion coefficient of large proteins. We used the 20 kDa co-chaperone p23 as model system to test this 3D DOSY-TROSY technique under various conditions. We determined the diffusion coefficient of p23 in viscous solutions, mimicking large complexes of up to 200 kDa. We found the experimental data to be in excellent agreement with theoretical predictions. To demonstrate the use for complex formation, we applied this technique to record the formation of a complex of p23 with the molecular chaperone Hsp90, which is around 200 kDa. We anticipate that 3D DOSY-TROSY will be a useful tool to study conformational changes in large protein complexes.
Diffusion induced atomic islands on the surface of Ni/Cu nanolayers
NASA Astrophysics Data System (ADS)
Takáts, Viktor; Csik, Attila; Hakl, József; Vad, Kálmán
2018-05-01
Surface islands formed by grain-boundary diffusion has been studied in Ni/Cu nanolayers by in-situ low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, scanning probe microscopy and ex-situ depth profiling based on ion sputtering. In this paper a new experimental approach of measurement of grain-boundary diffusion coefficients is presented. Appearing time of copper atoms diffused through a few nanometer thick nickel layer has been detected by low energy ion scattering spectroscopy with high sensitivity. The grain-boundary diffusion coefficient can be directly calculated from this appearing time without using segregation factors in calculations. The temperature range of 423-463 K insures the pure C-type diffusion kinetic regime. The most important result is that surface coverage of Ni layer by Cu atoms reaches a maximum during annealing and stays constant if the annealing procedure is continued. Scanning probe microscopy measurements show a Volmer-Weber type layer growth of Cu layer on the Ni surface in the form of Cu atomic islands. Depth distribution of Cu in Ni layer has been determined by depth profile analysis.
Fractional Diffusion Equations and Anomalous Diffusion
NASA Astrophysics Data System (ADS)
Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin
2018-01-01
Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.
Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da
2005-10-01
With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food.
Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS.
Lanzanò, Luca; Scipioni, Lorenzo; Di Bona, Melody; Bianchini, Paolo; Bizzarri, Ranieri; Cardarelli, Francesco; Diaspro, Alberto; Vicidomini, Giuseppe
2017-07-06
The observation of molecular diffusion at different spatial scales, and in particular below the optical diffraction limit (<200 nm), can reveal details of the subcellular topology and its functional organization. Stimulated-emission depletion microscopy (STED) has been previously combined with fluorescence correlation spectroscopy (FCS) to investigate nanoscale diffusion (STED-FCS). However, stimulated-emission depletion fluorescence correlation spectroscopy has only been used successfully to reveal functional organization in two-dimensional space, such as the plasma membrane, while, an efficient implementation for measurements in three-dimensional space, such as the cellular interior, is still lacking. Here we integrate the STED-FCS method with two analytical approaches, the recent separation of photons by lifetime tuning and the fluorescence lifetime correlation spectroscopy, to simultaneously probe diffusion in three dimensions at different sub-diffraction scales. We demonstrate that this method efficiently provides measurement of the diffusion of EGFP at spatial scales tunable from the diffraction size down to ∼80 nm in the cytoplasm of living cells.The measurement of molecular diffusion at sub-diffraction scales has been achieved in 2D space using STED-FCS, but an implementation for 3D diffusion is lacking. Here the authors present an analytical approach to probe diffusion in 3D space using STED-FCS and measure the diffusion of EGFP at different spatial scales.
Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition
NASA Astrophysics Data System (ADS)
Sunahara, Atsushi; Morita, Hiroki; Johzaki, Tomoyuki; Nagatomo, Hideo; Fujioka, Shinsuke; Hassanein, Ahmed; Firex Project Team
2017-10-01
We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. Recently, in the fast ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. We estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. Also, we calculated the temporal evolution of the target temperature heated by the eddy current driven by temporal variation of magnetic fields, based on the accurate equation of state. Both, the diffusion of magnetic field and the increase of target temperature interact with each other. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target.
Magnetic resonance imaging based clinical research in Alzheimer's disease.
Fayed, Nicolás; Modrego, Pedro J; Salinas, Gulillermo Rojas; Gazulla, José
2012-01-01
Alzheimer's disease (AD) is the most common cause of dementia in elderly people in western countries. However important goals are unmet in the issue of early diagnosis and the development of new drugs for treatment. Magnetic resonance imaging (MRI) and volumetry of the medial temporal lobe structures are useful tools for diagnosis. Positron emission tomography is one of the most sensitive tests for making an early diagnosis of AD but the cost and limited availability are important caveats for its utilization. The importance of magnetic resonance techniques has increased gradually to the extent that most clinical works based on AD use these techniques as the main aid to diagnosis. However, the accuracy of structural MRI as biomarker of early AD generally reaches an accuracy of 80%, so additional biomarkers should be used to improve predictions. Other structural MRI (diffusion weighted, diffusion-tensor MRI) and functional MRI have also added interesting contribution to the understanding of the pathophysiology of AD. Magnetic resonance spectroscopy has proven useful to monitor progression and response to treatment in AD, as well as a biomarker of early AD in mild cognitive impairment.
USDA-ARS?s Scientific Manuscript database
Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM). Soils contain myriad organic and inorganic components that absorb in the MidIR so spectral interpretation needs to be validated in or...
Comparison of linear and nonlinear models for coherent hemodynamics spectroscopy (CHS)
NASA Astrophysics Data System (ADS)
Sassaroli, Angelo; Kainerstorfer, Jana; Fantini, Sergio
2015-03-01
A recently proposed linear time-invariant hemodynamic model for coherent hemodynamics spectroscopy1 (CHS) relates the tissue concentrations of oxy- and deoxy-hemoglobin (outputs of the system) to given dynamics of the tissue blood volume, blood flow and rate constant of oxygen diffusion (inputs of the system). This linear model was derived in the limit of "small" perturbations in blood flow velocity. We have extended this model to a more general model (which will be referred to as the nonlinear extension to the original model) that yields the time-dependent changes of oxy and deoxy-hemoglobin concentrations in response to arbitrary dynamic changes in capillary blood flow velocity. The nonlinear extension to the model relies on a general solution of the partial differential equation that governs the spatio-temporal behavior of oxygen saturation of hemoglobin in capillaries and venules on the basis of dynamic (or time resolved) blood transit time. We show preliminary results where the CHS spectra obtained from the linear and nonlinear models are compared to quantify the limits of applicability of the linear model.
Evidence for Enhanced Matrix Diffusion in Geological Environment
NASA Astrophysics Data System (ADS)
Sato, Kiminori; Fujimoto, Koichiro; Nakata, Masataka; Shikazono, Naotatsu
2013-01-01
Molecular diffusion in rock matrix, called as matrix diffusion, has been appreciated as a static process for elemental migration in geological environment that has been acknowledged in the context of geological disposal of radioactive waste. However, incomprehensible enhancement of matrix diffusion has been reported at a number of field test sites. Here, the matrix diffusion of saline water at Horonobe, Hokkaido, Japan is highlighted directly probing angstrom-scale pores on a field scale up to 1 km by positron--positronium annihilation spectroscopy. The first application of positron--positronium annihilation spectroscopy to field-scale geophysical research reveals the slight variation of angstrom-scale pores influenced by saline water diffusion with complete accuracy. We found widely interconnected 3 Å pores, which offer the pathway of saline water diffusion with the highly enhanced effective matrix diffusion coefficient of 4× 10-6 cm2 s-1. The present findings provide unambiguous evidence that the angstrom-scale pores enhance effective matrix diffusion on a field scale in geological environment.
A pilot DTI analysis in patients with recent onset post-traumatic stress disorder
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Liang; Li, Baojuan; Zhang, Xi; Lu, Hongbing
2016-03-01
To explore the alteration in white matter between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, who survived from the same coal mine flood disaster, the diffusion tensor imaging (DTI) sequences were analyzed using DTI studio and statistical parametric mapping (SPM) packages in this paper. From DTI sequence, the fractional anisotropy (FA) value describes the degree of anisotropy of a diffusion process, while the apparent diffusion coefficient (ADC) value reflects the magnitude of water diffusion. The DTI analyses between PTSD and non-PTSD indicate lower FA values in the right caudate nucleus, right middle temporal gyrus, right fusiform gyrus, and right superior temporal gyrus, and higher ADC values in the right superior temporal gyrus and right corpus callosum of the subjects with PTSD. These results are partly in line with our previous volume and cortical thickness analyses, indicating the importance of multi-modality analysis for PTSD.
USDA-ARS?s Scientific Manuscript database
Soluble fiber ß-glucan is one of the key dietary materials in healthy food products known for reducing serum cholesterol levels. The micro-structural heterogeneity and micro-rheology of high-viscosity barley ß-glucan solutions were investigated by the diffusing wave spectroscopy (DWS) technology. By...
Measurement of Small Molecular Dopant F4TCNQ and C 60F 36 Diffusion in Organic Bilayer Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Rochester, Chris W.; Jacobs, Ian E.
2015-12-03
The diffusion of molecules through and between organic layers is a serious stability concern in organic electronic devices. In this paper, the temperature-dependent diffusion of molecular dopants through small molecule hole transport layers is observed. Specifically we investigate bilayer stacks of small molecules used for hole transport (MeO-TPD) and p-type dopants (F4TCNQ and C 60F 36) used in hole injection layers for organic light emitting diodes and hole collection electrodes for organic photovoltaics. With the use of absorbance spectroscopy, photoluminescence spectroscopy, neutron reflectometry, and near-edge X-ray absorption fine structure spectroscopy, we are able to obtain a comprehensive picture of themore » diffusion of fluorinated small molecules through MeO-TPD layers. F4TCNQ spontaneously diffuses into the MeO-TPD material even at room temperature, while C 60F 36, a much bulkier molecule, is shown to have a substantially higher morphological stability. Finally, this study highlights that the differences in size/geometry and thermal properties of small molecular dopants can have a significant impact on their diffusion in organic device architectures.« less
Single-image diffusion coefficient measurements of proteins in free solution.
Zareh, Shannon Kian; DeSantis, Michael C; Kessler, Jonathan M; Li, Je-Luen; Wang, Y M
2012-04-04
Diffusion coefficient measurements are important for many biological and material investigations, such as studies of particle dynamics and kinetics, and size determinations. Among current measurement methods, single particle tracking (SPT) offers the unique ability to simultaneously obtain location and diffusion information about a molecule while using only femtomoles of sample. However, the temporal resolution of SPT is limited to seconds for single-color-labeled samples. By directly imaging three-dimensional diffusing fluorescent proteins and studying the widths of their intensity profiles, we were able to determine the proteins' diffusion coefficients using single protein images of submillisecond exposure times. This simple method improves the temporal resolution of diffusion coefficient measurements to submilliseconds, and can be readily applied to a range of particle sizes in SPT investigations and applications in which diffusion coefficient measurements are needed, such as reaction kinetics and particle size determinations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Stefl, Martin; Kułakowska, Anna; Hof, Martin
2009-08-05
A new (to our knowledge) robust approach for the determination of lateral diffusion coefficients of weakly bound proteins is applied for the phosphatidylserine specific membrane interaction of bovine prothrombin. It is shown that z-scan fluorescence correlation spectroscopy in combination with pulsed interleaved dual excitation allows simultaneous monitoring of the lateral diffusion of labeled protein and phospholipids. Moreover, from the dependencies of the particle numbers on the axial sample positions at different protein concentrations phosphatidylserine-dependent equilibrium dissociation constants are derived confirming literature values. Increasing the amount of membrane-bound prothrombin retards the lateral protein and lipid diffusion, indicating coupling of both processes. The lateral diffusion coefficients of labeled lipids are considerably larger than the simultaneously determined lateral diffusion coefficients of prothrombin, which contradicts findings reported for the isolated N-terminus of prothrombin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
XU, X. George; Zhang, X.C.
Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field usingmore » gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.« less
Fantini, Sergio
2014-01-15
This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers. Copyright © 2013 Elsevier Inc. All rights reserved.
Fantini, Sergio
2013-01-01
This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers. PMID:23583744
2015-04-24
AFRL-RX-WP-JA-2016-0196 TEMPORALLY AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE...AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE FILMS (POSTPRINT) 5a. CONTRACT NUMBER FA8650...distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated
Mueller, Susanne G; Ebel, Andreas; Barakos, Jerome; Scanlon, Cathy; Cheong, Ian; Finlay, Daniel; Garcia, Paul; Weiner, Michael W; Laxer, Kenneth D
2011-04-01
MR spectroscopy has demonstrated extrahippocampal NAA/(Cr+Cho) reductions in medial temporal lobe epilepsy with (TLE-MTS) and without (TLE-no) mesial temporal sclerosis. Because of the limited brain coverage of those previous studies, it was, however, not possible to assess differences in the distribution and extent of these abnormalities between TLE-MTS and TLE-no. This study used a 3D whole brain echoplanar spectroscopic imaging (EPSI) sequence to address the following questions: (1) Do TLE-MTS and TLE-no differ regarding severity and distribution of extrahippocampal NAA/(Cr+Cho) reductions? (2) Do extrahippocampal NAA/(Cr+Cho) reductions provide additional information for focus lateralization? Forty-three subjects (12 TLE-MTS, 13 TLE-no, 18 controls) were studied with 3D EPSI. Statistical parametric mapping (SPM2) was used to identify regions of significantly decreased NAA/(Cr+Cho) in TLE groups and in individual patients. TLE-MTS and TLE-no had widespread extrahippocampal NAA/(Cr+Cho) reductions. NAA/(Cr+Cho) reductions had a bilateral fronto-temporal distribution in TLE-MTS and a more diffuse, less well defined distribution in TLE-no. Extrahippocampal NAA/(Cr+Cho) decreases in the single subject analysis showed a large inter-individual variability and did not provide additional focus lateralizing information. Extrahippocampal NAA/(Cr+Cho) reductions in TLE-MTS and TLE-no are neither focal nor homogeneous. This reduces their value for focus lateralization and suggests a heterogeneous etiology of extrahippocampal spectroscopic metabolic abnormalities in TLE.
Marchadour, Charlotte; Brouillet, Emmanuel; Hantraye, Philippe; Lebon, Vincent; Valette, Julien
2012-01-01
Translational displacement of molecules within cells is a key process in cellular biology. Molecular motion potentially depends on many factors, including active transport, cytosol viscosity and molecular crowding, tortuosity resulting from cytoskeleton and organelles, and restriction barriers. However, the relative contribution of these factors to molecular motion in the cytoplasm remains poorly understood. In this work, we designed an original diffusion-weighted magnetic resonance spectroscopy strategy to probe molecular motion at subcellular scales in vivo. This led to the first observation of anomalous diffusion, that is, dependence of the apparent diffusion coefficient (ADC) on the diffusion time, for endogenous intracellular metabolites in the brain. The observed increase of the ADC at short diffusion time yields evidence that metabolite motion is characteristic of hindered random diffusion rather than active transport, for time scales up to the dozen milliseconds. Armed with this knowledge, data modeling based on geometrically constrained diffusion was performed. Results suggest that metabolite diffusion occurs in a low-viscosity cytosol hindered by ∼2-μm structures, which is consistent with known intracellular organization. PMID:22929443
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genina, E A; Bashkatov, A N; Tuchin, V V
One of the lines of development of modern medicine is theranostics consisting in simultaneous diagnosis and laser treatment with the use of multifunctional agents such as fluorescent indocyanine green that has photodynamic and photothermal properties. Diffusion of indocyanine green dissolved in water and aqueous solutions of alcohols (glycerol, propylene glycol and ethanol) into the dermis is studied by using backscattering spectroscopy. The coefficients of the dye diffusion into the dermis are obtained for the first time by using these solvents. (laser biophotonics)
Chen, Fang; Neupane, Bhanu; Li, Peiyuan; Su, Wei; Wang, Gufeng
2016-08-01
We explored the feasibility of using confocal fluorescence correlation spectroscopy to study small nanoparticle diffusion in hundred-nanometer-sized cylindrical pores. By modeling single particle diffusion in tube-like confined three-dimensional space aligned parallel to the confocal optical axis, we showed that two diffusion dynamics can be observed in both original intensity traces and the autocorrelation functions (ACFs): the confined two-dimensional lateral diffusion and the unconfined one-dimensional (1D) axial diffusion. The separation of the axial and confined lateral diffusion dynamics provides an opportunity to study diffusions in different dimensions separately. We further experimentally studied 45 nm carboxylated polystyrene particles diffusing in 300 nm alumina pores. The experimental data showed consistency with the simulation. To extract the accurate axial diffusion coefficient, we found that a 1D diffusion model with a Lorentzian axial collection profile needs to be used to analyze the experimental ACFs. The diffusion of the 45 nm nanoparticles in polyethyleneglycol-passivated 300 nm pores slowed down by a factor of ∼2, which can be satisfactorily explained by hydrodynamic frictions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Najac, Chloé; Branzoli, Francesca; Ronen, Itamar; Valette, Julien
2016-04-01
Due to the specific compartmentation of brain metabolites, diffusion-weighted magnetic resonance spectroscopy opens unique insight into neuronal and astrocytic microstructures. The apparent diffusion coefficient (ADC) of brain metabolites depends on various intracellular parameters including cytosol viscosity and molecular crowding. When diffusion time (t d) is long enough, the size and geometry of the compartment in which the metabolites diffuse strongly influence metabolites ADC. In a previous study, performed in the macaque brain, we measured neuronal and astrocytic metabolites ADC at long t d (from 86 to 1,011 ms) in a large voxel enclosing an equal proportion of white and grey matter. We showed that metabolites apparently diffuse freely along the axis of dendrites, axons and astrocytic processes. To assess potential differences between these two tissue types, here we measured for the first time in the Human brain the t d-dependency of metabolites trace/3 ADC at 7 teslas using a localized diffusion-weighted STEAM sequence, in parietal and occipital voxels, respectively, containing mainly white and grey matter. We show that, in both tissues and over the observed timescale (t d varying from 92 to 712 ms) metabolite ADC reaches a non-zero plateau, suggesting that metabolites are not confined inside subcellular regions such as cell bodies, or inside subcellular compartments such as organelles, but are rather free to diffuse in the whole fiber-like structure of neurons and astrocytes. Beyond the fundamental insights into intracellular compartmentation of metabolites, this work also provides a new framework for interpreting results of neuroimaging techniques based on molecular diffusion, such as diffusion-weighted magnetic resonance spectroscopy and imaging.
Najac, Chloé; Branzoli, Francesca; Ronen, Itamar; Valette, Julien
2016-01-01
Due to the specific compartmentation of brain metabolites, diffusion-weighted magnetic resonance spectroscopy opens unique insight into neuronal and astrocytic microstructures. The apparent diffusion coefficient (ADC) of brain metabolites depends on various intracellular parameters including cytosol viscosity and molecular crowding. When diffusion time (td) is long enough, the size and geometry of the compartment in which the metabolites diffuse strongly influence metabolites ADC. In a previous study, performed in the macaque brain, we measured neuronal and astrocytic metabolites ADC at long td (from 86 ms to 1011 ms) in a large voxel enclosing an equal proportion of white and grey matter. We showed that metabolites apparently diffuse freely along the axis of dendrites, axons and astrocytic processes. To assess potential differences between these two tissue types, here we measured for the first time in the Human brain the td-dependency of metabolites trace/3 ADC at 7 teslas using a localized diffusion-weighted STEAM sequence, in parietal and occipital voxels respectively containing mainly white and grey matter. We show that, in both tissues and over the observed timescale (td varying from 92 to 712 ms) metabolite ADC reaches a non-zero plateau, suggesting that metabolites are not confined inside subcellular regions such as cell bodies, or inside subcellular compartments such as organelles, but are rather free to diffuse in the whole fiber-like structure of neurons and astrocytes. Beyond the fundamental insights into intracellular compartmentation of metabolites, this work also provides a new framework for interpreting results of neuroimaging techniques based on molecular diffusion, such as diffusion-weighted magnetic resonance spectroscopy and imaging. PMID:25520054
Ultrafast and versatile spectroscopy by temporal Fourier transform
NASA Astrophysics Data System (ADS)
Zhang, Chi; Wei, Xiaoming; Marhic, Michel E.; Wong, Kenneth K. Y.
2014-06-01
One of the most remarkable and useful properties of a spatially converging lens system is its inherent ability to perform the Fourier transform; the same applies for the time-lens system. At the back focal plane of the time-lens, the spectral information can be instantaneously obtained in the time axis. By implementing temporal Fourier transform for spectroscopy applications, this time-lens-based architecture can provide orders of magnitude improvement over the state-of-art spatial-dispersion-based spectroscopy in terms of the frame rate. On the other hand, in addition to the single-lens structure, the multi-lens structures (e.g. telescope or wide-angle scope) will provide very versatile operating conditions. Leveraging the merit of instantaneous response, as well as the flexible lens structure, here we present a 100-MHz frame rate spectroscopy system - the parametric spectro-temporal analyzer (PASTA), which achieves 17 times zoom in/out ratio for different observation ranges.
NASA Astrophysics Data System (ADS)
Shokeen, Namita; Issa, Christopher; Mukhopadhyay, Ashis
2017-12-01
We studied the diffusion of nanoparticles (NPs) within aqueous entangled solutions of polyethylene oxide (PEO) by using two different optical techniques. Fluorescence correlation spectroscopy, a method widely used to investigate nanoparticle dynamics in polymer solution, was used to measure the long-time diffusion coefficient (D) of 25 nm radius particles within high molecular weight, Mw = 600 kg/mol PEO in water solutions. Differential dynamic microscopy (DDM) was used to determine the wave-vector dependent dynamics of NPs within the same polymer solutions. Our results showed good agreement between the two methods, including demonstration of normal diffusion and almost identical diffusion coefficients obtained by both techniques. The research extends the scope of DDM to study the dynamics and rheological properties of soft matter at a nanoscale. The measured diffusion coefficients followed a scaling theory, which can be explained by the coupling between polymer dynamics and NP motion.
Ortiz-Rascón, E; Bruce, N C; Garduño-Mejía, J; Carrillo-Torres, R; Hernández-Paredes, J; Álvarez-Ramos, M E
2017-11-20
This paper discusses the main differences between two different methods for determining the optical properties of tissue optical phantoms by fitting the spatial and temporal intensity distribution functions to the diffusion approximation theory. The consistency in the values of the optical properties is verified by changing the width of the recipient containing the turbid medium; as the optical properties are an intrinsic value of the scattering medium, independently of the recipient width, the stability in these values for different widths implies a better measurement system for the acquisition of the optical properties. It is shown that the temporal fitting method presents higher stability than the spatial fitting method; this is probably due to the addition of the time of flight parameter into the diffusion theory.
NASA Astrophysics Data System (ADS)
Marsan, A.; Trébinjac, I.; Coste, S.; Leroy, G.
2013-12-01
The temporal behaviour of a flow separation in the hub-suction side corner of a transonic diffuser is studied thanks to unsteady numerical simulations based on the phase-lagged approach. The validity of the numerical results is confirmed by comparison with experimental unsteady pressure measurements. An analysis of the instantaneous skin-friction pattern and particles trajectories is presented. It highlights the topology of the separation and its temporal behaviour. The major result is that, despite of a highly time-dependent core flow, the separation is found to be a "fixed unsteady separation" characterized by a fixed location of the main saddle of the separation but an extent of the stall region modulated by the pressure waves induced by the impeller-diffuser interaction.
Keller, Simon S; Glenn, G Russell; Weber, Bernd; Kreilkamp, Barbara A K; Jensen, Jens H; Helpern, Joseph A; Wagner, Jan; Barker, Gareth J; Richardson, Mark P; Bonilha, Leonardo
2017-01-01
Approximately one in every two patients with pharmacoresistant temporal lobe epilepsy will not be rendered completely seizure-free after temporal lobe surgery. The reasons for this are unknown and are likely to be multifactorial. Quantitative volumetric magnetic resonance imaging techniques have provided limited insight into the causes of persistent postoperative seizures in patients with temporal lobe epilepsy. The relationship between postoperative outcome and preoperative pathology of white matter tracts, which constitute crucial components of epileptogenic networks, is unknown. We investigated regional tissue characteristics of preoperative temporal lobe white matter tracts known to be important in the generation and propagation of temporal lobe seizures in temporal lobe epilepsy, using diffusion tensor imaging and automated fibre quantification. We studied 43 patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis and 44 healthy controls. Patients underwent preoperative imaging, amygdalohippocampectomy and postoperative assessment using the International League Against Epilepsy seizure outcome scale. From preoperative imaging, the fimbria-fornix, parahippocampal white matter bundle and uncinate fasciculus were reconstructed, and scalar diffusion metrics were calculated along the length of each tract. Altogether, 51.2% of patients were rendered completely seizure-free and 48.8% continued to experience postoperative seizure symptoms. Relative to controls, both patient groups exhibited strong and significant diffusion abnormalities along the length of the uncinate bilaterally, the ipsilateral parahippocampal white matter bundle, and the ipsilateral fimbria-fornix in regions located within the medial temporal lobe. However, only patients with persistent postoperative seizures showed evidence of significant pathology of tract sections located in the ipsilateral dorsal fornix and in the contralateral parahippocampal white matter bundle. Using receiver operating characteristic curves, diffusion characteristics of these regions could classify individual patients according to outcome with 84% sensitivity and 89% specificity. Pathological changes in the dorsal fornix were beyond the margins of resection, and contralateral parahippocampal changes may suggest a bitemporal disorder in some patients. Furthermore, diffusion characteristics of the ipsilateral uncinate could classify patients from controls with a sensitivity of 98%; importantly, by co-registering the preoperative fibre maps to postoperative surgical lacuna maps, we observed that the extent of uncinate resection was significantly greater in patients who were rendered seizure-free, suggesting that a smaller resection of the uncinate may represent insufficient disconnection of an anterior temporal epileptogenic network. These results may have the potential to be developed into imaging prognostic markers of postoperative outcome and provide new insights for why some patients with temporal lobe epilepsy continue to experience postoperative seizures. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Keller, Simon S; Glenn, G Russell; Weber, Bernd; Kreilkamp, Barbara A K; Jensen, Jens H; Helpern, Joseph A; Wagner, Jan; Barker, Gareth J; Richardson, Mark P; Bonilha, Leonardo
2017-01-01
Abstract Approximately one in every two patients with pharmacoresistant temporal lobe epilepsy will not be rendered completely seizure-free after temporal lobe surgery. The reasons for this are unknown and are likely to be multifactorial. Quantitative volumetric magnetic resonance imaging techniques have provided limited insight into the causes of persistent postoperative seizures in patients with temporal lobe epilepsy. The relationship between postoperative outcome and preoperative pathology of white matter tracts, which constitute crucial components of epileptogenic networks, is unknown. We investigated regional tissue characteristics of preoperative temporal lobe white matter tracts known to be important in the generation and propagation of temporal lobe seizures in temporal lobe epilepsy, using diffusion tensor imaging and automated fibre quantification. We studied 43 patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis and 44 healthy controls. Patients underwent preoperative imaging, amygdalohippocampectomy and postoperative assessment using the International League Against Epilepsy seizure outcome scale. From preoperative imaging, the fimbria-fornix, parahippocampal white matter bundle and uncinate fasciculus were reconstructed, and scalar diffusion metrics were calculated along the length of each tract. Altogether, 51.2% of patients were rendered completely seizure-free and 48.8% continued to experience postoperative seizure symptoms. Relative to controls, both patient groups exhibited strong and significant diffusion abnormalities along the length of the uncinate bilaterally, the ipsilateral parahippocampal white matter bundle, and the ipsilateral fimbria-fornix in regions located within the medial temporal lobe. However, only patients with persistent postoperative seizures showed evidence of significant pathology of tract sections located in the ipsilateral dorsal fornix and in the contralateral parahippocampal white matter bundle. Using receiver operating characteristic curves, diffusion characteristics of these regions could classify individual patients according to outcome with 84% sensitivity and 89% specificity. Pathological changes in the dorsal fornix were beyond the margins of resection, and contralateral parahippocampal changes may suggest a bitemporal disorder in some patients. Furthermore, diffusion characteristics of the ipsilateral uncinate could classify patients from controls with a sensitivity of 98%; importantly, by co-registering the preoperative fibre maps to postoperative surgical lacuna maps, we observed that the extent of uncinate resection was significantly greater in patients who were rendered seizure-free, suggesting that a smaller resection of the uncinate may represent insufficient disconnection of an anterior temporal epileptogenic network. These results may have the potential to be developed into imaging prognostic markers of postoperative outcome and provide new insights for why some patients with temporal lobe epilepsy continue to experience postoperative seizures. PMID:28031219
Le Fur, Yann; Viout, Patrick; Ratiney, Hélène; Confort-Gouny, Sylviane; Cozzone, Patrick J.; Girard, Nadine
2016-01-01
Preterm birth represents a high risk of neurodevelopmental disabilities when associated with white-matter damage. Recent studies have reported cognitive deficits in children born preterm without brain injury on MRI at term-equivalent age. Understanding the microstructural and metabolic underpinnings of these deficits is essential for their early detection. Here, we used diffusion-weighted imaging and single-voxel 1H magnetic resonance spectroscopy (MRS) to compare brain maturation at term-equivalent age in premature neonates with no evidence of white matter injury on conventional MRI except diffuse excessive high-signal intensity, and normal term neonates. Thirty-two infants, 16 term neonates (mean post-conceptional age at scan: 39.8±1 weeks) and 16 premature neonates (mean gestational age at birth: 29.1±2 weeks, mean post-conceptional age at scan: 39.2±1 weeks) were investigated. The MRI/MRS protocol performed at 1.5T involved diffusion-weighted MRI and localized 1H-MRS with the Point RESolved Spectroscopy (PRESS) sequence. Preterm neonates showed significantly higher ADC values in the temporal white matter (P<0.05), the occipital white matter (P<0.005) and the thalamus (P<0.05). The proton spectrum of the centrum semiovale was characterized by significantly lower taurine/H2O and macromolecules/H2O ratios (P<0.05) at a TE of 30 ms, and reduced (creatine+phosphocreatine)/H2O and (glutamine+glutamate)/H2O ratios (P<0.05) at a TE of 135 ms in the preterm neonates than in full-term neonates. Our findings indicate that premature neonates with normal conventional MRI present a delay in brain maturation affecting the white matter and the thalamus. Their brain metabolic profile is characterized by lower levels of creatine, glutamine plus glutamate, and macromolecules in the centrum semiovale, a finding suggesting altered energy metabolism and protein synthesis. PMID:27547969
Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation.
Donatini, Fabrice; Pernot, Julien
2018-03-09
In semiconductor nanowires (NWs) the exciton diffusion coefficient can be determined using a scanning electron microscope fitted with a cathodoluminescence system. High spatial and temporal resolution cathodoluminescence experiments are needed to measure independently the exciton diffusion length and lifetime in single NWs. However, both diffusion length and lifetime can be affected by the electron beam bombardment during observation and measurement. Thus, in this work the exciton lifetime in a ZnO NW is measured versus the electron beam dose (EBD) via a time-resolved cathodoluminescence experiment with a temporal resolution of 50 ps. The behavior of the measured exciton lifetime is consistent with our recent work on the EBD dependence of the exciton diffusion length in similar NWs investigated under comparable SEM conditions. Combining the two results, the exciton diffusion coefficient in ZnO is determined at room temperature and is found constant over the full span of EBD.
Modified Beer-Lambert law for blood flow
NASA Astrophysics Data System (ADS)
Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.
2015-03-01
The modified Beer-Lambert law is among the most widely used approaches for analysis of near-infrared spectroscopy (NIRS) reflectance signals for measurements of tissue blood volume and oxygenation. Briefly, the modified Beer-Lambert paradigm is a scheme to derive changes in tissue optical properties based on continuous-wave (CW) diffuse optical intensity measurements. In its simplest form, the scheme relates differential changes in light transmission (in any geometry) to differential changes in tissue absorption. Here we extend this paradigm to the measurement of tissue blood flow by diffuse correlation spectroscopy (DCS). In the new approach, differential changes of the intensity temporal auto-correlation function at a single delay-time are related to differential changes in blood flow. The key theoretical results for measurement of blood flow changes in any tissue geometry are derived, and we demonstrate the new method to monitor cerebral blood flow in a pig under conditions wherein the semi-infinite geometry approximation is fairly good. Specifically, the drug dinitrophenol was injected in the pig to induce a gradual 200% increase in cerebral blood flow, as measured with MRI velocity flow mapping and by DCS. The modified Beer-Lambert law for flow accurately recovered these flow changes using only a single delay-time in the intensity auto-correlation function curve. The scheme offers increased DCS measurement speed of blood flow. Further, the same techniques using the modified Beer-Lambert law to filter out superficial tissue effects in NIRS measurements of deep tissues can be applied to the DCS modified Beer-Lambert law for blood flow monitoring of deep tissues.
Ershova, N I; Ivanov, V M
2000-05-01
Cellulose and chromaton-N-super as solid supports for direct determination of the immobilized nickel complexes with dimethylglyoxime and benzyldioxime by diffuse reflection spectroscopy were compared. The advantage of chromaton-N-super with use of benzyldioxime is shown. Detection limit is 0.02 microg/mL. The proposed method was applied for the analysis of soil.
Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...
A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems
Lo, Wing-Cheong; Chen, Long; Wang, Ming; Nie, Qing
2012-01-01
An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton’s method) take less CPU time in direct computation for the steady state; however, their convergence is sensitive to the initial guess, often leading to divergence or convergence to spatially homogeneous solution. Systematically numerical exploration of spatial patterns of reaction-diffusion equations under different parameter regimes requires that the numerical method be efficient and robust to initial condition or initial guess, with better likelihood of convergence to an inhomogeneous pattern. Here, a new approach that combines the advantages of temporal schemes in robustness and Newton’s method in fast convergence in solving steady states of reaction-diffusion equations is proposed. In particular, an adaptive implicit Euler with inexact solver (AIIE) method is found to be much more efficient than temporal schemes and more robust in convergence than typical nonlinear solvers (e.g., Newton’s method) in finding the inhomogeneous pattern. Application of this new approach to two reaction-diffusion equations in one, two, and three spatial dimensions, along with direct comparisons to several other existing methods, demonstrates that AIIE is a more desirable method for searching inhomogeneous spatial patterns of reaction-diffusion equations in a large parameter space. PMID:22773849
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Q.-S.; Li, C.-F.; Liu Hong
2007-05-01
Purpose: The aim of this study was to explore the diagnostic effectiveness of magnetic resonance (MR) spectroscopy with diffusion-weighted imaging on the evaluation of the recurrent contrast-enhancing areas at the site of treated gliomas. Methods and Materials: In 55 patients who had new contrast-enhancing lesions in the vicinity of the previously resected and irradiated high-grade gliomas, two-dimensional MR spectroscopy and diffusion-weighted imaging were performed. Spectral data for N-acetylaspartate (NAA), choline (Cho), creatine (Cr), lipid (Lip), and lactate (Lac) were analyzed in conjunction with the apparent diffusion coefficient (ADC) in all patients. Diagnosis of these lesions was assigned by means ofmore » follow-up or histopathology. Results: The Cho/NAA and Cho/Cr ratios were significantly higher in recurrent tumor than in regions of radiation injury (p < 0.01). The ADC value and ADC ratios (ADC of contrast-enhancing lesion to matching structure in the contralateral hemisphere) were significantly higher in radiation injury regions than in recurrent tumor (p < 0.01). With MR spectroscopic data, two variables (Cho/NAA and Cho/Cr ratios) were shown to differentiate recurrent glioma from radiation injury, and 85.5% of total subjects were correctly classified into groups. However, with discriminant analysis of MR spectroscopy imaging plus diffusion-weighted imaging, three variables (Cho/NAA, Cho/Cr, and ADC ratio) were identified and 96.4% of total subjects were correctly classified. There was a significant difference between the diagnostic accuracy of the two discriminant analyses (Chi-square = 3.96, p = 0.046). Conclusion: Using discriminant analysis, this study found that MR spectroscopy in combination with ADC ratio, rather than ADC value, can improve the ability to differentiate recurrent glioma and radiation injury.« less
Deng, Chen; Li-Yong, Wen
2017-10-24
As the only intermediate host of Schistosoma japonicum, Oncomelania hupensis in China is mainly distributed in the Yangtze River Basin. The origin of the O. hupensis and the spatio-temporal variations of its distribution and diffusion in the Yangtze River Basin and the influencing factors, as well as significances in schistosomiasis elimination in China are reviewed in this paper.
Chen, Yasheng; An, Hongyu; Zhu, Hongtu; Jewells, Valerie; Armao, Diane; Shen, Dinggang; Gilmore, John H.; Lin, Weili
2011-01-01
Although diffusion tensor imaging (DTI) has provided substantial insights into early brain development, most DTI studies based on fractional anisotropy (FA) and mean diffusivity (MD) may not capitalize on the information derived from the three principal diffusivities (e.g. eigenvalues). In this study, we explored the spatial and temporal evolution of white matter structures during early brain development using two geometrical diffusion measures, namely, linear (Cl) and planar (Cp) diffusion anisotropies, from 71 longitudinal datasets acquired from 29 healthy, full-term pediatric subjects. The growth trajectories were estimated with generalized estimating equations (GEE) using linear fitting with logarithm of age (days). The presence of the white matter structures in Cl and Cp was observed in neonates, suggesting that both the cylindrical and fanning or crossing structures in various white matter regions may already have been formed at birth. Moreover, we found that both Cl and Cp evolved in a temporally nonlinear and spatially inhomogeneous manner. The growth velocities of Cl in central white matter were significantly higher when compared to peripheral, or more laterally located, white matter: central growth velocity Cl = 0.0465±0.0273/log(days), versus peripheral growth velocity Cl=0.0198±0.0127/log(days), p<10−6. In contrast, the growth velocities of Cp in central white matter were significantly lower than that in peripheral white matter: central growth velocity Cp= 0.0014±0.0058/log(days), versus peripheral growth velocity Cp = 0.0289±0.0101/log(days), p<10−6. Depending on the underlying white matter site which is analyzed, our findings suggest that ongoing physiologic and microstructural changes in the developing brain may exert different effects on the temporal evolution of these two geometrical diffusion measures. Thus, future studies utilizing DTI with correlative histological analysis in the study of early brain development are warranted. PMID:21784163
NASA Astrophysics Data System (ADS)
Aparna, N.; Vasa, Nilesh J.; Sarathi, R.; Rajan, J. Sundara
2014-10-01
In recent times, copper sulphide (Cu2S) diffusion in the transformer insulation is a major problem reducing the life of transformers. It is therefore essential to identify a simple methodology to understand the diffusion of Cu2S into the solid insulation [oil impregnated pressboard (OIP)]. In the present work, laser-induced breakdown spectroscopy (LIBS) was adopted to study the diffusion of Cu2S into the pressboard insulation and to determine the depth of diffusion. The diffusion of Cu2S in pressboard was confirmed by electrical discharge studies. In general, flashover voltage and increase in ageing duration of pressboard insulation/Cu concentration had inverse relationship. The characteristic emission lines were also studied through optical emission spectroscopy. Based on LIBS studies with Cu powder dispersed pressboard samples, Cu I emission lines were found to be resolvable up to a lowest concentration of 5 μg/cm2. The LIBS intensity ratio of Cu I-Ca II emission lines were found to increase with increase in the ageing duration of the OIP sample. LIBS studies with OIP samples showed an increase in the optical emission lifetime. LIBS results were in agreement with the electrical discharge studies.
Quantitative single-molecule imaging by confocal laser scanning microscopy.
Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf
2008-11-25
A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.
Two types of diffusions at the cathode/electrolyte interface in IT-SOFCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhipeng, E-mail: LI.Zhipeng@nims.go.jp; Mori, Toshiyuki; Auchterlonie, Graeme John
2011-09-15
Analytical transmission electron microscopy, in particular with the combination of energy dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS), has been performed to investigate the microstructure and microchemistry of the interfacial region between the cathode (La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}, LSCF) and the electrolyte (Gd-doped ceria, GDC). Two types of diffusions, mutual diffusion between cathode and electrolyte as well as the diffusion along grain boundaries, have been clarified. These diffusions suggest that the chemical stability of LSCF and GDC are not as good as previously reported. The results are more noteworthy if we take into consideration the factmore » that such interdiffusions occur even during the sintering process of cell preparation. - Graphical Abstract: Two types of diffusions, the mutual diffusion and the diffusion along grain boundaries, occurred at the cathode/electrolyte interface of intermediate temperature solid state fuel cells, during cell preparation. The mutual diffusion is denoted by black arrows and the diffusion along grain boundaries assigned by pink arrows. Highlights: > All the cations in cathode (LSCF) and electrolyte (GDC) can mutually diffuse into each other. > Diffusing elements will segregate at grain boundaries or triple junctions around the cathode/electrolyte interface. > Two types of diffusions, the mutual diffusion and diffusion along grain boundaries, have been clarified thereafter.« less
Fractal diffusion in high temperature polymer electrolyte fuel cell membranes
NASA Astrophysics Data System (ADS)
Hopfenmüller, Bernhard; Zorn, Reiner; Holderer, Olaf; Ivanova, Oxana; Lehnert, Werner; Lüke, Wiebke; Ehlers, Georg; Jalarvo, Niina; Schneider, Gerald J.; Monkenbusch, Michael; Richter, Dieter
2018-05-01
The performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity, two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension dw and the Hausdorff dimension df have been determined on the length scales covered in the neutron scattering experiments.
Jing, Min; McGinnity, T Martin; Coleman, Sonya; Fuchs, Armin; Kelso, J A Scott
2015-07-01
Despite the emerging applications of diffusion tensor imaging (DTI) to mild traumatic brain injury (mTBI), very few investigations have been reported related to temporal changes in quantitative diffusion patterns, which may help to assess recovery from head injury and the long term impact associated with cognitive and behavioral impairments caused by mTBI. Most existing methods are focused on detection of mTBI affected regions rather than quantification of temporal changes following head injury. Furthermore, most methods rely on large data samples as required for statistical analysis and, thus, are less suitable for individual case studies. In this paper, we introduce an approach based on spatial group independent component analysis (GICA), in which the diffusion scalar maps from an individual mTBI subject and the average of a group of controls are arranged according to their data collection time points. In addition, we propose a constrained GICA (CGICA) model by introducing the prior information into the GICA decomposition process, thus taking available knowledge of mTBI into account. The proposed method is evaluated based on DTI data collected from American football players including eight controls and three mTBI subjects (at three time points post injury). The results show that common spatial patterns within the diffusion maps were extracted as spatially independent components (ICs) by GICA. The temporal change of diffusion patterns during recovery is revealed by the time course of the selected IC. The results also demonstrate that the temporal change can be further influenced by incorporating the prior knowledge of mTBI (if available) based on the proposed CGICA model. Although a small sample of mTBI subjects is studied, as a proof of concept, the preliminary results provide promising insight for applications of DTI to study recovery from mTBI and may have potential for individual case studies in practice.
NASA Astrophysics Data System (ADS)
Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Schmidt, Michael; Douplik, Alexandre
2010-02-01
Remote laser surgery lacks of haptic feedback during the laser ablation of tissue. Hence, there is a risk of iatrogenic damage or destruction of anatomical structures like nerves or salivary glands. Diffuse reflectance spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from seven various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the seven tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerves and salivary glands as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating tissues as guidance for oral and maxillofacial laser surgery by means of diffuse reflectance.
NASA Astrophysics Data System (ADS)
Oh, Sanghoon; Ragheb, John; Bhatia, Sanjiv; Sandberg, David; Johnson, Mahlon; Fernald, Bradley; Lin, Wei-Chiang
2008-02-01
Optical spectroscopy for in vivo tissue diagnosis is performed traditionally in a static manner; a snap shot of the tissue biochemical and morphological characteristics is captured through the interaction between light and the tissue. This approach does not capture the dynamic nature of a living organ, which is critical to the studies of brain disorders such as epilepsy. Therefore, a time-dependent diffuse reflectance spectroscopy system with a fiber-optic probe was designed and developed. The system was designed to acquire broadband diffuse reflectance spectra (240 ~ 932 nm) at an acquisition rate of 33 Hz. The broadband spectral acquisition feature allows simultaneous monitoring of various physiological characteristics of tissues. The utility of such a system in guiding pediatric epilepsy surgery was tested in a pilot clinical study including 13 epilepsy patients and seven brain tumor patients. The control patients were children undergoing suregery for brain tumors in which measurements were taken from normal brain exposed during the surgery. Diffuse reflectance spectra were acquired for 12 seconds from various parts of the brain of the patients during surgery. Recorded spectra were processed and analyzed in both spectral and time domains to gain insights into the dynamic changes in, for example, hemodynamics of the investigated brain tissue. One finding from this pilot study is that unsynchronized alterations in local blood oxygenation and local blood volume were observed in epileptogenic cortex. These study results suggest the advantage of using a time-dependent diffuse reflectance spectroscopy system to study epileptogenic brain in vivo.
Williams, Rebecca J; Reutens, David C; Hocking, Julia
2015-11-01
Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
Single Molecule Spectral Diffusion in a Solid Detected Via Fluorescence Spectroscopy
1991-10-15
other local fields) at the position of the molecule, the spectral jumps may occur because the class II pentacene molecules are coupled to an...and identify by block number) FIELD jGROUP SUB-GROUP_ Single molecule spectroscopy Precision detection Spectral diffusion, Pentacene in p-terphenyl 19...significant increases in detection sensitivity for single pentacene molecules in crystals of p-terphenyl at low temperatures. With the increased signal to
Li, Zhe; Baker, Wesley B.; Parthasarathy, Ashwin B.; Ko, Tiffany S.; Wang, Detian; Schenkel, Steven; Durduran, Turgut; Li, Gang; Yodh, Arjun G.
2015-01-01
Abstract. We investigate and assess the utility of a simple scheme for continuous absolute blood flow monitoring based on diffuse correlation spectroscopy (DCS). The scheme calibrates DCS using venous-occlusion diffuse optical spectroscopy (VO-DOS) measurements of arm muscle tissue at a single time-point. A calibration coefficient (γ) for the arm is determined, permitting conversion of DCS blood flow indices to absolute blood flow units, and a study of healthy adults (N=10) is carried out to ascertain the variability of γ. The average DCS calibration coefficient for the right (i.e., dominant) arm was γ=(1.24±0.15)×108 (mL·100 mL−1·min−1)/(cm2/s). However, variability can be significant and is apparent in our site-to-site and day-to-day repeated measurements. The peak hyperemic blood flow overshoot relative to baseline resting flow was also studied following arm-cuff ischemia; excellent agreement between VO-DOS and DCS was found (R2=0.95, slope=0.94±0.07, mean difference=−0.10±0.45). Finally, we show that incorporation of subject-specific absolute optical properties significantly improves blood flow calibration accuracy. PMID:26720870
NASA Astrophysics Data System (ADS)
Frins, E.; Platt, U.; Wagner, T.
2008-12-01
Topographic Target Light scattering - Differential Optical Absorption Spectroscopy (ToTaL-DOAS), also called Target-DOAS, is a novel experimental procedure to retrieve trace gas concentrations present in the low atmosphere. Scattered sunlight (diffuse or specular) reflected from natural or artificial targets located at different distances are analyzed to retrieve the spatial distribution of the concentration of different trace gases like NO2, SO2 and others. We report high spatial resolution measurements of NO2 mixing ratios in the city of Montevideo (Uruguay) observing three buildings as targets with a Mini-DOAS instrument. Our instrument was 146 m, 196 m, and 280 m apart from three different buildings located along a main Avenue. We obtain temporal variation of NO2 mixing ratios between 30 ppb and 65 ppb from measurements of November 2007 and mixing ratios up to 50 ppb from measurements of August and September 2008. Our measurements demonstrate that ToTaL-DOAS observations can be made over relative short distances. In polluted air masses, the retrieved absorption signal was found to be sufficiently strong to allow measurements over distances in the range of several tens of meters.
Abdeen, Nishard; Cross, Albert; Cron, Gregory; White, Steven; Rand, Thomas; Miller, David; Santyr, Giles
2006-08-01
We used the dual capability of hyperpolarized 129Xe for spectroscopy and imaging to develop new measures of xenon diffusing capacity in the rat lung that (analogously to the diffusing capacity of carbon monoxide or DLCO) are calculated as a product of total lung volume and gas transfer rate constants divided by the pressure gradient. Under conditions of known constant pressure breath-hold, the volume is measured by hyperpolarized 129Xe MRI, and the transfer rate is measured by dynamic spectroscopy. The new quantities (xenon diffusing capacity in lung parenchyma (DLXeLP)), xenon diffusing capacity in RBCs (DLXeRBC), and total lung xenon diffusing capacity (DLXe)) were measured in six normal rats and six rats with lung inflammation induced by instillation of fungal spores of Stachybotrys chartarum. DLXeLP, DLXeRBC, and DLXe were 56 +/- 10 ml/min/mmHg, 64 +/- 35 ml/min/mmHg, and 29 +/- 9 ml/min/mmHg, respectively, for normal rats, and 27 +/- 9 ml/min/mmHg, 42 +/- 27 ml/min/mmHg, and 16 +/- 7 ml/min/mmHg, respectively, for diseased rats. Lung volumes and gas transfer times for LP (TtrLP) were 16 +/- 2 ml and 22 +/- 3 ms, respectively, for normal rats and 12 +/- 2 ml and 35 +/- 8 ms, respectively, for diseased rats. Xenon diffusing capacities may be useful for measuring changes in gas exchange associated with inflammation and other lung diseases. Copyright 2006 Wiley-Liss, Inc.
Soil profile property estimation with field and laboratory VNIR spectroscopy
USDA-ARS?s Scientific Manuscript database
Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...
NASA Astrophysics Data System (ADS)
Arantes Camargo, Livia; Marques Júnior, José; Reynaldo Ferracciú Alleoni, Luís; Tadeu Pereira, Gener; De Bortoli Teixeira, Daniel; Santos Rabelo de Souza Bahia, Angélica
2017-04-01
Environmental impact assessments may be assisted by spatial characterization of potentially toxic elements (PTEs). Diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF) are rapid, non-destructive, low-cost, prediction tools for a simultaneous characterization of different soil attributes. Although low concentrations of PTEs might preclude the observation of spectral features, their contents can be predicted using spectroscopy by exploring the existing relationship between the PTEs and soil attributes with spectral features. This study aimed to evaluate, in three geomorphic surfaces of Oxisols, the capacity for predicting PTEs (Ba, Co, and Ni) and their spatial variability by means of diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF). For that, soil samples were collected from three geomorphic surfaces and analyzed for chemical, physical, and mineralogical properties, and then analyzed in DRS (visible + near infrared - VIS+NIR and medium infrared - MIR) and XRF equipment. PTE prediction models were calibrated using partial least squares regression (PLSR). PTE spatial distribution maps were built using the values calculated by the calibrated models that reached the best accuracy using geostatistics. PTE prediction models were satisfactorily calibrated using MIR DRS for Ba, and Co (residual prediction deviation - RPD > 3.0), Vis DRS for Ni (RPD > 2.0) and FRX for all the studied PTEs (RPD > 1.8). DRS- and XRF-predicted values allowed the characterization and the understanding of spatial variability of the studied PTEs.
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.
2010-09-01
A fiber optic setup for diffuse-light absorption spectroscopy in the wide 400-1700 nm spectral range is experimented for detecting and quantifying the adulteration of extra virgin olive oil caused by lower-grade olive oils. Absorption measurements provide spectral fingerprints of authentic and adulterated oils. A multivariate processing of spectroscopic data is applied for discriminating the type of adulterant and for predicting its fraction.
Physiological basis for noninvasive skin cancer diagnosis using diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, Yao; Markey, Mia K.; Tunnell, James W.
2017-02-01
Diffuse reflectance spectroscopy offers a noninvasive, fast, and low-cost alternative to visual screening and biopsy for skin cancer diagnosis. We have previously acquired reflectance spectra from 137 lesions in 76 patients and determined the capability of spectral diagnosis using principal component analysis (PCA). However, it is not well elucidated why spectral analysis enables tissue classification. To provide the physiological basis, we used the Monte Carlo look-up table (MCLUT) model to extract physiological parameters from those clinical data. The MCLUT model results in the following physiological parameters: oxygen saturation, hemoglobin concentration, melanin concentration, vessel radius, and scattering parameters. Physiological parameters show that cancerous skin tissue has lower scattering and larger vessel radii, compared to normal tissue. These results demonstrate the potential of diffuse reflectance spectroscopy for detection of early precancerous changes in tissue. In the future, a diagnostic algorithm that combines these physiological parameters could be enable non-invasive diagnosis of skin cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ailavajhala, Mahesh S.; Mitkova, Maria; Gonzalez-Velo, Yago
We explore the radiation induced effects in thin films from the Ge-Se to Ge-Te systems accompanied with silver radiation induced diffusion within these films, emphasizing two distinctive compositional representatives from both systems containing a high concentration of chalcogen or high concentration of Ge. The studies are conducted on blanket chalcogenide films or on device structures containing also a silver source. Data about the electrical conductivity as a function of the radiation dose were collected and discussed based on material characterization analysis. Raman Spectroscopy, X-ray Diffraction Spectroscopy, and Energy Dispersive X-ray Spectroscopy provided us with data about the structure, structural changesmore » occurring as a result of radiation, molecular formations after Ag diffusion into the chalcogenide films, Ag lateral diffusion as a function of radiation and the level of oxidation of the studied films. Analysis of the electrical testing suggests application possibilities of the studied devices for radiation sensing for various conditions.« less
Diffuse reflectance spectroscopy of liver tissue
NASA Astrophysics Data System (ADS)
Reistad, Nina; Nilsson, Jan; Vilhelmsson Timmermand, Oskar; Sturesson, Christian; Andersson-Engels, Stefan
2015-06-01
Diffuse reflectance spectroscopy (DRS) with a fiber-optic contact probe is a cost-effective, rapid, and non-invasive optical method used to extract diagnosis information of tissue. By combining commercially available VIS- and NIR-spectrometers with various fiber-optic contact-probes, we have access to the full wavelength range from around 400 to 1600 nm. Using this flexible and portable spectroscopy system, we have acquired ex-vivo DRS-spectra from murine, porcine, and human liver tissue. For extracting the tissue optical properties from the measured spectra, we have employed and compared predictions from two models for light propagation in tissue, diffusion theory model (DT) and Monte Carlo simulations (MC). The focus in this work is on the capacity of this DRS-technique in discriminating metastatic tumor tissue from normal liver tissue as well as in assessing and characterizing damage to non-malignant liver tissue induced by preoperative chemotherapy for colorectal liver metastases.
Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods
NASA Astrophysics Data System (ADS)
Durduran, Turgut
Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility. In total, the research has pioneered the development of diffuse optical measurements of blood flow, oxygenation and oxygen metabolism in a large range of research and clinical applications.
Nonlinear diffusion and viral spread through the leaf of a plant
NASA Astrophysics Data System (ADS)
Edwards, Maureen P.; Waterhouse, Peter M.; Munoz-Lopez, María Jesús; Anderssen, Robert S.
2016-10-01
The spread of a virus through the leaf of a plant is both spatially and temporally causal in that the present status depends on the past and the spatial spread is compactly supported and progresses outwards. Such spatial spread is known to occur for certain nonlinear diffusion processes. The first compactly supported solution for nonlinear diffusion equations appears to be that of Pattle published in 1959. In that paper, no explanation is given as to how the solution was derived. Here, we show how the solution can be derived using Lie symmetry analysis. This lays a foundation for exploring the behavior of other choices for nonlinear diffusion and exploring the addition of reaction terms which do not eliminate the compactly supported structure. The implications associated with using the reaction-diffusion equation to model the spatial-temporal spread of a virus through the leaf of a plant are discussed.
Postoperative recovery of hippocampal contralateral diffusivity in medial temporal lobe epilepsy.
Thivard, Lionel; Tanguy, Marie-Laure; Adam, Claude; Clémenceau, Stéphane; Dezamis, Edouard; Lehéricy, Stéphane; Dormont, Didier; Chiras, Jacques; Baulac, Michel; Dupont, Sophie
2007-03-01
To search for a recovery after surgery of mean diffusivity (MD) values in the contralateral nonsclerotic hippocampus of patients with medial temporal lobe epilepsy (MTLE) and hippocampal sclerosis (HS). Twenty-four MTLE patients (12 right-sided and 12 left-sided MTLE) and 36 healthy volunteers were investigated using diffusion tensor imaging. A region-of-interest approach was used to measure pre- and postoperative interictal hippocampal MD values in patients. Diffusion abnormalities in contralateral nonsclerotic hippocampus recovered after surgery (p<0.0001). A subgroup of 14 patients exhibited a clear increase in MD values whereas the remaining 10 patients were stable. No significant difference was found between the two subgroups for each of the electroclinical data studied including early postoperative outcome, all patients being either seizure free or with rare persistent auras. This finding suggests that diffusion abnormalities in contralateral hippocampus may represent a functional mechanism linked to the active epileptic process.
Qing, De-Kui; Mengüç, M Pinar; Payne, Fred A; Danao, Mary-Grace C
2003-06-01
Fluorescence correlation spectroscopy (FCS) is adapted for a new procedure to detect trace amounts of Escherichia coli in water. The present concept is based on convective diffusion rather than Brownian diffusion and employs confocal microscopy as in traditional FCS. With this system it is possible to detect concentrations as small as 1.5 x 10(5) E. coli per milliliter (2.5 x 10(-16) M). This concentration corresponds to an approximately 1.0-nM level of Rhodamine 6G dyes. A detailed analysis of the optical system is presented, and further improvements for the procedure are discussed.
Mechanistic insights of Li+ diffusion within doped LiFePO4 from Muon Spectroscopy.
Johnson, Ian D; Ashton, Thomas E; Blagovidova, Ekaterina; Smales, Glen J; Lübke, Mechthild; Baker, Peter J; Corr, Serena A; Darr, Jawwad A
2018-03-07
The Li + ion diffusion characteristics of V- and Nb-doped LiFePO 4 were examined with respect to undoped LiFePO 4 using muon spectroscopy (µSR) as a local probe. As little difference in diffusion coefficient between the pure and doped samples was observed, offering D Li values in the range 1.8-2.3 × 10 -10 cm 2 s -1 , this implied the improvement in electrochemical performance observed within doped LiFePO 4 was not a result of increased local Li + diffusion. This unexpected observation was made possible with the µSR technique, which can measure Li + self-diffusion within LiFePO 4 , and therefore negated the effect of the LiFePO 4 two-phase delithiation mechanism, which has previously prevented accurate Li + diffusion comparison between the doped and undoped materials. Therefore, the authors suggest that µSR is an excellent technique for analysing materials on a local scale to elucidate the effects of dopants on solid-state diffusion behaviour.
Hindered Diffusion in Polymeric Solutions Studied by Fluorescence Correlation Spectroscopy
Zustiak, Silviya P.; Nossal, Ralph; Sackett, Dan L.
2011-01-01
Diffusion of molecules in the crowded and charged interior of the cell has long been of interest for understanding cellular processes. Here, we introduce a model system of hindered diffusion that includes both crowding and binding. In particular, we obtained the diffusivity of the positively charged protein, ribonuclease A (RNase), in solutions of dextrans of various charges (binding) and concentrations (crowding), as well as combinations of both, in a buffer of physiological ionic strength. Using fluorescence correlation spectroscopy, we observed that the diffusivity of RNase was unaffected by the presence of positively charged or neutral dextrans in the dilute regime but was affected by crowding at higher polymer concentrations. Conversely, protein diffusivity was significantly reduced by negatively charged dextrans, even at 0.4 μM (0.02% w/v) dextran. The diffusivity of RNase decreased with increasing concentrations of negative dextran, and the amount of bound RNase increased until it reached a plateau of ∼80% bound RNase. High salt concentrations were used to establish the electrostatic nature of the binding. Binding of RNase to the negatively charged dextrans was further confirmed by ultrafiltration. PMID:21723836
Delgado-Mederos, Raquel; Gregori-Pla, Clara; Zirak, Peyman; Blanco, Igor; Dinia, Lavinia; Marín, Rebeca; Durduran, Turgut; Martí-Fàbregas, Joan
2018-01-01
In this pilot study, we have evaluated bedside diffuse optical monitoring combining diffuse correlation spectroscopy and near-infrared diffuse optical spectroscopy to assess the effect of thrombolysis with an intravenous recombinant tissue plasminogen activator (rtPA) on cerebral hemodynamics in an acute ischemic stroke. Frontal lobes of five patients with an acute middle cerebral artery occlusion were measured bilaterally during rtPA treatment. Both ipsilesional and contralesional hemispheres showed significant increases in cerebral blood flow, total hemoglobin concentration and oxy-hemoglobin concentration during the first 2.5 hours after rtPA bolus. The increases were faster and higher in the ipsilesional hemisphere. The results show that bedside optical monitoring can detect the effect of reperfusion therapy for ischemic stroke in real-time. PMID:29541519
Delgado-Mederos, Raquel; Gregori-Pla, Clara; Zirak, Peyman; Blanco, Igor; Dinia, Lavinia; Marín, Rebeca; Durduran, Turgut; Martí-Fàbregas, Joan
2018-03-01
In this pilot study, we have evaluated bedside diffuse optical monitoring combining diffuse correlation spectroscopy and near-infrared diffuse optical spectroscopy to assess the effect of thrombolysis with an intravenous recombinant tissue plasminogen activator (rtPA) on cerebral hemodynamics in an acute ischemic stroke. Frontal lobes of five patients with an acute middle cerebral artery occlusion were measured bilaterally during rtPA treatment. Both ipsilesional and contralesional hemispheres showed significant increases in cerebral blood flow, total hemoglobin concentration and oxy-hemoglobin concentration during the first 2.5 hours after rtPA bolus. The increases were faster and higher in the ipsilesional hemisphere. The results show that bedside optical monitoring can detect the effect of reperfusion therapy for ischemic stroke in real-time.
Estimation of soil profile properties using field and laboratory VNIR spectroscopy
USDA-ARS?s Scientific Manuscript database
Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...
Rapid temporal accumulation in spider fear: Evidence from hierarchical drift diffusion modelling.
Tipples, Jason
2015-12-01
Fear can distort sense of time--making time seem slow or even stand still. Here, I used hierarchical drift diffusion modeling (HDDM; Vandekerckhove, Tuerlinckx, & Lee, 2008, 2011; Wiecki, Sofer, & Frank, 2013) to test the idea that temporal accumulation speeds up during fear. Eighteen high fearful and 23 low fearful participants judged the duration of both feared stimuli (spiders) and nonfeared stimuli (birds) in a temporal bisection task. The drift diffusion modeling results support the main hypothesis. In high but not low fearful individuals, evidence accumulated more rapidly toward a long duration decision-drift rates were higher-for spiders compared with birds. This result and further insights into how fear affects time perception would not have been possible on the basis of analyses of choice proportion data alone. Further results were interpreted in the context of a recent 2-stage model of time perception (Balcı & Simen, 2014). The results highlight the usefulness of diffusion modeling to test process-based explanations of disordered cognition in emotional disorders. (c) 2015 APA, all rights reserved).
Laser inscription of pseudorandom structures for microphotonic diffuser applications.
Alqurashi, Tawfiq; Alhosani, Abdulla; Dauleh, Mahmoud; Yetisen, Ali K; Butt, Haider
2018-04-19
Optical diffusers provide a solution for a variety of applications requiring a Gaussian intensity distribution including imaging systems, biomedical optics, and aerospace. Advances in laser ablation processes have allowed the rapid production of efficient optical diffusers. Here, we demonstrate a novel technique to fabricate high-quality glass optical diffusers with cost-efficiency using a continuous CO2 laser. Surface relief pseudorandom microstructures were patterned on both sides of the glass substrates. A numerical simulation of the temperature distribution showed that the CO2 laser drills a 137 μm hole in the glass for every 2 ms of processing time. FFT simulation was utilized to design predictable optical diffusers. The pseudorandom microstructures were characterized by optical microscopy, Raman spectroscopy, and angle-resolved spectroscopy to assess their chemical properties, optical scattering, transmittance, and polarization response. Increasing laser exposure and the number of diffusing surfaces enhanced the diffusion and homogenized the incident light. The recorded speckle pattern showed high contrast with sharp bright spot free diffusion in the far field view range (250 mm). A model of glass surface peeling was also developed to prevent its occurrence during the fabrication process. The demonstrated method provides an economical approach in fabricating optical glass diffusers in a controlled and predictable manner. The produced optical diffusers have application in fibre optics, LED systems, and spotlights.
Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy.
Upadhyay, Jaymin; Hallock, Kevin; Erb, Kelley; Kim, Dae-Shik; Ronen, Itamar
2007-11-01
In diffusion tensor imaging (DTI) the anisotropic movement of water is exploited to characterize microstructure. One confounding issue of DTI is the presence of intra- and extracellular components contributing to the measured diffusivity. This causes an ambiguity in determining the underlying cause of diffusion properties, particularly the fractional anisotropy (FA). In this study an intracellular constituent, N-acetyl aspartate (NAA), was used to probe intracellular diffusion, while water molecules were used to probe the combined intra- and extracellular diffusion. NAA and water diffusion measurements were made in anterior and medial corpus callosum (CC) regions, which are referred to as R1 and R2, respectively. FA(NAA) was found to be greater than FA(Water) in both CC regions, thus indicating a higher degree of anisotropy within the intracellular space in comparison to the combined intra- and extracellular spaces. A decreasing trend in the FA of NAA and water was observed between R1 and R2, while the radial diffusivity (RD) for both molecules increased. The increase in RD(NAA) is particularly significant, thus explaining the more significant decrease in FA(NAA) between the two regions. It is suggested that diffusion tensor spectroscopy of NAA can potentially be used to further characterize microscopic anatomic organization in white matter. Copyright 2007 Wiley-Liss, Inc.
Valette, Julien; Giraudeau, Céline; Marchadour, Charlotte; Djemai, Boucif; Geffroy, Françoise; Ghaly, Mohamed Ahmed; Le Bihan, Denis; Hantraye, Philippe; Lebon, Vincent; Lethimonnier, Franck
2012-12-01
Diffusion-weighted spectroscopy is a unique tool for exploring the intracellular microenvironment in vivo. In living systems, diffusion may be anisotropic, when biological membranes exhibit particular orientation patterns. In this work, a volume selective diffusion-weighted sequence is proposed, allowing single-shot measurement of the trace of the diffusion tensor, which does not depend on tissue anisotropy. With this sequence, the minimal echo time is only three times the diffusion time. In addition, cross-terms between diffusion gradients and other gradients are cancelled out. An adiabatic version, similar to localization by adiabatic selective refocusing sequence, is then derived, providing partial immunity against cross-terms. Proof of concept is performed ex vivo on chicken skeletal muscle by varying tissue orientation and intra-voxel shim. In vivo performance of the sequence is finally illustrated in a U87 glioblastoma mouse model, allowing the measurement of the trace apparent diffusion coefficient for six metabolites, including J-modulated metabolites. Although measurement performed along three separate orthogonal directions would bring similar accuracy on trace apparent diffusion coefficient under ideal conditions, the method described here should be useful for probing intimate properties of the cells with minimal experimental bias. Copyright © 2012 Wiley Periodicals, Inc.
Diffusion tensor imaging of hemispheric asymmetries in the developing brain.
Wilde, Elisabeth A; McCauley, Stephen R; Chu, Zili; Hunter, Jill V; Bigler, Erin D; Yallampalli, Ragini; Wang, Zhiyue J; Hanten, Gerri; Li, Xiaoqi; Ramos, Marco A; Sabir, Sharjeel H; Vasquez, Ana C; Menefee, Deleene; Levin, Harvey S
2009-02-01
Diffusion tensor imaging (DTI) was performed in 39 right-handed children to examine structural hemispheric differences and the impact of age, socioeconomic status, and sex on these differences. Apparent diffusion coefficient (ADC) values were smaller in the left than in the right temporal, prefrontal, anterior internal capsular and the thalamic regions, and fractional anisotropy (FA) values were larger in the left than in the right internal capsule, thalamus, and cingulate. Significant region-by-sex interactions disclosed that the relation of DTI asymmetries to performance depended on sex including the relation of temporal lobes to reading comprehension and the relation of frontal lobes to solving applied mathematical problems.
Konugolu Venkata Sekar, Sanathana; Pagliazzi, Marco; Negredo, Eugènia; Martelli, Fabrizio; Farina, Andrea; Dalla Mora, Alberto; Lindner, Claus; Farzam, Parisa; Pérez-Álvarez, Núria; Puig, Jordi; Taroni, Paola; Pifferi, Antonio; Durduran, Turgut
2016-01-01
Non-invasive in vivo diffuse optical characterization of human bone opens a new possibility of diagnosing bone related pathologies. We present an in vivo characterization performed on seventeen healthy subjects at six different superficial bone locations: radius distal, radius proximal, ulna distal, ulna proximal, trochanter and calcaneus. A tailored diffuse optical protocol for high penetration depth combined with the rather superficial nature of considered tissues ensured the effective probing of the bone tissue. Measurements were performed using a broadband system for Time-Resolved Diffuse Optical Spectroscopy (TRS) to assess mean absorption and reduced scattering spectra in the 600-1200 nm range and Diffuse Correlation Spectroscopy (DCS) to monitor microvascular blood flow. Significant variations among tissue constituents were found between different locations; with radius distal rich of collagen, suggesting it as a prominent location for bone related measurements, and calcaneus bone having highest blood flow among the body locations being considered. By using TRS and DCS together, we are able to probe the perfusion and oxygen consumption of the tissue without any contrast agents. Therefore, we predict that these methods will be able to evaluate the impairment of the oxygen metabolism of the bone at the point-of-care.
Pagliazzi, Marco; Negredo, Eugènia; Martelli, Fabrizio; Farina, Andrea; Dalla Mora, Alberto; Lindner, Claus; Farzam, Parisa; Pérez-Álvarez, Núria; Puig, Jordi; Taroni, Paola; Pifferi, Antonio; Durduran, Turgut
2016-01-01
Non-invasive in vivo diffuse optical characterization of human bone opens a new possibility of diagnosing bone related pathologies. We present an in vivo characterization performed on seventeen healthy subjects at six different superficial bone locations: radius distal, radius proximal, ulna distal, ulna proximal, trochanter and calcaneus. A tailored diffuse optical protocol for high penetration depth combined with the rather superficial nature of considered tissues ensured the effective probing of the bone tissue. Measurements were performed using a broadband system for Time-Resolved Diffuse Optical Spectroscopy (TRS) to assess mean absorption and reduced scattering spectra in the 600–1200 nm range and Diffuse Correlation Spectroscopy (DCS) to monitor microvascular blood flow. Significant variations among tissue constituents were found between different locations; with radius distal rich of collagen, suggesting it as a prominent location for bone related measurements, and calcaneus bone having highest blood flow among the body locations being considered. By using TRS and DCS together, we are able to probe the perfusion and oxygen consumption of the tissue without any contrast agents. Therefore, we predict that these methods will be able to evaluate the impairment of the oxygen metabolism of the bone at the point-of-care. PMID:27997565
Locating the source of spreading in temporal networks
NASA Astrophysics Data System (ADS)
Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Yi, Dongyun
2017-02-01
The topological structure of many real networks changes with time. Thus, locating the sources of a temporal network is a creative and challenging problem, as the enormous size of many real networks makes it unfeasible to observe the state of all nodes. In this paper, we propose an algorithm to solve this problem, named the backward temporal diffusion process. The proposed algorithm calculates the shortest temporal distance to locate the transmission source. We assume that the spreading process can be modeled as a simple diffusion process and by consensus dynamics. To improve the location accuracy, we also adopt four strategies to select which nodes should be observed by ranking their importance in the temporal network. Our paper proposes a highly accurate method for locating the source in temporal networks and is, to the best of our knowledge, a frontier work in this field. Moreover, our framework has important significance for controlling the transmission of diseases or rumors and formulating immediate immunization strategies.
The Structural Plasticity of White Matter Networks Following Anterior Temporal Lobe Resection
ERIC Educational Resources Information Center
Yogarajah, Mahinda; Focke, Niels K.; Bonelli, Silvia B.; Thompson, Pamela; Vollmar, Christian; McEvoy, Andrew W.; Alexander, Daniel C.; Symms, Mark R.; Koepp, Matthias J.; Duncan, John S.
2010-01-01
Anterior temporal lobe resection is an effective treatment for refractory temporal lobe epilepsy. The structural consequences of such surgery in the white matter, and how these relate to language function after surgery remain unknown. We carried out a longitudinal study with diffusion tensor imaging in 26 left and 20 right temporal lobe epilepsy…
Fractal diffusion in high temperature polymer electrolyte fuel cell membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopfenmuller, Bernhard; Zorn, Reiner; Holderer, Olaf
In this paper, the performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity,more » two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension d w and the Hausdorff dimension d f have been determined on the length scales covered in the neutron scattering experiments.« less
Fractal diffusion in high temperature polymer electrolyte fuel cell membranes
Hopfenmuller, Bernhard; Zorn, Reiner; Holderer, Olaf; ...
2018-05-29
In this paper, the performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution. Time of flight spectroscopy and backscattering spectroscopy have been combined to cover a broad dynamic range. In order to selectively observe the diffusion of protons potentially contributing to the ion conductivity,more » two samples were prepared, where in one of the samples the phosphoric acid was used with hydrogen replaced by deuterium. The scattering data from the two samples were subtracted in a suitable way after measurement. Thereby subdiffusive behavior of the proton diffusion has been observed and interpreted in terms of a model of fractal diffusion. For this purpose, a scattering function for fractal diffusion has been developed. The fractal diffusion dimension d w and the Hausdorff dimension d f have been determined on the length scales covered in the neutron scattering experiments.« less
Diffusion studies with synchrotron Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Jackson, J. M.
2011-12-01
Knowledge of diffusion properties is critical for understanding many physical and chemical processes in planetary interiors. For example, diffusion behavior provides constraints on chemical exchange and viscosity. Nuclear resonances open the window for observing diffusion properties under the extreme conditions that exist deep inside the Earth. Synchrotron Mössbauer spectroscopy (viz. nuclear forward scattering) makes use of synchrotron radiation coherently scattered in the forward direction after nuclear resonant excitation. The decay of the forward-scattered radiation is faster when atoms move on the time scale of the excited-state lifetime because of a loss of coherence. Such diffusion-activated processes lead to accelerated decay and line broadening in the measured signal. In the case of the Mössbauer active isotope 57Fe, the nuclear resonance at 14.4 keV has a natural lifetime of 141 ns. Therefore, one can observe diffusion events ranging from approximately one-sixth to 100 times the natural lifetime of 57Fe, which corresponds to diffusion coefficients of 10-16 and 10-13 m2/s, respectively and a two to three order of magnitude range of suitability. In this contribution, we will describe such measurements that access the microscopic details of the diffusion process for iron-bearing phases.
NASA Astrophysics Data System (ADS)
Sigaut, Lorena; Villarruel, Cecilia; Ponce, María Laura; Ponce Dawson, Silvina
2017-06-01
Many cell signaling pathways involve the diffusion of messengers that bind and unbind to and from intracellular components. Quantifying their net transport rate under different conditions then requires having separate estimates of their free diffusion coefficient and binding or unbinding rates. In this paper, we show how performing sets of fluorescence correlation spectroscopy (FCS) experiments under different conditions, it is possible to quantify free diffusion coefficients and on and off rates of reaction-diffusion systems. We develop the theory and present a practical implementation for the case of the universal second messenger, calcium (Ca2 +) and single-wavelength dyes that increase their fluorescence upon Ca2 + binding. We validate the approach with experiments performed in aqueous solutions containing Ca2 + and Fluo4 dextran (both in its high and low affinity versions). Performing FCS experiments with tetramethylrhodamine-dextran in Xenopus laevis oocytes, we infer the corresponding free diffusion coefficients in the cytosol of these cells. Our approach can be extended to other physiologically relevant reaction-diffusion systems to quantify biophysical parameters that determine the dynamics of various variables of interest.
Application of Diffuse Reflectance FT-IR Spectroscopy for the Surface Study of Kevlar Fibers
NASA Astrophysics Data System (ADS)
Chatzi, E. G.; Ishida, H.; Koenig, J. L.
1985-12-01
The surfaces of Kevlar-49 aramid fibers, being used in high-performance composite materials, have been characterized by diffuse reflectance Fourier transform infrared (FT-IR) spectroscopy. Enhancement of the surface selectivity of the technique has been achieved using KBr overlayers. The water absorbed by both the skin and the core of the fibers has been characterized by using this technique and the accessibility of the fiber functional groups has been evaluated.
NASA Astrophysics Data System (ADS)
Arantes Camargo, Livia; Marques, José, Jr.
2015-04-01
The prediction of erodibility using indirect methods such as diffuse reflectance spectroscopy could facilitate the characterization of the spatial variability in large areas and optimize implementation of conservation practices. The aim of this study was to evaluate the prediction of interrill erodibility (Ki) and rill erodibility (Kr) by means of iron oxides content and soil color using multiple linear regression and diffuse reflectance spectroscopy (DRS) using regression analysis by least squares partial (PLSR). The soils were collected from three geomorphic surfaces and analyzed for chemical, physical and mineralogical properties, plus scanned in the spectral range from the visible and infrared. Maps of spatial distribution of Ki and Kr were built with the values calculated by the calibrated models that obtained the best accuracy using geostatistics. Interrill-rill erodibility presented negative correlation with iron extracted by dithionite-citrate-bicarbonate, hematite, and chroma, confirming the influence of iron oxides in soil structural stability. Hematite and hue were the attributes that most contributed in calibration models by multiple linear regression for the prediction of Ki (R2 = 0.55) and Kr (R2 = 0.53). The diffuse reflectance spectroscopy via PLSR allowed to predict Interrill-rill erodibility with high accuracy (R2adj = 0.76, 0.81 respectively and RPD> 2.0) in the range of the visible spectrum (380-800 nm) and the characterization of the spatial variability of these attributes by geostatistics.
Study of Oxygen Diffusion in Reduced LiNbO3 Crystals
NASA Astrophysics Data System (ADS)
Yatsenko, A. V.; Pritulenko, A. S.; Yagupov, S. V.; Sugak, D. Yu.; Sol'skii, I. M.
2018-03-01
Using the method of impedance spectroscopy and optical density measurements, the diffusion of oxygen in single crystals of lithium niobate of the congruent composition after the reductive thermochemical processing is studied. The parameters describing the diffusion of oxygen in the temperature range 493-693 K are established.
Fabila, Diego; de la Rosa, José Manuel; Stolik, Suren; Moreno, Edgard; Suárez-Álvarez, Karina; López-Navarrete, Giuliana; Guzmán, Carolina; Aguirre-García, Jesús; Acevedo-García, Christian; Kershenobich, David; Escobedo, Galileo
2012-12-01
A novel application of diffuse reflectance and fluorescence spectroscopy in the assessment of liver fibrosis is here reported. To induce different stages of liver fibrosis, a sufficient number of male Wistar rats were differentially exposed to chronic administration with carbon tetrachloride. Then, diffuse reflectance and fluorescence spectra were in vivo measured from the liver surface of each animal by a minimal invasive laparoscopic procedure. The liver fibrosis degree was conventionally determined by means of histological examination using the Mason's Trichrome stain, accompanied by hepatic expression of α-sma, and evaluation of the ALT/AST serum levels. The liver from rats exhibiting higher grades of fibrosis showed a significant increase in diffuse reflectance and fluorescence intensity when compared with control animals. At 365 nm, the diffuse reflectance spectrum exhibited an increase of 4 and 3-fold in mild and advanced fibrotic rats, respectively, when compared to the control group. Similarly, the fluorescence emission at 493 nm was 2-fold higher in fibrotic animals than in controls. By using fluorescence intensity, discrimination algorithms indicated 73% sensitivity and 94% specificity for recognition of hepatic fibrosis, while for diffuse reflectance, these values increased up to 85% and 100%, respectively. Taking into consideration there is a special need for developing new diagnostic approaches focused on detecting different stages of liver fibrosis with minimal invasiveness, these results suggest that diffuse reflectance and fluorescence spectroscopy could be worthy of further exploration in patients with liver disease. Copyright © 2012 Elsevier B.V. All rights reserved.
Treatment outcomes of temporal bone osteoradionecrosis.
Kammeijer, Quinten; van Spronsen, Erik; Mirck, Piet G B; Dreschler, Wouter A
2015-04-01
To investigate the clinical relevance of the classification systems used for temporal bone osteoradionecrosis (ORN) and to define a treatment protocol for temporal bone ORN. Retrospective case series. Amsterdam, department of otorhinolaryngology and head and neck surgery. Classification of temporal bone ORN was performed through use of clinical data and radiologic imaging. Outcomes of conservative and surgical treatment were investigated and compared for different grades of ORN. Of the 49 ears included in this study, 35 were primarily treated conservatively. At start of conservative treatment, 23 were classified as a localized and 8 as a diffuse form of ORN; 4 could not be classified. There was a significant difference in clinical outcome between the localized and diffuse forms of ORN (χ(2) = 5.862, P = .015), and mastoid air cell destruction on preoperative computed tomography scan was found to be a significant predictor for a negative outcome of conservative treatment (χ(2) = 4.34, P = .037). Fourteen ears with diffuse ORN were primarily treated surgically, and 11 were secondarily treated surgically following a period of conservative treatment. Twenty-two patients were treated with subtotal petrosectomy, of which 20 were cured. Three patients were treated with canal wall down mastoidectomy, and 2 had recurrence of disease. Ramsden's classification system is clinically relevant in predicting conservative treatment outcomes. Mastoid air cell destruction on computed tomography differentiates between the localized and diffuse forms of ORN. Given our results and experience with treating temporal bone ORN, we propose a treatment protocol. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
Baczewski, Andrew David; Vikram, Melapudi; Shanker, Balasubramaniam; ...
2010-08-27
Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as O(N s 2N t 2), where N s and N t are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The firstmore » scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as O(N sN tlog 2N t). Furthermore, several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here.« less
NASA Technical Reports Server (NTRS)
Snowden, Steven L.
2007-01-01
Solar wind charge exchange produces diffuse X-ray emission with a variable surface brightness comparable to that of the cosmic background. While the temporal variation of the charge exchange emission allows some separation of the components, there remains a great deal of uncertainty as to the zero level of both. Because the production mechanisms of the two components are considerably different, their spectra would provide critical diagnostics to the understanding of both. However, current X-ray observatories are very limited in both spectral resolution and sensitivity in the critical soft X-ray (less than 1.0 keV) energy range. Non-dispersive high-resolution spectrometers, such as the calorimeter proposed for the Spectrum Roentgen Gamma mission, will be extremely useful in distinguishing the cascade emission of charge exchange from the spectra of thermal bremsstrahlung cosmic plasmas.
The neuropsychological and neuroradiological correlates of slowly progressive visual agnosia.
Giovagnoli, Anna Rita; Aresi, Anna; Reati, Fabiola; Riva, Alice; Gobbo, Clara; Bizzi, Alberto
2009-04-01
The case of a 64-year-old woman affected by slowly progressive visual agnosia is reported aiming to describe specific cognitive-brain relationships. Longitudinal clinical and neuropsychological assessment, combined with magnetic resonance imaging (MRI), spectroscopy, and positron emission tomography (PET) were used. Sequential neuropsychological evaluations performed during a period of 9 years since disease onset showed the appearance of apperceptive and associative visual agnosia, alexia without agraphia, agraphia, finger agnosia, and prosopoagnosia, but excluded dementia. MRI showed moderate diffuse cortical atrophy, with predominant atrophy in the left posterior cortical areas (temporal, parietal, and lateral occipital cortical gyri). 18FDG-PET showed marked bilateral posterior cortical hypometabolism; proton magnetic resonance spectroscopic imaging disclosed severe focal N-acetyl-aspartate depletion in the left temporoparietal and lateral occipital cortical areas. In conclusion, selective metabolic alterations and neuronal loss in the left temporoparietooccipital cortex may determine progressive visual agnosia in the absence of dementia.
Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.
Lenne, Pierre-François; Wawrezinieck, Laure; Conchonaud, Fabien; Wurtz, Olivier; Boned, Annie; Guo, Xiao-Jun; Rigneault, Hervé; He, Hai-Tao; Marguet, Didier
2006-07-26
It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (Ø <120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane.
Proton MR spectroscopy in patients with acute temporal lobe seizures.
Castillo, M; Smith, J K; Kwock, L
2001-01-01
Decreases in N-acetyl aspartate (NAA) as seen by proton MR spectroscopy are found in hippocampal sclerosis, and elevated levels of lipids/lactate have been observed after electroconvulsive therapy. Our purpose was to determine whether increased levels of lipids/lactate are found in patients with acute seizures of hippocampal origin. Seventeen patients with known temporal lobe epilepsy underwent proton MR spectroscopy of the mesial temporal lobes within 24 hours of their last seizure. Four of them were restudied when they were seizure-free. Five healthy individuals were used as control subjects. All MR spectroscopy studies were obtained using a single-voxel technique with TEs of 135 and 270. The relationship between the presence of lipids/lactate and seizures was tested using Fisher's exact test. Mean and standard deviations for NAA/creatine (Cr) were obtained in the hippocampi in patients with seizures on initial and follow-up studies and these values were compared with those in the control subjects. Seizure lateralization was obtained in 15 patients. Of the 17 seizure locations that involved hippocampi, 16 showed lipids/lactate by proton MR spectroscopy. Of the 13 hippocampi not directly affected by seizures, 10 showed no lipids/lactate and three showed lipids/lactate. The relationship between lipids/lactate and seizure location was confirmed. A comparison of NAA/Cr ratios for the involved hippocampi with those in control subjects showed significant differences on initial MR spectroscopy; however, no significant difference was found between acute and follow-up NAA/Cr ratios in hippocampi affected by seizures. Lipids/lactate were present in the hippocampi of patients with acute seizures and decreased when the patients were seizure-free. Thus, lipids/lactate may be a sensitive marker for acute temporal lobe seizures.
Soft tissue differentiation by diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Zam, Azhar; Stelzle, Florian; Nkenke, Emeka; Tangermann-Gerk, Katja; Schmidt, Michael; Adler, Werner; Douplik, Alexandre
2009-07-01
Laser surgery gives the possibility to work remotely which leads to high precision, little trauma and high level sterility. However these advantages are coming with the lack of haptic feedback during the laser ablation of tissue. Therefore additional means are required to control tissue-specific ablation during laser surgery supporting the surgeon regardless of experience and skills. Diffuse Reflectance Spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from four various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the four tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerve as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating soft tissues as guidance for tissue-specific laser surgery by means of the diffuse reflectance.
Room-temperature ultrafast nonlinear spectroscopy of a single molecule
NASA Astrophysics Data System (ADS)
Liebel, Matz; Toninelli, Costanza; van Hulst, Niek F.
2018-01-01
Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system's ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach.
NASA Astrophysics Data System (ADS)
Ioussoufovitch, Seva; Morrison, Laura B.; Lee, Ting-Yim; St. Lawrence, Keith; Diop, Mamadou
2015-03-01
Rheumatoid arthritis (RA) is characterized by chronic synovial inflammation, which can cause progressive joint damage and disability. Diffuse optical spectroscopy (DOS) and imaging have the potential to become potent monitoring tools for RA. We devised a method that combined time-resolved DOS and tracer kinetics modeling to rapidly and reliably quantify blood flow in the joint. Preliminary results obtained from two animals show that the technique can detect joint inflammation as early as 5 days after onset.
NASA Astrophysics Data System (ADS)
Kaniyappan, Udayakumar; Gnanatheepam, Einstein; Aruna, Prakasarao; Dornadula, Koteeswaran; Ganesan, Singaravelu
2017-02-01
Cancer is one of the most common threat to human beings and it increases at an alarming level around the globe. In recent years, due to the advancements in opto-electronic technology, various optical spectroscopy techniques have emerged to assess the photophysicochemical and morphological conditions of normal and malignant tissues in micro as well as in macroscopic scale. In this regard, diffuse reflectance spectroscopy is considered to be the simplest, cost effective and rapid technique in diagnosis of cancerous tissues. In the present study, the hemoglobin concentration in normal and cancerous oral tissues was quantified and subsequent statistical analysis has been carried out to verify the diagnostic potentiality of the technique.
Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques
NASA Astrophysics Data System (ADS)
Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan
2018-04-01
DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syed, Aleem
Systematic spatial and temporal fluctuations are a fundamental part of any biological process. For example, lateral diffusion of membrane proteins is one of the key mechanisms in their cellular function. Lateral diffusion governs how membrane proteins interact with intracellular, transmembrane, and extracellular components to achieve their function. Herein, fluorescence-based techniques are used to elucidate the dynamics of receptor for advanced glycation end-products (RAGE) and integrin membrane proteins. RAGE is a transmembrane protein that is being used as a biomarker for various diseases. RAGE dependent signaling in numerous pathological conditions is well studied. However, RAGE lateral diffusion in the cell membranemore » is poorly understood. For this purpose, effect of cholesterol, cytoskeleton dynamics, and presence of ligand on RAGE lateral diffusion is investigated.« less
Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong
2014-05-30
The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closedmore » solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.« less
Viscosity-dependent diffusion of fluorescent particles using fluorescence correlation spectroscopy.
Jung, Chanbae; Lee, Jaeran; Kang, Manil; Kim, Sok Won
2014-11-01
Fluorescent particles show the variety characteristics by the interaction with other particles and solvent. In order to investigate the relationship between the dynamic properties of fluorescent particles and solvent viscosity, particle diffusion in various solvents was evaluated using a fluorescence correlation spectroscopy. Upon analyzing the correlation functions of AF-647, Q-dot, and beads with different viscosity values, the diffusion time of all particles was observed to increase with increasing solvent viscosity, and the ratio of diffusion time to solvent viscosity, τ D /η, showed a linear dependence on particle size. The particle diffusion coefficients calculated from the diffusion time decreased with increasing solvent viscosity. Further, the hydrodynamic radii of AF-647, Q-dot, and beads were 0.98 ± 0.1 nm, 64.8 ± 3.23 nm, and 89.8 ± 4.91 nm, respectively, revealing a linear dependence on τ D /η, which suggests that the hydrodynamic radius of a particle strongly depends on both the physical size of the particle and solvent viscosity.
Heise, H M; Lampen, P; Stücker, M
2003-11-01
The supply of oxygen to the viable skin tissue within the upper layers is not only secured by the cutaneous blood vascular system, but to a significant part also by oxygen diffusion from the atmosphere through the horny layer. The aim of this study was to examine whether changes in haemoglobin oxygenation can be observed within the isolated perfused bovine udder skin used as a skin model by removing the upper horny layer by adhesive tape stripping. Diffuse reflectance spectroscopy in the visible spectral range was used for non-invasive characterisation of haemoglobin oxygenation in skin under in vitro conditions. Mid-infrared attenuated total reflectance spectroscopy was employed for analysing the surface layer of the stratum corneum with respect to keratin, water and lipid components. Skin barrier disruption was achieved by repeated stripping of superficial corneocyte layers by adhesive tape. Significant changes in skin haemoglobin oxygenation were observed for skin areas with reduced lipid concentration and a reduced stratum corneum layer, as determined from the quantitative evaluation of the diffuse reflectance skin spectra. The result can be interpreted as an increase of oxygen diffusion after the removal of the upper horny layer.
TaDb: A time-aware diffusion-based recommender algorithm
NASA Astrophysics Data System (ADS)
Li, Wen-Jun; Xu, Yuan-Yuan; Dong, Qiang; Zhou, Jun-Lin; Fu, Yan
2015-02-01
Traditional recommender algorithms usually employ the early and recent records indiscriminately, which overlooks the change of user interests over time. In this paper, we show that the interests of a user remain stable in a short-term interval and drift during a long-term period. Based on this observation, we propose a time-aware diffusion-based (TaDb) recommender algorithm, which assigns different temporal weights to the leading links existing before the target user's collection and the following links appearing after that in the diffusion process. Experiments on four real datasets, Netflix, MovieLens, FriendFeed and Delicious show that TaDb algorithm significantly improves the prediction accuracy compared with the algorithms not considering temporal effects.
Strong and Long Makes Short: Strong-Pump Strong-Probe Spectroscopy.
Gelin, Maxim F; Egorova, Dassia; Domcke, Wolfgang
2011-01-20
We propose a new time-domain spectroscopic technique that is based on strong pump and probe pulses. The strong-pump strong-probe (SPSP) technique provides temporal resolution that is not limited by the durations of the pump and probe pulses. By numerically exact simulations of SPSP signals for a multilevel vibronic model, we show that the SPSP signals exhibit electronic and vibrational beatings on time scales which are significantly shorter than the pulse durations. This suggests the possible application of SPSP spectroscopy for the real-time investigation of molecular processes that cannot be temporally resolved by pump-probe spectroscopy with weak pump and probe pulses.
Hetherington, Hoby P; Pan, Jullie W; Spencer, Dennis D
2002-10-01
Over the past decade, (1)H and (31)P spectroscopy measurements have demonstrated that significant metabolic alterations occur in temporal lobe epilepsy. However, to most accurately interpret these changes, metabolic heterogeneity and differences between gray and white matter must be accounted for. These alterations, decreased NAA and the ratio of phosphocreatine/inorganic phosphate, can be reversed with successful treatment of seizures. The reversibility of these two measures is consistent with the localization of NAA synthesis to neuronal mitochondria and the important role for bioenergetics in the pathophysiology of temporal lobe epilepsy. Copyright 2002 Wiley-Liss, Inc.
Arkhincheev, V E
2017-03-01
The new asymptotic behavior of the survival probability of particles in a medium with absorbing traps in an electric field has been established in two ways-by using the scaling approach and by the direct solution of the diffusion equation in the field. It has shown that at long times, this drift mechanism leads to a new temporal behavior of the survival probability of particles in a medium with absorbing traps.
NASA Astrophysics Data System (ADS)
Arkhincheev, V. E.
2017-03-01
The new asymptotic behavior of the survival probability of particles in a medium with absorbing traps in an electric field has been established in two ways—by using the scaling approach and by the direct solution of the diffusion equation in the field. It has shown that at long times, this drift mechanism leads to a new temporal behavior of the survival probability of particles in a medium with absorbing traps.
Wawrezinieck, Laure; Rigneault, Hervé; Marguet, Didier; Lenne, Pierre-François
2005-12-01
To probe the complexity of the cell membrane organization and dynamics, it is important to obtain simple physical observables from experiments on live cells. Here we show that fluorescence correlation spectroscopy (FCS) measurements at different spatial scales enable distinguishing between different submicron confinement models. By plotting the diffusion time versus the transverse area of the confocal volume, we introduce the so-called FCS diffusion law, which is the key concept throughout this article. First, we report experimental FCS diffusion laws for two membrane constituents, which are respectively a putative raft marker and a cytoskeleton-hindered transmembrane protein. We find that these two constituents exhibit very distinct behaviors. To understand these results, we propose different models, which account for the diffusion of molecules either in a membrane comprising isolated microdomains or in a meshwork. By simulating FCS experiments for these two types of organization, we obtain FCS diffusion laws in agreement with our experimental observations. We also demonstrate that simple observables derived from these FCS diffusion laws are strongly related to confinement parameters such as the partition of molecules in microdomains and the average confinement time of molecules in a microdomain or a single mesh of a meshwork.
NASA Astrophysics Data System (ADS)
Song, Lipei; Wang, Xueyan; Zhang, Ru; Zhang, Kuanshou; Zhou, Zhen; Elson, Daniel S.
2018-07-01
The fluctuation of contrast caused by statistical noise degenerates the temporal/spatial resolution of laser speckle contrast imaging (LSCI) and limits the maximum speed when imaging. In this study, we investigated the application of the anisotropic diffusion filter (ADF) to temporal LSCI and found that the edge magnitude parameter of the ADF can be determined by the mean of the contrast image. Because the edge magnitude parameter is usually denoted as K, we term this the K-constant ADF (KC-ADF) and show that temporal sensitivity is improved when imaging because of the enhanced signal-to-noise ratio when using the KC-ADF in small-animal experiments. The cardiac cycle of a rat as high as 390 bpm can be imaged with an industrial camera.
Guisado, D I; Singh, R; Minkowitz, S; Zhou, Z; Haque, S; Peck, K K; Young, R J; Tsiouris, A J; Souweidane, M M; Thakur, S B
2016-07-01
Diffuse intrinsic pontine gliomas are inoperable high-grade gliomas with a median survival of less than 1 year. Convection-enhanced delivery is a promising local drug-delivery technique that can bypass the BBB in diffuse intrinsic pontine glioma treatment. Evaluating tumor response is critical in the assessment of convection-enhanced delivery of treatment. We proposed to determine the potential of 3D multivoxel (1)H-MR spectroscopy to evaluate convection-enhanced delivery treatment effect in these tumors. We prospectively analyzed 3D multivoxel (1)H-MR spectroscopy data for 6 patients with nonprogressive diffuse intrinsic pontine gliomas who received convection-enhanced delivery treatment of a therapeutic antibody (Phase I clinical trial NCT01502917). To compare changes in the metabolite ratios with time, we tracked the metabolite ratios Cho/Cr and Cho/NAA at several ROIs: normal white matter, tumor within the convection-enhanced delivery infusion site, tumor outside of the infused area, and the tumor average. There was a comparative decrease in both Cho/Cr and Cho/NAA metabolite ratios at the tumor convection-enhanced delivery site versus tumor outside the infused area. We used MR spectroscopy voxels with dominant white matter as a reference. The difference between changes in metabolite ratios became more prominent with increasing time after convection-enhanced delivery treatment. The comparative change in metabolite ratios between the convection-enhanced delivery site and the tumor site outside the infused area suggests that multivoxel (1)H-MR spectroscopy, in combination with other imaging modalities, may provide a clinical tool to accurately evaluate local tumor response after convection-enhanced delivery treatment. © 2016 by American Journal of Neuroradiology.
Apyari, V V; Dmitrienko, S G; Ostrovskaya, V M; Anaev, E K; Zolotov, Y A
2008-07-01
Polyurethane foam (PUF) has been suggested as a solid polymeric reagent for determination of nitrite. The determination is based on the diazotization of end toluidine groups of PUF with nitrite in acidic medium followed by coupling of polymeric diazonium cation with 3-hydroxy-7,8-benzo-1,2,3,4-tetrahydroquinoline. The intensely colored polymeric azodye formed in this reaction can be used as a convenient analytic form for the determination of nitrite by diffuse reflectance spectroscopy (c (min) = 0.7 ng mL(-1)). The possibility of using a desktop scanner, digital camera, and computer data processing for the numerical evaluation of the color intensity of the polymeric azodye has been investigated. A scanner and digital camera can be used for determination of nitrite with the same sensitivity and reproducibility as with diffuse reflectance spectroscopy. The approach developed was applied for determination of nitrite in river water and human exhaled breath condensate.
NASA Astrophysics Data System (ADS)
Fabila, D. A.; Hernández, L. F.; de la Rosa, J.; Stolik, S.; Arroyo-Camarena, U. D.; López-Vancell, M. D.; Escobedo, G.
2013-11-01
Liver fibrosis is the decisive step towards the development of cirrhosis; its early detection affects crucially the diagnosis of liver disease, its prognosis and therapeutic decision making. Nowadays, several techniques are employed to this task. However, they have the limitation in estimating different stages of the pathology. In this paper we present a preliminary study to evaluate if optical spectroscopy can be employed as an auxiliary tool of diagnosis of biopsies of human liver tissue to differentiate the fibrosis stages. Ex vivo fluorescence and diffuse reflectance spectra were acquired from biopsies using a portable fiber-optic system. Empirical discrimination algorithms based on fluorescence intensity ratio at 500 nm and 680 nm as well as diffuse reflectance intensity at 650 nm were developed. Sensitivity and specificity of around 80% and 85% were respectively achieved. The obtained results show that combined use of fluorescence and diffuse reflectance spectroscopy could represent a novel and useful tool in the early evaluation of liver fibrosis.
Review of optical breast imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola
2016-09-01
Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.
Ghosh, Dwaipayan; Febriansyah, Benny; Gupta, Disha; Ng, Leonard Kia-Sheun; Xi, Shibo; Du, Yonghua; Baikie, Tom; Dong, ZhiLi; Soo, Han Sen
2018-05-22
Catalyst deactivation is a persistent problem not only for the scientific community but also in industry. Isolated single-site heterogeneous catalysts have shown great promise to overcome these problems. Here, a versatile anchoring strategy for molecular complex immobilization on a broad range of semiconducting or insulating metal oxide ( e. g., titanium dioxide, mesoporous silica, cerium oxide, and tungsten oxide) nanoparticles to synthesize isolated single-site catalysts has been studied systematically. An oxidatively stable anchoring group, maleimide, is shown to form covalent linkages with surface hydroxyl functionalities of metal oxide nanoparticles by photoclick chemistry. The nanocomposites have been thoroughly characterized by techniques including UV-visible diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and X-ray absorption spectroscopy (XAS). The IR spectroscopic studies confirm the covalent linkages between the maleimide group and surface hydroxyl functionalities of the oxide nanoparticles. The hybrid nanomaterials function as highly efficient catalysts for essentially quantitative oxidations of terminal and internal alkenes and show molecular catalyst product selectivities even in more eco-friendly solvents. XAS studies verify the robustness of the catalysts after several catalytic cycles. We have applied the photoclick anchoring methodology to precisely control the deposition of a luminescent variant of our catalyst on the metal oxide nanoparticles. Overall, we demonstrate a general approach to use irradiation to anchor molecular complexes on oxide nanoparticles to create recyclable, hybrid, single-site catalysts that function with high selectivity in a broad range of solvents. We have achieved a facile, spatially and temporally controllable photoclick method that can potentially be extended to other ligands, catalysts, functional molecules, and surfaces.
Solvent and solute ingress into hydrogels resolved by a combination of imaging techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, D.; Burbach, J.; Egelhaaf, S. U.
2016-05-28
Using simultaneous neutron, fluorescence, and optical brightfield transmission imaging, the diffusion of solvent, fluorescent dyes, and macromolecules into a crosslinked polyacrylamide hydrogel was investigated. This novel combination of different imaging techniques enables us to distinguish the movements of the solvent and fluorescent molecules. Additionally, the swelling or deswelling of the hydrogels can be monitored. From the sequence of images, dye and solvent concentrations were extracted spatially and temporally resolved. Diffusion equations and different boundary conditions, represented by different models, were used to quantitatively analyze the temporal evolution of these concentration profiles and to determine the diffusion coefficients of solvent andmore » solutes. Solute size and network properties were varied and their effect was investigated. Increasing the crosslinking ratio or partially drying the hydrogel was found to hinder solute diffusion due to the reduced pore size. By contrast, solvent diffusion seemed to be slightly faster if the hydrogel was only partially swollen and hence solvent uptake enhanced.« less
Nonequilibrium free diffusion in seed leachate
NASA Astrophysics Data System (ADS)
Ortiz G., Luis; Riquelme P., Pablo; Guzmán, R.
2013-11-01
In this work, we use a Schlieren-like Near Field Scattering (SNFS) setup to study nonequilibrium free diffusion behavior of a colloidal solution obtained from seeds leachate. The main objective is to compare the temporal behavior of the diffusion coefficient of seed leachate with an electric conductivity based vigor test. SNFS sizing measurements, based on Mie theory, were carried out to ensure its reliability and sensitivity. Then, we performed a typical nonequilibrium free diffusion experiment of a glycerol-water mixture. In this way, we confirmed that SNFS setup is sensitive to giant concentration fluctuations of nanocolloidal solutions. The results obtained in this stage reproduce properly the data reported elsewhere in literature. Moreover, seed leachate diffuse, in water, in a similar way that glycerol does. In both cases we used the same method (dynamic structure factor) to determine thermo-physical properties. We show that time evolution of diffusion coefficient of Lupinus Albus leachate exhibits three defined regimes as electric conductivity measurements. The results also exhibit a correspondence between the behavior of the diffusion coefficient and electric conductivity values of the two regions in the temporal range studied. Finally, we discuss biological processes involved in germination that could modulate this dependence, and the role played by the electrolytic nature of solutes.
Jeefoo, Phaisarn; Tripathi, Nitin Kumar; Souris, Marc
2011-01-01
In recent years, dengue has become a major international public health concern. In Thailand it is also an important concern as several dengue outbreaks were reported in last decade. This paper presents a GIS approach to analyze the spatial and temporal dynamics of dengue epidemics. The major objective of this study was to examine spatial diffusion patterns and hotspot identification for reported dengue cases. Geospatial diffusion pattern of the 2007 dengue outbreak was investigated. Map of daily cases was generated for the 153 days of the outbreak. Epidemiological data from Chachoengsao province, Thailand (reported dengue cases for the years 1999-2007) was used for this study. To analyze the dynamic space-time pattern of dengue outbreaks, all cases were positioned in space at a village level. After a general statistical analysis (by gender and age group), data was subsequently analyzed for temporal patterns and correlation with climatic data (especially rainfall), spatial patterns and cluster analysis, and spatio-temporal patterns of hotspots during epidemics. The results revealed spatial diffusion patterns during the years 1999-2007 representing spatially clustered patterns with significant differences by village. Villages on the urban fringe reported higher incidences. The space and time of the cases showed outbreak movement and spread patterns that could be related to entomologic and epidemiologic factors. The hotspots showed the spatial trend of dengue diffusion. This study presents useful information related to the dengue outbreak patterns in space and time and may help public health departments to plan strategies to control the spread of disease. The methodology is general for space-time analysis and can be applied for other infectious diseases as well.
Tyagi, Priyanka; Tuli, Suneet; Srivastava, Ritu
2015-02-07
In this work, we have studied the fluorescence quenching and solid state diffusion of 2, 3, 5, 6-tetrafluoro-7, 7', 8, 8'-tetracyano quinodimethane (F4-TCNQ) using photoluminescence (PL) spectroscopy. Quenching studies were performed with tris (8-hydroxyquinolinato) aluminum (Alq3) in solid state samples. Thickness of F4-TCNQ was varied in order to realize different concentrations and study the effect of concentration. PL intensity has reduced with the increase in F4-TCNQ thicknesses. Stern-Volmer and bimolecular quenching constants were evaluated to be 13.8 M(-1) and 8.7 × 10(8) M(-1) s(-1), respectively. The quenching mechanism was found to be of static type, which was inferred by the independent nature of excited state life time from the F4-TCNQ thickness. Further, solid state diffusion of F4-TCNQ was studied by placing a spacing layer of α-NPD between F4-TCNQ and Alq3, and its thickness was varied to probe the diffusion length. PL intensity was found to increase with the increase in this thickness. Quenching efficiency was evaluated as a function of distance between F4-TCNQ and Alq3. These studies were performed for the samples having 1, 2.5, and 5.5 nm thicknesses of F4-TCNQ to study the thickness dependence of diffusion length. Diffusion lengths were evaluated to be 12.5, 15, and 20 nm for 1, 2.5, and 5.5 nm thicknesses of F4-TCNQ. These diffusion lengths were found to be very close to that of determined by secondary ion mass spectroscopy technique.
Cooper, Justin T; Harris, Joel M
2014-08-05
The development of techniques to probe interfacial molecular transport is important for understanding and optimizing surface-based analytical methods including surface-enhanced spectroscopies, biological assays, and chemical separations. Single-molecule-fluorescence imaging and tracking has been used to measure lateral diffusion rates of fluorescent molecules at surfaces, but the technique is limited to the study of slower diffusion, where molecules must remain relatively stationary during acquisition of an image in order to build up sufficient intensity in a spot to detect and localize the molecule. Although faster time resolution can be achieved by fluorescence-correlation spectroscopy (FCS), where intensity fluctuations in a small spot are related to the motions of molecules on the surface, long-lived adsorption events arising from surface inhomogeneity can overwhelm the correlation measurement and mask the surface diffusion of the moving population. Here, we exploit a combination of these two techniques, imaging-FCS, for measurement of fast interfacial transport at a model chromatographic surface. This is accomplished by rapid imaging of the surface using an electron-multiplied-charged-coupled-device (CCD) camera, while limiting the acquisition to a small area on the camera to allow fast framing rates. The total intensity from the sampled region is autocorrelated to determine surface diffusion rates of molecules with millisecond time resolution. The technique allows electronic control over the acquisition region, which can be used to avoid strong adsorption sites and thus minimize their contribution to the measured autocorrelation decay and to vary the acquisition area to resolve surface diffusion from adsorption and desorption kinetics. As proof of concept, imaging-FCS was used to measure surface diffusion rates, interfacial populations, and adsorption-desorption rates of 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine (DiI) on planar C18- and C1-modified surfaces.
NASA Astrophysics Data System (ADS)
Dong, Shiqing; You, Minghai; Chen, Jianling; Zhou, Jie; Xie, Shusen; Yang, Hongqin
2017-06-01
The fluidity of proteins and lipids on cell membrane plays an important role in cell’s physiological functions. Fluorescence correlation spectroscopy (FCS) is an effective technique to detect the rapid dynamic behaviors of proteins and/or lipids in living cells. In this study, we used the rhodamine6G solution to optimize the FCS system. And, cholera toxin B subunit (CT-B) was used to label ganglioside on living Hela cell membranes. The diffusion time and coefficients of ganglioside can be obtained through fitting the autocorrelation curve based on the model of two-dimensional cell membrane. The results showed that the diffusion coefficients of ganglioside distributed within a wide range. It revealed the lateral diffusion of lipids on cell membrane was inhomogeneous, which was due to different microstructures of cytoplasmic membrane. The study provides a helpful method for further studying the dynamic characteristics of proteins and lipids molecules on living cell membrane.
Filgueras, Rénata; Peyrin, Frédéric; Vénien, Annie; Hénot, Jean Marc; Astruc, Thierry
2016-01-27
To better understand the relationship between the muscle structure and NaCl transfers in meat, we used energy-dispersive X-ray spectroscopy (EDS) coupled with scanning electron microscopy (SEM) to analyze brined and dry-salted rat muscles. The muscles were freeze-dried to avoid the delocalization of soluble ions that happens in regular dehydration through a graded series of ethanol. Na and Cl maps were superimposed on SEM images to combine the muscle structure and NaCl diffusion. Brining causes rapid diffusion of NaCl through the tissue. Most brine diffuses in a linear front from the muscle surface, but a small proportion enters through the perimysium network. The muscle area penetrated by brine shows heterogeneous patterns of NaCl retention, with some connective tissue islets containing more NaCl than other parts of perimysium. NaCl penetration is considerably slower after dry salting than after brining.
Bonhommeau, David A; Perret, Alexandre; Nuzillard, Jean-Marc; Cilindre, Clara; Cours, Thibaud; Alijah, Alexander; Liger-Belair, Gérard
2014-12-18
The diffusion coefficients of carbon dioxide (CO2) and ethanol (EtOH) in carbonated hydroalcoholic solutions and Champagne wines are evaluated as a function of temperature by classical molecular dynamics (MD) simulations and (13)C NMR spectroscopy measurements. The excellent agreement between theoretical and experimental diffusion coefficients suggest that ethanol is the main molecule, apart from water, responsible for the value of the CO2 diffusion coefficients in typical Champagne wines, a result that could likely be extended to most sparkling wines with alike ethanol concentrations. CO2 and EtOH hydrodynamical radii deduced from viscometry measurements by applying the Stokes-Einstein relationship are found to be mostly constant and in close agreement with MD predictions. The reliability of our approach should be of interest to physical chemists aiming to model transport phenomena in supersaturated aqueous solutions or water/alcohol mixtures.
A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics
Clausen, Mathias P.; Sezgin, Erdinc; Bernardino de la Serna, Jorge; Waithe, Dominic; Lagerholm, B. Christoffer; Eggeling, Christian
2015-01-01
Recent years have seen the development of multiple technologies to investigate, with great spatial and temporal resolution, the dynamics of lipids in cellular and model membranes. One of these approaches is the combination of far-field super-resolution stimulated-emission-depletion (STED) microscopy with fluorescence correlation spectroscopy (FCS). STED-FCS combines the diffraction-unlimited spatial resolution of STED microscopy with the statistical accuracy of FCS to determine sub-millisecond-fast molecular dynamics with single-molecule sensitivity. A unique advantage of STED-FCS is that the observation spot for the FCS data recordings can be tuned to sub-diffraction scales, i.e. <200 nm in diameter, in a gradual manner to investigate fast diffusion of membrane-incorporated labelled entities. Unfortunately, so far the STED-FCS technology has mostly been applied on a few custom-built setups optimised for far-red fluorescent emitters. Here, we summarise the basics of the STED-FCS technology and highlight how it can give novel details into molecular diffusion modes. Most importantly, we present a straightforward way for performing STED-FCS measurements on an unmodified turnkey commercial system using a time-gated detection scheme. Further, we have evaluated the STED-FCS performance of different commonly used green emitting fluorescent dyes applying freely available, custom-written analysis software. PMID:26123184
NASA Astrophysics Data System (ADS)
Liu, Y.; Starostin, S. A.; Peeters, F. J. J.; van de Sanden, M. C. M.; de Vries, H. W.
2018-03-01
Atmospheric-pressure diffuse dielectric barrier discharges (DBDs) were obtained in Ar/O2 gas mixture using dual-frequency (DF) excitation at 200 kHz low frequency (LF) and 13.56 MHz radio frequency (RF). The excitation dynamics and the plasma generation mechanism were studied by means of electrical characterization and phase resolved optical emission spectroscopy (PROES). The DF excitation results in a time-varying electric field which is determined by the total LF and RF gas voltage and the spatial ion distribution which only responds to the LF component. By tuning the amplitude ratio of the superimposed LF and RF signals, the effect of each frequency component on the DF discharge mechanism was analysed. The LF excitation results in a transient plasma with the formation of an electrode sheath and therefore a pronounced excitation near the substrate. The RF oscillation allows the electron trapping in the gas gap and helps to improve the plasma uniformity by contributing to the pre-ionization and by controlling the discharge development. The possibility of temporally modifying the electric field and thus the plasma generation mechanism in the DF discharge exhibits potential applications in plasma-assisted surface processing and plasma-assisted gas phase chemical conversion.
Goodhew, Stephanie C; Shen, Elizabeth; Edwards, Mark
2016-08-01
An important but often neglected aspect of attention is how changes in the attentional spotlight size impact perception. The zoom-lens model predicts that a small ("focal") attentional spotlight enhances all aspects of perception relative to a larger ("diffuse" spotlight). However, based on the physiological properties of the two major classes of visual cells (magnocellular and parvocellular neurons) we predicted trade-offs in spatial and temporal acuity as a function of spotlight size. Contrary to both of these accounts, however, across two experiments we found that attentional spotlight size affected spatial acuity, such that spatial acuity was enhanced for a focal relative to a diffuse spotlight, whereas the same modulations in spotlight size had no impact on temporal acuity. This likely reflects the function of attention: to induce the high spatial resolution of the fovea in periphery, where spatial resolution is poor but temporal resolution is good. It is adaptive, therefore, for the attentional spotlight to enhance spatial acuity, whereas enhancing temporal acuity does not confer the same benefit.
Monitoring and Manipulating Motions of Single Molecules/Nanoparticles
NASA Astrophysics Data System (ADS)
Chen, Fang
This dissertation has two main research components: 1. the study of mass transport in confined environments; 2. the effort toward driving a molecular car on a solid surface. Understanding mass transport processes, e.g., diffusion, migration, and adsorption/desorption in confined space is important not only to fundamental sciences but also to advanced applications. So far, they are poorly understood because of technical challenges: insufficient spatial and/or temporal resolutions. In this dissertation, we made efforts toward understanding molecular/particular dynamics in confined space by combining a recently developed super resolution technique, stimulated depletion emission microscopy (STED), with the high temporal resolution technique, fluorescence correlation spectroscopy (FCS). We first explored the feasibility of using conventional FCS to study diffusion in a model confined space: cylindrical pores. Since there is no analytical solution to solve the autocorrelation function (ACF) in confined space, we simulated single particle diffusion in hundred-nanometer pores using Monte Carlo simulation. We found that confined 2D diffusion and unconfined 1D diffusion dynamics are separated in both intensity traces and autocorrelation functions, which gives a new opportunity to extract the axial diffusion coefficient in cylindrical pores. We then experimentally studied 45 nm particles diffusing in 300 nm alumina pores. The acquired axial diffusion coefficient is consistent with the expected value. Conventional confocal FCS is insufficient to resolve lateral diffusion in confined space because of the diffraction limit in spatial resolution. To pave the way of using STED microscopy to study the anisotropic diffusion in confined space, we theoretically investigated STED-FCS in cylindrical pores. It showed that by reducing the spatial resolution from 250 nm to 50 nm in STED microscopy, we would be able to determine both lateral and axial diffusion coefficients in hundred-nanometer pores in theory. We then experimentally studied nanoparticles diffusing on membrane filters containing 200 nm polyethyleneglycol- or C18-modified pores. Using STED microscopy, we resolved for the first time how small particles are retained by the pores. Trapping by the pore entrances rather than adsorption is responsible for the retention. Further studies on C18-modified pores showed consistency in Gibbs free energy about the retention process. In addition, in order to understand how nanoparticles interact with the surface when they are forced to be on, or very close to, the surface, we studied nanosecond rotation dynamics of gold nanorods with one end attached on the surface. We found that the nanorod motion is dominated by van der Waals interaction-induced immobilization rather Brownian rotational diffusion as previously thought. The actual rotation, during which the nanorod transits from one immobilized state to the other, slows down by 50 times. The second part of the research is the collaboration with Tour's group in Rice University. The ultimate goal is to use light to drive a motorized nanocar at ambient conditions. To fulfill this goal, we first studied the moving kinetics of adamantane-wheeled nanocars on hydroxylated and PEG-modified surfaces using single molecule fluorescence microscopy. We found that nanocars' diffusion slows down on solid surface over time, which is possibly caused by the increased hydrophobicity of the substrate surface due to the adsorbates from the air. A sticky-spots model was proposed to explain the observed slowing down. To find out whether a light-activatable motor works when it is incorporated into a nanocar, we carefully designed a series of molecules containing a regular motor, a slow motor, a nonunidirectional motor, and no motor. We found that a fast unidirectional rotating motor enhanced the diffusion of the molecule in solution upon UV-illumination. Detailed analysis suggested that the unimolecular submersible nanomachine (USN) will give 9-nm step upon each motor actuation. This is the first nanomachine that gives mechanical motion at small molecular scale.
Diffusion Entropy: A Potential Neuroimaging Biomarker of Bipolar Disorder in the Temporal Pole.
Spuhler, Karl; Bartlett, Elizabeth; Ding, Jie; DeLorenzo, Christine; Parsey, Ramin; Huang, Chuan
2018-02-01
Despite much research, bipolar depression remains poorly understood, with no clinically useful biomarkers for its diagnosis. The paralimbic system has become a target for biomarker research, with paralimbic structural connectivity commonly reported to distinguish bipolar patients from controls in tractography-based diffusion MRI studies, despite inconsistent findings in voxel-based studies. The purpose of this analysis was to validate existing findings with traditional diffusion MRI metrics and investigate the utility of a novel diffusion MRI metric, entropy of diffusion, in the search for bipolar depression biomarkers. We performed group-level analysis on 9 un-medicated (6 medication-naïve; 3 medication-free for at least 33 days) bipolar patients in a major depressive episode and 9 matched healthy controls to compare: (1) average mean diffusivity (MD) and fractional anisotropy (FA) and; (2) MD and FA histogram entropy-a statistical measure of distribution homogeneity-in the amygdala, hippocampus, orbitofrontal cortex and temporal pole. We also conducted classification analyses with leave-one-out and separate testing dataset (N = 11) approaches. We did not observe statistically significant differences in average MD or FA between the groups in any region. However, in the temporal pole, we observed significantly lower MD entropy in bipolar patients; this finding suggests a regional difference in MD distributions in the absence of an average difference. This metric allowed us to accurately characterize bipolar patients from controls in leave-one-out (accuracy = 83%) and prediction (accuracy = 73%) analyses. This novel application of diffusion MRI yielded not only an interesting separation between bipolar patients and healthy controls, but also accurately classified bipolar patients from controls. © 2017 Wiley Periodicals, Inc.
Anomalous transport in the crowded world of biological cells
NASA Astrophysics Data System (ADS)
Höfling, Felix; Franosch, Thomas
2013-04-01
A ubiquitous observation in cell biology is that the diffusive motion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarizing their densely packed and heterogeneous structures. The most familiar phenomenon is a sublinear, power-law increase of the mean-square displacement (MSD) as a function of the lag time, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations in time, non-Gaussian distributions of spatial displacements, heterogeneous diffusion and a fraction of immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarize some widely used theoretical models: Gaussian models like fractional Brownian motion and Langevin equations for visco-elastic media, the continuous-time random walk model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Particular emphasis is put on the spatio-temporal properties of the transport in terms of two-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even if the MSDs are identical. Then, we review the theory underlying commonly applied experimental techniques in the presence of anomalous transport like single-particle tracking, fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP). We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where a variety of model systems mimic physiological crowding conditions. Finally, computer simulations are discussed which play an important role in testing the theoretical models and corroborating the experimental findings. The review is completed by a synthesis of the theoretical and experimental progress identifying open questions for future investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschwanden, Markus J., E-mail: aschwanden@lmsal.com
2012-09-20
We explore the spatio-temporal evolution of solar flares by fitting a radial expansion model r(t) that consists of an exponentially growing acceleration phase, followed by a deceleration phase that is parameterized by the generalized diffusion function r(t){proportional_to}{kappa}(t - t{sub 1}){sup {beta}/2}, which includes the logistic growth limit ({beta} = 0), sub-diffusion ({beta} = 0-1), classical diffusion ({beta} = 1), super-diffusion ({beta} = 1-2), and the linear expansion limit ({beta} = 2). We analyze all M- and X-class flares observed with Geostationary Operational Environmental Satellite and Atmospheric Imaging Assembly/Solar Dynamics Observatory (SDO) during the first two years of the SDO mission,more » amounting to 155 events. We find that most flares operate in the sub-diffusive regime ({beta} = 0.53 {+-} 0.27), which we interpret in terms of anisotropic chain reactions of intermittent magnetic reconnection episodes in a low plasma-{beta} corona. We find a mean propagation speed of v = 15 {+-} 12 km s{sup -1}, with maximum speeds of v{sub max} = 80 {+-} 85 km s{sup -1} per flare, which is substantially slower than the sonic speeds expected for thermal diffusion of flare plasmas. The diffusive characteristics established here (for the first time for solar flares) is consistent with the fractal-diffusive self-organized criticality model, which predicted diffusive transport merely based on cellular automaton simulations.« less
Multiple Diffusion Mechanisms Due to Nanostructuring in Crowded Environments
Sanabria, Hugo; Kubota, Yoshihisa; Waxham, M. Neal
2007-01-01
One of the key questions regarding intracellular diffusion is how the environment affects molecular mobility. Mostly, intracellular diffusion has been described as hindered, and the physical reasons for this behavior are: immobile barriers, molecular crowding, and binding interactions with immobile or mobile molecules. Using results from multi-photon fluorescence correlation spectroscopy, we describe how immobile barriers and crowding agents affect translational mobility. To study the hindrance produced by immobile barriers, we used sol-gels (silica nanostructures) that consist of a continuous solid phase and aqueous phase in which fluorescently tagged molecules diffuse. In the case of molecular crowding, translational mobility was assessed in increasing concentrations of 500 kDa dextran solutions. Diffusion of fluorescent tracers in both sol-gels and dextran solutions shows clear evidence of anomalous subdiffusion. In addition, data from the autocorrelation function were analyzed using the maximum entropy method as adapted to fluorescence correlation spectroscopy data and compared with the standard model that incorporates anomalous diffusion. The maximum entropy method revealed evidence of different diffusion mechanisms that had not been revealed using the anomalous diffusion model. These mechanisms likely correspond to nanostructuring in crowded environments and to the relative dimensions of the crowding agent with respect to the tracer molecule. Analysis with the maximum entropy method also revealed information about the degree of heterogeneity in the environment as reported by the behavior of diffusive molecules. PMID:17040979
Cox process representation and inference for stochastic reaction-diffusion processes
NASA Astrophysics Data System (ADS)
Schnoerr, David; Grima, Ramon; Sanguinetti, Guido
2016-05-01
Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.
NASA Astrophysics Data System (ADS)
Chen, Mohan; Zheng, Lixin; Santra, Biswajit; Ko, Hsin-Yu; DiStasio, Robert A., Jr.; Klein, Michael L.; Car, Roberto; Wu, Xifan
2018-03-01
Proton transfer via hydronium and hydroxide ions in water is ubiquitous. It underlies acid-base chemistry, certain enzyme reactions, and even infection by the flu. Despite two centuries of investigation, the mechanism underlying why hydroxide diffuses slower than hydronium in water is still not well understood. Herein, we employ state-of-the-art density-functional-theory-based molecular dynamics—with corrections for non-local van der Waals interactions, and self-interaction in the electronic ground state—to model water and hydrated water ions. At this level of theory, we show that structural diffusion of hydronium preserves the previously recognized concerted behaviour. However, by contrast, proton transfer via hydroxide is less temporally correlated, due to a stabilized hypercoordination solvation structure that discourages proton transfer. Specifically, the latter exhibits non-planar geometry, which agrees with neutron-scattering results. Asymmetry in the temporal correlation of proton transfer leads to hydroxide diffusing slower than hydronium.
NASA Astrophysics Data System (ADS)
Amouroux, Marine; Uhring, Wilfried; Pebayle, Thierry; Poulet, Patrick; Marlier, Luc
2009-07-01
Continuous wave Near InfraRed Spectroscopy (NIRS) has been used successfully in clinical environments for several years to detect cerebral activation thanks to oxymetry (i.e. absorption of photons by oxy- and deoxy- hemoglobin) measurement. The goal of our group is to build a clinically-adapted time-resolved NIRS setup i.e. a setup that is compact and robust enough to allow bedside measurements and that matches safety requirements with human patients applications. Indeed our group has already shown that time resolution allows spatial resolution and improves sensitivity of cerebral activation detection. The setup is built with four laser diodes (excitation wavelengths: 685, 780, 830 and 870 nm) whose emitted light is injected into four optical fibers; detection of reflected photons is made through an avalanche photodiode and a high resolution timing module used to record Temporal Point Spread Functions (TPSF). Validation of the device was made using cylindrically-chaped phantoms with absorbing and/or scattering inclusions. Results show that recorded TPSF are typical both of scattering and absorbing materials thus demonstrating that our apparatus would detect variation of optical properties (absorption and scattering) deep within a diffusive media just like a cerebral activation represents a rise of absorption in the cortex underneath head surface.
NASA Astrophysics Data System (ADS)
Powell, G. L.; Dobbins, A.; Cristy, S. S.; Cliff, T. L.; Meyer, H. M., III; Lucania, J.; Milosevic, Milan
1994-01-01
This report describes the application of reflectance FTIR spectroscopy to the measurement of the oxidation rate of uranium by environmental gases near room temperature. It also describes very efficient evacuable cells designed for 75 degree(s) external reflectance with polarized light and for diffuse reflectance using mid-infrared FTIR spectroscopy. These cells, along with functionally similar remote sensing accessories, have been applied to the study of the oxidation of uranium metal in air, oxygen, and water vapor by precisely measuring the 575 cm-1 band of UO2 and other properties of the corrosion film such as absorbed water and reflective losses caused by film degradation related to pitting or nucleation phenomena.
Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet Li7La3Zr2O12
Chen, Chi; Lu, Ziheng; Ciucci, Francesco
2017-01-01
Understanding Li diffusion in solid conductors is essential for the next generation Li batteries. Here we show that density-based clustering of the trajectories computed using molecular dynamics simulations helps elucidate the Li diffusion mechanism within the Li7La3Zr2O12 (LLZO) crystal lattice. This unsupervised learning method recognizes lattice sites, is able to give the site type, and can identify Li hopping events. Results show that, while the cubic LLZO has a much higher hopping rate compared to its tetragonal counterpart, most of the Li hops in the cubic LLZO do not contribute to the diffusivity due to the dominance of back-and-forth type jumps. The hopping analysis and local Li configuration statistics give evidence that Li diffusivity in cubic LLZO is limited by the low vacancy concentration. The hopping statistics also shows uncorrelated Poisson-like diffusion for Li in the cubic LLZO, and correlated diffusion for Li in the tetragonal LLZO in the temporal scale. Further analysis of the spatio-temporal correlation using site-to-site mutual information confirms the weak site dependence of Li diffusion in the cubic LLZO as the origin for the uncorrelated diffusion. This work puts forward a perspective on combining machine learning and information theory to interpret results of molecular dynamics simulations. PMID:28094317
Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet Li7La3Zr2O12
NASA Astrophysics Data System (ADS)
Chen, Chi; Lu, Ziheng; Ciucci, Francesco
2017-01-01
Understanding Li diffusion in solid conductors is essential for the next generation Li batteries. Here we show that density-based clustering of the trajectories computed using molecular dynamics simulations helps elucidate the Li diffusion mechanism within the Li7La3Zr2O12 (LLZO) crystal lattice. This unsupervised learning method recognizes lattice sites, is able to give the site type, and can identify Li hopping events. Results show that, while the cubic LLZO has a much higher hopping rate compared to its tetragonal counterpart, most of the Li hops in the cubic LLZO do not contribute to the diffusivity due to the dominance of back-and-forth type jumps. The hopping analysis and local Li configuration statistics give evidence that Li diffusivity in cubic LLZO is limited by the low vacancy concentration. The hopping statistics also shows uncorrelated Poisson-like diffusion for Li in the cubic LLZO, and correlated diffusion for Li in the tetragonal LLZO in the temporal scale. Further analysis of the spatio-temporal correlation using site-to-site mutual information confirms the weak site dependence of Li diffusion in the cubic LLZO as the origin for the uncorrelated diffusion. This work puts forward a perspective on combining machine learning and information theory to interpret results of molecular dynamics simulations.
Joint level-set and spatio-temporal motion detection for cell segmentation.
Boukari, Fatima; Makrogiannis, Sokratis
2016-08-10
Cell segmentation is a critical step for quantification and monitoring of cell cycle progression, cell migration, and growth control to investigate cellular immune response, embryonic development, tumorigenesis, and drug effects on live cells in time-lapse microscopy images. In this study, we propose a joint spatio-temporal diffusion and region-based level-set optimization approach for moving cell segmentation. Moving regions are initially detected in each set of three consecutive sequence images by numerically solving a system of coupled spatio-temporal partial differential equations. In order to standardize intensities of each frame, we apply a histogram transformation approach to match the pixel intensities of each processed frame with an intensity distribution model learned from all frames of the sequence during the training stage. After the spatio-temporal diffusion stage is completed, we compute the edge map by nonparametric density estimation using Parzen kernels. This process is followed by watershed-based segmentation and moving cell detection. We use this result as an initial level-set function to evolve the cell boundaries, refine the delineation, and optimize the final segmentation result. We applied this method to several datasets of fluorescence microscopy images with varying levels of difficulty with respect to cell density, resolution, contrast, and signal-to-noise ratio. We compared the results with those produced by Chan and Vese segmentation, a temporally linked level-set technique, and nonlinear diffusion-based segmentation. We validated all segmentation techniques against reference masks provided by the international Cell Tracking Challenge consortium. The proposed approach delineated cells with an average Dice similarity coefficient of 89 % over a variety of simulated and real fluorescent image sequences. It yielded average improvements of 11 % in segmentation accuracy compared to both strictly spatial and temporally linked Chan-Vese techniques, and 4 % compared to the nonlinear spatio-temporal diffusion method. Despite the wide variation in cell shape, density, mitotic events, and image quality among the datasets, our proposed method produced promising segmentation results. These results indicate the efficiency and robustness of this method especially for mitotic events and low SNR imaging, enabling the application of subsequent quantification tasks.
Long-distance thermal temporal ghost imaging over optical fibers
NASA Astrophysics Data System (ADS)
Yao, Xin; Zhang, Wei; Li, Hao; You, Lixing; Wang, Zhen; Huang, Yidong
2018-02-01
A thermal ghost imaging scheme between two distant parties is proposed and experimentally demonstrated over long-distance optical fibers. In the scheme, the weak thermal light is split into two paths. Photons in one path are spatially diffused according to their frequencies by a spatial dispersion component, then illuminate the object and record its spatial transmission information. Photons in the other path are temporally diffused by a temporal dispersion component. By the coincidence measurement between photons of two paths, the object can be imaged in a way of ghost imaging, based on the frequency correlation between photons in the two paths. In the experiment, the weak thermal light source is prepared by the spontaneous four-wave mixing in a silicon waveguide. The temporal dispersion is introduced by single mode fibers of 50 km, which also could be looked as a fiber link. Experimental results show that this scheme can be realized over long-distance optical fibers.
Thermal lens spectroscopy for the differentiation of biodiesel-diesel blends
NASA Astrophysics Data System (ADS)
Ventura, M.; Simionatto, E.; Andrade, L. H. C.; Lima, S. M.
2012-04-01
Thermal lens (TL) spectroscopy was applied to biofuels to test its potential to distinguish diesel from biodiesel in blended fuels. Both the heat and mass diffusion effects observed using a TL procedure provide significant information about biodiesel concentrations in blended fuels. The results indicate that the mass diffusivity decreases 32% between diesel and the blend with 10% biodiesel added to the diesel. This simple TL procedure has the potential to be used for in loco analyses to certify the mixture and quality of biodiesel-diesel blends.
Devpura, Suneetha; Pattamadilok, Bensachee; Syed, Zain U; Vemulapalli, Pranita; Henderson, Marsha; Rehse, Steven J; Hamzavi, Iltefat; Lim, Henry W; Naik, Ratna
2011-06-01
Quantification of skin changes due to acanthosis nigricans (AN), a disorder common among insulin-resistant diabetic and obese individuals, was investigated using two optical techniques: diffuse reflectance spectroscopy (DRS) and colorimetry. Measurements were obtained from AN lesions on the neck and two control sites of eight AN patients. A principal component/discriminant function analysis successfully differentiated between AN lesion and normal skin with 87.7% sensitivity and 94.8% specificity in DRS measurements and 97.2% sensitivity and 96.4% specificity in colorimetry measurements.
In vivo time-gated diffuse correlation spectroscopy at quasi-null source-detector separation.
Pagliazzi, M; Sekar, S Konugolu Venkata; Di Sieno, L; Colombo, L; Durduran, T; Contini, D; Torricelli, A; Pifferi, A; Mora, A Dalla
2018-06-01
We demonstrate time domain diffuse correlation spectroscopy at quasi-null source-detector separation by using a fast time-gated single-photon avalanche diode without the need of time-tagging electronics. This approach allows for increased photon collection, simplified real-time instrumentation, and reduced probe dimensions. Depth discriminating, quasi-null distance measurement of blood flow in a human subject is presented. We envision the miniaturization and integration of matrices of optical sensors of increased spatial resolution and the enhancement of the contrast of local blood flow changes.
NASA Astrophysics Data System (ADS)
Chen, Chuan-Jie; Li, Shou-Zhe; Zhang, Jialiang; Liu, Dongping
2018-01-01
A pulse-modulated argon surface wave plasma generated at atmospheric pressure is characterized by means of temporally resolved optical emission spectroscopy (OES). The temporal evolution of the gas temperature, the electron temperature and density, the radiative species of atomic Ar, and the molecular band of OH(A) and N2(C) are investigated experimentally by altering the instantaneous power, pulse repetitive frequency, and duty ratio. We focused on the physical phenomena occurring at the onset of the time-on period and after the power interruption at the start of the time-off period. Meanwhile, the results are discussed qualitatively for an in-depth insight of its dynamic evolution.
Vendelin, Marko; Birkedal, Rikke
2008-01-01
A series of experimental data points to the existence of profound diffusion restrictions of ADP/ATP in rat cardiomyocytes. This assumption is required to explain the measurements of kinetics of respiration, sarcoplasmic reticulum loading with calcium, and kinetics of ATP-sensitive potassium channels. To be able to analyze and estimate the role of intracellular diffusion restrictions on bioenergetics, the intracellular diffusion coefficients of metabolites have to be determined. The aim of this work was to develop a practical method for determining diffusion coefficients in anisotropic medium and to estimate the overall diffusion coefficients of fluorescently labeled ATP in rat cardiomyocytes. For that, we have extended raster image correlation spectroscopy (RICS) protocols to be able to discriminate the anisotropy in the diffusion coefficient tensor. Using this extended protocol, we estimated diffusion coefficients of ATP labeled with the fluorescent conjugate Alexa Fluor 647 (Alexa-ATP). In the analysis, we assumed that the diffusion tensor can be described by two values: diffusion coefficient along the myofibril and that across it. The average diffusion coefficients found for Alexa-ATP were as follows: 83 ± 14 μm2/s in the longitudinal and 52 ± 16 μm2/s in the transverse directions (n = 8, mean ± SD). Those values are ∼2 (longitudinal) and ∼3.5 (transverse) times smaller than the diffusion coefficient value estimated for the surrounding solution. Such uneven reduction of average diffusion coefficient leads to anisotropic diffusion in rat cardiomyocytes. Although the source for such anisotropy is uncertain, we speculate that it may be induced by the ordered pattern of intracellular structures in rat cardiomyocytes. PMID:18815224
A 3-Component System of Competition and Diffusion.
1983-08-01
assume * that the distribution of the populations are determined by competition of’ Lotka - Volterra - * Gause type and simple diffusion. Suppose ui(t,x...diffusive Lotka - Volterra system with three species can have a stable non-constant equilibrium solutions. J. Math. Biol., (in press). [7] Kishimoto, K., Mimura...M. and Yoshida, K., Stable spatlo-temporal oscillations of diffusive Lotka - Volterra systems with three or more species, to appear in J. Math. Biol
Juranek, Jenifer; Romanowska-Pawliczek, Anna; Hannay, H. Julia; Cirino, Paul T.; Dennis, Maureen; Kramer, Larry A.; Fletcher, Jack M.
2016-01-01
Abstract Spina bifida myelomeningocele (SBM) is commonly associated with anomalous development of the corpus callosum (CC) because of congenital partial hypogenesis and hydrocephalus-related hypoplasia. It represents a model disorder to examine the effects of early disruption of CC neurodevelopment and the plasticity of interhemispheric white matter connections. Diffusion tensor imaging was acquired on 76 individuals with SBM and 27 typically developing individuals, aged 8–36 years. Probabilistic tractography was used to isolate the interhemispheric connections between the posterior superior temporal lobes, which typically traverse the posterior third of the CC. Early disruption of CC development resulted in restructuring of interhemispheric connections through alternate commissures, particularly the anterior commissure (AC). These rerouted fibers were present in people with SBM and both CC hypoplasia and hypogenesis. In addition, microstructural integrity was reduced in the interhemispheric temporal tract in people with SBM, indexed by lower fractional anisotropy, axial diffusivity, and higher radial diffusivity. Interhemispheric temporal tract volume was positively correlated with total volume of the CC, such that more severe underdevelopment of the CC was associated with fewer connections between the posterior temporal lobes. Therefore, both the macrostructure and microstructure of this interhemispheric tract were reduced, presumably as a result of more extensive CC malformation. The current findings suggest that early disruption in CC development reroutes interhemispheric temporal fibers through both the AC and more anterior sections of the CC in support of persistent hypotheses that the AC may serve a compensatory function in atypical CC development. PMID:26798959
Strömberg, Tomas; Sjöberg, Folke; Bergstrand, Sara
2017-09-01
Forearm skin hyperemia during release after brachial occlusion has been proposed for evaluating peripheral arterial disease and endothelial dysfunction. We used a novel fiberoptic system integrating Laser Doppler Flowmetry and Diffuse Reflectance Spectroscopy for a comprehensive pointwise model based microcirculation characterization. The aim was to evaluate and compare the temporal and the spatiotemporal variabilities in forearm skin microcirculation parameters (speed resolved perfusion; low speed <1mm/s, Perf SR, <1 ; mid-speed 1-10mm/s, high speed >10mm/s, and total perfusion (Perf SR, tot ); the concentration and oxygenation of red blood cells, C RBC and S O2 ). Ten healthy subjects underwent arterial and venous forearm occlusions (AO, VO), repeated within one week. The repeatability was calculated as the coefficient of variation (CV) and the agreement as the intra-class correlation coefficient (ICC). The temporal CVs for conventional perfusion, Perf conv , Perf SR, tot , C RBC and S O2 were 14%, 12%, 9% and 9%, respectively, while the ICC were >0.75 (excellent). The perfusion measures generally had a higher spatiotemporal than temporal variability, which was not the case for S O2 and C RBC . The corresponding spatiotemporal CVs were 33%, 32%, 18% and 15%, respectively. During VO, C RBC had a CV<35% and ICC>0.40 (fair-good), and after release this was the case for C RBC (AO and VO), S O2 (VO) and Perf SR, <1 (VO). In conclusion, the skin microcirculation parameters showed excellent temporal repeatability, while the spatiotemporal repeatability especially for perfusion was poorer. The parameters with acceptable repeatability and fair-good agreement were: C RBC during and after release of VO, the Perf SR, <1 after release of VO, the S O2 and the C RBC after release of AO. However, the value of these parameters in discriminating endothelial function remains to be studied. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stelzle, Florian; Zam, Azhar; Adler, Werner; Douplik, Alexandre; Tangermann-Gerk, Katja; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Schmidt, Michael
Objective: Laser surgery has many advantages. However, due to a lack of haptic feedback it is accompanied by the risk of iatrogenic nerve damage. The aim of this study was to evaluate the possibilities of optical nerve identification by diffuse reflectance spectroscopy to set the base for a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Materials and Methods: Diffuse reflectance spectra of nerve tissue, skin, mucosa, fat tissue, muscle, cartilage and bone (15120 spectra) of ex vivo pig heads were acquired in the wavelength range of 350-650 nm. Tissue differentiation was performed by principal components analysis (PCA) followed by linear discriminant analysis (LDA). Specificity and sensitivity were calculated by receiver operating characteristic (ROC) analysis and the area under curve (AUC). Results: Nerve tissue could correctly be identified and differed from skin, mucosa, fat tissue, muscle, cartilage and bone in more than 90% of the cases (AUC results) with a specificity of over 78% and a sensitivity of more than 86%. Conclusion: Nerve tissue can be identified by diffuse reflectance spectroscopy with high precision and reliability. The results may set the base for a feedback system to prevent iatrogenic nerve damage performing oral and maxillofacial laser surgery.
Azab, Seham Fa; Sherief, Laila M; Saleh, Safaa H; Elshafeiy, Mona M; Siam, Ahmed G; Elsaeed, Wafaa F; Arafa, Mohamed A; Bendary, Eman A; Sherbiny, Hanan S; Elbehedy, Rabab M; Aziz, Khalid A
2015-04-18
The diagnosis of epilepsy should be made as early as possible to give a child the best chance for treatment success and also to decrease complications such as learning difficulties and social and behavioral problems. In this study, we aimed to assess the ability of magnetic resonance spectroscopy (MRS) in detecting the lateralization side in patients with Temporal lobe epilepsy (TLE) in correlation with EEG and MRI findings. This was a case-control study including 40 patients diagnosed (clinically and by EEG) as having temporal lobe epilepsy aged 8 to 14 years (mean, 10.4 years) and 20 healthy children with comparable age and gender as the control group. All patients were subjected to clinical examination, interictal electroencephalography and magnetic resonance imaging (MRI). Proton magnetic resonance spectroscopic examination (MRS) was performed to the patients and the controls. According to the findings of electroencephalography, our patients were classified to three groups: Group 1 included 20 patients with unitemporal (lateralized) epileptic focus, group 2 included 12 patients with bitemporal (non-lateralized) epileptic focus and group 3 included 8 patients with normal electroencephalography. Magnetic resonance spectroscopy could lateralize the epileptic focus in 19 patients in group 1, nine patients in group2 and five patients in group 3 with overall lateralization of (82.5%), while electroencephalography was able to lateralize the focus in (50%) of patients and magnetic resonance imaging detected lateralization of mesial temporal sclerosis in (57.5%) of patients. Magnetic resonance spectroscopy is a promising tool in evaluating patients with epilepsy and offers increased sensitivity to detect temporal pathology that is not obvious on structural MRI imaging.
Selb, Juliette; Boas, David A.; Chan, Suk-Tak; Evans, Karleyton C.; Buckley, Erin M.; Carp, Stefan A.
2014-01-01
Abstract. Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) are two diffuse optical technologies for brain imaging that are sensitive to changes in hemoglobin concentrations and blood flow, respectively. Measurements for both modalities are acquired on the scalp, and therefore hemodynamic processes in the extracerebral vasculature confound the interpretation of cortical hemodynamic signals. The sensitivity of NIRS to the brain versus the extracerebral tissue and the contrast-to-noise ratio (CNR) of NIRS to cerebral hemodynamic responses have been well characterized, but the same has not been evaluated for DCS. This is important to assess in order to understand their relative capabilities in measuring cerebral physiological changes. We present Monte Carlo simulations on a head model that demonstrate that the relative brain-to-scalp sensitivity is about three times higher for DCS (0.3 at 3 cm) than for NIRS (0.1 at 3 cm). However, because DCS has higher levels of noise due to photon-counting detection, the CNR is similar for both modalities in response to a physiologically realistic simulation of brain activation. Even so, we also observed higher CNR of the hemodynamic response during graded hypercapnia in adult subjects with DCS than with NIRS. PMID:25453036
NASA Astrophysics Data System (ADS)
Noguchi, Naoki; Kubo, Tomoaki; Durham, William B.; Kagi, Hiroyuki; Shimizu, Ichiko
2016-08-01
We have developed a high-resolution technique based on micro Raman spectroscopy to measure hydrogen isotope diffusion profiles in ice Ih. The calibration curve for quantitative analysis of deuterium in ice Ih was constructed using micro Raman spectroscopy. Diffusion experiments using diffusion couples composed of dense polycrystalline H2O and D2O ice were carried out under a gas confining pressure of 100 MPa (to suppress micro-fracturing and pore formation) at temperatures from 235 K to 245 K and diffusion times from 0.2 to 94 hours. Two-dimensional deuterium profiles across the diffusion couples were determined by Raman imaging. The location of small spots of frost from room air could be detected from the shapes of the Raman bands of OH and OD stretching modes, which change because of the effect of the molar ratio of deuterium on the molecular coupling interaction. We emphasize the validity for screening the impurities utilizing the coupling interaction. Some recrystallization and grain boundary migration occurred in recovered diffusion couples, but analysis of two-dimensional diffusion profiles of regions not affected by grain boundary migration allowed us to measure a volume diffusivity for ice at 100 MPa of (2.8 ± 0.4) ×10-3exp[ -57.0 ± 15.4kJ /mol RT ] m2 /s (R is the gas constant, T is temperature). Based on ambient pressure diffusivity measurements by others, this value indicates a high (negative) activation volume for volume diffusivity of -29.5 cm3/mol or more. We can also constrain the value of grain boundary diffusivity in ice at 100 MPa to be <104 that of volume diffusivity.
Fourier Transform Infrared Spectroscopy Part III. Applications.
ERIC Educational Resources Information Center
Perkins, W. D.
1987-01-01
Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)
Diffusion pseudotime robustly reconstructs lineage branching.
Haghverdi, Laleh; Büttner, Maren; Wolf, F Alexander; Buettner, Florian; Theis, Fabian J
2016-10-01
The temporal order of differentiating cells is intrinsically encoded in their single-cell expression profiles. We describe an efficient way to robustly estimate this order according to diffusion pseudotime (DPT), which measures transitions between cells using diffusion-like random walks. Our DPT software implementations make it possible to reconstruct the developmental progression of cells and identify transient or metastable states, branching decisions and differentiation endpoints.
NASA Astrophysics Data System (ADS)
Li, Xuechen; Geng, Jinling; Jia, Pengying; Zhang, Panpan; Zhang, Qi; Li, Yaru
2017-11-01
Excited by an alternating current voltage, a patterned discharge and a diffuse discharge are generated in a needle to liquid configuration. Using an intensified charge-coupled device (ICCD), temporal evolution of the discharge between the two electrodes is investigated for the diffuse mode and the patterned mode, respectively. For the diffuse mode, the positive discharge is in a glow regime, and the negative discharge is in a Townsend discharge regime. For the patterned mode, the discharge always belongs to the Townsend discharge regime. Moreover, in the patterned mode, various patterns including the single loop, single loop with the surrounding corona, triple loops, and concentric loops with a central spot are observed on the water surface with the increasing positive peak-value of the applied voltage (Upp). Temporally resolved images of the loop-patterns are captured on the water surface. From the electrical measurements and the ICCD imaging, it is found that the loop pattern emerges after the discharge bridges the two electrodes. Then, it begins to evolve and finally degenerates with the decrease in the discharge current. The pattern does not disappear until the discharge quenches. Formation of the loop-patterns is attributed to the role of negative ions.
Ceschin, Rafael; Panigrahy, Ashok; Gopalakrishnan, Vanathi
2015-01-01
A major challenge in the diagnosis and treatment of brain tumors is tissue heterogeneity leading to mixed treatment response. Additionally, they are often difficult or at very high risk for biopsy, further hindering the clinical management process. To overcome this, novel advanced imaging methods are increasingly being adapted clinically to identify useful noninvasive biomarkers capable of disease stage characterization and treatment response prediction. One promising technique is called functional diffusion mapping (fDM), which uses diffusion-weighted imaging (DWI) to generate parametric maps between two imaging time points in order to identify significant voxel-wise changes in water diffusion within the tumor tissue. Here we introduce serial functional diffusion mapping (sfDM), an extension of existing fDM methods, to analyze the entire tumor diffusion profile along the temporal course of the disease. sfDM provides the tools necessary to analyze a tumor data set in the context of spatiotemporal parametric mapping: the image registration pipeline, biomarker extraction, and visualization tools. We present the general workflow of the pipeline, along with a typical use case for the software. sfDM is written in Python and is freely available as an open-source package under the Berkley Software Distribution (BSD) license to promote transparency and reproducibility.
Lin, Wei-Che; Chou, Kun-Hsien; Chen, Chao-Long; Chen, Hsiu-Ling; Lu, Cheng-Hsien; Li, Shau-Hsuan; Huang, Chu-Chung; Lin, Ching-Po; Cheng, Yu-Fan
2014-01-01
Cerebral edema is the common pathogenic mechanism for cognitive impairment in minimal hepatic encephalopathy. Whether complete reversibility of brain edema, cognitive deficits, and their associated imaging can be achieved after liver transplantation remains an open question. To characterize white matter integrity before and after liver transplantation in patients with minimal hepatic encephalopathy, multiple diffusivity indices acquired via diffusion tensor imaging was applied. Twenty-eight patients and thirty age- and sex-matched healthy volunteers were included. Multiple diffusivity indices were obtained from diffusion tensor images, including mean diffusivity, fractional anisotropy, axial diffusivity and radial diffusivity. The assessment was repeated 6-12 month after transplantation. Differences in white matter integrity between groups, as well as longitudinal changes, were evaluated using tract-based spatial statistical analysis. Correlation analyses were performed to identify first scan before transplantation and interval changes among the neuropsychiatric tests, clinical laboratory tests, and diffusion tensor imaging indices. After transplantation, decreased water diffusivity without fractional anisotropy change indicating reversible cerebral edema was found in the left anterior cingulate, claustrum, postcentral gyrus, and right corpus callosum. However, a progressive decrease in fractional anisotropy and an increase in radial diffusivity suggesting demyelination were noted in temporal lobe. Improved pre-transplantation albumin levels and interval changes were associated with better recoveries of diffusion tensor imaging indices. Improvements in interval diffusion tensor imaging indices in the right postcentral gyrus were correlated with visuospatial function score correction. In conclusion, longitudinal voxel-wise analysis of multiple diffusion tensor imaging indices demonstrated different white matter changes in minimal hepatic encephalopathy patients. Transplantation improved extracellular cerebral edema and the results of associated cognition tests. However, white matter demyelination may advance in temporal lobe.
Valdes, Claudia P.; Varma, Hari M.; Kristoffersen, Anna K.; Dragojevic, Tanja; Culver, Joseph P.; Durduran, Turgut
2014-01-01
We introduce a new, non-invasive, diffuse optical technique, speckle contrast optical spectroscopy (SCOS), for probing deep tissue blood flow using the statistical properties of laser speckle contrast and the photon diffusion model for a point source. The feasibility of the method is tested using liquid phantoms which demonstrate that SCOS is capable of measuring the dynamic properties of turbid media non-invasively. We further present an in vivo measurement in a human forearm muscle using SCOS in two modalities: one with the dependence of the speckle contrast on the source-detector separation and another on the exposure time. In doing so, we also introduce crucial corrections to the speckle contrast that account for the variance of the shot and sensor dark noises. PMID:25136500
NASA Astrophysics Data System (ADS)
Pristinski, Denis; Kharlampieva, Evguenia; Sukhishvili, Svetlana
2002-03-01
Fluorescence Correlation Spectroscopy (FCS) has been used to probe molecular motions within polymer multilayers formed by hydrogen-bonding sequential self-assembly. Polyethylene glycol (PEG) molecules were end-labeled with the fluorescent tags, and self-assembled with polymethacrylic acid (PMAA) using layer-by-layer deposition. We have found that molecules included in the top adsorbed layer have significant mobility at the millisecond time scale, probably due to translational diffusion. However, their dynamics deviate from classical Brownian motion with a single diffusion time. Possible reasons for the deviation are discussed. We found that motions were significantly slowed with increasing depth within the PEG/PMAA multilayer. This phenomena occured in a narrow pH range around 4.0 in which intermolecular interactions were relatively weak.
Tsai, Meng-Tsan; Lee, I-Chi; Lee, Zhung-Fu; Liu, Hao-Li; Wang, Chun-Chieh; Choia, Yo-Chun; Chou, Hsin-Yi; Lee, Jiann-Der
2016-01-01
Transdermal drug-delivery systems (TDDS) have been a growing field in drug delivery because of their advantages over parenteral and oral administration. Recent studies illustrate that microneedles (MNs) can effectively penetrate through the stratum corneum barrier to facilitate drug delivery. However, the temporal effects on skin and drug diffusion are difficult to investigate in vivo. In this study, we used optical coherence tomography (OCT) to observe the process by which MNs dissolve and to investigate the temporal effects on mouse skin induced by MNs, including the morphological and vascular changes. Moreover, the recovery process of the skin was observed with OCT. Additionally, we proposed a method to observe drug delivery by estimation of cross-correlation relationship between sequential 2D OCT images obtained at the same location, reflecting the variation in the backscattered intensity due to the diffusion of the rhodamine molecules encapsulated in MNs. Our observations supported the hypothesis that the temporal effects on skin due to MNs, the dissolution of MNs, and the drug diffusion process can be quantitatively evaluated with OCT. The results showed that OCT can be a potential tool for in vivo monitoring of effects and outcomes when MNs are used as a TDDS. PMID:27231627
NASA Astrophysics Data System (ADS)
Suzuki, Yusuke; Maruo, Katsuhiko; Zhang, Alice W.; Shimogaki, Kazushige; Ogawa, Hideto; Hirayama, Fumiya
2012-01-01
Bacterial contamination of blood products is one of the most frequent infectious complications of transfusion. Since glucose levels in blood supplies decrease as bacteria proliferate, it should be possible to detect the presence of bacterial contamination by measuring the glucose concentrations in the blood components. Hence this study is aimed to serve as a preliminary study for the nondestructive measurement of glucose level in transfusion blood. The glucose concentrations in red blood cell (RBC) samples were predicted using near-infrared diffuse-reflectance spectroscopy in the 1350 to 1850 nm wavelength region. Furthermore, the effects of donor, hematocrit level, and temperature variations among the RBC samples were observed. Results showed that the prediction performance of a dataset which contained samples that differed in all three parameters had a standard error of 29.3 mg/dL. Multiplicative scatter correction (MSC) preprocessing method was also found to be effective in minimizing the variations in scattering patterns created by various sample properties. The results suggest that the diffuse-reflectance spectroscopy may provide another avenue for the detection of bacterial contamination in red cell concentrations (RCC) products.
In-Field Diffuse Ultraviolet Spectroscopy and Imaging of the Stardust Sample Return Capsule
NASA Technical Reports Server (NTRS)
Pugel, D. Elizabeth; Stackpoole, Mairead; McNamara, Karen; Schwartz, C.; Warren, J.; Kontinos, Dean
2008-01-01
In-field diffuse Ultraviolet (UV) spectroscopy and imaging systems were developed for the purposes of evaluating the surface chemical composition of spacecraft thermal control coatings and materials. The investigation of these systems and the compilation of an associated UV reflectance and luminescence database were conducted using the Stardust Sample Return Capsule (SRC), located at the Johnson Space Center. Spectral responses of the surfaces of the Stardust forebody and aftbody in both reflectance and fluorescence modes were examined post-flight. In this paper, we report on two primary findings of in-field diffuse UV spectroscopy and imaging: (1) deduction of the thermal history of thermal control coatings of the forebody and (2) bond line variations in the aftbody. In the forebody, the thermal history of thermal control coatings may be deduced from the presence of particular semiconducting defect states associated with ZnO, a common emissivity constituent in thermal control coatings. A spatial dependence of this history was mapped for these regions. In the aftbody, luminescing defect states, associated with Si and SiO2 color centers were found along regions of bond variability.
NASA Astrophysics Data System (ADS)
Siozos, Panagiotis; Philippidis, Aggelos; Anglos, Demetrios
2017-11-01
A novel, portable spectrometer, combining two analytical techniques, laser-induced breakdown spectroscopy (LIBS) and diffuse reflectance spectroscopy, was developed with the aim to provide an enhanced instrumental and methodological approach with regard to the analysis of pigments in objects of cultural heritage. Technical details about the hybrid spectrometer and its operation are presented and examples are given relevant to the analysis of paint materials. Both LIBS and diffuse reflectance spectra in the visible and part of the near infrared, corresponding to several neat mineral pigment samples, were recorded and the complementary information was used to effectively distinguish different types of pigments even if they had similar colour or elemental composition. The spectrometer was also employed in the analysis of different paints on the surface of an ancient pottery sherd demonstrating the capabilities of the proposed hybrid diagnostic approach. Despite its instrumental simplicity and compact size, the spectrometer is capable of supporting analytical campaigns relevant to archaeological, historical or art historical investigations, particularly when quick data acquisition is required in the context of surveys of large numbers of objects and samples.
Diffuse reflectance spectroscopy for monitoring diabetic foot ulcer - A pilot study
NASA Astrophysics Data System (ADS)
Anand, Suresh; Sujatha, N.; Narayanamurthy, V. B.; Seshadri, V.; Poddar, Richa
2014-02-01
Foot ulceration due to diabetes mellitus is a major problem affecting 12-25% of diabetic subjects in their lifetime. An untreated ulcer further gets infected which causes necrosis leading to amputation of lower extremities. Early identification of risk factors and treatment for these chronic wounds would reduce health care costs and improve the quality of life for people with diabetes. Recent clinical investigations have shown that a series of factors including reduced oxygen delivery and disturbed metabolism have been observed on patients with foot ulceration due to diabetes. Also, these factors can impair the wound healing process. Optical techniques based on diffuse reflectance spectroscopy provide characteristic spectral finger prints shed light on tissue oxygenation levels and morphological composition of a tissue. This study deals with the application of diffuse reflectance intensity ratios based on oxyhemoglobin bands (R542/R580), ratios of oxy- and deoxy-hemoglobin bands (R580/R555), total hemoglobin concentration and hemoglobin oxygen saturation between normal and diabetic foot ulcer sites. Preliminary results obtained are found to be promising indicating the application of reflectance spectroscopy in the assessment of foot ulcer healing.
NASA Astrophysics Data System (ADS)
Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.
2014-01-01
The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.
Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest
Mlynash, M.; Campbell, D.M.; Leproust, E.M.; Fischbein, N.J.; Bammer, R.; Eyngorn, I.; Hsia, A.W.; Moseley, M.; Wijman, C.A.C.
2010-01-01
Background and Purpose Diffusion-weighted MRI (DWI) of the brain is a promising technique to help predict functional outcome in comatose survivors of cardiac arrest. We aimed to evaluate prospectively the temporal-spatial profile of brain apparent diffusion coefficient (ADC) changes in comatose survivors during the first 8 days after cardiac arrest. Methods ADC values were measured by two independent and blinded investigators in predefined brain regions in 18 good and 15 poor outcome patients with 38 brain MRIs, and compared with 14 normal controls. The same brain regions were also assessed qualitatively by two other independent and blinded investigators. Results In poor outcome patients, cortical structures, in particular the occipital and temporal lobes, and the putamen exhibited the most profound ADC reductions, which were noted as early as 1.5 days and reached nadir between 3 to 5 days after the arrest. Conversely, when compared to normal controls, good outcome patients exhibited increased diffusivity, in particular in the hippocampus, temporal and occipital lobes, and corona radiata. By the qualitative MRI readings, one or more cortical gray matter structures were read as moderately-to-severely abnormal in all poor outcome patients imaged beyond 54 hours after the arrest, but not in the three patients imaged earlier. Conclusions Brain DWI changes in comatose post-cardiac arrest survivors in the first week after the arrest are region- and time-dependent and differ between good and poor outcome patients. With the increasing use of MRI in this context, it is important to be aware of these relationships. PMID:20595666
Mapping Diffusion in a Living Cell via the Phasor Approach
Ranjit, Suman; Lanzano, Luca; Gratton, Enrico
2014-01-01
Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created. PMID:25517145
Boundary-induced pattern formation from uniform temporal oscillation
NASA Astrophysics Data System (ADS)
Kohsokabe, Takahiro; Kaneko, Kunihiko
2018-04-01
Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.
Neuropsychological outcome after traumatic temporal lobe damage.
Formisano, R; Schmidhuber-Eiler, B; Saltuari, L; Cigany, E; Birbamer, G; Gerstenbrand, F
1991-01-01
The most frequent sequelae after severe brain injury include changes in personality traits, disturbances of emotional behaviour and impairment of cognitive functions. In particular, emotional changes and/or verbal and non verbal dysfunctions were found in patients with bilateral or unilateral temporal lobe lesions. The aim of our study is to correlate the localization of the brain damage after severe brain injury, in particular of the temporal lobe, with the cognitive impairment and the emotional and behavioural changes resulting from these lesions. The patients with right temporal lobe lesions showed significantly better scores in verbal intelligence and verbal memory in comparison with patients with left temporal lobe lesions and those with other focal brain lesions or diffuse brain damage. In contradistinction, study of the personality and the emotional changes (MMPI and FAF) failed to demonstrate pathological scores in the 3 groups with different CT lesions, without any significant difference being found between the groups with temporal lesions and those with other focal brain lesions or diffuse brain damage. The severity of the brain injury and the prolongation of the disturbance of consciousness could, in our patients, account for prevalence of congnitive impairment on personality and emotional changes.
Carpenter, Janet S; Laine, Tei; Harrison, Blake; LePage, Meghan; Pierce, Taran; Hoteling, Nathan; Börner, Katy
2017-10-01
We sought to depict the topical, geospatial, and temporal diffusion of the 2015 North American Menopause Society position statement on the nonhormonal management of menopause-associated vasomotor symptoms released on September 21, 2015, and its associated press release from September 23, 2015. Three data sources were used: online news articles, National Public Radio, and Twitter. For topical diffusion, we compared keywords and their frequencies among the position statement, press release, and online news articles. We also created a network figure depicting relationships across key content categories or nodes. For geospatial diffusion within the United States, we compared locations of the 109 National Public Radio (NPR) stations covering the statement to 775 NPR stations not covering the statement. For temporal diffusion, we normalized and segmented Twitter data into periods before and after the press release (September 12, 2015 to September 22, 2015 vs September 23, 2015 to October 3, 2015) and conducted a burst analysis to identify changes in tweets from before to after. Topical information diffused across sources was similar with the exception of the more scientific terms "vasomotor symptoms" or "vms" versus the more colloquial term "hot flashes." Online news articles indicated media coverage of the statement was mainly concentrated in the United States. NPR station data showed similar proportions of stations airing the story across the four census regions (Northeast, Midwest, south, west; P = 0.649). Release of the statement coincided with bursts in the menopause conversation on Twitter. The findings of this study may be useful for directing the development and dissemination of future North American Menopause Society position statements and/or press releases.
Optical properties change in Te diffused As{sub 50}Se{sub 50} chalcogenide thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naik, Ramakanta; Behera, M.; Panda, R.
2016-05-23
In the present report, we present the effect of Te diffusion into As{sub 50}Se{sub 50} thin film which changes the optical properties. The Te/As{sub 50}Se{sub 50} film was irradiated by a laser beam of 532 nm to study the diffusion mechanism due to photo induced effect. The As{sub 50}Se{sub 50}, Te/As{sub 50}Se{sub 50} films show a completely amorphous nature from X-ray diffraction study. A non direct transition was found for these films on the basis of optical transmission data carried out by Fourier Transform infrared Spectroscopy. The optical bandgap is found to be decreased with Te deposition and photo darkeningmore » phenomena is observed for the diffused film. The change in the optical constants are well supported by the corresponding change in different types of bonds which are being studied by X-ray photoelectron spectroscopy.« less
NASA Astrophysics Data System (ADS)
Milanic, Matija; Marin, Ana; Stergar, Jost; Verdel, Nina; Majaron, Boris
2017-07-01
Caffeine is the most widely consumed psychoactive substance in the world. It affects many tissues and organs, in particular central nervous system, heart, and blood vessels. The effect of caffeine on vascular smooth muscle cells is an initial transient contraction followed by significant vasodilatation. In this study we investigate the use of diffuse reflectance spectroscopy (DRS) for monitoring of vascular changes in human skin induced by caffeine consumption. DRS spectra were recorded on volar sides of the forearms of ten healthy volunteers at time delays of 0, 30, 60, 120, and 180 minutes after consumption of caffeine, while one subject served as a negative control. Analytical diffusion approximation solutions for diffuse reflectance from three-layer structures were used to assess skin composition (e.g., dermal blood volume fraction and oxygen saturation) by fitting to experimental data. The results demonstrate that cutaneous vasodynamics induced by caffeine consumption can be monitored by DRS, while changes in the control subject not consuming caffeine were insignificant.
Devpura, Suneetha; Pattamadilok, Bensachee; Syed, Zain U.; Vemulapalli, Pranita; Henderson, Marsha; Rehse, Steven J.; Hamzavi, Iltefat; Lim, Henry W.; Naik, Ratna
2011-01-01
Quantification of skin changes due to acanthosis nigricans (AN), a disorder common among insulin-resistant diabetic and obese individuals, was investigated using two optical techniques: diffuse reflectance spectroscopy (DRS) and colorimetry. Measurements were obtained from AN lesions on the neck and two control sites of eight AN patients. A principal component/discriminant function analysis successfully differentiated between AN lesion and normal skin with 87.7% sensitivity and 94.8% specificity in DRS measurements and 97.2% sensitivity and 96.4% specificity in colorimetry measurements. PMID:21698027
Optical Oversampled Analog-to-Digital Conversion
1992-06-29
hologram weights and interconnects in the digital image halftoning configuration. First, no temporal error diffusion occurs in the digital image... halftoning error diffusion ar- chitecture as demonstrated by Equation (6.1). Equation (6.2) ensures that the hologram weights sum to one so that the exact...optimum halftone image should be faster. Similarly, decreased convergence time suggests that an error diffusion filter with larger spatial dimensions
Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)
ERIC Educational Resources Information Center
Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.
2011-01-01
Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and…
NASA Astrophysics Data System (ADS)
Potapova, E. V.; Dremin, V. V.; Zherebtsov, E. A.; Makovik, I. N.; Zharkikh, E. V.; Dunaev, A. V.; Pilipenko, O. V.; Sidorov, V. V.; Krupatkin, A. I.
2017-12-01
The possibility of a complex approach for studying changes in the system of blood microcirculation and metabolic processes in the biotissue of lower extremities using optical noninvasive methods of laser doppler flowmetry (LDF), fluorescence spectroscopy, and diffuse reflectance spectroscopy in combination with different modes of heating tests has been assessed. Seventy-six patients with type 2 diabetes mellitus, with 14 patients having visible trophic foot impairments, and 48 healthy volunteers have been examined. The parameters of LDF signals and spectra of fluorescence intensity and diffuse reflectance for foot skin have been analyzed. Statistically significant differences in the recorded parameters between the groups under study have been found. It has been concluded that combined application of noninvasive methods of spectroscopy could be used for diagnostics of complications both upon the occurrence of preliminary symptoms of diabetes, when pathological changes are still reversible, and in the presence of impairments to prevent aggravation of the disease and select an adequate correction of the treatment.
NASA Technical Reports Server (NTRS)
Menyuk, N.; Killinger, D. K.
1981-01-01
A pulsed dual-laser direct-detection differential-absorption lidar DIAL system, operating near 10.6 microns, is used to measure the temporal correlation and statistical properties of backscattered returns from specular and diffuse topographic targets. Results show that atmospheric-turbulence fluctuations can effectively be frozen for pulse separation times on the order of 1-3 msec or less. The diffuse target returns, however, yielded a much lower correlation than that obtained with the specular targets; this being due to uncorrelated system noise effects and different statistics for the two types of target returns.
NASA Astrophysics Data System (ADS)
Konugolu Venkata Sekar, Sanathana; Farina, Andrea; dalla Mora, Alberto; Taroni, Paola; Lindner, Claus; Mora, Mireia; Farzam, Parisa; Pagliazzi, Marco; Squarcia, Mattia; Halperin, Irene; Hanzu, Felicia A.; Dehghani, Hamid; Durduran, Turgut; Pifferi, Antonio
2017-07-01
We present the first broadband (600-1100 nm) diffuse optical characterization of thyroglobulin and tyrosine, which are thyroid-specific tissue constituents. In-vivo measurements at the thyroid region enabled their quantification for functional and diagnostic applications.
Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork
Lenne, Pierre-François; Wawrezinieck, Laure; Conchonaud, Fabien; Wurtz, Olivier; Boned, Annie; Guo, Xiao-Jun; Rigneault, Hervé; He, Hai-Tao; Marguet, Didier
2006-01-01
It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (∅<120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane. PMID:16858413
Fast blood flow monitoring in deep tissues with real-time software correlators
Wang, Detian; Parthasarathy, Ashwin B.; Baker, Wesley B.; Gannon, Kimberly; Kavuri, Venki; Ko, Tiffany; Schenkel, Steven; Li, Zhe; Li, Zeren; Mullen, Michael T.; Detre, John A.; Yodh, Arjun G.
2016-01-01
We introduce, validate and demonstrate a new software correlator for high-speed measurement of blood flow in deep tissues based on diffuse correlation spectroscopy (DCS). The software correlator scheme employs standard PC-based data acquisition boards to measure temporal intensity autocorrelation functions continuously at 50 – 100 Hz, the fastest blood flow measurements reported with DCS to date. The data streams, obtained in vivo for typical source-detector separations of 2.5 cm, easily resolve pulsatile heart-beat fluctuations in blood flow which were previously considered to be noise. We employ the device to separate tissue blood flow from tissue absorption/scattering dynamics and thereby show that the origin of the pulsatile DCS signal is primarily flow, and we monitor cerebral autoregulation dynamics in healthy volunteers more accurately than with traditional instrumentation as a result of increased data acquisition rates. Finally, we characterize measurement signal-to-noise ratio and identify count rate and averaging parameters needed for optimal performance. PMID:27231588
NASA Astrophysics Data System (ADS)
Goyal, Meetika; Aggarwal, Sanjeev; Sharma, Annu; Ojha, Sunil
2018-05-01
Temporal variations in nano-scale surface morphology generated on Polypropylene (PP) substrates utilizing 40 keV oblique argon ion beam have been presented. Due to controlled variation of crucial beam parameters i.e. ion incidence angle and erosion time, formation of ripple patterns and further its transition into dot nanostructures have been realized. Experimental investigations have been supported by evaluation of Bradley and Harper (B-H) coefficients estimated using SRIM (The Stopping and Range of Ions in Matter) simulations. Roughness of pristine target surfaces has been accredited to be a crucial factor behind the early time evolution of nano-scale patterns over the polymeric surface. Study of Power spectral density (PSD) spectra reveals that smoothing mechanism switch from ballistic drift to ion enhanced surface diffusion (ESD) which can be the most probable cause for such morphological transition under given experimental conditions. Compositional analysis and depth profiling of argon ion irradiated specimens using Rutherford Backscattering Spectroscopy (RBS) has also been correlated with the AFM findings.
NASA Astrophysics Data System (ADS)
Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel
2014-08-01
This work studies the applicability of a Diffuse Reflectance Infrared Fourier Transform handheld device to perform in situ analyses on Cultural Heritage assets. This portable diffuse reflectance spectrometer has been used to characterise and diagnose the conservation state of (a) building materials of the Guevara Palace (15th century, Segura, Basque Country, Spain) and (b) different 19th century wallpapers manufactured by the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) and by the well known Dufour and Leroy manufacturers (Paris, France), all of them belonging to the Torre de los Varona Castle (Villanañe, Basque Country, Spain). In all cases, in situ measurements were carried out and also a few samples were collected and measured in the laboratory by diffuse reflectance spectroscopy (DRIFT) in order to validate the information obtained by the handheld instrument. In the analyses performed in situ, distortions in the diffuse reflectance spectra can be observed due to the presence of specular reflection, showing the inverted bands caused by the Reststrahlen effect, in particular on those IR bands with the highest absorption coefficients. This paper concludes that the results obtained in situ by a diffuse reflectance handheld device are comparable to those obtained with laboratory diffuse reflectance spectroscopy equipment and proposes a few guidelines to acquire good spectra in the field, minimising the influence caused by the specular reflection.
Time domain diffuse optical spectroscopy: In vivo quantification of collagen in breast tissue
NASA Astrophysics Data System (ADS)
Taroni, Paola; Pifferi, Antonio; Quarto, Giovanna; Farina, Andrea; Ieva, Francesca; Paganoni, Anna Maria; Abbate, Francesca; Cassano, Enrico; Cubeddu, Rinaldo
2015-05-01
Time-resolved diffuse optical spectroscopy provides non-invasively the optical characterization of highly diffusive media, such as biological tissues. Light pulses are injected into the tissue and the effects of light propagation on re-emitted pulses are interpreted with the diffusion theory to assess simultaneously tissue absorption and reduced scattering coefficients. Performing spectral measurements, information on tissue composition and structure is derived applying the Beer law to the measured absorption and an empiric approximation to Mie theory to the reduced scattering. The absorption properties of collagen powder were preliminarily measured in the range of 600-1100 nm using a laboratory set-up for broadband time-resolved diffuse optical spectroscopy. Optical projection images were subsequently acquired in compressed breast geometry on 218 subjects, either healthy or bearing breast lesions, using a portable instrument for optical mammography that operates at 7 wavelengths selected in the range 635-1060 nm. For all subjects, tissue composition was estimated in terms of oxy- and deoxy-hemoglobin, water, lipids, and collagen. Information on tissue microscopic structure was also derived. Good correlation was obtained between mammographic breast density (a strong risk factor for breast cancer) and an optical index based on collagen content and scattering power (that accounts mostly for tissue collagen). Logistic regression applied to all optically derived parameters showed that subjects at high risk for developing breast cancer for their high breast density can effectively be identified based on collagen content and scattering parameters. Tissue composition assessed in breast lesions with a perturbative approach indicated that collagen and hemoglobin content are significantly higher in malignant lesions than in benign ones.
Colegrove, Eric; Harvey, Steven P.; Yang, Ji -Hui; ...
2017-02-08
Group V dopants may be used for next-generation high-voltage cadmium telluride (CdTe) solar photovoltaics, but fundamental defect energetics and kinetics need to be understood. Here, antimony (Sb) diffusion is studied in single-crystal and polycrystalline CdTe under Cd-rich conditions. Diffusion profiles are determined by dynamic secondary ion mass spectroscopy and analyzed with analytical bulk and grain-boundary diffusion models. Slow bulk and fast grain-boundary diffusion are found. Density functional theory is used to understand formation energy and mechanisms. Lastly, the theory and experimental results create new understanding of group V defect kinetics in CdTe.
Lateral diffusion study of the Pt-Al system using the NAC nuclear microprobe.
NASA Astrophysics Data System (ADS)
de Waal, H.; Pretorius, R.
1999-10-01
In this study a nuclear microprobe (NMP) was used to analyse phase formation during reaction in Pt-Al lateral diffusion couples. Phase identification was done by Rutherford backscattering spectroscopy. These results were compared with phase formation during conventional thin film Pt-Al interactions. The co-existence of multiple phases in lateral diffusion couples is discussed with reference to the effective heat of formation (EHF) model.
NASA Astrophysics Data System (ADS)
Piao, H.; Adib, K.; Barteau, Mark A.
2004-05-01
Synchrotron-based temperature programmed X-ray photoelectron spectroscopy (TPXPS) has been used to investigate the surface chloridation of Ag(1 1 1) to monolayer coverages. At 100 K both atomic and molecular chlorine species are present on the surface; adsorption at 300 K or annealing the adlayer at 100 K to this temperature generates adsorbed Cl atoms. As the surface is heated from 300 to 600 K, chlorine atoms diffuse below the surface, as demonstrated by attenuation of the Cl2p signals in TPXPS experiments. Quantitative analysis of the extent of attenuation is consistent with chlorine diffusion below the topmost silver layer. For coverages in the monolayer and sub-monolayer regime, chlorine diffusion to and from the bulk appears not to be significant, in contrast to previous results obtained at higher chlorine loadings. Chlorine is removed from the surface at 650-780 K by desorption as AgCl. These results demonstrate that chlorine diffusion beneath the surface does occur at coverages and temperatures relevant to olefin epoxidation processes carried out on silver catalysts with chlorine promoters. The surface sensitivity advantages of synchrotron-based XPS experiments were critical to observing Cl diffusion to the sub-surface at low coverages.
Using light transmission to watch hydrogen diffuse
Pálsson, Gunnar K.; Bliersbach, Andreas; Wolff, Max; Zamani, Atieh; Hjörvarsson, Björgvin
2012-01-01
Because of its light weight and small size, hydrogen exhibits one of the fastest diffusion rates in solid materials, comparable to the diffusion rate of liquid water molecules at room temperature. The diffusion rate is determined by an intricate combination of quantum effects and dynamic interplay with the displacement of host atoms that is still only partially understood. Here we present direct observations of the spatial and temporal changes in the diffusion-induced concentration profiles in a vanadium single crystal and we show that the results represent the experimental counterpart of the full time and spatial solution of Fick's diffusion equation. We validate the approach by determining the diffusion rate of hydrogen in a single crystal vanadium (001) film, with net diffusion in the [110] direction. PMID:22692535
Using light transmission to watch hydrogen diffuse
NASA Astrophysics Data System (ADS)
Pálsson, Gunnar K.; Bliersbach, Andreas; Wolff, Max; Zamani, Atieh; Hjörvarsson, Björgvin
2012-06-01
Because of its light weight and small size, hydrogen exhibits one of the fastest diffusion rates in solid materials, comparable to the diffusion rate of liquid water molecules at room temperature. The diffusion rate is determined by an intricate combination of quantum effects and dynamic interplay with the displacement of host atoms that is still only partially understood. Here we present direct observations of the spatial and temporal changes in the diffusion-induced concentration profiles in a vanadium single crystal and we show that the results represent the experimental counterpart of the full time and spatial solution of Fick's diffusion equation. We validate the approach by determining the diffusion rate of hydrogen in a single crystal vanadium (001) film, with net diffusion in the [110] direction.
Carp, Stefan A; Farzam, Parisa; Redes, Norin; Hueber, Dennis M; Franceschini, Maria Angela
2017-09-01
Frequency domain near infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) have emerged as synergistic techniques for the non-invasive assessment of tissue health. Combining FD-NIRS oximetry with DCS measures of blood flow, the tissue oxygen metabolic rate can be quantified, a parameter more closely linked to underlying physiology and pathology than either NIRS or DCS estimates alone. Here we describe the first commercially available integrated instrument, called the "MetaOx", designed to enable simultaneous FD-NIRS and DCS measurements at rates of 10 + Hz, and offering real-time data evaluation. We show simultaneously acquired characterization data demonstrating performance equivalent to individual devices and sample in vivo measurements of pulsation resolved blood flow, forearm occlusion hemodynamic changes and muscle oxygen metabolic rate monitoring during stationary bike exercise.
Carp, Stefan A.; Farzam, Parisa; Redes, Norin; Hueber, Dennis M.; Franceschini, Maria Angela
2017-01-01
Frequency domain near infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) have emerged as synergistic techniques for the non-invasive assessment of tissue health. Combining FD-NIRS oximetry with DCS measures of blood flow, the tissue oxygen metabolic rate can be quantified, a parameter more closely linked to underlying physiology and pathology than either NIRS or DCS estimates alone. Here we describe the first commercially available integrated instrument, called the “MetaOx”, designed to enable simultaneous FD-NIRS and DCS measurements at rates of 10 + Hz, and offering real-time data evaluation. We show simultaneously acquired characterization data demonstrating performance equivalent to individual devices and sample in vivo measurements of pulsation resolved blood flow, forearm occlusion hemodynamic changes and muscle oxygen metabolic rate monitoring during stationary bike exercise. PMID:29026684
Inter-diffusion of copper and hafnium as studied by x-ray photoelectron spectroscopy
NASA Astrophysics Data System (ADS)
Pearson, Justin; Chourasia, A. R.
The Cu/Hf interface has been characterized by x-ray photoelectron spectroscopy. Thin films (thicknesses ranging from 100 nm to 150 nm) of hafnium were deposited on a silicon substrate. About 80 nm of copper was then deposited on such samples. The e-beam method was used for the deposition. The samples were annealed for 30 min at temperatures of 100, 200, 300, 400, and 500°C. The inter-diffusion of copper and hafnium was investigated by sequential sputter depth profiling and x-ray photoelectron spectroscopy. The interdiffusion in each case was analyzed by the Matano-Boltzmann's procedure using the Fick's second law. The interdiffusion coefficients and the width of the interface as determined from the data have been correlated with the annealing temperature. Supported by Organized Research, TAMU-Commerce.
Velarde, Luis; Wang, Hong-Fei
2013-12-14
The lack of understanding of the temporal effects and the restricted ability to control experimental conditions in order to obtain intrinsic spectral lineshapes in surface sum-frequency generation vibrational spectroscopy (SFG-VS) have limited its applications in surface and interfacial studies. The emergence of high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS) with sub-wavenumber resolution [Velarde et al., J. Chem. Phys., 2011, 135, 241102] offers new opportunities for obtaining and understanding the spectral lineshapes and temporal effects in SFG-VS. Particularly, the high accuracy of the HR-BB-SFG-VS experimental lineshape provides detailed information on the complex coherent vibrational dynamics through direct spectral measurements. Here we present a unified formalism for the theoretical and experimental routes for obtaining an accurate lineshape of the SFG response. Then, we present a detailed analysis of a cholesterol monolayer at the air/water interface with higher and lower resolution SFG spectra along with their temporal response. With higher spectral resolution and accurate vibrational spectral lineshapes, it is shown that the parameters of the experimental SFG spectra can be used both to understand and to quantitatively reproduce the temporal effects in lower resolution SFG measurements. This perspective provides not only a unified picture but also a novel experimental approach to measuring and understanding the frequency-domain and time-domain SFG response of a complex molecular interface.
2012-01-01
Background Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE), an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol) suggested that the latter probe has utility for prolonged live-cell imaging of sterol transport. Results We found that BChol is very photostable under two-photon (2P)-excitation allowing the acquisition of several hundred frames without significant photobleaching. Therefore, long-term tracking and diffusion measurements are possible. Two-photon temporal image correlation spectroscopy (2P-TICS) provided evidence for spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior towards the plasma membrane, where D ~ 1.3 μm2/s. Number and brightness (N&B) analysis together with stochastic simulations suggest that transient partitioning of BChol into convoluted membranes slows local sterol diffusion. We observed sterol endocytosis as well as fusion and fission of sterol-containing endocytic vesicles. The mobility of endocytic vesicles, as studied by particle tracking, is well described by a model for anomalous subdiffusion on short time scales with an anomalous exponent α ~ 0.63 and an anomalous diffusion constant of Dα = 1.95 x 10-3 μm2/sα. On a longer time scale (t > ~5 s), a transition to superdiffusion consistent with slow directed transport with an average velocity of v ~ 6 x 10-3 μm/s was observed. We present an analytical model that bridges the two regimes and fit this model to vesicle trajectories from control cells and cells with disrupted microtubule or actin filaments. Both treatments reduced the anomalous diffusion constant and the velocity by ~40-50%. Conclusions The mobility of sterol-containing vesicles on the short time scale could reflect dynamic rearrangements of the cytoskeleton, while directed transport of sterol vesicles occurs likely along both, microtubules and actin filaments. Spatially varying anomalous diffusion could contribute to fine-tuning and local regulation of intracellular sterol transport. PMID:23078907
Kuo, Chun-Lin; Fukui, Hiromichi
2007-06-30
Disease diffusion patterns can provide clues for understanding geographical change. Fukushima, a rural prefecture in northeast Japan, was chosen for a case study of the late nineteenth century cholera epidemic that occurred in that country. Two volumes of Cholera Ryu-ko Kiji (Cholera Epidemic Report), published by the prefectural government in 1882 and 1895, provide valuable records for analyzing and modelling diffusion. Text descriptions and numerical evidence culled from the reports were incorporated into a temporal-spatial study framework using geographic information system (GIS) and geo-statistical techniques. Changes in diffusion patterns between 1882 and 1895 reflect improvements in the Fukushima transportation system and growth in social-economic networks. The data reveal different diffusion systems in separate regions in which residents of Fukushima and neighboring prefectures interacted. Our model also shows that an area in the prefecture's northern interior was dominated by a mix of diffusion processes (contagious and hierarchical), that the southern coastal region was affected by a contagious process, and that other infected areas experienced relocation diffusion. In addition to enhancing our understanding of epidemics, the spatial-temporal patterns of cholera diffusion offer opportunities for studying regional change in modern Japan. By highlighting the dynamics of regional reorganization, our findings can be used to better understand the formation of an urban hierarchy in late nineteenth century Japan.
Huang, Haobo; Ouyang, Wei; Wu, Haotian; Liu, Hongbin; Andrea, Critto
2017-02-01
Analyses of the spatial-temporal distribution of diffuse pollution in agricultural regions are essential to the sustained management of water resources. Although nutrients, such as phosphorus fertilizers, can promote crop growth while improving soil fertility, excessive nutrient inputs can produce diffuse pollution, which may results in water quality degradation. The objective of this paper is to employ the SWAT (Soil and Water Assessment Tool) to estimate diffuse P effects on temporal and spatial distributions for a typical agricultural watershed and to identify the conjunct and independent influences of long-term land use and soil properties variation on diffuse P. With the validated model, the four-period simulation results (from 1979 to 2009) indicate that land use changes from agricultural development increased diffuse P yields. However, regarding updated soil properties, no significant differences of P yield were found between 1979 and 2009, demonstrating that impact of the cropland expansion were naturalized with soil property variations. An F-test was employed to assess the essentiality of all of the variables examined during the simulation period, and the test results indicated that diffuse P loading was more sensitive to soil properties than to land use. Before the P pollution control project about the land use optimization planning, it is more effective to distinguish the impacts of land use and soil properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Control of transversal instabilities in reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Totz, Sonja; Löber, Jakob; Totz, Jan Frederik; Engel, Harald
2018-05-01
In two-dimensional reaction-diffusion systems, local curvature perturbations on traveling waves are typically damped out and vanish. However, if the inhibitor diffuses much faster than the activator, transversal instabilities can arise, leading from flat to folded, spatio-temporally modulated waves and to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh–Nagumo model, transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in the presence of control, thereby stabilizing plane wave propagation. Conversely, in numerical simulations with the modified Oregonator model for the photosensitive Belousov–Zhabotinsky reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of inducing transversal instabilities and study the emerging wave patterns in a well-controlled manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grach, V. S., E-mail: vsgrach@app.sci-nnov.ru; Garasev, M. A.
2015-07-15
We consider the interaction of a isolated conducting sphere with a collisional weakly ionized plasma in an external field. We assume that the plasma consists of two species of ions neglecting of electrons. We take into account charging of the sphere due to sedimentation of plasma ions on it, the field of the sphere charge and the space charge, as well as recombination and molecular diffusion. The nonstationary problem of interaction of the sphere with the surrounding plasma is solved numerically. The temporal dynamics of the sphere charge and plasma perturbations is analyzed, as well as the properties of themore » stationary state. It is shown that the duration of transient period is determined by the recombination time and by the reverse conductivity of ions. The temporal dynamics of the sphere charge and plasma perturbations is determined by the intensity of recombination processes relative to the influence of the space charge field and diffusion. The stationary absolute value of the sphere charge increases linearly with the external electric field, decreases with the relative intensity of recombination processes and increases in the presence of substantial diffusion. The scales of the perturbed region in the plasma are determined by the radius of the sphere, the external field, the effect of diffusion, and the relative intensity of recombination processes. In the limiting case of the absence of molecular diffusion and a strong external field, the properties of the stationary state coincide with those obtained earlier as a result of approximate solution.« less
Direct Imaging of Long-Range Exciton Transport in Quantum Dot Superlattices by Ultrafast Microscopy.
Yoon, Seog Joon; Guo, Zhi; Dos Santos Claro, Paula C; Shevchenko, Elena V; Huang, Libai
2016-07-26
Long-range charge and exciton transport in quantum dot (QD) solids is a crucial challenge in utilizing QDs for optoelectronic applications. Here, we present a direct visualization of exciton diffusion in highly ordered CdSe QDs superlattices by mapping exciton population using ultrafast transient absorption microscopy. A temporal resolution of ∼200 fs and a spatial precision of ∼50 nm of this technique provide a direct assessment of the upper limit for exciton transport in QD solids. An exciton diffusion length of ∼125 nm has been visualized in the 3 ns experimental time window and an exciton diffusion coefficient of (2.5 ± 0.2) × 10(-2) cm(2) s(-1) has been measured for superlattices constructed from 3.6 nm CdSe QDs with center-to-center distance of 6.7 nm. The measured exciton diffusion constant is in good agreement with Förster resonance energy transfer theory. We have found that exciton diffusion is greatly enhanced in the superlattices over the disordered films with an order of magnitude higher diffusion coefficient, pointing toward the role of disorder in limiting transport. This study provides important understandings on energy transport mechanisms in both the spatial and temporal domains in QD solids.
EEG dynamical correlates of focal and diffuse causes of coma.
Kafashan, MohammadMehdi; Ryu, Shoko; Hargis, Mitchell J; Laurido-Soto, Osvaldo; Roberts, Debra E; Thontakudi, Akshay; Eisenman, Lawrence; Kummer, Terrance T; Ching, ShiNung
2017-11-15
Rapidly determining the causes of a depressed level of consciousness (DLOC) including coma is a common clinical challenge. Quantitative analysis of the electroencephalogram (EEG) has the potential to improve DLOC assessment by providing readily deployable, temporally detailed characterization of brain activity in such patients. While used commonly for seizure detection, EEG-based assessment of DLOC etiology is less well-established. As a first step towards etiological diagnosis, we sought to distinguish focal and diffuse causes of DLOC through assessment of temporal dynamics within EEG signals. We retrospectively analyzed EEG recordings from 40 patients with DLOC with consensus focal or diffuse culprit pathology. For each recording, we performed a suite of time-series analyses, then used a statistical framework to identify which analyses (features) could be used to distinguish between focal and diffuse cases. Using cross-validation approaches, we identified several spectral and non-spectral EEG features that were significantly different between DLOC patients with focal vs. diffuse etiologies, enabling EEG-based classification with an accuracy of 76%. Our findings suggest that DLOC due to focal vs. diffuse injuries differ along several electrophysiological parameters. These results may form the basis of future classification strategies for DLOC and coma that are more etiologically-specific and therefore therapeutically-relevant.
Characterizing caged molecules through flash photolysis and transient absorption spectroscopy.
Kao, Joseph P Y; Muralidharan, Sukumaran
2013-01-01
Caged molecules are photosensitive molecules with latent biological activity. Upon exposure to light, they are rapidly transformed into bioactive molecules such as neurotransmitters or second messengers. They are thus valuable tools for using light to manipulate biology with exceptional spatial and temporal resolution. Since the temporal performance of the caged molecule depends critically on the rate at which bioactive molecules are generated by light, it is important to characterize the kinetics of the photorelease process. This is accomplished by initiating the photoreaction with a very brief but intense pulse of light (i.e., flash photolysis) and monitoring the course of the ensuing reactions through various means, the most common of which is absorption spectroscopy. Practical guidelines for performing flash photolysis and transient absorption spectroscopy are described in this chapter.
NASA Astrophysics Data System (ADS)
Cho, Jae-Hwan; Lee, Hae-Kag; Yang, Han-Joon; Lee, Gui-Won; Park, Yong-Soon; Chung, Woon-Kwan
2013-01-01
In this study, the authors investigated whether periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging (DWI) can remove magnetic susceptibility artifacts and compared apparent diffusion coefficient (ADC) values for PROPELLER DWI and the common echo planar (EP) DWI. Twenty patients that underwent brain MRI with a metal dental implant were selected. A 3.0T MR scanner was then used to obtain EP DWI, PROPELLER DWI, and corresponding apparent diffusion coefficient (ADC) maps for a b-value of 0 and 1,000 s/mm2. The frequencies of magnetic susceptibility artifacts in four parts of the brain (bilateral temporal lobes, pons, and orbit) were selected. In the ADC maps, we measured the ADC values of both sides of the temporal lobe and the pons. According to the study results, the frequency of magnetic susceptibility artifacts in PROPELLER DW images was lower than it was in EP DW images. In ADC maps, the ADC values of the bilateral temporal lobes and the pons were all higher in PROPELLER ADC maps than in EP ADC maps. Our findings show that when a high-field MRI machine is used, magnetic susceptibility artifacts can distort anatomical structures and produce high-intensity signals. Furthermore, our findings suggest that in many cases, PROPELLER DWI would be helpful in terms of achieving a correct diagnosis.
NASA Astrophysics Data System (ADS)
Nikitin, Sergei Yu
2009-07-01
Formulas are derived for evaluating the diffusion coefficient and size of gas molecules from transient coherent anti-Stokes Raman scattering measurements. Numerical estimates are presented for hydrogen.
Online high-speed NIR diffuse-reflectance imaging spectroscopy in food quality monitoring
NASA Astrophysics Data System (ADS)
Driver, Richard D.; Didona, Kevin
2009-05-01
The use of hyperspectral technology in the NIR for food quality monitoring is discussed. An example of the use of hyperspectral diffuse reflectance scanning and post-processing with a chemometric model shows discrimination between four pharmaceutical samples comprising Aspirin, Acetaminophen, Vitamin C and Vitamin D.
Computationally efficient statistical differential equation modeling using homogenization
Hooten, Mevin B.; Garlick, Martha J.; Powell, James A.
2013-01-01
Statistical models using partial differential equations (PDEs) to describe dynamically evolving natural systems are appearing in the scientific literature with some regularity in recent years. Often such studies seek to characterize the dynamics of temporal or spatio-temporal phenomena such as invasive species, consumer-resource interactions, community evolution, and resource selection. Specifically, in the spatial setting, data are often available at varying spatial and temporal scales. Additionally, the necessary numerical integration of a PDE may be computationally infeasible over the spatial support of interest. We present an approach to impose computationally advantageous changes of support in statistical implementations of PDE models and demonstrate its utility through simulation using a form of PDE known as “ecological diffusion.” We also apply a statistical ecological diffusion model to a data set involving the spread of mountain pine beetle (Dendroctonus ponderosae) in Idaho, USA.
Laser induced Te diffusion in amorphous As50Se50 thin films probed by FTIR and XPS
NASA Astrophysics Data System (ADS)
Behera, Mukta; Panda, Rozalin; Naik, Ramakanta
2017-05-01
In the present report, we have demonstrated the combine effect of deposition and photo diffusion of Te into As50Se50 chalcogenide thin films. The influence of Te deposition onto As50Se50 layer has modified the optical parameters. The thermally evaporated Te/As50Se50 bilayer film is irradiated with near bandgap laser light. The optical and structural property of Te/As50Se50 bilayer film under the influence of laser irradiation has been investigated by X-ray photo electron spectroscopy and Fourier transform infrared spectroscopy. The As3d, Se3d and Te4d core level peaks of the photo diffused film show significant changes in shape and position in comparisons with those obtained for non irradiated films. The extensive analysis by deconvoluting the spectra shows the Te diffusion into As50Se50 matrix by forming Te-As-Se layer. The optical band gap of the diffused region is found to be decreased with the increase of density of states in the band edge. The change in transmissivity and absorption coefficient modified the optical constants which is discussed in the light of the present result.
NASA Astrophysics Data System (ADS)
Saini, R. K.; Varshney, G. K.; Dube, A.; Gupta, P. K.; Das, K.
2014-09-01
The influence of Curcumin and Chlorin-p6 (Cp6) on the real time diffusion kinetics of two organic cations, LDS (LDS-698) and Malachite Green (MG) across a negatively charged phospholipid bilayer is investigated by Second Harmonic (SH) spectroscopy. The diffusion time constant of LDS at neutral pH in liposomes containing either Curcumin or Cp6 is significantly reduced, the effect being more pronounced with Curcumin. At acidic pH, the quantum of reduction in the diffusion time constant of MG by both the drugs was observed to be similar. The relative changes in the average diffusion time constants of the cations with increasing drug concentration at pH 5.0 and 7.4 shows a substantial pH effect for Curcumin induced membrane permeability, while a modest pH effect was observed for Cp6 induced membrane permeability. Based on available evidence this can be attributed to the increased interaction between the drug and the polar head groups of the lipid at pH 7.4 where the drug resides closer to the lipid-water interface.
Warsi, Mohammed A; Molloy, William; Noseworthy, Michael D
2012-10-01
To correlate temporal fractal structure of resting state blood oxygen level dependent (rsBOLD) functional magnetic resonance imaging (fMRI) with in vivo proton magnetic resonance spectroscopy ((1)H-MRS), in Alzheimer's disease (AD) and healthy age-matched normal controls (NC). High temporal resolution (4 Hz) rsBOLD signal and single voxel (left putamen) magnetic resonance spectroscopy data was acquired in 33 AD patients and 13 NC. The rsBOLD data was analyzed using two types of fractal dimension (FD) analysis based on relative dispersion and frequency power spectrum. Comparisons in FD were performed between AD and NC, and FD measures were correlated with (1)H-MRS findings. Temporal fractal analysis of rsBOLD, was able to differentiate AD from NC subjects (P = 0.03). Low FD correlated with markers of AD severity including decreased concentrations of N-acetyl aspartate (R = 0.44, P = 0.015) and increased myoinositol (mI) (R = -0.45, P = 0.012). Based on these results we suggest fractal analysis of rsBOLD could provide an early marker of AD.
NASA Astrophysics Data System (ADS)
Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon
2013-07-01
This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.
Comparison of field and laboratory VNIR spectroscopy for profile soil property estimation
USDA-ARS?s Scientific Manuscript database
In-field, in-situ data collection with soil sensors has potential to improve the efficiency and accuracy of soil property estimates. Optical diffuse reflectance spectroscopy (DRS) has been used to estimate important soil properties, such as soil carbon, nitrogen, water content, and texture. Most pre...
NASA Astrophysics Data System (ADS)
Krmpot, Aleksandar J.; Nikolić, Stanko N.; Vitali, Marco; Papadopoulos, Dimitrios K.; Oasa, Sho; Thyberg, Per; Tisa, Simone; Kinjo, Masataka; Nilsson, Lennart; Gehring, Walter J.; Terenius, Lars; Rigler, Rudolf; Vukojevic, Vladana
2015-07-01
Quantitative confocal fluorescence microscopy imaging without scanning is developed for the study of fast dynamical processes. The method relies on the use of massively parallel Fluorescence Correlation Spectroscopy (mpFCS). Simultaneous excitation of fluorescent molecules across the specimen is achieved by passing a single laser beam through a Diffractive Optical Element (DOE) to generate a quadratic illumination matrix of 32×32 light sources. Fluorescence from 1024 illuminated spots is detected in a confocal arrangement by a matching matrix detector consisting of the same number of single-photon avalanche photodiodes (SPADs). Software was developed for data acquisition and fast autoand cross-correlation analysis by parallel signal processing using a Graphic Processing Unit (GPU). Instrumental performance was assessed using a conventional single-beam FCS instrument as a reference. Versatility of the approach for application in biomedical research was evaluated using ex vivo salivary glands from Drosophila third instar larvae expressing a fluorescently-tagged transcription factor Sex Combs Reduced (Scr) and live PC12 cells stably expressing the fluorescently tagged mu-opioid receptor (MOPeGFP). We show that quantitative mapping of local concentration and mobility of transcription factor molecules across the specimen can be achieved using this approach, which paves the way for future quantitative characterization of dynamical reaction-diffusion landscapes across live cells/tissue with a submillisecond temporal resolution (presently 21 μs/frame) and single-molecule sensitivity.
Near-infrared spectroscopy of renal tissue in vivo
NASA Astrophysics Data System (ADS)
Grosenick, Dirk; Steinkellner, Oliver; Wabnitz, Heidrun; Macdonald, Rainer; Niendorf, Thoralf; Cantow, Kathleen; Flemming, Bert; Seeliger, Erdmann
2013-03-01
We have developed a method to quantify hemoglobin concentration and oxygen saturation within the renal cortex by near-infrared spectroscopy. A fiber optic probe was used to transmit the radiation of three semiconductor lasers at 690 nm, 800 nm and 830 nm to the tissue, and to collect diffusely remitted light at source-detector separations from 1 mm to 4 mm. To derive tissue hemoglobin concentration and oxygen saturation of hemoglobin the spatial dependence of the measured cw intensities was fitted by a Monte Carlo model. In this model the tissue was assumed to be homogeneous. The scaling factors between measured intensities and simulated photon flux were obtained by applying the same setup to a homogeneous semi-infinite phantom with known optical properties and by performing Monte Carlo simulations for this phantom. To accelerate the fit of the tissue optical properties a look-up table of the simulated reflected intensities was generated for the needed range of absorption and scattering coefficients. The intensities at the three wavelengths were fitted simultaneously using hemoglobin concentration, oxygen saturation, the reduced scattering coefficient at 800 nm and the scatter power coefficient as fit parameters. The method was employed to study the temporal changes of renal hemoglobin concentration and blood oxygenation on an anesthetized rat during a short period of renal ischemia induced by aortic occlusion and during subsequent reperfusion.
Jochum, Tobias; Michalzik, Beate; Bachmann, Anne; Popp, Jürgen; Frosch, Torsten
2015-05-07
Soil and groundwater contamination with benzene can cause serious environmental damage. However, many soil microorganisms are capable to adapt and are known to strongly control the fate of organic contamination. Innovative cavity enhanced Raman multi-gas spectroscopy (CERS) was applied to investigate the short-term response of the soil micro-flora to sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. (13)C-labeled benzene was spiked on a silty-loamy soil column in order to track and separate the changes in heterotrophic soil respiration - involving (12)CO2 and O2- from the natural attenuation process of benzene degradation to ultimately form (13)CO2. The respiratory quotient (RQ) decreased from a value 0.98 to 0.46 directly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with the maximum (13)CO2 concentration rate (0.63 μmol m(-2) s(-1)), indicating the highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into (13)CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore. The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration.
Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy
NASA Astrophysics Data System (ADS)
Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka
2014-03-01
Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.
Klein, Tobias; Wu, Wenchang; Rausch, Michael Heinrich; Giraudet, Cédric; Koller, Thomas M; Fröba, Andreas Paul
2018-06-11
This study contributes to a fundamental understanding how the liquid structure in a model system consisting of weakly associative n-hexane ( n-C 6 H 14 ) and carbon dioxide (CO 2 ) influences the Fickian diffusion process. For this, the benefits of light scattering experiments and molecular dynamics (MD) simulations at macroscopic thermodynamic equilibrium were combined synergistically. Our reference Fickian diffusivities measured by dynamic light scattering (DLS) revealed an unusual trend with increasing CO 2 mole fractions up to a CO 2 concentration of about 70 mol%, which agrees with our simulation results. The molecular impacts on the Fickian diffusion were analyzed by MD simulations, where kinetic contributions related to the Maxwell-Stefan (MS) diffusivity and structural contributions quantified by the thermodynamic factor were studied separately. Both the MS diffusivity and the thermodynamic factor indicate the deceleration of Fickian diffusion compared to an ideal mixture behavior. Computed radial distribution functions as well as a significant blue-shift of the CH-stretching modes of n-C 6 H 14 identified by Raman spectroscopy show that the slowing-down of the diffusion is caused by a structural organization in the binary mixtures over a broad concentration range in the form of self-associated n-C 6 H 14 and CO 2 domains. These networks start to form close to the infinite dilution limits and seem to have their largest extent at a solute-solvent transition point at about 70 mol% of CO 2 . The current results not only improve the general understanding of mass diffusion in liquids, but also serve to develop sound prediction models for Fick diffusivities.
Microencephaloceles: another dual pathology of intractable temporal lobe epilepsy in childhood.
Aquilina, Kristian; Clarke, Dave F; Wheless, James W; Boop, Frederick A
2010-04-01
Temporal lobe encephaloceles can be associated with temporal lobe epilepsy. The authors report on the case of an adolescent with multiple microencephaloceles, in the anterolateral middle fossa floor, identified at surgery (temporal lobectomy) for intractable partial-onset seizures of temporal origin. Magnetic resonance imaging revealed only hippocampal atrophy. Subdural electrodes demonstrated ictal activity arising primarily from the anterior and lateral temporal lobe, close to the microencephaloceles, spreading to the anterior and posterior mesial structures. Pathological examination revealed diffuse temporal gliosis involving the hippocampus, together with microdysgenesis of the amygdala. The literature on epilepsy secondary to encephaloceles is reviewed and the contribution of the microencephaloceles to the seizure disorder in this patient is discussed.
Stress-Induced Resistive Switching in Pt/HfO2/Ti Devices
NASA Astrophysics Data System (ADS)
Zeevi, Gilad; Katsman, Alexander; Yaish, Yuval E.
2018-02-01
In the present work, we study the initial SET mechanism of resistive switching (RS) in Pt/HfO2/Ti devices under a static electrical stress and the RS mechanism under a bias sweeping mode with rates of 100 mV/s-300 mV/s. We characterize the thin HfO2 dielectric layer by x-ray photoelectron spectroscopy and x-ray diffraction. These findings show that the layer structure is stoichiometric and nanocrystalline with a crystal diameter of ˜ 14 Å. We measure the temporal dependence of the conductive filament growth at different temperatures and for various biases. Furthermore, these devices present stable bipolar resistive switching with a high-to-low resistive state (HRS/LRS) ratio of more than three orders of magnitude. Activation energy E RS ≈ 0.56 eV and drift current parameter V 0 ≈ 0.07 V were determined from the temporal dependence of the initial `SET' process, first HRS to LRS transition [for static electrical stress of V DS = (4.7-5.0 V)]. We analyze the results according to our model suggesting generation of double-charge oxygen vacancies at the anode and their diffusion across the dielectric layer. The double-charge vacancies transform to a single charge and then to neutral vacancies by capturing hot electrons, and form a conductive filament as soon as a critical neutral-vacancy cluster is formed across the dielectric layer.
Longitudinal Whole-Brain N-acetylaspartate Concentration in Healthy Adults
Rigotti, Daniel J.; Kirov, Ivan I.; Djavadi, Bejan; Perry, Nissa N.; Babb, James S.; Gonen, Oded
2011-01-01
BACKGROUND AND PURPOSE Though N-acetylaspartate (NAA) is often used as a marker of neural integrity and health in different neurological disorders, the temporal behavior of its whole-brain concentration (WBNAA) is not well characterized. Our goal, therefore, was to establish its normal variations in a cohort of healthy adults over typical clinical trial periods. METHODS Baseline amount of brain NAA, QNAA, was obtained with non-localizing proton MR spectroscopy from 9 subjects (7 women, 2 men) 31.2±5.6 years old. QNAA was converted into absolute millimole amount using phantom-replacement. The WBNAA concentration was derived by dividing QNAA with the brain parenchyma volume, VB, segmented from MRI. Temporal variations were determined with four annual scans of each participant. RESULTS The distribution of WBNAA levels was not different among time points with respect to the mean, 12.1±1.5 mM (p 0.6) nor was its intra-subject change (CV = 8.6%) significant between any two scans (p 0.5). There was a small (0.2 mL), but significant (p=0.05) annual VB decline. CONCLUSION WBNAA is stable over a three year period in healthy adults. It qualifies therefore, as a biomarker for global neuronal loss and dysfunction in diffuse neurological disorders that may be well worth considering as a secondary outcome measure candidate for clinical trials. PMID:21511862
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
Anderson, T. Anthony; Kang, Jeon Woong; Gubin, Tatyana; Dasari, Ramachandra R.; So, Peter T. C.
2016-01-01
BACKGROUND Neuraxial anesthesia and epidural steroid injection techniques require precise anatomical targeting to ensure successful and safe analgesia. Previous studies suggest that only some of the tissues encountered during these procedures can be identified by spectroscopic methods, and no previous study has investigated the use of Raman, diffuse reflectance, and fluorescence spectroscopies. The authors hypothesized that real-time needle-tip spectroscopy may aid epidural needle placement and tested the ability of spectroscopy to distinguish each of the tissues in the path of neuraxial needles. METHODS For comparison of detection methods, the spectra of individual, dissected ex vivo paravertebral and neuraxial porcine tissues were collected using Raman spectroscopy (RS), diffuse reflectance spectroscopy (DRS), and fluorescence spectroscopy (FS). Real-time spectral guidance was tested using a 2 mm inner diameter fiber optic probe-in-needle device. Raman spectra were collected during the needle’s passage through intact paravertebral and neuraxial porcine tissue and analyzed afterward. The RS tissue signatures were verified as mapping to individual tissue layers using histochemical staining and widefield microscopy. RESULTS Raman spectroscopy revealed a unique spectrum for all ex vivo paravertebral and neuraxial tissue layers; DRS and FS spectra were not distinct for all tissues. Moreover, when accounting for the expected order of tissues, real-time Raman spectra recorded during needle insertion also permitted identification of each paravertebral and neuraxial porcine tissue. CONCLUSIONS This study demonstrates Raman spectroscopy can distinguish the tissues encountered during epidural needle insertion. This technology may prove useful during needle placement by providing evidence of its anatomical localization. PMID:27466032
Studholme, Colin; Frias, Antonio E.
2017-01-01
Altered macroscopic anatomical characteristics of the cerebral cortex have been identified in individuals affected by various neurodevelopmental disorders. However, the cellular developmental mechanisms that give rise to these abnormalities are not understood. Previously, advances in image reconstruction of diffusion magnetic resonance imaging (MRI) have made possible high-resolution in utero measurements of water diffusion anisotropy in the fetal brain. Here, diffusion anisotropy within the developing fetal cerebral cortex is longitudinally characterized in the rhesus macaque, focusing on gestation day (G85) through G135 of the 165 d term. Additionally, for subsets of animals characterized at G90 and G135, immunohistochemical staining was performed, and 3D structure tensor analyses were used to identify the cellular processes that most closely parallel changes in water diffusion anisotropy with cerebral cortical maturation. Strong correlations were found between maturation of dendritic arbors on the cellular level and the loss of diffusion anisotropy with cortical development. In turn, diffusion anisotropy changes were strongly associated both regionally and temporally with cortical folding. Notably, the regional and temporal dependence of diffusion anisotropy and folding were distinct from the patterns observed for cerebral cortical surface area expansion. These findings strengthen the link proposed in previous studies between cellular-level changes in dendrite morphology and noninvasive diffusion MRI measurements of the developing cerebral cortex and support the possibility that, in gyroencephalic species, structural differentiation within the cortex is coupled to the formation of gyri and sulci. SIGNIFICANCE STATEMENT Abnormal brain morphology has been found in populations with neurodevelopmental disorders. However, the mechanisms linking cellular level and macroscopic maturation are poorly understood, even in normal brains. This study contributes new understanding to this subject using serial in utero MRI measurements of rhesus macaque fetuses, from which macroscopic and cellular information can be derived. We found that morphological differentiation of dendrites was strongly associated both regionally and temporally with folding of the cerebral cortex. Interestingly, parallel associations were not observed with cortical surface area expansion. These findings support the possibility that perturbed morphological differentiation of cells within the cortex may underlie abnormal macroscopic characteristics of individuals affected by neurodevelopmental disorders. PMID:28069920
Macháň, Radek; Hof, Martin
2010-01-01
Fluorescence correlation spectroscopy (FCS) is a single molecule technique used mainly for determination of mobility and local concentration of molecules. This review describes the specific problems of FCS in planar systems and reviews the state of the art experimental approaches such as 2-focus, Z-scan or scanning FCS, which overcome most of the artefacts and limitations of standard FCS. We focus on diffusion measurements of lipids and proteins in planar lipid membranes and review the contributions of FCS to elucidating membrane dynamics and the factors influencing it, such as membrane composition, ionic strength, presence of membrane proteins or frictional coupling with solid support. PMID:20386647
Defects in ZnO nanorods prepared by a hydrothermal method.
Tam, K H; Cheung, C K; Leung, Y H; Djurisić, A B; Ling, C C; Beling, C D; Fung, S; Kwok, W M; Chan, W K; Phillips, D L; Ding, L; Ge, W K
2006-10-26
ZnO nanorod arrays were fabricated using a hydrothermal method. The nanorods were studied by scanning electron microscopy, photoluminescence (PL), time-resolved PL, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy before and after annealing in different environments and at different temperatures. Annealing atmosphere and temperature had significant effects on the PL spectrum, while in all cases the positron diffusion length and PL decay times were increased. We found that, while the defect emission can be significantly reduced by annealing at 200 degrees C, the rods still have large defect concentrations as confirmed by their low positron diffusion length and short PL decay time constants.
NASA Astrophysics Data System (ADS)
Sujatha, N.; Anand, B. S. Suresh; Nivetha, K. Bala; Narayanamurthy, V. B.; Seshadri, V.; Poddar, R.
2015-07-01
Light-based diagnostic techniques provide a minimally invasive way for selective biomarker estimation when tissues transform from a normal to a malignant state. Spectroscopic techniques based on diffuse reflectance characterize the changes in tissue hemoglobin/oxygenation levels during the tissue transformation process. Recent clinical investigations have shown that changes in tissue oxygenation and microcirculation are observed in diabetic subjects in the initial and progressive stages. In this pilot study, we discuss the potential of diffuse reflectance spectroscopy (DRS) in the visible (Vis) range to differentiate the skin microcirculatory hemoglobin levels between normal and advanced diabetic subjects with and without neuropathy. Average concentration of hemoglobin as well as hemoglobin oxygen saturation within the probed tissue volume is estimated for a total of four different sites in the foot sole. The results indicate a statistically significant decrease in average total hemoglobin and increase in hemoglobin oxygen saturation levels for diabetic foot compared with a normal foot. The present study demonstrates the ability of reflectance spectroscopy in the Vis range to determine and differentiate the changes in tissue hemoglobin and hemoglobin oxygen saturation levels in normal and diabetic subjects.
Rooney, O M; Troke, J; Nicholson, J K; Griffin, J L
2003-11-01
High-resolution magic angle spinning (HRMAS) (1)H NMR spectroscopy is ideal for monitoring the metabolic environment within tissues, particularly when spectra are weighted by physical properties such as T(1) and T(2) relaxation times and apparent diffusion coefficients (ADCs). In this study, spectral-editing using T(1) and T(2) relaxation times and ADCs at variable diffusion times was used in conjunction with HRMAS (1)H NMR spectroscopy at 14.1 T in liver tissue. To enhance the sensitivity of ADC measurements to low molecular weight metabolites a T(2) spin echo was included in a standard stimulated gradient spin-echo sequence. Fatty liver induced in rats by chronic orotic acid feeding was investigated using this modified sequence. An increase in the combined ADC for the co-resonant peaks glucose, betaine, and TMAO during fatty liver disease was detected (ADCs = 0.60 +/- 0.11 and 0.35 +/- 0.1 * 10(-9) m(2)s(-1) (n = 3) for rats fed with and without orotic acid), indicative of a reduction in glucose and betaine and an increase in TMAO. Copyright 2003 Wiley-Liss, Inc.
Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy
Lau, Condon; Šćepanović, Obrad; Mirkovic, Jelena; McGee, Sasha; Yu, Chung-Chieh; Fulghum, Stephen; Wallace, Michael; Tunnell, James; Bechtel, Kate; Feld, Michael
2009-01-01
Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett’s esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued. PMID:19405760
Advances in magnetic resonance neuroimaging techniques in the evaluation of neonatal encephalopathy.
Panigrahy, Ashok; Blüml, Stefan
2007-02-01
Magnetic resonance (MR) imaging has become an essential tool in the evaluation of neonatal encephalopathy. Magnetic resonance-compatible neonatal incubators allow sick neonates to be transported to the MR scanner, and neonatal head coils can improve signal-to-noise ratio, critical for advanced MR imaging techniques. Refinement of conventional imaging techniques include the use of PROPELLER techniques for motion correction. Magnetic resonance spectroscopic imaging and diffusion tensor imaging provide quantitative assessment of both brain development and brain injury in the newborn with respect to metabolite abnormalities and hypoxic-ischemic injury. Knowledge of normal developmental changes in MR spectroscopy metabolite concentration and diffusion tensor metrics is essential to interpret pathological cases. Perfusion MR and functional MR can provide additional physiological information. Both MR spectroscopy and diffusion tensor imaging can provide additional information in the differential of neonatal encephalopathy, including perinatal white matter injury, hypoxic-ischemic brain injury, metabolic disease, infection, and birth injury.
Serial proton MR spectroscopy and diffusion tensor imaging in infantile Balo's concentric sclerosis.
Dreha-Kulaczewski, Steffi F; Helms, Gunther; Dechent, Peter; Hofer, Sabine; Gärtner, Jutta; Frahm, Jens
2009-02-01
Proton magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) yield different parameters for characterizing the evolution of a demyelinating white matter disease. The purpose was to elucidate biochemical and microstructural changes in Balo's concentric sclerosis lesions and to correlate the findings with the clinical course. Localized short-echo time MRS and DTI were performed over 6 years in a left occipital lesion of a female patient (age at onset 13.8 years) with Balo's concentric sclerosis. A right homonym hemianopsia persisted. Metabolite patterns were in line with initial active demyelination followed by gliosis and partial recovery of neuroaxonal metabolites. Fractional anisotropy and mean diffusivity of tissue water remained severely altered. Fiber tracking confirmed a disruption in the geniculo-calcarine tract as well as involvement of the corpus callosum. MRS and DTI depict complementary parameters, but DTI seems to correlate better with clinical symptoms.
Reaction layer formation at the graphite/copper-chromium alloy interface
NASA Technical Reports Server (NTRS)
Devincent, Sandra M.; Michal, Gary M.
1992-01-01
Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, auger electron spectroscopy, and x ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.
Fast internal dynamics in alcohol dehydrogenase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monkenbusch, M.; Stadler, A., E-mail: a.stadler@fz-juelich.de; Biehl, R.
2015-08-21
Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in themore » fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.« less
Galicia, Policarpo; Batina, Nikola; González, Ignacio
2006-07-27
This work studies the evolution of 1018 carbon steel surfaces during 3-15 day immersion in alkaline sour medium 0.1 M (NH4)2S and 10 ppm CN(-) as (NaCN). During this period of time, surfaces were jointly characterized by electrochemical techniques in situ (electrochemical impedance spectroscopy, EIS) and spectroscopic techniques ex situ (X-ray photoelectron spectroscopy, XPS). The results obtained by these techniques allowed for a description of electrical and chemical properties of the films of corrosion products formed at the 1018 steel surface. There is an interconversion cycle of chemical species that form films of corrosion products whose conversion reactions favor two different types of diffusions inside the films: a chemical diffusion of iron cations and a typical diffusion of atomic hydrogen. These phenomena jointly control the passivity of the interface attacked by the corrosive medium.
Reflectance spectroscopy for noninvasive evaluation of hair follicle stage
NASA Astrophysics Data System (ADS)
Liu, Caihua; Guan, Yue; Wang, Jianru; Zhong, Xiewei; Liu, Xiuli; Zhu, Dan
2015-05-01
Hair follicle offers an excellent model for systems biology and regenerative medicine. So far, the stages of hair follicle growth have been evaluated by histological examination. In this work, a noninvasive spectroscopy was proposed by measuring the diffuse reflectance of mouse skin and analyzing the melanin value. Results show that the skin diffuse reflectance was relatively high when hair follicles were at the telogen stage and at the beginning of the anagen stage, and decreased with the progression of the anagen stage. When the hair follicle entered into the catagen stage, the diffuse reflectance gradually increased. The changes in the melanin content of skin had contrary dynamics. Substages of the hair follicle cycle could be distinguished by comparing the changes in melanin value with the histological examination. This study provided a new method for noninvasive evaluation of the hair follicle stage, and should be valuable for basic and therapeutic investigations on hair regeneration.
Reaction layer formation at the graphite/copper-chromium alloy interface
NASA Technical Reports Server (NTRS)
Devincent, Sandra M.; Michal, Gary M.
1993-01-01
Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X-ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.
Yasoshima, Nobuhiro; Fukuoka, Mizuki; Kitano, Hiromi; Kagaya, Shigehiro; Ishiyama, Tatsuya; Gemmei-Ide, Makoto
2017-05-18
Recrystallization behaviors of water sorbed into four poly(meth)acrylates, poly(2-methoxyethyl acrylate), poly(tetrahydrofurfuryl acrylate), poly(methyl acrylate), and poly(methyl methacrylate), are investigated by variable-temperature mid-infrared (VT-MIR) spectroscopy and molecular dynamics (MD) simulation. VT-MIR spectra demonstrate that recrystallization temperatures of water sorbed into the polymers are positively correlated with their glass-transition temperatures reported previously. The present MD simulation shows that a lower-limit temperature of the diffusion for the sorbed water and the glass-transition temperatures of the polymers also have a positive correlation, indicating that the recrystallization is controlled by diffusion mechanism rather than reorientation mechanism. Detailed molecular processes of not only recrystallization during rewarming but also crystallization during cooling and hydrogen-bonding states of water in the polymers are systematically analyzed and discussed.
Assessing the future of diffuse optical imaging technologies for breast cancer management
Tromberg, Bruce J.; Pogue, Brian W.; Paulsen, Keith D.; Yodh, Arjun G.; Boas, David A.; Cerussi, Albert E.
2008-01-01
Diffuse optical imaging (DOI) is a noninvasive optical technique that employs near-infrared (NIR) light to quantitatively characterize the optical properties of thick tissues. Although NIR methods were first applied to breast transillumination (also called diaphanography) nearly 80 years ago, quantitative DOI methods employing time- or frequency-domain photon migration technologies have only recently been used for breast imaging (i.e., since the mid-1990s). In this review, the state of the art in DOI for breast cancer is outlined and a multi-institutional Network for Translational Research in Optical Imaging (NTROI) is described, which has been formed by the National Cancer Institute to advance diffuse optical spectroscopy and imaging (DOSI) for the purpose of improving breast cancer detection and clinical management. DOSI employs broadband technology both in near-infrared spectral and temporal signal domains in order to separate absorption from scattering and quantify uptake of multiple molecular probes based on absorption or fluorescence contrast. Additional dimensionality in the data is provided by integrating and co-registering the functional information of DOSI with x-ray mammography and magnetic resonance imaging (MRI), which provide structural information or vascular flow information, respectively. Factors affecting DOSI performance, such as intrinsic and extrinsic contrast mechanisms, quantitation of biochemical components, image formation∕visualization, and multimodality co-registration are under investigation in the ongoing research NTROI sites. One of the goals is to develop standardized DOSI platforms that can be used as stand-alone devices or in conjunction with MRI, mammography, or ultrasound. This broad-based, multidisciplinary effort is expected to provide new insight regarding the origins of breast disease and practical approaches for addressing several key challenges in breast cancer, including: Detecting disease in mammographically dense tissue, distinguishing between malignant and benign lesions, and understanding the impact of neoadjuvant chemotherapies. PMID:18649477
A diffusion perspective on temporal networks: A case study on a supermarket
NASA Astrophysics Data System (ADS)
Deng, Shiguo; Qiu, Lu; Yang, Yue; Yang, Huijie
2016-01-01
From a large amount of records, one can extract behavioral characteristics of a social system at different scales. Theoretically, it can help us to know how the global behavior of a social system is formed from individual activities. Practically, it can be used to optimize and even to control the social system. Complicated relationships between the individuals form a network, which evolves with time. The behavior of the system can be accordingly understood in the framework of temporal network. In the present paper, instead of focusing on microscopic structures, we develop a framework to investigate temporal networks from the viewpoint of diffusion process, in which each snapshot network is divided into groups and the ID number of the group a node belongs to is used to measure its state. By this way trajectories of the nodes form an ensemble of realizations of a stochastic process. As an illustration, we investigate the diffusion behavior of a supermarket. One can find that with the increase of time the customers cluster and separate into different groups. Meanwhile, the system evolves in a significant order way, instead of a complete random one.
Pre-dementia memory impairment is associated with white matter tract affection.
Grambaite, Ramune; Reinvang, Ivar; Selnes, Per; Fjell, Anders M; Walhovd, Kristine B; Stenset, Vidar; Fladby, Tormod
2011-01-01
Mild cognitive impairment (MCI), especially amnestic, often represents pre-dementia Alzheimer's disease, characterized by medial temporal lobe atrophy, while white matter (WM) alterations are insufficiently described. We analyze both cortical morphometric and WM diffusivity differences in amnestic versus non-amnestic subtypes and ask if memory and WM tract affection are related independently of cortical atrophy. Forty-nine patients from a university-hospital based memory clinic with a score of 3 on the Global Deterioration Scale aged 43-77 years (45% female) were included. Two neuropsychologists have classified cases as amnestic (aMCI), non-amnestic (naMCI), or less advanced (laMCI), not satisfying criteria for aMCI/naMCI. Diffusion tensor imaging (DTI) WM tract and morphometric data of the temporal-parietal memory network were compared among patient subtypes and related to story, word list, and visual memory. WM radial and mean diffusivity (DR and MD), underlying the entorhinal cortex, were higher in aMCI compared with laMCI. WM DR and MD, underlying the entorhinal, parahippocampal, and middle temporal cortex, explained unique variance in word list and story memory, and this was not due to secondary effects of cortical thinning. DTI may thus potentially aid diagnosis in early disease stages. ).
Spatio-temporal diffusion of dynamic PET images
NASA Astrophysics Data System (ADS)
Tauber, C.; Stute, S.; Chau, M.; Spiteri, P.; Chalon, S.; Guilloteau, D.; Buvat, I.
2011-10-01
Positron emission tomography (PET) images are corrupted by noise. This is especially true in dynamic PET imaging where short frames are required to capture the peak of activity concentration after the radiotracer injection. High noise results in a possible bias in quantification, as the compartmental models used to estimate the kinetic parameters are sensitive to noise. This paper describes a new post-reconstruction filter to increase the signal-to-noise ratio in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the 4D image based on the time activity curve (TAC) in each voxel. It reduces the noise in homogeneous areas while preserving the distinct kinetics in regions of interest corresponding to different underlying physiological processes. Neither anatomical priors nor the kinetic model are required. We propose an automatic selection of the scale parameter involved in the diffusion process based on a robust statistical analysis of the distances between TACs. The method is evaluated using Monte Carlo simulations of brain activity distributions. We demonstrate the usefulness of the method and its superior performance over two other post-reconstruction spatial and temporal filters. Our simulations suggest that the proposed method can be used to significantly increase the signal-to-noise ratio in dynamic PET imaging.
BiOBr microspheres for photocatalytic degradation of an anionic dye
NASA Astrophysics Data System (ADS)
Mera, Adriana C.; Váldes, Héctor; Jamett, Fabiola J.; Meléndrez, M. F.
2017-03-01
BiOBr microspheres were obtained using a solvothermal synthesis route in the presence of ethylene glycol and KBr at 145 °C, for 18 h. BiOBr microspheres were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), nitrogen adsorption-desorption isotherms analysis, diffuse reflectance spectroscopy (DRS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Additionally, the theoretical and experimental isoelectric points (IEP) of BiOBr nanostructured microspheres were determined, and pH's influence on the degradation of an anionic dye (methyl orange) under simulated solar radiation was analyzed. Results show that 97% of methyl orange is removed at pH 2 after 60 min of photocatalytic reaction. Finally, DRIFTS studies permit the proposal of a surface reaction mechanism of the photocatalytic oxidation of MO using BiOBr microspheres.
Fluorescence correlation spectroscopy: the case of subdiffusion.
Lubelski, Ariel; Klafter, Joseph
2009-03-18
The theory of fluorescence correlation spectroscopy is revisited here for the case of subdiffusing molecules. Subdiffusion is assumed to stem from a continuous-time random walk process with a fat-tailed distribution of waiting times and can therefore be formulated in terms of a fractional diffusion equation (FDE). The FDE plays the central role in developing the fluorescence correlation spectroscopy expressions, analogous to the role played by the simple diffusion equation for regular systems. Due to the nonstationary nature of the continuous-time random walk/FDE, some interesting properties emerge that are amenable to experimental verification and may help in discriminating among subdiffusion mechanisms. In particular, the current approach predicts 1), a strong dependence of correlation functions on the initial time (aging); 2), sensitivity of correlation functions to the averaging procedure, ensemble versus time averaging (ergodicity breaking); and 3), that the basic mean-squared displacement observable depends on how the mean is taken.
Griffin, J L; Walker, L; Shore, R F; Nicholson, J K
2001-06-01
1. High-resolution magic angle spinning (MAS) 1H-NMR spectroscopy was used to study renal metabolism and the toxicity of As3+, a common environmental contaminant, in the bank vole (Clethrionomys glareolus), a wild species of rodent. 2. Following a 14-day exposure to an environmentally relevant dose of As2O3 (28 mg kg(-1) feed), voles displayed tissue damage at autopsy. MAS 1H spectra indicated abnormal lipid profiles in these samples. 3. Tissue necrosis was also evident from measurements of the apparent diffusion coefficient of water in the intact tissue using MAS 1H diffusion-weighted spectroscopy, its first application to toxicology. 4. Comparison of renal tissue from the wood mouse (Apodemus sylvaticus) exposed to identical exposure levels of As3+ suggested that the bank vole is particularly vulnerable to As3+ toxicity.
Alayed, Mrwan; Deen, M Jamal
2017-09-14
Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system.
Influence of earlobe thickness on near infrared spectroscopy
NASA Astrophysics Data System (ADS)
Jiang, Jingying; Wang, Tianpei; Li, Si; Li, Lin; Liu, Jiajia; Xu, Kexin
2017-03-01
Near-infrared spectroscopy has been recognized as a potential technology for noninvasive blood glucose sensing. However, the detected spectral signal is unstable mainly because of (1) the weak light absorption of glucose itself within NIR range, (2) the influence of temperature and individual differences of biotissue. Our previous results demonstrated that the synergistic effect of both transmittance and reflectance could enhance the strength of the detection signal. In this talk, we design a set of experiments to analyze the effect of earlobe thickness on Near Infrared spectroscopic measurement by using home-made optical fiber probe within the wavelength of 1000-1600nm. Firstly, we made a MC simulation of single-layer skin model and five-layer skin model to get the diffused transmittance spectra and diffused reflectance spectra under different optaical path lengths. And then we obtain the spectra of the earlobes from different volunteers by the same way. The experimental results showed that with the increase of the thickness,the light intensity of diffused transmittance decreases, and the light intensity of diffused reflectance remaines substantially unchanged.
Diffusion spectral imaging modules correlate with EEG LORETA neuroimaging modules.
Thatcher, Robert W; North, Duane M; Biver, Carl J
2012-05-01
The purpose of this study was to test the hypothesis that the highest temporal correlations between 3-dimensional EEG current source density corresponds to anatomical Modules of high synaptic connectivity. Eyes closed and eyes open EEG was recorded from 19 scalp locations with a linked ears reference from 71 subjects age 13-42 years. LORETA was computed from 1 to 30 Hz in 2,394 cortical gray matter voxels that were grouped into six anatomical Modules corresponding to the ROIs in the Hagmann et al.'s [2008] diffusion spectral imaging (DSI) study. All possible cross-correlations between voxels within a DSI Module were compared with the correlations between Modules. The Hagmann et al. [ 2008] Module correlation structure was replicated in the correlation structure of EEG three-dimensional current source density. EEG Temporal correlation between brain regions is related to synaptic density as measured by diffusion spectral imaging. Copyright © 2011 Wiley-Liss, Inc.
Speckle reduction in echocardiography by temporal compounding and anisotropic diffusion filtering
NASA Astrophysics Data System (ADS)
Giraldo-Guzmán, Jader; Porto-Solano, Oscar; Cadena-Bonfanti, Alberto; Contreras-Ortiz, Sonia H.
2015-01-01
Echocardiography is a medical imaging technique based on ultrasound signals that is used to evaluate heart anatomy and physiology. Echocardiographic images are affected by speckle, a type of multiplicative noise that obscures details of the structures, and reduces the overall image quality. This paper shows an approach to enhance echocardiography using two processing techniques: temporal compounding and anisotropic diffusion filtering. We used twenty echocardiographic videos that include one or three cardiac cycles to test the algorithms. Two images from each cycle were aligned in space and averaged to obtain the compound images. These images were then processed using anisotropic diffusion filters to further improve their quality. Resultant images were evaluated using quality metrics and visual assessment by two medical doctors. The average total improvement on signal-to-noise ratio was up to 100.29% for videos with three cycles, and up to 32.57% for videos with one cycle.
Fuji apple storage time rapid determination method using Vis/NIR spectroscopy.
Liu, Fuqi; Tang, Xuxiang
2015-01-01
Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories.
Fuji apple storage time rapid determination method using Vis/NIR spectroscopy
Liu, Fuqi; Tang, Xuxiang
2015-01-01
Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories. PMID:25874818
NASA Astrophysics Data System (ADS)
Pfeuffer, Josef; Lin, Joseph C.; DelaBarre, Lance; Ugurbil, Kamil; Garwood, Michael
2005-11-01
The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of 13C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). 13C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, { 1H- 13C}-lactate and { 1H- 13C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into { 1H- 13C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/μm 2). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, 1H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([ 13C] lactate) originates from an intracellular compartment.
Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel
2014-08-14
This work studies the applicability of a Diffuse Reflectance Infrared Fourier Transform handheld device to perform in situ analyses on Cultural Heritage assets. This portable diffuse reflectance spectrometer has been used to characterise and diagnose the conservation state of (a) building materials of the Guevara Palace (15th century, Segura, Basque Country, Spain) and (b) different 19th century wallpapers manufactured by the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) and by the well known Dufour and Leroy manufacturers (Paris, France), all of them belonging to the Torre de los Varona Castle (Villanañe, Basque Country, Spain). In all cases, in situ measurements were carried out and also a few samples were collected and measured in the laboratory by diffuse reflectance spectroscopy (DRIFT) in order to validate the information obtained by the handheld instrument. In the analyses performed in situ, distortions in the diffuse reflectance spectra can be observed due to the presence of specular reflection, showing the inverted bands caused by the Reststrahlen effect, in particular on those IR bands with the highest absorption coefficients. This paper concludes that the results obtained in situ by a diffuse reflectance handheld device are comparable to those obtained with laboratory diffuse reflectance spectroscopy equipment and proposes a few guidelines to acquire good spectra in the field, minimising the influence caused by the specular reflection. Copyright © 2014 Elsevier B.V. All rights reserved.
Eriksen, Anne Z; Brewer, Jonathan; Andresen, Thomas L; Urquhart, Andrew J
2017-04-30
The diffusion dynamics of nanocarriers in the vitreous and the influence of nanocarrier physicochemical properties on these dynamics is an important aspect of the efficacy of intravitreal administered nanomedicines for the treatment of posterior segment eye diseases. Here we use fluorescence correlation spectroscopy (FCS) to determine liposome diffusion coefficients in the intact vitreous (D Vit ) of ex vivo porcine eyes using a modified Miyake-Apple technique to minimize the disruption of the vitreous fine structure. We chose to investigate whether the zeta potential of polyethylene glycol functionalized (i.e. PEGylated) liposomes altered liposome in situ diffusion dynamics in the vitreous. Non-PEGylated cationic nanocarriers have previously shown little to no diffusion in the vitreous, whilst neutral and anionic have shown diffusion. The liposomes investigated had diameters below 150nm and zeta potentials ranging from -20 to +12mV. We observed that PEGylated cationic liposomes had significantly lower D Vit values (1.14μm 2 s -1 ) than PEGylated neutral and anionic liposomes (2.78 and 2.87μm 2 s -1 ). However, PEGylated cationic liposomes had a similar biodistribution profile across the vitreous to the other systems. These results show that PEGylated cationic liposomes with limited cationic charge can diffuse across the vitreous and indicate that the vitreous as a barrier to nanocarriers (Ø<500nm) is more complicated than simply an electrostatic barrier as previously suggested. Copyright © 2017 Elsevier B.V. All rights reserved.
Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains
NASA Astrophysics Data System (ADS)
Šachl, Radek; Bergstrand, Jan; Widengren, Jerker; Hof, Martin
2016-03-01
It has been shown by means of simulations that spot variation fluorescence correlation spectroscopy (sv-FCS) can be used for the identification and, to some extent, also characterization of immobile lipid nanodomains in model as well as cellular plasma membranes. However, in these simulations, the nanodomains were assumed to be stationary, whereas they actually tend to move like the surrounding lipids. In the present study, we investigated how such domain movement influences the diffusion time/spot-size dependence observed in FCS experiments, usually referred to as ‘diffusion law’ analysis. We show that domain movement might mask the effects of the ‘anomalous’ diffusion characteristics of membrane lipids or proteins predicted for stationary domains, making it difficult to identify such moving nanodomains by sv-FCS. More specifically, our simulations indicate that (i) for domains moving up to a factor of 2.25 slower than the surrounding lipids, such impeded diffusion cannot be observed and the diffusion behaviour of the proteins or lipids is indistinguishable from that of freely diffusing molecules, i.e. nanodomains are not detected; (ii) impeded protein/lipid diffusion behaviour can be observed in experiments where the radii of the detection volume are similar in size to the domain radii, the domain diffusion is about 10 times slower than that of the lipids, and the probes show a high affinity to the domains; and (iii) presence of nanodomains can only be reliably detected by diffraction limited sv-FCS when the domains move very slowly (about 200 times slower than the lipid diffusion). As nanodomains are expected to be in the range of tens of nanometres and most probes show low affinities to such domains, sv-FCS is limited to stationary domains and/or STED-FCS. However, even for that latter technique, diffusing domains smaller than 50 nm in radius are hardly detectable by FCS diffusion time/spot-size dependencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alnama, K.; Alkhawwam, A.; Jazmati, A. K., E-mail: pscientific5@aec.org.sy
Plasma plume of Al{sub 2}O{sub 3}–TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES) at different argon background gas pressures 10, 10{sup 2}, 10{sup 3}, 10{sup 4} and 10{sup 5} Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validitymore » in the plasma.« less
NASA Astrophysics Data System (ADS)
Jochum, Tobias; Popp, Juergen; Frosch, Torsten
2016-04-01
Soil and groundwater contamination with benzene can cause serious environmental damages. However, many soil microorganisms are capable to adapt and known to strongly control the fate of organic contamination. Cavity enhanced Raman gas spectroscopy (CERS) was applied to investigate the short-term response of indigenous soil bacteria to a sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. 13C-labeled benzene was spiked on a silty-loamy soil column (sampled from Hainich National Park, Germany) in order to track and separate the changes in heterotrophic soil respiration - involving 12CO2 and O2 - from the microbial process of benzene degradation, which ultimately forms 13CO2.1 The respiratory quotient (RQ) of 0.98 decreased significantly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with maximum 13CO2 concentration rates (0.63 μ mol m-2 s-1), indicating highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into 13CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore.1 The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration. In summary, this study shows the potential of combining Raman gas spectroscopy and stable isotopes to follow soil microbial biodegradation dynamics while simultaneously monitoring the underlying respiration behavior. Support by the Collaborative Research Center 1076 Aqua Diva is kindly acknowledged. We thank Beate Michalzik for soil analysis and discussion. 1. T. Jochum, B. Michalzik, A. Bachmann, J. Popp and T. Frosch, Analyst, 2015, 140, 3143-3149.
Gómora-Herrera, Diana; Navarrete Bolaños, Juan; Lijanova, Irina V; Olivares-Xometl, Octavio; Likhanova, Natalya V
2018-04-01
The effects exerted by the adsorption of vapors of a non-polar compound (deuterated benzene) and a polar compound (water) on the surface of Ottawa sand and a sample of reservoir sand (Channel), which was previously impregnated with silicon oil or two kinds of surfactants, (2-hydroxyethyl) trimethylammonium oleate (HETAO) and (2-hydroxyethyl)trimethylammonium azelate (HETAA), were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The surface chemistry of the sandstone rocks was elucidated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Terminal surface groups such as hydroxyls can strongly adsorb molecules that interact with these surface groups (surfactants), resulting in a wettability change. The wettability change effect suffered by the surface after treating it with surfactants was possible to be detected by the DRIFTS technique, wherein it was observed that the surface became more hydrophobic after being treated with silicon oil and HETAO; the surface became more hydrophilic after treating it with HETAA.
Multi-wavelength speckle reduction for laser pico-projectors using diffractive optics
NASA Astrophysics Data System (ADS)
Thomas, Weston H.
Personal electronic devices, such as cell phones and tablets, continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. Diffusers are often rotated to achieve temporal averaging of the spatial phase pattern provided by diffuser surface. While diffusers are unable to completely eliminate speckle, they can be utilized to decrease the resultant contrast to provide a more visually acceptable image. This dissertation measures the reduction in speckle contrast achievable through the use of diffractive diffusers. A theoretical Fourier optics model is used to provide the diffuser's stationary and in-motion performance in terms of the resultant contrast level. Contrast measurements of two diffractive diffusers are calculated theoretically and compared with experimental results. In addition, a novel binary diffuser design based on Hadamard matrices will be presented. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values were subsequently measured, showing good agreement with theory and simulated values. Monochromatic speckle contrast values of 0.40 were achieved using the Hadamard diffusers. Finally, color laser projection devices require the use of red, green, and blue laser sources; therefore, using a monochromatic diffractive diffuser may not optimal for color speckle contrast reduction. A simulation of the Hadamard diffusers is conducted to determine the optimum spacing between the two diffusers for polychromatic speckle reduction. Experimental measured results are presented using the optimal spacing of Hadamard diffusers for RGB color speckle reduction, showing 60% reduction in contrast.
Diffusion Tensor Imaging Correlates of Reading Ability in Dysfluent and Non-Impaired Readers
ERIC Educational Resources Information Center
Lebel, Catherine; Shaywitz, Bennett; Holahan, John; Shaywitz, Sally; Marchione, Karen; Beaulieu, Christian
2013-01-01
Many children and adults have specific reading disabilities; insight into the brain structure underlying these difficulties is evolving from imaging. Previous research highlights the left temporal-parietal white matter as important in reading, yet the degree of involvement of other areas remains unclear. Diffusion tensor imaging (DTI) and…
Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi
2011-02-01
Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.
GFP as potential cellular viscosimeter.
Visser, Antonie J W G; Westphal, Adrie H; Skakun, Victor V; Borst, Jan Willem
2016-08-18
The molecular dimensions of proteins such as green fluorescent protein (GFP) are large as compared to the ones of solvents like water or glycerol. The microscopic viscosity, which determines the resistance to diffusion of, e.g. GFP, is then the same as that determined from the resistance of the solvent to flow, which is known as macroscopic viscosity. GFP in water/glycerol mixtures senses this macroscopic viscosity, because the translational and rotational diffusion coefficients are proportional to the reciprocal value of the viscosity as predicted by the Stokes-Einstein equations. To test this hypothesis, we have performed time-resolved fluorescence anisotropy (reporting on rotational diffusion) and fluorescence correlation spectroscopy (reporting on translational diffusion) experiments of GFP in water/glycerol mixtures. When the solvent also contains macromolecules of similar or larger dimensions as GFP, the microscopic and macroscopic viscosities can be markedly different and the Stokes-Einstein relations must be adapted. It was established from previous dynamic fluorescence spectroscopy observations of diffusing proteins with dextran polysaccharides as co-solvents (Lavalette et al 2006 Eur. Biophys. J. 35 517-22), that rotation and translation sense a different microscopic viscosity, in which the one arising from rotation is always less than that from translation. A microscopic viscosity parameter is defined that depends on scaling factors between GFP and its immediate environment. The direct consequence is discussed for two reported diffusion coefficients of GFP in living cells.
GFP as potential cellular viscosimeter
NASA Astrophysics Data System (ADS)
Visser, Antonie J. W. G.; Westphal, Adrie H.; Skakun, Victor V.; Borst, Jan Willem
2016-09-01
The molecular dimensions of proteins such as green fluorescent protein (GFP) are large as compared to the ones of solvents like water or glycerol. The microscopic viscosity, which determines the resistance to diffusion of, e.g. GFP, is then the same as that determined from the resistance of the solvent to flow, which is known as macroscopic viscosity. GFP in water/glycerol mixtures senses this macroscopic viscosity, because the translational and rotational diffusion coefficients are proportional to the reciprocal value of the viscosity as predicted by the Stokes-Einstein equations. To test this hypothesis, we have performed time-resolved fluorescence anisotropy (reporting on rotational diffusion) and fluorescence correlation spectroscopy (reporting on translational diffusion) experiments of GFP in water/glycerol mixtures. When the solvent also contains macromolecules of similar or larger dimensions as GFP, the microscopic and macroscopic viscosities can be markedly different and the Stokes-Einstein relations must be adapted. It was established from previous dynamic fluorescence spectroscopy observations of diffusing proteins with dextran polysaccharides as co-solvents (Lavalette et al 2006 Eur. Biophys. J. 35 517-22), that rotation and translation sense a different microscopic viscosity, in which the one arising from rotation is always less than that from translation. A microscopic viscosity parameter is defined that depends on scaling factors between GFP and its immediate environment. The direct consequence is discussed for two reported diffusion coefficients of GFP in living cells.
Cooper, Justin; Harris, Joel M
2014-12-02
Reversed-phase liquid chromatography (RPLC) is a widely used technique for molecular separations. Stationary-phase materials for RPLC generally consist of porous silica-gel particles functionalized with n-alkane ligands. Understanding motions of molecules within the interior of these particles is important for developing efficient chromatographic materials and separations. To characterize these dynamics, time-resolved spectroscopic methods (photobleach recovery, fluorescence correlation, single-molecule imaging) have been adapted to measure molecular diffusion rates, typically at n-alkane-modified planar silica surfaces, which serve as models of chromatographic interfaces. A question arising from these studies is how dynamics of molecules on a planar surface relate to motions of molecules within the interior of a porous chromatographic particle. In this paper, imaging-fluorescence-correlation spectroscopy is used to measure diffusion rates of a fluorescent probe molecule 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) within authentic RPLC porous silica particles and compared with its diffusion at a planar C18-modified surface. The results show that surface diffusion on the planar C18 substrate is much faster than the diffusion rate of the probe molecule through a chromatographic particle. Surface diffusion within porous particles, however, is governed by molecular trajectories along the tortuous contours of the interior surface of the particles. By accounting for the greater surface area that a molecule must explore to diffuse macroscopic distances through the particle, the molecular-scale diffusion rates on the two surfaces can be compared, and they are virtually identical. These results provide support for the relevance of surface-diffusion measurements made on planar model surfaces to the dynamic behavior of molecules on the internal surfaces of porous chromatographic particles.
NASA Astrophysics Data System (ADS)
Kamakura, Katsutoshi
2007-01-01
In this study we measured the variation of brain blood quantity (Oxy-Hb, Deoxy-Hb and Total-Hb) in the temporal lobes using near infrared spectroscopy (NIRS) when the tasks of the memories were presented to the subjects. The memories are classified into the short-term memory (STM) and the long-term memory (LTM) including the episodic and semantic memories. The subjects joined in this study are 11 persons who are university students including graduate students. We used the language task of letter-number sequencing, also reverse sequencing to measure STM and the task of the episodic memory to measure LTM. As a result of analysis, concerning the episodic memory, the variation of Oxy-Hb in the left temporal lobe was larger than that of Oxy-Hb in the right temporal lobe. The result might suggest that the episodic memory has a relationship with cerebral dominance concerning language area in the left temporal lobe. It seems that the episodic memory meditated with the function of language used in this study is much stored in the left temporal lobe than in the right temporal lobe. This result coincides with the principles of lateralization. The variation of Oxy-Hb in the language task of letter-number sequencing was smaller than that of Oxy-Hb in the language task of the episodic memory.
Vijayakumar, M; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Thevuthasan, S; Liu, Jun; Graff, Gordon L; Hu, Jianzhi
2012-04-01
Proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, polymer composite membranes, such as SiO(2) incorporated Nafion membranes, are recently reported as highly promising for the use in redox flow batteries. However, there is conflicting reports regarding the performance of this type of Nafion-SiO(2) composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO(2) composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infra Red (FTIR) spectroscopy, and ultraviolet-visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the (19)F and (29)Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The (29)Si NMR shows that the silica particles interact via hydrogen bonds with the sulfonic groups of Nafion and the diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO(2) composite membrane materials in vanadium redox flow batteries. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayakumar, M.; Schwenzer, Birgit; Kim, Soowhan
2012-04-01
The proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, the polymer composite membranes such as SiO2 incorporated Nafion membranes are recently reported as highly promising for the redox flow batteries. However, there is conflicting reports regarding the performance of this Nafion-SiO2 composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO2 composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transformed Infra Red (FTIR) spectroscopy, and ultravioletmore » visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the 19F and 29Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The 29Si NMR shows that the silica particles interaction via hydrogen bonds to the sulfonic groups of Nafion and diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO2 composite membrane materials in vanadium redox flow batteries.« less
Davis, Gregory B; Laslett, Dean; Patterson, Bradley M; Johnston, Colin D
2013-03-15
Accurate estimation of biodegradation rates during remediation of petroleum impacted soil and groundwater is critical to avoid excessive costs and to ensure remedial effectiveness. Oxygen depth profiles or oxygen consumption over time are often used separately to estimate the magnitude and timeframe for biodegradation of petroleum hydrocarbons in soil and subsurface environments. Each method has limitations. Here we integrate spatial and temporal oxygen concentration data from a field experiment to develop better estimates and more reliably quantify biodegradation rates. During a nine-month bioremediation trial, 84 sets of respiration rate data (where aeration was halted and oxygen consumption was measured over time) were collected from in situ oxygen sensors at multiple locations and depths across a diesel non-aqueous phase liquid (NAPL) contaminated subsurface. Additionally, detailed vertical soil moisture (air-filled porosity) and NAPL content profiles were determined. The spatial and temporal oxygen concentration (respiration) data were modeled assuming one-dimensional diffusion of oxygen through the soil profile which was open to the atmosphere. Point and vertically averaged biodegradation rates were determined, and compared to modeled data from a previous field trial. Point estimates of biodegradation rates assuming no diffusion ranged up to 58 mg kg(-1) day(-1) while rates accounting for diffusion ranged up to 87 mg kg(-1) day(-1). Typically, accounting for diffusion increased point biodegradation rate estimates by 15-75% and vertically averaged rates by 60-80% depending on the averaging method adopted. Importantly, ignoring diffusion led to overestimation of biodegradation rates where the location of measurement was outside the zone of NAPL contamination. Over or underestimation of biodegradation rate estimates leads to cost implications for successful remediation of petroleum impacted sites. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Kuhn, T; Gullett, J M; Nguyen, P; Boutzoukas, A E; Ford, A; Colon-Perez, L M; Triplett, W; Carney, P R; Mareci, T H; Price, C C; Bauer, R M
2016-06-01
This study examined the reliability of high angular resolution diffusion tensor imaging (HARDI) data collected on a single individual across several sessions using the same scanner. HARDI data was acquired for one healthy adult male at the same time of day on ten separate days across a one-month period. Environmental factors (e.g. temperature) were controlled across scanning sessions. Tract Based Spatial Statistics (TBSS) was used to assess session-to-session variability in measures of diffusion, fractional anisotropy (FA) and mean diffusivity (MD). To address reliability within specific structures of the medial temporal lobe (MTL; the focus of an ongoing investigation), probabilistic tractography segmented the Entorhinal cortex (ERc) based on connections with Hippocampus (HC), Perirhinal (PRc) and Parahippocampal (PHc) cortices. Streamline tractography generated edge weight (EW) metrics for the aforementioned ERc connections and, as comparison regions, connections between left and right rostral and caudal anterior cingulate cortex (ACC). Coefficients of variation (CoV) were derived for the surface area and volumes of these ERc connectivity-defined regions (CDR) and for EW across all ten scans, expecting that scan-to-scan reliability would yield low CoVs. TBSS revealed no significant variation in FA or MD across scanning sessions. Probabilistic tractography successfully reproduced histologically-verified adjacent medial temporal lobe circuits. Tractography-derived metrics displayed larger ranges of scanner-to-scanner variability. Connections involving HC displayed greater variability than metrics of connection between other investigated regions. By confirming the test retest reliability of HARDI data acquisition, support for the validity of significant results derived from diffusion data can be obtained.
NASA Astrophysics Data System (ADS)
Rühs, Siren; Zhurbas, Victor; Durgadoo, Jonathan V.; Biastoch, Arne
2017-04-01
The Lagrangian description of fluid motion by sets of individual particle trajectories is extensively used to characterize connectivity between distinct oceanic locations. One important factor influencing the connectivity is the average rate of particle dispersal, generally quantified as Lagrangian diffusivity. In addition to Lagrangian observing programs, Lagrangian analyses are performed by advecting particles with the simulated flow field of ocean general circulation models (OGCMs). However, depending on the spatio-temporal model resolution, not all scale-dependent processes are explicitly resolved in the simulated velocity fields. Consequently, the dispersal of advective Lagrangian trajectories has been assumed not to be sufficiently diffusive compared to observed particle spreading. In this study we present a detailed analysis of the spatially variable lateral eddy diffusivity characteristics of advective drifter trajectories simulated with realistically forced OGCMs and compare them with estimates based on observed drifter trajectories. The extended Agulhas Current system around South Africa, known for its intricate mesoscale dynamics, serves as a test case. We show that a state-of-the-art eddy-resolving OGCM indeed features theoretically derived dispersion characteristics for diffusive regimes and realistically represents Lagrangian eddy diffusivity characteristics obtained from observed surface drifter trajectories. The estimates for the maximum and asymptotic lateral single-particle eddy diffusivities obtained from the observed and simulated drifter trajectories show a good agreement in their spatial pattern and magnitude. We further assess the sensitivity of the simulated lateral eddy diffusivity estimates to the temporal and lateral OGCM output resolution and examine the impact of the different eddy diffusivity characteristics on the Lagrangian connectivity between the Indian Ocean and the South Atlantic.
NASA Astrophysics Data System (ADS)
Senegačnik, Jure; Tavčar, Gregor; Katrašnik, Tomaž
2015-03-01
The paper presents a computationally efficient method for solving the time dependent diffusion equation in a granule of the Li-ion battery's granular solid electrode. The method, called Discrete Temporal Convolution method (DTC), is based on a discrete temporal convolution of the analytical solution of the step function boundary value problem. This approach enables modelling concentration distribution in the granular particles for arbitrary time dependent exchange fluxes that do not need to be known a priori. It is demonstrated in the paper that the proposed method features faster computational times than finite volume/difference methods and Padé approximation at the same accuracy of the results. It is also demonstrated that all three addressed methods feature higher accuracy compared to the quasi-steady polynomial approaches when applied to simulate the current densities variations typical for mobile/automotive applications. The proposed approach can thus be considered as one of the key innovative methods enabling real-time capability of the multi particle electrochemical battery models featuring spatial and temporal resolved particle concentration profiles.
Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model
Pissadaki, Eleftheria Kyriaki; Sidiropoulou, Kyriaki; Reczko, Martin; Poirazi, Panayiota
2010-01-01
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code. PMID:21187899
Determination of the diffusion coefficient of hydrogen ion in hydrogels.
Schuszter, Gábor; Gehér-Herczegh, Tünde; Szűcs, Árpád; Tóth, Ágota; Horváth, Dezső
2017-05-17
The role of diffusion in chemical pattern formation has been widely studied due to the great diversity of patterns emerging in reaction-diffusion systems, particularly in H + -autocatalytic reactions where hydrogels are applied to avoid convection. A custom-made conductometric cell is designed to measure the effective diffusion coefficient of a pair of strong electrolytes containing sodium ions or hydrogen ions with a common anion. This together with the individual diffusion coefficient for sodium ions, obtained from PFGSE-NMR spectroscopy, allows the determination of the diffusion coefficient of hydrogen ions in hydrogels. Numerical calculations are also performed to study the behavior of a diffusion-migration model describing ionic diffusion in our system. The method we present for one particular case may be extended for various hydrogels and diffusing ions (such as hydroxide) which are relevant e.g. for the development of pH-regulated self-healing mechanisms and hydrogels used for drug delivery.
Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography
NASA Astrophysics Data System (ADS)
Boverman, Gregory; Fang, Qianqian; Carp, Stefan A.; Miller, Eric L.; Brooks, Dana H.; Selb, Juliette; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.
2007-07-01
We develop algorithms for imaging the time-varying optical absorption within the breast given diffuse optical tomographic data collected over a time span that is long compared to the dynamics of the medium. Multispectral measurements allow for the determination of the time-varying total hemoglobin concentration and of oxygen saturation. To facilitate the image reconstruction, we decompose the hemodynamics in time into a linear combination of spatio-temporal basis functions, the coefficients of which are estimated using all of the data simultaneously, making use of a Newton-based nonlinear optimization algorithm. The solution of the extremely large least-squares problem which arises in computing the Newton update is obtained iteratively using the LSQR algorithm. A Laplacian spatial regularization operator is applied, and, in addition, we make use of temporal regularization which tends to encourage similarity between the images of the spatio-temporal coefficients. Results are shown for an extensive simulation, in which we are able to image and quantify localized changes in both total hemoglobin concentration and oxygen saturation. Finally, a breast compression study has been performed for a normal breast cancer screening subject, using an instrument which allows for highly accurate co-registration of multispectral diffuse optical measurements with an x-ray tomosynthesis image of the breast. We are able to quantify the global return of blood to the breast following compression, and, in addition, localized changes are observed which correspond to the glandular region of the breast.
Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations
NASA Astrophysics Data System (ADS)
López-Muñoz, Gerardo A.; Pescador-Rojas, José A.; Ortega-Lopez, Jaime; Salazar, Jaime Santoyo; Balderas-López, J. Abraham
2012-07-01
In recent times, nanofluids have been studied by their thermal properties due to their variety of applications that range from photothermal therapy and radiofrequency hyperthermia (which have proven their potential use as coadjutants in these medical treatments for cancer diseases) to next-generation thermo-fluids. In this work, photoacoustic spectroscopy for a specific study of thermal diffusivity, as a function of particle size and concentration, on colloidal water-based gold nanofluids is reported. Gold nanoparticles were synthetized in the presence of hydroquinone through a seed-mediated growth with homogenous sizes and shapes in a range of 16 to 125 nm. The optical response, size and morphology of these nanoparticles were characterized using ultraviolet-visible spectroscopy and transmission electron microscopy, respectively. Thermal characterizations show a decrease in the thermal diffusivity ratio as the nanoparticle size is increased and an enhancement in thermal diffusivity ratio as nanoparticle concentration is added into the nanofluids. Compared with other techniques in the literature such as thermal lens and hot wire method, this photoacoustic technique shows an advantage in terms of precision, and with a small amount of sample required (500 μl), this technique might be suitable for the thermal diffusivity measurement of nanofluids. It is also a promising alternative to classical techniques.
Light distribution modulated diffuse reflectance spectroscopy.
Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao
2016-06-01
Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.
Light distribution modulated diffuse reflectance spectroscopy
Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao
2016-01-01
Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931
Sterling, Sarah M.; Allgeyer, Edward S.; Fick, Jörg; Prudovsky, Igor; Mason, Michael D.; Neivandt, David J.
2013-01-01
Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins, or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir Schaefer method on a hydrogel layer is potentially an effective mimic of the cross-section of a biological membrane, and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and coworkers, revealed that phospholipid diffusion changes from raft-like to free diffusion as the temperature is increased; an insight into the dynamic behavior of hydrogel supported membranes not previously reported. PMID:23705855
NASA Astrophysics Data System (ADS)
Marin, Ana; Milanič, Matija; Verdel, Nina; Vidovič, Luka; Majaron, Boris
2018-02-01
Combination of diffuse reflectance spectroscopy (DRS) and pulsed photothermal radiometry (PPTR) was recently successfully used to study evolution of accidental traumatic bruises. Yet, accidental bruises introduce many unknowns into the evolution analysis and thus a more controllable and repeatable approach for bruising is desired. In this study, evolution of bruises induced by aluminum projectiles of known mass and velocity were studied by DRS and PPTR. Bruises were induced on volar forearm skin of two healthy volunteers. Inverse Monte Carlo including four-layer skin model, was used to analyze the DRS and PPTR data to determine skin chromophores, their concentrations and depths. For bruise analysis, a bruise model was constructed and evolved according to hemoglobin diffusion kinetics. Bruise analysis of PPTR signals yielded bruise evolution parameters, most importantly hemoglobin diffusion constant, hemoglobin decomposition time and blood pool depth. The study results show that chronological tracking of hemoglobin decomposition can be assessed by the combined DRS and PPTR technique on induced bruise. Parameters of individual bruises were compared and two trends in chronological behavior of hemoglobin decomposition time discerned. Changes in bruise diffuse reflectance spectra were noted. Induced bruise parameters, however, still showed some scatter and thus further research is needed to reduce bruise variability.
Farha, Ashraf Hassan; Ozkendir, Osman Murat; Elsayed-Ali, Hani E.; ...
2016-11-15
NbN coatings are prepared onto Nb substrate by thermal diffusion at high temperatures. The formation of NbN coating by thermal diffusion was studied in the range of 1250-1500 °C at constant nitrogen background gas pressure (1.3x10 -3 Pa) and processing time (180 min). The electronic and crystal structures of the NbN coatings were investigated. It was found that nitrogen diffuses into Nb forming the Nb-N solid solution (bcc) a-NbN phase that starts to appear above 1250 °C. Increasing the processing temperature gives richer a-phase concentration. Besides, X-ray absorption spectroscopy (XAS) was performed to study the electronic structure of the NbNmore » layer. The results of the electronic structural study corroborate the crystal structural analysis. The Nb M 3,2 edge X-ray absorption spectroscopy (XAS) spectrum shows strong temperature dependence. At the highest processing temperature (1500 °C), the number of d holes increased. Nitrogen diffusion into Nb is resulting to increase electrostatic interaction between d electron and core hole. Lastly, for the studied conditions, only the α-NbN was observed in the X-ray diffraction patterns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farha, Ashraf Hassan; Ozkendir, Osman Murat; Elsayed-Ali, Hani E.
NbN coatings are prepared onto Nb substrate by thermal diffusion at high temperatures. The formation of NbN coating by thermal diffusion was studied in the range of 1250-1500 °C at constant nitrogen background gas pressure (1.3x10 -3 Pa) and processing time (180 min). The electronic and crystal structures of the NbN coatings were investigated. It was found that nitrogen diffuses into Nb forming the Nb-N solid solution (bcc) a-NbN phase that starts to appear above 1250 °C. Increasing the processing temperature gives richer a-phase concentration. Besides, X-ray absorption spectroscopy (XAS) was performed to study the electronic structure of the NbNmore » layer. The results of the electronic structural study corroborate the crystal structural analysis. The Nb M 3,2 edge X-ray absorption spectroscopy (XAS) spectrum shows strong temperature dependence. At the highest processing temperature (1500 °C), the number of d holes increased. Nitrogen diffusion into Nb is resulting to increase electrostatic interaction between d electron and core hole. Lastly, for the studied conditions, only the α-NbN was observed in the X-ray diffraction patterns.« less
Lu, W.J.; Chou, I.-Ming; Burruss, R.C.; Yang, M.Z.
2006-01-01
A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell. The measured diffusion coefficients of methane in water at the liquid (L)-vapor (V) stable region and L-V metastable region are close to previously reported values determined at lower pressure and similar temperature. This in situ monitoring method was demonstrated to be suitable for the study of mass transfer in aqueous solution under high pressure and at various temperature conditions and will be applied to the study of nucleation and dissolution kinetics of methane hydrate in a hydrate-water system where the interaction of methane and water would be more complicated than that presented here for the L-V metastable condition. ?? 2006 Society for Applied Spectroscopy.
Divacancy complexes induced by Cu diffusion in Zn-doped GaAs
NASA Astrophysics Data System (ADS)
Elsayed, M.; Krause-Rehberg, R.; Korff, B.; Ratschinski, I.; Leipner, H. S.
2013-08-01
Positron annihilation spectroscopy was applied to investigate the nature and thermal behavior of defects induced by Cu diffusion in Zn-doped p-type GaAs crystals. Cu atoms were intentionally introduced in the GaAs lattice through thermally activated diffusion from a thin Cu capping layer at 1100 °C under defined arsenic vapor pressure. During isochronal annealing of the obtained Cu-diffused GaAs in the temperature range of 450-850 K, vacancy clusters were found to form, grow and finally disappear. We found that annealing at 650 K triggers the formation of divacancies, whereas further increasing in the annealing temperature up to 750 K leads to the formation of divacancy-copper complexes. The observations suggest that the formation of these vacancy-like defects in GaAs is related to the out-diffusion of Cu. Two kinds of acceptors are detected with a concentration of about 1016 - 1017 cm-3, negative ions and arsenic vacancy copper complexes. Transmission electron microscopy showed the presence of voids and Cu precipitates which are not observed by positron measurements. The positron binding energy to shallow traps is estimated using the positron trapping model. Coincidence Doppler broadening spectroscopy showed the presence of Cu in the immediate vicinity of the detected vacancies. Theoretical calculations suggested that the detected defect is VGaVAs-2CuGa.
Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations.
López-Muñoz, Gerardo A; Pescador-Rojas, José A; Ortega-Lopez, Jaime; Salazar, Jaime Santoyo; Balderas-López, J Abraham
2012-07-30
In recent times, nanofluids have been studied by their thermal properties due to their variety of applications that range from photothermal therapy and radiofrequency hyperthermia (which have proven their potential use as coadjutants in these medical treatments for cancer diseases) to next-generation thermo-fluids. In this work, photoacoustic spectroscopy for a specific study of thermal diffusivity, as a function of particle size and concentration, on colloidal water-based gold nanofluids is reported. Gold nanoparticles were synthetized in the presence of hydroquinone through a seed-mediated growth with homogenous sizes and shapes in a range of 16 to 125 nm. The optical response, size and morphology of these nanoparticles were characterized using ultraviolet-visible spectroscopy and transmission electron microscopy, respectively. Thermal characterizations show a decrease in the thermal diffusivity ratio as the nanoparticle size is increased and an enhancement in thermal diffusivity ratio as nanoparticle concentration is added into the nanofluids. Compared with other techniques in the literature such as thermal lens and hot wire method, this photoacoustic technique shows an advantage in terms of precision, and with a small amount of sample required (500 μl), this technique might be suitable for the thermal diffusivity measurement of nanofluids. It is also a promising alternative to classical techniques.
Comprendre. La diffusion Raman exaltée de surface
NASA Astrophysics Data System (ADS)
Boubekeur-Lecaque, Leïla; Felidj, Nordin; Lamy de la Chapelle, Marc
2018-02-01
La spectroscopie Raman est une spectroscopie vibrationnelle très peu sensible qui limite l'analyse d'espèces chimiques aux fortes concentrations. Néanmoins, lorsque des molécules sont placées au voisinage d'une surface métallique nanostructurée, il est possible d'exalter considérablement leur signature Raman. On parle alors de diffusion Raman exaltée de surface. Les remarquables potentialités de cette technique ont nourri de nombreux champs d'étude tant pour le design de substrats dits SERS-actifs, que pour l'exploration d'applications en médecine, pharmacologie, défense ou le monde de l'art.
Kim, Kyong Nam; Kim, Tae Hyung; Seo, Jin Seok; Kim, Ki Seok; Bae, Jeong Woon; Yeom, Geun Young
2013-12-01
The properties of Pd/Ir/Au ohmic metallization on p-type GaN have been investigated. Contacts annealed at 400 degrees C in O2 atmosphere demonstrated excellent ohmic characteristics with a specific contact resistivity of 1.5 x 10(-5) Omega-cm2. This is attributed to the formation of Ga vacancies at the contact metal-semiconductor interfacial region due to the out-diffusion of Ga atoms. The out-diffusion of Ga atoms was confirmed by X-ray photoelectron spectroscopy depth profiles, high-resolution transmission electron microscopy, and electron energy loss spectroscopy using a scanning transmission electron microscope.
Effect of the nano-oxide layer as a Mn diffusion barrier in specular spin valves
NASA Astrophysics Data System (ADS)
Jang, S. H.; Kang, T.; Kim, H. J.; Kim, K. Y.
2002-07-01
In previous work an enhanced giant magnetoresistance (GMR) effect in spin valves (SVs) with a nano-oxide layer (NOL) after annealing at about 250-300 degC has been reported. We have shown that SVs with a NOL also have higher thermal stability of the MR ratio at 300 degC. From secondary-ion-mass spectroscopy and x-ray photoelectron spectroscopy depth profile analysis, the mechanism of the improved thermal stability of the SVs with a NOL is shown to be related to MnO formation within the NOL. Thus, Mn atoms from the FeMn layer are trapped, and Mn diffusion is inhibited by the NOL during annealing.
Kaale, Eliangiringa; Hope, Samuel M; Jenkins, David; Layloff, Thomas
2016-01-01
To assess the quality of cotrimoxazole tablets produced by a Tanzanian manufacturer by a newly instituted quality assurance programme. Tablets underwent a diffuse reflectance spectroscopy procedure with periodic quality assessment confirmation by assay and dissolution testing using validated HPTLC techniques (including weight variation and disintegration evaluations). Based on results from the primary test methods, the first group of product was <80% compliant, whereas subsequent groups reached >99% compliance. This approach provides a model for rapidly assuring product quality of future procurements of other products that is more cost-effective than traditional pharmaceutical testing techniques. © 2015 John Wiley & Sons Ltd.
Ramirez, Gabriel; Proctor, Ashley R.; Jung, Ki Won; Wu, Tong Tong; Han, Songfeng; Adams, Russell R.; Ren, Jingxuan; Byun, Daniel K.; Madden, Kelley S.; Brown, Edward B.; Foster, Thomas H.; Farzam, Parisa; Durduran, Turgut; Choe, Regine
2016-01-01
The non-invasive, in vivo measurement of microvascular blood flow has the potential to enhance breast cancer therapy monitoring. Here, longitudinal blood flow of 4T1 murine breast cancer (N=125) under chemotherapy was quantified with diffuse correlation spectroscopy based on layer models. Six different treatment regimens involving doxorubicin, cyclophosphamide, and paclitaxel at clinically relevant doses were investigated. Treatments with cyclophosphamide increased blood flow as early as 3 days after administration, whereas paclitaxel induced a transient blood flow decrease at 1 day after administration. Early blood flow changes correlated strongly with the treatment outcome and distinguished treated from untreated mice individually for effective treatments. PMID:27699124
NASA Astrophysics Data System (ADS)
Pakela, Julia M.; Lee, Seung Yup; Hedrick, Taylor L.; Vishwanath, Karthik; Helton, Michael C.; Chung, Yooree G.; Kolodziejski, Noah J.; Staples, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann
2017-02-01
In reconstructive surgery, impeded blood flow in microvascular free flaps due to a compromise in arterial or venous patency secondary to blood clots or vessel spasms can rapidly result in flap failures. Thus, the ability to detect changes in microvascular free flaps is critical. In this paper, we report progress on in vivo pre-clinical testing of a compact, multimodal, fiber-based diffuse correlation and reflectance spectroscopy system designed to quantitatively monitor tissue perfusion in a porcine model's surgically-grafted free flap. We also describe the device's sensitivity to incremental blood flow changes and discuss the prospects for continuous perfusion monitoring in future clinical translational studies.
NASA Astrophysics Data System (ADS)
Feldman, Y.; Zak, A.; Tenne, R.; Cohen, H.
2003-09-01
Pronounced surface diffusion is observed during x-ray photoelectron spectroscopy measurements of 2H platelets and inorganic fullerene-like (IF) MS2 (M=W,Mo) powders, intercalated with alkaline (A=K,Na) elements. Using controlled surface charging the intercalants migrate towards the surface, where they oxidize. This dry deintercalation is controllable via external charging parameters, yet showing that internal chemical and structural parameters play an important role in the process. Diffusion rates out of 2H matrixes are generally higher than in corresponding IF samples. Clear differences are also found between Mo and W-based systems. Application of this approach into surface modification and processing is proposed.
Svensson, Tomas; Lewander, Märta; Svanberg, Sune
2010-08-02
We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.
Communication: Coordinate-dependent diffusivity from single molecule trajectories
NASA Astrophysics Data System (ADS)
Berezhkovskii, Alexander M.; Makarov, Dmitrii E.
2017-11-01
Single-molecule observations of biomolecular folding are commonly interpreted using the model of one-dimensional diffusion along a reaction coordinate, with a coordinate-independent diffusion coefficient. Recent analysis, however, suggests that more general models are required to account for single-molecule measurements performed with high temporal resolution. Here, we consider one such generalization: a model where the diffusion coefficient can be an arbitrary function of the reaction coordinate. Assuming Brownian dynamics along this coordinate, we derive an exact expression for the coordinate-dependent diffusivity in terms of the splitting probability within an arbitrarily chosen interval and the mean transition path time between the interval boundaries. This formula can be used to estimate the effective diffusion coefficient along a reaction coordinate directly from single-molecule trajectories.
A computational model for how cells choose temporal or spatial sensing during chemotaxis.
Tan, Rui Zhen; Chiam, Keng-Hwee
2018-03-01
Cell size is thought to play an important role in choosing between temporal and spatial sensing in chemotaxis. Large cells are thought to use spatial sensing due to large chemical difference at its ends whereas small cells are incapable of spatial sensing due to rapid homogenization of proteins within the cell. However, small cells have been found to polarize and large cells like sperm cells undergo temporal sensing. Thus, it remains an open question what exactly governs spatial versus temporal sensing. Here, we identify the factors that determines sensing choices through mathematical modeling of chemotactic circuits. Comprehensive computational search of three-node signaling circuits has identified the negative integral feedback (NFB) and incoherent feedforward (IFF) circuits as capable of adaptation, an important property for chemotaxis. Cells are modeled as one-dimensional circular system consisting of diffusible activator, inactivator and output proteins, traveling across a chemical gradient. From our simulations, we find that sensing outcomes are similar for NFB or IFF circuits. Rather than cell size, the relevant parameters are the 1) ratio of cell speed to the product of cell diameter and rate of signaling, 2) diffusivity of the output protein and 3) ratio of the diffusivities of the activator to inactivator protein. Spatial sensing is favored when all three parameters are low. This corresponds to a cell moving slower than the time it takes for signaling to propagate across the cell diameter, has an output protein that is polarizable and has a local-excitation global-inhibition system to amplify the chemical gradient. Temporal sensing is favored otherwise. We also find that temporal sensing is more robust to noise. By performing extensive literature search, we find that our prediction agrees with observation in a wide range of species and cell types ranging from E. coli to human Fibroblast cells and propose that our result is universally applicable.
A computational model for how cells choose temporal or spatial sensing during chemotaxis
Tan, Rui Zhen; Chiam, Keng-Hwee
2018-01-01
Cell size is thought to play an important role in choosing between temporal and spatial sensing in chemotaxis. Large cells are thought to use spatial sensing due to large chemical difference at its ends whereas small cells are incapable of spatial sensing due to rapid homogenization of proteins within the cell. However, small cells have been found to polarize and large cells like sperm cells undergo temporal sensing. Thus, it remains an open question what exactly governs spatial versus temporal sensing. Here, we identify the factors that determines sensing choices through mathematical modeling of chemotactic circuits. Comprehensive computational search of three-node signaling circuits has identified the negative integral feedback (NFB) and incoherent feedforward (IFF) circuits as capable of adaptation, an important property for chemotaxis. Cells are modeled as one-dimensional circular system consisting of diffusible activator, inactivator and output proteins, traveling across a chemical gradient. From our simulations, we find that sensing outcomes are similar for NFB or IFF circuits. Rather than cell size, the relevant parameters are the 1) ratio of cell speed to the product of cell diameter and rate of signaling, 2) diffusivity of the output protein and 3) ratio of the diffusivities of the activator to inactivator protein. Spatial sensing is favored when all three parameters are low. This corresponds to a cell moving slower than the time it takes for signaling to propagate across the cell diameter, has an output protein that is polarizable and has a local-excitation global-inhibition system to amplify the chemical gradient. Temporal sensing is favored otherwise. We also find that temporal sensing is more robust to noise. By performing extensive literature search, we find that our prediction agrees with observation in a wide range of species and cell types ranging from E. coli to human Fibroblast cells and propose that our result is universally applicable. PMID:29505572
Disease Spread and Its Effect on Population Dynamics in Heterogeneous Environment
NASA Astrophysics Data System (ADS)
Upadhyay, Ranjit Kumar; Roy, Parimita
In this paper, an eco-epidemiological model in which both species diffuse along a spatial gradient has been shown to exhibit temporal chaos at a fixed point in space. The proposed model is a modification of the model recently presented by Upadhyay and Roy [2014]. The spatial interactions among the species have been represented in the form of reaction-diffusion equations. The model incorporates the intrinsic growth rate of fish population which varies linearly with the depth of water. Numerical results show that diffusion can drive otherwise stable system into aperiodic behavior with sensitivity to initial conditions. We show that spatially induced chaos plays an important role in spatial pattern formation in heterogeneous environment. Spatiotemporal distributions of species have been simulated using the diffusivity assumptions realistic for natural eco-epidemic systems. We found that in heterogeneous environment, the temporal dynamics of both the species are drastically different and show chaotic behavior. It was also found that the instability observed in the model is due to spatial heterogeneity and diffusion-driven. Cumulative death rate of predator has an appreciable effect on model dynamics as the spatial distribution of all constituent populations exhibit significant changes when this model parameter is changed and it acts as a regularizing factor.
EIT amplitude noise spectroscopy
NASA Astrophysics Data System (ADS)
Whitenack, Benjamin; Tormey, Devan; O'Leary, Shannon; Crescimanno, Michael
2017-04-01
EIT Noise spectroscopy is usually studied by computing a correlation statistic based on temporal intensity variations of the two (circular polarization) propagation eigenstates. Studying the intensity noise correlations that result from amplitude mixing that we perform before and after the cell allows us to recast it in terms of the underlying amplitude noise. This leads to new tests of the quantum optics theory model and suggests an approach to the use of noise spectroscopy for vector magnetometry.
Polymer diffusion in the interphase between surface and solution.
Weger, Lukas; Weidmann, Monika; Ali, Wael; Hildebrandt, Marcus; Gutmann, Jochen Stefan; Hoffmann-Jacobsen, Kerstin
2018-05-22
Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) is applied to study the self-diffusion of polyethylene glycol solutions in the presence of weakly attractive interfaces. Glass coverslips modified with aminopropyl- and propyl-terminated silanes are used to study the influence of solid surfaces on polymer diffusion. A model of three phases of polymer diffusion allows to describe the experimental fluorescence autocorrelation functions. Besides the two-dimensional diffusion of adsorbed polymer on the substrate and three-dimensional free diffusion in bulk solution, a third diffusion time scale is observed with intermediate diffusion times. This retarded three-dimensional diffusion in solution is assigned to long range effects of solid surfaces on diffusional dynamics of polymers. The respective diffusion constants show Rouse scaling (D~N -1 ) indicating a screening of hydrodynamic interactions by the presence of the surface. Hence, the presented TIR-FCS method proves to be a valuable tool to investigate the effect of surfaces on polymer diffusion beyond the first adsorbed polymer layer on the 100 nm length scale.
Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.
2013-01-01
Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860
The effects of water and lipids on NIR optical breast measurements
NASA Astrophysics Data System (ADS)
Cerussi, Albert E.; Bevilacqua, Frederic; Shah, Natasha; Jakubowski, Dorota B.; Berger, Andrew J.; Lanning, Ryan M.; Tromberg, Bruce J.
2001-06-01
Near infrared diffuse optical spectroscopy and imaging may enhance existing technologies for breast cancer screening, diagnosis, and treatment. NIR spectroscopy yields quantitative functional information that cannot be obtained with other non-invasive radiological techniques. In this study we focused upon the origins of this contrast in healthy breast, especially from water and lipids.
The water column diffuse attenuation coefficient (Kd) of the Louisiana Continental Shelf (LCS) was examined during ten years to characterize the spatial and temporal variations on monthly scales from 1998 to 2007. This region is well-known for summer hypoxia (dissolved oxygen < 2...
Analysis of the temporal effects on grating evolution in photopolymer
NASA Astrophysics Data System (ADS)
Kelly, John V.; Gleeson, Michael R.; Close, Ciara E.; O'Neill, Feidhlim T.; Sheridan, John T.; Gallego, Sergi; Neipp, Cristian
2006-04-01
The nonlocal polymerization driven diffusion model is used to describe holographic grating formation in acrylamidebased photopolymer. The free radical chain polymerization process results in polymer being generated nonlocal both in space and time to the point of chain initiation. A Gaussian spatial material response function and an exponential temporal material response function are used to account for these effects. In this paper we firstly examine the nature of the temporal evolution of grating formation for short recording periods. It is shown that in this case, temporal effects become most notable and the inclusion of the nonlocal temporal response function is shown to be necessary to accurately describe the process. In particular, brief post exposure selfamplification of the refractive index modulation is noted. This is attributed to continued chain growth for a brief period after exposure. Following this a slight decay in the grating amplitude also occurs. This we believe is due to the continued diffusion of monomer after exposure. Since the sinusoidal recording pattern generates a monomer concentration gradient during the recording process monomer diffusion occurs both during and after exposure. The evolution of the refractive index modulation is determined by the respective refractive index values of the recording material components. From independent measurements it is noted that the refractive index value of the monomer is slightly less than that of the background material. Therefore as monomer diffuses back into the dark regions, a reduction in overall refractive index modulation occurs. Volume changes occurring within the material also affect the nature of grating evolution. To model these effects we employ a free volume concept. Due to the fact that the covalent single carbon bond in the polymer is up to 50% shorter than the van der Waals bond in the liquid monomer state, free volume is created when monomer is converted to polymer. For each bond conversion we assume a hole is generated which then collapses at some characteristic rate constant. Incorporating each of these effects into our model, the model is then solved using a Finite-Difference Time- Domain method (FDTD). The Lorentz-Lorenz relation is used to determine the overall evolution refractive index modulation and the corresponding diffraction efficiency of the resulting grating is calculated using Rigorous Coupled Wave Analysis (RCWA). Fits are then carried out to experimental data for 1 second exposures. Good quality fits are achieved and material parameters extracted. Monomer diffusion rates are determined to be of the order of D ~ 10 -10 cm 2/s and the time constant of the nonlocal material temporal response function being of the order of τ n ~ 10 -2s. Material shrinkage occurring over these recording periods is also determined.
Picosecond time-resolved photoluminescence using picosecond excitation correlation spectroscopy
NASA Astrophysics Data System (ADS)
Johnson, M. B.; McGill, T. C.; Hunter, A. T.
1988-03-01
We present a study of the temporal decay of photoluminescence (PL) as detected by picosecond excitation correlation spectroscopy (PECS). We analyze the correlation signal that is obtained from two simple models; one where radiative recombination dominates, the other where trapping processes dominate. It is found that radiative recombination alone does not lead to a correlation signal. Parallel trapping type processes are found to be required to see a signal. To illustrate this technique, we examine the temporal decay of the PL signal for In-alloyed, semi-insulating GaAs substrates. We find that the PL signal indicates a carrier lifetime of roughly 100 ps, for excitation densities of 1×1016-5×1017 cm-3. PECS is shown to be an easy technique to measure the ultrafast temporal behavior of PL processes because it requires no ultrafast photon detection. It is particularly well suited to measuring carrier lifetimes.
Spectral reconstruction analysis for enhancing signal-to-noise in time-resolved spectroscopies
NASA Astrophysics Data System (ADS)
Wilhelm, Michael J.; Smith, Jonathan M.; Dai, Hai-Lung
2015-09-01
We demonstrate a new spectral analysis for the enhancement of the signal-to-noise ratio (SNR) in time-resolved spectroscopies. Unlike the simple linear average which produces a single representative spectrum with enhanced SNR, this Spectral Reconstruction analysis (SRa) improves the SNR (by a factor of ca. 0 . 6 √{ n } ) for all n experimentally recorded time-resolved spectra. SRa operates by eliminating noise in the temporal domain, thereby attenuating noise in the spectral domain, as follows: Temporal profiles at each measured frequency are fit to a generic mathematical function that best represents the temporal evolution; spectra at each time are then reconstructed with data points from the fitted profiles. The SRa method is validated with simulated control spectral data sets. Finally, we apply SRa to two distinct experimentally measured sets of time-resolved IR emission spectra: (1) UV photolysis of carbonyl cyanide and (2) UV photolysis of vinyl cyanide.
Femtosecond MeV Electron Energy-Loss Spectroscopy
NASA Astrophysics Data System (ADS)
Li, R. K.; Wang, X. J.
2017-11-01
Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. In this paper, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the "reference-beam technique" relaxes the energy stability requirement of the rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving sub-electron-volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.
EEG-fMRI evaluation of patients with mesial temporal lobe sclerosis.
Avesani, Mirko; Giacopuzzi, Silvia; Bongiovanni, Luigi Giuseppe; Borelli, Paolo; Cerini, Roberto; Pozzi Mucelli, Roberto; Fiaschi, Antonio
2014-02-01
This preliminary study sought more information on blood oxygen level dependent (BOLD) activation, especially contralateral temporal/extratemporal spread, during continuous EEG-fMRI recordings in four patients with mesial temporal sclerosis (MTS). In two patients, EEG showed unilateral focal activity during the EEG-fMRI session concordant with the interictal focus previously identified with standard and video-poly EEG. In the other two patients EEG demonstrated a contralateral diffusion of the irritative focus. In the third patient (with the most drug-resistant form and also extratemporal clinical signs), there was an extratemporal diffusion over frontal regions, ipsilateral to the irritative focus. fMRI analysis confirmed a single activation in the mesial temporal region in two patients whose EEG showed unilateral focal activity, while it demonstrated a bilateral activation in the mesial temporal regions in the other two patients. In the third patient, fMRI demonstrated an activation in the supplementary motxor area. This study confirms the most significant activation with a high firing rate of the irritative focus, but also suggests the importance of using new techniques (such as EEG-fMRI to examine cerebral blood flow) to identify the controlateral limbic activation, and any other extratemporal activations, possible causes of drug resistance in MTS that may require a more precise pre-surgical evaluation with invasive techniques.
EEG-fMRI Evaluation of Patients with Mesial Temporal Lobe Sclerosis
Avesani, Mirko; Giacopuzzi, Silvia; Bongiovanni, Luigi Giuseppe; Borelli, Paolo; Cerini, Roberto; Pozzi Mucelli, Roberto; Fiaschi, Antonio
2014-01-01
Summary This preliminary study sought more information on blood oxygen level dependent (BOLD) activation, especially contralateral temporal/extratemporal spread, during continuous EEG-fMRI recordings in four patients with mesial temporal sclerosis (MTS). In two patients, EEG showed unilateral focal activity during the EEG-fMRI session concordant with the interictal focus previously identified with standard and video-poly EEG. In the other two patients EEG demonstrated a contralateral diffusion of the irritative focus. In the third patient (with the most drug-resistant form and also extratemporal clinical signs), there was an extratemporal diffusion over frontal regions, ipsilateral to the irritative focus. fMRI analysis confirmed a single activation in the mesial temporal region in two patients whose EEG showed unilateral focal activity, while it demonstrated a bilateral activation in the mesial temporal regions in the other two patients. In the third patient, fMRI demonstrated an activation in the supplementary motxor area. This study confirms the most significant activation with a high firing rate of the irritative focus, but also suggests the importance of using new techniques (such as EEG-fMRI to examine cerebral blood flow) to identify the controlateral limbic activation, and any other extratemporal activations, possible causes of drug resistance in MTS that may require a more precise pre-surgical evaluation with invasive techniques. PMID:24571833
Solar irradiance (W/m2) and downwelling diffuse attenuation coefficients (Kd; m-1) were determined in several locations in Prince William Sound, Alaska, USA, between April 2003 and December 2005 to assess temporal and spatial variation in solar radiation and the risks of photoenh...
Temporal Dynamics in Soil Oxygen and Greenhouse Gases in Two Humid Tropical Forests
Daniel Liptzin; Whendee L. Silver; Matteo Detto
2011-01-01
Soil redox plays a key role in regulating biogeochemical transformations in terrestrial ecosystems, but the temporal and spatial patterns in redox and associated controls within and across ecosystems are poorly understood. Upland humid tropical forest soils may be particularly prone to fluctuating redox as abundant rainfall limits oxygen (O2) diffusion through finely...
NASA Astrophysics Data System (ADS)
Proskurnin, M. A.; Korte, D.; Rogova, O. B.; Volkov, D. S.; Franko, M.
2018-07-01
Photothermal beam deflection spectroscopy (BDS) with a red He-Ne laser (632.8 nm, 35 mW) as an excitation beam source and a green He-Ne laser (543.1 nm, 2 mW) as a probe was used for estimating thermal diffusivity of several types of soil samples and individual soil aggregates with small surfaces (2 × 2 mm). It is shown that BDS can be used on demand for studies of changes in properties of soil entities of different hierarchical levels under the action of agrogenesis. It is presented that BDS clearly distinguishes between thermal diffusivities of different soil types: Sod-podzolic [Umbric Albeluvisols, Abruptic], 29 ± 3; Chernozem typical [Voronic Chernozems, Pachic], 9.9 ± 0.9; and Light Chestnut [Haplic Kastanozems, Chromic], 9.7 ± 0.9 cm2·h-1. Aggregates of chernozem soil show a significantly higher thermal diffusivity compared to the bulk soil. Thermal diffusivities of aggregates of Chernozem for virgin and bare fallow samples differ, 53 ± 4 cm2·h-1 and 45 ± 4 cm2·h-1, respectively. Micromonoliths of different Sod-podzolic soil horizons within the same profile (topsoil, depth 10-14 cm, and a parent rock with Fe illuviation, depth 180-185 cm) also show a significant difference, thermal diffusivities are 9.5 ± 0.8 cm2·h-1 and 27 ± 2 cm2·h-1, respectively. For soil micromonoliths, BDS is capable to distinguish the difference in thermal diffusivity resulting from the changes in the structure of aggregates.
NASA Astrophysics Data System (ADS)
Kumm, J.; Samadi, H.; Chacko, R. V.; Hartmann, P.; Wolf, A.
2016-07-01
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al2O3 layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatory to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.
Drabik, Dominik; Przybyło, Magda; Sikorski, Aleksander; Langner, Marek
2016-03-01
Fluorescence Correlation Spectroscopy (FCS) is a technique, which allows determination of the diffusion coefficient and concentration of fluorescent objects suspended in the solution. The measured parameter is the fluctuation of the fluorescence signal emitted by diffusing molecules. When 100 nm DOPC vesicles labeled with various fluorescent dyes (Fluorescein-PE, NBD-PE, Atto488 DOPE or βBodipy FL) were measured, different values of diffusion coefficients have been obtained. These diffusion coefficients were different from the expected values measured using the dynamic light scattering method (DLS). The FCS was initially developed for solutions containing small fluorescent molecules therefore the observed inconsistency may result from the nature of vesicle suspension itself. The duration of the fluorescence signal may depend on the following factors: the exposure time of the labeled object to the excitation beam, the photo-physical properties (e.g., stability) of a fluorophore, the theoretical model used for the calculations of the diffusion coefficient and optical properties of the vesicle suspension. The diffusion coefficients determined for differently labeled liposomes show that its dependence on vesicle size and quantity of fluorescent probed used for labeling was significant demonstrating that the fluorescence properties of the fluorophore itself (bleaching and/or blinking) were critical factors for a correct outcome of FCS experiment. The new, based on combined FCS and DLS measurements, method for the determination of the focal volume prove itself to be useful for the evaluation of a fluorescence dye with respect to its applicability for FCS experiment.
Surface-Enhanced Impulsive Coherent Vibrational Spectroscopy
Du, Juan; Harra, Juha; Virkki, Matti; Mäkelä, Jyrki M.; Leng, Yuxin; Kauranen, Martti; Kobayashi, Takayoshi
2016-01-01
Surface-enhanced Raman spectroscopy (SERS) has attracted a lot of attention in molecular sensing because of the remarkable ability of plasmonic metal nanostructures to enhance the weak Raman scattering process. On the other hand, coherent vibrational spectroscopy triggered by impulsive excitation using ultrafast laser pulses provides complete information about the temporal evolution of molecular vibrations, allowing dynamical processes in molecular systems to be followed in “real time”. Here, we combine these two concepts and demonstrate surface-enhanced impulsive vibrational spectroscopy. The vibrational modes of the ground and excited states of poly[2-methoxy-5-(2-ethylhexyloxy)−1,4-phenylenevinylene] (MEH-PPV), spin-coated on a substrate covered with monodisperse silver nanoparticles, are impulsively excited with a sub-10 fs pump pulse and characterized with a delayed broad-band probe pulse. The maximum enhancement in the spectrally and temporally resolved vibrational signatures averaged over the whole sample is about 4.6, while the real-time information about the instantaneous vibrational amplitude together with the initial vibrational phase is preserved. The phase is essential to determine the vibrational contributions from the ground and excited states. PMID:27812020
Spectral properties of Dy3+ doped ZnAl2O4 phosphor
NASA Astrophysics Data System (ADS)
Prakash, Ram; Kumar, Sandeep; Mahajan, Rubby; Khajuria, Pooja; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.
2018-05-01
Herein, Dy3+ doped ZnAl2O4 phosphor was synthesized by the solution combustion method. The synthesized phosphor was characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The phase purity of the phosphor was confirmed by the XRD studies that showed cubic symmetry of the synthesized phosphor. Under UV excitation (388 nm) the PL emission spectrum of the phosphor shows characteristic transition from the Dy3+ ion. A band gap of 5.2 eV was estimated from the diffused reflectance spectroscopy. The surface properties of the phosphor were studied using the X-ray photoelectron spectroscopy.
Wei, Ouyang; Cai, Guan-Qing; Huang, Hao-Bo; Geng, Xiao-Jun
2014-06-01
The soil respiration, nitrification and denitrification processes play an important role on soil nitrogen transformation and diffuse nitrogen loading. These processes are also the chains for soil circle. In this study, the Zhegao watershed located north of Chaohu Lake was selected to explore the interactions of these processes with diffuse nitrogen pollution. The BaPS (Barometric Process Separation) was applied to analyze the soil respiration, nitrification and denitrification processes in farmland and forest. The SWAT (Soil and Water Assessment Tool) simulated the temporal and spatial pattern of diffuse nitrogen loading. As the expanding of farmland and higher level of fertilization, the yearly mean loading of diffuse nitrogen increased sustainably from 1980-1995 to 1996-2012. The monthly loading in 1996-2012 was also higher than that in the period of 1980-1995, which closely related to the precipitation. The statistical analysis indicated that there was a significant difference between two periods. The yearly averaged loading of the whole watershed in 1996-2012 was 10.40 kg x hm(-2), which was 8.10 kg x hm(-2) in 1980-1995. The variance analysis demonstrated that there was also a big difference between the spatial distributions of two periods. The forest soil had much higher soil respiration than the farmland soil. But the farmland had higher nitrification and denitrification rates. The more intensive nitrogen transformation in the farmland contributed to the less diffuse nitrogen loading. As the nitrification rate of farmland was higher than denitrification rate, agricultural diffuse nitrate nitrogen loading would increase and organic nitrogen loading would reduce. The analysis of soil respiration, nitrification and denitrification is helpful for the study of soil nitrogen circle form the aspect of soil biology, which also benefits the control of agricultural diffuse nitrogen pollution.
Transport of Internetwork Magnetic Flux Elements in the Solar Photosphere
NASA Astrophysics Data System (ADS)
Agrawal, Piyush; Rast, Mark P.; Gošić, Milan; Bellot Rubio, Luis R.; Rempel, Matthias
2018-02-01
The motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating the turbulent diffusion coefficient in flux-transport dynamo models and in determining the Alfvén wave excitation spectrum for coronal heating models. We examine the motions of internetwork flux elements in Hinode/Narrowband Filter Imager magnetograms and study the scaling of their mean squared displacement and the shape of their displacement probability distribution as a function of time. We find that the mean squared displacement scales super-diffusively with a slope of about 1.48. Super-diffusive scaling has been observed in other studies for temporal increments as small as 5 s, increments over which ballistic scaling would be expected. Using high-cadence MURaM simulations, we show that the observed super-diffusive scaling at short increments is a consequence of random changes in barycenter positions due to flux evolution. We also find that for long temporal increments, beyond granular lifetimes, the observed displacement distribution deviates from that expected for a diffusive process, evolving from Rayleigh to Gaussian. This change in distribution can be modeled analytically by accounting for supergranular advection along with granular motions. These results complicate the interpretation of magnetic element motions as strictly advective or diffusive on short and long timescales and suggest that measurements of magnetic element motions must be used with caution in turbulent diffusion or wave excitation models. We propose that passive tracer motions in measured photospheric flows may yield more robust transport statistics.
The Shape of Protein Crowders is a Major Determinant of Protein Diffusion
Balbo, Jessica; Mereghetti, Paolo; Herten, Dirk-Peter; Wade, Rebecca C.
2013-01-01
As a model for understanding how molecular crowding influences diffusion and transport of proteins in cellular environments, we combined experimental and theoretical approaches to study the diffusion of proteins in highly concentrated protein solutions. Bovine serum albumin and γ-Globulin were chosen as molecular crowders and as tracers. These two proteins are representatives of the main types of plasma protein and have different shapes and sizes. Solutions consisting of one or both proteins were studied. The self-diffusion coefficients of the fluorescently labeled tracer proteins were measured by means of fluorescence correlation spectroscopy at a total protein concentration of up to 400 g/L. γ-Globulin is found to have a stronger influence as a crowder on the tracer self-diffusion coefficient than Bovine serum albumin. Brownian dynamics simulations show that the excluded volume and the shape of the crowding protein have a significantly stronger influence on translational and rotational diffusion coefficients, as well as transient oligomerization, than hydrodynamic or direct interactions. Anomalous subdiffusion, which is not observed at the experimental fluorescence correlation spectroscopy timescales (>100 μs), appears only at very short timescales (<1 μs) in the simulations due to steric effects of the proteins. We envision that the combined experimental and computational approach employed here can be developed to unravel the different biophysical contributions to protein motion and interaction in cellular environments by systematically varying protein properties such as molecular weight, size, shape, and electrostatic interactions. PMID:23561534
Nonequilibrium processes of segregation and diffusion in metal-polymer tribosystems
NASA Astrophysics Data System (ADS)
Sidashov, A. V.; Kolesnikov, I. V.
2017-12-01
The article presents the results of exchange-diffusion processes between chemical elements in metal-polymer tribosystems (between a metal wheel of a rolling stock and a composite polymer brake shoe). The effect of the segregation processes on the strength characteristics of the working surface of a tribosystem is estimated by quantum chemical calculations, Auger and X-ray photoelectron spectroscopies.
Alfano, Robert R.; Yang, Yuanlong
2003-09-02
Method and apparatus for examining biological materials using diffuse reflectance spectroscopy and the Kubelka-Munk function. In one aspect, the method is used to determine whether a tissue sample is cancerous or not and comprises the steps of (a) measuring the diffuse reflectance from the tissue sample at a first wavelength and at a second wavelength, wherein the first wavelength is a wavelength selected from the group consisting of 255-265 nm and wherein the second wavelength is a wavelength selected from the group consisting of 275-285 nm; (b) using the Kubelka-Munk function to transform the diffuse reflectance measurement obtained at the first and second wavelengths; and (c) comparing a ratio or a difference of the transformed Kubelka-Munk measurements at the first and second wavelengths to appropriate standards determine whether or not the tissue sample is cancerous. One can use the spectral profile of KMF between 250 nm to 300 nm to determine whether or not the tissue sample is cancerous or precancerous. According to the value at the first and second wavelengths determine whether or not the malignant tissue is invasive or mixed invasive and in situ or carcinoma in situ.
Adsorption isotherms and kinetics of activated carbons produced from coals of different ranks.
Purevsuren, B; Lin, Chin-Jung; Davaajav, Y; Ariunaa, A; Batbileg, S; Avid, B; Jargalmaa, S; Huang, Yu; Liou, Sofia Ya-Hsuan
2015-01-01
Activated carbons (ACs) from six coals, ranging from low-rank lignite brown coal to high-rank stone coal, were utilized as adsorbents to remove basic methylene blue (MB) from an aqueous solution. The surface properties of the obtained ACs were characterized via thermal analysis, N2 isothermal sorption, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. As coal rank decreased, an increase in the heterogeneity of the pore structures and abundance of oxygen-containing functional groups increased MB coverage on its surface. The equilibrium data fitted well with the Langmuir model, and adsorption capacity of MB ranged from 51.8 to 344.8 mg g⁻¹. Good correlation coefficients were obtained using the intra-particle diffusion model, indicating that the adsorption of MB onto ACs is diffusion controlled. The values of the effective diffusion coefficient ranged from 0.61 × 10⁻¹⁰ to 7.1 × 10⁻¹⁰ m² s⁻¹, indicating that ACs from lower-rank coals have higher effective diffusivities. Among all the ACs obtained from selected coals, the AC from low-rank lignite brown coal was the most effective in removing MB from an aqueous solution.
NASA Astrophysics Data System (ADS)
Du Le, Vinh Nguyen; Provias, John; Murty, Naresh; Patterson, Michael S.; Nie, Zhaojun; Hayward, Joseph E.; Farrell, Thomas J.; McMillan, William; Zhang, Wenbin; Fang, Qiyin
2017-02-01
Glioma itself accounts for 80% of all malignant primary brain tumors, and glioblastoma multiforme (GBM) accounts for 55% of such tumors. Diffuse reflectance and fluorescence spectroscopy have the potential to discriminate healthy tissues from abnormal tissues and therefore are promising noninvasive methods for improving the accuracy of brain tissue resection. Optical properties were retrieved using an experimentally evaluated inverse solution. On average, the scattering coefficient is 2.4 times higher in GBM than in low grade glioma (LGG), and the absorption coefficient is 48% higher. In addition, the ratio of fluorescence to diffuse reflectance at the emission peak of 460 nm is 2.6 times higher for LGG while reflectance at 650 nm is 2.7 times higher for GBM. The results reported also show that the combination of diffuse reflectance and fluorescence spectroscopy could achieve sensitivity of 100% and specificity of 90% in discriminating GBM from LGG during ex vivo measurements of 22 sites from seven glioma specimens. Therefore, the current technique might be a promising tool for aiding neurosurgeons in determining the extent of surgical resection of glioma and, thus, improving intraoperative tumor identification for guiding surgical intervention.
Liu, Fangchao; Dong, Chaoqing; Ren, Jicun
2018-03-15
Colloidal gold nanospheres (GNSs) have become important nanomaterials in biomedical applications due to their special optical properties, good chemical stability, and biocompatibility. However, measuring the diffusion coefficients or concentration distribution of GNSs within live cells accurately without any extra fluorescent labeling in situ has still not been resolved. In this work, a single particle method is developed to study the concentration distribution of folic acid-modified GNSs (FA-GNSs) internalized via folate receptors, and investigates their diffusion dynamics within live cells using single particle fluorescence correlation spectroscopy (FCS). We optimized the experimental conditions and verified the feasibility of 30 nm GNSs without extra fluorescence labeling being used for single particle detection inside live cells. Then, the FCS characterization strategy was used to measure the concentration and diffusion coefficient distributions of GNSs inside live cells and the obtained results were basically in agreement with those obtained by TEM. The results demonstrate that our strategy is characterized as an in situ, nondestructive, rapid and dynamic method for the assay of live cells, and it may be widely used in the further design of GNP-based drug delivery and therapeutics.
Alayed, Mrwan
2017-01-01
Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system. PMID:28906462
Du Le, Vinh Nguyen; Provias, John; Murty, Naresh; Patterson, Michael S; Nie, Zhaojun; Hayward, Joseph E; Farrell, Thomas J; McMillan, William; Zhang, Wenbin; Fang, Qiyin
2017-02-01
Glioma itself accounts for 80% of all malignant primary brain tumors, and glioblastoma multiforme (GBM) accounts for 55% of such tumors. Diffuse reflectance and fluorescence spectroscopy have the potential to discriminate healthy tissues from abnormal tissues and therefore are promising noninvasive methods for improving the accuracy of brain tissue resection. Optical properties were retrieved using an experimentally evaluated inverse solution. On average, the scattering coefficient is 2.4 times higher in GBM than in low grade glioma (LGG), and the absorption coefficient is 48% higher. In addition, the ratio of fluorescence to diffuse reflectance at the emission peak of 460 nm is 2.6 times higher for LGG while reflectance at 650 nm is 2.7 times higher for GBM. The results reported also show that the combination of diffuse reflectance and fluorescence spectroscopy could achieve sensitivity of 100% and specificity of 90% in discriminating GBM from LGG during ex vivo measurements of 22 sites from seven glioma specimens. Therefore, the current technique might be a promising tool for aiding neurosurgeons in determining the extent of surgical resection of glioma and, thus, improving intraoperative tumor identification for guiding surgical intervention.
NASA Astrophysics Data System (ADS)
Lee, Seung Yup; Pakela, Julia M.; Helton, Michael C.; Vishwanath, Karthik; Chung, Yooree G.; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann
2017-12-01
In reconstructive surgery, the ability to detect blood flow interruptions to grafted tissue represents a critical step in preventing postsurgical complications. We have developed and pilot tested a compact, fiber-based device that combines two complimentary modalities-diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy-to quantitatively monitor blood perfusion. We present a proof-of-concept study on an in vivo porcine model (n=8). With a controllable arterial blood flow supply, occlusion studies (n=4) were performed on surgically isolated free flaps while the device simultaneously monitored blood flow through the supplying artery as well as flap perfusion from three orientations: the distal side of the flap and two transdermal channels. Further studies featuring long-term monitoring, arterial failure simulations, and venous failure simulations were performed on flaps that had undergone an anastomosis procedure (n=4). Additionally, benchtop verification of the DCS system was performed on liquid flow phantoms. Data revealed relationships between diffuse optical measures and state of occlusion as well as the ability to detect arterial and venous compromise. The compact construction of the device, along with its noninvasive and quantitative nature, would make this technology suitable for clinical translation.
NASA Astrophysics Data System (ADS)
Le Merrer, Marie; Cohen-Addad, Sylvie; Höhler, Reinhard
2013-08-01
In aqueous foams, the diffusive gas transfer among neighboring bubbles drives a coarsening process which is accompanied by intermittent rearrangements of the structure. Using time-resolved diffusing-wave spectroscopy, we probe the dynamics of these events as a function of the rigidity of the gas-liquid interfaces, liquid viscosity, bubble size, and confinement pressure. We present in detail two independent techniques for analyzing the light scattering data, from which we extract the rearrangement duration. Our results show that interfacial rheology has a major impact on this duration. In the case of low interfacial rigidity, the rearrangements strongly slow down as the pressure is decreased close to the value zero where the bubble packing unjams. In contrast, if the interfaces are rigid, rearrangement durations are independent of the confinement pressure in the same investigated range. Using scaling arguments, we discuss dissipation mechanisms that may explain the observed dependency of the rearrangement dynamics on foam structure, pressure, and physicochemical solution properties.
NASA Astrophysics Data System (ADS)
Antonacci, Patrick
In this thesis, electrochemical impedance spectroscopy (EIS) and synchrotron x-ray radiography were utilized to characterize the impact of liquid water distributions in polymer electrolyte membrane fuel cell (PEMFC) gas diffusion layers (GDLs) on fuel cell performance. These diagnostic techniques were used to quantify the effects of liquid water visualized on equivalent resistances measured through EIS. The effects of varying the thickness of the microporous layer (MPL) of GDLs were studied using these diagnostic techniques. In a first study on the feasibility of this methodology, two fuel cell cases with a 100 microm-thick and a 150 microm-thick MPL were compared under constant current density operation. In a second study with 10, 30, 50, and 100 microm-thick MPLs, the liquid water in the cathode substrate was demonstrated to affect mass transport resistance, while the liquid water content in the anode (from back diffusion) affected membrane hydration, evidenced through ohmic resistance measurements.
The diffusion and conduction of lithium in poly(ethylene oxide)-based sulfonate ionomers
NASA Astrophysics Data System (ADS)
LaFemina, Nikki H.; Chen, Quan; Colby, Ralph H.; Mueller, Karl T.
2016-09-01
Pulsed field gradient nuclear magnetic resonance spectroscopy and dielectric relaxation spectroscopy have been utilized to investigate lithium dynamics within poly(ethylene oxide) (PEO)-based lithium sulfonate ionomers of varying ion content. The ion content is set by the fraction of sulfonated phthalates and the molecular weight of the PEO spacer, both of which can be varied independently. The molecular level dynamics of the ionomers are dominated by either Vogel-Fulcher-Tammann or Arrhenius behavior depending on ion content, spacer length, temperature, and degree of ionic aggregation. In these ionomers the main determinants of the self-diffusion of lithium and the observed conductivities are the ion content and ionic states of the lithium ion, which are profoundly affected by the interactions of the lithium ions with the ether oxygens of the polymer. Since many lithium ions move by segmental polymer motion in the ion pair state, their diffusion is significantly larger than that estimated from conductivity using the Nernst-Einstein equation.
Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut
2010-01-01
Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO2, was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO2 changes in adults, continuously, at the bed-side and in real time. PMID:21258561
Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut
2010-11-19
Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO(2), was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO(2) changes in adults, continuously, at the bed-side and in real time.
NASA Astrophysics Data System (ADS)
Otosu, Takuhiro; Yamaguchi, Shoichi
2017-07-01
We present standing evanescent-wave fluorescence correlation spectroscopy (SEW-FCS). This technique utilizes the interference of two evanescent waves which generates a standing evanescent-wave. Fringe-pattern illumination created by a standing evanescent-wave enables us to measure the diffusion coefficients of molecules with a super-resolution corresponding to one fringe width. Because the fringe width can be reliably estimated by a simple procedure, utilization of fringes is beneficial to quantitatively analyze the slow diffusion of molecules in a supported lipid bilayer (SLB), a model biomembrane formed on a solid substrate, with the timescale relevant for reliable FCS analysis. Furthermore, comparison of the data between SEW-FCS and conventional total-internal reflection FCS, which can also be performed by the SEW-FCS instrument, effectively eliminates the artifact due to afterpulsing of the photodiode detector. The versatility of SEW-FCS is demonstrated by its application to various SLBs.
NASA Astrophysics Data System (ADS)
Cappon, Derek J.; Farrell, Thomas J.; Fang, Qiyin; Hayward, Joseph E.
2016-12-01
Optical spectroscopy of human tissue has been widely applied within the field of biomedical optics to allow rapid, in vivo characterization and analysis of the tissue. When designing an instrument of this type, an imaging spectrometer is often employed to allow for simultaneous analysis of distinct signals. This is especially important when performing spatially resolved diffuse reflectance spectroscopy. In this article, an algorithm is presented that allows for the automated processing of 2-dimensional images acquired from an imaging spectrometer. The algorithm automatically defines distinct spectrometer tracks and adaptively compensates for distortion introduced by optical components in the imaging chain. Crosstalk resulting from the overlap of adjacent spectrometer tracks in the image is detected and subtracted from each signal. The algorithm's performance is demonstrated in the processing of spatially resolved diffuse reflectance spectra recovered from an Intralipid and ink liquid phantom and is shown to increase the range of wavelengths over which usable data can be recovered.
Baij, Lambert; Hermans, Joen J; Keune, Katrien; Iedema, Piet
2018-06-18
The formation of metal soaps (metal complexes of saturated fatty acids) is a serious problem affecting the appearance and structural integrity of many oil paintings. Tailored model systems for aged oil paint and time-dependent attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to study the diffusion of palmitic acid and subsequent metal soap crystallization. The simultaneous presence of free saturated fatty acids and polymer-bound metal carboxylates leads to rapid metal soap crystallization, following a complex mechanism that involves both acid and metal diffusion. Solvent flow, water, and pigments all enhance metal soap crystallization in the model systems. These results contribute to the development of paint cleaning strategies, a better understanding of oil paint degradation, and highlight the potential of time-dependent ATR-FTIR spectroscopy for studying dynamic processes in polymer films. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Zhang, Linna; Ding, Hongyan; Lin, Ling; Wang, Yimin; Guo, Xin
2018-01-01
Noncontact discriminating human blood is significantly crucial for import-export ports and inspection and quarantine departments. We had already demonstrated that visible diffuse reflectance spectroscopy combining PLS-DA method can successfully realize noncontact human blood discrimination. However, the circulated blood vessels may be produced with different materials. The use of various kinds of blood tubes may have a negative effect on the discrimination, based on ;M+N; theory (Li et al., 2016). In this research, we explored the impact of different material of blood vessels, such as glass tube and plastic tube, on the prediction ability of the discrimination model. Furthermore, we searched for the modification method to reduce the influence from the blood tubes. Our work indicated that generalized diffuse reflectance method can greatly improve the discrimination accuracy. This research can greatly facilitate the application of noncontact discrimination method based on visible and near-infrared diffuse reflectance spectroscopy.
Advantages of diffuse light for horticultural production and perspectives for further research
Li, Tao; Yang, Qichang
2015-01-01
Plants use diffuse light more efficiently than direct light, which is well established due to diffuse light penetrates deeper into the canopy and photosynthetic rate of a single leaf shows a non-linear response to the light flux density. Diffuse light also results in a more even horizontal and temporal light distribution in the canopy, which plays substantial role for crop photosynthesis enhancement as well as production improvement. Here we show some of the recent findings about the effect of diffuse light on light distribution over the canopy and its direct and indirect effects on crop photosynthesis and plant growth, and suggest some perspectives for further research which could strengthen the scientific understanding of diffuse light modulate plant processes and its application in horticultural production. PMID:26388890
Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda
2015-01-01
The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity. PMID:26865735
Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda
2014-06-01
The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity.
NASA Astrophysics Data System (ADS)
Niu, Haijing; Li, Lin; Bhave, Gauri S.; Lin, Zi-jing; Tian, Fenghua; Khosrow, Behbehani; Zhang, Rong; Liu, Hanli
2011-03-01
The goal for this study is to examine cerebral autoregulation in response to a repeated sit-stand maneuver using both diffuse functional Near Infrared spectroscopy (fNIRS) and Transcranial Doppler sonography (TCD). While fNIRS can provide transient changes in hemodynamic response to such a physical action, TCD is a noninvasive transcranial method to detect the flow velocities in the basal or middle cerebral arteries (MCA). The initial phase of this study was to measure fNIRS signals from the forehead of subjects during the repeated sit-stand protocol and to understand the corresponding meaning of the detected signals. Also, we acquired preliminary data from simultaneous measurements of fNIRS and TCD during the sit-stand protocol so as to explore the technical difficulty of such an approach. Specifically, ten healthy adult subjects were enrolled to perform the planned protocol, and the fNIRS array probes with 4 sources and 10 detectors were placed on the subject's forehead to detect hemodynamic signal changes from the prefrontal cortex. The fNIRS results show that the oscillations of hemoglobin concentration were spatially global and temporally dynamic across the entire region of subject's forehead. The oscillation patterns in both hemoglobin concentrations and blood flow velocity seemed to follow one another; changes in oxy-hemoglobin concentration were much larger than those in deoxyhemoglobin concentration. These preliminary findings provide us with evidence that fNIRS is an appropriate means readily for studying cerebral hemodynamics and autoregulation during sit-stand maneuvers.
Niu, Haijing; Wang, Jinhui; Zhao, Tengda; Shu, Ni; He, Yong
2012-01-01
The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics. We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques. Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.
P. David Jones; Laurence R. Schimleck; Gary F. Peter; Richard F. Daniels; Alexander Clark
2006-01-01
The use of calibrated near infrared (NIR) spectroscopy for predicting the chemical composition of Pirus taeda L. (loblolly pine) wood samples is investigated. Seventeen P. taeda radial strips, representing seven different sites were selected and NlR spectra were obtained from the radial longitudinal face of each strip. The spectra...
Abstracts for the International Conference on Asteroids, Comets, Meteors 1991
NASA Technical Reports Server (NTRS)
1991-01-01
Topics addressed include: chemical abundances; asteroidal belt evolution; sources of meteors and meteorites; cometary spectroscopy; gas diffusion; mathematical models; cometary nuclei; cratering records; imaging techniques; cometary composition; asteroid classification; radio telescopes and spectroscopy; magnetic fields; cosmogony; IUE observations; orbital distribution of asteroids, comets, and meteors; solar wind effects; computerized simulation; infrared remote sensing; optical properties; and orbital evolution.
Mohamad Nabavi; Joseph Dahlen; Laurence Schimleck; Thomas L. Eberhardt; Cristian Montes
2018-01-01
This study developed regional calibration models for the prediction of loblolly pine (Pinus taeda) tracheid properties using near-infrared (NIR) spectroscopy. A total of 1842 pith-to-bark radial strips, aged 19â31 years, were acquired from 268 trees from 109 stands across the southeastern USA. Diffuse reflectance NIR spectra were collected at 10-mm...
ERIC Educational Resources Information Center
Harmon, Jennifer; Coffman, Cierra; Villarrial, Spring; Chabolla, Steven; Heisel, Kurt A.; Krishnan, Viswanathan V.
2012-01-01
NMR spectroscopy has become one of the primary tools that chemists utilize to characterize a range of chemical species in the solution phase, from small organic molecules to medium-sized proteins. A discussion of NMR spectroscopy is an essential component of physical and biophysical chemistry lecture courses, and a number of instructional…
Water clustering in glassy polymers.
Davis, Eric M; Elabd, Yossef A
2013-09-12
In this study, water solubility and water clustering in several glassy polymers, including poly(methyl methacrylate) (PMMA), poly(styrene) (PS), and poly(vinylpyrrolidone) (PVP), were measured using both quartz spring microbalance (QSM) and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. Specifically, QSM was used to determine water solubility, while FTIR-ATR spectroscopy provided a direct, molecular-level measurement of water clustering. The Flory-Huggins theory was employed to obtain a measure of water-polymer interaction and water solubility, through both prediction and regression, where the theory failed to predict water solubility in both PMMA and PVP. Furthermore, a comparison of water clustering between direct FTIR-ATR spectroscopy measurements and predictions from the Zimm-Lundberg clustering analysis produced contradictory results. The failure of the Flory-Huggins theory and Zimm-Lundberg clustering analysis to describe water solubility and water clustering, respectively, in these glassy polymers is in part due to the equilibrium constraints under which these models are derived in contrast to the nonequilibrium state of glassy polymers. Additionally, FTIR-ATR spectroscopy results were compared to temperature-dependent diffusivity data, where a correlation between the activation energy for diffusion and the measured water clustering was observed.
NASA Astrophysics Data System (ADS)
Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio
1999-07-01
Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.
Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts
NASA Astrophysics Data System (ADS)
Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang
2016-01-01
Ytterbium-doped titanium dioxide (Yb-TiO2)/diatomite composite materials with different Yb concentrations were prepared by sol-gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV-vis diffuse reflection spectra showed that the band gap of TiO2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Compared to TiO2 and TiO2/diatomite, the Yb-TiO2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.
Fang, Yuan; Badal, Andreu; Allec, Nicholas; Karim, Karim S; Badano, Aldo
2012-01-01
The authors describe a detailed Monte Carlo (MC) method for the coupled transport of ionizing particles and charge carriers in amorphous selenium (a-Se) semiconductor x-ray detectors, and model the effect of statistical variations on the detected signal. A detailed transport code was developed for modeling the signal formation process in semiconductor x-ray detectors. The charge transport routines include three-dimensional spatial and temporal models of electron-hole pair transport taking into account recombination and trapping. Many electron-hole pairs are created simultaneously in bursts from energy deposition events. Carrier transport processes include drift due to external field and Coulombic interactions, and diffusion due to Brownian motion. Pulse-height spectra (PHS) have been simulated with different transport conditions for a range of monoenergetic incident x-ray energies and mammography radiation beam qualities. Two methods for calculating Swank factors from simulated PHS are shown, one using the entire PHS distribution, and the other using the photopeak. The latter ignores contributions from Compton scattering and K-fluorescence. Comparisons differ by approximately 2% between experimental measurements and simulations. The a-Se x-ray detector PHS responses simulated in this work include three-dimensional spatial and temporal transport of electron-hole pairs. These PHS were used to calculate the Swank factor and compare it with experimental measurements. The Swank factor was shown to be a function of x-ray energy and applied electric field. Trapping and recombination models are all shown to affect the Swank factor.
NASA Astrophysics Data System (ADS)
Siddique, M. Naseem; Ahmed, Ateeq; Ali, T.; Tripathi, P.
2018-05-01
Nickel oxide (NiO) nanoparticles with a crystal size of around 16.26 nm have been synthesized via sol-gel method. The synthesized precursor was calcined at 600 °C for 4 hours to obtain the nickel oxide nanoparticles. The XRD analysis result indicated that the calcined sample has a cubic structure without any impurity phases. The FTIR analysis result confirmed the formation of NiO. The NiO nanoparticle exhibited absorption band edge at 277.27 nm and the optical band gap have been estimated approximately 4.47 eV using diffuse reflectance spectroscopy and photoluminescence emission spectrum of our as-synthesized sample showed strong peak at 3.65 eV attributed to the band edge transition.
Tremblay, Nicolas; Larose, Eric; Rossetto, Vincent
2010-03-01
The stiffness of a consolidated granular medium experiences a drop immediately after a moderate mechanical solicitation. Then the stiffness rises back toward its initial value, following a logarithmic time evolution called slow dynamics. In the literature, slow dynamics has been probed by macroscopic quantities averaged over the sample volume, for instance, by the resonant frequency of vibrational eigenmodes. This article presents a different approach based on diffuse acoustic wave spectroscopy, a technique that is directly sensitive to the details of the sample structure. The parameters of the dynamics are found to depend on the damage of the medium. Results confirm that slow dynamics is, at least in part, due to tiny structural rearrangements at the microscopic scale, such as inter-grain contacts.
NASA Astrophysics Data System (ADS)
Scheffold, Frank
2014-08-01
To characterize the structural and dynamic properties of soft materials and small particles, information on the relevant mesoscopic length scales is required. Such information is often obtained from traditional static and dynamic light scattering (SLS/DLS) experiments in the single scattering regime. In many dense systems, however, these powerful techniques frequently fail due to strong multiple scattering of light. Here I will discuss some experimental innovations that have emerged over the last decade. New methods such as 3D static and dynamic light scattering (3D LS) as well as diffusing wave spectroscopy (DWS) can cover a much extended range of experimental parameters ranging from dilute polymer solutions, colloidal suspensions to extremely opaque viscoelastic emulsions.
NASA Astrophysics Data System (ADS)
Zhang, Zhenxin; Huang, Kaijin; Yuan, Fangli; Xie, Changsheng
2014-05-01
The detection of trichloroethylene has attracted much attention because it has an important effect on human health. The sensitivity of the SnO2 flat-type coplanar gas sensor arrays to 100 ppm trichloroethylene in air was investigated. The adsorption and surface reactions of trichloroethylene were investigated at 100-200 °C by in-situ diffuse reflection Fourier transform infrared spectroscopy (DIRFTS) on SnO2 films. Molecularly adsorbed trichloroethylene, dichloroacetyl chloride (DCAC), phosgene, HCl, CO, H2O, CHCl3, Cl2 and CO2 surface species are formed during trichloroethylene adsorption at 100-200 °C. A possible mechanism of the reaction process is discussed.
Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement
NASA Astrophysics Data System (ADS)
Lin, Yu; He, Lian; Shang, Yu; Yu, Guoqiang
2012-01-01
A noncontact diffuse correlation spectroscopy (DCS) probe has been developed using two separated optical paths for the source and detector. This unique design avoids the interference between the source and detector and allows large source-detector separations for deep tissue blood flow measurements. The noncontact probe has been calibrated against a contact probe in a tissue-like phantom solution and human muscle tissues; flow changes concurrently measured by the two probes are highly correlated in both phantom (R2=0.89, p<10-5) and real-tissue (R2=0.77, p<10-5, n=9) tests. The noncontact DCS holds promise for measuring blood flow in vulnerable (e.g., pressure ulcer) and soft (e.g., breast) tissues without distorting tissue hemodynamic properties.
Scanning tunneling spectroscopy study of the proximity effect in a disordered two-dimensional metal.
Serrier-Garcia, L; Cuevas, J C; Cren, T; Brun, C; Cherkez, V; Debontridder, F; Fokin, D; Bergeret, F S; Roditchev, D
2013-04-12
The proximity effect between a superconductor and a highly diffusive two-dimensional metal is revealed in a scanning tunneling spectroscopy experiment. The in situ elaborated samples consist of superconducting single crystalline Pb islands interconnected by a nonsuperconducting atomically thin disordered Pb wetting layer. In the vicinity of each superconducting island the wetting layer acquires specific tunneling characteristics which reflect the interplay between the proximity-induced superconductivity and the inherent electron correlations of this ultimate diffusive two-dimensional metal. The observed spatial evolution of the tunneling spectra is accounted for theoretically by combining the Usadel equations with the theory of dynamical Coulomb blockade; the relevant length and energy scales are extracted and found in agreement with available experimental data.
NASA Astrophysics Data System (ADS)
Verdel, Nina; Marin, Ana; Vidovič, Luka; Milanič, Matija; Majaron, Boris
2017-07-01
We present a novel methodology for quantitative analysis of hemodynamics in human skin in vivo. Our approach combines pulsed photothermal radiometry (i.e., time-resolved measurements of midinfrared emission from sample surface after exposure to a short light pulse) and diffuse reflectance spectroscopy in visible part of the spectrum. Experimental data are fitted with predictions of a numerical model of light transport in a four-layer skin model (i.e., inverse Monte Carlo), which allows assessment of the layer thicknesses, chromophore contents (e.g., melanin, oxy- and deoxy-hemoglobin), as well as scattering properties. The performance is tested in comparison analysis of healthy skin before and during application of a blood pressure cuff (at 200 mm Hg) for 5 minutes.
NASA Astrophysics Data System (ADS)
Edera, Paolo; Bergamini, Davide; Trappe, Véronique; Giavazzi, Fabio; Cerbino, Roberto
2017-12-01
Particle-tracking microrheology (PT-μ r ) exploits the thermal motion of embedded particles to probe the local mechanical properties of soft materials. Despite its appealing conceptual simplicity, PT-μ r requires calibration procedures and operating assumptions that constitute a practical barrier to its wider application. Here we demonstrate differential dynamic microscopy microrheology (DDM-μ r ), a tracking-free approach based on the multiscale, temporal correlation study of the image intensity fluctuations that are observed in microscopy experiments as a consequence of the translational and rotational motion of the tracers. We show that the mechanical moduli of an arbitrary sample are determined correctly over a wide frequency range provided that the standard DDM analysis is reinforced with an iterative, self-consistent procedure that fully exploits the multiscale information made available by DDM. Our approach to DDM-μ r does not require any prior calibration, is in agreement with both traditional rheology and diffusing wave spectroscopy microrheology, and works in conditions where PT-μ r fails, providing thus an operationally simple, calibration-free probe of soft materials.
NASA Astrophysics Data System (ADS)
Balberg, Michal; Shechter, Revital; Girshovitz, Pinhas; Breskin, Ilan; Fantini, Sergio
2017-02-01
Acousto-optic (AO) modulation of light is used to extract both temporal and spectral information of diffusive media such as biological tissue, where they provide measures of blood flow and oxygen saturation of hemoglobin, respectively. The temporal information is extracted from the width of the power spectrum of the light intensity, whereas the spectral information is calculated from the spatial decay of the cross correlation between the light intensity and the generated ultrasonic signal. The ultrasonic signal is a coded phase modulated signal with a narrow autocorrelation, enabling localization of the measurement volume. Two different liquid phantoms are used, with similar scattering but different absorption properties. The difference in absorption calculated with the AO signal is compared to calculations based on the modified Beer Lambert law. As the same AO signal is used to extract both modalities, it might be used to extract hemodynamic related changes in the brain for diagnostic and functional assessment.
NASA Astrophysics Data System (ADS)
Yu, X.; Salama, S.; Shen, F.
2016-08-01
During the Dragon-3 project (ID: 10555) period, we developed and improved the atmospheric correction algorithms (AC) and retrieval models of suspended sediment concentration ( ) and diffuse attenuation coefficient ( ) for the Yangtze estuarine and coastal waters. The developed models were validated by measurements with consistently stable and fairly accurate estimations, reproducing reasonable distribution maps of and over the study area. Spatial-temporal variations of were presented and the mechanisms of the sediment transport were discussed. We further examined the compatibility of the developed AC algorithms and retrieval model and the consistency of satellite products for multi-sensor such as MODIS/Terra/Aqua, MERIS/Envisat, MERSI/ FY-3 and GOCI. The inter-comparison of multi- sensor suggested that different satellite products can be combined to increase revisit frequency and complement a temporal gap of time series satellites that may exist between on-orbit and off- orbit, facilitating a better monitor on the spatial- temporal dynamics of .
ERIC Educational Resources Information Center
Schwarz, Wolf
2006-01-01
Paradigms used to study the time course of the redundant signals effect (RSE; J. O. Miller, 1986) and temporal order judgments (TOJs) share many important similarities and address related questions concerning the time course of sensory processing. The author of this article proposes and tests a new aggregate diffusion-based model to quantitatively…
NASA Astrophysics Data System (ADS)
Oh, Sanghoon; Fernald, Bradley; Bhatia, Sanjiv; Ragheb, John; Sandberg, David; Johnson, Mahlon; Lin, Wei-Chiang
2009-05-01
This research investigated the feasibility of using time-dependent diffuse reflectance spectroscopy to differentiate pediatric epileptic brain tissue from normal brain tissue. The optical spectroscopic technique monitored the dynamic optical properties of the cerebral cortex that are associated with its physiological, morphological, and compositional characteristics. Due to the transient irregular epileptic discharge activity within the epileptic brain tissue it was hypothesized that the lesion would express abnormal dynamic optical behavior that would alter normal dynamic behavior. Thirteen pediatric epilepsy patients and seven pediatric brain tumor patients (normal controls) were recruited for this clinical study. Dynamic optical properties were obtained from the cortical surface intraoperatively using a timedependent diffuse reflectance spectroscopy system. This system consisted of a fiber-optic probe, a tungsten-halogen light source, and a spectrophotometer. It acquired diffuse reflectance spectra with a spectral range of 204 nm to 932 nm at a rate of 33 spectra per second for approximately 12 seconds. Biopsy samples were taken from electrophysiologically abnormal cortex and evaluated by a neuropathologist, which served as a gold standard for lesion classification. For data analysis, spectral intensity changes of diffuse reflectance in the time domain at two different wavelengths from each investigated site were compared. Negative correlation segment, defined by the periods where the intensity changes at the two wavelengths were opposite in their slope polarity, were extracted. The total duration of negative correlation, referred to as the "negative correlation time index", was calculated by integrating the negative correlation segments. The negative correlation time indices from all investigated sites were sub-grouped according to the corresponding histological classifications. The difference between the mean indices of two subgroups was evaluated by standard t-test. These comparison and calculation procedures were carried out for all possible wavelength combinations between 400 nm and 800 nm with 2 nm increments. The positive group consisted of seven pathologically abnormal test sites, and the negative group consisted of 13 normal test sites from non-epileptic tumor patients. A standard t-test showed significant difference between negative correlation time indices from the two groups at the wavelength combinations of 700-760 nm versus 550-580 nm. An empirical discrimination algorithm based on the negative correlation time indices in this range produced 100% sensitivity and 85% specificity. Based on these results time-dependent diffuse reflectance spectroscopy with optimized data analysis methods differentiates epileptic brain tissue from normal brain tissue adequately, therefore can be utilized for surgical guidance, and may enhance the surgical outcome of pediatric epilepsy surgery.
Lodygensky, Gregory A; Kunz, Nicolas; Perroud, Elodie; Somm, Emmanuel; Mlynarik, Vladimir; Hüppi, Petra S; Gruetter, Rolf; Sizonenko, Stéphane V
2014-03-01
Lipopolysaccharide (LPS) injection in the corpus callosum (CC) of rat pups results in diffuse white matter injury similar to the main neuropathology of preterm infants. The aim of this study was to characterize the structural and metabolic markers of acute inflammatory injury by high-field magnetic resonance imaging (MRI) magnetic resonance spectroscopy (MRS) in vivo. Twenty-four hours after a 1-mg/kg injection of LPS in postnatal day 3 rat pups, diffusion tensor imaging and proton nuclear magnetic spectroscopy ((1)H NMR) were analyzed in conjunction to determine markers of cell death and inflammation using immunohistochemistry and gene expression. MRI and MRS in the CC revealed an increase in lactate and free lipids and a decrease of the apparent diffusion coefficient. Detailed evaluation of the CC showed a marked apoptotic response assessed by fractin expression. Interestingly, the degree of reduction in the apparent diffusion coefficient correlated strongly with the natural logarithm of fractin expression, in the same region of interest. LPS injection further resulted in increased activated microglia clustered in the cingulum, widespread astrogliosis, and increased expression of genes for interleukin (IL)-1, IL-6, and tumor necrosis factor. This model was able to reproduce the typical MRI hallmarks of acute diffuse white matter injury seen in preterm infants and allowed the evaluation of in vivo biomarkers of acute neuropathology after inflammatory challenge.
NASA Astrophysics Data System (ADS)
Itoh, Takanori; Imai, Hideto
2018-03-01
The time changes of the white line and pre-edge intensities of Co and Fe K-edge in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ (BSCF) were observed to estimate the oxide ion diffusion related to Co and Fe ions by using in - situ X-ray absorption spectroscopy (XAS) during oxidation. The 20 μm self-standing BSCF film was prepared for in - situ XAS measurements. The time changes of absorption were fitted to the exponential decay function with two terms. The longer relaxation time (τ), related to the oxide ion diffusion during the oxidation of BSCF, is dependent on temperature. The oxide ion diffusion coefficients (D) were calculated from the τ s estimated by in - situ XAS. The values of the activation energy (Ea) for D related to Co K-edge white line, Co pre-edge, and Fe pre-edge were 1.8-2.0 eV. The value of Ea for D related to Fe K-edge white line, however, was higher than other absorption values at approximately 2.3 eV. We discussed the oxide ion diffusion mechanism related to Co and Fe ions in BSCF using in - situ XAS.
ERIC Educational Resources Information Center
Sato, Yosuke; Oishi, Makoto; Fukuda, Masafumi; Fujii, Yukihiko
2012-01-01
We applied near-infrared spectroscopy (NIRS) and electrocorticography (ECoG) recordings during cortical stimulation to a temporal lobe epilepsy patient who underwent subdural electrode implantation. Using NIRS, changes in blood concentrations of oxyhemoglobin (HbO[subscript 2]) and deoxyhemoglobin (HbR) during cortical stimulation of the left…
Kinetics of propagation of the lattice excitation in a swift heavy ion track
NASA Astrophysics Data System (ADS)
Lipp, V. P.; Volkov, A. E.; Sorokin, M. V.; Rethfeld, B.
2011-05-01
In this research we verify the applicability of the temperature and heat diffusion conceptions for the description of subpicosecond lattice excitations in nanometric tracks of swift heavy ions (SHI) decelerated in solids in the electronic stopping regime. The method is based on the molecular dynamics (MD) analysis of temporal evolutions of the local kinetic and configurational temperatures of a lattice. We used solid argon as the model system. MD simulations demonstrated that in a SHI track (a) thermalization of lattice excitations takes time of several picoseconds, and (b) application of the parabolic heat diffusion equations for the description of spatial and temporal propagation of lattice excitations is questionable at least up to 10 ps after the ion passage.
Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites
NASA Astrophysics Data System (ADS)
Wang, Miao; Wang, Wen-xian; Chen, Hong-sheng; Li, Yu-li
2018-03-01
A Ni-B4C macroscopic diffusion welding couple and a Ni-15wt%B4C composite fabricated by spark plasma sintering (SPS) were used to understand the micro-scale diffusion bonding between metals and ceramics. In the Ni-B4C macroscopic diffusion welding couple a perfect diffusion welding joint was achieved. In the Ni-15wt%B4C sample, microstructure analyses demonstrated that loose structures occurred around the B4C particles. Energy dispersive X-ray spectroscopy analyses revealed that during the SPS process, the process of diffusion bonding between Ni and B4C particles can be divided into three stages. By employing a nano-indentation test, the room-temperature fracture toughness of the Ni matrix was found to be higher than that of the interface. The micro-diffusion bonding between Ni and B4C particles is quite different from the Ni-B4C reaction couple.
Stochastic Analysis of Reaction–Diffusion Processes
Hu, Jifeng; Kang, Hye-Won
2013-01-01
Reaction and diffusion processes are used to model chemical and biological processes over a wide range of spatial and temporal scales. Several routes to the diffusion process at various levels of description in time and space are discussed and the master equation for spatially discretized systems involving reaction and diffusion is developed. We discuss an estimator for the appropriate compartment size for simulating reaction–diffusion systems and introduce a measure of fluctuations in a discretized system. We then describe a new computational algorithm for implementing a modified Gillespie method for compartmental systems in which reactions are aggregated into equivalence classes and computational cells are searched via an optimized tree structure. Finally, we discuss several examples that illustrate the issues that have to be addressed in general systems. PMID:23719732
Proteins as micro viscosimeters: Brownian motion revisited.
Lavalette, Daniel; Hink, Mark A; Tourbez, Martine; Tétreau, Catherine; Visser, Antonie J
2006-08-01
Translational and rotational diffusion coefficients of proteins in solution strongly deviate from the Stokes-Einstein laws when the ambient viscosity is induced by macromolecular co-solutes rather than by a solvent of negligible size as was assumed by A. Einstein one century ago for deriving the laws of Brownian motion and diffusion. Rotational and translational motions experience different micro viscosities and both become a function of the size ratio of protein and macromolecular co-solute. Possible consequences upon fluorescence spectroscopy observations of diffusing proteins within living cells are discussed.
Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs
NASA Astrophysics Data System (ADS)
Hipke, Arthur; Meek, Samuel A.; Ideguchi, Takuro; Hänsch, Theodor W.; Picqué, Nathalie
2014-07-01
Multiplex two-photon excitation spectroscopy is demonstrated at Doppler-limited resolution. We describe first Fourier-transform two-photon spectroscopy of an atomic sample with two mode-locked laser oscillators in a dual-comb technique. Each transition is uniquely identified by the modulation imparted by the interfering comb excitations. The temporal modulation of the spontaneous two-photon fluorescence is monitored with a single photodetector, and the spectrum of all excited transitions is revealed by a Fourier transform.
A minimally-resolved immersed boundary model for reaction-diffusion problems
NASA Astrophysics Data System (ADS)
Pal Singh Bhalla, Amneet; Griffith, Boyce E.; Patankar, Neelesh A.; Donev, Aleksandar
2013-12-01
We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blob model can provide an accurate representation at low to moderate packing densities of the reactive particles, at a cost not much larger than solving a Poisson equation in the same domain. Unlike multipole expansion methods, our method does not require analytically computed Green's functions, but rather, computes regularized discrete Green's functions on the fly by using a standard grid-based discretization of the Poisson equation. This allows for great flexibility in implementing different boundary conditions, coupling to fluid flow or thermal transport, and the inclusion of other effects such as temporal evolution and even nonlinearities. We develop multigrid-based preconditioners for solving the linear systems that arise when using implicit temporal discretizations or studying steady states. In the diffusion-limited case the resulting linear system is a saddle-point problem, the efficient solution of which remains a challenge for suspensions of many particles. We validate our method by comparing to published results on reaction-diffusion in ordered and disordered suspensions of reactive spheres.
Whisper: Tracing the Spatiotemporal Process of Information Diffusion in Real Time.
Cao, Nan; Lin, Yu-Ru; Sun, Xiaohua; Lazer, D; Liu, Shixia; Qu, Huamin
2012-12-01
When and where is an idea dispersed? Social media, like Twitter, has been increasingly used for exchanging information, opinions and emotions about events that are happening across the world. Here we propose a novel visualization design, "Whisper", for tracing the process of information diffusion in social media in real time. Our design highlights three major characteristics of diffusion processes in social media: the temporal trend, social-spatial extent, and community response of a topic of interest. Such social, spatiotemporal processes are conveyed based on a sunflower metaphor whose seeds are often dispersed far away. In Whisper, we summarize the collective responses of communities on a given topic based on how tweets were retweeted by groups of users, through representing the sentiments extracted from the tweets, and tracing the pathways of retweets on a spatial hierarchical layout. We use an efficient flux line-drawing algorithm to trace multiple pathways so the temporal and spatial patterns can be identified even for a bursty event. A focused diffusion series highlights key roles such as opinion leaders in the diffusion process. We demonstrate how our design facilitates the understanding of when and where a piece of information is dispersed and what are the social responses of the crowd, for large-scale events including political campaigns and natural disasters. Initial feedback from domain experts suggests promising use for today's information consumption and dispersion in the wild.
3D radiation belt diffusion model results using new empirical models of whistler chorus and hiss
NASA Astrophysics Data System (ADS)
Cunningham, G.; Chen, Y.; Henderson, M. G.; Reeves, G. D.; Tu, W.
2012-12-01
3D diffusion codes model the energization, radial transport, and pitch angle scattering due to wave-particle interactions. Diffusion codes are powerful but are limited by the lack of knowledge of the spatial & temporal distribution of waves that drive the interactions for a specific event. We present results from the 3D DREAM model using diffusion coefficients driven by new, activity-dependent, statistical models of chorus and hiss waves. Most 3D codes parameterize the diffusion coefficients or wave amplitudes as functions of magnetic activity indices like Kp, AE, or Dst. These functional representations produce the average value of the wave intensities for a given level of magnetic activity; however, the variability of the wave population at a given activity level is lost with such a representation. Our 3D code makes use of the full sample distributions contained in a set of empirical wave databases (one database for each wave type, including plasmaspheric hiss, lower and upper hand chorus) that were recently produced by our team using CRRES and THEMIS observations. The wave databases store the full probability distribution of observed wave intensity binned by AE, MLT, MLAT and L*. In this presentation, we show results that make use of the wave intensity sample probability distributions for lower-band and upper-band chorus by sampling the distributions stochastically during a representative CRRES-era storm. The sampling of the wave intensity probability distributions produces a collection of possible evolutions of the phase space density, which quantifies the uncertainty in the model predictions caused by the uncertainty of the chorus wave amplitudes for a specific event. A significant issue is the determination of an appropriate model for the spatio-temporal correlations of the wave intensities, since the diffusion coefficients are computed as spatio-temporal averages of the waves over MLT, MLAT and L*. The spatiotemporal correlations cannot be inferred from the wave databases. In this study we use a temporal correlation of ~1 hour for the sampled wave intensities that is informed by the observed autocorrelation in the AE index, a spatial correlation length of ~100 km in the two directions perpendicular to the magnetic field, and a spatial correlation length of 5000 km in the direction parallel to the magnetic field, according to the work of Santolik et al (2003), who used multi-spacecraft measurements from Cluster to quantify the correlation length scales for equatorial chorus . We find that, despite the small correlation length scale for chorus, there remains significant variability in the model outcomes driven by variability in the chorus wave intensities.
Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.
Rowland, David J; Tuson, Hannah H; Biteen, Julie S
2016-05-24
By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced microscopy techniques. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Pezzolo, Alessandra De Lorenzi
2011-01-01
The diffuse reflectance infrared Fourier transform (DRIFT) spectra of sand samples exhibit features reflecting their composition. Basic multivariate analysis (MVA) can be used to effectively sort subsets of homogeneous specimens collected from nearby locations, as well as pointing out similarities in composition among sands of different origins.…
Liu, Hua-Shan; Chou, Ming-Chung; Chung, Hsiao-Wen; Cho, Nai-Yu; Chiang, Shih-Wei; Wang, Chao-Ying; Kao, Hung-Wen; Huang, Guo-Shu; Chen, Cheng-Yu
2011-08-01
To investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA, commonly known as "ecstasy") on the alterations of brain metabolites and anatomic tissue integrity related to the function of the basal ganglia-thalamocortical circuit by using proton magnetic resonance (MR) spectroscopy and diffusion-tensor MR imaging. This study was approved by a local institutional review board, and written informed consent was obtained from all subjects. Thirty-one long-term (>1 year) MDMA users and 33 healthy subjects were enrolled. Proton MR spectroscopy from the middle frontal cortex and bilateral basal ganglia and whole-brain diffusion-tensor MR imaging were performed with a 3.0-T system. Absolute concentrations of metabolites were computed, and diffusion-tensor data were registered to the International Consortium for Brain Mapping template to facilitate voxel-based group comparison. The mean myo-inositol level in the basal ganglia of MDMA users (left: 4.55 mmol/L ± 2.01 [standard deviation], right: 4.48 mmol/L ± 1.33) was significantly higher than that in control subjects (left: 3.25 mmol/L ± 1.30, right: 3.31 mmol/L ± 1.19) (P < .001). Cumulative lifetime MDMA dose showed a positive correlation with the levels of choline-containing compounds (Cho) in the right basal ganglia (r = 0.47, P = .02). MDMA users also showed a significant increase in fractional anisotropy (FA) in the bilateral thalami and significant changes in water diffusion in several regions related to the basal ganglia-thalamocortical circuit as compared with control subjects (P < .05; cluster size, >50 voxels). Increased myo-inositol and Cho concentrations in the basal ganglia of MDMA users are suggestive of glial response to degenerating serotonergic functions. The abnormal metabolic changes in the basal ganglia may consequently affect the inhibitory effect of the basal ganglia to the thalamus, as suggested by the increased FA in the thalamus and abnormal changes in water diffusion in the corresponding basal ganglia-thalamocortical circuit. © RSNA, 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumm, J.; Samadi, H.; Chacko, R. V.
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al{sub 2}O{sub 3} layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatorymore » to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.« less
Applications of fourier transform infrared spectroscopy to surface analysis problems 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, G.L.; Milosevic, M.
Applications of infrared spectroscopy to surface analysis are described in terms of the combined use of a number of techniques to solve specific surface analysis problems involving both qualitative and quantitative analysis of surface species. Emphasis is placed on the characterization of both the substrate and the surface species and the application of this to the monitoring of surface processes and the inspection of manufactured items. Lithium Hydride has been studied using remote analysis by diffuse reflectance in glove boxes containing very pure argon or controlled moisture levels with robot-operated gravimetric monitoring. These experiments are supported by internal reflectance andmore » diffuse reflectance measurements in spectrometer sample compartments to characterize the reactants. Beryllium oxide has been studied using an evacuable diffuse reflectance cell to determine the effects of vacuum baking reexposure to moisture on the surface hydroxyl species. Diffuse reflectance and emission measurements have been used to monitor the curing and reaction of environmental gases with composite materials such as graphite-expoxy structures. A direct comparison of diffuse reflectance and emission spectra was done using a barrel ellipsoid diffuse reflectance/emission detector and Spectropus optical transfer system. Grazing-incidence external-reflectance with p-polarized light was used to study the oxidation in room air of polished uranium coupons. The absorption band at 570 cm{sup {minus}1} was used to monitor the extent of oxidation with a resolution of approximately one monolayer of UO{sub 2} and to distinguish the parabolic, linear, and breakaway corrosion domains. External reflectance is compared with diffuse reflectance as a method for stain analysis and for measuring the effects of H{sub 2}O in UO{sub 2} corrosion films.« less
Applications of fourier transform infrared spectroscopy to surface analysis problems 2. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, G.L.; Milosevic, M.
Applications of infrared spectroscopy to surface analysis are described in terms of the combined use of a number of techniques to solve specific surface analysis problems involving both qualitative and quantitative analysis of surface species. Emphasis is placed on the characterization of both the substrate and the surface species and the application of this to the monitoring of surface processes and the inspection of manufactured items. Lithium Hydride has been studied using remote analysis by diffuse reflectance in glove boxes containing very pure argon or controlled moisture levels with robot-operated gravimetric monitoring. These experiments are supported by internal reflectance andmore » diffuse reflectance measurements in spectrometer sample compartments to characterize the reactants. Beryllium oxide has been studied using an evacuable diffuse reflectance cell to determine the effects of vacuum baking reexposure to moisture on the surface hydroxyl species. Diffuse reflectance and emission measurements have been used to monitor the curing and reaction of environmental gases with composite materials such as graphite-expoxy structures. A direct comparison of diffuse reflectance and emission spectra was done using a barrel ellipsoid diffuse reflectance/emission detector and Spectropus optical transfer system. Grazing-incidence external-reflectance with p-polarized light was used to study the oxidation in room air of polished uranium coupons. The absorption band at 570 cm{sup {minus}1} was used to monitor the extent of oxidation with a resolution of approximately one monolayer of UO{sub 2} and to distinguish the parabolic, linear, and breakaway corrosion domains. External reflectance is compared with diffuse reflectance as a method for stain analysis and for measuring the effects of H{sub 2}O in UO{sub 2} corrosion films.« less
NASA Technical Reports Server (NTRS)
Siriwardane, R.; Wightman, J. P.
1980-01-01
The acid-base properties of titanium 6-4 plates (low surface area) were investigated after three different pretreatments, namely Turco, phosphate-fluoride and Pasa-Jell. A series of indicators was used and color changes were detected using diffuse reflectance visible spectroscopy. Electron spectroscopy for chemical analysis was used to examine the indicator on the Ti 6-4 surface. Specular reflectance infra-red spectroscopy was used to study the adsorption of stearic acid from cyclohexane solutions on the Ti 6-4 surface.
Autofluorescence and diffuse reflectance patterns in cervical spectroscopy
NASA Astrophysics Data System (ADS)
Marin, Nena Maribel
Fluorescence and diffuse reflectance spectroscopy are two new optical technologies, which have shown promise to aid in the real time, non-invasive identification of cancers and precancers. Spectral patterns carry a fingerprint of scattering, absorption and fluorescence properties in tissue. Scattering, absorption and fluorescence in tissue are directly affected by biological features that are diagnostically significant, such as nuclear size, micro-vessel density, volume fraction of collagen fibers, tissue oxygenation and cell metabolism. Thus, analysis of spectral patterns can unlock a wealth of information directly related with the onset and progression of disease. Data from a Phase II clinical trial to assess the technical efficacy of fluorescence and diffuse reflectance spectroscopy acquired from 850 women at three clinical locations with two research grade optical devices is calibrated and analyzed. Tools to process and standardize spectra so that data from multiple spectrometers can be combined and analyzed are presented. Methodologies for calibration and quality assurance of optical systems are established to simplify design issues and ensure validity of data for future clinical trials. Empirically based algorithms, using multivariate statistical approaches are applied to spectra and evaluated as a clinical diagnostic tool. Physically based algorithms, using mathematical models of light propagation in tissue are presented. The presented mathematical model combines a diffusion theory in P3 approximation reflectance model and a 2-layer fluorescence model using exponential attenuation and diffusion theory. The resulting adjoint fluorescence and reflectance model extracts twelve optical properties characterizing fluorescence efficiency of cervical epithelium and stroma fluorophores, stromal hemoglobin and collagen absorption, oxygen saturation, and stromal scattering strength and shape. Validations with Monte Carlo simulations show that adjoint model extracted optical properties of the epithelium and the stroma can be estimated accurately. Adjoint model is applied to 926 clinical measurements from 503 patients. Mean values of extracted optical properties have demonstrated to characterize the biological changes associated with dysplastic progression. Finally, penalized logistic regression algorithms are applied to discriminate dysplastic stages in tissue based on extracted optical features. This work provides understandable and interpretable information regarding predictive and generalization ability of optical spectroscopy in neoplastic changes using a minimum subset of optical measurements. Ultimately these methodologies would facilitate the transfer of these optical technologies into clinical practice.
Porto, L; Weis, R; Schulz, C; Reichel, P; Lanfermann, H; Zanella, F E
2000-11-01
Tay's syndrome is a trichothiodystrophy associated with congenital ichthyosis. We report the findings on MRI and spectroscopy in a young girl with sparse, short, ruffled hair, dry skin and delayed milestones. T2-weighted images showed prominent diffuse confluent increase in signal symmetrically in all the supratentorial white matter. These findings are similar to those in a previously described case, and consistent with dysmyelination. Spectroscopy showed increased myoinositol and decreased choline.
NASA Astrophysics Data System (ADS)
Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong
2015-03-01
We investigated the performance of endoscopic diffuse optical spectroscopy probes with circular or linear fiber arrangements for tubular organ cancer detection. Probe performance was measured by penetration depth. A Monte Carlo model was employed to simulate light transport in the hollow cylinder that both emits and receives light from the inner boundary of the sample. The influence of fiber configurations and tissue optical properties on penetration depth was simulated. The results show that under the same condition, probes with circular fiber arrangement penetrate deeper than probes with linear fiber arrangement, and the difference between the two probes' penetration depth decreases with an increase in the 'distance between source and detector (SD)' and the radius of the probe. Other results show that the penetration depths and their differences both decrease with an increase in the absorption coefficient and the reduced scattering coefficient but remain constant with changes in the anisotropy factor. Moreover, the penetration depth was more affected by the absorption coefficient than the reduced scattering coefficient. It turns out that in NIR band, probes with linear fiber arrangements are more appropriate for diagnosing superficial cancers, whereas probes with circular fiber arrangements should be chosen for diagnosing adenocarcinoma. But in UV-VIS band, the two probe configurations exhibit nearly the same. These results are useful in guiding endoscopic diffuse optical spectroscopy-based diagnosis for esophageal, cervical, colorectal and other cancers.
Ghadiri, Elham; Zakeeruddin, Shaik M.; Hagfeldt, Anders; Grätzel, Michael; Moser, Jacques-E.
2016-01-01
Efficient dye-sensitized solar cells are based on highly diffusive mesoscopic layers that render these devices opaque and unsuitable for ultrafast transient absorption spectroscopy measurements in transmission mode. We developed a novel sub-200 femtosecond time-resolved diffuse reflectance spectroscopy scheme combined with potentiostatic control to study various solar cells in fully operational condition. We studied performance optimized devices based on liquid redox electrolytes and opaque TiO2 films, as well as other morphologies, such as TiO2 fibers and nanotubes. Charge injection from the Z907 dye in all TiO2 morphologies was observed to take place in the sub-200 fs time scale. The kinetics of electron-hole back recombination has features in the picosecond to nanosecond time scale. This observation is significantly different from what was reported in the literature where the electron-hole back recombination for transparent films of small particles is generally accepted to occur on a longer time scale of microseconds. The kinetics of the ultrafast electron injection remained unchanged for voltages between +500 mV and –690 mV, where the injection yield eventually drops steeply. The primary charge separation in Y123 organic dye based devices was clearly slower occurring in two picoseconds and no kinetic component on the shorter femtosecond time scale was recorded. PMID:27095505
da Silva, Fabiana E B; Flores, Érico M M; Parisotto, Graciele; Müller, Edson I; Ferrão, Marco F
2016-03-01
An alternative method for the quantification of sulphametoxazole (SMZ) and trimethoprim (TMP) using diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) and partial least square regression (PLS) was developed. Interval Partial Least Square (iPLS) and Synergy Partial Least Square (siPLS) were applied to select a spectral range that provided the lowest prediction error in comparison to the full-spectrum model. Fifteen commercial tablet formulations and forty-nine synthetic samples were used. The ranges of concentration considered were 400 to 900 mg g-1SMZ and 80 to 240 mg g-1 TMP. Spectral data were recorded between 600 and 4000 cm-1 with a 4 cm-1 resolution by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The proposed procedure was compared to high performance liquid chromatography (HPLC). The results obtained from the root mean square error of prediction (RMSEP), during the validation of the models for samples of sulphamethoxazole (SMZ) and trimethoprim (TMP) using siPLS, demonstrate that this approach is a valid technique for use in quantitative analysis of pharmaceutical formulations. The selected interval algorithm allowed building regression models with minor errors when compared to the full spectrum PLS model. A RMSEP of 13.03 mg g-1for SMZ and 4.88 mg g-1 for TMP was obtained after the selection the best spectral regions by siPLS.
Assessing human skin with diffuse reflectance spectroscopy and colorimetry
NASA Astrophysics Data System (ADS)
Seo, InSeok; Liu, Yang; Bargo, Paulo R.; Kollias, Nikiforos
2012-02-01
Colorimetry has been used as an objective measure of perceived skin color by human eye to document and score physiological responses of the skin from external insults. CIE color space values (L*, a* and b*) are the most commonly used parameters to correlate visually perceived color attributes such as L* for pigment, a* for erythema, and b* for sallowness of the skin. In this study, we investigated the relation of Lab color scale to the amount of major skin chromophores (oxy-, deoxyhemoglobin and melanin) calculated from diffuse reflectance spectroscopy. Thirty two healthy human subjects with ages from 20 to 70 years old, skin types I-VI, were recruited for the study. DRS and colorimetry measurements were taken from the left and right cheeks, and on the right upper inner arm. The melanin content calculated from 630-700 nm range of DRS measurements was shown to correlate with the lightness of skin (L*) for most skin types. For subjects with medium-to-light complexion, melanin measured at the blue part spectrum and hemoglobin interfered on the relation of lightness of the skin color to the melanin content. The sallowness of the skin that is quantified by the melanin contribution at the blue part spectrum of DRS was found to be related to b* scale. This study demonstrates the importance of documenting skin color by assessing individual skin chromophores with diffuse reflectance spectroscopy, in comparison to colorimetry assessment.
First passage times for a tracer particle in single file diffusion and fractional Brownian motion.
Sanders, Lloyd P; Ambjörnsson, Tobias
2012-05-07
We investigate the full functional form of the first passage time density (FPTD) of a tracer particle in a single-file diffusion (SFD) system whose population is: (i) homogeneous, i.e., all particles having the same diffusion constant and (ii) heterogeneous, with diffusion constants drawn from a heavy-tailed power-law distribution. In parallel, the full FPTD for fractional Brownian motion [fBm-defined by the Hurst parameter, H ∈ (0, 1)] is studied, of interest here as fBm and SFD systems belong to the same universality class. Extensive stochastic (non-Markovian) SFD and fBm simulations are performed and compared to two analytical Markovian techniques: the method of images approximation (MIA) and the Willemski-Fixman approximation (WFA). We find that the MIA cannot approximate well any temporal scale of the SFD FPTD. Our exact inversion of the Willemski-Fixman integral equation captures the long-time power-law exponent, when H ≥ 1/3, as predicted by Molchan [Commun. Math. Phys. 205, 97 (1999)] for fBm. When H < 1/3, which includes homogeneous SFD (H = 1/4), and heterogeneous SFD (H < 1/4), the WFA fails to agree with any temporal scale of the simulations and Molchan's long-time result. SFD systems are compared to their fBm counter parts; and in the homogeneous system both scaled FPTDs agree on all temporal scales including also, the result by Molchan, thus affirming that SFD and fBm dynamics belong to the same universality class. In the heterogeneous case SFD and fBm results for heterogeneity-averaged FPTDs agree in the asymptotic time limit. The non-averaged heterogeneous SFD systems display a lack of self-averaging. An exponential with a power-law argument, multiplied by a power-law pre-factor is shown to describe well the FPTD for all times for homogeneous SFD and sub-diffusive fBm systems.
Hayamizu, Kikuko; Seki, Shiro; Haishi, Tomoyuki
2018-06-21
The migration behaviours of Li+ in three garnet- and one NASICON-type solid oxide electrolytes were studied on the micrometre scale by pulsed-gradient spin-echo (PGSE) 7Li NMR diffusion spectroscopy to clarify common and specific characteristics of each electrolyte. In these solid electrolytes, clear evidences of grain boundary effects in the diffusion of Li+ were not observed. The Li+ diffusion constants were dependent on parameters such as observation time (Δ) and pulsed field gradient (PFG) strength (g) for all the studied inorganic solid electrolytes. For low Δ values, Li+ ions underwent collisions and diffractions with diffraction distance Rdiffraction [μm]. The apparent Li+ diffusion constants (Dapparent [m2 s-1]) exhibited distributions in a wide range. In this paper, we introduced the apparent diffusion radius, rradius [μm], and compared it with Rdiffraction and mean square displacement (MSD) [μm]; the lengths of these distances were of the micrometre order (10-6 m). The relations between the values of rradius, Rdiffraction and MSD suggested that the migration behaviours of Li+ on the micrometre scale were complicated. Using high Δ and high g values, we obtained an equilibrated value of DLi. The temperature dependences of the number of carrier ions were estimated from the DLi values and ionic conductivities in the four solid oxide electrolytes. For simple comparison and reference, the data of DLi and ionic conductivity of LiPF6 in 1 M solution of propylene carbonate were added.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guterl, Jerome, E-mail: jguterl@ucsd.edu; Smirnov, R. D.; Krasheninnikov, S. I.
Desorption phase of thermal desorption spectroscopy (TDS) experiments performed on tungsten samples exposed to flux of hydrogen isotopes in fusion relevant conditions is analyzed using a reaction-diffusion model describing hydrogen retention in material bulk. Two regimes of hydrogen desorption are identified depending on whether hydrogen trapping rate is faster than hydrogen diffusion rate in material during TDS experiments. In both regimes, a majority of hydrogen released from material defects is immediately outgassed instead of diffusing deeply in material bulk when the evolution of hydrogen concentration in material is quasi-static, which is the case during TDS experiments performed with tungsten samplesmore » exposed to flux of hydrogen isotopes in fusion related conditions. In this context, analytical expressions of the hydrogen outgassing flux as a function of the material temperature are obtained with sufficient accuracy to describe main features of thermal desorption spectra (TDSP). These expressions are then used to highlight how characteristic temperatures of TDSP depend on hydrogen retention parameters, such as trap concentration or activation energy of detrapping processes. The use of Arrhenius plots to characterize retention processes is then revisited when hydrogen trapping takes place during TDS experiments. Retention processes are also characterized using the shape of desorption peaks in TDSP, and it is shown that diffusion of hydrogen in material during TDS experiment can induce long desorption tails visible aside desorption peaks at high temperature in TDSP. These desorption tails can be used to estimate activation energy of diffusion of hydrogen in material.« less
Tlili-Graiess, Kalthoum; Mama, Nadia; Arifa, Nadia; Kadri, Khaled; Hasni, Ibtissem; Krifa, Hedi; Mokni, Moncef
2014-10-01
Three cases of histopathologically confirmed central neurocytoma (CN) are presented, emphasizing diagnostic imaging issues: conventional magnetic resonance imaging with Proton magnetic resonance spectroscopy (MRS) and diffusion-weighted imaging (DWI) findings of CN. Patients age ranged from 17 to 32 years, Imaging include a CT scan and MR examination with DWI and proton MRS on a 1.5-T system. DWI and subsequent apparent diffusion coefficient (ADC) were obtained in all. Single voxel MRS was performed prior to surgery using a point resolved spectroscopy sequence (PRESS) with short 35 ms and long echotime (TE) 144 ms, associated with a two-dimensional chemical Shift Imaging (2D-CSI) with 144 ms TE (one case). Histopathological examination included immunostaining with synaptophysin. With the long TE, a variable amount of glycine with markedly increased choline, very small to almost complete loss of N-acetylaspartate and creatine, and inverted triplet of alanine-lactate were observed in all three patients. Increased glutamate and glutamine complex (Glx) was also observed in all with short TE. DWI demonstrated variable low ADC which appeared well correlated with the tumor signal intensity and cell density: the most homogeneous and highly dense cellular tumor with increased nucleus to cytoplasm ratio demonstrated the lower ADC. Histological pattern was typical in two cases and demonstrated an oligodendroglioma-like pattern in one case. Positivity for synaptophysin confirmed the neuronal origin in all. The demonstration within an intraventricular tumor of both glycine and alanine on MRS along with high choline, bulky Glx and restricted diffusion appear diagnostic of CN. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
MEG Coherence and DTI Connectivity in mTLE
Nazem-Zadeh, Mohammad-Reza; Bowyer, Susan M.; Moran, John E.; Davoodi-Bojd, Esmaeil; Zillgitt, Andrew; Weiland, Barbara J.; Bagher-Ebadian, Hassan; Mahmoudi, Fariborz; Elisevich, Kost; Soltanian-Zadeh, Hamid
2017-01-01
Purpose Magnetoencephalography (MEG) is a noninvasive imaging method for localization of focal epileptiform activity in patients with epilepsy. Diffusion tensor imaging (DTI) is a noninvasive imaging method for measuring the diffusion properties of the underlying white matter tracts through which epileptiform activity is propagated. This study investigates the relationship between the cerebral functional abnormalities quantified by MEG coherence and structural abnormalities quantified by DTI in mesial temporal lobe epilepsy (mTLE). Methods Resting state MEG data was analyzed using MEG coherence source imaging (MEG-CSI) method to determine the coherence in 54 anatomical sites in 17 adult mTLE patients with surgical resection and Engel class I outcome, and 17 age- and gender- matched controls. DTI tractography identified the fiber tracts passing through these same anatomical sites of the same subjects. Then, DTI nodal degree and laterality index were calculated and compared with the corresponding MEG coherence and laterality index. Results MEG coherence laterality, after Bonferroni adjustment, showed significant differences for right versus left mTLE in insular cortex and both lateral orbitofrontal and superior temporal gyri (p<0.017). Likewise, DTI nodal degree laterality, after Bonferroni adjustment, showed significant differences for right versus left mTLE in gyrus rectus, insular cortex, precuneus and superior temporal gyrus (p<0.017). In insular cortex, MEG coherence laterality correlated with DTI nodal degree laterality (R2 = 0.46; p = 0.003) in the cases of mTLE. None of these anatomical sites showed statistically significant differences in coherence laterality between right and left sides of the controls. Coherence laterality was in agreement with the declared side of epileptogenicity in insular cortex (in 82% of patients) and both lateral orbitofrontal (88%) and superior temporal gyri (88%). Nodal degree laterality was also in agreement with the declared side of epileptogenicity in gyrus rectus (in 88% of patients), insular cortex (71%), precuneus (82%) and superior temporal gyrus (94%). Combining all significant laterality indices improved the lateralization accuracy to 94% and 100% for the coherence and nodal degree laterality indices, respectively. Conclusion The associated variations in diffusion properties of fiber tracts quantified by DTI and coherence measures quantified by MEG with respect to epileptogenicity possibly reflect the chronic microstructural cerebral changes associated with functional interictal activity. The proposed methodology for using MEG and DTI to investigate diffusion abnormalities related to focal epileptogenicity and propagation may provide a further means of noninvasive lateralization. PMID:27060092
White Matter Correlates of Auditory Comprehension Outcomes in Chronic Post-Stroke Aphasia
Xing, Shihui; Lacey, Elizabeth H.; Skipper-Kallal, Laura M.; Zeng, Jinsheng; Turkeltaub, Peter E.
2017-01-01
Neuroimaging studies have shown that speech comprehension involves a number of widely distributed regions within the frontal and temporal lobes. We aimed to examine the differential contributions of white matter connectivity to auditory word and sentence comprehension in chronic post-stroke aphasia. Structural and diffusion MRI data were acquired on 40 patients with chronic post-stroke aphasia. A battery of auditory word and sentence comprehension tests were administered to all the patients. Tract-based spatial statistics were used to identify areas in which white matter integrity related to specific comprehension deficits. Relevant tracts were reconstructed using probabilistic tractography in healthy older participants, and the mean values of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of the entire tracts were examined in relation to comprehension scores. Anterior temporal white matter integrity loss and involvement of the uncinate fasciculus related to word-level comprehension deficits (RFA = 0.408, P = 0.012; RMD = −0.429, P = 0.008; RAD = −0.424, P = 0.009; RRD = −0.439, P = 0.007). Posterior temporal white matter integrity loss and involvement of the inferior longitudinal fasciculus related to sentence-level comprehension deficits (RFA = 0.382, P = 0.02; RMD = −0.461, P = 0.004; RAD = −0.457, P = 0.004; RRD = −0.453, P = 0.005). Loss of white matter integrity in the inferior fronto-occipital fasciculus related to both word- and sentence-level comprehension (word-level scores: RFA = 0.41, P = 0.012; RMD = −0.447, P = 0.006; RAD = −0.489, P = 0.002; RRD = −0.432, P = 0.008; sentence-level scores: RFA = 0.409, P = 0.012; RMD = −0.413, P = 0.011; RAD = −0.408, P = 0.012; RRD = −0.413, P = 0.011). Lesion overlap, but not white matter integrity, in the arcuate fasciculus related to sentence-level comprehension deficits. These findings suggest that word-level comprehension outcomes in chronic post-stroke aphasia rely primarily on anterior temporal lobe pathways, whereas sentence-level comprehension relies on more widespread pathways including the posterior temporal lobe. PMID:28275366
Shih, Po-Hsun; Wu, Sheng Yun
2017-07-21
Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion.
Transport in Nanoporous Materials Including MOFs: The Applicability of Fick's Laws.
Titze, Tobias; Lauerer, Alexander; Heinke, Lars; Chmelik, Christian; Zimmermann, Nils E R; Keil, Frerich J; Ruthven, Douglas M; Kärger, Jörg
2015-11-23
Diffusion in nanoporous host-guest systems is often considered to be too complicated to comply with such "simple" relationships as Fick's first and second law of diffusion. However, it is shown herein that the microscopic techniques of diffusion measurement, notably the pulsed field gradient (PFG) technique of NMR spectroscopy and microimaging by interference microscopy (IFM) and IR microscopy (IRM), provide direct experimental evidence of the applicability of Fick's laws to such systems. This remains true in many situations, even when the detailed mechanism is complex. The limitations of the diffusion model are also discussed with reference to the extensive literature on this subject. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Femtosecond MeV Electron Energy-Loss Spectroscopy
Li, R. K.; Wang, X. J.
2017-11-09
Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. Here in this article, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the “referencebeam technique” relaxes the energy stability requirement of themore » rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving subelectron- volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.« less
Femtosecond MeV Electron Energy-Loss Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, R. K.; Wang, X. J.
Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. Here in this article, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the “referencebeam technique” relaxes the energy stability requirement of themore » rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving subelectron- volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.« less
Quantification of tissue oxygenation levels using diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
B. S., Suresh Anand; N., Sujatha
2011-08-01
Tumor growth is characterized by increased metabolic activity. The light absorption profile of hemoglobin in dysplastic tissue is different from a normal tissue. Neovascularization is a hallmark of many diseases and can serve as a predictive biomarker for the detection of cancers. Spectroscopic techniques can provide information about the metabolic and morphological changes related to the progression of neoplasia. Diffuse reflectance spectroscopy (DRS) measures the absorption and scattering properties of a biological tissue and this method can provide clinically useful information for the early diagnosis of epithelial precancers. We used tissue simulating phantoms with absorbing and scattering molecules for the determination of total hemoglobin concentration, hemoglobin oxygen saturation and intensity difference between the deoxy and oxy hemoglobin bands. The results show promising approach for the differentiating normal and malignant states of a tissue.
A scalable correlator for multichannel diffuse correlation spectroscopy.
Stapels, Christopher J; Kolodziejski, Noah J; McAdams, Daniel; Podolsky, Matthew J; Fernandez, Daniel E; Farkas, Dana; Christian, James F
2016-02-01
Diffuse correlation spectroscopy (DCS) is a technique which enables powerful and robust non-invasive optical studies of tissue micro-circulation and vascular blood flow. The technique amounts to autocorrelation analysis of coherent photons after their migration through moving scatterers and subsequent collection by single-mode optical fibers. A primary cost driver of DCS instruments are the commercial hardware-based correlators, limiting the proliferation of multi-channel instruments for validation of perfusion analysis as a clinical diagnostic metric. We present the development of a low-cost scalable correlator enabled by microchip-based time-tagging, and a software-based multi-tau data analysis method. We will discuss the capabilities of the instrument as well as the implementation and validation of 2- and 8-channel systems built for live animal and pre-clinical settings.
Kuzmina, Ilona; Diebele, Ilze; Spigulis, Janis; Valeine, Lauma; Berzina, Anna; Abelite, Anita
2011-04-01
Optical fiber contact probe diffuse reflectance spectroscopy and remote multispectral imaging methods in the spectral range of 400 to 1100 nm were used for skin vascular malformation assessment and recovery tracing after treatment by intense pulsed light. The results confirmed that oxy-hemoglobin relative changes and the optical density difference between lesion and healthy skin in the spectral region 500 to 600 nm may be successfully used for objective appraisal of the therapy effect. Color redness parameter a* = 2 is suggested as a diagnostic border to distinguish healthy skin and vascular lesions, and as the indicator of phototreatment efficiency. Valuable diagnostic information on large area (>5 mm) lesions and lesions with uncertain borders can be proved by the multispectral imaging method.
NASA Astrophysics Data System (ADS)
Kuzmina, Ilona; Diebele, Ilze; Spigulis, Janis; Valeine, Lauma; Berzina, Anna; Abelite, Anita
2011-04-01
Optical fiber contact probe diffuse reflectance spectroscopy and remote multispectral imaging methods in the spectral range of 400 to 1100 nm were used for skin vascular malformation assessment and recovery tracing after treatment by intense pulsed light. The results confirmed that oxy-hemoglobin relative changes and the optical density difference between lesion and healthy skin in the spectral region 500 to 600 nm may be successfully used for objective appraisal of the therapy effect. Color redness parameter a* = 2 is suggested as a diagnostic border to distinguish healthy skin and vascular lesions, and as the indicator of phototreatment efficiency. Valuable diagnostic information on large area (>5 mm) lesions and lesions with uncertain borders can be proved by the multispectral imaging method.
NASA Astrophysics Data System (ADS)
Seong, Myeongsu; Phillips, Zephaniah; Mai, Phuong M.; Yeo, Chaebeom; Song, Cheol; Lee, Kijoon; Kim, Jae G.
2015-07-01
Appropriate oxygen supply and blood flow are important in coordination of body functions and maintaining a life. To measure both oxygen supply and blood flow simultaneously, we developed a system that combined near-infrared spectroscopy (NIRS) and diffuse speckle contrast analysis (DSCA). Our system is more cost effective and compact than such combined systems as diffuse correlation spectroscopy(DCS)-NIRS or DCS flow oximeter, and also offers the same quantitative information. In this article, we present the configuration of DSCA-NIRS and preliminary data from an arm cuff occlusion and a repeated gripping exercise. With further investigation, we believe that DSCA-NIRS can be a useful tool for the field of neuroscience, muscle physiology and metabolic diseases such as diabetes.
Accardo, Grazia; Cioffi, Raffaeke; Colangelo, Francesco; d’Angelo, Raffaele; De Stefano, Luca; Paglietti, Fderica
2014-01-01
Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy is a well-known technique for thin film characterization. Since all asbestos species exhibit intense adsorptions peaks in the 4000–400 cm−1 region of the infrared spectrum, a quantitative analysis of asbestos in bulk samples by DRIFT is possible. In this work, different quantitative analytical procedures have been used to quantify chrysotile content in bulk materials produced by building requalification: partial least squares (PLS) chemometrics, the Linear Calibration Curve Method (LCM) and the Method of Additions (MoA). Each method has its own pros and cons, but all give affordable results for material characterization: the amount of asbestos (around 10%, weight by weight) can be determined with precision and accuracy (errors less than 0.1). PMID:28788467
Liu, Dan; Chalkidou, Anastasia; Landau, David B; Marsden, Paul K; Fenwick, John D
2014-09-07
Tumour cell proliferation can be imaged via positron emission tomography of the radiotracer 3'-deoxy-3'-18F-fluorothymidine (18F-FLT). Conceptually, the number of proliferating cells might be expected to correlate more closely with the kinetics of 18F-FLT uptake than with uptake at a fixed time. Radiotracer uptake kinetics are standardly visualized using parametric maps of compartment model fits to time-activity-curves (TACs) of individual voxels. However the relationship between the underlying spatiotemporal accumulation of FLT and the kinetics described by compartment models has not yet been explored. In this work tumour tracer uptake is simulated using a mechanistic spatial-temporal model based on a convection-diffusion-reaction equation solved via the finite difference method. The model describes a chain of processes: the flow of FLT between the spatially heterogeneous tumour vasculature and interstitium; diffusion and convection of FLT within the interstitium; transport of FLT into cells; and intracellular phosphorylation. Using values of model parameters estimated from the biological literature, simulated FLT TACs are generated with shapes and magnitudes similar to those seen clinically. Results show that the kinetics of the spatial-temporal model can be recovered accurately by fitting a 3-tissue compartment model to FLT TACs simulated for those tumours or tumour sub-volumes that can be viewed as approximately closed, for which tracer diffusion throughout the interstitium makes only a small fractional change to the quantity of FLT they contain. For a single PET voxel of width 2.5-5 mm we show that this condition is roughly equivalent to requiring that the relative difference in tracer uptake between the voxel and its neighbours is much less than one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschwanden, Markus J.; Zhang, Jie; Liu, Kai, E-mail: aschwanden@lmsal.com, E-mail: jzhang7@gmu.edu
2013-09-20
We extend a previous statistical solar flare study of 155 GOES M- and X-class flares observed with AIA/SDO to all seven coronal wavelengths (94, 131, 171, 193, 211, 304, and 335 Å) to test the wavelength dependence of scaling laws and statistical distributions. Except for the 171 and 193 Å wavelengths, which are affected by EUV dimming caused by coronal mass ejections (CMEs), we find near-identical size distributions of geometric (lengths L, flare areas A, volumes V, and fractal dimension D{sub 2}), temporal (flare durations T), and spatio-temporal parameters (diffusion coefficient κ, spreading exponent β, and maximum expansion velocities v{submore » max}) in different wavelengths, which are consistent with the universal predictions of the fractal-diffusive avalanche model of a slowly driven, self-organized criticality (FD-SOC) system, i.e., N(L)∝L {sup –3}, N(A)∝A {sup –2}, N(V)∝V {sup –5/3}, N(T)∝T {sup –2}, and D{sub 2} = 3/2, for a Euclidean dimension d = 3. Empirically, we find also a new strong correlation κ∝L {sup 0.94±0.01} and the three-parameter scaling law L∝κ T {sup 0.1}, which is more consistent with the logistic-growth model than with classical diffusion. The findings suggest long-range correlation lengths in the FD-SOC system that operate in the vicinity of a critical state, which could be used for predictions of individual extreme events. We find also that eruptive flares (with accompanying CMEs) have larger volumes V, longer flare durations T, higher EUV and soft X-ray fluxes, and somewhat larger diffusion coefficients κ than confined flares (without CMEs)« less