Temporal efficiency evaluation and small-worldness characterization in temporal networks
Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu
2016-01-01
Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks. PMID:27682314
Temporal efficiency evaluation and small-worldness characterization in temporal networks
NASA Astrophysics Data System (ADS)
Dai, Zhongxiang; Chen, Yu; Li, Junhua; Fam, Johnson; Bezerianos, Anastasios; Sun, Yu
2016-09-01
Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems. Here, we introduce a novel generalized analytical framework for temporal networks, which enables 1) robust evaluation of the efficiency of temporal information exchange using two new network metrics and 2) quantitative inspection of the temporal small-worldness. Specifically, we define new robust temporal network efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal regular network model, and based on this plus the redefined temporal efficiency metrics and widely used temporal random network models, we introduce a quantitative approach for identifying temporal small-world architectures (featuring high temporal network efficiency both globally and locally). In addition, within this framework, we can uncover network-specific dynamic structures. Applications to brain networks, international trade networks, and social networks reveal prominent temporal small-world properties with distinct dynamic network structures. We believe that the framework can provide further insight into dynamic changes in the network topology of various real-world systems and significantly promote research on temporal networks.
A distributed grid-based watershed mercury loading model has been developed to characterize spatial and temporal dynamics of mercury from both point and non-point sources. The model simulates flow, sediment transport, and mercury dynamics on a daily time step across a diverse lan...
Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging.
Feng, Xue; Salerno, Michael; Kramer, Christopher M; Meyer, Craig H
2013-05-01
In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome, and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and signal-to-noise ratio. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view-sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction. Copyright © 2012 Wiley Periodicals, Inc.
Kalman Filter Techniques for Accelerated Cartesian Dynamic Cardiac Imaging
Feng, Xue; Salerno, Michael; Kramer, Christopher M.; Meyer, Craig H.
2012-01-01
In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories, because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and SNR. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction. PMID:22926804
Exploring the structure and function of temporal networks with dynamic graphlets
Hulovatyy, Y.; Chen, H.; Milenković, T.
2015-01-01
Motivation: With increasing availability of temporal real-world networks, how to efficiently study these data? One can model a temporal network as a single aggregate static network, or as a series of time-specific snapshots, each being an aggregate static network over the corresponding time window. Then, one can use established methods for static analysis on the resulting aggregate network(s), but losing in the process valuable temporal information either completely, or at the interface between different snapshots, respectively. Here, we develop a novel approach for studying a temporal network more explicitly, by capturing inter-snapshot relationships. Results: We base our methodology on well-established graphlets (subgraphs), which have been proven in numerous contexts in static network research. We develop new theory to allow for graphlet-based analyses of temporal networks. Our new notion of dynamic graphlets is different from existing dynamic network approaches that are based on temporal motifs (statistically significant subgraphs). The latter have limitations: their results depend on the choice of a null network model that is required to evaluate the significance of a subgraph, and choosing a good null model is non-trivial. Our dynamic graphlets overcome the limitations of the temporal motifs. Also, when we aim to characterize the structure and function of an entire temporal network or of individual nodes, our dynamic graphlets outperform the static graphlets. Clearly, accounting for temporal information helps. We apply dynamic graphlets to temporal age-specific molecular network data to deepen our limited knowledge about human aging. Availability and implementation: http://www.nd.edu/∼cone/DG. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26072480
Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, R; Gallagher, B; Neville, J
Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less
A Model of the Temporal Dynamics of Knowledge Brokerage in Sustainable Development
ERIC Educational Resources Information Center
Hukkinen, Janne I.
2016-01-01
I develop a conceptual model of the temporal dynamics of knowledge brokerage for sustainable development. Brokerage refers to efforts to make research and policymaking more accessible to each other. The model enables unbiased and systematic consideration of knowledge brokerage as part of policy evolution. The model is theoretically grounded in…
Natural image sequences constrain dynamic receptive fields and imply a sparse code.
Häusler, Chris; Susemihl, Alex; Nawrot, Martin P
2013-11-06
In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Jung, Minju; Hwang, Jungsik; Tani, Jun
2015-01-01
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887
Jung, Minju; Hwang, Jungsik; Tani, Jun
2015-01-01
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.
A dynamic appearance descriptor approach to facial actions temporal modeling.
Jiang, Bihan; Valstar, Michel; Martinez, Brais; Pantic, Maja
2014-02-01
Both the configuration and the dynamics of facial expressions are crucial for the interpretation of human facial behavior. Yet to date, the vast majority of reported efforts in the field either do not take the dynamics of facial expressions into account, or focus only on prototypic facial expressions of six basic emotions. Facial dynamics can be explicitly analyzed by detecting the constituent temporal segments in Facial Action Coding System (FACS) Action Units (AUs)-onset, apex, and offset. In this paper, we present a novel approach to explicit analysis of temporal dynamics of facial actions using the dynamic appearance descriptor Local Phase Quantization from Three Orthogonal Planes (LPQ-TOP). Temporal segments are detected by combining a discriminative classifier for detecting the temporal segments on a frame-by-frame basis with Markov Models that enforce temporal consistency over the whole episode. The system is evaluated in detail over the MMI facial expression database, the UNBC-McMaster pain database, the SAL database, the GEMEP-FERA dataset in database-dependent experiments, in cross-database experiments using the Cohn-Kanade, and the SEMAINE databases. The comparison with other state-of-the-art methods shows that the proposed LPQ-TOP method outperforms the other approaches for the problem of AU temporal segment detection, and that overall AU activation detection benefits from dynamic appearance information.
A dynamic spatio-temporal model for spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin; Walsh, Daniel P.
2017-01-01
Analyzing spatial data often requires modeling dependencies created by a dynamic spatio-temporal data generating process. In many applications, a generalized linear mixed model (GLMM) is used with a random effect to account for spatial dependence and to provide optimal spatial predictions. Location-specific covariates are often included as fixed effects in a GLMM and may be collinear with the spatial random effect, which can negatively affect inference. We propose a dynamic approach to account for spatial dependence that incorporates scientific knowledge of the spatio-temporal data generating process. Our approach relies on a dynamic spatio-temporal model that explicitly incorporates location-specific covariates. We illustrate our approach with a spatially varying ecological diffusion model implemented using a computationally efficient homogenization technique. We apply our model to understand individual-level and location-specific risk factors associated with chronic wasting disease in white-tailed deer from Wisconsin, USA and estimate the location the disease was first introduced. We compare our approach to several existing methods that are commonly used in spatial statistics. Our spatio-temporal approach resulted in a higher predictive accuracy when compared to methods based on optimal spatial prediction, obviated confounding among the spatially indexed covariates and the spatial random effect, and provided additional information that will be important for containing disease outbreaks.
A general science-based framework for dynamical spatio-temporal models
Wikle, C.K.; Hooten, M.B.
2010-01-01
Spatio-temporal statistical models are increasingly being used across a wide variety of scientific disciplines to describe and predict spatially-explicit processes that evolve over time. Correspondingly, in recent years there has been a significant amount of research on new statistical methodology for such models. Although descriptive models that approach the problem from the second-order (covariance) perspective are important, and innovative work is being done in this regard, many real-world processes are dynamic, and it can be more efficient in some cases to characterize the associated spatio-temporal dependence by the use of dynamical models. The chief challenge with the specification of such dynamical models has been related to the curse of dimensionality. Even in fairly simple linear, first-order Markovian, Gaussian error settings, statistical models are often over parameterized. Hierarchical models have proven invaluable in their ability to deal to some extent with this issue by allowing dependency among groups of parameters. In addition, this framework has allowed for the specification of science based parameterizations (and associated prior distributions) in which classes of deterministic dynamical models (e. g., partial differential equations (PDEs), integro-difference equations (IDEs), matrix models, and agent-based models) are used to guide specific parameterizations. Most of the focus for the application of such models in statistics has been in the linear case. The problems mentioned above with linear dynamic models are compounded in the case of nonlinear models. In this sense, the need for coherent and sensible model parameterizations is not only helpful, it is essential. Here, we present an overview of a framework for incorporating scientific information to motivate dynamical spatio-temporal models. First, we illustrate the methodology with the linear case. We then develop a general nonlinear spatio-temporal framework that we call general quadratic nonlinearity and demonstrate that it accommodates many different classes of scientific-based parameterizations as special cases. The model is presented in a hierarchical Bayesian framework and is illustrated with examples from ecology and oceanography. ?? 2010 Sociedad de Estad??stica e Investigaci??n Operativa.
Models, Entropy and Information of Temporal Social Networks
NASA Astrophysics Data System (ADS)
Zhao, Kun; Karsai, Márton; Bianconi, Ginestra
Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.
Chang, Fi-John; Chen, Pin-An; Chang, Li-Chiu; Tsai, Yu-Hsuan
2016-08-15
This study attempts to model the spatio-temporal dynamics of total phosphate (TP) concentrations along a river for effective hydro-environmental management. We propose a systematical modeling scheme (SMS), which is an ingenious modeling process equipped with a dynamic neural network and three refined statistical methods, for reliably predicting the TP concentrations along a river simultaneously. Two different types of artificial neural network (BPNN-static neural network; NARX network-dynamic neural network) are constructed in modeling the dynamic system. The Dahan River in Taiwan is used as a study case, where ten-year seasonal water quality data collected at seven monitoring stations along the river are used for model training and validation. Results demonstrate that the NARX network can suitably capture the important dynamic features and remarkably outperforms the BPNN model, and the SMS can effectively identify key input factors, suitably overcome data scarcity, significantly increase model reliability, satisfactorily estimate site-specific TP concentration at seven monitoring stations simultaneously, and adequately reconstruct seasonal TP data into a monthly scale. The proposed SMS can reliably model the dynamic spatio-temporal water pollution variation in a river system for missing, hazardous or costly data of interest. Copyright © 2016 Elsevier B.V. All rights reserved.
Assessing global vegetation activity using spatio-temporal Bayesian modelling
NASA Astrophysics Data System (ADS)
Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.
2016-04-01
This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support our hypothesis. That is, the change of vegetation in space and time may be better understood when modelling vegetation change as both a dynamic and multivariate process. Therefore, future research will focus on a multivariate dynamical spatio-temporal modelling approach. This ongoing research is performed within the context of the project "Global impacts of hydrological and climatic extremes on vegetation" (project acronym: SAT-EX) which is part of the Belgian research programme for Earth Observation Stereo III.
USDA-ARS?s Scientific Manuscript database
Spatio-temporal variability of soil moisture (') is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time ' monitoring methods. This restricted the comprehensive and intensive examination of ' dynamic...
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions
NASA Astrophysics Data System (ADS)
Novosad, Philip; Reader, Andrew J.
2016-06-01
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [11C]SCH23390 data, showing promising results.
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.
Novosad, Philip; Reader, Andrew J
2016-06-21
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [(11)C]SCH23390 data, showing promising results.
Spatio-temporal correlations in models of collective motion ruled by different dynamical laws.
Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S; Melillo, Stefania; Viale, Massimiliano
2016-11-15
Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.
The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation
2013-11-20
Granger causality F-test validation 3.1.2. Dynamic time warping for uneven temporal relationships Many causal relationships are imperfectly...mapping for dynamic feedback models Granger causality and DTW can identify causal relationships and consider complex temporal factors. However, many ...variant of the tf-idf algorithm (Manning, Raghavan, Schutze et al., 2008), typically used in search engines, to “score” features. The (-log tf) in
Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.
Taghia, Jalil; Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Cai, Weidong; Menon, Vinod
2017-07-15
There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian framework. In BSFA, brain dynamic functional networks are represented by latent states which are learnt from the data. Crucially, BSFA is a generative model which estimates the temporal evolution of brain states and transition probabilities between states as a function of time. An attractive feature of BSFA is the automatic determination of the number of latent states via Bayesian model selection arising from penalization of excessively complex models. Key features of BSFA are validated using extensive simulations on carefully designed synthetic data. We further validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human Connectome Project (HCP). Our results show that modeling temporal dependencies in the generative model of BSFA results in improved fingerprinting of individual participants. Finally, we apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, and default mode networks-three core neurocognitive systems with central role in cognitive and affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high level of dynamic interactions between these networks and determine that the salience network has the highest temporal flexibility among the three networks. Our proposed methods provide a novel and powerful generative model for investigating dynamic brain connectivity. Copyright © 2017 Elsevier Inc. All rights reserved.
Parameterizing Coefficients of a POD-Based Dynamical System
NASA Technical Reports Server (NTRS)
Kalb, Virginia L.
2010-01-01
A method of parameterizing the coefficients of a dynamical system based of a proper orthogonal decomposition (POD) representing the flow dynamics of a viscous fluid has been introduced. (A brief description of POD is presented in the immediately preceding article.) The present parameterization method is intended to enable construction of the dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers. The need for this or a similar method arises as follows: A procedure that includes direct numerical simulation followed by POD, followed by Galerkin projection to a dynamical system has been proven to enable representation of flow dynamics by a low-dimensional model at the Reynolds number of the simulation. However, a more difficult task is to obtain models that are valid over a range of Reynolds numbers. Extrapolation of low-dimensional models by use of straightforward Reynolds-number-based parameter continuation has proven to be inadequate for successful prediction of flows. A key part of the problem of constructing a dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers is the problem of understanding and providing for the variation of the coefficients of the dynamical system with the Reynolds number. Prior methods do not enable capture of temporal dynamics over ranges of Reynolds numbers in low-dimensional models, and are not even satisfactory when large numbers of modes are used. The basic idea of the present method is to solve the problem through a suitable parameterization of the coefficients of the dynamical system. The parameterization computations involve utilization of the transfer of kinetic energy between modes as a function of Reynolds number. The thus-parameterized dynamical system accurately predicts the flow dynamics and is applicable to a range of flow problems in the dynamical regime around the Hopf bifurcation. Parameter-continuation software can be used on the parameterized dynamical system to derive a bifurcation diagram that accurately predicts the temporal flow behavior.
Causal relations among events and states in dynamic geographical phenomena
NASA Astrophysics Data System (ADS)
Huang, Zhaoqiang; Feng, Xuezhi; Xuan, Wenling; Chen, Xiuwan
2007-06-01
There is only a static state of the real world to be recorded in conventional geographical information systems. However, there is not only static information but also dynamic information in geographical phenomena. So that how to record the dynamic information and reveal the relations among dynamic information is an important issue in a spatio-temporal information system. From an ontological perspective, we can initially divide the spatio-temporal entities in the world into continuants and occurrents. Continuant entities endure through some extended (although possibly very short) interval of time (e.g., houses, roads, cities, and real-estate). Occurrent entities happen and are then gone (e.g., a house repair job, road construction project, urban expansion, real-estate transition). From an information system perspective, continuants and occurrents that have a unique identity in the system are referred to as objects and events, respectively. And the change is represented implicitly by static snapshots in current spatial temporal information systems. In the previous models, the objects can be considered as the fundamental components of the system, and the change is modeled by considering time-varying attributes of these objects. In the spatio-temporal database, the temporal information that is either interval or instant is involved and the underlying data structures and indexes for temporal are considerable investigated. However, there is the absence of explicit ways of considering events, which affect the attributes of objects or the state. So the research issue of this paper focuses on how to model events in conceptual models of dynamic geographical phenomena and how to represent the causal relations among events and the objects or states. Firstly, the paper reviews the conceptual modeling in a temporal GIS by researchers. Secondly, this paper discusses the spatio-temporal entities: objects and events. Thirdly, this paper investigates the causal relations amongst events and states. The qualitative spatiotemporal change is an important issue in the dynamic geographic-scale phenomena. In real estate transition, the events and states are needed to be represented explicitly. In our modeling the evolution of a dynamic system, it can not avoid fetching in the view of causality. The object's transition is represented by the state of object. Event causes the state of objects changing and causes other events happen. Events connect with objects closely. The basic causal relations are the state-event and event-state relationships. Lastly, the paper concludes with the overview about the causal relations amongst events and states. And this future work is pointed.
A spatial-temporal system for dynamic cadastral management.
Nan, Liu; Renyi, Liu; Guangliang, Zhu; Jiong, Xie
2006-03-01
A practical spatio-temporal database (STDB) technique for dynamic urban land management is presented. One of the STDB models, the expanded model of Base State with Amendments (BSA), is selected as the basis for developing the dynamic cadastral management technique. Two approaches, the Section Fast Indexing (SFI) and the Storage Factors of Variable Granularity (SFVG), are used to improve the efficiency of the BSA model. Both spatial graphic data and attribute data, through a succinct engine, are stored in standard relational database management systems (RDBMS) for the actual implementation of the BSA model. The spatio-temporal database is divided into three interdependent sub-databases: present DB, history DB and the procedures-tracing DB. The efficiency of database operation is improved by the database connection in the bottom layer of the Microsoft SQL Server. The spatio-temporal system can be provided at a low-cost while satisfying the basic needs of urban land management in China. The approaches presented in this paper may also be of significance to countries where land patterns change frequently or to agencies where financial resources are limited.
Climatology of convective showers dynamics in a convection-permitting model
NASA Astrophysics Data System (ADS)
Brisson, Erwan; Brendel, Christoph; Ahrens, Bodo
2017-04-01
Convection-permitting simulations have proven their usefulness in improving both the representation of convective rain and the uncertainty range of climate projections. However, most studies have focused on temporal scales greater or equal to convection cell lifetime. A large knowledge gap remains on the model's performance in representing the temporal dynamic of convective showers and how could this temporal dynamic be altered in a warmer climate. In this study, we proposed to fill this gap by analyzing 5-minute convection-permitting model (CPM) outputs. In total, more than 1200 one-day cases are simulated at the resolution of 0.01° using the regional climate model COSMO-CLM over central Europe. The analysis follows a Lagrangian approach and consists of tracking showers characterized by five-minute intensities greater than 20 mm/hour. The different features of these showers (e.g., temporal evolution, horizontal speed, lifetime) are investigated. These features as modeled by an ERA-Interim forced simulation are evaluated using a radar dataset for the period 2004-2010. The model shows good performance in representing most features observed in the radar dataset. Besides, the observed relation between the temporal evolution of precipitation and temperature are well reproduced by the CPM. In a second modeling experiment, the impact of climate change on convective cell features are analyzed based on an EC-Earth RCP8.5 forced simulation for the period 2071-2100. First results show only minor changes in the temporal structure and size of showers. The increase in convective precipitation found in previous studies seems to be mainly due to an increase in the number of convective cells.
Wang, Xiaojing; Chen, Ming-Hui; Yan, Jun
2013-07-01
Cox models with time-varying coefficients offer great flexibility in capturing the temporal dynamics of covariate effects on event times, which could be hidden from a Cox proportional hazards model. Methodology development for varying coefficient Cox models, however, has been largely limited to right censored data; only limited work on interval censored data has been done. In most existing methods for varying coefficient models, analysts need to specify which covariate coefficients are time-varying and which are not at the time of fitting. We propose a dynamic Cox regression model for interval censored data in a Bayesian framework, where the coefficient curves are piecewise constant but the number of pieces and the jump points are covariate specific and estimated from the data. The model automatically determines the extent to which the temporal dynamics is needed for each covariate, resulting in smoother and more stable curve estimates. The posterior computation is carried out via an efficient reversible jump Markov chain Monte Carlo algorithm. Inference of each coefficient is based on an average of models with different number of pieces and jump points. A simulation study with three covariates, each with a coefficient of different degree in temporal dynamics, confirmed that the dynamic model is preferred to the existing time-varying model in terms of model comparison criteria through conditional predictive ordinate. When applied to a dental health data of children with age between 7 and 12 years, the dynamic model reveals that the relative risk of emergence of permanent tooth 24 between children with and without an infected primary predecessor is the highest at around age 7.5, and that it gradually reduces to one after age 11. These findings were not seen from the existing studies with Cox proportional hazards models.
NASA Astrophysics Data System (ADS)
Holme, Petter; Saramäki, Jari
2012-10-01
A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered, but does not attempt to unify related terminology-rather, we want to make papers readable across disciplines.
HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.
Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B
2017-07-01
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.
NASA Astrophysics Data System (ADS)
Juchem Neto, J. P.; Claeyssen, J. C. R.; Pôrto Júnior, S. S.
2018-03-01
In this paper we introduce capital transport cost in a unidimensional spatial Solow-Swan model of economic growth with capital-induced labor migration, considered in an unbounded domain. Proceeding with a stability analysis, we show that there is a critical value for the capital transport cost where the dynamic behavior of the economy changes, provided that the intensity of capital-induced labor migration is strong enough. On the one hand, if the capital transport cost is higher than this critical value, the spatially homogeneous equilibrium of coexistence of the model is stable, and the economy converges to this spatially homogeneous state in the long run; on the other hand, if transport cost is lower than this critical value, the equilibrium is unstable, and the economy may develop different spatio-temporal dynamics, including the formation of stable economic agglomerations and spatio-temporal economic cycles, depending on the other parameters in the model. Finally, numerical simulations support the results of the stability analysis, and illustrate the spatio-temporal dynamics generated by the model, suggesting that the economy as a whole benefits from the formation of economic agglomerations and cycles, with a higher capital transport cost reducing this gain.
Modelling of the nonlinear soliton dynamics in the ring fibre cavity
NASA Astrophysics Data System (ADS)
Razukov, Vadim A.; Melnikov, Leonid A.
2018-04-01
Using the cabaret method numerical realization, long-time spatio-temporal dynamics of the electromagnetic field in a nonlinear ring fibre cavity with dispersion is investigated during the hundreds of round trips. Formation of both the temporal cavity solitons and irregular pulse trains is demonstrated and discussed.
TASI: A software tool for spatial-temporal quantification of tumor spheroid dynamics.
Hou, Yue; Konen, Jessica; Brat, Daniel J; Marcus, Adam I; Cooper, Lee A D
2018-05-08
Spheroid cultures derived from explanted cancer specimens are an increasingly utilized resource for studying complex biological processes like tumor cell invasion and metastasis, representing an important bridge between the simplicity and practicality of 2-dimensional monolayer cultures and the complexity and realism of in vivo animal models. Temporal imaging of spheroids can capture the dynamics of cell behaviors and microenvironments, and when combined with quantitative image analysis methods, enables deep interrogation of biological mechanisms. This paper presents a comprehensive open-source software framework for Temporal Analysis of Spheroid Imaging (TASI) that allows investigators to objectively characterize spheroid growth and invasion dynamics. TASI performs spatiotemporal segmentation of spheroid cultures, extraction of features describing spheroid morpho-phenotypes, mathematical modeling of spheroid dynamics, and statistical comparisons of experimental conditions. We demonstrate the utility of this tool in an analysis of non-small cell lung cancer spheroids that exhibit variability in metastatic and proliferative behaviors.
Learning Human Actions by Combining Global Dynamics and Local Appearance.
Luo, Guan; Yang, Shuang; Tian, Guodong; Yuan, Chunfeng; Hu, Weiming; Maybank, Stephen J
2014-12-01
In this paper, we address the problem of human action recognition through combining global temporal dynamics and local visual spatio-temporal appearance features. For this purpose, in the global temporal dimension, we propose to model the motion dynamics with robust linear dynamical systems (LDSs) and use the model parameters as motion descriptors. Since LDSs live in a non-Euclidean space and the descriptors are in non-vector form, we propose a shift invariant subspace angles based distance to measure the similarity between LDSs. In the local visual dimension, we construct curved spatio-temporal cuboids along the trajectories of densely sampled feature points and describe them using histograms of oriented gradients (HOG). The distance between motion sequences is computed with the Chi-Squared histogram distance in the bag-of-words framework. Finally we perform classification using the maximum margin distance learning method by combining the global dynamic distances and the local visual distances. We evaluate our approach for action recognition on five short clips data sets, namely Weizmann, KTH, UCF sports, Hollywood2 and UCF50, as well as three long continuous data sets, namely VIRAT, ADL and CRIM13. We show competitive results as compared with current state-of-the-art methods.
Henry, B I; Langlands, T A M; Wearne, S L
2006-09-01
We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps then the long time asymptotic limit has a standard linear reaction kinetics term but a fractional order temporal derivative operating on a nonstandard diffusion term. Results from the above two models are compared with a phenomenological model with standard linear reaction kinetics and a fractional order temporal derivative operating on a standard diffusion term. We have also developed further extensions of the CTRW model to include more general reaction dynamics.
Zhang, Ridong; Tao, Jili; Lu, Renquan; Jin, Qibing
2018-02-01
Modeling of distributed parameter systems is difficult because of their nonlinearity and infinite-dimensional characteristics. Based on principal component analysis (PCA), a hybrid modeling strategy that consists of a decoupled linear autoregressive exogenous (ARX) model and a nonlinear radial basis function (RBF) neural network model are proposed. The spatial-temporal output is first divided into a few dominant spatial basis functions and finite-dimensional temporal series by PCA. Then, a decoupled ARX model is designed to model the linear dynamics of the dominant modes of the time series. The nonlinear residual part is subsequently parameterized by RBFs, where genetic algorithm is utilized to optimize their hidden layer structure and the parameters. Finally, the nonlinear spatial-temporal dynamic system is obtained after the time/space reconstruction. Simulation results of a catalytic rod and a heat conduction equation demonstrate the effectiveness of the proposed strategy compared to several other methods.
Comparative dynamics in a health investment model.
Eisenring, C
1999-10-01
The method of comparative dynamics fully exploits the inter-temporal structure of optimal control models. I derive comparative dynamic results in a simplified demand for health model. The effect of a change in the depreciation rate on the optimal paths for health capital and investment in health is studied by use of a phase diagram.
Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks.
Onaga, Tomokatsu; Gleeson, James P; Masuda, Naoki
2017-09-08
Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.
Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks
NASA Astrophysics Data System (ADS)
Onaga, Tomokatsu; Gleeson, James P.; Masuda, Naoki
2017-09-01
Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.
Analytical Computation of the Epidemic Threshold on Temporal Networks
NASA Astrophysics Data System (ADS)
Valdano, Eugenio; Ferreri, Luca; Poletto, Chiara; Colizza, Vittoria
2015-04-01
The time variation of contacts in a networked system may fundamentally alter the properties of spreading processes and affect the condition for large-scale propagation, as encoded in the epidemic threshold. Despite the great interest in the problem for the physics, applied mathematics, computer science, and epidemiology communities, a full theoretical understanding is still missing and currently limited to the cases where the time-scale separation holds between spreading and network dynamics or to specific temporal network models. We consider a Markov chain description of the susceptible-infectious-susceptible process on an arbitrary temporal network. By adopting a multilayer perspective, we develop a general analytical derivation of the epidemic threshold in terms of the spectral radius of a matrix that encodes both network structure and disease dynamics. The accuracy of the approach is confirmed on a set of temporal models and empirical networks and against numerical results. In addition, we explore how the threshold changes when varying the overall time of observation of the temporal network, so as to provide insights on the optimal time window for data collection of empirical temporal networked systems. Our framework is of both fundamental and practical interest, as it offers novel understanding of the interplay between temporal networks and spreading dynamics.
NASA Astrophysics Data System (ADS)
Upadhyay, Ranjit Kumar; Tiwari, S. K.; Roy, Parimita
2015-06-01
In this paper, an attempt has been made to study the spatial and temporal dynamical interactions among the species of wetland ecosystem through a mathematical model. The model represents the population dynamics of phytoplankton, zooplankton and fish species found in Chilika lake, Odisha, India. Nonlinear stability analysis of both the temporal and spatial models has been carried out. Maximum sustainable yield and optimal harvesting policy have been studied for a nonspatial model system. Numerical simulation has been performed to figure out the parameters responsible for the complex dynamics of the wetland system. Significant outcomes of our numerical findings and their interpretations from an ecological point of view are provided in this paper. Numerical simulation of spatial model exhibits some interesting and beautiful patterns. We have also pointed out the parameters that are responsible for the good health of wetland ecosystem.
Resting state networks in empirical and simulated dynamic functional connectivity.
Glomb, Katharina; Ponce-Alvarez, Adrián; Gilson, Matthieu; Ritter, Petra; Deco, Gustavo
2017-10-01
It is well-established that patterns of functional connectivity (FC) - measures of correlated activity between pairs of voxels or regions observed in the human brain using neuroimaging - are robustly expressed in spontaneous activity during rest. These patterns are not static, but exhibit complex spatio-temporal dynamics. Over the last years, a multitude of methods have been proposed to reveal these dynamics on the level of the whole brain. One finding is that the brain transitions through different FC configurations over time, and substantial effort has been put into characterizing these configurations. However, the dynamics governing these transitions are more elusive, specifically, the contribution of stationary vs. non-stationary dynamics is an active field of inquiry. In this study, we use a whole-brain approach, considering FC dynamics between 66 ROIs covering the entire cortex. We combine an innovative dimensionality reduction technique, tensor decomposition, with a mean field model which possesses stationary dynamics. It has been shown to explain resting state FC averaged over time and multiple subjects, however, this average FC summarizes the spatial distribution of correlations while hiding their temporal dynamics. First, we apply tensor decomposition to resting state scans from 24 healthy controls in order to characterize spatio-temporal dynamics present in the data. We simultaneously utilize temporal and spatial information by creating tensors that are subsequently decomposed into sets of brain regions ("communities") that share similar temporal dynamics, and their associated time courses. The tensors contain pairwise FC computed inside of overlapping sliding windows. Communities are discovered by clustering features pooled from all subjects, thereby ensuring that they generalize. We find that, on the group level, the data give rise to four distinct communities that resemble known resting state networks (RSNs): default mode network, visual network, control networks, and somatomotor network. Second, we simulate data with our stationary mean field model whose nodes are connected according to results from DTI and fiber tracking. In this model, all spatio-temporal structure is due to noisy fluctuations around the average FC. We analyze the simulated data in the same way as the empirical data in order to determine whether stationary dynamics can explain the emergence of distinct FC patterns (RSNs) which have their own time courses. We find that this is the case for all four networks using the spatio-temporal information revealed by tensor decomposition if nodes in the simulation are connected according to model-based effective connectivity. Furthermore, we find that these results require only a small part of the FC values, namely the highest values that occur across time and ROI pair. Our findings show that stationary dynamics can account for the emergence of RSNs. We provide an innovative method that does not make strong assumptions about the underlying data and is generally applicable to resting state or task data from different subject populations. Copyright © 2017 Elsevier Inc. All rights reserved.
Cross-language differences in the brain network subserving intelligible speech.
Ge, Jianqiao; Peng, Gang; Lyu, Bingjiang; Wang, Yi; Zhuo, Yan; Niu, Zhendong; Tan, Li Hai; Leff, Alexander P; Gao, Jia-Hong
2015-03-10
How is language processed in the brain by native speakers of different languages? Is there one brain system for all languages or are different languages subserved by different brain systems? The first view emphasizes commonality, whereas the second emphasizes specificity. We investigated the cortical dynamics involved in processing two very diverse languages: a tonal language (Chinese) and a nontonal language (English). We used functional MRI and dynamic causal modeling analysis to compute and compare brain network models exhaustively with all possible connections among nodes of language regions in temporal and frontal cortex and found that the information flow from the posterior to anterior portions of the temporal cortex was commonly shared by Chinese and English speakers during speech comprehension, whereas the inferior frontal gyrus received neural signals from the left posterior portion of the temporal cortex in English speakers and from the bilateral anterior portion of the temporal cortex in Chinese speakers. Our results revealed that, although speech processing is largely carried out in the common left hemisphere classical language areas (Broca's and Wernicke's areas) and anterior temporal cortex, speech comprehension across different language groups depends on how these brain regions interact with each other. Moreover, the right anterior temporal cortex, which is crucial for tone processing, is equally important as its left homolog, the left anterior temporal cortex, in modulating the cortical dynamics in tone language comprehension. The current study pinpoints the importance of the bilateral anterior temporal cortex in language comprehension that is downplayed or even ignored by popular contemporary models of speech comprehension.
Cross-language differences in the brain network subserving intelligible speech
Ge, Jianqiao; Peng, Gang; Lyu, Bingjiang; Wang, Yi; Zhuo, Yan; Niu, Zhendong; Tan, Li Hai; Leff, Alexander P.; Gao, Jia-Hong
2015-01-01
How is language processed in the brain by native speakers of different languages? Is there one brain system for all languages or are different languages subserved by different brain systems? The first view emphasizes commonality, whereas the second emphasizes specificity. We investigated the cortical dynamics involved in processing two very diverse languages: a tonal language (Chinese) and a nontonal language (English). We used functional MRI and dynamic causal modeling analysis to compute and compare brain network models exhaustively with all possible connections among nodes of language regions in temporal and frontal cortex and found that the information flow from the posterior to anterior portions of the temporal cortex was commonly shared by Chinese and English speakers during speech comprehension, whereas the inferior frontal gyrus received neural signals from the left posterior portion of the temporal cortex in English speakers and from the bilateral anterior portion of the temporal cortex in Chinese speakers. Our results revealed that, although speech processing is largely carried out in the common left hemisphere classical language areas (Broca’s and Wernicke’s areas) and anterior temporal cortex, speech comprehension across different language groups depends on how these brain regions interact with each other. Moreover, the right anterior temporal cortex, which is crucial for tone processing, is equally important as its left homolog, the left anterior temporal cortex, in modulating the cortical dynamics in tone language comprehension. The current study pinpoints the importance of the bilateral anterior temporal cortex in language comprehension that is downplayed or even ignored by popular contemporary models of speech comprehension. PMID:25713366
Coding of odors by temporal binding within a model network of the locust antennal lobe.
Patel, Mainak J; Rangan, Aaditya V; Cai, David
2013-01-01
The locust olfactory system interfaces with the external world through antennal receptor neurons (ORNs), which represent odors in a distributed, combinatorial manner. ORN axons bundle together to form the antennal nerve, which relays sensory information centrally to the antennal lobe (AL). Within the AL, an odor generates a dynamically evolving ensemble of active cells, leading to a stimulus-specific temporal progression of neuronal spiking. This experimental observation has led to the hypothesis that an odor is encoded within the AL by a dynamically evolving trajectory of projection neuron (PN) activity that can be decoded piecewise to ascertain odor identity. In order to study information coding within the locust AL, we developed a scaled-down model of the locust AL using Hodgkin-Huxley-type neurons and biologically realistic connectivity parameters and current components. Using our model, we examined correlations in the precise timing of spikes across multiple neurons, and our results suggest an alternative to the dynamic trajectory hypothesis. We propose that the dynamical interplay of fast and slow inhibition within the locust AL induces temporally stable correlations in the spiking activity of an odor-dependent neural subset, giving rise to a temporal binding code that allows rapid stimulus detection by downstream elements.
Sun, Yu; Collinson, Simon L; Suckling, John; Sim, Kang
2018-06-07
Emerging evidence suggests that schizophrenia is associated with brain dysconnectivity. Nonetheless, the implicit assumption of stationary functional connectivity (FC) adopted in most previous resting-state functional magnetic resonance imaging (fMRI) studies raises an open question of schizophrenia-related aberrations in dynamic properties of resting-state FC. This study introduces an empirical method to examine the dynamic functional dysconnectivity in patients with schizophrenia. Temporal brain networks were estimated from resting-state fMRI of 2 independent datasets (patients/controls = 18/19 and 53/57 for self-recorded dataset and a publicly available replication dataset, respectively) by the correlation of sliding time-windowed time courses among regions of a predefined atlas. Through the newly introduced temporal efficiency approach and temporal random network models, we examined, for the first time, the 3D spatiotemporal architecture of the temporal brain network. We found that although prominent temporal small-world properties were revealed in both groups, temporal brain networks of patients with schizophrenia in both datasets showed a significantly higher temporal global efficiency, which cannot be simply attributable to head motion and sampling error. Specifically, we found localized changes of temporal nodal properties in the left frontal, right medial parietal, and subcortical areas that were associated with clinical features of schizophrenia. Our findings demonstrate that altered dynamic FC may underlie abnormal brain function and clinical symptoms observed in schizophrenia. Moreover, we provide new evidence to extend the dysconnectivity hypothesis in schizophrenia from static to dynamic brain network and highlight the potential of aberrant brain dynamic FC in unraveling the pathophysiologic mechanisms of the disease.
Spatio-Temporal Change Modeling of Lulc: a Semantic Kriging Approach
NASA Astrophysics Data System (ADS)
Bhattacharjee, S.; Ghosh, S. K.
2015-07-01
Spatio-temporal land-use/ land-cover (LULC) change modeling is important to forecast the future LULC distribution, which may facilitate natural resource management, urban planning, etc. The spatio-temporal change in LULC trend often exhibits non-linear behavior, due to various dynamic factors, such as, human intervention (e.g., urbanization), environmental factors, etc. Hence, proper forecasting of LULC distribution should involve the study and trend modeling of historical data. Existing literatures have reported that the meteorological attributes (e.g., NDVI, LST, MSI), are semantically related to the terrain. Being influenced by the terrestrial dynamics, the temporal changes of these attributes depend on the LULC properties. Hence, incorporating meteorological knowledge into the temporal prediction process may help in developing an accurate forecasting model. This work attempts to study the change in inter-annual LULC pattern and the distribution of different meteorological attributes of a region in Kolkata (a metropolitan city in India) during the years 2000-2010 and forecast the future spread of LULC using semantic kriging (SemK) approach. A new variant of time-series SemK is proposed, namely Rev-SemKts to capture the multivariate semantic associations between different attributes. From empirical analysis, it may be observed that the augmentation of semantic knowledge in spatio-temporal modeling of meteorological attributes facilitate more precise forecasting of LULC pattern.
Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media.
Sonter, Laura J; Watson, Keri B; Wood, Spencer A; Ricketts, Taylor H
2016-01-01
Conserved lands provide multiple ecosystem services, including opportunities for nature-based recreation. Managing this service requires understanding the landscape attributes underpinning its provision, and how changes in land management affect its contribution to human wellbeing over time. However, evidence from both spatially explicit and temporally dynamic analyses is scarce, often due to data limitations. In this study, we investigated nature-based recreation within conserved lands in Vermont, USA. We used geotagged photographs uploaded to the photo-sharing website Flickr to quantify visits by in-state and out-of-state visitors, and we multiplied visits by mean trip expenditures to show that conserved lands contributed US $1.8 billion (US $0.18-20.2 at 95% confidence) to Vermont's tourism industry between 2007 and 2014. We found eight landscape attributes explained the pattern of visits to conserved lands; visits were higher in larger conserved lands, with less forest cover, greater trail density and more opportunities for snow sports. Some of these attributes differed from those found in other locations, but all aligned with our understanding of recreation in Vermont. We also found that using temporally static models to inform conservation decisions may have perverse outcomes for nature-based recreation. For example, static models suggest conserved land with less forest cover receive more visits, but temporally dynamic models suggest clearing forests decreases, rather than increases, visits to these sites. Our results illustrate the importance of understanding both the spatial and temporal dynamics of ecosystem services for conservation decision-making.
NASA Astrophysics Data System (ADS)
Wu, Qiaoli; Song, Jinling; Wang, Jindi; Xiao, Zhiqiang
2014-11-01
Leaf Area Index (LAI) is an important biophysical variable for vegetation. Compared with vegetation indexes like NDVI and EVI, LAI is more capable of monitoring forest canopy growth quantitatively. GLASS LAI is a spatially complete and temporally continuous product derived from AVHRR and MODIS reflectance data. In this paper, we present the approach to build dynamic LAI growth models for young and mature Larix gmelinii forest in north Daxing'anling in Inner Mongolia of China using the Dynamic Harmonic Regression (DHR) model and Double Logistic (D-L) model respectively, based on the time series extracted from multi-temporal GLASS LAI data. Meanwhile we used the dynamic threshold method to attract the key phenological phases of Larix gmelinii forest from the simulated time series. Then, through the relationship analysis between phenological phases and the meteorological factors, we found that the annual peak LAI and the annual maximum temperature have a good correlation coefficient. The results indicate this forest canopy growth dynamic model to be very effective in predicting forest canopy LAI growth and extracting forest canopy LAI growth dynamic.
Creative-Dynamics Approach To Neural Intelligence
NASA Technical Reports Server (NTRS)
Zak, Michail A.
1992-01-01
Paper discusses approach to mathematical modeling of artificial neural networks exhibiting complicated behaviors reminiscent of creativity and intelligence of biological neural networks. Neural network treated as non-Lipschitzian dynamical system - as described in "Non-Lipschitzian Dynamics For Modeling Neural Networks" (NPO-17814). System serves as tool for modeling of temporal-pattern memories and recognition of complicated spatial patterns.
Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D.; ...
2016-10-20
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observedmore » and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. Here we demonstrate that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D.
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observedmore » and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. Here we demonstrate that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics.« less
Sippel, Sebastian; Mahecha, Miguel D.; Hauhs, Michael; Bodesheim, Paul; Kaminski, Thomas; Gans, Fabian; Rosso, Osvaldo A.
2016-01-01
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics. PMID:27764187
Dynamic Bayesian network modeling for longitudinal brain morphometry
Chen, Rong; Resnick, Susan M; Davatzikos, Christos; Herskovits, Edward H
2011-01-01
Identifying interactions among brain regions from structural magnetic-resonance images presents one of the major challenges in computational neuroanatomy. We propose a Bayesian data-mining approach to the detection of longitudinal morphological changes in the human brain. Our method uses a dynamic Bayesian network to represent evolving inter-regional dependencies. The major advantage of dynamic Bayesian network modeling is that it can represent complicated interactions among temporal processes. We validated our approach by analyzing a simulated atrophy study, and found that this approach requires only a small number of samples to detect the ground-truth temporal model. We further applied dynamic Bayesian network modeling to a longitudinal study of normal aging and mild cognitive impairment — the Baltimore Longitudinal Study of Aging. We found that interactions among regional volume-change rates for the mild cognitive impairment group are different from those for the normal-aging group. PMID:21963916
Evidence of a Critical Phase Transition in Purely Temporal Dynamics with Long-Delayed Feedback
NASA Astrophysics Data System (ADS)
Faggian, Marco; Ginelli, Francesco; Marino, Francesco; Giacomelli, Giovanni
2018-04-01
Experimental evidence of an absorbing phase transition, so far associated with spatiotemporal dynamics, is provided in a purely temporal optical system. A bistable semiconductor laser, with long-delayed optoelectronic feedback and multiplicative noise, shows the peculiar features of a critical phenomenon belonging to the directed percolation universality class. The numerical study of a simple, effective model provides accurate estimates of the transition critical exponents, in agreement with both theory and our experiment. This result pushes forward a hard equivalence of nontrivial stochastic, long-delayed systems with spatiotemporal ones and opens a new avenue for studying out-of-equilibrium universality classes in purely temporal dynamics.
Computationally efficient statistical differential equation modeling using homogenization
Hooten, Mevin B.; Garlick, Martha J.; Powell, James A.
2013-01-01
Statistical models using partial differential equations (PDEs) to describe dynamically evolving natural systems are appearing in the scientific literature with some regularity in recent years. Often such studies seek to characterize the dynamics of temporal or spatio-temporal phenomena such as invasive species, consumer-resource interactions, community evolution, and resource selection. Specifically, in the spatial setting, data are often available at varying spatial and temporal scales. Additionally, the necessary numerical integration of a PDE may be computationally infeasible over the spatial support of interest. We present an approach to impose computationally advantageous changes of support in statistical implementations of PDE models and demonstrate its utility through simulation using a form of PDE known as “ecological diffusion.” We also apply a statistical ecological diffusion model to a data set involving the spread of mountain pine beetle (Dendroctonus ponderosae) in Idaho, USA.
NASA Astrophysics Data System (ADS)
Diao, Chunyuan
In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.
Velikina, Julia V; Samsonov, Alexey A
2015-11-01
To accelerate dynamic MR imaging through development of a novel image reconstruction technique using low-rank temporal signal models preestimated from training data. We introduce the model consistency condition (MOCCO) technique, which utilizes temporal models to regularize reconstruction without constraining the solution to be low-rank, as is performed in related techniques. This is achieved by using a data-driven model to design a transform for compressed sensing-type regularization. The enforcement of general compliance with the model without excessively penalizing deviating signal allows recovery of a full-rank solution. Our method was compared with a standard low-rank approach utilizing model-based dimensionality reduction in phantoms and patient examinations for time-resolved contrast-enhanced angiography (CE-MRA) and cardiac CINE imaging. We studied the sensitivity of all methods to rank reduction and temporal subspace modeling errors. MOCCO demonstrated reduced sensitivity to modeling errors compared with the standard approach. Full-rank MOCCO solutions showed significantly improved preservation of temporal fidelity and aliasing/noise suppression in highly accelerated CE-MRA (acceleration up to 27) and cardiac CINE (acceleration up to 15) data. MOCCO overcomes several important deficiencies of previously proposed methods based on pre-estimated temporal models and allows high quality image restoration from highly undersampled CE-MRA and cardiac CINE data. © 2014 Wiley Periodicals, Inc.
Velikina, Julia V.; Samsonov, Alexey A.
2014-01-01
Purpose To accelerate dynamic MR imaging through development of a novel image reconstruction technique using low-rank temporal signal models pre-estimated from training data. Theory We introduce the MOdel Consistency COndition (MOCCO) technique that utilizes temporal models to regularize the reconstruction without constraining the solution to be low-rank as performed in related techniques. This is achieved by using a data-driven model to design a transform for compressed sensing-type regularization. The enforcement of general compliance with the model without excessively penalizing deviating signal allows recovery of a full-rank solution. Methods Our method was compared to standard low-rank approach utilizing model-based dimensionality reduction in phantoms and patient examinations for time-resolved contrast-enhanced angiography (CE MRA) and cardiac CINE imaging. We studied sensitivity of all methods to rank-reduction and temporal subspace modeling errors. Results MOCCO demonstrated reduced sensitivity to modeling errors compared to the standard approach. Full-rank MOCCO solutions showed significantly improved preservation of temporal fidelity and aliasing/noise suppression in highly accelerated CE MRA (acceleration up to 27) and cardiac CINE (acceleration up to 15) data. Conclusions MOCCO overcomes several important deficiencies of previously proposed methods based on pre-estimated temporal models and allows high quality image restoration from highly undersampled CE-MRA and cardiac CINE data. PMID:25399724
Modelling multimodal expression of emotion in a virtual agent.
Pelachaud, Catherine
2009-12-12
Over the past few years we have been developing an expressive embodied conversational agent system. In particular, we have developed a model of multimodal behaviours that includes dynamism and complex facial expressions. The first feature refers to the qualitative execution of behaviours. Our model is based on perceptual studies and encompasses several parameters that modulate multimodal behaviours. The second feature, the model of complex expressions, follows a componential approach where a new expression is obtained by combining facial areas of other expressions. Lately we have been working on adding temporal dynamism to expressions. So far they have been designed statically, typically at their apex. Only full-blown expressions could be modelled. To overcome this limitation, we have defined a representation scheme that describes the temporal evolution of the expression of an emotion. It is no longer represented by a static definition but by a temporally ordered sequence of multimodal signals.
Separating temporal and topological effects in walk-based network centrality.
Colman, Ewan R; Charlton, Nathaniel
2016-07-01
The recently introduced concept of dynamic communicability is a valuable tool for ranking the importance of nodes in a temporal network. Two metrics, broadcast score and receive score, were introduced to measure the centrality of a node with respect to a model of contagion based on time-respecting walks. This article examines the temporal and structural factors influencing these metrics by considering a versatile stochastic temporal network model. We analytically derive formulas to accurately predict the expectation of the broadcast and receive scores when one or more columns in a temporal edge-list are shuffled. These methods are then applied to two publicly available data sets and we quantify how much the centrality of each individual depends on structural or temporal influences. From our analysis, we highlight two practical contributions: a way to control for temporal variation when computing dynamic communicability and the conclusion that the broadcast and receive scores can, under a range of circumstances, be replaced by the row and column sums of the matrix exponential of a weighted adjacency matrix given by the data.
Separating temporal and topological effects in walk-based network centrality
NASA Astrophysics Data System (ADS)
Colman, Ewan R.; Charlton, Nathaniel
2016-07-01
The recently introduced concept of dynamic communicability is a valuable tool for ranking the importance of nodes in a temporal network. Two metrics, broadcast score and receive score, were introduced to measure the centrality of a node with respect to a model of contagion based on time-respecting walks. This article examines the temporal and structural factors influencing these metrics by considering a versatile stochastic temporal network model. We analytically derive formulas to accurately predict the expectation of the broadcast and receive scores when one or more columns in a temporal edge-list are shuffled. These methods are then applied to two publicly available data sets and we quantify how much the centrality of each individual depends on structural or temporal influences. From our analysis, we highlight two practical contributions: a way to control for temporal variation when computing dynamic communicability and the conclusion that the broadcast and receive scores can, under a range of circumstances, be replaced by the row and column sums of the matrix exponential of a weighted adjacency matrix given by the data.
ERIC Educational Resources Information Center
Unsworth, Nash
2008-01-01
Retrieval dynamics in free recall were explored based on a two-stage search model that relies on temporal-contextual cues. Participants were tested on both delayed and final free recall and correct recalls, errors, and latency measures were examined. In delayed free recall, participants began recall with the first word presented and tended to…
NASA Astrophysics Data System (ADS)
Deeba, Farah; Sanz-Leon, Paula; Robinson, Peter
A neural field model of the corticothalamic system is used to investigate the dynamics of absence seizures in the presence of temporally varying connection strength between the cerebral cortex and thalamus. Variation of connection strength from cortex to thalamus drives the system into seizure once a threshold is passed and a supercritical Hopf bifurcation occurs. The dynamics and spectral characteristics of the resulting seizures are explored as functions of maximum connection strength, time above threshold, and ramp rate. The results enable spectral and temporal characteristics of seizures to be related to underlying physiological variations via nonlinear dynamics and neural field theory. Notably, this analysis adds to neural field modeling of a wide variety of brain activity phenomena and measurements in recent years. Australian Research Council Grants FL1401000225 and CE140100007.
Analysis of brain patterns using temporal measures
Georgopoulos, Apostolos
2015-08-11
A set of brain data representing a time series of neurophysiologic activity acquired by spatially distributed sensors arranged to detect neural signaling of a brain (such as by the use of magnetoencephalography) is obtained. The set of brain data is processed to obtain a dynamic brain model based on a set of statistically-independent temporal measures, such as partial cross correlations, among groupings of different time series within the set of brain data. The dynamic brain model represents interactions between neural populations of the brain occurring close in time, such as with zero lag, for example. The dynamic brain model can be analyzed to obtain the neurophysiologic assessment of the brain. Data processing techniques may be used to assess structural or neurochemical brain pathologies.
Construction of a microscopic agent-based model for firms' dynamics
NASA Astrophysics Data System (ADS)
Iyetomi, Hiroshi; Aoyama, Hideaki; Fujiwara, Yoshi; Ikeda, Yuichi; Kaizoji, Taisei; Soma, Wataru
2005-07-01
A workable microscopic model for firms' dynamics has been constructed. The model consists of firm agents and a bank agent dynamics of which are described by balance sheets. The size distribution of firms and the temporal evolution of the bank show critical dependence on whether or not firms use perfect information on their financial conditions to draw up next production plans.
SIMULATING TEMPORAL VARIATIONS IN NUTRIENT, PHYTOPLANKTON, AND ZOOPLANKTON ON THE INNER OREGON SHELF
The objective of this study is to use a numerical model to examine the linkages between physical processes and temporal variability in the plankton dynamics in a coastal upwelling system. We used a nutrient-phytoplankton-zooplankton model coupled to a two-dimensional circulation...
Spatio-temporal dynamics of security investments in an interdependent risk environment
NASA Astrophysics Data System (ADS)
Shafi, Kamran; Bender, Axel; Zhong, Weicai; Abbass, Hussein A.
2012-10-01
In a globalised world where risks spread through contagion, the decision of an entity to invest in securing its premises from stochastic risks no longer depends solely on its own actions but also on the actions of other interacting entities in the system. This phenomenon is commonly seen in many domains including airline, logistics and computer security and is referred to as Interdependent Security (IDS). An IDS game models this decision problem from a game-theoretic perspective and deals with the behavioural dynamics of risk-reduction investments in such settings. This paper enhances this model and investigates the spatio-temporal aspects of the IDS games. The spatio-temporal dynamics are studied using simple replicator dynamics on a variety of network structures and for various security cost tradeoffs that lead to different Nash equilibria in an IDS game. The simulation results show that the neighbourhood configuration has a greater effect on the IDS game dynamics than network structure. An in-depth empirical analysis of game dynamics is carried out on regular graphs, which leads to the articulation of necessary and sufficient conditions for dominance in IDS games under spatial constraints.
Wallace, Cynthia S.A.; Advised by Marsh, Stuart E.
2002-01-01
The research accomplished in this dissertation used both mathematical and statistical techniques to extract and evaluate measures of landscape temporal dynamics and spatial structure from remotely sensed data for the purpose of mapping wildlife habitat. By coupling the landscape measures gleaned from the remotely sensed data with various sets of animal sightings and population data, effective models of habitat preference were created.Measures of temporal dynamics of vegetation greenness as measured by National Oceanographic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (AVHRR) satellite were used to effectively characterize and map season specific habitat of the Sonoran pronghorn antelope, as well as produce preliminary models of potential yellow-billed cuckoo habitat in Arizona. Various measures that capture different aspects of the temporal dynamics of the landscape were derived from AVHRR Normalized Difference Vegetation Index composite data using three main classes of calculations: basic statistics, standardized principal components analysis, and Fourier analysis. Pronghorn habitat models based on the AVHRR measures correspond visually and statistically to GIS-based models produced using data that represent detailed knowledge of ground-condition.Measures of temporal dynamics also revealed statistically significant correlations with annual estimates of elk population in selected Arizona Game Management Units, suggesting elk respond to regional environmental changes that can be measured using satellite data. Such relationships, once verified and established, can be used to help indirectly monitor the population.Measures of landscape spatial structure derived from IKONOS high spatial resolution (1-m) satellite data using geostatistics effectively map details of Sonoran pronghorn antelope habitat. Local estimates of the nugget, sill, and range variogram parameters calculated within 25 x 25-meter image windows describe the spatial autocorrelation of the image, permitting classification of all pixels into coherent units whose signature graphs exhibit a classic variogram shape. The variogram parameters captured in these signatures have been shown in previous studies to discriminate between different species-specific vegetation associations.The synoptic view of the landscape provided by satellite data can inform resource management efforts. The ability to characterize the spatial structure and temporal dynamics of habitat using repeatable remote sensing data allows closer monitoring of the relationship between a species and its landscape.
Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media
Watson, Keri B.; Wood, Spencer A.; Ricketts, Taylor H.
2016-01-01
Conserved lands provide multiple ecosystem services, including opportunities for nature-based recreation. Managing this service requires understanding the landscape attributes underpinning its provision, and how changes in land management affect its contribution to human wellbeing over time. However, evidence from both spatially explicit and temporally dynamic analyses is scarce, often due to data limitations. In this study, we investigated nature-based recreation within conserved lands in Vermont, USA. We used geotagged photographs uploaded to the photo-sharing website Flickr to quantify visits by in-state and out-of-state visitors, and we multiplied visits by mean trip expenditures to show that conserved lands contributed US $1.8 billion (US $0.18–20.2 at 95% confidence) to Vermont’s tourism industry between 2007 and 2014. We found eight landscape attributes explained the pattern of visits to conserved lands; visits were higher in larger conserved lands, with less forest cover, greater trail density and more opportunities for snow sports. Some of these attributes differed from those found in other locations, but all aligned with our understanding of recreation in Vermont. We also found that using temporally static models to inform conservation decisions may have perverse outcomes for nature-based recreation. For example, static models suggest conserved land with less forest cover receive more visits, but temporally dynamic models suggest clearing forests decreases, rather than increases, visits to these sites. Our results illustrate the importance of understanding both the spatial and temporal dynamics of ecosystem services for conservation decision-making. PMID:27611325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, B
This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Shelton, Robert O.
1992-01-01
Concept of space-time neural network affords distributed temporal memory enabling such network to model complicated dynamical systems mathematically and to recognize temporally varying spatial patterns. Digital filters replace synaptic-connection weights of conventional back-error-propagation neural network.
Perception of differences in naturalistic dynamic scenes, and a V1-based model.
To, Michelle P S; Gilchrist, Iain D; Tolhurst, David J
2015-01-16
We investigate whether a computational model of V1 can predict how observers rate perceptual differences between paired movie clips of natural scenes. Observers viewed 198 pairs of movies clips, rating how different the two clips appeared to them on a magnitude scale. Sixty-six of the movie pairs were naturalistic and those remaining were low-pass or high-pass spatially filtered versions of those originals. We examined three ways of comparing a movie pair. The Spatial Model compared corresponding frames between each movie pairwise, combining those differences using Minkowski summation. The Temporal Model compared successive frames within each movie, summed those differences for each movie, and then compared the overall differences between the paired movies. The Ordered-Temporal Model combined elements from both models, and yielded the single strongest predictions of observers' ratings. We modeled naturalistic sustained and transient impulse functions and compared frames directly with no temporal filtering. Overall, modeling naturalistic temporal filtering improved the models' performance; in particular, the predictions of the ratings for low-pass spatially filtered movies were much improved by employing a transient impulse function. The correlations between model predictions and observers' ratings rose from 0.507 without temporal filtering to 0.759 (p = 0.01%) when realistic impulses were included. The sustained impulse function and the Spatial Model carried more weight in ratings for normal and high-pass movies, whereas the transient impulse function with the Ordered-Temporal Model was most important for spatially low-pass movies. This is consistent with models in which high spatial frequency channels with sustained responses primarily code for spatial details in movies, while low spatial frequency channels with transient responses code for dynamic events. © 2015 ARVO.
NASA Astrophysics Data System (ADS)
Merlin, Thibaut; Visvikis, Dimitris; Fernandez, Philippe; Lamare, Frédéric
2018-02-01
Respiratory motion reduces both the qualitative and quantitative accuracy of PET images in oncology. This impact is more significant for quantitative applications based on kinetic modeling, where dynamic acquisitions are associated with limited statistics due to the necessity of enhanced temporal resolution. The aim of this study is to address these drawbacks, by combining a respiratory motion correction approach with temporal regularization in a unique reconstruction algorithm for dynamic PET imaging. Elastic transformation parameters for the motion correction are estimated from the non-attenuation-corrected PET images. The derived displacement matrices are subsequently used in a list-mode based OSEM reconstruction algorithm integrating a temporal regularization between the 3D dynamic PET frames, based on temporal basis functions. These functions are simultaneously estimated at each iteration, along with their relative coefficients for each image voxel. Quantitative evaluation has been performed using dynamic FDG PET/CT acquisitions of lung cancer patients acquired on a GE DRX system. The performance of the proposed method is compared with that of a standard multi-frame OSEM reconstruction algorithm. The proposed method achieved substantial improvements in terms of noise reduction while accounting for loss of contrast due to respiratory motion. Results on simulated data showed that the proposed 4D algorithms led to bias reduction values up to 40% in both tumor and blood regions for similar standard deviation levels, in comparison with a standard 3D reconstruction. Patlak parameter estimations on reconstructed images with the proposed reconstruction methods resulted in 30% and 40% bias reduction in the tumor and lung region respectively for the Patlak slope, and a 30% bias reduction for the intercept in the tumor region (a similar Patlak intercept was achieved in the lung area). Incorporation of the respiratory motion correction using an elastic model along with a temporal regularization in the reconstruction process of the PET dynamic series led to substantial quantitative improvements and motion artifact reduction. Future work will include the integration of a linear FDG kinetic model, in order to directly reconstruct parametric images.
Merlin, Thibaut; Visvikis, Dimitris; Fernandez, Philippe; Lamare, Frédéric
2018-02-13
Respiratory motion reduces both the qualitative and quantitative accuracy of PET images in oncology. This impact is more significant for quantitative applications based on kinetic modeling, where dynamic acquisitions are associated with limited statistics due to the necessity of enhanced temporal resolution. The aim of this study is to address these drawbacks, by combining a respiratory motion correction approach with temporal regularization in a unique reconstruction algorithm for dynamic PET imaging. Elastic transformation parameters for the motion correction are estimated from the non-attenuation-corrected PET images. The derived displacement matrices are subsequently used in a list-mode based OSEM reconstruction algorithm integrating a temporal regularization between the 3D dynamic PET frames, based on temporal basis functions. These functions are simultaneously estimated at each iteration, along with their relative coefficients for each image voxel. Quantitative evaluation has been performed using dynamic FDG PET/CT acquisitions of lung cancer patients acquired on a GE DRX system. The performance of the proposed method is compared with that of a standard multi-frame OSEM reconstruction algorithm. The proposed method achieved substantial improvements in terms of noise reduction while accounting for loss of contrast due to respiratory motion. Results on simulated data showed that the proposed 4D algorithms led to bias reduction values up to 40% in both tumor and blood regions for similar standard deviation levels, in comparison with a standard 3D reconstruction. Patlak parameter estimations on reconstructed images with the proposed reconstruction methods resulted in 30% and 40% bias reduction in the tumor and lung region respectively for the Patlak slope, and a 30% bias reduction for the intercept in the tumor region (a similar Patlak intercept was achieved in the lung area). Incorporation of the respiratory motion correction using an elastic model along with a temporal regularization in the reconstruction process of the PET dynamic series led to substantial quantitative improvements and motion artifact reduction. Future work will include the integration of a linear FDG kinetic model, in order to directly reconstruct parametric images.
Linking multi-temporal satellite imagery to coastal wetland dynamics and bird distribution
Pickens, Bradley A.; King, Sammy L.
2014-01-01
Ecosystems are characterized by dynamic ecological processes, such as flooding and fires, but spatial models are often limited to a single measurement in time. The characterization of direct, fine-scale processes affecting animals is potentially valuable for management applications, but these are difficult to quantify over broad extents. Direct predictors are also expected to improve transferability of models beyond the area of study. Here, we investigated the ability of non-static and multi-temporal habitat characteristics to predict marsh bird distributions, while testing model generality and transferability between two coastal habitats. Distribution models were developed for king rail (Rallus elegans), common gallinule (Gallinula galeata), least bittern (Ixobrychus exilis), and purple gallinule (Porphyrio martinica) in fresh and intermediate marsh types in the northern Gulf Coast of Louisiana and Texas, USA. For model development, repeated point count surveys of marsh birds were conducted from 2009 to 2011. Landsat satellite imagery was used to quantify both annual conditions and cumulative, multi-temporal habitat characteristics. We used multivariate adaptive regression splines to quantify bird-habitat relationships for fresh, intermediate, and combined marsh habitats. Multi-temporal habitat characteristics ranked as more important than single-date characteristics, as temporary water was most influential in six of eight models. Predictive power was greater for marsh type-specific models compared to general models and model transferability was poor. Birds in fresh marsh selected for annual habitat characterizations, while birds in intermediate marsh selected for cumulative wetness and heterogeneity. Our findings emphasize that dynamic ecological processes can affect species distribution and species-habitat relationships may differ with dominant landscape characteristics.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Zimmermann, N. E.; Poulter, B.
2015-11-01
Simulations of the spatial-temporal dynamics of wetlands are key to understanding the role of wetland biogeochemistry under past and future climate variability. Hydrologic inundation models, such as TOPMODEL, are based on a fundamental parameter known as the compound topographic index (CTI) and provide a computationally cost-efficient approach to simulate wetland dynamics at global scales. However, there remains large discrepancy in the implementations of TOPMODEL in land-surface models (LSMs) and thus their performance against observations. This study describes new improvements to TOPMODEL implementation and estimates of global wetland dynamics using the LPJ-wsl dynamic global vegetation model (DGVM), and quantifies uncertainties by comparing three digital elevation model products (HYDRO1k, GMTED, and HydroSHEDS) at different spatial resolution and accuracy on simulated inundation dynamics. In addition, we found that calibrating TOPMODEL with a benchmark wetland dataset can help to successfully delineate the seasonal and interannual variations of wetlands, as well as improve the spatial distribution of wetlands to be consistent with inventories. The HydroSHEDS DEM, using a river-basin scheme for aggregating the CTI, shows best accuracy for capturing the spatio-temporal dynamics of wetlands among the three DEM products. The estimate of global wetland potential/maximum is ∼ 10.3 Mkm2 (106 km2), with a mean annual maximum of ∼ 5.17 Mkm2 for 1980-2010. This study demonstrates the feasibility to capture spatial heterogeneity of inundation and to estimate seasonal and interannual variations in wetland by coupling a hydrological module in LSMs with appropriate benchmark datasets. It additionally highlights the importance of an adequate investigation of topographic indices for simulating global wetlands and shows the opportunity to converge wetland estimates across LSMs by identifying the uncertainty associated with existing wetland products.
Scott L. Powell; Warren B. Cohen; Sean P. Healey; Robert E. Kennedy; Gretchen G. Moisen; Kenneth B. Pierce; Janet L. Ohmann
2010-01-01
Spatially and temporally explicit knowledge of biomass dynamics at broad scales is critical to understanding how forest disturbance and regrowth processes influence carbon dynamics. We modeled live, aboveground tree biomass using Forest Inventory and Analysis (FIA) field data and applied the models to 20+ year time-series of Landsat satellite imagery to...
Fieselmann, Andreas; Dennerlein, Frank; Deuerling-Zheng, Yu; Boese, Jan; Fahrig, Rebecca; Hornegger, Joachim
2011-06-21
Filtered backprojection is the basis for many CT reconstruction tasks. It assumes constant attenuation values of the object during the acquisition of the projection data. Reconstruction artifacts can arise if this assumption is violated. For example, contrast flow in perfusion imaging with C-arm CT systems, which have acquisition times of several seconds per C-arm rotation, can cause this violation. In this paper, we derived and validated a novel spatio-temporal model to describe these kinds of artifacts. The model separates the temporal dynamics due to contrast flow from the scan and reconstruction parameters. We introduced derivative-weighted point spread functions to describe the spatial spread of the artifacts. The model allows prediction of reconstruction artifacts for given temporal dynamics of the attenuation values. Furthermore, it can be used to systematically investigate the influence of different reconstruction parameters on the artifacts. We have shown that with optimized redundancy weighting function parameters the spatial spread of the artifacts around a typical arterial vessel can be reduced by about 70%. Finally, an inversion of our model could be used as the basis for novel dynamic reconstruction algorithms that further minimize these artifacts.
Range expansion through fragmented landscapes under a variable climate
Bennie, Jonathan; Hodgson, Jenny A; Lawson, Callum R; Holloway, Crispin TR; Roy, David B; Brereton, Tom; Thomas, Chris D; Wilson, Robert J
2013-01-01
Ecological responses to climate change may depend on complex patterns of variability in weather and local microclimate that overlay global increases in mean temperature. Here, we show that high-resolution temporal and spatial variability in temperature drives the dynamics of range expansion for an exemplar species, the butterfly Hesperia comma. Using fine-resolution (5 m) models of vegetation surface microclimate, we estimate the thermal suitability of 906 habitat patches at the species' range margin for 27 years. Population and metapopulation models that incorporate this dynamic microclimate surface improve predictions of observed annual changes to population density and patch occupancy dynamics during the species' range expansion from 1982 to 2009. Our findings reveal how fine-scale, short-term environmental variability drives rates and patterns of range expansion through spatially localised, intermittent episodes of expansion and contraction. Incorporating dynamic microclimates can thus improve models of species range shifts at spatial and temporal scales relevant to conservation interventions. PMID:23701124
NASA Astrophysics Data System (ADS)
Timashev, S. F.
2000-02-01
A general phenomenological approach to the analysis of experimental temporal, spatial and energetic series for extracting truly physical non-model parameters ("passport data") is presented, which may be used to characterize and distinguish the evolution as well as the spatial and energetic structure of any open nonlinear dissipative system. This methodology is based on a postulate concerning the crucial information contained in the sequences of non-regularities of the measured dynamic variable (temporal, spatial, energetic). In accordance with this approach, multi-parametric formulas for dynamic variable power spectra as well as for structural functions of different orders are identical for every spatial-temporal-energetic level of the system under consideration. In effect, this entails the introduction of a new kind of self-similarity in Nature. An algorithm has been developed for obtaining as many "passport data" as are necessary for the characterization of a dynamic system. Applications of this approach in the analysis of various experimental series (temporal, spatial, energetic) demonstrate its potential for defining adequate phenomenological parameters of different dynamic processes and structures.
NASA Astrophysics Data System (ADS)
Bertazzon, Stefania
The present research focuses on the interaction of supply and demand of down-hill ski tourism in the province of Alberta. The main hypothesis is that the demand for skiing depends on the socio-economic and demographic characteristics of the population living in the province and outside it. A second, consequent hypothesis is that the development of ski resorts (supply) is a response to the demand for skiing. From the latter derives the hypothesis of a dynamic interaction between supply (ski resorts) and demand (skiers). Such interaction occurs in space, within a range determined by physical distance and the means available to overcome it. The above hypotheses implicitly define interactions that take place in space and evolve over time. The hypotheses are tested by temporal, spatial, and spatio-temporal regression models, using the best available data and the latest commercially available software. The main purpose of this research is to explore analytical techniques to model spatial, temporal, and spatio-temporal dynamics in the context of regional science. The completion of the present research has produced more significant contributions than was originally expected. Many of the unexpected contributions resulted from theoretical and applied needs arising from the application of spatial regression models. Spatial regression models are a new and largely under-applied technique. The models are fairly complex and a considerable amount of preparatory work is needed, prior to their specification and estimation. Most of this work is specific to the field of application. The originality of the solutions devised is increased by the lack of applications in the field of tourism. The scarcity of applications in other fields adds to their value for other applications. The estimation of spatio-temporal models has been only partially attained in the present research. This apparent limitation is due to the novelty and complexity of the analytical methods applied. This opens new directions for further work in the field of spatial analysis, in conjunction with the development of specific software.
Forest forming process and dynamic vegetation models under global change
A. Shvidenko; E. Gustafson
2009-01-01
The paper analyzes mathematical models that are used to project the dynamics of forest ecosystems on different spatial and temporal scales. Landscape disturbance and succession models (LDSMs) are of a particular interest for studying the forest forming process in Northern Eurasia. They have a solid empirical background and are able to model ecological processes under...
NASA Astrophysics Data System (ADS)
Ruiz-Pérez, Guiomar; Koch, Julian; Manfreda, Salvatore; Caylor, Kelly; Francés, Félix
2017-12-01
Ecohydrological modeling studies in developing countries, such as sub-Saharan Africa, often face the problem of extensive parametrical requirements and limited available data. Satellite remote sensing data may be able to fill this gap, but require novel methodologies to exploit their spatio-temporal information that could potentially be incorporated into model calibration and validation frameworks. The present study tackles this problem by suggesting an automatic calibration procedure, based on the empirical orthogonal function, for distributed ecohydrological daily models. The procedure is tested with the support of remote sensing data in a data-scarce environment - the upper Ewaso Ngiro river basin in Kenya. In the present application, the TETIS-VEG model is calibrated using only NDVI (Normalized Difference Vegetation Index) data derived from MODIS. The results demonstrate that (1) satellite data of vegetation dynamics can be used to calibrate and validate ecohydrological models in water-controlled and data-scarce regions, (2) the model calibrated using only satellite data is able to reproduce both the spatio-temporal vegetation dynamics and the observed discharge at the outlet and (3) the proposed automatic calibration methodology works satisfactorily and it allows for a straightforward incorporation of spatio-temporal data into the calibration and validation framework of a model.
Quasi-dynamic earthquake fault systems with rheological heterogeneity
NASA Astrophysics Data System (ADS)
Brietzke, G. B.; Hainzl, S.; Zoeller, G.; Holschneider, M.
2009-12-01
Seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates, such models cannot allow for physical statements of the described seismicity. In contrary such empirical stochastic models, physics based earthquake fault systems models allow for a physical reasoning and interpretation of the produced seismicity and system dynamics. Recently different fault system earthquake simulators based on frictional stick-slip behavior have been used to study effects of stress heterogeneity, rheological heterogeneity, or geometrical complexity on earthquake occurrence, spatial and temporal clustering of earthquakes, and system dynamics. Here we present a comparison of characteristics of synthetic earthquake catalogs produced by two different formulations of quasi-dynamic fault system earthquake simulators. Both models are based on discretized frictional faults embedded in an elastic half-space. While one (1) is governed by rate- and state-dependent friction with allowing three evolutionary stages of independent fault patches, the other (2) is governed by instantaneous frictional weakening with scheduled (and therefore causal) stress transfer. We analyze spatial and temporal clustering of events and characteristics of system dynamics by means of physical parameters of the two approaches.
Isabelle, Boulangeat; Damien, Georges; Wilfried, Thuiller
2014-01-01
During the last decade, despite strenuous efforts to develop new models and compare different approaches, few conclusions have been drawn on their ability to provide robust biodiversity projections in an environmental change context. The recurring suggestions are that models should explicitly (i) include spatiotemporal dynamics; (ii) consider multiple species in interactions; and (iii) account for the processes shaping biodiversity distribution. This paper presents a biodiversity model (FATE-HD) that meets this challenge at regional scale by combining phenomenological and process-based approaches and using well-defined plant functional groups. FATE-HD has been tested and validated in a French National Park, demonstrating its ability to simulate vegetation dynamics, structure and diversity in response to disturbances and climate change. The analysis demonstrated the importance of considering biotic interactions, spatio-temporal dynamics, and disturbances in addition to abiotic drivers to simulate vegetation dynamics. The distribution of pioneer trees was particularly improved, as were all undergrowth functional groups. PMID:24214499
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jochem, Warren C; Sims, Kelly M; Bright, Eddie A
In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographicallymore » scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.« less
Carey, Ryan M.; Sherwood, William Erik; Shipley, Michael T.; Borisyuk, Alla
2015-01-01
Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks. PMID:25717156
Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI.
Asif, M Salman; Hamilton, Lei; Brummer, Marijn; Romberg, Justin
2013-09-01
Accelerated magnetic resonance imaging techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated magnetic resonance imaging is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped formulate mathematical principles and conditions that ensure recovery of (structured) sparse signals from undersampled, incoherent measurements. In this article, a new recovery algorithm, motion-adaptive spatio-temporal regularization, is presented that uses spatial and temporal structured sparsity of MR images in the compressed sensing framework to recover dynamic MR images from highly undersampled k-space data. In contrast to existing algorithms, our proposed algorithm models temporal sparsity using motion-adaptive linear transformations between neighboring images. The efficiency of motion-adaptive spatio-temporal regularization is demonstrated with experiments on cardiac magnetic resonance imaging for a range of reduction factors. Results are also compared with k-t FOCUSS with motion estimation and compensation-another recently proposed recovery algorithm for dynamic magnetic resonance imaging. . Copyright © 2012 Wiley Periodicals, Inc.
Schall, Megan K.; Blazer, Vicki S.; Lorantas, Robert M.; Smith, Geoffrey; Mullican, John E.; Keplinger, Brandon J.; Wagner, Tyler
2018-01-01
Detecting temporal changes in fish abundance is an essential component of fisheries management. Because of the need to understand short‐term and nonlinear changes in fish abundance, traditional linear models may not provide adequate information for management decisions. This study highlights the utility of Bayesian dynamic linear models (DLMs) as a tool for quantifying temporal dynamics in fish abundance. To achieve this goal, we quantified temporal trends of Smallmouth Bass Micropterus dolomieu catch per effort (CPE) from rivers in the mid‐Atlantic states, and we calculated annual probabilities of decline from the posterior distributions of annual rates of change in CPE. We were interested in annual declines because of recent concerns about fish health in portions of the study area. In general, periods of decline were greatest within the Susquehanna River basin, Pennsylvania. The declines in CPE began in the late 1990s—prior to observations of fish health problems—and began to stabilize toward the end of the time series (2011). In contrast, many of the other rivers investigated did not have the same magnitude or duration of decline in CPE. Bayesian DLMs provide information about annual changes in abundance that can inform management and are easily communicated with managers and stakeholders.
Ma, Jun; Xiao, Xiangming; Zhang, Yao; Doughty, Russell; Chen, Bangqian; Zhao, Bin
2018-10-15
Accurately estimating spatial-temporal patterns of gross primary production (GPP) is important for the global carbon cycle. Satellite-based light use efficiency (LUE) models are regarded as an efficient tool in simulating spatial-temporal dynamics of GPP. However, the accuracy assessment of GPP simulations from LUE models at both spatial and temporal scales remains a challenge. In this study, we simulated GPP of vegetation in China during 2007-2014 using a LUE model (Vegetation Photosynthesis Model, VPM) based on MODIS (moderate-resolution imaging spectroradiometer) images with 8-day temporal and 500-m spatial resolutions and NCEP (National Center for Environmental Prediction) climate data. Global Ozone Monitoring Instrument 2 (GOME-2) solar-induced chlorophyll fluorescence (SIF) data were used to compare with VPM simulated GPP (GPP VPM ) temporally and spatially using linear correlation analysis. Significant positive linear correlations exist between monthly GPP VPM and SIF data over a single year (2010) and multiple years (2007-2014) in most areas of China. GPP VPM is also significantly positive correlated with GOME-2 SIF (R 2 > 0.43) spatially for seasonal scales. However, poor consistency was detected between GPP VPM and SIF data at yearly scale. GPP dynamic trends have high spatial-temporal variation in China during 2007-2014. Temperature, leaf area index (LAI), and precipitation are the most important factors influence GPP VPM in the regions of East Qinghai-Tibet Plateau, Loss Plateau, and Southwestern China, respectively. The results of this study indicate that GPP VPM is temporally and spatially in line with GOME-2 SIF data, and space-borne SIF data have great potential for evaluating LUE-based GPP models. Copyright © 2018 Elsevier B.V. All rights reserved.
Dynamic decomposition of spatiotemporal neural signals
2017-01-01
Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals. PMID:28558039
NASA Astrophysics Data System (ADS)
Condon, Laura E.; Maxwell, Reed M.
2014-03-01
Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.
A model based on temporal dynamics of fixations for distinguishing expert radiologists' scanpaths
NASA Astrophysics Data System (ADS)
Gandomkar, Ziba; Tay, Kevin; Brennan, Patrick C.; Mello-Thoms, Claudia
2017-03-01
This study investigated a model which distinguishes expert radiologists from less experienced radiologists based on features describing spatio-temporal dynamics of their eye movement during interpretation of digital mammograms. Eye movements of four expert and four less experienced radiologists were recorded during interpretation of 120 two-view digital mammograms of which 59 had biopsy proven cancers. For each scanpath, a two-dimensional recurrence plot, which represents the radiologist's refixation pattern, was generated. From each plot, six features indicating the spatio-temporal dynamics of fixations were extracted. The first feature measured the percentage of recurrent fixations; the second indicated the percentage of recurrent fixations which was fixated later in several consecutive fixations; the third measured the percentage of recurrent fixations that form a repeated sequence of fixations and the fourth assessed whether the recurrent fixations were occurring sequentially close together. The number of switches between the two mammographic views was also measured, as was the average number of consecutive fixations in each view before switching. These six features along with total time on case and average fixation duration were fed into a support vector machine whose performance was evaluated using 10-fold cross validation. The model achieved a sensitivity of 86.3% and a specificity of 85.2% for distinguishing experts' scanpaths. The obtained result suggests that spatio-temporal dynamics of eye movements can characterize expertise level and has potential applications for monitoring the development of expertise among radiologists as a result of different training regimes and continuing education schemes.
Travelling waves and spatial hierarchies in measles epidemics
NASA Astrophysics Data System (ADS)
Grenfell, B. T.; Bjørnstad, O. N.; Kappey, J.
2001-12-01
Spatio-temporal travelling waves are striking manifestations of predator-prey and host-parasite dynamics. However, few systems are well enough documented both to detect repeated waves and to explain their interaction with spatio-temporal variations in population structure and demography. Here, we demonstrate recurrent epidemic travelling waves in an exhaustive spatio-temporal data set for measles in England and Wales. We use wavelet phase analysis, which allows for dynamical non-stationarity-a complication in interpreting spatio-temporal patterns in these and many other ecological time series. In the pre-vaccination era, conspicuous hierarchical waves of infection moved regionally from large cities to small towns; the introduction of measles vaccination restricted but did not eliminate this hierarchical contagion. A mechanistic stochastic model suggests a dynamical explanation for the waves-spread via infective `sparks' from large `core' cities to smaller `satellite' towns. Thus, the spatial hierarchy of host population structure is a prerequisite for these infection waves.
Zhu, Lin; Lei, Ai-Hua; Zheng, Hong-Yi; Lyu, Long-Bao; Zhang, Zhi-Gang; Zheng, Yong-Tang
2015-09-18
The complex and dynamic vaginal microbial ecosystem is critical to both health and disease of the host. Studies focusing on how vaginal microbiota influences HIV-1 infection may face limitations in selecting proper animal models. Given that northern pig-tailed macaques (Macaca leonina) are susceptible to HIV-1 infection, they may be an optimal animal model for elucidating the mechanisms by which vaginal microbiota contributes to resistance and susceptibility to HIV-1 infection. However, little is known about the composition and temporal variability of vaginal microbiota of the northern pig-tailed macaque. Here, we present a comprehensive catalog of the composition and temporal dynamics of vaginal microbiota of two healthy northern pig-tailed macaques over 19 weeks using 454-pyrosequencing of 16S rRNA genes. We found remarkably high proportions of a diverse array of anaerobic bacteria associated with bacterial vaginosis. Atopobium and Sneathia were dominant genera, and interestingly, we demonstrated the presence of Lactobacillus-dominated vaginal microbiota. Moreover, longitudinal analysis demonstrated that the temporal dynamics of the vaginal microbiota were considerably individualized. Finally, network analysis revealed that vaginal pH may influence the temporal dynamics of the vaginal microbiota, suggesting that inter-subject variability of vaginal bacterial communities could be mirrored in inter-subject variation in correlation profiles of species with each other and with vaginal pH over time. Our results suggest that the northern pig-tailed macaque could be an ideal animal model for prospective investigation of the mechanisms by which vaginal microbiota influence susceptibility and resistance to HIV-1 infection in the context of highly polymicrobial and Lactobacillus-dominated states.
Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks.
Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O; Cohn, Emily; Mekaru, Sumiko R; Brownstein, John S; Ramakrishnan, Naren
2017-01-19
In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.
Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks
NASA Astrophysics Data System (ADS)
Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren
2017-01-01
In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.
Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks
Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren
2017-01-01
In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations. PMID:28102319
NASA Technical Reports Server (NTRS)
Manning, Robert M.
1987-01-01
A dynamic rain attenuation prediction model is developed for use in obtaining the temporal characteristics, on time scales of minutes or hours, of satellite communication link availability. Analagous to the associated static rain attenuation model, which yields yearly attenuation predictions, this dynamic model is applicable at any location in the world that is characterized by the static rain attenuation statistics peculiar to the geometry of the satellite link and the rain statistics of the location. Such statistics are calculated by employing the formalism of Part I of this report. In fact, the dynamic model presented here is an extension of the static model and reduces to the static model in the appropriate limit. By assuming that rain attenuation is dynamically described by a first-order stochastic differential equation in time and that this random attenuation process is a Markov process, an expression for the associated transition probability is obtained by solving the related forward Kolmogorov equation. This transition probability is then used to obtain such temporal rain attenuation statistics as attenuation durations and allowable attenuation margins versus control system delay.
The use of spatio-temporal correlation to forecast critical transitions
NASA Astrophysics Data System (ADS)
Karssenberg, Derek; Bierkens, Marc F. P.
2010-05-01
Complex dynamical systems may have critical thresholds at which the system shifts abruptly from one state to another. Such critical transitions have been observed in systems ranging from the human body system to financial markets and the Earth system. Forecasting the timing of critical transitions before they are reached is of paramount importance because critical transitions are associated with a large shift in dynamical regime of the system under consideration. However, it is hard to forecast critical transitions, because the state of the system shows relatively little change before the threshold is reached. Recently, it was shown that increased spatio-temporal autocorrelation and variance can serve as alternative early warning signal for critical transitions. However, thus far these second order statistics have not been used for forecasting in a data assimilation framework. Here we show that the use of spatio-temporal autocorrelation and variance in the state of the system reduces the uncertainty in the predicted timing of critical transitions compared to classical approaches that use the value of the system state only. This is shown by assimilating observed spatio-temporal autocorrelation and variance into a dynamical system model using a Particle Filter. We adapt a well-studied distributed model of a logistically growing resource with a fixed grazing rate. The model describes the transition from an underexploited system with high resource biomass to overexploitation as grazing pressure crosses the critical threshold, which is a fold bifurcation. To represent limited prior information, we use a large variance in the prior probability distributions of model parameters and the system driver (grazing rate). First, we show that the rate of increase in spatio-temporal autocorrelation and variance prior to reaching the critical threshold is relatively consistent across the uncertainty range of the driver and parameter values used. This indicates that an increase in spatio-temporal autocorrelation and variance are consistent predictors of a critical transition, even under the condition of a poorly defined system. Second, we perform data assimilation experiments using an artificial exhaustive data set generated by one realization of the model. To mimic real-world sampling, an observational data set is created from this exhaustive data set. This is done by sampling on a regular spatio-temporal grid, supplemented by sampling locations at a short distance. Spatial and temporal autocorrelation in this observational data set is calculated for different spatial and temporal separation (lag) distances. To assign appropriate weights to observations (here, autocorrelation values and variance) in the Particle Filter, the covariance matrix of the error in these observations is required. This covariance matrix is estimated using Monte Carlo sampling, selecting a different random position of the sampling network relative to the exhaustive data set for each realization. At each update moment in the Particle Filter, observed autocorrelation values are assimilated into the model and the state of the model is updated. Using this approach, it is shown that the use of autocorrelation reduces the uncertainty in the forecasted timing of a critical transition compared to runs without data assimilation. The performance of the use of spatial autocorrelation versus temporal autocorrelation depends on the timing and number of observational data. This study is restricted to a single model only. However, it is becoming increasingly clear that spatio-temporal autocorrelation and variance can be used as early warning signals for a large number of systems. Thus, it is expected that spatio-temporal autocorrelation and variance are valuable in data assimilation frameworks in a large number of dynamical systems.
Modeling structural change in spatial system dynamics: A Daisyworld example.
Neuwirth, C; Peck, A; Simonović, S P
2015-03-01
System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Zimmermann, N. E.; Poulter, B.
2015-12-01
Simulations of the spatial-temporal dynamics of wetlands is key to understanding the role of wetland biogeochemistry under past and future climate variability. Hydrologic inundation models, such as TOPMODEL, are based on a fundamental parameter known as the compound topographic index (CTI) and provide a computationally cost-efficient approach to simulate global wetland dynamics. However, there remains large discrepancy in the implementations of TOPMODEL in land-surface models (LSMs) and thus their performance against observations. This study describes new improvements to TOPMODEL implementation and estimates of global wetland dynamics using the LPJ-wsl DGVM, and quantifies uncertainties by comparing three digital elevation model products (HYDRO1k, GMTED, and HydroSHEDS) at different spatial resolution and accuracy on simulated inundation dynamics. We found that calibrating TOPMODEL with a benchmark dataset can help to successfully predict the seasonal and interannual variations of wetlands, as well as improve the spatial distribution of wetlands to be consistent with inventories. The HydroSHEDS DEM, using a river-basin scheme for aggregating the CTI, shows best accuracy for capturing the spatio-temporal dynamics of wetland among three DEM products. This study demonstrates the feasibility to capture spatial heterogeneity of inundation and to estimate seasonal and interannual variations in wetland by coupling a hydrological module in LSMs with appropriate benchmark datasets. It additionally highlight the importance of an adequate understanding of topographic indices for simulating global wetlands and show the opportunity to converge wetland estimations in LSMs by identifying the uncertainty associated with existing wetland products.
Crystal L. Raymond; Donald McKenzie
2014-01-01
We quantified carbon (C) dynamics of forests in Washington, US using theoretical models of C dynamics as a function of forest age. We fit empirical models to chronosequences of forest inventory data at two scales: a coarse-scale ecosystem classification (ecosections) and forest types (potential vegetation) within ecosections. We hypothesized that analysis at the finer...
NASA Astrophysics Data System (ADS)
Zhou, Q.; Liu, L.
2017-12-01
Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation method that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics to the best.
Time series modeling of live-cell shape dynamics for image-based phenotypic profiling.
Gordonov, Simon; Hwang, Mun Kyung; Wells, Alan; Gertler, Frank B; Lauffenburger, Douglas A; Bathe, Mark
2016-01-01
Live-cell imaging can be used to capture spatio-temporal aspects of cellular responses that are not accessible to fixed-cell imaging. As the use of live-cell imaging continues to increase, new computational procedures are needed to characterize and classify the temporal dynamics of individual cells. For this purpose, here we present the general experimental-computational framework SAPHIRE (Stochastic Annotation of Phenotypic Individual-cell Responses) to characterize phenotypic cellular responses from time series imaging datasets. Hidden Markov modeling is used to infer and annotate morphological state and state-switching properties from image-derived cell shape measurements. Time series modeling is performed on each cell individually, making the approach broadly useful for analyzing asynchronous cell populations. Two-color fluorescent cells simultaneously expressing actin and nuclear reporters enabled us to profile temporal changes in cell shape following pharmacological inhibition of cytoskeleton-regulatory signaling pathways. Results are compared with existing approaches conventionally applied to fixed-cell imaging datasets, and indicate that time series modeling captures heterogeneous dynamic cellular responses that can improve drug classification and offer additional important insight into mechanisms of drug action. The software is available at http://saphire-hcs.org.
Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.
Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming
2018-05-01
The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.
Dynamical principles in neuroscience
NASA Astrophysics Data System (ADS)
Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.
2006-10-01
Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?
Dynamical principles in neuroscience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.
Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only amore » few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?.« less
Hierarchical random cellular neural networks for system-level brain-like signal processing.
Kozma, Robert; Puljic, Marko
2013-09-01
Sensory information processing and cognition in brains are modeled using dynamic systems theory. The brain's dynamic state is described by a trajectory evolving in a high-dimensional state space. We introduce a hierarchy of random cellular automata as the mathematical tools to describe the spatio-temporal dynamics of the cortex. The corresponding brain model is called neuropercolation which has distinct advantages compared to traditional models using differential equations, especially in describing spatio-temporal discontinuities in the form of phase transitions. Phase transitions demarcate singularities in brain operations at critical conditions, which are viewed as hallmarks of higher cognition and awareness experience. The introduced Monte-Carlo simulations obtained by parallel computing point to the importance of computer implementations using very large-scale integration (VLSI) and analog platforms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Application of Dynamic Mode Decomposition: Temporal Evolution of Flow Structures in an Aneurysm
NASA Astrophysics Data System (ADS)
Conlin, William; Yu, Paulo; Durgesh, Vibhav
2017-11-01
An aneurysm is an enlargement of a weakened arterial wall that can be fatal or debilitating on rupture. Aneurysm hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. The flow in an aneurysm exhibits complex fluid dynamics behavior due to an inherent unsteady inflow condition and its interactions with large-scale flow structures present in the aneurysm. The objective of this study is to identify the large-scale structures in the aneurysm, study temporal behavior, and quantify their interaction with the inflow condition. For this purpose, detailed Particle Image Velocimetry (PIV) measurements were performed at the center plane of an idealized aneurysm model for a range of inflow conditions. Inflow conditions were precisely controlled using a ViVitro SuperPump system. Dynamic Modal Decomposition (DMD) of the velocity field was used to identify coherent structures and their temporal behavior. DMD was successful in capturing the large-scale flow structures and their temporal behavior. A low dimensional approximation to the flow field was obtained with the most relevant dynamic modes and was used to obtain temporal information about the coherent structures and their interaction with the inflow, formation, evolution, and growth.
Spatial and Temporal Flood Risk Assessment for Decision Making Approach
NASA Astrophysics Data System (ADS)
Azizat, Nazirah; Omar, Wan-Mohd-Sabki Wan
2018-03-01
Heavy rainfall, adversely impacting inundation areas, depends on the magnitude of the flood. Significantly, location of settlements, infrastructure and facilities in floodplains result in many regions facing flooding risks. A problem faced by the decision maker in an assessment of flood vulnerability and evaluation of adaptation measures is recurrent flooding in the same areas. Identification of recurrent flooding areas and frequency of floods should be priorities for flood risk management. However, spatial and temporal variability become major factors of uncertainty in flood risk management. Therefore, dynamic and spatial characteristics of these changes in flood impact assessment are important in making decisions about the future of infrastructure development and community life. System dynamics (SD) simulation and hydrodynamic modelling are presented as tools for modelling the dynamic characteristics of flood risk and spatial variability. This paper discusses the integration between spatial and temporal information that is required by the decision maker for the identification of multi-criteria decision problems involving multiple stakeholders.
A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex
Chaudhuri, Rishidev; Knoblauch, Kenneth; Gariel, Marie-Alice; Kennedy, Henry; Wang, Xiao-Jing
2015-01-01
We developed a large-scale dynamical model of the macaque neocortex, which is based on recently acquired directed- and weighted-connectivity data from tract-tracing experiments, and which incorporates heterogeneity across areas. A hierarchy of timescales naturally emerges from this system: sensory areas show brief, transient responses to input (appropriate for sensory processing), whereas association areas integrate inputs over time and exhibit persistent activity (suitable for decision-making and working memory). The model displays multiple temporal hierarchies, as evidenced by contrasting responses to visual versus somatosensory stimulation. Moreover, slower prefrontal and temporal areas have a disproportionate impact on global brain dynamics. These findings establish a circuit mechanism for “temporal receptive windows” that are progressively enlarged along the cortical hierarchy, suggest an extension of time integration in decision-making from local to large circuits, and should prompt a re-evaluation of the analysis of functional connectivity (measured by fMRI or EEG/MEG) by taking into account inter-areal heterogeneity. PMID:26439530
Time-dependent onshore tsunami response
Apotsos, Alex; Gelfenbaum, Guy R.; Jaffe, Bruce E.
2012-01-01
While bulk measures of the onshore impact of a tsunami, including the maximum run-up elevation and inundation distance, are important for hazard planning, the temporal evolution of the onshore flow dynamics likely controls the extent of the onshore destruction and the erosion and deposition of sediment that occurs. However, the time-varying dynamics of actual tsunamis are even more difficult to measure in situ than the bulk parameters. Here, a numerical model based on the non-linear shallow water equations is used to examine the effects variations in the wave characteristics, bed slope, and bottom roughness have on the temporal evolution of the onshore flow. Model results indicate that the onshore flow dynamics vary significantly over the parameter space examined. For example, the flow dynamics over steep, smooth morphologies tend to be temporally symmetric, with similar magnitude velocities generated during the run-up and run-down phases of inundation. Conversely, on shallow, rough onshore topographies the flow dynamics tend to be temporally skewed toward the run-down phase of inundation, with the magnitude of the flow velocities during run-up and run-down being significantly different. Furthermore, for near-breaking tsunami waves inundating over steep topography, the flow velocity tends to accelerate almost instantaneously to a maximum and then decrease monotonically. Conversely, when very long waves inundate over shallow topography, the flow accelerates more slowly and can remain steady for a period of time before beginning to decelerate. These results indicate that a single set of assumptions concerning the onshore flow dynamics cannot be applied to all tsunamis, and site specific analyses may be required.
Dynamics of temporally localized states in passively mode-locked semiconductor lasers
NASA Astrophysics Data System (ADS)
Schelte, C.; Javaloyes, J.; Gurevich, S. V.
2018-05-01
We study the emergence and the stability of temporally localized structures in the output of a semiconductor laser passively mode locked by a saturable absorber in the long-cavity regime. For large yet realistic values of the linewidth enhancement factor, we disclose the existence of secondary dynamical instabilities where the pulses develop regular and subsequent irregular temporal oscillations. By a detailed bifurcation analysis we show that additional solution branches that consist of multipulse (molecules) solutions exist. We demonstrate that the various solution curves for the single and multipeak pulses can splice and intersect each other via transcritical bifurcations, leading to a complex web of solutions. Our analysis is based on a generic model of mode locking that consists of a time-delayed dynamical system, but also on a much more numerically efficient, yet approximate, partial differential equation. We compare the results of the bifurcation analysis of both models in order to assess up to which point the two approaches are equivalent. We conclude our analysis by the study of the influence of group velocity dispersion, which is only possible in the framework of the partial differential equation model, and we show that it may have a profound impact on the dynamics of the localized states.
Algorithm for Stabilizing a POD-Based Dynamical System
NASA Technical Reports Server (NTRS)
Kalb, Virginia L.
2010-01-01
This algorithm provides a new way to improve the accuracy and asymptotic behavior of a low-dimensional system based on the proper orthogonal decomposition (POD). Given a data set representing the evolution of a system of partial differential equations (PDEs), such as the Navier-Stokes equations for incompressible flow, one may obtain a low-dimensional model in the form of ordinary differential equations (ODEs) that should model the dynamics of the flow. Temporal sampling of the direct numerical simulation of the PDEs produces a spatial time series. The POD extracts the temporal and spatial eigenfunctions of this data set. Truncated to retain only the most energetic modes followed by Galerkin projection of these modes onto the PDEs obtains a dynamical system of ordinary differential equations for the time-dependent behavior of the flow. In practice, the steps leading to this system of ODEs entail numerically computing first-order derivatives of the mean data field and the eigenfunctions, and the computation of many inner products. This is far from a perfect process, and often results in the lack of long-term stability of the system and incorrect asymptotic behavior of the model. This algorithm describes a new stabilization method that utilizes the temporal eigenfunctions to derive correction terms for the coefficients of the dynamical system to significantly reduce these errors.
Analysis of Spatiotemporal Characteristics of Pandemic SARS Spread in Mainland China.
Cao, Chunxiang; Chen, Wei; Zheng, Sheng; Zhao, Jian; Wang, Jinfeng; Cao, Wuchun
2016-01-01
Severe acute respiratory syndrome (SARS) is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME) method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases.
Analysis of Spatiotemporal Characteristics of Pandemic SARS Spread in Mainland China
Cao, Chunxiang; Zheng, Sheng; Zhao, Jian; Wang, Jinfeng; Cao, Wuchun
2016-01-01
Severe acute respiratory syndrome (SARS) is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME) method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases. PMID:27597972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao
Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less
Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao
2017-10-03
Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less
Stochastic E2F activation and reconciliation of phenomenological cell-cycle models.
Lee, Tae J; Yao, Guang; Bennett, Dorothy C; Nevins, Joseph R; You, Lingchong
2010-09-21
The transition of the mammalian cell from quiescence to proliferation is a highly variable process. Over the last four decades, two lines of apparently contradictory, phenomenological models have been proposed to account for such temporal variability. These include various forms of the transition probability (TP) model and the growth control (GC) model, which lack mechanistic details. The GC model was further proposed as an alternative explanation for the concept of the restriction point, which we recently demonstrated as being controlled by a bistable Rb-E2F switch. Here, through a combination of modeling and experiments, we show that these different lines of models in essence reflect different aspects of stochastic dynamics in cell cycle entry. In particular, we show that the variable activation of E2F can be described by stochastic activation of the bistable Rb-E2F switch, which in turn may account for the temporal variability in cell cycle entry. Moreover, we show that temporal dynamics of E2F activation can be recast into the frameworks of both the TP model and the GC model via parameter mapping. This mapping suggests that the two lines of phenomenological models can be reconciled through the stochastic dynamics of the Rb-E2F switch. It also suggests a potential utility of the TP or GC models in defining concise, quantitative phenotypes of cell physiology. This may have implications in classifying cell types or states.
NASA Astrophysics Data System (ADS)
Cheon, Taksu; Galam, Serge
2018-06-01
We introduce a model of temporal evolution of political opinions which amounts to a dynamical extension of Galam model in which the proportions of inflexibles are treated as dynamical variables. We find that the critical value of inflexibles in the original Galam model now turns into a fixed point of the system whose stability controls the phase trajectory of the political opinions. The appearance of two phases is found, in which majority-preserving and regime-changing limit cycles are respectively dominant, and the phase transition between them is observed.
The effects of seed dispersal on the simulation of long-term forest landscape change
Hong S. He; David J. Mladenoff
1999-01-01
The study of forest landscape change requires an understanding of the complex interactions of both spatial and temporal factors. Traditionally, forest gap models have been used to simulate change on small and independent plots. While gap models are useful in examining forest ecological dynamics across temporal scales, large, spatial processes, such as seed dispersal,...
Special issue dedicated to the 70th birthday of Glenn F. Webb. Preface.
Hinow, Peter; Magal, Pierre; Ruan, Shigui
2015-08-01
This special issue is dedicated to the 70th birthday of Glenn F. Webb. The topics of the 12 articles appearing in this special issue include evolutionary dynamics of population growth, spatio-temporal dynamics in reaction-diffusion biological models, transmission dynamics of infectious diseases, modeling of antibiotic-resistant bacteria in hospitals, analysis of Prion models, age-structured models in ecology and epidemiology, modeling of immune response to infections, modeling of cancer growth, etc. These topics partially represent the broad areas of Glenn's research interest.
Simulating forest fuel and fire risk dynamics across landscapes--LANDIS fuel module design
Hong S. He; Bo Z. Shang; Thomas R. Crow; Eric J. Gustafson; Stephen R. Shifley
2004-01-01
Understanding fuel dynamics over large spatial (103-106 ha) and temporal scales (101-103 years) is important in comprehensive wildfire management. We present a modeling approach to simulate fuel and fire risk dynamics as well as impacts of alternative fuel treatments. The...
Three-Dimensional Water and Carbon Cycle Modeling at High Spatial-Temporal Resolutions
NASA Astrophysics Data System (ADS)
Liao, C.; Zhuang, Q.
2017-12-01
Terrestrial ecosystems in cryosphere are very sensitive to the global climate change due to the presence of snow covers, mountain glaciers and permafrost, especially when the increase in near surface air temperature is almost twice as large as the global average. However, few studies have investigated the water and carbon cycle dynamics using process-based hydrological and biogeochemistry modeling approach. In this study, we used three-dimensional modeling approach at high spatial-temporal resolutions to investigate the water and carbon cycle dynamics for the Tanana Flats Basin in interior Alaska with emphases on dissolved organic carbon (DOC) dynamics. The results have shown that: (1) lateral flow plays an important role in water and carbon cycle, especially in dissolved organic carbon (DOC) dynamics. (2) approximately 2.0 × 104 kg C yr-1 DOC is exported to the hydrological networks and it compromises 1% and 0.01% of total annual gross primary production (GPP) and total organic carbon stored in soil, respectively. This study has established an operational and flexible framework to investigate and predict the water and carbon cycle dynamics under the changing climate.
NASA Astrophysics Data System (ADS)
Zhang, Yi-Qing; Cui, Jing; Zhang, Shu-Min; Zhang, Qi; Li, Xiang
2016-02-01
Modelling temporal networks of human face-to-face contacts is vital both for understanding the spread of airborne pathogens and word-of-mouth spreading of information. Although many efforts have been devoted to model these temporal networks, there are still two important social features, public activity and individual reachability, have been ignored in these models. Here we present a simple model that captures these two features and other typical properties of empirical face-to-face contact networks. The model describes agents which are characterized by an attractiveness to slow down the motion of nearby people, have event-triggered active probability and perform an activity-dependent biased random walk in a square box with periodic boundary. The model quantitatively reproduces two empirical temporal networks of human face-to-face contacts which are testified by their network properties and the epidemic spread dynamics on them.
Spatio-temporal dynamics of species richness in coastal fish communities
Lekve, K.; Boulinier, T.; Stenseth, N.C.; Gjøsaeter, J.; Fromentin, J-M.; Hines, J.E.; Nichols, J.D.
2002-01-01
Determining patterns of change in species richness and the processes underlying the dynamics of biodiversity are of key interest within the field of ecology, but few studies have investigated the dynamics of vertebrate communities at a decadal temporal scale. Here, we report findings on the spado-temporal variability in the richness and composition of fish communities along the Norwegian Skagerrak coast having been surveyed for more than half a century. Using statistical models incorporating non-detection and associated sampling variance, we estimate local species richness and changes in species composition allowing us to compute temporal variability in species richness. We tested whether temporal variation could be related to distance to the open sea and to local levels of pollution. Clear differences in mean species richness and temporal variability are observed between fjords that were and were not exposed to the effects of pollution. Altogether this indicates that the fjord is an appropriate scale for studying changes in coastal fish communities in space and time. The year-to-year rates of local extinction and turnover were found to be smaller than spatial differences in community composition. At the regional level, exposure to the open sea plays a homogenizing role, possibly due to coastal currents and advection.
Temporal node centrality in complex networks
NASA Astrophysics Data System (ADS)
Kim, Hyoungshick; Anderson, Ross
2012-02-01
Many networks are dynamic in that their topology changes rapidly—on the same time scale as the communications of interest between network nodes. Examples are the human contact networks involved in the transmission of disease, ad hoc radio networks between moving vehicles, and the transactions between principals in a market. While we have good models of static networks, so far these have been lacking for the dynamic case. In this paper we present a simple but powerful model, the time-ordered graph, which reduces a dynamic network to a static network with directed flows. This enables us to extend network properties such as vertex degree, closeness, and betweenness centrality metrics in a very natural way to the dynamic case. We then demonstrate how our model applies to a number of interesting edge cases, such as where the network connectivity depends on a small number of highly mobile vertices or edges, and show that our centrality definition allows us to track the evolution of connectivity. Finally we apply our model and techniques to two real-world dynamic graphs of human contact networks and then discuss the implication of temporal centrality metrics in the real world.
Scherbaum, Stefan; Dshemuchadse, Maja; Goschke, Thomas
2012-01-01
Temporal discounting denotes the fact that individuals prefer smaller rewards delivered sooner over larger rewards delivered later, often to a higher extent than suggested by normative economical theories. In this article, we identify three lines of research studying this phenomenon which aim (i) to describe temporal discounting mathematically, (ii) to explain observed choice behavior psychologically, and (iii) to predict the influence of specific factors on intertemporal decisions. We then opt for an approach integrating postulated mechanisms and empirical findings from these three lines of research. Our approach focuses on the dynamical properties of decision processes and is based on computational modeling. We present a dynamic connectionist model of intertemporal choice focusing on the role of self-control and time framing as two central factors determining choice behavior. Results of our simulations indicate that the two influences interact with each other, and we present experimental data supporting this prediction. We conclude that computational modeling of the decision process dynamics can advance the integration of different strands of research in intertemporal choice. PMID:23181048
Scherbaum, Stefan; Dshemuchadse, Maja; Goschke, Thomas
2012-01-01
Temporal discounting denotes the fact that individuals prefer smaller rewards delivered sooner over larger rewards delivered later, often to a higher extent than suggested by normative economical theories. In this article, we identify three lines of research studying this phenomenon which aim (i) to describe temporal discounting mathematically, (ii) to explain observed choice behavior psychologically, and (iii) to predict the influence of specific factors on intertemporal decisions. We then opt for an approach integrating postulated mechanisms and empirical findings from these three lines of research. Our approach focuses on the dynamical properties of decision processes and is based on computational modeling. We present a dynamic connectionist model of intertemporal choice focusing on the role of self-control and time framing as two central factors determining choice behavior. Results of our simulations indicate that the two influences interact with each other, and we present experimental data supporting this prediction. We conclude that computational modeling of the decision process dynamics can advance the integration of different strands of research in intertemporal choice.
Infectious diseases in space and time: noise and nonlinearity in epidemiological dynamics
NASA Astrophysics Data System (ADS)
Grenfell, Bryan
2005-03-01
I illustrate the impact of noise and nonlinearity on the spatio-temporal dynamics and evolution of epidemics using mathematical models and analyses of detailed epidemiological data from childhood infections, such as measles.
Inferring the relative resilience of alternative states
Angeler, David G.; Allen, Craig R.; Rojo, Carmen; Alvarez-Cobelas, Miguel; Rodrigo, Maria A.; Sanchez-Carrillo, Salvador
2013-01-01
Ecological systems may occur in alternative states that differ in ecological structures, functions and processes. Resilience is the measure of disturbance an ecological system can absorb before changing states. However, how the intrinsic structures and processes of systems that characterize their states affects their resilience remains unclear. We analyzed time series of phytoplankton communities at three sites in a floodplain in central Spain to assess the dominant frequencies or “temporal scales” in community dynamics and compared the patterns between a wet and a dry alternative state. The identified frequencies and cross-scale structures are expected to arise from positive feedbacks that are thought to reinforce processes in alternative states of ecological systems and regulate emergent phenomena such as resilience. Our analyses show a higher species richness and diversity but lower evenness in the dry state. Time series modeling revealed a decrease in the importance of short-term variability in the communities, suggesting that community dynamics slowed down in the dry relative to the wet state. The number of temporal scales at which community dynamics manifested, and the explanatory power of time series models, was lower in the dry state. The higher diversity, reduced number of temporal scales and the lower explanatory power of time series models suggest that species dynamics tended to be more stochastic in the dry state. From a resilience perspective our results highlight a paradox: increasing species richness may not necessarily enhance resilience. The loss of cross-scale structure (i.e. the lower number of temporal scales) in community dynamics across sites suggests that resilience erodes during drought. Phytoplankton communities in the dry state are therefore likely less resilient than in the wet state. Our case study demonstrates the potential of time series modeling to assess attributes that mediate resilience. The approach is useful for assessing resilience of alternative states across ecological and other complex systems.
An individual-based process model to simulate landscape-scale forest ecosystem dynamics
Rupert Seidl; Werner Rammer; Robert M. Scheller; Thomas Spies
2012-01-01
Forest ecosystem dynamics emerges from nonlinear interactions between adaptive biotic agents (i.e., individual trees) and their relationship with a spatially and temporally heterogeneous abiotic environment. Understanding and predicting the dynamics resulting from these complex interactions is crucial for the sustainable stewardship of ecosystems, particularly in the...
Garagnani, Max; Pulvermüller, Friedemann
2013-01-01
The neural mechanisms underlying the spontaneous, stimulus-independent emergence of intentions and decisions to act are poorly understood. Using a neurobiologically realistic model of frontal and temporal areas of the brain, we simulated the learning of perception–action circuits for speech and hand-related actions and subsequently observed their spontaneous behaviour. Noise-driven accumulation of reverberant activity in these circuits leads to their spontaneous ignition and partial-to-full activation, which we interpret, respectively, as model correlates of action intention emergence and action decision-and-execution. Importantly, activity emerged first in higher-association prefrontal and temporal cortices, subsequently spreading to secondary and finally primary sensorimotor model-areas, hence reproducing the dynamics of cortical correlates of voluntary action revealed by readiness-potential and verb-generation experiments. This model for the first time explains the cortical origins and topography of endogenous action decisions, and the natural emergence of functional specialisation in the cortex, as mechanistic consequences of neurobiological principles, anatomical structure and sensorimotor experience. PMID:23489583
Caridakis, G; Karpouzis, K; Drosopoulos, A; Kollias, S
2012-12-01
Modeling and recognizing spatiotemporal, as opposed to static input, is a challenging task since it incorporates input dynamics as part of the problem. The vast majority of existing methods tackle the problem as an extension of the static counterpart, using dynamics, such as input derivatives, at feature level and adopting artificial intelligence and machine learning techniques originally designed for solving problems that do not specifically address the temporal aspect. The proposed approach deals with temporal and spatial aspects of the spatiotemporal domain in a discriminative as well as coupling manner. Self Organizing Maps (SOM) model the spatial aspect of the problem and Markov models its temporal counterpart. Incorporation of adjacency, both in training and classification, enhances the overall architecture with robustness and adaptability. The proposed scheme is validated both theoretically, through an error propagation study, and experimentally, on the recognition of individual signs, performed by different, native Greek Sign Language users. Results illustrate the architecture's superiority when compared to Hidden Markov Model techniques and variations both in terms of classification performance and computational cost. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aubrecht, Christoph; Steinnocher, Klaus; Humer, Heinrich; Huber, Hermann
2014-05-01
In the context of proactive disaster risk as well as immediate situational crisis management knowledge of locational social aspects in terms of spatio-temporal population distribution dynamics is considered among the most important factors for disaster impact minimization (Aubrecht et al., 2013a). This applies to both the pre-event stage for designing appropriate preparedness measures and to acute crisis situations when an event chain actually unfolds for efficient situation-aware response. The presented DynaPop population dynamics model is developed at the interface of those interlinked crisis stages and aims at providing basic input for social impact evaluation and decision support in crisis management. The model provides the starting point for assessing population exposure dynamics - thus here labeled as DynaPop-X - which can either be applied in a sense of illustrating the changing locations and numbers of affected people at different stages during an event or as ex-ante estimations of probable and maximum expected clusters of affected population (Aubrecht et al., 2013b; Freire & Aubrecht, 2012). DynaPop is implemented via a gridded spatial disaggregation approach and integrates previous efforts on spatio-temporal modeling that account for various aspects of population dynamics such as human mobility and activity patterns that are particularly relevant in picturing the highly dynamic daytime situation (Ahola et al., 2007; Bhaduri, 2008; Cockings et al., 2010). We will present ongoing developments particularly focusing on the implementation logic of the model using the emikat software tool, a data management system initially designed for inventorying and analysis of spatially resolved regional air pollutant emission scenarios. This study was performed in the framework of the EU CRISMA project. CRISMA is funded from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement no. 284552. REFERENCES Ahola, T., Virrantaus, K., Krisp, J.K., Hunter, G.J. (2007) A spatio-temporal population model to support risk assessment and damage analysis for decision-making. International Journal of Geographical Information Science, 21(8), 935-953. Aubrecht, C., Fuchs, S., Neuhold, C. (2013a) Spatio-temporal aspects and dimensions in integrated disaster risk management. Natural Hazards, 68(3), 1205-1216. Aubrecht, C., Özceylan, D., Steinnocher, K., Freire, S. (2013b) Multi-level geospatial modeling of human exposure patterns and vulnerability indicators. Natural Hazards, 68(1), 147-163. Bhaduri, B. (2008) Population distribution during the day. In S. Shekhar & X. Hui, eds., Encyclopedia of GIS. Springer US, 880-885. Cockings, S., Martin, D. & Leung, S. (2010) Population 24/7: building space-time specific population surface models. In M. Haklay, J. Morley, & H. Rahemtulla, eds., Proceedings of the GIS Research UK 18th Annual conference. GISRUK 2010. London, UK, 41-47. Freire, S., Aubrecht, C. (2012) Integrating population dynamics into mapping human exposure to seismic hazard. Natural Hazards and Earth System Sciences, 12(11), 3533-3543.
Spatio-temporal diffusion of dynamic PET images
NASA Astrophysics Data System (ADS)
Tauber, C.; Stute, S.; Chau, M.; Spiteri, P.; Chalon, S.; Guilloteau, D.; Buvat, I.
2011-10-01
Positron emission tomography (PET) images are corrupted by noise. This is especially true in dynamic PET imaging where short frames are required to capture the peak of activity concentration after the radiotracer injection. High noise results in a possible bias in quantification, as the compartmental models used to estimate the kinetic parameters are sensitive to noise. This paper describes a new post-reconstruction filter to increase the signal-to-noise ratio in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the 4D image based on the time activity curve (TAC) in each voxel. It reduces the noise in homogeneous areas while preserving the distinct kinetics in regions of interest corresponding to different underlying physiological processes. Neither anatomical priors nor the kinetic model are required. We propose an automatic selection of the scale parameter involved in the diffusion process based on a robust statistical analysis of the distances between TACs. The method is evaluated using Monte Carlo simulations of brain activity distributions. We demonstrate the usefulness of the method and its superior performance over two other post-reconstruction spatial and temporal filters. Our simulations suggest that the proposed method can be used to significantly increase the signal-to-noise ratio in dynamic PET imaging.
ERIC Educational Resources Information Center
Hannan, Michael T.; Tuma, Nancy Brandon
This document is part of a series of chapters described in SO 011 759. Working from the premise that temporal analysis is indispensable for the study of change, the document examines major alternatives in research design of this nature. Five sections focus on the features, advantages, and limitations of temporal analysis. Four designs which…
Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks
Vestergaard, Christian L.; Génois, Mathieu
2015-01-01
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling. PMID:26517860
Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks.
Vestergaard, Christian L; Génois, Mathieu
2015-10-01
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.
NASA Astrophysics Data System (ADS)
Debnath, M.; Santoni, C.; Leonardi, S.; Iungo, G. V.
2017-03-01
The dynamics of the velocity field resulting from the interaction between the atmospheric boundary layer and a wind turbine array can affect significantly the performance of a wind power plant and the durability of wind turbines. In this work, dynamics in wind turbine wakes and instabilities of helicoidal tip vortices are detected and characterized through modal decomposition techniques. The dataset under examination consists of snapshots of the velocity field obtained from large-eddy simulations (LES) of an isolated wind turbine, for which aerodynamic forcing exerted by the turbine blades on the atmospheric boundary layer is mimicked through the actuator line model. Particular attention is paid to the interaction between the downstream evolution of the helicoidal tip vortices and the alternate vortex shedding from the turbine tower. The LES dataset is interrogated through different modal decomposition techniques, such as proper orthogonal decomposition and dynamic mode decomposition. The dominant wake dynamics are selected for the formulation of a reduced order model, which consists in a linear time-marching algorithm where temporal evolution of flow dynamics is obtained from the previous temporal realization multiplied by a time-invariant operator. This article is part of the themed issue 'Wind energy in complex terrains'.
Rodhouse, Thomas J.; Ormsbee, Patricia C.; Irvine, Kathryn M.; Vierling, Lee A.; Szewczak, Joseph M.; Vierling, Kerri T.
2015-01-01
Landscape keystone structures associated with roosting habitat emerged as regionally important predictors of bat distributions. The challenges of bat monitoring have constrained previous species distribution modelling efforts to temporally static presence-only approaches. Our approach extends to broader spatial and temporal scales than has been possible in the past for bats, making a substantial increase in capacity for bat conservation.
Spatiotemporal neural network dynamics for the processing of dynamic facial expressions.
Sato, Wataru; Kochiyama, Takanori; Uono, Shota
2015-07-24
The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150-200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300-350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual-motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions.
Spatiotemporal neural network dynamics for the processing of dynamic facial expressions
Sato, Wataru; Kochiyama, Takanori; Uono, Shota
2015-01-01
The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150–200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300–350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual–motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions. PMID:26206708
NASA Astrophysics Data System (ADS)
He, Yingqing; Ai, Bin; Yao, Yao; Zhong, Fajun
2015-06-01
Cellular automata (CA) have proven to be very effective for simulating and predicting the spatio-temporal evolution of complex geographical phenomena. Traditional methods generally pose problems in determining the structure and parameters of CA for a large, complex region or a long-term simulation. This study presents a self-adaptive CA model integrated with an artificial immune system to discover dynamic transition rules automatically. The model's parameters are allowed to be self-modified with the application of multi-temporal remote sensing images: that is, the CA can adapt itself to the changed and complex environment. Therefore, urban dynamic evolution rules over time can be efficiently retrieved by using this integrated model. The proposed AIS-based CA model was then used to simulate the rural-urban land conversion of Guangzhou city, located in the core of China's Pearl River Delta. The initial urban land was directly classified from TM satellite image in the year 1990. Urban land in the years 1995, 2000, 2005, 2009 and 2012 was correspondingly used as the observed data to calibrate the model's parameters. With the quantitative index figure of merit (FoM) and pattern similarity, the comparison was further performed between the AIS-based model and a Logistic CA model. The results indicate that the AIS-based CA model can perform better and with higher precision in simulating urban evolution, and the simulated spatial pattern is closer to the actual development situation.
Formal analysis of temporal dynamics in anxiety states and traits for virtual patients
NASA Astrophysics Data System (ADS)
Aziz, Azizi Ab; Ahmad, Faudziah; Yusof, Nooraini; Ahmad, Farzana Kabir; Yusof, Shahrul Azmi Mohd
2016-08-01
This paper presents a temporal dynamic model of anxiety states and traits for an individual. Anxiety is a natural part of life, and most of us experience it from time to time. But for some people, anxiety can be extreme. Based on several personal characteristics, traits, and a representation of events (i.e. psychological and physiological stressors), the formal model can represent whether a human that experience certain scenarios will fall into an anxiety states condition. A number of well-known relations between events and the course of anxiety are summarized from the literature and it is shown that the model exhibits those patterns. In addition, the formal model has been mathematically analyzed to find out which stable situations exist. Finally, it is pointed out how this model can be used in therapy, supported by a software agent.
THE KEY ROLE OF SOLAR DYNAMICS IN THE CHROMOSPHERIC HANLE POLARIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.ch
The quantum theory of polarized light allows one to model scattering in the solar atmosphere for inferring its properties. This powerful approach has revealed two key long-standing problems in solar physics: the puzzling dilemmas between theory and observations in several anomalously polarized spectral lines and the need for inferring the ubiquitous weak chromospheric magnetic fields, which requires discriminating the Hanle effect in dynamic optically thick plasmas. However, the ever-present dynamics, i.e., the temporal evolution of heatings and macroscopic motions, has been widely disregarded when modeling and interpreting the scattering polarization. This has hindered a consistent theoretical solution to the puzzlemore » while falsifying the Hanle diagnosis. Here, we show that the dynamical evolution is a keystone for solving both problems because its systematic impact allows an explanation of the observations from “anomalous” instantaneous polarization signals. Evolution accounted for, we reproduce amplitudes and (spectral and spatial) shapes of the Ca i 4227 Å polarization at solar disk center, identifying a restrictive arrangement of magnetic fields, kinematics, heatings, and spatio-temporal resolution. We find that the joint action of dynamics, Hanle effect, and low temporal resolutions mimics Zeeman linear polarization profiles, the true weak-field Zeeman signals being negligible. Our results allow reinterpretation of many polarization signals of the solar spectra and support time-dependent scattering polarization as a powerful tool for deciphering the spatio-temporal distribution of chromospheric heatings and fields. This approach may be a key aid in developing the Hanle diagnosis for the solar atmosphere.« less
Exploiting temporal collateral sensitivity in tumor clonal evolution
Zhao, Boyang; Sedlak, Joseph C.; Srinivas, Raja; Creixell, Pau; Pritchard, Justin R.; Tidor, Bruce; Lauffenburger, Douglas A.; Hemann, Michael T.
2016-01-01
SUMMARY The prevailing approach to addressing secondary drug resistance in cancer focuses on treating the resistance mechanisms at relapse. However, the dynamic nature of clonal evolution, along with potential fitness costs and cost compensations, may present exploitable vulnerabilities; a notion that we term ‘temporal collateral sensitivity’. Using a combined pharmacological screen and drug resistance selection approach in a murine model of Ph+ acute lymphoblastic leukemia, we indeed find that temporal and/or persistent collateral sensitivity to non-classical BCR-ABL1 drugs arises in emergent tumor subpopulations during the evolution of resistance toward initial treatment with BCR-ABL1 targeted inhibitors. We determined the sensitization mechanism via genotypic, phenotypic, signaling, and binding measurements in combination with computational models, and demonstrated significant overall survival extension in mice. Additional stochastic mathematical models and small molecule screens extended our insights, indicating the value of focusing on evolutionary trajectories and pharmacological profiles to identify new strategies to treat dynamic tumor vulnerabilities. PMID:26924578
Exploiting Temporal Collateral Sensitivity in Tumor Clonal Evolution.
Zhao, Boyang; Sedlak, Joseph C; Srinivas, Raja; Creixell, Pau; Pritchard, Justin R; Tidor, Bruce; Lauffenburger, Douglas A; Hemann, Michael T
2016-03-24
The prevailing approach to addressing secondary drug resistance in cancer focuses on treating the resistance mechanisms at relapse. However, the dynamic nature of clonal evolution, along with potential fitness costs and cost compensations, may present exploitable vulnerabilities-a notion that we term "temporal collateral sensitivity." Using a combined pharmacological screen and drug resistance selection approach in a murine model of Ph(+) acute lymphoblastic leukemia, we indeed find that temporal and/or persistent collateral sensitivity to non-classical BCR-ABL1 drugs arises in emergent tumor subpopulations during the evolution of resistance toward initial treatment with BCR-ABL1-targeted inhibitors. We determined the sensitization mechanism via genotypic, phenotypic, signaling, and binding measurements in combination with computational models and demonstrated significant overall survival extension in mice. Additional stochastic mathematical models and small-molecule screens extended our insights, indicating the value of focusing on evolutionary trajectories and pharmacological profiles to identify new strategies to treat dynamic tumor vulnerabilities. Copyright © 2016 Elsevier Inc. All rights reserved.
Börlin, Christoph S; Lang, Verena; Hamacher-Brady, Anne; Brady, Nathan R
2014-09-10
Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3 hours) under basal and activated autophagy conditions, and to measure the degree of cell-to-cell variability. Moreover, we experimentally confirmed two model predictions, namely (i) peri-nuclear concentration of autophagosomes and (ii) inhibitory lysosomal feedback on mTOR signaling. Agent-based modeling represents a novel approach to investigate autophagy dynamics, function and dysfunction with high biological realism. Our model accurately recapitulates short-term behavior and cell-to-cell variability under basal and activated conditions of autophagy. Further, this approach also allows investigation of long-term behaviors emerging from biologically-relevant alterations to vesicle trafficking and metabolic state.
2012-01-01
Background Ticks are the most important pathogen vectors in Europe. They are known to be influenced by environmental factors, but these links are usually studied at specific temporal or spatial scales. Focusing on Ixodes ricinus in Belgium, we attempt to bridge the gap between current “single-sided” studies that focus on temporal or spatial variation only. Here, spatial and temporal patterns of ticks are modelled together. Methods A multi-level analysis of the Ixodes ricinus patterns in Belgium was performed. Joint effects of weather, habitat quality and hunting on field sampled tick abundance were examined at two levels, namely, sampling level, which is associated with temporal dynamics, and site level, which is related to spatial dynamics. Independent variables were collected from standard weather station records, game management data and remote sensing-based land cover data. Results At sampling level, only a marginally significant effect of daily relative humidity and temperature on the abundance of questing nymphs was identified. Average wind speed of seven days prior to the sampling day was found important to both questing nymphs and adults. At site level, a group of landscape-level forest fragmentation indices were highlighted for both questing nymph and adult abundance, including the nearest-neighbour distance, the shape and the aggregation level of forest patches. No cross-level effects or spatial autocorrelation were found. Conclusions Nymphal and adult ticks responded differently to environmental variables at different spatial and temporal scales. Our results can advise spatio-temporal extents of environment data collection for continuing empirical investigations and potential parameters for biological tick models. PMID:22830528
Spring bloom dinoflagellate cyst dynamics in three eastern sub-basins of the Baltic Sea
NASA Astrophysics Data System (ADS)
Sildever, Sirje; Kremp, Anke; Enke, Annely; Buschmann, Fred; Maljutenko, Ilja; Lips, Inga
2017-04-01
Dinoflagellate cyst abundance and species composition were investigated before, during and after the spring bloom in the Gulf of Finland, north-eastern Baltic Proper and Gulf of Riga in order to detect spatial and temporal dynamics. Transport of newly formed cysts by currents was modelled to explore the possible distance travelled by cysts before sedimentation. The cyst community of the spring bloom dinoflagellates was dominated by the cysts of Biecheleria baltica in all basins, despite its marginal value in the planktonic spring bloom community in the Gulf of Riga. Dinoflagellate cyst abundance in the surface sediments displayed temporal dynamics in all basins, however, this appeared to be also influenced by physical processes. The model simulation showed that newly formed cysts are transported around 10-30 km from the point of origin before deposited. The latter suggests that transport of resting stages in the water column significantly affects spatial cyst distribution in the sediments and thus needs to be considered in the interpretation of temporal biological productivity patterns of a water body from cyst proxies.
Testing for significance of phase synchronisation dynamics in the EEG.
Daly, Ian; Sweeney-Reed, Catherine M; Nasuto, Slawomir J
2013-06-01
A number of tests exist to check for statistical significance of phase synchronisation within the Electroencephalogram (EEG); however, the majority suffer from a lack of generality and applicability. They may also fail to account for temporal dynamics in the phase synchronisation, regarding synchronisation as a constant state instead of a dynamical process. Therefore, a novel test is developed for identifying the statistical significance of phase synchronisation based upon a combination of work characterising temporal dynamics of multivariate time-series and Markov modelling. We show how this method is better able to assess the significance of phase synchronisation than a range of commonly used significance tests. We also show how the method may be applied to identify and classify significantly different phase synchronisation dynamics in both univariate and multivariate datasets.
Dynamic Shade and Irradiance Simulation of Aquatic Landscapes and Watersheds
Penumbra is a landscape shade and irradiance simulation model that simulates how solar energy spatially and temporally interacts within dynamic ecosystems such as riparian zones, forests, and other terrain that cast topological shadows. Direct and indirect solar energy accumulate...
Huang, Jian-Xiong; Zhang, Jian; Shen, Yong; Lian, Ju-yu; Cao, Hong-lin; Ye, Wan-hui; Wu, Lin-fang; Bin, Yue
2014-01-01
Ecologists have been monitoring community dynamics with the purpose of understanding the rates and causes of community change. However, there is a lack of monitoring of community dynamics from the perspective of phylogeny. We attempted to understand temporal phylogenetic turnover in a 50 ha tropical forest (Barro Colorado Island, BCI) and a 20 ha subtropical forest (Dinghushan in southern China, DHS). To obtain temporal phylogenetic turnover under random conditions, two null models were used. The first shuffled names of species that are widely used in community phylogenetic analyses. The second simulated demographic processes with careful consideration on the variation in dispersal ability among species and the variations in mortality both among species and among size classes. With the two models, we tested the relationships between temporal phylogenetic turnover and phylogenetic similarity at different spatial scales in the two forests. Results were more consistent with previous findings using the second null model suggesting that the second null model is more appropriate for our purposes. With the second null model, a significantly positive relationship was detected between phylogenetic turnover and phylogenetic similarity in BCI at a 10 m×10 m scale, potentially indicating phylogenetic density dependence. This relationship in DHS was significantly negative at three of five spatial scales. This could indicate abiotic filtering processes for community assembly. Using variation partitioning, we found phylogenetic similarity contributed to variation in temporal phylogenetic turnover in the DHS plot but not in BCI plot. The mechanisms for community assembly in BCI and DHS vary from phylogenetic perspective. Only the second null model detected this difference indicating the importance of choosing a proper null model.
Coseismic temporal changes of slip direction: the effect of absolute stress on dynamic rupture
Guatteri, Mariagiovanna; Spudich, P.
1998-01-01
We investigate the dynamics of rupture at low-stress level. We show that one main difference between the dynamics of high- and low-stress events is the amount of coseismic temporal rake rotation occurring at given points on the fault. Curved striations on exposed fault surfaces and earthquake dislocation models derived from ground-motion inversion indicate that the slip direction may change with time at a point on the fault during dynamic rupture. We use a 3D boundary integral method to model temporal rake variations during dynamic rupture propagation assuming a slip-weakening friction law and isotropic friction. The points at which the slip rotates most are characterized by an initial shear stress direction substantially different from the average stress direction over the fault plane. We show that for a given value of stress drop, the level of initial shear stress (i.e., the fractional stress drop) determines the amount of rotation in slip direction. We infer that seismic events that show evidence of temporal rake rotations are characterized by a low initial shear-stress level with spatially variable direction on the fault (possibly due to changes in fault surface geometry) and an almost complete stress drop.Our models motivate a new interpretation of curved and cross-cutting striations and put new constraints on their analysis. The initial rake is in general collinear with the initial stress at the hypocentral zone, supporting the assumptions made in stress-tensor inversion from first-motion analysis. At other points on the fault, especially away from the hypocenter, the initial slip rake may not be collinear with the initial shear stress, contradicting a common assumption of structural geology. On the other hand, the later part of slip in our models is systematically more aligned with the average stress direction than the early slip. Our modeling suggests that the length of the straight part of curved striations is usually an upper bound of the slip-weakening distance if this parameter is uniform over the fault plane, and the direction of the late part of slip of curved striations should have more weight in the estimate of initial stress direction.
Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi
2014-11-01
Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean population size. Results suggest that understanding the population dynamics of a species over its range may be facilitated by taking the spatial structure of population size into account as well as by considering changes in population processes as a function of position within the range of the species. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Librero, Julián; Ibañez, Berta; Martínez-Lizaga, Natalia; Peiró, Salvador; Bernal-Delgado, Enrique
2017-01-01
To illustrate the ability of hierarchical Bayesian spatio-temporal models in capturing different geo-temporal structures in order to explain hospital risk variations using three different conditions: Percutaneous Coronary Intervention (PCI), Colectomy in Colorectal Cancer (CCC) and Chronic Obstructive Pulmonary Disease (COPD). This is an observational population-based spatio-temporal study, from 2002 to 2013, with a two-level geographical structure, Autonomous Communities (AC) and Health Care Areas (HA). The Spanish National Health System, a quasi-federal structure with 17 regional governments (AC) with full responsibility in planning and financing, and 203 HA providing hospital and primary care to a defined population. A poisson-log normal mixed model in the Bayesian framework was fitted using the INLA efficient estimation procedure. The spatio-temporal hospitalization relative risks, the evolution of their variation, and the relative contribution (fraction of variation) of each of the model components (AC, HA, year and interaction AC-year). Following PCI-CCC-CODP order, the three conditions show differences in the initial hospitalization rates (from 4 to 21 per 10,000 person-years) and in their trends (upward, inverted V shape, downward). Most of the risk variation is captured by phenomena occurring at the HA level (fraction variance: 51.6, 54.7 and 56.9%). At AC level, the risk of PCI hospitalization follow a heterogeneous ascending dynamic (interaction AC-year: 17.7%), whereas in COPD the AC role is more homogenous and important (37%). In a system where the decisions loci are differentiated, the spatio-temporal modeling allows to assess the dynamic relative role of different levels of decision and their influence on health outcomes.
Self-organized mechano-chemical dynamics in amoeboid locomotion of Physarum fragments
NASA Astrophysics Data System (ADS)
Zhang, Shun; Guy, Robert D.; Lasheras, Juan C.; del Álamo, Juan C.
2017-05-01
The aim of this work is to quantify the spatio-temporal dynamics of flow-driven amoeboid locomotion in small (∼100 μm) fragments of the true slime mold Physarum polycephalum. In this model organism, cellular contraction drives intracellular flows, and these flows transport the chemical signals that regulate contraction in the first place. As a consequence of these non-linear interactions, a diversity of migratory behaviors can be observed in migrating Physarum fragments. To study these dynamics, we measure the spatio-temporal distributions of the velocities of the endoplasm and ectoplasm of each migrating fragment, the traction stresses it generates on the substratum, and the concentration of free intracellular calcium. Using these unprecedented experimental data, we classify migrating Physarum fragments according to their dynamics, finding that they often exhibit spontaneously coordinated waves of flow, contractility and chemical signaling. We show that Physarum fragments exhibiting symmetric spatio-temporal patterns of endoplasmic flow migrate significantly slower than fragments with asymmetric patterns. In addition, our joint measurements of ectoplasm velocity and traction stress at the substratum suggest that forward motion of the ectoplasm is enabled by a succession of stick-slip transitions, which we conjecture are also organized in the form of waves. Combining our experiments with a simplified convection-diffusion model, we show that the convective transport of calcium ions may be key for establishing and maintaining the spatio-temporal patterns of calcium concentration that regulate the generation of contractile forces.
Roach, Shane M.; Song, Dong; Berger, Theodore W.
2012-01-01
Activity-dependent variation of neuronal thresholds for action potential (AP) generation is one of the key determinants of spike-train temporal-pattern transformations from presynaptic to postsynaptic spike trains. In this study, we model the nonlinear dynamics of the threshold variation during synaptically driven broadband intracellular activity. First, membrane potentials of single CA1 pyramidal cells were recorded under physiologically plausible broadband stimulation conditions. Second, a method was developed to measure AP thresholds from the continuous recordings of membrane potentials. It involves measuring the turning points of APs by analyzing the third-order derivatives of the membrane potentials. Four stimulation paradigms with different temporal patterns were applied to validate this method by comparing the measured AP turning points and the actual AP thresholds estimated with varying stimulation intensities. Results show that the AP turning points provide consistent measurement of the AP thresholds, except for a constant offset. It indicates that 1) the variation of AP turning points represents the nonlinearities of threshold dynamics; and 2) an optimization of the constant offset is required to achieve accurate spike prediction. Third, a nonlinear dynamical third-order Volterra model was built to describe the relations between the threshold dynamics and the AP activities. Results show that the model can predict threshold accurately based on the preceding APs. Finally, the dynamic threshold model was integrated into a previously developed single neuron model and resulted in a 33% improvement in spike prediction. PMID:22156947
NASA Astrophysics Data System (ADS)
Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Ternovsky, V. B.; Serga, I. N.; Bykowszczenko, N.
2017-10-01
Results of analysis and modelling the air pollutant (dioxide of nitrogen) concentration temporal dynamics in atmosphere of the industrial city Odessa are presented for the first time and based on computing by nonlinear methods of the chaos and dynamical systems theories. A chaotic behaviour is discovered and investigated. To reconstruct the corresponding strange chaotic attractor, the time delay and embedding dimension are computed. The former is determined by the methods of autocorrelation function and average mutual information, and the latter is calculated by means of correlation dimension method and algorithm of false nearest neighbours. It is shown that low-dimensional chaos exists in the nitrogen dioxide concentration time series under investigation. Further, the Lyapunov’s exponents spectrum, Kaplan-Yorke dimension and Kolmogorov entropy are computed.
The evolution of meaning: spatio-temporal dynamics of visual object recognition.
Clarke, Alex; Taylor, Kirsten I; Tyler, Lorraine K
2011-08-01
Research on the spatio-temporal dynamics of visual object recognition suggests a recurrent, interactive model whereby an initial feedforward sweep through the ventral stream to prefrontal cortex is followed by recurrent interactions. However, critical questions remain regarding the factors that mediate the degree of recurrent interactions necessary for meaningful object recognition. The novel prediction we test here is that recurrent interactivity is driven by increasing semantic integration demands as defined by the complexity of semantic information required by the task and driven by the stimuli. To test this prediction, we recorded magnetoencephalography data while participants named living and nonliving objects during two naming tasks. We found that the spatio-temporal dynamics of neural activity were modulated by the level of semantic integration required. Specifically, source reconstructed time courses and phase synchronization measures showed increased recurrent interactions as a function of semantic integration demands. These findings demonstrate that the cortical dynamics of object processing are modulated by the complexity of semantic information required from the visual input.
Modelling and simulation of biased agonism dynamics at a G protein-coupled receptor.
Bridge, L J; Mead, J; Frattini, E; Winfield, I; Ladds, G
2018-04-07
Theoretical models of G protein-coupled receptor (GPCR) concentration-response relationships often assume an agonist producing a single functional response via a single active state of the receptor. These models have largely been analysed assuming steady-state conditions. There is now much experimental evidence to suggest that many GPCRs can exist in multiple receptor conformations and elicit numerous functional responses, with ligands having the potential to activate different signalling pathways to varying extents-a concept referred to as biased agonism, functional selectivity or pluri-dimensional efficacy. Moreover, recent experimental results indicate a clear possibility for time-dependent bias, whereby an agonist's bias with respect to different pathways may vary dynamically. Efforts towards understanding the implications of temporal bias by characterising and quantifying ligand effects on multiple pathways will clearly be aided by extending current equilibrium binding and biased activation models to include G protein activation dynamics. Here, we present a new model of time-dependent biased agonism, based on ordinary differential equations for multiple cubic ternary complex activation models with G protein cycle dynamics. This model allows simulation and analysis of multi-pathway activation bias dynamics at a single receptor for the first time, at the level of active G protein (α GTP ), towards the analysis of dynamic functional responses. The model is generally applicable to systems with N G G proteins and N* active receptor states. Numerical simulations for N G =N * =2 reveal new insights into the effects of system parameters (including cooperativities, and ligand and receptor concentrations) on bias dynamics, highlighting new phenomena including the dynamic inter-conversion of bias direction. Further, we fit this model to 'wet' experimental data for two competing G proteins (G i and G s ) that become activated upon stimulation of the adenosine A 1 receptor with adenosine derivative compounds. Finally, we show that our model can qualitatively describe the temporal dynamics of this competing G protein activation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Verma, Manish K.
Terrestrial gross primary productivity (GPP) is the largest and most variable component of the carbon cycle and is strongly influenced by phenology. Realistic characterization of spatio-temporal variation in GPP and phenology is therefore crucial for understanding dynamics in the global carbon cycle. In the last two decades, remote sensing has become a widely-used tool for this purpose. However, no study has comprehensively examined how well remote sensing models capture spatiotemporal patterns in GPP, and validation of remote sensing-based phenology models is limited. Using in-situ data from 144 eddy covariance towers located in all major biomes, I assessed the ability of 10 remote sensing-based methods to capture spatio-temporal variation in GPP at annual and seasonal scales. The models are based on different hypotheses regarding ecophysiological controls on GPP and span a range of structural and computational complexity. The results lead to four main conclusions: (i) at annual time scale, models were more successful capturing spatial variability than temporal variability; (ii) at seasonal scale, models were more successful in capturing average seasonal variability than interannual variability; (iii) simpler models performed as well or better than complex models; and (iv) models that were best at explaining seasonal variability in GPP were different from those that were best able to explain variability in annual scale GPP. Seasonal phenology of vegetation follows bounded growth and decay, and is widely modeled using growth functions. However, the specific form of the growth function affects how phenological dynamics are represented in ecosystem and remote sensing-base models. To examine this, four different growth functions (the logistic, Gompertz, Mirror-Gompertz and Richards function) were assessed using remotely sensed and in-situ data collected at several deciduous forest sites. All of the growth functions provided good statistical representation of in-situ and remote sensing time series. However, the Richards function captured observed asymmetric dynamics that were not captured by the other functions. The timing of key phenophase transitions derived using the Richards function therefore agreed best with observations. This suggests that ecosystem models and remote-sensing algorithms would benefit from using the Richards function to represent phenological dynamics.
NASA Astrophysics Data System (ADS)
Gill, Andrew B.; Black, Richard T.; Bowden, David J.; Priest, Andrew N.; Graves, Martin J.; Lomas, David J.
2014-06-01
This study investigated the effect of temporal resolution on the dual-input pharmacokinetic (PK) modelling of dynamic contrast-enhanced MRI (DCE-MRI) data from normal volunteer livers and from patients with hepatocellular carcinoma. Eleven volunteers and five patients were examined at 3 T. Two sections, one optimized for the vascular input functions (VIF) and one for the tissue, were imaged within a single heart-beat (HB) using a saturation-recovery fast gradient echo sequence. The data was analysed using a dual-input single-compartment PK model. The VIFs and/or uptake curves were then temporally sub-sampled (at interval ▵t = [2-20] s) before being subject to the same PK analysis. Statistical comparisons of tumour and normal tissue PK parameter values using a 5% significance level gave rise to the same study results when temporally sub-sampling the VIFs to HB < ▵t <4 s. However, sub-sampling to ▵t > 4 s did adversely affect the statistical comparisons. Temporal sub-sampling of just the liver/tumour tissue uptake curves at ▵t ≤ 20 s, whilst using high temporal resolution VIFs, did not substantially affect PK parameter statistical comparisons. In conclusion, there is no practical advantage to be gained from acquiring very high temporal resolution hepatic DCE-MRI data. Instead the high temporal resolution could be usefully traded for increased spatial resolution or SNR.
Linking degradation status with ecosystem vulnerability to environmental change
Angeler, David G.; Baho, Didier L.; Allen, Craig R.; Johnson, Richard K.
2015-01-01
Environmental change can cause regime shifts in ecosystems, potentially threatening ecosystem services. It is unclear if the degradation status of ecosystems correlates with their vulnerability to environmental change, and thus the risk of future regime shifts. We assessed resilience in acidified (degraded) and circumneutral (undegraded) lakes with long-term data (1988–2012), using time series modeling. We identified temporal frequencies in invertebrate assemblages, which identifies groups of species whose population dynamics vary at particular temporal scales. We also assessed species with stochastic dynamics, those whose population dynamics vary irregularly and unpredictably over time. We determined the distribution of functional feeding groups of invertebrates within and across the temporal scales identified, and in those species with stochastic dynamics, and assessed attributes hypothesized to contribute to resilience. Three patterns of temporal dynamics, consistent across study lakes, were identified in the invertebrates. The first pattern was one of monotonic change associated with changing abiotic lake conditions. The second and third patterns appeared unrelated to the environmental changes we monitored. Acidified and the circumneutral lakes shared similar levels and patterns of functional richness, evenness, diversity, and redundancy for species within and across the observed temporal scales and for stochastic species groups. These similar resilience characteristics suggest that both lake types did not differ in vulnerability to the environmental changes observed here. Although both lake types appeared equally vulnerable in this study, our approach demonstrates how assessing systemic vulnerability by quantifying ecological resilience can help address uncertainty in predicting ecosystem responses to environmental change across ecosystems.
Face processing regions are sensitive to distinct aspects of temporal sequence in facial dynamics.
Reinl, Maren; Bartels, Andreas
2014-11-15
Facial movement conveys important information for social interactions, yet its neural processing is poorly understood. Computational models propose that shape- and temporal sequence sensitive mechanisms interact in processing dynamic faces. While face processing regions are known to respond to facial movement, their sensitivity to particular temporal sequences has barely been studied. Here we used fMRI to examine the sensitivity of human face-processing regions to two aspects of directionality in facial movement trajectories. We presented genuine movie recordings of increasing and decreasing fear expressions, each of which were played in natural or reversed frame order. This two-by-two factorial design matched low-level visual properties, static content and motion energy within each factor, emotion-direction (increasing or decreasing emotion) and timeline (natural versus artificial). The results showed sensitivity for emotion-direction in FFA, which was timeline-dependent as it only occurred within the natural frame order, and sensitivity to timeline in the STS, which was emotion-direction-dependent as it only occurred for decreased fear. The occipital face area (OFA) was sensitive to the factor timeline. These findings reveal interacting temporal sequence sensitive mechanisms that are responsive to both ecological meaning and to prototypical unfolding of facial dynamics. These mechanisms are temporally directional, provide socially relevant information regarding emotional state or naturalness of behavior, and agree with predictions from modeling and predictive coding theory. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Bursts and heavy tails in temporal and sequential dynamics of foraging decisions.
Jung, Kanghoon; Jang, Hyeran; Kralik, Jerald D; Jeong, Jaeseung
2014-08-01
A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential dynamics in affective choices characterized by two key features: (a) a highly biased choice distribution; and (b) preferential attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices.
Time-dependence of graph theory metrics in functional connectivity analysis
Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J.; Haneef, Zulfi; Stern, John M.
2016-01-01
Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. PMID:26518632
Time-dependence of graph theory metrics in functional connectivity analysis.
Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J; Haneef, Zulfi; Stern, John M
2016-01-15
Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaiser, Olga; Martius, Olivia; Horenko, Illia
2017-04-01
Regression based Generalized Pareto Distribution (GPD) models are often used to describe the dynamics of hydrological threshold excesses relying on the explicit availability of all of the relevant covariates. But, in real application the complete set of relevant covariates might be not available. In this context, it was shown that under weak assumptions the influence coming from systematically missing covariates can be reflected by a nonstationary and nonhomogenous dynamics. We present a data-driven, semiparametric and an adaptive approach for spatio-temporal regression based clustering of threshold excesses in a presence of systematically missing covariates. The nonstationary and nonhomogenous behavior of threshold excesses is describes by a set of local stationary GPD models, where the parameters are expressed as regression models, and a non-parametric spatio-temporal hidden switching process. Exploiting nonparametric Finite Element time-series analysis Methodology (FEM) with Bounded Variation of the model parameters (BV) for resolving the spatio-temporal switching process, the approach goes beyond strong a priori assumptions made is standard latent class models like Mixture Models and Hidden Markov Models. Additionally, the presented FEM-BV-GPD provides a pragmatic description of the corresponding spatial dependence structure by grouping together all locations that exhibit similar behavior of the switching process. The performance of the framework is demonstrated on daily accumulated precipitation series over 17 different locations in Switzerland from 1981 till 2013 - showing that the introduced approach allows for a better description of the historical data.
Temporal interactions facilitate endemicity in the susceptible-infected-susceptible epidemic model
NASA Astrophysics Data System (ADS)
Speidel, Leo; Klemm, Konstantin; Eguíluz, Víctor M.; Masuda, Naoki
2016-07-01
Data of physical contacts and face-to-face communications suggest temporally varying networks as the media on which infections take place among humans and animals. Epidemic processes on temporal networks are complicated by complexity of both network structure and temporal dimensions. Theoretical approaches are much needed for identifying key factors that affect dynamics of epidemics. In particular, what factors make some temporal networks stronger media of infection than other temporal networks is under debate. We develop a theory to understand the susceptible-infected-susceptible epidemic model on arbitrary temporal networks, where each contact is used for a finite duration. We show that temporality of networks lessens the epidemic threshold such that infections persist more easily in temporal networks than in their static counterparts. We further show that the Lie commutator bracket of the adjacency matrices at different times is a key determinant of the epidemic threshold in temporal networks. The effect of temporality on the epidemic threshold, which depends on a data set, is approximately predicted by the magnitude of a commutator norm.
High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion.
Bao, Wenbo; Zhang, Xiaoyun; Chen, Li; Ding, Lianghui; Gao, Zhiyong
2018-08-01
This paper proposes a novel frame rate up-conversion method through high-order model and dynamic filtering (HOMDF) for video pixels. Unlike the constant brightness and linear motion assumptions in traditional methods, the intensity and position of the video pixels are both modeled with high-order polynomials in terms of time. Then, the key problem of our method is to estimate the polynomial coefficients that represent the pixel's intensity variation, velocity, and acceleration. We propose to solve it with two energy objectives: one minimizes the auto-regressive prediction error of intensity variation by its past samples, and the other minimizes video frame's reconstruction error along the motion trajectory. To efficiently address the optimization problem for these coefficients, we propose the dynamic filtering solution inspired by video's temporal coherence. The optimal estimation of these coefficients is reformulated into a dynamic fusion of the prior estimate from pixel's temporal predecessor and the maximum likelihood estimate from current new observation. Finally, frame rate up-conversion is implemented using motion-compensated interpolation by pixel-wise intensity variation and motion trajectory. Benefited from the advanced model and dynamic filtering, the interpolated frame has much better visual quality. Extensive experiments on the natural and synthesized videos demonstrate the superiority of HOMDF over the state-of-the-art methods in both subjective and objective comparisons.
NASA Astrophysics Data System (ADS)
Ullrich, Paul A.; Jablonowski, Christiane; Kent, James; Lauritzen, Peter H.; Nair, Ramachandran; Reed, Kevin A.; Zarzycki, Colin M.; Hall, David M.; Dazlich, Don; Heikes, Ross; Konor, Celal; Randall, David; Dubos, Thomas; Meurdesoif, Yann; Chen, Xi; Harris, Lucas; Kühnlein, Christian; Lee, Vivian; Qaddouri, Abdessamad; Girard, Claude; Giorgetta, Marco; Reinert, Daniel; Klemp, Joseph; Park, Sang-Hun; Skamarock, William; Miura, Hiroaki; Ohno, Tomoki; Yoshida, Ryuji; Walko, Robert; Reinecke, Alex; Viner, Kevin
2017-12-01
Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier-Stokes equations. These systems have existed in one form or another for over half of a century, with the earliest discretizations having now evolved into a complex ecosystem of algorithms and computational strategies. In essence, no two dynamical cores are alike, and their individual successes suggest that no perfect model exists. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 non-hydrostatic dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school. This review includes a choice of model grid, variable placement, vertical coordinate, prognostic equations, temporal discretization, and the diffusion, stabilization, filters, and fixers employed by each system.
Bendor, Daniel
2015-01-01
In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843
Park, Hame; Lueckmann, Jan-Matthis; von Kriegstein, Katharina; Bitzer, Sebastian; Kiebel, Stefan J.
2016-01-01
Decisions in everyday life are prone to error. Standard models typically assume that errors during perceptual decisions are due to noise. However, it is unclear how noise in the sensory input affects the decision. Here we show that there are experimental tasks for which one can analyse the exact spatio-temporal details of a dynamic sensory noise and better understand variability in human perceptual decisions. Using a new experimental visual tracking task and a novel Bayesian decision making model, we found that the spatio-temporal noise fluctuations in the input of single trials explain a significant part of the observed responses. Our results show that modelling the precise internal representations of human participants helps predict when perceptual decisions go wrong. Furthermore, by modelling precisely the stimuli at the single-trial level, we were able to identify the underlying mechanism of perceptual decision making in more detail than standard models. PMID:26752272
USDA-ARS?s Scientific Manuscript database
Understanding spatio-temporal resource preferences is paramount in the design of policies for sustainable development. Unfortunately, resource preferences are often unknown to policy-makers and have to be inferred from data. In this paper we consider the problem of inferring agents’ preferences fro...
[Spatio-temporal problems of geographic information system in marine fishery].
Su, Fenzhen; Zhou, Chenghu; Du, Yunyan; Zhang, Tianyu; Shao, Quanqin
2003-09-01
In marine fisheries, it is very important to understand and grasp the spatio-temporal nature. Geographical Information System (GIS) has been applied to describe or forecast the dynamic trend of resources or to set up evaluation model, which is one of high technologies in modern marine fisheries. Based on the review of the development of marine fishery GIS (MFGIS), four spatio-temporal problems it occurred were discussed, and the possible resolutions were prospected.
Steyaert, Louis T.; Loveland, Thomas R.; Brown, Jesslyn F.; Reed, Bradley C.
1993-01-01
Environmental modelers are testing and evaluating a prototype land cover characteristics database for the conterminous United States developed by the EROS Data Center of the U.S. Geological Survey and the University of Nebraska Center for Advanced Land Management Information Technologies. This database was developed from multi temporal, 1-kilometer advanced very high resolution radiometer (AVHRR) data for 1990 and various ancillary data sets such as elevation, ecological regions, and selected climatic normals. Several case studies using this database were analyzed to illustrate the integration of satellite remote sensing and geographic information systems technologies with land-atmosphere interactions models at a variety of spatial and temporal scales. The case studies are representative of contemporary environmental simulation modeling at local to regional levels in global change research, land and water resource management, and environmental simulation modeling at local to regional levels in global change research, land and water resource management and environmental risk assessment. The case studies feature land surface parameterizations for atmospheric mesoscale and global climate models; biogenic-hydrocarbons emissions models; distributed parameter watershed and other hydrological models; and various ecological models such as ecosystem, dynamics, biogeochemical cycles, ecotone variability, and equilibrium vegetation models. The case studies demonstrate the important of multi temporal AVHRR data to develop to develop and maintain a flexible, near-realtime land cover characteristics database. Moreover, such a flexible database is needed to derive various vegetation classification schemes, to aggregate data for nested models, to develop remote sensing algorithms, and to provide data on dynamic landscape characteristics. The case studies illustrate how such a database supports research on spatial heterogeneity, land use, sensitivity analysis, and scaling issues involving regional extrapolations and parameterizations of dynamic land processes within simulation models.
NASA Astrophysics Data System (ADS)
Zharnikova, M. A.; Alymbaeva, ZH B.; Ayurzhanaev, A. A.; Garmaev, E. ZH
2016-11-01
At present much attention is given to the spatio-temporal dynamics of plant communities of steppes to assess their response to the current climate changes. In this study, a mapping of a selected modeling polygon was carried out on the basis of data decoding and field surveys of vegetation cover in the semi-arid zone. The resulting large-scale map of actual vegetation reflects the current state of the vegetation cover and its horizontal structure. It is a valuable material for monitoring of changes in the chosen area. With multi-temporal satellite Landsat imagery we consider the vegetation cover dynamics of the test range. To analyze the transformation of the environment by the climatic factors, we compared series of NDVI versus the precipitation and of NDVI versus the temperatures. Then we calculated the degree of correlation between them.
Sharif, Behzad; Derbyshire, J. Andrew; Faranesh, Anthony Z.; Bresler, Yoram
2010-01-01
MR imaging of the human heart without explicit cardiac synchronization promises to extend the applicability of cardiac MR to a larger patient population and potentially expand its diagnostic capabilities. However, conventional non-gated imaging techniques typically suffer from low image quality or inadequate spatio-temporal resolution and fidelity. Patient-Adaptive Reconstruction and Acquisition in Dynamic Imaging with Sensitivity Encoding (PARADISE) is a highly-accelerated non-gated dynamic imaging method that enables artifact-free imaging with high spatio-temporal resolutions by utilizing novel computational techniques to optimize the imaging process. In addition to using parallel imaging, the method gains acceleration from a physiologically-driven spatio-temporal support model; hence, it is doubly accelerated. The support model is patient-adaptive, i.e., its geometry depends on dynamics of the imaged slice, e.g., subject’s heart-rate and heart location within the slice. The proposed method is also doubly adaptive as it adapts both the acquisition and reconstruction schemes. Based on the theory of time-sequential sampling, the proposed framework explicitly accounts for speed limitations of gradient encoding and provides performance guarantees on achievable image quality. The presented in-vivo results demonstrate the effectiveness and feasibility of the PARADISE method for high resolution non-gated cardiac MRI during a short breath-hold. PMID:20665794
Debnath, M; Santoni, C; Leonardi, S; Iungo, G V
2017-04-13
The dynamics of the velocity field resulting from the interaction between the atmospheric boundary layer and a wind turbine array can affect significantly the performance of a wind power plant and the durability of wind turbines. In this work, dynamics in wind turbine wakes and instabilities of helicoidal tip vortices are detected and characterized through modal decomposition techniques. The dataset under examination consists of snapshots of the velocity field obtained from large-eddy simulations (LES) of an isolated wind turbine, for which aerodynamic forcing exerted by the turbine blades on the atmospheric boundary layer is mimicked through the actuator line model. Particular attention is paid to the interaction between the downstream evolution of the helicoidal tip vortices and the alternate vortex shedding from the turbine tower. The LES dataset is interrogated through different modal decomposition techniques, such as proper orthogonal decomposition and dynamic mode decomposition. The dominant wake dynamics are selected for the formulation of a reduced order model, which consists in a linear time-marching algorithm where temporal evolution of flow dynamics is obtained from the previous temporal realization multiplied by a time-invariant operator.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
Loudness of dynamic stimuli in acoustic and electric hearing.
Zhang, C; Zeng, F G
1997-11-01
Traditional loudness models have been based on the average energy and the critical band analysis of steady-state sounds. However, most environmental sounds, including speech, are dynamic stimuli, in which the average level [e.g., the root-mean-square (rms) level] does not account for the large temporal fluctuations. The question addressed here was whether two stimuli of the same rms level but different peak levels would produce an equal loudness sensation. A modern adaptive procedure was used to replicate two classic experiments demonstrating that the sensation of "beats" in a two- or three-tone complex resulted in a louder sensation [E. Zwicker and H. Fastl, Psychoacoustics-Facts and Models (Springer-Verlag, Berlin, 1990)]. Two additional experiments were conducted to study exclusively the effects of the temporal envelope on the loudness sensation of dynamic stimuli. Loudness balance was performed by normal-hearing listeners between a white noise and a sinusoidally amplitude-modulated noise in one experiment, and by cochlear implant listeners between two harmonic stimuli of the same magnitude spectra, but different phase spectra, in the other experiment. The results from both experiments showed that, for two stimuli of the same rms level, the stimulus with greater temporal fluctuations sometimes produced a significantly louder sensation, depending on the temporal frequency and overall stimulus level. In normal-hearing listeners, the louder sensation was produced for the amplitude-modulated stimuli with modulation frequencies lower than 400 Hz, and gradually disappeared above 400 Hz, resulting in a low-pass filtering characteristic which bore some similarity to the temporal modulation transfer function. The extent to which loudness was greater was a nonmonotonic function of level in acoustic hearing and a monotonically increasingly function in electric hearing. These results suggest that the loudness sensation of a dynamic stimulus is not limited to a 100-ms temporal integration process, and may be determined jointly by a compression process in the cochlea and an expansion process in the brain. A level-dependent compression scheme that may better restore normal loudness of dynamic stimuli in hearing aids and cochlear implants is proposed.
Clinical time series prediction: Toward a hierarchical dynamical system framework.
Liu, Zitao; Hauskrecht, Milos
2015-09-01
Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.
Information properties of morphologically complex words modulate brain activity during word reading
Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta
2018-01-01
Abstract Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well‐defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito‐temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole‐word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. PMID:29524274
Information properties of morphologically complex words modulate brain activity during word reading.
Hakala, Tero; Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta
2018-06-01
Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well-defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito-temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole-word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
[Gypsy moth Lymantria dispar L. in the South Urals: Patterns in population dynamics and modelling].
Soukhovolsky, V G; Ponomarev, V I; Sokolov, G I; Tarasova, O V; Krasnoperova, P A
2015-01-01
The analysis is conducted on population dynamics of gypsy moth from different habitats of the South Urals. The pattern of cyclic changes in population density is examined, the assessment of temporal conjugation in time series of gypsy moth population dynamics from separate habitats of the South Urals is carried out, the relationships between population density and weather conditions are studied. Based on the results obtained, a statistical model of gypsy moth population dynamics in the South Urals is designed, and estimations are given of regulatory and modifying factors effects on the population dynamics.
Towards a physically-based multi-scale ecohydrological simulator for semi-arid regions
NASA Astrophysics Data System (ADS)
Caviedes-Voullième, Daniel; Josefik, Zoltan; Hinz, Christoph
2017-04-01
The use of numerical models as tools for describing and understanding complex ecohydrological systems has enabled to test hypothesis and propose fundamental, process-based explanations of the system system behaviour as a whole as well as its internal dynamics. Reaction-diffusion equations have been used to describe and generate organized pattern such as bands, spots, and labyrinths using simple feedback mechanisms and boundary conditions. Alternatively, pattern-matching cellular automaton models have been used to generate vegetation self-organization in arid and semi-arid regions also using simple description of surface hydrological processes. A key question is: How much physical realism is needed in order to adequately capture the pattern formation processes in semi-arid regions while reliably representing the water balance dynamics at the relevant time scales? In fact, redistribution of water by surface runoff at the hillslope scale occurs at temporal resolution of minutes while the vegetation development requires much lower temporal resolution and longer times spans. This generates a fundamental spatio-temporal multi-scale problem to be solved, for which high resolution rainfall and surface topography are required. Accordingly, the objective of this contribution is to provide proof-of-concept that governing processes can be described numerically at those multiple scales. The requirements for a simulating ecohydrological processes and pattern formation with increased physical realism are, amongst others: i. high resolution rainfall that adequately captures the triggers of growth as vegetation dynamics of arid regions respond as pulsed systems. ii. complex, natural topography in order to accurately model drainage patterns, as surface water redistribution is highly sensitive to topographic features. iii. microtopography and hydraulic roughness, as small scale variations do impact on large scale hillslope behaviour iv. moisture dependent infiltration as temporal dynamics of infiltration affects water storage under vegetation and in bare soil Despite the volume of research in this field, fundamental limitations still exist in the models regarding the aforementioned issues. Topography and hydrodynamics have been strongly simplified. Infiltration has been modelled as dependent on depth but independent of soil moisture. Temporal rainfall variability has only been addressed for seasonal rain. Spatial heterogenity of the topography as well as roughness and infiltration properties, has not been fully and explicitly represented. We hypothesize that physical processes must be robustly modelled and the drivers of complexity must be present with as much resolution as possible in order to provide the necessary realism to improve transient simulations, perhaps leading the way to virtual laboratories and, arguably, predictive tools. This work provides a first approach into a model with explicit hydrological processes represented by physically-based hydrodynamic models, coupled with well-accepted vegetation models. The model aims to enable new possibilities relating to spatiotemporal variability, arbitrary topography and representation of spatial heterogeneity, including sub-daily (in fact, arbitrary) temporal variability of rain as the main forcing of the model, explicit representation of infiltration processes, and various feedback mechanisms between the hydrodynamics and the vegetation. Preliminary testing strongly suggests that the model is viable, has the potential of producing new information of internal dynamics of the system, and allows to successfully aggregate many of the sources of complexity. Initial benchmarking of the model also reveals strengths to be exploited, thus providing an interesting research outlook, as well as weaknesses to be addressed in the immediate future.
NASA Astrophysics Data System (ADS)
Haberlandt, U.; Gerten, D.; Schaphoff, S.; Lucht, W.
Dynamic global vegetation models are developed with the main purpose to describe the spatio-temporal dynamics of vegetation at the global scale. Increasing concern about climate change impacts has put the focus of recent applications on the sim- ulation of the global carbon cycle. Water is a prime driver of biogeochemical and biophysical processes, thus an appropriate representation of the water cycle is crucial for their proper simulation. However, these models usually lack thorough validation of the water balance they produce. Here we present a hydrological validation of the current version of the LPJ (Lund- Potsdam-Jena) model, a dynamic global vegetation model operating at daily time steps. Long-term simulated runoff and evapotranspiration are compared to literature values, results from three global hydrological models, and discharge observations from various macroscale river basins. It was found that the seasonal and spatial patterns of the LPJ-simulated average values correspond well both with the measurements and the results from the stand-alone hy- drological models. However, a general underestimation of runoff occurs, which may be attributable to the low input dynamics of precipitation (equal distribution within a month), to the simulated vegetation pattern (potential vegetation without anthro- pogenic influence), and to some generalizations of the hydrological components in LPJ. Future research will focus on a better representation of the temporal variability of climate forcing, improved description of hydrological processes, and on the consider- ation of anthropogenic land use.
Three dimensional simulation of spatial and temporal variability of stratospheric hydrogen chloride
NASA Technical Reports Server (NTRS)
Kaye, Jack A.; Rood, Richard B.; Jackman, Charles H.; Allen, Dale J.; Larson, Edmund M.
1989-01-01
Spatial and temporal variability of atmospheric HCl columns are calculated for January 1979 using a three-dimensional chemistry-transport model designed to provide the best possible representation of stratospheric transport. Large spatial and temporal variability of the HCl columns is shown to be correlated with lower stratospheric potential vorticity and thus to be of dynamical origin. Systematic longitudinal structure is correlated with planetary wave structure. These results can help place spatially and temporally isolated column and profile measurements in a regional and/or global perspective.
Stegen, James C.; Fredrickson, James K.; Wilkins, Michael J.; ...
2016-04-07
Environmental transition zones are associated with geochemical gradients that overcome energy limitations to microbial metabolism, resulting in biogeochemical hot spots and moments. Riverine systems where groundwater mixes with surface water (the hyporheic zone) are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. To investigate the coupling among groundwater-surface water mixing, microbial communities, and biogeochemistry we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected across times and locations representing amore » broad range of mixing conditions. Mixing of groundwater and surface water resulted in a shift from transport-driven stochastic dynamics to a deterministic microbial structure associated with elevated biogeochemical rates. While the dynamics of the hyporheic make predictive modeling a challenge, we provide new knowledge that can improve the tractability of such models.« less
Temporal Expression-based Analysis of Metabolism
Segrè, Daniel
2012-01-01
Metabolic flux is frequently rerouted through cellular metabolism in response to dynamic changes in the intra- and extra-cellular environment. Capturing the mechanisms underlying these metabolic transitions in quantitative and predictive models is a prominent challenge in systems biology. Progress in this regard has been made by integrating high-throughput gene expression data into genome-scale stoichiometric models of metabolism. Here, we extend previous approaches to perform a Temporal Expression-based Analysis of Metabolism (TEAM). We apply TEAM to understanding the complex metabolic dynamics of the respiratorily versatile bacterium Shewanella oneidensis grown under aerobic, lactate-limited conditions. TEAM predicts temporal metabolic flux distributions using time-series gene expression data. Increased predictive power is achieved by supplementing these data with a large reference compendium of gene expression, which allows us to take into account the unique character of the distribution of expression of each individual gene. We further propose a straightforward method for studying the sensitivity of TEAM to changes in its fundamental free threshold parameter θ, and reveal that discrete zones of distinct metabolic behavior arise as this parameter is changed. By comparing the qualitative characteristics of these zones to additional experimental data, we are able to constrain the range of θ to a small, well-defined interval. In parallel, the sensitivity analysis reveals the inherently difficult nature of dynamic metabolic flux modeling: small errors early in the simulation propagate to relatively large changes later in the simulation. We expect that handling such “history-dependent” sensitivities will be a major challenge in the future development of dynamic metabolic-modeling techniques. PMID:23209390
NASA Astrophysics Data System (ADS)
Rohmer, Jeremy
2016-04-01
Predicting the temporal evolution of landslides is typically supported by numerical modelling. Dynamic sensitivity analysis aims at assessing the influence of the landslide properties on the time-dependent predictions (e.g., time series of landslide displacements). Yet two major difficulties arise: 1. Global sensitivity analysis require running the landslide model a high number of times (> 1000), which may become impracticable when the landslide model has a high computation time cost (> several hours); 2. Landslide model outputs are not scalar, but function of time, i.e. they are n-dimensional vectors with n usually ranging from 100 to 1000. In this article, I explore the use of a basis set expansion, such as principal component analysis, to reduce the output dimensionality to a few components, each of them being interpreted as a dominant mode of variation in the overall structure of the temporal evolution. The computationally intensive calculation of the Sobol' indices for each of these components are then achieved through meta-modelling, i.e. by replacing the landslide model by a "costless-to-evaluate" approximation (e.g., a projection pursuit regression model). The methodology combining "basis set expansion - meta-model - Sobol' indices" is then applied to the La Frasse landslide to investigate the dynamic sensitivity analysis of the surface horizontal displacements to the slip surface properties during the pore pressure changes. I show how to extract information on the sensitivity of each main modes of temporal behaviour using a limited number (a few tens) of long running simulations. In particular, I identify the parameters, which trigger the occurrence of a turning point marking a shift between a regime of low values of landslide displacements and one of high values.
Observing spatio-temporal dynamics of excitable media using reservoir computing
NASA Astrophysics Data System (ADS)
Zimmermann, Roland S.; Parlitz, Ulrich
2018-04-01
We present a dynamical observer for two dimensional partial differential equation models describing excitable media, where the required cross prediction from observed time series to not measured state variables is provided by Echo State Networks receiving input from local regions in space, only. The efficacy of this approach is demonstrated for (noisy) data from a (cubic) Barkley model and the Bueno-Orovio-Cherry-Fenton model describing chaotic electrical wave propagation in cardiac tissue.
Navigability of multiplex temporal network
NASA Astrophysics Data System (ADS)
Wang, Yan; Song, Qiao-Zhen
2017-01-01
Real world complex systems have multiple levels of relationships and in many cases, they need to be modeled as multiplex networks where the same nodes can interact with each other in different layers, such as social networks. However, social relationships only appear at prescribed times so the temporal structures of edge activations can also affect the dynamical processes located above them. To consider both factors are simultaneously, we introduce multiplex temporal networks and propose three different walk strategies to investigate the concurrent dynamics of random walks and the temporal structure of multiplex networks. Thus, we derive analytical results for the multiplex centrality and coverage function in multiplex temporal networks. By comparing them with the numerical results, we show how the underlying topology of the layers and the walk strategy affect the efficiency when exploring the networks. In particular, the most interesting result is the emergence of a super-diffusion process, where the time scale of the multiplex is faster than that of both layers acting separately.
Uncertainties in data-model comparisons: Spatio-temporal scales for past climates
NASA Astrophysics Data System (ADS)
Lohmann, G.
2016-12-01
Data-model comparisons are hindered by uncertainties like varying reservoir ages or potential seasonality bias of the recorder systems, but also due to the models' difficulty to represent the spatio-temporal variability patterns. For the Holocene we detect a sensitivity to horizontal resolution in the atmosphere, the representation of atmospheric dynamics, as well as the dynamics of the western boundary currents in the ocean. These features can create strong spatial heterogeneity in the North Atlantic and Pacific Oceans over long timescales (unlike a diffusive spatio-temporal scale separation). Futhermore, it is shown that such non-linear mechanisms could create a non-trivial response to seasonal insolation forcing via an atmospheric bridge inducing non-uniform temperature anomalies over the northern continents on multi-millennial time scales. Through the fluctuation-dissipation-theorem, climate variability and sensitivity are ultimately coupled. It is argued that some obvious biases between models and data may be linked to the missing key persistent component of the atmospheric dynamics, the North Atlantic blocking activity. It is shown that blocking is also linked to Atlantic multidecadal ocean variability and to extreme events. Interestingly, several proxies provide a measure of the frequency of extreme events, and a proper representation is a true challenge for climate models. Finally, case studies from deep paleo are presented in which changes in land-sea distribution or subscale parameterizations can cause relatively large effects on surface temperature. Such experiments can explore the phase space of solutions, but show the limitation of past climates to constrain climate sensitivity.
Temporal diagnostic analysis of the SWAT model to detect dominant periods of poor model performance
NASA Astrophysics Data System (ADS)
Guse, Björn; Reusser, Dominik E.; Fohrer, Nicola
2013-04-01
Hydrological models generally include thresholds and non-linearities, such as snow-rain-temperature thresholds, non-linear reservoirs, infiltration thresholds and the like. When relating observed variables to modelling results, formal methods often calculate performance metrics over long periods, reporting model performance with only few numbers. Such approaches are not well suited to compare dominating processes between reality and model and to better understand when thresholds and non-linearities are driving model results. We present a combination of two temporally resolved model diagnostic tools to answer when a model is performing (not so) well and what the dominant processes are during these periods. We look at the temporal dynamics of parameter sensitivities and model performance to answer this question. For this, the eco-hydrological SWAT model is applied in the Treene lowland catchment in Northern Germany. As a first step, temporal dynamics of parameter sensitivities are analyzed using the Fourier Amplitude Sensitivity test (FAST). The sensitivities of the eight model parameters investigated show strong temporal variations. High sensitivities were detected for two groundwater (GW_DELAY, ALPHA_BF) and one evaporation parameters (ESCO) most of the time. The periods of high parameter sensitivity can be related to different phases of the hydrograph with dominances of the groundwater parameters in the recession phases and of ESCO in baseflow and resaturation periods. Surface runoff parameters show high parameter sensitivities in phases of a precipitation event in combination with high soil water contents. The dominant parameters give indication for the controlling processes during a given period for the hydrological catchment. The second step included the temporal analysis of model performance. For each time step, model performance was characterized with a "finger print" consisting of a large set of performance measures. These finger prints were clustered into four reoccurring patterns of typical model performance, which can be related to different phases of the hydrograph. Overall, the baseflow cluster has the lowest performance. By combining the periods with poor model performance with the dominant model components during these phases, the groundwater module was detected as the model part with the highest potential for model improvements. The detection of dominant processes in periods of poor model performance enhances the understanding of the SWAT model. Based on this, concepts how to improve the SWAT model structure for the application in German lowland catchment are derived.
Characterizing and modeling the dynamics of online popularity.
Ratkiewicz, Jacob; Fortunato, Santo; Flammini, Alessandro; Menczer, Filippo; Vespignani, Alessandro
2010-10-08
Online popularity has an enormous impact on opinions, culture, policy, and profits. We provide a quantitative, large scale, temporal analysis of the dynamics of online content popularity in two massive model systems: the Wikipedia and an entire country's Web space. We find that the dynamics of popularity are characterized by bursts, displaying characteristic features of critical systems such as fat-tailed distributions of magnitude and interevent time. We propose a minimal model combining the classic preferential popularity increase mechanism with the occurrence of random popularity shifts due to exogenous factors. The model recovers the critical features observed in the empirical analysis of the systems analyzed here, highlighting the key factors needed in the description of popularity dynamics.
NASA Astrophysics Data System (ADS)
He, Yujie; Yang, Jinyan; Zhuang, Qianlai; Harden, Jennifer W.; McGuire, Anthony D.; Liu, Yaling; Wang, Gangsheng; Gu, Lianhong
2015-12-01
Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil RH (7.5 ± 2.4 Pg C yr-1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4-0.6) in the simulated spatial pattern of soil RH with both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = -0.43 to -0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yujie; Yang, Jinyan; Zhuang, Qianlai
Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here in this study we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbialmore » dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO 2 efflux (R H) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil R H (7.5 ± 2.4 PgCyr -1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4-0.6) in the simulated spatial pattern of soil R H with both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = -0.43 to -0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.« less
He, Yujie; Yang, Jinyan; Zhuang, Qianlai; Harden, Jennifer W.; McGuire, A. David; Liu, Yaling; Wang, Gangsheng; Gu, Lianhong
2015-01-01
Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil RH (7.5 ± 2.4 Pg C yr−1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4–0.6) in the simulated spatial pattern of soil RHwith both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = −0.43 to −0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.
NASA Astrophysics Data System (ADS)
Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa
2016-10-01
The highly dynamic processes within a hillslope-riparian-stream (HRS) continuum are known to affect streamflow generation, but are yet not fully understood. Within this study, we simulated a headwater HRS continuum in western Luxembourg with an integrated hydrologic surface subsurface model (HydroGeoSphere). The model was setup with thorough consideration of catchment-specific attributes and we performed a multicriteria model evaluation (4 years) with special focus on the temporally varying spatial patterns of surface saturation. We used a portable thermal infrared (TIR) camera to map surface saturation with a high spatial resolution and collected 20 panoramic snapshots of the riparian zone (approx. 10 m × 20 m) under different hydrologic conditions. Qualitative and quantitative comparison of the processed TIR panoramas and the corresponding model output panoramas revealed a good agreement between spatiotemporal dynamic model and field surface saturation patterns. A double logarithmic linear relationship between surface saturation extent and discharge was similar for modeled and observed data. This provided confidence in the capability of an integrated hydrologic surface subsurface model to represent temporal and spatial water flux dynamics at small (HRS continuum) scales. However, model scenarios with different parameterizations of the riparian zone showed that discharge and surface saturation were controlled by different parameters and hardly influenced each other. Surface saturation only affected very fast runoff responses with a small volumetric contribution to stream discharge, indicating that the dynamic surface saturation in the riparian zone does not necessarily imply a major control on runoff generation.
Spatio-temporal conditional inference and hypothesis tests for neural ensemble spiking precision
Harrison, Matthew T.; Amarasingham, Asohan; Truccolo, Wilson
2014-01-01
The collective dynamics of neural ensembles create complex spike patterns with many spatial and temporal scales. Understanding the statistical structure of these patterns can help resolve fundamental questions about neural computation and neural dynamics. Spatio-temporal conditional inference (STCI) is introduced here as a semiparametric statistical framework for investigating the nature of precise spiking patterns from collections of neurons that is robust to arbitrarily complex and nonstationary coarse spiking dynamics. The main idea is to focus statistical modeling and inference, not on the full distribution of the data, but rather on families of conditional distributions of precise spiking given different types of coarse spiking. The framework is then used to develop families of hypothesis tests for probing the spatio-temporal precision of spiking patterns. Relationships among different conditional distributions are used to improve multiple hypothesis testing adjustments and to design novel Monte Carlo spike resampling algorithms. Of special note are algorithms that can locally jitter spike times while still preserving the instantaneous peri-stimulus time histogram (PSTH) or the instantaneous total spike count from a group of recorded neurons. The framework can also be used to test whether first-order maximum entropy models with possibly random and time-varying parameters can account for observed patterns of spiking. STCI provides a detailed example of the generic principle of conditional inference, which may be applicable in other areas of neurostatistical analysis. PMID:25380339
Long-range temporal correlations in the Kardar-Parisi-Zhang growth: numerical simulations
NASA Astrophysics Data System (ADS)
Song, Tianshu; Xia, Hui
2016-11-01
To analyze long-range temporal correlations in surface growth, we study numerically the (1 + 1)-dimensional Kardar-Parisi-Zhang (KPZ) equation driven by temporally correlated noise, and obtain the scaling exponents based on two different numerical methods. Our simulations show that the numerical results are in good agreement with the dynamic renormalization group (DRG) predictions, and are also consistent with the simulation results of the ballistic deposition (BD) model.
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude
2016-01-01
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude
2016-06-10
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.
NASA Astrophysics Data System (ADS)
Tseng, C.; Lin, Y.
2013-12-01
Nitrogen balance involves many mechanisms and plays an important role to maintain the function of nature. Fertilizer application in agriculture activity is usually seen as a common and significant nitrogen input to environment. Improper fertilizer application on paddy field can result in great amount of various types of nitrogen losses. Hence, it is essential to understand and quantify the nitrogen dynamics in paddy field for fertilizer management and pollution control. In this study, we develop a model which considers major transformation processes of nitrogen (e.g. volatilization, nitrification, denitrification and plant uptake). In addition, we measured different types of nitrogen in plants, soil and water at plant growth stages in an experimental-scale paddy field in Taiwan. The measurement includes total nitrogen in plants and soil, and ammonium-N (NH4+-N), nitrate-N (NO3--N) and organic nitrogen in water. The measured data were used to calibrate the model parameters and validate the model for nitrogen balance simulation. The results showed that the model can accurately estimate the temporal dynamics of nitrogen balance in paddy field during the whole growth stage. This model might be helpful and useful for future fertilizer management and pollution control in paddy field.
Environmental and management impacts on temporal variability of soil hydraulic properties
NASA Astrophysics Data System (ADS)
Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.
2012-04-01
Soil hydraulic properties underlie temporal changes caused by different natural and management factors. Rainfall intensity, wet-dry cycles, freeze-thaw cycles, tillage and plant effects are potential drivers of the temporal variability. For agricultural purposes it is important to determine the possibility of targeted influence via management. In no-till systems e.g. root induced soil loosening (biopores) is essential to counteract natural soil densification by settling. The present work studies two years of temporal evolution of soil hydraulic properties in a no-till crop rotation (durum wheat-field pea) with two cover crops (mustard and rye) having different root systems (taproot vs. fibrous roots) as well as a bare soil control. Soil hydraulic properties such as near-saturated hydraulic conductivity, flow weighted pore radius, pore number and macroporosity are derived from measurements using a tension infiltrometer. The temporal dynamics are then analysed in terms of potential driving forces. Our results revealed significant temporal changes of hydraulic conductivity. When approaching saturation, spatial variability tended to dominate over the temporal evolution. Changes in near-saturated hydraulic conductivity were mainly a result of changing pore number, while the flow weighted mean pore radius showed less temporal dynamic in the no-till system. Macroporosity in the measured range of 0 to -10 cm pressure head ranged from 1.99e-4 to 8.96e-6 m3m-3. The different plant coverage revealed only minor influences on the observed system dynamics. Mustard increased slightly the flow weighted mean pore radius, being 0.090 mm in mustard compared to 0.085 mm in bare soil and 0.084 mm in rye. Still pore radius changes were of minor importance for the overall temporal dynamics. Rainfall was detected as major driving force of the temporal evolution of structural soil hydraulic properties at the site. Soil hydraulic conductivity in the slightly unsaturated range (-7 cm to -10 cm) showed a similar time course as a moving average of rainfall. Drying induced a decrease in conductivity while wetting of the soil resulted in higher conductivity values. Approaching saturation however, the drying phase showed a different behaviour with increasing values of hydraulic conductivity. This may be explained probably by formation of cracks acting as large macropores. We concluded that aggregate coalescence as a function of capillary forces and soil rheologic properties (cf. Or et al., 2002) are a main predictor of temporal dynamics of near saturated soil hydraulic properties while different plant covers only had a minor effect on the observed system dynamics. Or, D., Ghezzehei, T.A. 2002. Modeling post-tillage soil structural dynamics. a review. Soil Till Res. 64, 41-59.
Shuguang Liu; Ben Bond-Lamberty; Jeffrey A. Hicke; Rodrigo Vargas; Shuqing Zhao; Jing Chen; Steven L. Edburg; Yueming Hu; Jinxun Liu; A. David McGuire; Jingfeng Xiao; Robert Keane; Wenping Yuan; Jianwu Tang; Yiqi Luo; Christopher Potter; Jennifer Oeding
2011-01-01
Forest disturbances greatly alter the carbon cycle at various spatial and temporal scales. It is critical to understand disturbance regimes and their impacts to better quantify regional and global carbon dynamics. This review of the status and major challenges in representing the impacts of disturbances in modeling the carbon dynamics across North America revealed some...
Complex phase error and motion estimation in synthetic aperture radar imaging
NASA Astrophysics Data System (ADS)
Soumekh, M.; Yang, H.
1991-06-01
Attention is given to a SAR wave equation-based system model that accurately represents the interaction of the impinging radar signal with the target to be imaged. The model is used to estimate the complex phase error across the synthesized aperture from the measured corrupted SAR data by combining the two wave equation models governing the collected SAR data at two temporal frequencies of the radar signal. The SAR system model shows that the motion of an object in a static scene results in coupled Doppler shifts in both the temporal frequency domain and the spatial frequency domain of the synthetic aperture. The velocity of the moving object is estimated through these two Doppler shifts. It is shown that once the dynamic target's velocity is known, its reconstruction can be formulated via a squint-mode SAR geometry with parameters that depend upon the dynamic target's velocity.
"My Future Doesn't Know ME": Time and Subjectivity in Poetry by Young People
ERIC Educational Resources Information Center
Conrad, Rachel
2012-01-01
This article explores children's imaginative representations of time in relation to self-experience. Poems published in a young poets' anthology edited by Naomi Shihab Nye are analyzed in order to discern models of temporality and subjectivity imagined by young writers. A "dynamic temporality" is seen in a subset of poems which manipulate time…
Multi-Temporal Land Cover Classification with Long Short-Term Memory Neural Networks
NASA Astrophysics Data System (ADS)
Rußwurm, M.; Körner, M.
2017-05-01
Land cover classification (LCC) is a central and wide field of research in earth observation and has already put forth a variety of classification techniques. Many approaches are based on classification techniques considering observation at certain points in time. However, some land cover classes, such as crops, change their spectral characteristics due to environmental influences and can thus not be monitored effectively with classical mono-temporal approaches. Nevertheless, these temporal observations should be utilized to benefit the classification process. After extensive research has been conducted on modeling temporal dynamics by spectro-temporal profiles using vegetation indices, we propose a deep learning approach to utilize these temporal characteristics for classification tasks. In this work, we show how long short-term memory (LSTM) neural networks can be employed for crop identification purposes with SENTINEL 2A observations from large study areas and label information provided by local authorities. We compare these temporal neural network models, i.e., LSTM and recurrent neural network (RNN), with a classical non-temporal convolutional neural network (CNN) model and an additional support vector machine (SVM) baseline. With our rather straightforward LSTM variant, we exceeded state-of-the-art classification performance, thus opening promising potential for further research.
Dynamic recruitment of resting state sub-networks
O'Neill, George C.; Bauer, Markus; Woolrich, Mark W.; Morris, Peter G.; Barnes, Gareth R.; Brookes, Matthew J.
2015-01-01
Resting state networks (RSNs) are of fundamental importance in human systems neuroscience with evidence suggesting that they are integral to healthy brain function and perturbed in pathology. Despite rapid progress in this area, the temporal dynamics governing the functional connectivities that underlie RSN structure remain poorly understood. Here, we present a framework to help further our understanding of RSN dynamics. We describe a methodology which exploits the direct nature and high temporal resolution of magnetoencephalography (MEG). This technique, which builds on previous work, extends from solving fundamental confounds in MEG (source leakage) to multivariate modelling of transient connectivity. The resulting processing pipeline facilitates direct (electrophysiological) measurement of dynamic functional networks. Our results show that, when functional connectivity is assessed in small time windows, the canonical sensorimotor network can be decomposed into a number of transiently synchronising sub-networks, recruitment of which depends on current mental state. These rapidly changing sub-networks are spatially focal with, for example, bilateral primary sensory and motor areas resolved into two separate sub-networks. The likely interpretation is that the larger canonical sensorimotor network most often seen in neuroimaging studies reflects only a temporal aggregate of these transient sub-networks. Our approach opens new frontiers to study RSN dynamics, showing that MEG is capable of revealing the spatial, temporal and spectral signature of the human connectome in health and disease. PMID:25899137
Lymperopoulos, Ilias N
2017-10-01
The interaction of social networks with the external environment gives rise to non-stationary activity patterns reflecting the temporal structure and strength of exogenous influences that drive social dynamical processes far from an equilibrium state. Following a neuro-inspired approach, based on the dynamics of a passive neuronal membrane, and the firing rate dynamics of single neurons and neuronal populations, we build a state-of-the-art model of the collective social response to exogenous interventions. In this regard, we analyze online activity patterns with a view to determining the transfer function of social systems, that is, the dynamic relationship between external influences and the resulting activity. To this end, first we estimate the impulse response (Green's function) of collective activity, and then we show that the convolution of the impulse response with a time-varying external influence field accurately reproduces empirical activity patterns. To capture the dynamics of collective activity when the generating process is in a state of statistical equilibrium, we incorporate into the model a noisy input convolved with the impulse response function, thus precisely reproducing the fluctuations of stationary collective activity around a resting value. The outstanding goodness-of-fit of the model results to empirical observations, indicates that the model explains human activity patterns generated by time-dependent external influences in various socio-economic contexts. The proposed model can be used for inferring the temporal structure and strength of external influences, as well as the inertia of collective social activity. Furthermore, it can potentially predict social activity patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modelling temporal and spatial dynamics of benthic fauna in North-West-European shelf seas
NASA Astrophysics Data System (ADS)
Lessin, Gennadi; Bruggeman, Jorn; Artioli, Yuri; Butenschön, Momme; Blackford, Jerry
2017-04-01
Benthic zones of shallow shelf seas receive high amounts of organic material. Physical processes such as resuspension, as well as complex transformations mediated by diverse faunal and microbial communities, define fate of this material, which can be returned to the water column, reworked within sediments or ultimately buried. In recent years, numerical models of various complexity and serving different goals have been developed and applied in order to better understand and predict dynamics of benthic processes. ERSEM includes explicit parameterisations of several groups of benthic biota, which makes it particularly applicable for studies of benthic biodiversity, biological interactions within sediments and benthic-pelagic coupling. To assess model skill in reproducing temporal (inter-annual and seasonal) dynamics of major benthic macrofaunal groups, 1D model simulation results were compared with data from the Western Channel Observatory (WCO) benthic survey. The benthic model was forced with organic matter deposition rates inferred from observed phytoplankton abundance and model parameters were subsequently recalibrated. Based on model results and WCO data comparison, deposit-feeders exert clear seasonal variability, while for suspension-feeders inter-annual variability is more pronounced. Spatial distribution of benthic fauna was investigated using results of a full-scale NEMO-ERSEM hindcast simulation of the North-West European Shelf Seas area, covering the period of 1981-2014. Results suggest close relationship between spatial distribution of biomass of benthic faunal functional groups in relation to bathymetry, hydrodynamic conditions and organic matter supply. Our work highlights that it is feasible to construct, implement and validate models that explicitly include functional groups of benthic macrofauna. Moreover, the modelling approach delivers detailed information on benthic biogeochemistry and food-web at spatial and temporal scales that are unavailable through other sources but highly relevant to marine management, planning and policy.
Patrick A. Zollner; Eric J. Gustafson; Hong S. He; Volker C. Radeloff; David J. Mladenoff
2005-01-01
Dynamic zoning (systematic alteration in the spatial and temporal allocation of even-aged forest management practices) has been proposed as a means to change the spatial pattern of timber harvest across a landscape to maximize forest interior habitat while holding timber harvest levels constant. Simulation studies have established that dynamic zoning strategies...
Generalized Tavis-Cummings models and quantum networks
NASA Astrophysics Data System (ADS)
Gorokhov, A. V.
2018-04-01
The properties of quantum networks based on generalized Tavis-Cummings models are theoretically investigated. We have calculated the information transfer success rate from one node to another in a simple model of a quantum network realized with two-level atoms placed in the cavities and interacting with an external laser field and cavity photons. The method of dynamical group of the Hamiltonian and technique of corresponding coherent states were used for investigation of the temporal dynamics of the two nodes model.
Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.
2015-01-01
Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.
Mapping and spatial-temporal modeling of Bromus tectorum invasion in central Utah
NASA Astrophysics Data System (ADS)
Jin, Zhenyu
Cheatgrass, or Downy Brome, is an exotic winter annual weed native to the Mediterranean region. Since its introduction to the U.S., it has become a significant weed and aggressive invader of sagebrush, pinion-juniper, and other shrub communities, where it can completely out-compete native grasses and shrubs. In this research, remotely sensed data combined with field collected data are used to investigate the distribution of the cheatgrass in Central Utah, to characterize the trend of the NDVI time-series of cheatgrass, and to construct a spatially explicit population-based model to simulate the spatial-temporal dynamics of the cheatgrass. This research proposes a method for mapping the canopy closure of invasive species using remotely sensed data acquired at different dates. Different invasive species have their own distinguished phenologies and the satellite images in different dates could be used to capture the phenology. The results of cheatgrass abundance prediction have a good fit with the field data for both linear regression and regression tree models, although the regression tree model has better performance than the linear regression model. To characterize the trend of NDVI time-series of cheatgrass, a novel smoothing algorithm named RMMEH is presented in this research to overcome some drawbacks of many other algorithms. By comparing the performance of RMMEH in smoothing a 16-day composite of the MODIS NDVI time-series with that of two other methods, which are the 4253EH, twice and the MVI, we have found that RMMEH not only keeps the original valid NDVI points, but also effectively removes the spurious spikes. The reconstructed NDVI time-series of different land covers are of higher quality and have smoother temporal trend. To simulate the spatial-temporal dynamics of cheatgrass, a spatially explicit population-based model is built applying remotely sensed data. The comparison between the model output and the ground truth of cheatgrass closure demonstrates that the model could successfully simulate the spatial-temporal dynamics of cheatgrass in a simple cheatgrass-dominant environment. The simulation of the functional response of different prescribed fire rates also shows that this model is helpful to answer management questions like, "What are the effects of prescribed fire to invasive species?" It demonstrates that a medium fire rate of 10% can successfully prevent cheatgrass invasion.
Naithani, Kusum J; Baldwin, Doug C; Gaines, Katie P; Lin, Henry; Eissenstat, David M
2013-01-01
Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (θ) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and θ. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in θ. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests.
NASA Astrophysics Data System (ADS)
Lyu, Jingyuan; Nakarmi, Ukash; Zhang, Chaoyi; Ying, Leslie
2016-05-01
This paper presents a new approach to highly accelerated dynamic parallel MRI using low rank matrix completion, partial separability (PS) model. In data acquisition, k-space data is moderately randomly undersampled at the center kspace navigator locations, but highly undersampled at the outer k-space for each temporal frame. In reconstruction, the navigator data is reconstructed from undersampled data using structured low-rank matrix completion. After all the unacquired navigator data is estimated, the partial separable model is used to obtain partial k-t data. Then the parallel imaging method is used to acquire the entire dynamic image series from highly undersampled data. The proposed method has shown to achieve high quality reconstructions with reduction factors up to 31, and temporal resolution of 29ms, when the conventional PS method fails.
NASA Astrophysics Data System (ADS)
Thomas, Yoann; Mazurié, Joseph; Alunno-Bruscia, Marianne; Bacher, Cédric; Bouget, Jean-François; Gohin, Francis; Pouvreau, Stéphane; Struski, Caroline
2011-11-01
In order to assess the potential of various marine ecosystems for shellfish aquaculture and to evaluate their carrying capacities, there is a need to clarify the response of exploited species to environmental variations using robust ecophysiological models and available environmental data. For a large range of applications and comparison purposes, a non-specific approach based on 'generic' individual growth models offers many advantages. In this context, we simulated the response of blue mussel ( Mytilus edulis L.) to the spatio-temporal fluctuations of the environment in Mont Saint-Michel Bay (North Brittany) by forcing a generic growth model based on Dynamic Energy Budgets with satellite-derived environmental data (i.e. temperature and food). After a calibration step based on data from mussel growth surveys, the model was applied over nine years on a large area covering the entire bay. These simulations provide an evaluation of the spatio-temporal variability in mussel growth and also show the ability of the DEB model to integrate satellite-derived data and to predict spatial and temporal growth variability of mussels. Observed seasonal, inter-annual and spatial growth variations are well simulated. The large-scale application highlights the strong link between food and mussel growth. The methodology described in this study may be considered as a suitable approach to account for environmental effects (food and temperature variations) on physiological responses (growth and reproduction) of filter feeders in varying environments. Such physiological responses may then be useful for evaluating the suitability of coastal ecosystems for shellfish aquaculture.
Peng, Yan; Yang, Wanqin; Yue, Kai; Tan, Bo; Huang, Chunping; Xu, Zhenfeng; Ni, Xiangyin; Zhang, Li; Wu, Fuzhong
2018-06-17
Plant litter decomposition in forested soil and watershed is an important source of phosphorus (P) for plants in forest ecosystems. Understanding P dynamics during litter decomposition in forested aquatic and terrestrial ecosystems will be of great importance for better understanding nutrient cycling across forest landscape. However, despite massive studies addressing litter decomposition have been carried out, generalizations across aquatic and terrestrial ecosystems regarding the temporal dynamics of P loss during litter decomposition remain elusive. We conducted a two-year field experiment using litterbag method in both aquatic (streams and riparian zones) and terrestrial (forest floors) ecosystems in an alpine forest on the eastern Tibetan Plateau. By using multigroup comparisons of structural equation modeling (SEM) method with different litter mass-loss intervals, we explicitly assessed the direct and indirect effects of several biotic and abiotic drivers on P loss across different decomposition stages. The results suggested that (1) P concentration in decomposing litter showed similar patterns of early increase and later decrease across different species and ecosystems types; (2) P loss shared a common hierarchy of drivers across different ecosystems types, with litter chemical dynamics mainly having direct effects but environment and initial litter quality having both direct and indirect effects; (3) when assessing at the temporal scale, the effects of initial litter quality appeared to increase in late decomposition stages, while litter chemical dynamics showed consistent significant effects almost in all decomposition stages across aquatic and terrestrial ecosystems; (4) microbial diversity showed significant effects on P loss, but its effects were lower compared with other drivers. Our results highlight the importance of including spatiotemporal variations and indicate the possibility of integrating aquatic and terrestrial decomposition into a common framework for future construction of models that account for the temporal dynamics of P in decomposing litter. Copyright © 2018 Elsevier B.V. All rights reserved.
Salzer, Yael; de Hollander, Gilles; Forstmann, Birte U
2017-06-01
The Simon task is one of the most prominent interference tasks and has been extensively studied in experimental psychology and cognitive neuroscience. Despite years of research, the underlying mechanism driving the phenomenon and its temporal dynamics are still disputed. Within the framework of the review, we adopt a model-based cognitive neuroscience approach. We first go over key findings in the literature of the Simon task, discuss competing qualitative cognitive theories and the difficulty of testing them empirically. We then introduce sequential sampling models, a particular class of mathematical cognitive process models. Finally, we argue that the brain architecture accountable for the processing of spatial ('where') and non-spatial ('what') information, could constrain these models. We conclude that there is a clear need to bridge neural and behavioral measures, and that mathematical cognitive models may facilitate the construction of this bridge and work towards revealing the underlying mechanisms of the Simon effect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Large Eddy Simulation of jets laden with evaporating drops
NASA Technical Reports Server (NTRS)
Leboissetier, A.; Okong'o, N.; Bellan, J.
2004-01-01
LES of a circular jet laden with evaporating liquid drops are conducted to assess computational-drop modeling and three different SGS-flux models: the Scale Similarity model (SSC), using a constant coefficient calibrated on a temporal mixing layer DNS database, and dynamic-coefficient Gradient and Smagorinsky models.
Modeling is a useful tool for quantifying ecosystem services and understanding their temporal dynamics. Here we describe a hybrid regional modeling approach for sub-basins of the Calapooia watershed that incorporates both a precipitation-runoff model and an indexed regression mo...
A geostatistical state-space model of animal densities for stream networks.
Hocking, Daniel J; Thorson, James T; O'Neil, Kyle; Letcher, Benjamin H
2018-06-21
Population dynamics are often correlated in space and time due to correlations in environmental drivers as well as synchrony induced by individual dispersal. Many statistical analyses of populations ignore potential autocorrelations and assume that survey methods (distance and time between samples) eliminate these correlations, allowing samples to be treated independently. If these assumptions are incorrect, results and therefore inference may be biased and uncertainty under-estimated. We developed a novel statistical method to account for spatio-temporal correlations within dendritic stream networks, while accounting for imperfect detection in the surveys. Through simulations, we found this model decreased predictive error relative to standard statistical methods when data were spatially correlated based on stream distance and performed similarly when data were not correlated. We found that increasing the number of years surveyed substantially improved the model accuracy when estimating spatial and temporal correlation coefficients, especially from 10 to 15 years. Increasing the number of survey sites within the network improved the performance of the non-spatial model but only marginally improved the density estimates in the spatio-temporal model. We applied this model to Brook Trout data from the West Susquehanna Watershed in Pennsylvania collected over 34 years from 1981 - 2014. We found the model including temporal and spatio-temporal autocorrelation best described young-of-the-year (YOY) and adult density patterns. YOY densities were positively related to forest cover and negatively related to spring temperatures with low temporal autocorrelation and moderately-high spatio-temporal correlation. Adult densities were less strongly affected by climatic conditions and less temporally variable than YOY but with similar spatio-temporal correlation and higher temporal autocorrelation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Pinto, Ameet J.; Schroeder, Joanna; Lunn, Mary; Sloan, William
2014-01-01
ABSTRACT Bacterial communities migrate continuously from the drinking water treatment plant through the drinking water distribution system and into our built environment. Understanding bacterial dynamics in the distribution system is critical to ensuring that safe drinking water is being supplied to customers. We present a 15-month survey of bacterial community dynamics in the drinking water system of Ann Arbor, MI. By sampling the water leaving the treatment plant and at nine points in the distribution system, we show that the bacterial community spatial dynamics of distance decay and dispersivity conform to the layout of the drinking water distribution system. However, the patterns in spatial dynamics were weaker than those for the temporal trends, which exhibited seasonal cycling correlating with temperature and source water use patterns and also demonstrated reproducibility on an annual time scale. The temporal trends were driven by two seasonal bacterial clusters consisting of multiple taxa with different networks of association within the larger drinking water bacterial community. Finally, we show that the Ann Arbor data set robustly conforms to previously described interspecific occupancy abundance models that link the relative abundance of a taxon to the frequency of its detection. Relying on these insights, we propose a predictive framework for microbial management in drinking water systems. Further, we recommend that long-term microbial observatories that collect high-resolution, spatially distributed, multiyear time series of community composition and environmental variables be established to enable the development and testing of the predictive framework. PMID:24865557
Bursts and Heavy Tails in Temporal and Sequential Dynamics of Foraging Decisions
Jung, Kanghoon; Jang, Hyeran; Kralik, Jerald D.; Jeong, Jaeseung
2014-01-01
A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential dynamics in affective choices characterized by two key features: (a) a highly biased choice distribution; and (b) preferential attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices. PMID:25122498
Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo
2010-01-01
Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.
Spatio-temporal interpolation of soil moisture in 3D+T using automated sensor network data
NASA Astrophysics Data System (ADS)
Gasch, C.; Hengl, T.; Magney, T. S.; Brown, D. J.; Gräler, B.
2014-12-01
Soil sensor networks provide frequent in situ measurements of dynamic soil properties at fixed locations, producing data in 2- or 3-dimensions and through time (2D+T and 3D+T). Spatio-temporal interpolation of 3D+T point data produces continuous estimates that can then be used for prediction at unsampled times and locations, as input for process models, and can simply aid in visualization of properties through space and time. Regression-kriging with 3D and 2D+T data has successfully been implemented, but currently the field of geostatistics lacks an analytical framework for modeling 3D+T data. Our objective is to develop robust 3D+T models for mapping dynamic soil data that has been collected with high spatial and temporal resolution. For this analysis, we use data collected from a sensor network installed on the R.J. Cook Agronomy Farm (CAF), a 37-ha Long-Term Agro-Ecosystem Research (LTAR) site in Pullman, WA. For five years, the sensors have collected hourly measurements of soil volumetric water content at 42 locations and five depths. The CAF dataset also includes a digital elevation model and derivatives, a soil unit description map, crop rotations, electromagnetic induction surveys, daily meteorological data, and seasonal satellite imagery. The soil-water sensor data, combined with the spatial and temporal covariates, provide an ideal dataset for developing 3D+T models. The presentation will include preliminary results and address main implementation strategies.
QAARM: quasi-anharmonic autoregressive model reveals molecular recognition pathways in ubiquitin
Savol, Andrej J.; Burger, Virginia M.; Agarwal, Pratul K.; Ramanathan, Arvind; Chennubhotla, Chakra S.
2011-01-01
Motivation: Molecular dynamics (MD) simulations have dramatically improved the atomistic understanding of protein motions, energetics and function. These growing datasets have necessitated a corresponding emphasis on trajectory analysis methods for characterizing simulation data, particularly since functional protein motions and transitions are often rare and/or intricate events. Observing that such events give rise to long-tailed spatial distributions, we recently developed a higher-order statistics based dimensionality reduction method, called quasi-anharmonic analysis (QAA), for identifying biophysically-relevant reaction coordinates and substates within MD simulations. Further characterization of conformation space should consider the temporal dynamics specific to each identified substate. Results: Our model uses hierarchical clustering to learn energetically coherent substates and dynamic modes of motion from a 0.5 μs ubiqutin simulation. Autoregressive (AR) modeling within and between states enables a compact and generative description of the conformational landscape as it relates to functional transitions between binding poses. Lacking a predictive component, QAA is extended here within a general AR model appreciative of the trajectory's temporal dependencies and the specific, local dynamics accessible to a protein within identified energy wells. These metastable states and their transition rates are extracted within a QAA-derived subspace using hierarchical Markov clustering to provide parameter sets for the second-order AR model. We show the learned model can be extrapolated to synthesize trajectories of arbitrary length. Contact: ramanathana@ornl.gov; chakracs@pitt.edu PMID:21685101
Short temporal asynchrony disrupts visual object recognition
Singer, Jedediah M.; Kreiman, Gabriel
2014-01-01
Humans can recognize objects and scenes in a small fraction of a second. The cascade of signals underlying rapid recognition might be disrupted by temporally jittering different parts of complex objects. Here we investigated the time course over which shape information can be integrated to allow for recognition of complex objects. We presented fragments of object images in an asynchronous fashion and behaviorally evaluated categorization performance. We observed that visual recognition was significantly disrupted by asynchronies of approximately 30 ms, suggesting that spatiotemporal integration begins to break down with even small deviations from simultaneity. However, moderate temporal asynchrony did not completely obliterate recognition; in fact, integration of visual shape information persisted even with an asynchrony of 100 ms. We describe the data with a concise model based on the dynamic reduction of uncertainty about what image was presented. These results emphasize the importance of timing in visual processing and provide strong constraints for the development of dynamical models of visual shape recognition. PMID:24819738
Paige, Sharon L.; Thomas, Sean; Stoick-Cooper, Cristi L.; Wang, Hao; Maves, Lisa; Sandstrom, Richard; Pabon, Lil; Reinecke, Hans; Pratt, Gabriel; Keller, Gordon; Moon, Randall T.; Stamatoyannopoulos, John; Murry, Charles E.
2012-01-01
Summary Directed differentiation of human embryonic stem cells (ESCs) into cardiovascular cells provides a model for studying molecular mechanisms of human cardiovascular development. Though it is known that chromatin modification patterns in ESCs differ markedly from those in lineage-committed progenitors and differentiated cells, the temporal dynamics of chromatin alterations during differentiation along a defined lineage have not been studied. We show that differentiation of human ESCs into cardiovascular cells is accompanied by programmed temporal alterations in chromatin structure that distinguish key regulators of cardiovascular development from other genes. We used this temporal chromatin signature to identify regulators of cardiac development, including the homeobox gene MEIS2. We demonstrate using the zebrafish model that MEIS2 is critical for proper heart tube formation and subsequent cardiac looping. Temporal chromatin signatures should be broadly applicable to other models of stem cell differentiation to identify regulators and provide key insights into major developmental decisions. PMID:22981225
Osazuwa-Peters, Oyomoare L.; Jiménez, Iván; Oberle, Brad; Chapman, Colin A.; Zanne, Amy E.
2015-01-01
Selective logging, the targeted harvesting of timber trees in a single cutting cycle, is globally rising in extent and intensity. Short-term impacts of selective logging on tropical forests have been widely investigated, but long-term effects on temporal dynamics of forest structure and composition are largely unknown. Understanding these long-term dynamics will help determine whether tropical forests are resilient to selective logging and inform choices between competing demands of anthropogenic use versus conservation of tropical forests. Forest dynamics can be studied within the framework of succession theory, which predicts that temporal turnover rates should decline with time since disturbance. Here, we investigated the temporal dynamics of a tropical forest in Kibale National Park, Uganda over 45 years following selective logging. We estimated turnover rates in stems, species composition, and functional traits (wood density and diameter at breast height), using observations from four censuses in 1989, 1999, 2006, and 2013, of stems ≥ 10 cm diameter within 17 unlogged and 9 logged 200 × 10 m vegetation plots. We used null models to account for interdependencies among turnover rates in stems, species composition, and functional traits. We tested predictions that turnover rates should be higher and decrease with increasing time since the selective logging event in logged forest, but should be less temporally variable in unlogged forest. Overall, we found higher turnover rates in logged forest for all three attributes, but turnover rates did not decline through time in logged forest and was not less temporally variable in unlogged forest. These results indicate that successional models that assume recovery to pre-disturbance conditions are inadequate for predicting the effects of selective logging on the dynamics of the tropical forest in Kibale. Selective logging resulted in persistently higher turnover rates, which may compromise the carbon storage capacity of Kibale’s forest. Selective logging effects may also interact with effects from other global trends, potentially causing major long-term shifts in the dynamics of tropical forests. Similar studies in tropical forests elsewhere will help determine the generality of these conclusions. Ultimately, the view that selective logging is a benign approach to the management of tropical forests should be reconsidered in the light of studies of the effects of this practice on long-term forest dynamics. PMID:26339115
Osazuwa-Peters, Oyomoare L; Jiménez, Iván; Oberle, Brad; Chapman, Colin A; Zanne, Amy E
2015-12-01
Selective logging, the targeted harvesting of timber trees in a single cutting cycle, is globally rising in extent and intensity. Short-term impacts of selective logging on tropical forests have been widely investigated, but long-term effects on temporal dynamics of forest structure and composition are largely unknown. Understanding these long-term dynamics will help determine whether tropical forests are resilient to selective logging and inform choices between competing demands of anthropogenic use versus conservation of tropical forests. Forest dynamics can be studied within the framework of succession theory, which predicts that temporal turnover rates should decline with time since disturbance. Here, we investigated the temporal dynamics of a tropical forest in Kibale National Park, Uganda over 45 years following selective logging. We estimated turnover rates in stems, species composition, and functional traits (wood density and diameter at breast height), using observations from four censuses in 1989, 1999, 2006, and 2013, of stems ≥ 10 cm diameter within 17 unlogged and 9 logged 200 × 10 m vegetation plots. We used null models to account for interdependencies among turnover rates in stems, species composition, and functional traits. We tested predictions that turnover rates should be higher and decrease with increasing time since the selective logging event in logged forest, but should be less temporally variable in unlogged forest. Overall, we found higher turnover rates in logged forest for all three attributes, but turnover rates did not decline through time in logged forest and was not less temporally variable in unlogged forest. These results indicate that successional models that assume recovery to pre-disturbance conditions are inadequate for predicting the effects of selective logging on the dynamics of the tropical forest in Kibale. Selective logging resulted in persistently higher turnover rates, which may compromise the carbon storage capacity of Kibale's forest. Selective logging effects may also interact with effects from other global trends, potentially causing major long-term shifts in the dynamics of tropical forests. Similar studies in tropical forests elsewhere will help determine the generality of these conclusions. Ultimately, the view that selective logging is a benign approach to the management of tropical forests should be reconsidered in the light of studies of the effects of this practice on long-term forest dynamics.
NASA Astrophysics Data System (ADS)
Roongthumskul, Yuttana; Fredrickson-Hemsing, Lea; Kao, Albert; Bozovic, Dolores
2011-11-01
Hair bundles of the bullfrog sacculus display spontaneous oscillations that show complex temporal profiles. Quiescent intervals are typically interspersed with oscillations, analogous to bursting behavior observed in neural systems. By introducing slow calcium dynamics into the theoretical model of bundle mechanics, we reproduce numerically the multi-mode oscillations and explore the effects of internal parameters on the temporal profiles and the frequency tuning of their linear response functions. We also study the effects of mechanical overstimulation on the oscillatory behavior.
2014-01-01
Wheat (Triticum aestivum L.)/faba bean (Vicia faba L.) intercropping shows significant overyielding and high nitrogen (N)-use efficiency, but the dynamics of plant interactions have rarely been estimated. The objective of the present study was to investigate the temporal dynamics of competitive N acquisition between intercropped wheat and faba bean with the logistic model. Wheat and faba bean were grown together or alone with limited N supply in pots. Data of shoot and root biomass and N content measured from 14 samplings were fitted to logistic models to determine instantaneous rates of growth and N uptake. The superiority of instantaneous biomass production and N uptake shifted from faba bean to wheat with their growth. Moreover, the shift of superiority on N uptake occurred 7–12 days earlier than that of biomass production. Interspecific competition stimulated intercropped wheat to have a much earlier and stronger superiority on instantaneous N uptake compared with isolated wheat. The modeling methodology characterized the temporal dynamics of biomass production and N uptake of intercropped wheat and faba bean in different planting systems, which helps to understand the underlying process of plant interaction for intercropping plants. PMID:25541699
Li, Chunjie; Dong, Yan; Li, Haigang; Shen, Jianbo; Zhang, Fusuo
2014-01-01
Wheat (Triticum aestivum L.)/faba bean (Vicia faba L.) intercropping shows significant overyielding and high nitrogen (N)-use efficiency, but the dynamics of plant interactions have rarely been estimated. The objective of the present study was to investigate the temporal dynamics of competitive N acquisition between intercropped wheat and faba bean with the logistic model. Wheat and faba bean were grown together or alone with limited N supply in pots. Data of shoot and root biomass and N content measured from 14 samplings were fitted to logistic models to determine instantaneous rates of growth and N uptake. The superiority of instantaneous biomass production and N uptake shifted from faba bean to wheat with their growth. Moreover, the shift of superiority on N uptake occurred 7-12 days earlier than that of biomass production. Interspecific competition stimulated intercropped wheat to have a much earlier and stronger superiority on instantaneous N uptake compared with isolated wheat. The modeling methodology characterized the temporal dynamics of biomass production and N uptake of intercropped wheat and faba bean in different planting systems, which helps to understand the underlying process of plant interaction for intercropping plants.
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
Bittig, Arne T; Uhrmacher, Adelinde M
2017-01-01
Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.
Thermally induced all-optical inverter and dynamic hysteresis loops in graphene oxide dispersions.
Melle, Sonia; Calderón, Oscar G; Egatz-Gómez, Ana; Cabrera-Granado, E; Carreño, F; Antón, M A
2015-11-01
We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input-output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings.
Nonlinear dynamics of the magnetosphere and space weather
NASA Technical Reports Server (NTRS)
Sharma, A. Surjalal
1996-01-01
The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.
The 4-D approach to visual control of autonomous systems
NASA Technical Reports Server (NTRS)
Dickmanns, Ernst D.
1994-01-01
Development of a 4-D approach to dynamic machine vision is described. Core elements of this method are spatio-temporal models oriented towards objects and laws of perspective projection in a foward mode. Integration of multi-sensory measurement data was achieved through spatio-temporal models as invariants for object recognition. Situation assessment and long term predictions were allowed through maintenance of a symbolic 4-D image of processes involving objects. Behavioral capabilities were easily realized by state feedback and feed-foward control.
Attentional episodes in visual perception
Wyble, Brad; Potter, Mary C; Bowman, Howard; Nieuwenstein, Mark
2011-01-01
Is one's temporal perception of the world truly as seamless as it appears? This paper presents a computationally motivated theory suggesting that visual attention samples information from temporal episodes (episodic Simultaneous Type/ Serial Token model or eSTST; Wyble et al 2009a). Breaks between these episodes are punctuated by periods of suppressed attention, better known as the attentional blink (Raymond, Shapiro & Arnell 1992). We test predictions from this model and demonstrate that subjects are able to report more letters from a sequence of four targets presented in a dense temporal cluster, than from a sequence of four targets that are interleaved with non-targets. However, this superior report accuracy comes at a cost in impaired temporal order perception. Further experiments explore the dynamics of multiple episodes, and the boundary conditions that trigger episodic breaks. Finally, we contrast the importance of attentional control, limited resources and memory capacity constructs in the model. PMID:21604913
NASA Astrophysics Data System (ADS)
Martín, Yago; Rodrigues, Marcos
2017-04-01
Up to date models of human-caused ignition probability have commonly been developed from a static or structural point of view, regardless of the time cycles that drive human behavior or environmental conditions. However, human drivers mostly have a temporal dimension, and fuel conditions are subjected to temporal changes as well, which is why a historical/temporal perspective is often required. Previous studies in the region suggest that human driving factors of wildfires have undergone significant shifts in inter-annual occurrence probability models, thus varying over time. On the other hand, an increasing role of environmental conditions has also been reported. This research comprehensively analyzes the intra-annual dimension of fire occurrence and fire-triggering factors using NW Spain as a test area, moving one-step forward towards achieving more accurate predictions, to ultimately develop dynamic predictive models. To this end, several intra-annual presence-only models have been calibrated, exploring seasonal variations of environmental conditions and short-term cycles of human activity (working- vs non-working days). Models were developed from accurately geolocated fire data in the 2008-2012 period, and GIS and remote sensing (MOD1A2 and MOD16) information . Specifically, 8 occurrence data subsets (scenarios) were constructed by splitting fire records into 4 seasons (winter, spring, summer and autumn) then separating each season into 2 new categories (working and non-working days). This allows analyzing the temporal variation of socioeconomic (urban- and agricultural-interfaces, transport and road networks, and human settlements) and environmental (fuel conditions) factors associated with occurrence. Models were calibrated applying the Maximum Entropy algorithm (MaxEnt). The MaxEnt algorithm was selected as it is the most widespread approach to deal with presence-only data, as may be the case of fire occurrence. The dependent variable for each scenario was created on a conceptual framework which assumed that there were no true cases of fire absence. Model accuracy was assessed using a cross-validation k-fold procedure, whereas variable importance was addressed using a jacknife approach combined with AUC estimation. Results reported model performances around 0.8 AUC in all temporal scenarios. In addition, large variability was observed in the contribution of explanatory factors, with accessibility variables and fuel conditions as key factors along models. Overall, we believe our approach is reliable enough to derive dynamic predictions of human-caused fire occurrence probability. To our knowledge, this is the first attempt to combine presence-only models based on XY located fire data, with remote sensing information and intra-annual scenarios also including cycles of human activity.
ERIC Educational Resources Information Center
Santos-Oliveira, Daniela Cristina
2017-01-01
Models of speech perception suggest a dorsal stream connecting the temporal and inferior parietal lobe with the inferior frontal gyrus. This stream is thought to involve an auditory motor loop that translates acoustic information into motor/articulatory commands and is further influenced by decision making processes that involve maintenance of…
D. J. Isaak; R. F. Thurow; B. E. Rieman; J. B. Dunham
2003-01-01
Metapopulation dynamics have emerged as a key consideration in conservation planning for salmonid fishes. Implicit to many models of spatially structured populations is a degree of synchrony, or correlation, among populations. We used a spatially and temporally extensive database of chinook salmon (Oncorhynchus tshawytscha) redd counts from a wilderness area in central...
Modeling the Impact of Spatial Structure on Growth Dynamics of Invasive Plant Species
NASA Astrophysics Data System (ADS)
Murphy, James T.; Johnson, Mark P.; Walshe, Ray
2013-07-01
Invasive nonindigenous plant species can have potentially serious detrimental effects on local ecosystems and, as a result, costly control efforts often have to be put in place to protect habitats. An example of an invasive problem on a global scale involves the salt marsh grass species from the genus Spartina. The spread of Spartina anglica in Europe and Asia has drawn much concern due to its ability to convert coastal habitats into cord-grass monocultures and to alter the native food webs. However, the patterns of invasion of Spartina species are amenable to spatially-explicit modeling strategies that take into account both temporal and spatio-temporal processes. In this study, an agent-based model of Spartina growth on a simulated mud flat environment was developed in order to study the effects of spatial pattern and initial seedling placement on the invasion dynamics of the population. The spatial pattern of an invasion plays a key role in the rate of spread of the species and understanding this can lead to significant cost savings when designing efficient control strategies. We present here a model framework that can be used to explicitly represent complex spatial and temporal patterns of invasion in order to be able to predict quantitatively the impact of these factors on invasion dynamics. This would be a useful tool for assessing eradication strategies and choosing optimal control solutions in order to be able to minimize future control costs.
Temporal ecology in the Anthropocene.
Wolkovich, E M; Cook, B I; McLauchlan, K K; Davies, T J
2014-11-01
Two fundamental axes - space and time - shape ecological systems. Over the last 30 years spatial ecology has developed as an integrative, multidisciplinary science that has improved our understanding of the ecological consequences of habitat fragmentation and loss. We argue that accelerating climate change - the effective manipulation of time by humans - has generated a current need to build an equivalent framework for temporal ecology. Climate change has at once pressed ecologists to understand and predict ecological dynamics in non-stationary environments, while also challenged fundamental assumptions of many concepts, models and approaches. However, similarities between space and time, especially related issues of scaling, provide an outline for improving ecological models and forecasting of temporal dynamics, while the unique attributes of time, particularly its emphasis on events and its singular direction, highlight where new approaches are needed. We emphasise how a renewed, interdisciplinary focus on time would coalesce related concepts, help develop new theories and methods and guide further data collection. The next challenge will be to unite predictive frameworks from spatial and temporal ecology to build robust forecasts of when and where environmental change will pose the largest threats to species and ecosystems, as well as identifying the best opportunities for conservation. © 2014 John Wiley & Sons Ltd/CNRS.
Jian, Yun; Silvestri, Sonia; Brown, Jeff; Hickman, Rick; Marani, Marco
2014-01-01
An improved understanding of mosquito population dynamics under natural environmental forcing requires adequate field observations spanning the full range of temporal scales over which mosquito abundance fluctuates in natural conditions. Here we analyze a 9-year daily time series of uninterrupted observations of adult mosquito abundance for multiple mosquito species in North Carolina to identify characteristic scales of temporal variability, the processes generating them, and the representativeness of observations at different sampling resolutions. We focus in particular on Aedes vexans and Culiseta melanura and, using a combination of spectral analysis and modeling, we find significant population fluctuations with characteristic periodicity between 2 days and several years. Population dynamical modelling suggests that the observed fast fluctuations scales (2 days-weeks) are importantly affected by a varying mosquito activity in response to rapid changes in meteorological conditions, a process neglected in most representations of mosquito population dynamics. We further suggest that the range of time scales over which adult mosquito population variability takes place can be divided into three main parts. At small time scales (indicatively 2 days-1 month) observed population fluctuations are mainly driven by behavioral responses to rapid changes in weather conditions. At intermediate scales (1 to several month) environmentally-forced fluctuations in generation times, mortality rates, and density dependence determine the population characteristic response times. At longer scales (annual to multi-annual) mosquito populations follow seasonal and inter-annual environmental changes. We conclude that observations of adult mosquito populations should be based on a sub-weekly sampling frequency and that predictive models of mosquito abundance must include behavioral dynamics to separate the effects of a varying mosquito activity from actual changes in the abundance of the underlying population.
Lange, Nicholas D.; Thomas, Rick P.; Davelaar, Eddy J.
2012-01-01
The pre-decisional process of hypothesis generation is a ubiquitous cognitive faculty that we continually employ in an effort to understand our environment and thereby support appropriate judgments and decisions. Although we are beginning to understand the fundamental processes underlying hypothesis generation, little is known about how various temporal dynamics, inherent in real world generation tasks, influence the retrieval of hypotheses from long-term memory. This paper presents two experiments investigating three data acquisition dynamics in a simulated medical diagnosis task. The results indicate that the mere serial order of data, data consistency (with previously generated hypotheses), and mode of responding influence the hypothesis generation process. An extension of the HyGene computational model endowed with dynamic data acquisition processes is forwarded and explored to provide an account of the present data. PMID:22754547
Seriès, Peggy; Georges, Sébastien; Lorenceau, Jean; Frégnac, Yves
2002-11-01
Psychophysical and physiological studies suggest that long-range horizontal connections in primary visual cortex participate in spatial integration and contour processing. Until recently, little attention has been paid to their intrinsic temporal properties. Recent physiological studies indicate, however, that the propagation of activity through long-range horizontal connections is slow, with time scales comparable to the perceptual scales involved in motion processing. Using a simple model of V1 connectivity, we explore some of the implications of this slow dynamics. The model predicts that V1 responses to a stimulus in the receptive field can be modulated by a previous stimulation, a few milliseconds to a few tens of milliseconds before, in the surround. We analyze this phenomenon and its possible consequences on speed perception, as a function of the spatio-temporal configuration of the visual inputs (relative orientation, spatial separation, temporal interval between the elements, sequence speed). We show that the dynamical interactions between feed-forward and horizontal signals in V1 can explain why the perceived speed of fast apparent motion sequences strongly depends on the orientation of their elements relative to the motion axis and can account for the range of speed for which this perceptual effect occurs (Georges, Seriès, Frégnac and Lorenceau, this issue).
An accessible method for implementing hierarchical models with spatio-temporal abundance data
Ross, Beth E.; Hooten, Melvin B.; Koons, David N.
2012-01-01
A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, ‘INLA’). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time.
An integrated hybrid spatial-compartmental modeling approach is presented for analyzing the dynamic distribution of chemicals in the multimedia environment. Information obtained from such analysis, which includes temporal chemical concentration profiles in various media, mass ...
Disease Spread and Its Effect on Population Dynamics in Heterogeneous Environment
NASA Astrophysics Data System (ADS)
Upadhyay, Ranjit Kumar; Roy, Parimita
In this paper, an eco-epidemiological model in which both species diffuse along a spatial gradient has been shown to exhibit temporal chaos at a fixed point in space. The proposed model is a modification of the model recently presented by Upadhyay and Roy [2014]. The spatial interactions among the species have been represented in the form of reaction-diffusion equations. The model incorporates the intrinsic growth rate of fish population which varies linearly with the depth of water. Numerical results show that diffusion can drive otherwise stable system into aperiodic behavior with sensitivity to initial conditions. We show that spatially induced chaos plays an important role in spatial pattern formation in heterogeneous environment. Spatiotemporal distributions of species have been simulated using the diffusivity assumptions realistic for natural eco-epidemic systems. We found that in heterogeneous environment, the temporal dynamics of both the species are drastically different and show chaotic behavior. It was also found that the instability observed in the model is due to spatial heterogeneity and diffusion-driven. Cumulative death rate of predator has an appreciable effect on model dynamics as the spatial distribution of all constituent populations exhibit significant changes when this model parameter is changed and it acts as a regularizing factor.
NASA Astrophysics Data System (ADS)
Ockenden, Mary C.; Tych, Wlodek; Beven, Keith J.; Collins, Adrian L.; Evans, Robert; Falloon, Peter D.; Forber, Kirsty J.; Hiscock, Kevin M.; Hollaway, Michael J.; Kahana, Ron; Macleod, Christopher J. A.; Villamizar, Martha L.; Wearing, Catherine; Withers, Paul J. A.; Zhou, Jian G.; Benskin, Clare McW. H.; Burke, Sean; Cooper, Richard J.; Freer, Jim E.; Haygarth, Philip M.
2017-12-01
Excess nutrients in surface waters, such as phosphorus (P) from agriculture, result in poor water quality, with adverse effects on ecological health and costs for remediation. However, understanding and prediction of P transfers in catchments have been limited by inadequate data and over-parameterised models with high uncertainty. We show that, with high temporal resolution data, we are able to identify simple dynamic models that capture the P load dynamics in three contrasting agricultural catchments in the UK. For a flashy catchment, a linear, second-order (two pathways) model for discharge gave high simulation efficiencies for short-term storm sequences and was useful in highlighting uncertainties in out-of-bank flows. A model with non-linear rainfall input was appropriate for predicting seasonal or annual cumulative P loads where antecedent conditions affected the catchment response. For second-order models, the time constant for the fast pathway varied between 2 and 15 h for all three catchments and for both discharge and P, confirming that high temporal resolution data are necessary to capture the dynamic responses in small catchments (10-50 km2). The models led to a better understanding of the dominant nutrient transfer modes, which will be helpful in determining phosphorus transfers following changes in precipitation patterns in the future.
NASA Technical Reports Server (NTRS)
Putman, William P.
2012-01-01
Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.
A dynamic, climate-driven model of Rift Valley fever.
Leedale, Joseph; Jones, Anne E; Caminade, Cyril; Morse, Andrew P
2016-03-31
Outbreaks of Rift Valley fever (RVF) in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF) model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.
Digital signaling decouples activation probability and population heterogeneity.
Kellogg, Ryan A; Tian, Chengzhe; Lipniacki, Tomasz; Quake, Stephen R; Tay, Savaş
2015-10-21
Digital signaling enhances robustness of cellular decisions in noisy environments, but it is unclear how digital systems transmit temporal information about a stimulus. To understand how temporal input information is encoded and decoded by the NF-κB system, we studied transcription factor dynamics and gene regulation under dose- and duration-modulated inflammatory inputs. Mathematical modeling predicted and microfluidic single-cell experiments confirmed that integral of the stimulus (or area, concentration × duration) controls the fraction of cells that activate NF-κB in the population. However, stimulus temporal profile determined NF-κB dynamics, cell-to-cell variability, and gene expression phenotype. A sustained, weak stimulation lead to heterogeneous activation and delayed timing that is transmitted to gene expression. In contrast, a transient, strong stimulus with the same area caused rapid and uniform dynamics. These results show that digital NF-κB signaling enables multidimensional control of cellular phenotype via input profile, allowing parallel and independent control of single-cell activation probability and population heterogeneity.
NASA Astrophysics Data System (ADS)
Chen, Zhe; Parker, B. J.; Feng, D. D.; Fulton, R.
2004-10-01
In this paper, we compare various temporal analysis schemes applied to dynamic PET for improved quantification, image quality and temporal compression purposes. We compare an optimal sampling schedule (OSS) design, principal component analysis (PCA) applied in the image domain, and principal component analysis applied in the sinogram domain; for region-of-interest quantification, sinogram-domain PCA is combined with the Huesman algorithm to quantify from the sinograms directly without requiring reconstruction of all PCA channels. Using a simulated phantom FDG brain study and three clinical studies, we evaluate the fidelity of the compressed data for estimation of local cerebral metabolic rate of glucose by a four-compartment model. Our results show that using a noise-normalized PCA in the sinogram domain gives similar compression ratio and quantitative accuracy to OSS, but with substantially better precision. These results indicate that sinogram-domain PCA for dynamic PET can be a useful preprocessing stage for PET compression and quantification applications.
Decoding brain cancer dynamics: a quantitative histogram-based approach using temporal MRI
NASA Astrophysics Data System (ADS)
Zhou, Mu; Hall, Lawrence O.; Goldgof, Dmitry B.; Russo, Robin; Gillies, Robert J.; Gatenby, Robert A.
2015-03-01
Brain tumor heterogeneity remains a challenge for probing brain cancer evolutionary dynamics. In light of evolution, it is a priority to inspect the cancer system from a time-domain perspective since it explicitly tracks the dynamics of cancer variations. In this paper, we study the problem of exploring brain tumor heterogeneity from temporal clinical magnetic resonance imaging (MRI) data. Our goal is to discover evidence-based knowledge from such temporal imaging data, where multiple clinical MRI scans from Glioblastoma multiforme (GBM) patients are generated during therapy. In particular, we propose a quantitative histogram-based approach that builds a prediction model to measure the difference in histograms obtained from pre- and post-treatment. The study could significantly assist radiologists by providing a metric to identify distinctive patterns within each tumor, which is crucial for the goal of providing patient-specific treatments. We examine the proposed approach for a practical application - clinical survival group prediction. Experimental results show that our approach achieved 90.91% accuracy.
Medvedinskiĭ, A B; Tikhonova, I A; Li, B L; Malchow, H
2003-01-01
The dynamics of aquatic biological communities in a patchy environment is of great interest in respect to interrelations between phenomena at various spatial and time scales. To study the complex plankton dynamics in relation to variations of such a biologically essential parameter as the fish predation rate, we use a simple reaction-diffusion model of trophic interactions between phytoplankton, zooplankton, and fish. We suggest that plankton is distributed between two habitats one of which is fish-free due to hydrological inhomogeneity, while the other is fish-populated. We show that temporal variations in the fish predation rate do not violate the strong correspondence between the character of spatial distribution of plankton and changes of plankton biomass in time: regular temporal oscillations of plankton biomass correspond to large-scale plankton patches, while chaotic oscillations correspond to small-scale plankton patterns. As in the case of the constant fish predation rate, the chaotic plankton dynamics is characterized by coexistence of the chaotic attractor and limit cycle.
Approximating basins of attraction for dynamical systems via stable radial bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavoretto, R.; De Rossi, A.; Perracchione, E.
2016-06-08
In applied sciences it is often required to model and supervise temporal evolution of populations via dynamical systems. In this paper, we focus on the problem of approximating the basins of attraction of such models for each stable equilibrium point. We propose to reconstruct the basins via an implicit interpolant using stable radial bases, obtaining the surfaces by partitioning the phase space into disjoint regions. An application to a competition model presenting jointly three stable equilibria is considered.
Genome-scale modelling of microbial metabolism with temporal and spatial resolution.
Henson, Michael A
2015-12-01
Most natural microbial systems have evolved to function in environments with temporal and spatial variations. A major limitation to understanding such complex systems is the lack of mathematical modelling frameworks that connect the genomes of individual species and temporal and spatial variations in the environment to system behaviour. The goal of this review is to introduce the emerging field of spatiotemporal metabolic modelling based on genome-scale reconstructions of microbial metabolism. The extension of flux balance analysis (FBA) to account for both temporal and spatial variations in the environment is termed spatiotemporal FBA (SFBA). Following a brief overview of FBA and its established dynamic extension, the SFBA problem is introduced and recent progress is described. Three case studies are reviewed to illustrate the current state-of-the-art and possible future research directions are outlined. The author posits that SFBA is the next frontier for microbial metabolic modelling and a rapid increase in methods development and system applications is anticipated. © 2015 Authors; published by Portland Press Limited.
Integration and segregation in auditory streaming
NASA Astrophysics Data System (ADS)
Almonte, Felix; Jirsa, Viktor K.; Large, Edward W.; Tuller, Betty
2005-12-01
We aim to capture the perceptual dynamics of auditory streaming using a neurally inspired model of auditory processing. Traditional approaches view streaming as a competition of streams, realized within a tonotopically organized neural network. In contrast, we view streaming to be a dynamic integration process which resides at locations other than the sensory specific neural subsystems. This process finds its realization in the synchronization of neural ensembles or in the existence of informational convergence zones. Our approach uses two interacting dynamical systems, in which the first system responds to incoming acoustic stimuli and transforms them into a spatiotemporal neural field dynamics. The second system is a classification system coupled to the neural field and evolves to a stationary state. These states are identified with a single perceptual stream or multiple streams. Several results in human perception are modelled including temporal coherence and fission boundaries [L.P.A.S. van Noorden, Temporal coherence in the perception of tone sequences, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 1975], and crossing of motions [A.S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound, MIT Press, 1990]. Our model predicts phenomena such as the existence of two streams with the same pitch, which cannot be explained by the traditional stream competition models. An experimental study is performed to provide proof of existence of this phenomenon. The model elucidates possible mechanisms that may underlie perceptual phenomena.
Prediction of dynamic and mixing characteristics of drop-laden mixing layers using DNS and LES
NASA Technical Reports Server (NTRS)
Okong'o, N.; Leboissetier, A.; Bellan, J.
2004-01-01
Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) have been conducted of a temporal mixing layer laden with evaporating drops, in order to assess the ability of LES to reproduce dynamic and mixing aspects of the DNS which affect combustion, independently of combustion models.
Global, spatial, and temporal sensitivity analysis for a complex pesticide fate and transport model.
Background/Questions/Methods As one ofthe most heavily used exposure models by U.S. EPA, Pesticide Root Zone Model (PRZM) is a one-dimensional, dynamic, compartment model that predicts the fate and transport of a pesticide in the unsaturated soil system around a plant's root zo...
A Markov model for the temporal dynamics of balanced random networks of finite size
Lagzi, Fereshteh; Rotter, Stefan
2014-01-01
The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between neuronal populations also opens new doors to analyze the joint dynamics of multiple interacting networks. PMID:25520644
Dynamic mode decomposition for plasma diagnostics and validation.
Taylor, Roy; Kutz, J Nathan; Morgan, Kyle; Nelson, Brian A
2018-05-01
We demonstrate the application of the Dynamic Mode Decomposition (DMD) for the diagnostic analysis of the nonlinear dynamics of a magnetized plasma in resistive magnetohydrodynamics. The DMD method is an ideal spatio-temporal matrix decomposition that correlates spatial features of computational or experimental data while simultaneously associating the spatial activity with periodic temporal behavior. DMD can produce low-rank, reduced order surrogate models that can be used to reconstruct the state of the system with high fidelity. This allows for a reduction in the computational cost and, at the same time, accurate approximations of the problem, even if the data are sparsely sampled. We demonstrate the use of the method on both numerical and experimental data, showing that it is a successful mathematical architecture for characterizing the helicity injected torus with steady inductive (HIT-SI) magnetohydrodynamics. Importantly, the DMD produces interpretable, dominant mode structures, including a stationary mode consistent with our understanding of a HIT-SI spheromak accompanied by a pair of injector-driven modes. In combination, the 3-mode DMD model produces excellent dynamic reconstructions across the domain of analyzed data.
Dynamic mode decomposition for plasma diagnostics and validation
NASA Astrophysics Data System (ADS)
Taylor, Roy; Kutz, J. Nathan; Morgan, Kyle; Nelson, Brian A.
2018-05-01
We demonstrate the application of the Dynamic Mode Decomposition (DMD) for the diagnostic analysis of the nonlinear dynamics of a magnetized plasma in resistive magnetohydrodynamics. The DMD method is an ideal spatio-temporal matrix decomposition that correlates spatial features of computational or experimental data while simultaneously associating the spatial activity with periodic temporal behavior. DMD can produce low-rank, reduced order surrogate models that can be used to reconstruct the state of the system with high fidelity. This allows for a reduction in the computational cost and, at the same time, accurate approximations of the problem, even if the data are sparsely sampled. We demonstrate the use of the method on both numerical and experimental data, showing that it is a successful mathematical architecture for characterizing the helicity injected torus with steady inductive (HIT-SI) magnetohydrodynamics. Importantly, the DMD produces interpretable, dominant mode structures, including a stationary mode consistent with our understanding of a HIT-SI spheromak accompanied by a pair of injector-driven modes. In combination, the 3-mode DMD model produces excellent dynamic reconstructions across the domain of analyzed data.
Chandler, Richard B.; Muths, Erin L.; Sigafus, Brent H.; Schwalbe, Cecil R.; Jarchow, Christopher J.; Hossack, Blake R.
2015-01-01
Synthesis and applications. This work demonstrates how spatio-temporal statistical models based on ecological theory can be applied to forecast the outcomes of conservation actions such as reintroduction. Our spatial occupancy model should be particularly useful when management agencies lack the funds to collect intensive individual-level data.
Galán, S F; Aguado, F; Díez, F J; Mira, J
2002-07-01
The spread of cancer is a non-deterministic dynamic process. As a consequence, the design of an assistant system for the diagnosis and prognosis of the extent of a cancer should be based on a representation method that deals with both uncertainty and time. The ultimate goal is to know the stage of development of a cancer in a patient before selecting the appropriate treatment. A network of probabilistic events in discrete time (NPEDT) is a type of Bayesian network for temporal reasoning that models the causal mechanisms associated with the time evolution of a process. This paper describes NasoNet, a system that applies NPEDTs to the diagnosis and prognosis of nasopharyngeal cancer. We have made use of temporal noisy gates to model the dynamic causal interactions that take place in the domain. The methodology we describe is general enough to be applied to any other type of cancer.
NASA Astrophysics Data System (ADS)
Athaudage, Chandranath R. N.; Bradley, Alan B.; Lech, Margaret
2003-12-01
A dynamic programming-based optimization strategy for a temporal decomposition (TD) model of speech and its application to low-rate speech coding in storage and broadcasting is presented. In previous work with the spectral stability-based event localizing (SBEL) TD algorithm, the event localization was performed based on a spectral stability criterion. Although this approach gave reasonably good results, there was no assurance on the optimality of the event locations. In the present work, we have optimized the event localizing task using a dynamic programming-based optimization strategy. Simulation results show that an improved TD model accuracy can be achieved. A methodology of incorporating the optimized TD algorithm within the standard MELP speech coder for the efficient compression of speech spectral information is also presented. The performance evaluation results revealed that the proposed speech coding scheme achieves 50%-60% compression of speech spectral information with negligible degradation in the decoded speech quality.
Clinical time series prediction: towards a hierarchical dynamical system framework
Liu, Zitao; Hauskrecht, Milos
2014-01-01
Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. PMID:25534671
Freestone, Amy L; Inouye, Brian D
2015-01-01
A persistent challenge for ecologists is understanding the ecological mechanisms that maintain global patterns of biodiversity, particularly the latitudinal diversity gradient of peak species richness in the tropics. Spatial and temporal variation in community composition contribute to these patterns of biodiversity, but how this variation and its underlying processes change across latitude remains unresolved. Using a model system of sessile marine invertebrates across 25 degrees of latitude, from the temperate zone to the tropics, we tested the prediction that spatial and temporal patterns of taxonomic richness and composition, and the community assembly processes underlying these patterns, will differ across latitude. Specifically, we predicted that high beta diversity (spatial variation in composition) and high temporal turnover contribute to the high species richness of the tropics. Using a standardized experimental approach that controls for several confounding factors that hinder interpretation of prior studies, we present results that support our predictions. In the temperate zone, communities were more similar across spatial scales from centimeters to tens of kilometers and temporal scales up to one year than at lower latitudes. Since the patterns at northern latitudes were congruent with a null model, stochastic assembly processes are implicated. In contrast, the communities in the tropics were a dynamic spatial and temporal mosaic, with low similarity even across small spatial scales and high temporal turnover at both local and regional scales. Unlike the temperate zone, deterministic community assembly processes such as predation likely contributed to the high beta diversity in the tropics. Our results suggest that community assembly processes and temporal dynamics vary across latitude and help structure and maintain latitudinal patterns of diversity.
Analysis of absence seizure generation using EEG spatial-temporal regularity measures.
Mammone, Nadia; Labate, Domenico; Lay-Ekuakille, Aime; Morabito, Francesco C
2012-12-01
Epileptic seizures are thought to be generated and to evolve through an underlying anomaly of synchronization in the activity of groups of neuronal populations. The related dynamic scenario of state transitions is revealed by detecting changes in the dynamical properties of Electroencephalography (EEG) signals. The recruitment procedure ending with the crisis can be explored through a spatial-temporal plot from which to extract suitable descriptors that are able to monitor and quantify the evolving synchronization level from the EEG tracings. In this paper, a spatial-temporal analysis of EEG recordings based on the concept of permutation entropy (PE) is proposed. The performance of PE are tested on a database of 24 patients affected by absence (generalized) seizures. The results achieved are compared to the dynamical behavior of the EEG of 40 healthy subjects. Being PE a feature which is dependent on two parameters, an extensive study of the sensitivity of the performance of PE with respect to the parameters' setting was carried out on scalp EEG. Once the optimal PE configuration was determined, its ability to detect the different brain states was evaluated. According to the results here presented, it seems that the widely accepted model of "jump" transition to absence seizure should be in some cases coupled (or substituted) by a gradual transition model characteristic of self-organizing networks. Indeed, it appears that the transition to the epileptic status is heralded before the preictal state, ever since the interictal stages. As a matter of fact, within the limits of the analyzed database, the frontal-temporal scalp areas appear constantly associated to PE levels higher compared to the remaining electrodes, whereas the parieto-occipital areas appear associated to lower PE values. The EEG of healthy subjects neither shows any similar dynamic behavior nor exhibits any recurrent portrait in PE topography.
Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi
2015-01-01
Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time. PMID:26270539
Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi
2015-01-01
Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time.
The mathematical cell model reconstructed from interference microscopy data
NASA Astrophysics Data System (ADS)
Rogotnev, A. A.; Nikitiuk, A. S.; Naimark, O. B.; Nebogatikov, V. O.; Grishko, V. V.
2017-09-01
The mathematical model of cell dynamics is developed to link the dynamics of the phase cell thickness with the signs of the oncological pathology. The measurements of irregular oscillations of cancer cells phase thickness were made with laser interference microscope MIM-340 in order to substantiate this model. These data related to the dynamics of phase thickness for different cross-sections of cells (nuclei, nucleolus, and cytoplasm) allow the reconstruction of the attractor of dynamic system. The attractor can be associated with specific types of collective modes of phase thickness responsible for the normal and cancerous cell dynamics. Specific type of evolution operator was determined using an algorithm of designing of the mathematical cell model and temporal phase thickness data for cancerous and normal cells. Qualitative correspondence of attractor types to the cell states was analyzed in terms of morphological signs associated with maximum value of mean square irregular oscillations of phase thickness dynamics.
NASA Astrophysics Data System (ADS)
Cicuéndez, Víctor; Huesca, Margarita; Rodriguez-Rastrero, Manuel; Litago, Javier; Recuero, Laura; Merino de Miguel, Silvia; Palacios Orueta, Alicia
2014-05-01
Agroforestry ecosystems have a significant social, economic and environmental impact on the development of many regions of the world. In the Iberian Peninsula the agroforestry oak forest called "Dehesa" or "Montado" is considered as the extreme case of transformation of a Mediterranean forest by the management of human to provide a wide range of natural resources. The high variability of the Mediterranean climate and the different extensive management practices which human realized on the Dehesa result in a high spatial and temporal dynamics of the ecosystem. This leads to a complex pattern in CO2 exchange between the atmosphere and the ecosystem, i.e. in ecosystem's production. Thus, it is essential to assess Dehesa's carbon cycle to reach maximum economic benefits ensuring environmental sustainability. In this sense, the availability of high frequency Remote Sensing (RS) time series allows the assessment of ecosystem evolution at different temporal and spatial scales. Extensive research has been conducted to estimate production from RS data in different ecosystems. However, there are few studies on the Dehesa type ecosystems, probably due to their complexity in terms of spatial arrangement and temporal dynamics. In this study our overall objective is to assess the Gross Primary Production (GPP) dynamics of a Dehesa ecosystem situated in Central Spain by analyzing time series (2004-2008) of two models: (1) GPP provided by Remote Sensing Images of sensor MODIS (MOD17A2 product) and (2) GPP estimated by the implementation of a Site Specific Light Use Efficiency model based as MODIS model on Monteith equation (1972), but taking into account local ecological and meteorological parameters. Both models have been compared with the Production provided by an Eddy Covariance (EC) flux Tower that is located in our study area. In addition, dynamic relationships between models of GPP with Precipitation and Soil Water Content have been investigated by means of cross-correlations and Granger causality tests. Results have indicated that both models of GPP have shown a typical dynamic of the Dehesa in a Mediterranean climate in which there are primarily two layers, the arboreal and the herbaceous strata. However, MODIS underestimates the production of the Dehesa while our Site specific model has given more similar values and dynamics to those from the EC tower. Additionally, the analysis of the dynamic relationships has corroborated the strong dynamic link between GPP and available water for plant growth. In conclusion, we have managed to avoid the main sources of underestimation that has MODIS model with the implementation of a Site specific model. Thus, it seems that the different ecological and meteorological parameters used in MODIS model are the principally responsible for this underestimation. Finally, the Granger causality tests indicate that the prediction of GPP can improve if Precipitation or Soil Water is included in the models. References Monteith, J.L., 1972. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 9, 747-766.
Temporal scaling in information propagation.
Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi
2014-06-18
For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.
Temporal scaling in information propagation
NASA Astrophysics Data System (ADS)
Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi
2014-06-01
For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.
Modelling and simulation techniques for membrane biology.
Burrage, Kevin; Hancock, John; Leier, André; Nicolau, Dan V
2007-07-01
One of the most important aspects of Computational Cell Biology is the understanding of the complicated dynamical processes that take place on plasma membranes. These processes are often so complicated that purely temporal models cannot always adequately capture the dynamics. On the other hand, spatial models can have large computational overheads. In this article, we review some of these issues with respect to chemistry, membrane microdomains and anomalous diffusion and discuss how to select appropriate modelling and simulation paradigms based on some or all the following aspects: discrete, continuous, stochastic, delayed and complex spatial processes.
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
Mul, Monique F; van Riel, Johan W; Roy, Lise; Zoons, Johan; André, Geert; George, David R; Meerburg, Bastiaan G; Dicke, Marcel; van Mourik, Simon; Groot Koerkamp, Peter W G
2017-10-15
The poultry red mite, Dermanyssus gallinae, is the most significant pest of egg laying hens in many parts of the world. Control of D. gallinae could be greatly improved with advanced Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. The development of a model forecasting the pests' population dynamics in laying hen facilities without and post-treatment will contribute to this advanced IPM and could consequently improve implementation of IPM by farmers. The current work describes the development and demonstration of a model which can follow and forecast the population dynamics of D. gallinae in laying hen facilities given the variation of the population growth of D. gallinae within and between flocks. This high variation could partly be explained by house temperature, flock age, treatment, and hen house. The total population growth variation within and between flocks, however, was in part explained by temporal variation. For a substantial part this variation was unexplained. A dynamic adaptive model (DAP) was consequently developed, as models of this type are able to handle such temporal variations. The developed DAP model can forecast the population dynamics of D. gallinae, requiring only current flock population monitoring data, temperature data and information of the dates of any D. gallinae treatment. Importantly, the DAP model forecasted treatment effects, while compensating for location and time specific interactions, handling the variability of these parameters. The characteristics of this DAP model, and its compatibility with different mite monitoring methods, represent progression from existing approaches for forecasting D. gallinae that could contribute to advancing improved Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. Copyright © 2017 Elsevier B.V. All rights reserved.
Satellite remote sensing assessment of climate impact on forest vegetation dynamics
NASA Astrophysics Data System (ADS)
Zoran, M.
2009-04-01
Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modelling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2007 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and topography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.
An Imperfect Dopaminergic Error Signal Can Drive Temporal-Difference Learning
Potjans, Wiebke; Diesmann, Markus; Morrison, Abigail
2011-01-01
An open problem in the field of computational neuroscience is how to link synaptic plasticity to system-level learning. A promising framework in this context is temporal-difference (TD) learning. Experimental evidence that supports the hypothesis that the mammalian brain performs temporal-difference learning includes the resemblance of the phasic activity of the midbrain dopaminergic neurons to the TD error and the discovery that cortico-striatal synaptic plasticity is modulated by dopamine. However, as the phasic dopaminergic signal does not reproduce all the properties of the theoretical TD error, it is unclear whether it is capable of driving behavior adaptation in complex tasks. Here, we present a spiking temporal-difference learning model based on the actor-critic architecture. The model dynamically generates a dopaminergic signal with realistic firing rates and exploits this signal to modulate the plasticity of synapses as a third factor. The predictions of our proposed plasticity dynamics are in good agreement with experimental results with respect to dopamine, pre- and post-synaptic activity. An analytical mapping from the parameters of our proposed plasticity dynamics to those of the classical discrete-time TD algorithm reveals that the biological constraints of the dopaminergic signal entail a modified TD algorithm with self-adapting learning parameters and an adapting offset. We show that the neuronal network is able to learn a task with sparse positive rewards as fast as the corresponding classical discrete-time TD algorithm. However, the performance of the neuronal network is impaired with respect to the traditional algorithm on a task with both positive and negative rewards and breaks down entirely on a task with purely negative rewards. Our model demonstrates that the asymmetry of a realistic dopaminergic signal enables TD learning when learning is driven by positive rewards but not when driven by negative rewards. PMID:21589888
Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations
NASA Astrophysics Data System (ADS)
Chen, Bin; Chen, Lifan; Huang, Bo; Michishita, Ryo; Xu, Bing
2018-05-01
The spatial and temporal adaptive reflectance fusion models (STARFM) have limited practical applications, because they often enforce the invalid assumption that land cover change does not occur between prior/posterior and target dates. To deal with this challenge, we proposed a spatiotemporal adaptive fusion model for NDVI products (STAFFN), to better blend highly resolved spatial and temporal information from multiple sensors. Compared with existing spatiotemporal fusion models, the proposed model integrates an initial prediction into a hierarchical selection strategy of similar pixels, and can capture landscape changes very well. Experiments using spatial details and temporal abundance comparison among MODIS, Landsat, and fusion results show that the predicted data can accurately capture temporal changes while preserving fine-spatial-resolution details. Model comparison also shows that STAFFNs produce consistently lower biases than STARFMs and the flexible spatiotemporal data fusion models (FSDAFs). A synthetic NDVI product (342 scenes in total) was produced with STAFFNs having a 16-day revisit frequency at 30-m spatial resolution from 2000 to 2014. With this product, we further provided a 15-year spatiotemporal change monitoring map of the Poyang Lake wetland. Results show that the water area in the dry season tended to lose 38.3 km2 yr-1 in coverage over the past 15 years, decreasing by 18.24% of the lake area between 2001 and 2014. The wetland vegetation group tended to increase in coverage, increasing by 10.08% of the lake area in the past 15 years. Our study indicates the STAFFN model can be reasonably applied in monitoring wetland dynamics, and can be easily adapted for the use with other ecosystems.
Retkute, Renata; Townsend, Alexandra J; Murchie, Erik H; Jensen, Oliver E; Preston, Simon P
2018-05-25
Diurnal changes in solar position and intensity combined with the structural complexity of plant architecture result in highly variable and dynamic light patterns within the plant canopy. This affects productivity through the complex ways that photosynthesis responds to changes in light intensity. Current methods to characterize light dynamics, such as ray-tracing, are able to produce data with excellent spatio-temporal resolution but are computationally intensive and the resulting data are complex and high-dimensional. This necessitates development of more economical models for summarizing the data and for simulating realistic light patterns over the course of a day. High-resolution reconstructions of field-grown plants are assembled in various configurations to form canopies, and a forward ray-tracing algorithm is applied to the canopies to compute light dynamics at high (1 min) temporal resolution. From the ray-tracer output, the sunlit or shaded state for each patch on the plants is determined, and these data are used to develop a novel stochastic model for the sunlit-shaded patterns. The model is designed to be straightforward to fit to data using maximum likelihood estimation, and fast to simulate from. For a wide range of contrasting 3-D canopies, the stochastic model is able to summarize, and replicate in simulations, key features of the light dynamics. When light patterns simulated from the stochastic model are used as input to a model of photoinhibition, the predicted reduction in carbon gain is similar to that from calculations based on the (extremely costly) ray-tracer data. The model provides a way to summarize highly complex data in a small number of parameters, and a cost-effective way to simulate realistic light patterns. Simulations from the model will be particularly useful for feeding into larger-scale photosynthesis models for calculating how light dynamics affects the photosynthetic productivity of canopies.
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2010-01-01
Background Chagas disease is a major parasitic disease in Latin America, prevented in part by vector control programs that reduce domestic populations of triatomines. However, the design of control strategies adapted to non-domiciliated vectors, such as Triatoma dimidiata, remains a challenge because it requires an accurate description of their spatio-temporal distributions, and a proper understanding of the underlying dispersal processes. Methodology/Principal Findings We combined extensive spatio-temporal data sets describing house infestation dynamics by T. dimidiata within a village, and spatially explicit population dynamics models in a selection model approach. Several models were implemented to provide theoretical predictions under different hypotheses on the origin of the dispersers and their dispersal characteristics, which we compared with the spatio-temporal pattern of infestation observed in the field. The best models fitted the dynamic of infestation described by a one year time-series, and also predicted with a very good accuracy the infestation process observed during a second replicate one year time-series. The parameterized models gave key insights into the dispersal of these vectors. i) About 55% of the triatomines infesting houses came from the peridomestic habitat, the rest corresponding to immigration from the sylvatic habitat, ii) dispersing triatomines were 5–15 times more attracted by houses than by peridomestic area, and iii) the moving individuals spread on average over rather small distances, typically 40–60 m/15 days. Conclusion/Significance Since these dispersal characteristics are associated with much higher abundance of insects in the periphery of the village, we discuss the possibility that spatially targeted interventions allow for optimizing the efficacy of vector control activities within villages. Such optimization could prove very useful in the context of limited resources devoted to vector control. PMID:20689823
The Voronoi spatio-temporal data structure
NASA Astrophysics Data System (ADS)
Mioc, Darka
2002-04-01
Current GIS models cannot integrate the temporal dimension of spatial data easily. Indeed, current GISs do not support incremental (local) addition and deletion of spatial objects, and they can not support the temporal evolution of spatial data. Spatio-temporal facilities would be very useful in many GIS applications: harvesting and forest planning, cadastre, urban and regional planning, and emergency planning. The spatio-temporal model that can overcome these problems is based on a topological model---the Voronoi data structure. Voronoi diagrams are irregular tessellations of space, that adapt to spatial objects and therefore they are a synthesis of raster and vector spatial data models. The main advantage of the Voronoi data structure is its local and sequential map updates, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define the complex operations. This resulted in a new formal model for spatio-temporal change representation, where each update is uniquely characterized by the numbers of newly created and inactivated Voronoi regions. This is used for the extension of the model towards the hierarchical Voronoi data structure. In this model, spatio-temporal changes induced by map updates are preserved in a hierarchical data structure that combines events and corresponding changes in topology. This hierarchical Voronoi data structure has an implicit time ordering of events visible through changes in topology, and it is equivalent to an event structure that can support temporal data without precise temporal information. This formal model of spatio-temporal change representation is currently applied to retroactive map updates and visualization of map evolution. It offers new possibilities in the domains of temporal GIS, transaction processing, spatio-temporal queries, spatio-temporal analysis, map animation and map visualization.
NASA Astrophysics Data System (ADS)
Ciullo, Alessio; Viglione, Alberto; Castellarin, Attilio
2016-04-01
Changes in flood risk occur because of changes in climate and hydrology, and in societal exposure and vulnerability. Research on change in flood risk has demonstrated that the mutual interactions and continuous feedbacks between floods and societies has to be taken into account in flood risk management. The present work builds on an existing conceptual model of an hypothetical city located in the proximity of a river, along whose floodplains the community evolves over time. The model reproduces the dynamic co-evolution of four variables: flooding, population density of the flooplain, amount of structural protection measures and memory of floods. These variables are then combined in a way to mimic the temporal change of community resilience, defined as the (inverse of the) amount of time for the community to recover from a shock, and adaptation capacity, defined as ratio between damages due to subsequent events. Also, temporal changing exposure, vulnerability and probability of flooding are also modelled, which results in a dynamically varying flood-risk. Examples are provided that show how factors such as collective memory and risk taking attitude influence the dynamics of community resilience, adaptation capacity and risk.
Bayesian Inference for Functional Dynamics Exploring in fMRI Data.
Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing
2016-01-01
This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.
NASA Astrophysics Data System (ADS)
Brigatti, E.; Vieira, M. V.; Kajin, M.; Almeida, P. J. A. L.; de Menezes, M. A.; Cerqueira, R.
2016-02-01
We study the population size time series of a Neotropical small mammal with the intent of detecting and modelling population regulation processes generated by density-dependent factors and their possible delayed effects. The application of analysis tools based on principles of statistical generality are nowadays a common practice for describing these phenomena, but, in general, they are more capable of generating clear diagnosis rather than granting valuable modelling. For this reason, in our approach, we detect the principal temporal structures on the bases of different correlation measures, and from these results we build an ad-hoc minimalist autoregressive model that incorporates the main drivers of the dynamics. Surprisingly our model is capable of reproducing very well the time patterns of the empirical series and, for the first time, clearly outlines the importance of the time of attaining sexual maturity as a central temporal scale for the dynamics of this species. In fact, an important advantage of this analysis scheme is that all the model parameters are directly biologically interpretable and potentially measurable, allowing a consistency check between model outputs and independent measurements.
Optimizing the temporal dynamics of light to human perception.
Rieiro, Hector; Martinez-Conde, Susana; Danielson, Andrew P; Pardo-Vazquez, Jose L; Srivastava, Nishit; Macknik, Stephen L
2012-11-27
No previous research has tuned the temporal characteristics of light-emitting devices to enhance brightness perception in human vision, despite the potential for significant power savings. The role of stimulus duration on perceived contrast is unclear, due to contradiction between the models proposed by Bloch and by Broca and Sulzer over 100 years ago. We propose that the discrepancy is accounted for by the observer's "inherent expertise bias," a type of experimental bias in which the observer's life-long experience with interpreting the sensory world overcomes perceptual ambiguities and biases experimental outcomes. By controlling for this and all other known biases, we show that perceived contrast peaks at durations of 50-100 ms, and we conclude that the Broca-Sulzer effect best describes human temporal vision. We also show that the plateau in perceived brightness with stimulus duration, described by Bloch's law, is a previously uncharacterized type of temporal brightness constancy that, like classical constancy effects, serves to enhance object recognition across varied lighting conditions in natural vision-although this is a constancy effect that normalizes perception across temporal modulation conditions. A practical outcome of this study is that tuning light-emitting devices to match the temporal dynamics of the human visual system's temporal response function will result in significant power savings.
The Effect of Dynamic Pitch on Speech Recognition in Temporally Modulated Noise
ERIC Educational Resources Information Center
Shen, Jung; Souza, Pamela E.
2017-01-01
Purpose: This study investigated the effect of dynamic pitch in target speech on older and younger listeners' speech recognition in temporally modulated noise. First, we examined whether the benefit from dynamic-pitch cues depends on the temporal modulation of noise. Second, we tested whether older listeners can benefit from dynamic-pitch cues for…
Dynamic strain aging and plastic instabilities
NASA Astrophysics Data System (ADS)
Mesarovic, Sinisa Dj.
1995-05-01
A constitutive model proposed by McCormick [(1988) Theory of flow localization due to dynamic strain ageing. Acta. Metall.36, 3061-3067] based on dislocation-solute interaction and describing dynamic strain aging behavior, is analyzed for the simple loading case of uniaxial tension. The model is rate dependent and includes a time-varying state variable, representing the local concentration of the impurity atoms at dislocations. Stability of the system and its post-instability behavior are considered. The methods used include analytical and numerical stability and bifurcation analysis with a numerical continuation technique. Yield point behavior and serrated yielding are found to result for well defined intervals of temperature and strain rate. Serrated yielding emerges as a branch of periodic solutions of the relaxation oscillation type, similar to frictional stick-slip. The distinction between the temporal and spatial (loss of homogeneity of strain) instability is emphasized. It is found that a critical machine stiffness exists above which a purely temporal instability cannot occur. The results are compared to the available experimental data.
NASA Astrophysics Data System (ADS)
Garchitorena, Andrés; Ngonghala, Calistus N.; Texier, Gaëtan; Landier, Jordi; Eyangoh, Sara; Bonds, Matthew H.; Guégan, Jean-François; Roche, Benjamin
2015-12-01
Buruli Ulcer is a devastating skin disease caused by the pathogen Mycobacterium ulcerans. Emergence and distribution of Buruli ulcer cases is clearly linked to aquatic ecosystems, but the specific route of transmission of M. ulcerans to humans remains unclear. Relying on the most detailed field data in space and time on M. ulcerans and Buruli ulcer available today, we assess the relative contribution of two potential transmission routes -environmental and water bug transmission- to the dynamics of Buruli ulcer in two endemic regions of Cameroon. The temporal dynamics of Buruli ulcer incidence are explained by estimating rates of different routes of transmission in mathematical models. Independently, we also estimate statistical models of the different transmission pathways on the spatial distribution of Buruli ulcer. The results of these two independent approaches are corroborative and suggest that environmental transmission pathways explain the temporal and spatial patterns of Buruli ulcer in our endemic areas better than the water bug transmission.
Effect of node attributes on the temporal dynamics of network structure
NASA Astrophysics Data System (ADS)
Momeni, Naghmeh; Fotouhi, Babak
2017-03-01
Many natural and social networks evolve in time and their structures are dynamic. In most networks, nodes are heterogeneous, and their roles in the evolution of structure differ. This paper focuses on the role of individual attributes on the temporal dynamics of network structure. We focus on a basic model for growing networks that incorporates node attributes (which we call "quality"), and we focus on the problem of forecasting the structural properties of the network in arbitrary times for an arbitrary initial network. That is, we address the following question: If we are given a certain initial network with given arbitrary structure and known node attributes, then how does the structure change in time as new nodes with given distribution of attributes join the network? We solve the model analytically and obtain the quality-degree joint distribution and degree correlations. We characterize the role of individual attributes in the position of individual nodes in the hierarchy of connections. We confirm the theoretical findings with Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Janches, D.; Pokorny, P.; Sarantos, M.; Nesvorny, D.
2017-12-01
Recent observations by the Lunar Dust Experiment (LDEX) on board NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) were perceived to indicate an unbalanced influence of meteoroids impacting from the Helion and the Anti-Helion directions. These observations were interpreted without proper consideration of the dynamical characteristics of the meteoroid environment and its spatio-temporal influence on the Moon's surface. In this work, a dynamical model of meteoroids originating from Jupiter Family Comets is utilized to model the secondary dust ejecta cloud engulfing the Moon. It is shown that the combination of the dynamical properties of these meteoroids, together with the orbital geometry of LADEE, introduce a bias in the observations and causes LADEE LDEX to be more sensitive to the Helion source. This effect must be considered in order to draw accurate conclusions regarding the meteoroid environment and its influence on the Moon's surface.
Verrot, Lucile; Destouni, Georgia
2015-01-01
Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.
Spatio-temporal hierarchy in the dynamics of a minimalist protein model
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Baba, Akinori; Li, Chun-Biu; Straub, John E.; Toda, Mikito; Komatsuzaki, Tamiki; Berry, R. Stephen
2013-12-01
A method for time series analysis of molecular dynamics simulation of a protein is presented. In this approach, wavelet analysis and principal component analysis are combined to decompose the spatio-temporal protein dynamics into contributions from a hierarchy of different time and space scales. Unlike the conventional Fourier-based approaches, the time-localized wavelet basis captures the vibrational energy transfers among the collective motions of proteins. As an illustrative vehicle, we have applied our method to a coarse-grained minimalist protein model. During the folding and unfolding transitions of the protein, vibrational energy transfers between the fast and slow time scales were observed among the large-amplitude collective coordinates while the other small-amplitude motions are regarded as thermal noise. Analysis employing a Gaussian-based measure revealed that the time scales of the energy redistribution in the subspace spanned by such large-amplitude collective coordinates are slow compared to the other small-amplitude coordinates. Future prospects of the method are discussed in detail.
NASA Astrophysics Data System (ADS)
Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong
2018-05-01
The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (<80 ns) stage of plasma expansion. At longer delay times, it was not applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.
Dynamic brain connectivity is a better predictor of PTSD than static connectivity.
Jin, Changfeng; Jia, Hao; Lanka, Pradyumna; Rangaprakash, D; Li, Lingjiang; Liu, Tianming; Hu, Xiaoping; Deshpande, Gopikrishna
2017-09-01
Using resting-state functional magnetic resonance imaging, we test the hypothesis that subjects with post-traumatic stress disorder (PTSD) are characterized by reduced temporal variability of brain connectivity compared to matched healthy controls. Specifically, we test whether PTSD is characterized by elevated static connectivity, coupled with decreased temporal variability of those connections, with the latter providing greater sensitivity toward the pathology than the former. Static functional connectivity (FC; nondirectional zero-lag correlation) and static effective connectivity (EC; directional time-lagged relationships) were obtained over the entire brain using conventional models. Dynamic FC and dynamic EC were estimated by letting the conventional models to vary as a function of time. Statistical separation and discriminability of these metrics between the groups and their ability to accurately predict the diagnostic label of a novel subject were ascertained using separate support vector machine classifiers. Our findings support our hypothesis that PTSD subjects have stronger static connectivity, but reduced temporal variability of connectivity. Further, machine learning classification accuracy obtained with dynamic FC and dynamic EC was significantly higher than that obtained with static FC and static EC, respectively. Furthermore, results also indicate that the ease with which brain regions engage or disengage with other regions may be more sensitive to underlying pathology than the strength with which they are engaged. Future studies must examine whether this is true only in the case of PTSD or is a general organizing principle in the human brain. Hum Brain Mapp 38:4479-4496, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses
Scheidt, Ryan E.; Kale, Sushrut; Heinz, Michael G.
2010-01-01
Auditory-nerve fibers demonstrate dynamic response properties in that they adapt to rapid changes in sound level, both at the onset and offset of a sound. These dynamic response properties affect temporal coding of stimulus modulations that are perceptually relevant for many sounds such as speech and music. Temporal dynamics have been well characterized in auditory-nerve fibers from normal-hearing animals, but little is known about the effects of sensorineural hearing loss on these dynamics. This study examined the effects of noise-induced hearing loss on the temporal dynamics in auditory-nerve fiber responses from anesthetized chinchillas. Post-stimulus time histograms were computed from responses to 50-ms tones presented at characteristic frequency and 30 dB above fiber threshold. Several response metrics related to temporal dynamics were computed from post-stimulus-time histograms and were compared between normal-hearing and noise-exposed animals. Results indicate that noise-exposed auditory-nerve fibers show significantly reduced response latency, increased onset response and percent adaptation, faster adaptation after onset, and slower recovery after offset. The decrease in response latency only occurred in noise-exposed fibers with significantly reduced frequency selectivity. These changes in temporal dynamics have important implications for temporal envelope coding in hearing-impaired ears, as well as for the design of dynamic compression algorithms for hearing aids. PMID:20696230
Dynamics of history-dependent epidemics in temporal networks
NASA Astrophysics Data System (ADS)
Sunny, Albert; Kotnis, Bhushan; Kuri, Joy
2015-08-01
The structural properties of temporal networks often influence the dynamical processes that occur on these networks, e.g., bursty interaction patterns have been shown to slow down epidemics. In this paper, we investigate the effect of link lifetimes on the spread of history-dependent epidemics. We formulate an analytically tractable activity-driven temporal network model that explicitly incorporates link lifetimes. For Markovian link lifetimes, we use mean-field analysis for computing the epidemic threshold, while the effect of non-Markovian link lifetimes is studied using simulations. Furthermore, we also study the effect of negative correlation between the number of links spawned by an individual and the lifetimes of those links. Such negative correlations may arise due to the finite cognitive capacity of the individuals. Our investigations reveal that heavy-tailed link lifetimes slow down the epidemic, while negative correlations can reduce epidemic prevalence. We believe that our results help shed light on the role of link lifetimes in modulating diffusion processes on temporal networks.
Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium.
Bittihn, Philip; Berg, Sebastian; Parlitz, Ulrich; Luther, Stefan
2017-09-01
Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.
Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium
NASA Astrophysics Data System (ADS)
Bittihn, Philip; Berg, Sebastian; Parlitz, Ulrich; Luther, Stefan
2017-09-01
Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2016-04-01
We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.
The 1990 forest ecosystem dynamics multisensor aircraft campaign
NASA Technical Reports Server (NTRS)
Williams, Darrel L.; Ranson, K. Jon
1991-01-01
The overall objective of the Forest Ecosystem Dynamics (FED) research activity is to develop a better understanding of the dynamics of forest ecosystem evolution over a variety of temporal and spatial scales. Primary emphasis is being placed on assessing the ecosystem dynamics associated with the transition zone between northern hardwood forests in eastern North America and the predominantly coniferous forests of the more northerly boreal biome. The approach is to combine ground-based, airborne, and satellite observations with an integrated forest pattern and process model which is being developed to link together existing models of forest growth and development, soil processes, and radiative transfer.
NASA Astrophysics Data System (ADS)
Park, Choongseok; Worth, Robert M.; Rubchinsky, Leonid L.
2011-04-01
Synchronous oscillatory dynamics is frequently observed in the human brain. We analyze the fine temporal structure of phase-locking in a realistic network model and match it with the experimental data from Parkinsonian patients. We show that the experimentally observed intermittent synchrony can be generated just by moderately increased coupling strength in the basal ganglia circuits due to the lack of dopamine. Comparison of the experimental and modeling data suggest that brain activity in Parkinson's disease resides in the large boundary region between synchronized and nonsynchronized dynamics. Being on the edge of synchrony may allow for easy formation of transient neuronal assemblies.
Spatio-Temporal Process Simulation of Dam-Break Flood Based on SPH
NASA Astrophysics Data System (ADS)
Wang, H.; Ye, F.; Ouyang, S.; Li, Z.
2018-04-01
On the basis of introducing the SPH (Smooth Particle Hydrodynamics) simulation method, the key research problems were given solutions in this paper, which ere the spatial scale and temporal scale adapting to the GIS(Geographical Information System) application, the boundary condition equations combined with the underlying surface, and the kernel function and parameters applicable to dam-break flood simulation. In this regards, a calculation method of spatio-temporal process emulation with elaborate particles for dam-break flood was proposed. Moreover the spatio-temporal process was dynamic simulated by using GIS modelling and visualization. The results show that the method gets more information, objectiveness and real situations.
McElree, Brian; Carrasco, Marisa
2012-01-01
Feature and conjunction searches have been argued to delineate parallel and serial operations in visual processing. The authors evaluated this claim by examining the temporal dynamics of the detection of features and conjunctions. The 1st experiment used a reaction time (RT) task to replicate standard mean RT patterns and to examine the shapes of the RT distributions. The 2nd experiment used the response-signal speed–accuracy trade-off (SAT) procedure to measure discrimination (asymptotic detection accuracy) and detection speed (processing dynamics). Set size affected discrimination in both feature and conjunction searches but affected detection speed only in the latter. Fits of models to the SAT data that included a serial component overpredicted the magnitude of the observed dynamics differences. The authors concluded that both features and conjunctions are detected in parallel. Implications for the role of attention in visual processing are discussed. PMID:10641310
NASA Astrophysics Data System (ADS)
Miritello, Giovanna; Lara, Rubén; Moro, Esteban
Recent research has shown the deep impact of the dynamics of human interactions (or temporal social networks) on the spreading of information, opinion formation, etc. In general, the bursty nature of human interactions lowers the interaction between people to the extent that both the speed and reach of information diffusion are diminished. Using a large database of 20 million users of mobile phone calls we show evidence this effect is not homogeneous in the social network but in fact, there is a large correlation between this effect and the social topological structure around a given individual. In particular, we show that social relations of hubs in a network are relatively weaker from the dynamical point than those that are poorer connected in the information diffusion process. Our results show the importance of the temporal patterns of communication when analyzing and modeling dynamical process on social networks.
Efficient robust reconstruction of dynamic PET activity maps with radioisotope decay constraints.
Gao, Fei; Liu, Huafeng; Shi, Pengcheng
2010-01-01
Dynamic PET imaging performs sequence of data acquisition in order to provide visualization and quantification of physiological changes in specific tissues and organs. The reconstruction of activity maps is generally the first step in dynamic PET. State space Hinfinity approaches have been proved to be a robust method for PET image reconstruction where, however, temporal constraints are not considered during the reconstruction process. In addition, the state space strategies for PET image reconstruction have been computationally prohibitive for practical usage because of the need for matrix inversion. In this paper, we present a minimax formulation of the dynamic PET imaging problem where a radioisotope decay model is employed as physics-based temporal constraints on the photon counts. Furthermore, a robust steady state Hinfinity filter is developed to significantly improve the computational efficiency with minimal loss of accuracy. Experiments are conducted on Monte Carlo simulated image sequences for quantitative analysis and validation.
Forecasting Temporal Dynamics of Cutaneous Leishmaniasis in Northeast Brazil
Lewnard, Joseph A.; Jirmanus, Lara; Júnior, Nivison Nery; Machado, Paulo R.; Glesby, Marshall J.; Ko, Albert I.; Carvalho, Edgar M.; Schriefer, Albert; Weinberger, Daniel M.
2014-01-01
Introduction Cutaneous leishmaniasis (CL) is a vector-borne disease of increasing importance in northeastern Brazil. It is known that sandflies, which spread the causative parasites, have weather-dependent population dynamics. Routinely-gathered weather data may be useful for anticipating disease risk and planning interventions. Methodology/Principal Findings We fit time series models using meteorological covariates to predict CL cases in a rural region of Bahía, Brazil from 1994 to 2004. We used the models to forecast CL cases for the period 2005 to 2008. Models accounting for meteorological predictors reduced mean squared error in one, two, and three month-ahead forecasts by up to 16% relative to forecasts from a null model accounting only for temporal autocorrelation. Significance These outcomes suggest CL risk in northeastern Brazil might be partially dependent on weather. Responses to forecasted CL epidemics may include bolstering clinical capacity and disease surveillance in at-risk areas. Ecological mechanisms by which weather influences CL risk merit future research attention as public health intervention targets. PMID:25356734
Forecasting temporal dynamics of cutaneous leishmaniasis in Northeast Brazil.
Lewnard, Joseph A; Jirmanus, Lara; Júnior, Nivison Nery; Machado, Paulo R; Glesby, Marshall J; Ko, Albert I; Carvalho, Edgar M; Schriefer, Albert; Weinberger, Daniel M
2014-10-01
Cutaneous leishmaniasis (CL) is a vector-borne disease of increasing importance in northeastern Brazil. It is known that sandflies, which spread the causative parasites, have weather-dependent population dynamics. Routinely-gathered weather data may be useful for anticipating disease risk and planning interventions. We fit time series models using meteorological covariates to predict CL cases in a rural region of Bahía, Brazil from 1994 to 2004. We used the models to forecast CL cases for the period 2005 to 2008. Models accounting for meteorological predictors reduced mean squared error in one, two, and three month-ahead forecasts by up to 16% relative to forecasts from a null model accounting only for temporal autocorrelation. These outcomes suggest CL risk in northeastern Brazil might be partially dependent on weather. Responses to forecasted CL epidemics may include bolstering clinical capacity and disease surveillance in at-risk areas. Ecological mechanisms by which weather influences CL risk merit future research attention as public health intervention targets.
Network reconfiguration and working memory impairment in mesial temporal lobe epilepsy.
Campo, Pablo; Garrido, Marta I; Moran, Rosalyn J; García-Morales, Irene; Poch, Claudia; Toledano, Rafael; Gil-Nagel, Antonio; Dolan, Raymond J; Friston, Karl J
2013-05-15
Mesial temporal lobe epilepsy (mTLE) is the most prevalent form of focal epilepsy, and hippocampal sclerosis (HS) is considered the most frequent associated pathological finding. Recent connectivity studies have shown that abnormalities, either structural or functional, are not confined to the affected hippocampus, but can be found in other connected structures within the same hemisphere, or even in the contralesional hemisphere. Despite the role of hippocampus in memory functions, most of these studies have explored network properties at resting state, and in some cases compared connectivity values with neuropsychological memory scores. Here, we measured magnetoencephalographic responses during verbal working memory (WM) encoding in left mTLE patients and controls, and compared their effective connectivity within a frontotemporal network using dynamic causal modelling. Bayesian model comparison indicated that the best model included bilateral, forward and backward connections, linking inferior temporal cortex (ITC), inferior frontal cortex (IFC), and the medial temporal lobe (MTL). Test for differences in effective connectivity revealed that patients exhibited decreased ipsilesional MTL-ITC backward connectivity, and increased bidirectional IFC-MTL connectivity in the contralesional hemisphere. Critically, a negative correlation was observed between these changes in patients, with decreases in ipsilesional coupling among temporal sources associated with increases contralesional frontotemporal interactions. Furthermore, contralesional frontotemporal interactions were inversely related to task performance and level of education. The results demonstrate that unilateral sclerosis induced local and remote changes in the dynamic organization of a distributed network supporting verbal WM. Crucially, pre-(peri) morbid factors (educational level) were reflected in both cognitive performance and (putative) compensatory changes in physiological coupling. Copyright © 2013 Elsevier Inc. All rights reserved.
A multimodal approach to estimating vigilance using EEG and forehead EOG.
Zheng, Wei-Long; Lu, Bao-Liang
2017-04-01
Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.
Hierarchical Processing of Auditory Objects in Humans
Kumar, Sukhbinder; Stephan, Klaas E; Warren, Jason D; Friston, Karl J; Griffiths, Timothy D
2007-01-01
This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG), containing the primary auditory cortex, planum temporale (PT), and superior temporal sulcus (STS), and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal “templates” in the PT before further analysis of the abstracted form in anterior temporal lobe areas. PMID:17542641
Beck-Johnson, Lindsay M; Nelson, William A; Paaijmans, Krijn P; Read, Andrew F; Thomas, Matthew B; Bjørnstad, Ottar N
2017-03-01
Temperature is a key environmental driver of Anopheles mosquito population dynamics; understanding its central role is important for these malaria vectors. Mosquito population responses to temperature fluctuations, though important across the life history, are poorly understood at a population level. We used stage-structured, temperature-dependent delay-differential equations to conduct a detailed exploration of the impacts of diurnal and annual temperature fluctuations on mosquito population dynamics. The model allows exploration of temperature-driven temporal changes in adult age structure, giving insights into the population's capacity to vector malaria parasites. Because of temperature-dependent shifts in age structure, the abundance of potentially infectious mosquitoes varies temporally, and does not necessarily mirror the dynamics of the total adult population. In addition to conducting the first comprehensive theoretical exploration of fluctuating temperatures on mosquito population dynamics, we analysed observed temperatures at four locations in Africa covering a range of environmental conditions. We found both temperature and precipitation are needed to explain the observed malaria season in these locations, enhancing our understanding of the drivers of malaria seasonality and how temporal disease risk may shift in response to temperature changes. This approach, tracking both mosquito abundance and age structure, may be a powerful tool for understanding current and future malaria risk.
Mapping snow cover using multi-source satellite data on big data platforms
NASA Astrophysics Data System (ADS)
Lhermitte, Stef
2017-04-01
Snowmelt is an important and dynamically changing water resource in mountainous regions around the world. In this framework, remote sensing data of snow cover data provides an essential input for hydrological models to model the water contribution from remote mountain areas and to understand how this water resource might alter as a result of climate change. Traditionally, however, many of these remote sensing products show a trade-off between spatial and temporal resolution (e.g., 16-day Landsat at 30m vs. daily MODIS at 500m resolution). With the advent of Sentinel-1 and 2 and the PROBA-V 100m products this trade-off can partially be tackled by having data that corresponds more closely to the spatial and temporal variations in snow cover typically observed over complex mountain areas. This study provides first a quantitative analysis of the trade-offs between the state-of-the-art snow cover mapping methodologies for Landsat, MODIS, PROBA-V, Sentinel-1 and 2 and applies them on big data platforms such as Google Earth Engine (GEE), RSS (ESA Research Service & Support) CloudToolbox, and the PROBA-V Mission Exploitation Platform (MEP). Second, it combines the different sensor data-cubes in one multi-sensor classification approach using newly developed spatio-temporal probability classifiers within the big data platform environments. Analysis of the spatio-temporal differences in derived snow cover areas from the different sensors reveals the importance of understanding the spatial and temporal scales at which variations occur. Moreover, it shows the importance of i) temporal resolution when monitoring highly dynamical properties such as snow cover and of ii) differences in satellite viewing angles over complex mountain areas. Finally, it highlights the potential and drawbacks of big data platforms for combining multi-source satellite data for monitoring dynamical processes such as snow cover.
Single-trial dynamics of motor cortex and their applications to brain-machine interfaces
Kao, Jonathan C.; Nuyujukian, Paul; Ryu, Stephen I.; Churchland, Mark M.; Cunningham, John P.; Shenoy, Krishna V.
2015-01-01
Increasing evidence suggests that neural population responses have their own internal drive, or dynamics, that describe how the neural population evolves through time. An important prediction of neural dynamical models is that previously observed neural activity is informative of noisy yet-to-be-observed activity on single-trials, and may thus have a denoising effect. To investigate this prediction, we built and characterized dynamical models of single-trial motor cortical activity. We find these models capture salient dynamical features of the neural population and are informative of future neural activity on single trials. To assess how neural dynamics may beneficially denoise single-trial neural activity, we incorporate neural dynamics into a brain–machine interface (BMI). In online experiments, we find that a neural dynamical BMI achieves substantially higher performance than its non-dynamical counterpart. These results provide evidence that neural dynamics beneficially inform the temporal evolution of neural activity on single trials and may directly impact the performance of BMIs. PMID:26220660
Yamashita, Yuichi; Okumura, Tetsu; Okanoya, Kazuo; Tani, Jun
2011-01-01
How the brain learns and generates temporal sequences is a fundamental issue in neuroscience. The production of birdsongs, a process which involves complex learned sequences, provides researchers with an excellent biological model for this topic. The Bengalese finch in particular learns a highly complex song with syntactical structure. The nucleus HVC (HVC), a premotor nucleus within the avian song system, plays a key role in generating the temporal structures of their songs. From lesion studies, the nucleus interfacialis (NIf) projecting to the HVC is considered one of the essential regions that contribute to the complexity of their songs. However, the types of interaction between the HVC and the NIf that can produce complex syntactical songs remain unclear. In order to investigate the function of interactions between the HVC and NIf, we have proposed a neural network model based on previous biological evidence. The HVC is modeled by a recurrent neural network (RNN) that learns to generate temporal patterns of songs. The NIf is modeled as a mechanism that provides auditory feedback to the HVC and generates random noise that feeds into the HVC. The model showed that complex syntactical songs can be replicated by simple interactions between deterministic dynamics of the RNN and random noise. In the current study, the plausibility of the model is tested by the comparison between the changes in the songs of actual birds induced by pharmacological inhibition of the NIf and the changes in the songs produced by the model resulting from modification of parameters representing NIf functions. The efficacy of the model demonstrates that the changes of songs induced by pharmacological inhibition of the NIf can be interpreted as a trade-off between the effects of noise and the effects of feedback on the dynamics of the RNN of the HVC. These facts suggest that the current model provides a convincing hypothesis for the functional role of NIf–HVC interaction. PMID:21559065
Shape selection in Landsat time series: A tool for monitoring forest dynamics
Gretchen G. Moisen; Mary C. Meyer; Todd A. Schroeder; Xiyue Liao; Karen G. Schleeweis; Elizabeth A. Freeman; Chris Toney
2016-01-01
We present a new methodology for fitting nonparametric shape-restricted regression splines to time series of Landsat imagery for the purpose of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly three decades. For each pixel and spectral band or index of choice in temporal Landsat data, our method delivers a smoothed rendition of...
Letnic, M; Dickman, C R
2010-08-01
Resources are produced in pulses in many terrestrial environments, and have important effects on the population dynamics and assemblage structure of animals that consume them. Resource-pulsing is particularly dramatic in Australian desert environments owing to marked spatial and temporal variability in rainfall, and thus primary productivity. Here, we first review how Australia's desert mammals respond to fluctuations in resource production, and evaluate the merits of three currently accepted models (the ecological refuge, predator refuge and fire-mosaic models) as explanations of the observed dynamics. We then integrate elements of these models into a novel state-and-transition model and apply it to well-studied small mammal assemblages that inhabit the vast hummock grassland, or spinifex, landscapes of the continental inland. The model has four states that are defined by differences in species composition and abundance, and eight transitions or processes that prompt shifts from one state to another. Using this model as a template, we construct three further models to explain mammalian dynamics in cracking soil habitats of the Lake Eyre Basin, gibber plains of the Channel Country, and the chenopod shrublands of arid southern Australia. As non-equilibrium concepts that recognise the strongly intermittent nature of resource pulsing in arid Australia, state-and-transition models provide useful descriptors of both spatial and temporal patterns in mammal assemblages. The models should help managers to identify when and where to implement interventions to conserve native mammals, such as control burns, reduced grazing or predator management. The models also should improve understanding of the potential effects of future climate change on mammal assemblages in arid environments in general. We conclude by proposing several tests that could be used to refine the models and guide further research.
Temporal scaling and spatial statistical analyses of groundwater level fluctuations
NASA Astrophysics Data System (ADS)
Sun, H.; Yuan, L., Sr.; Zhang, Y.
2017-12-01
Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.
USDA-ARS?s Scientific Manuscript database
Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynami...
Kotevska, Olivera; Kusne, A. Gilad; Samarov, Daniel V.; Lbath, Ahmed; Battou, Abdella
2017-01-01
Today’s cities generate tremendous amounts of data, thanks to a boom in affordable smart devices and sensors. The resulting big data creates opportunities to develop diverse sets of context-aware services and systems, ensuring smart city services are optimized to the dynamic city environment. Critical resources in these smart cities will be more rapidly deployed to regions in need, and those regions predicted to have an imminent or prospective need. For example, crime data analytics may be used to optimize the distribution of police, medical, and emergency services. However, as smart city services become dependent on data, they also become susceptible to disruptions in data streams, such as data loss due to signal quality reduction or due to power loss during data collection. This paper presents a dynamic network model for improving service resilience to data loss. The network model identifies statistically significant shared temporal trends across multivariate spatiotemporal data streams and utilizes these trends to improve data prediction performance in the case of data loss. Dynamics also allow the system to respond to changes in the data streams such as the loss or addition of new information flows. The network model is demonstrated by city-based crime rates reported in Montgomery County, MD, USA. A resilient network is developed utilizing shared temporal trends between cities to provide improved crime rate prediction and robustness to data loss, compared with the use of single city-based auto-regression. A maximum improvement in performance of 7.8% for Silver Spring is found and an average improvement of 5.6% among cities with high crime rates. The model also correctly identifies all the optimal network connections, according to prediction error minimization. City-to-city distance is designated as a predictor of shared temporal trends in crime and weather is shown to be a strong predictor of crime in Montgomery County. PMID:29250476
Kotevska, Olivera; Kusne, A Gilad; Samarov, Daniel V; Lbath, Ahmed; Battou, Abdella
2017-01-01
Today's cities generate tremendous amounts of data, thanks to a boom in affordable smart devices and sensors. The resulting big data creates opportunities to develop diverse sets of context-aware services and systems, ensuring smart city services are optimized to the dynamic city environment. Critical resources in these smart cities will be more rapidly deployed to regions in need, and those regions predicted to have an imminent or prospective need. For example, crime data analytics may be used to optimize the distribution of police, medical, and emergency services. However, as smart city services become dependent on data, they also become susceptible to disruptions in data streams, such as data loss due to signal quality reduction or due to power loss during data collection. This paper presents a dynamic network model for improving service resilience to data loss. The network model identifies statistically significant shared temporal trends across multivariate spatiotemporal data streams and utilizes these trends to improve data prediction performance in the case of data loss. Dynamics also allow the system to respond to changes in the data streams such as the loss or addition of new information flows. The network model is demonstrated by city-based crime rates reported in Montgomery County, MD, USA. A resilient network is developed utilizing shared temporal trends between cities to provide improved crime rate prediction and robustness to data loss, compared with the use of single city-based auto-regression. A maximum improvement in performance of 7.8% for Silver Spring is found and an average improvement of 5.6% among cities with high crime rates. The model also correctly identifies all the optimal network connections, according to prediction error minimization. City-to-city distance is designated as a predictor of shared temporal trends in crime and weather is shown to be a strong predictor of crime in Montgomery County.
Ozgul, Arpat; Armitage, Kenneth B; Blumstein, Daniel T; Oli, Madan K
2006-04-01
Spatiotemporal variation in age-specific survival rates can profoundly influence population dynamics, but few studies of vertebrates have thoroughly investigated both spatial and temporal variability in age-specific survival rates. We used 28 years (1976-2003) of capture-mark-recapture (CMR) data from 17 locations to parameterize an age-structured Cormack-Jolly-Seber model, and investigated spatial and temporal variation in age-specific annual survival rates of yellow-bellied marmots (Marmota flaviventris). Survival rates varied both spatially and temporally, with survival of younger animals exhibiting the highest degree of variation. Juvenile survival rates varied from 0.52 +/- 0.05 to 0.78 +/- 0.10 among sites and from 0.15 +/- 0.14 to 0.89 +/- 0.06 over time. Adult survival rates varied from 0.62 +/- 0.09 to 0.80 +/- 0.03 among sites, but did not vary significantly over time. We used reverse-time CMR models to estimate the realized population growth rate (lamda), and to investigate the influence of the observed variation in age-specific survival rates on lamda. The realized growth rate of the population closely covaried with, and was significantly influenced by, spatiotemporal variation in juvenile survival rate. High variability in juvenile survival rates over space and time clearly influenced the dynamics of our study population and is also likely to be an important determinant of the spatiotemporal variation in the population dynamics of other mammals with similar life history characteristics.
Bartolino, Valerio; Tian, Huidong; Bergström, Ulf; Jounela, Pekka; Aro, Eero; Dieterich, Christian; Meier, H. E. Markus; Cardinale, Massimiliano; Bland, Barbara
2017-01-01
Understanding the mechanisms of spatial population dynamics is crucial for the successful management of exploited species and ecosystems. However, the underlying mechanisms of spatial distribution are generally complex due to the concurrent forcing of both density-dependent species interactions and density-independent environmental factors. Despite the high economic value and central ecological importance of cod in the Baltic Sea, the drivers of its spatio-temporal population dynamics have not been analytically investigated so far. In this paper, we used an extensive trawl survey dataset in combination with environmental data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during the past three decades using Generalized Additive Models. The results showed that adult cod distribution was mainly affected by cod population size, and to a minor degree by small-scale hydrological factors and the extent of suitable reproductive areas. As population size decreases, the cod population concentrates to the southern part of the Baltic Sea, where the preferred more marine environment conditions are encountered. Using the fitted models, we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial occupation was developed. Our study will contribute to the management and conservation of this important resource and of the ecosystem where it occurs, by showing the forces shaping its spatial distribution and therefore the potential response of the population to future exploitation and environmental changes. PMID:28207804
Evaluation of spatio-temporal Bayesian models for the spread of infectious diseases in oil palm.
Denis, Marie; Cochard, Benoît; Syahputra, Indra; de Franqueville, Hubert; Tisné, Sébastien
2018-02-01
In the field of epidemiology, studies are often focused on mapping diseases in relation to time and space. Hierarchical modeling is a common flexible and effective tool for modeling problems related to disease spread. In the context of oil palm plantations infected by the fungal pathogen Ganoderma boninense, we propose and compare two spatio-temporal hierarchical Bayesian models addressing the lack of information on propagation modes and transmission vectors. We investigate two alternative process models to study the unobserved mechanism driving the infection process. The models help gain insight into the spatio-temporal dynamic of the infection by identifying a genetic component in the disease spread and by highlighting a spatial component acting at the end of the experiment. In this challenging context, we propose models that provide assumptions on the unobserved mechanism driving the infection process while making short-term predictions using ready-to-use software. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dynamical Adaptation in Photoreceptors
Clark, Damon A.; Benichou, Raphael; Meister, Markus; Azeredo da Silveira, Rava
2013-01-01
Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300 ms—i. e., over the time scale of the response itself—and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant. PMID:24244119
Dynamic Granger-Geweke causality modeling with application to interictal spike propagation
Lin, Fa-Hsuan; Hara, Keiko; Solo, Victor; Vangel, Mark; Belliveau, John W.; Stufflebeam, Steven M.; Hamalainen, Matti S.
2010-01-01
A persistent problem in developing plausible neurophysiological models of perception, cognition, and action is the difficulty of characterizing the interactions between different neural systems. Previous studies have approached this problem by estimating causal influences across brain areas activated during cognitive processing using Structural Equation Modeling and, more recently, with Granger-Geweke causality. While SEM is complicated by the need for a priori directional connectivity information, the temporal resolution of dynamic Granger-Geweke estimates is limited because the underlying autoregressive (AR) models assume stationarity over the period of analysis. We have developed a novel optimal method for obtaining data-driven directional causality estimates with high temporal resolution in both time and frequency domains. This is achieved by simultaneously optimizing the length of the analysis window and the chosen AR model order using the SURE criterion. Dynamic Granger-Geweke causality in time and frequency domains is subsequently calculated within a moving analysis window. We tested our algorithm by calculating the Granger-Geweke causality of epileptic spike propagation from the right frontal lobe to the left frontal lobe. The results quantitatively suggested the epileptic activity at the left frontal lobe was propagated from the right frontal lobe, in agreement with the clinical diagnosis. Our novel computational tool can be used to help elucidate complex directional interactions in the human brain. PMID:19378280
Deng, Mingge; Grinberg, Leopold; Caswell, Bruce; Karniadakis, George Em
2015-06-28
We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a viscous stagnation-point flow, by employing both a continuum model represented by Langevin type stochastic partial differential equations (SPDEs) and a dissipative particle dynamics (DPD) method. Unlike previous works, the filament is free to rotate and the tension along the filament is determined by the local inextensible constraint. The kinematics of the filament is recorded and studied with normal modes analysis. The results show that the filament displays an instability induced by negative tension, which is analogous to Euler buckling of a beam. Symmetry breaking of normal modes dynamics and stretch-coil transitions are observed above the threshold of the buckling instability point. Furthermore, both temporal and spatial noise are amplified resulting from the interaction of thermal fluctuations and nonlinear filament dynamics. Specifically, the spatial noise is amplified with even normal modes being excited due to symmetry breaking, while the temporal noise is amplified with increasing time correlation length and variance.
Smart Meter Driven Segmentation: What Your Consumption Says About You
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, A; Rajagopal, R
With the rollout of smart metering infrastructure at scale, demand-response (DR) programs may now be tailored based on users' consumption patterns as mined from sensed data. For issuing DR events it is key to understand the inter-temporal consumption dynamics as to appropriately segment the user population. We propose to infer occupancy states from consumption time series data using a hidden Markov model framework. Occupancy is characterized in this model by 1) magnitude, 2) duration, and 3) variability. We show that users may be grouped according to their consumption patterns into groups that exhibit qualitatively different dynamics that may be exploitedmore » for program enrollment purposes. We investigate empirically the information that residential energy consumers' temporal energy demand patterns characterized by these three dimensions may convey about their demographic, household, and appliance stock characteristics. Our analysis shows that temporal patterns in the user's consumption data can predict with good accuracy certain user characteristics. We use this framework to argue that there is a large degree of individual predictability in user consumption at a population level.« less
Network Interactions Explain Sensitivity to Dynamic Faces in the Superior Temporal Sulcus.
Furl, Nicholas; Henson, Richard N; Friston, Karl J; Calder, Andrew J
2015-09-01
The superior temporal sulcus (STS) in the human and monkey is sensitive to the motion of complex forms such as facial and bodily actions. We used functional magnetic resonance imaging (fMRI) to explore network-level explanations for how the form and motion information in dynamic facial expressions might be combined in the human STS. Ventral occipitotemporal areas selective for facial form were localized in occipital and fusiform face areas (OFA and FFA), and motion sensitivity was localized in the more dorsal temporal area V5. We then tested various connectivity models that modeled communication between the ventral form and dorsal motion pathways. We show that facial form information modulated transmission of motion information from V5 to the STS, and that this face-selective modulation likely originated in OFA. This finding shows that form-selective motion sensitivity in the STS can be explained in terms of modulation of gain control on information flow in the motion pathway, and provides a substantial constraint for theories of the perception of faces and biological motion. © The Author 2014. Published by Oxford University Press.
Geocoronal Imaging from the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Waldrop, L.; Immel, T.; Clarke, J.; Fillingim, M.; Rider, K.; Qin, J.; Bhattacharyya, D.; Doe, R.
2018-02-01
UV imaging of geocoronal emission at high spatial and temporal resolution from deep space would provide crucial new constraints on global exospheric structure and dynamics, significantly advancing models of space weather and atmospheric escape.
Modeling epidemics on adaptively evolving networks: A data-mining perspective.
Kattis, Assimakis A; Holiday, Alexander; Stoica, Ana-Andreea; Kevrekidis, Ioannis G
2016-01-01
The exploration of epidemic dynamics on dynamically evolving ("adaptive") networks poses nontrivial challenges to the modeler, such as the determination of a small number of informative statistics of the detailed network state (that is, a few "good observables") that usefully summarize the overall (macroscopic, systems-level) behavior. Obtaining reduced, small size accurate models in terms of these few statistical observables--that is, trying to coarse-grain the full network epidemic model to a small but useful macroscopic one--is even more daunting. Here we describe a data-based approach to solving the first challenge: the detection of a few informative collective observables of the detailed epidemic dynamics. This is accomplished through Diffusion Maps (DMAPS), a recently developed data-mining technique. We illustrate the approach through simulations of a simple mathematical model of epidemics on a network: a model known to exhibit complex temporal dynamics. We discuss potential extensions of the approach, as well as possible shortcomings.
Temporal competition between differentiation programs determines cell fate choice
NASA Astrophysics Data System (ADS)
Kuchina, Anna; Espinar, Lorena; Cagatay, Tolga; Balbin, Alejandro; Alvarado, Alma; Garcia-Ojalvo, Jordi; Suel, Gurol
2011-03-01
During pluripotent differentiation, cells adopt one of several distinct fates. The dynamics of this decision-making process are poorly understood, since cell fate choice may be governed by interactions between differentiation programs that are active at the same time. We studied the dynamics of decision-making in the model organism Bacillus subtilis by simultaneously measuring the activities of competing differentiation programs (sporulation and competence) in single cells. We discovered a precise switch-like point of cell fate choice previously hidden by cell-cell variability. Engineered artificial crosslinks between competence and sporulation circuits revealed that the precision of this choice is generated by temporal competition between the key players of two differentiation programs. Modeling suggests that variable progression towards a switch-like decision might represent a general strategy to maximize adaptability and robustness of cellular decision-making.
Simulation-based decision support framework for dynamic ambulance redeployment in Singapore.
Lam, Sean Shao Wei; Ng, Clarence Boon Liang; Nguyen, Francis Ngoc Hoang Long; Ng, Yih Yng; Ong, Marcus Eng Hock
2017-10-01
Dynamic ambulance redeployment policies tend to introduce much more flexibilities in improving ambulance resource allocation by capitalizing on the definite geospatial-temporal variations in ambulance demand patterns over the time-of-the-day and day-of-the-week effects. A novel modelling framework based on the Approximate Dynamic Programming (ADP) approach leveraging on a Discrete Events Simulation (DES) model for dynamic ambulance redeployment in Singapore is proposed in this paper. The study was based on the Singapore's national Emergency Medical Services (EMS) system. Based on a dataset comprising 216,973 valid incidents over a continuous two-years study period from 1 January 2011-31 December 2012, a DES model for the EMS system was developed. An ADP model based on linear value function approximations was then evaluated using the DES model via the temporal difference (TD) learning family of algorithms. The objective of the ADP model is to derive approximate optimal dynamic redeployment policies based on the primary outcome of ambulance coverage. Considering an 8min response time threshold, an estimated 5% reduction in the proportion of calls that cannot be reached within the threshold (equivalent to approximately 8000 dispatches) was observed from the computational experiments. The study also revealed that the redeployment policies which are restricted within the same operational division could potentially result in a more promising response time performance. Furthermore, the best policy involved the combination of redeploying ambulances whenever they are released from service and that of relocating ambulances that are idle in bases. This study demonstrated the successful application of an approximate modelling framework based on ADP that leverages upon a detailed DES model of the Singapore's EMS system to generate approximate optimal dynamic redeployment plans. Various policies and scenarios relevant to the Singapore EMS system were evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamic networks of PTSD symptoms during conflict.
Greene, Talya; Gelkopf, Marc; Epskamp, Sacha; Fried, Eiko
2018-02-28
Conceptualizing posttraumatic stress disorder (PTSD) symptoms as a dynamic system of causal elements could provide valuable insights into the way that PTSD develops and is maintained in traumatized individuals. We present the first study to apply a multilevel network model to produce an exploratory empirical conceptualization of dynamic networks of PTSD symptoms, using data collected during a period of conflict. Intensive longitudinal assessment data were collected during the Israel-Gaza War in July-August 2014. The final sample (n = 96) comprised a general population sample of Israeli adult civilians exposed to rocket fire. Participants completed twice-daily reports of PTSD symptoms via smartphone for 30 days. We used a multilevel vector auto-regression model to produce contemporaneous and temporal networks, and a partial correlation network model to obtain a between-subjects network. Multilevel network analysis found strong positive contemporaneous associations between hypervigilance and startle response, avoidance of thoughts and avoidance of reminders, and between flashbacks and emotional reactivity. The temporal network indicated the central role of startle response as a predictor of future PTSD symptomatology, together with restricted affect, blame, negative emotions, and avoidance of thoughts. There were some notable differences between the temporal and contemporaneous networks, including the presence of a number of negative associations, particularly from blame. The between-person network indicated flashbacks and emotional reactivity to be the most central symptoms. This study suggests various symptoms that could potentially be driving the development of PTSD. We discuss clinical implications such as identifying particular symptoms as targets for interventions.
Modelling Nonlinear Dynamic Textures using Hybrid DWT-DCT and Kernel PCA with GPU
NASA Astrophysics Data System (ADS)
Ghadekar, Premanand Pralhad; Chopade, Nilkanth Bhikaji
2016-12-01
Most of the real-world dynamic textures are nonlinear, non-stationary, and irregular. Nonlinear motion also has some repetition of motion, but it exhibits high variation, stochasticity, and randomness. Hybrid DWT-DCT and Kernel Principal Component Analysis (KPCA) with YCbCr/YIQ colour coding using the Dynamic Texture Unit (DTU) approach is proposed to model a nonlinear dynamic texture, which provides better results than state-of-art methods in terms of PSNR, compression ratio, model coefficients, and model size. Dynamic texture is decomposed into DTUs as they help to extract temporal self-similarity. Hybrid DWT-DCT is used to extract spatial redundancy. YCbCr/YIQ colour encoding is performed to capture chromatic correlation. KPCA is applied to capture nonlinear motion. Further, the proposed algorithm is implemented on Graphics Processing Unit (GPU), which comprise of hundreds of small processors to decrease time complexity and to achieve parallelism.
SIMPPLLE, version 2.5 user's guide
Jimmie D. Chew; Kirk Moeller; Christine Stalling
2012-01-01
SIMPPLLE is a spatially-interactive, dynamic landscape modeling system for projecting temporal changes in the spatial distribution of vegetation in response to insects, disease, wildland fire, and other natural and management-caused disturbances. SIMPPLLE is designed to provide a balance between incorporating enough complexity and interactions in modeling ecosystem...
Using a Freshwater Lake Model Coupled with WRF for Dynamical Downscaling Applications
The ability to represent extremes in temperature and precipitation in regional climates (including those affected by inland lakes) has become an area of focus as regional climate models (RCMs) simulate smaller temporal and spatial scales. When using the Weather Research and Fore...
Chad M. Hoffman; Rodman Linn; Russell Parsons; Carolyn Sieg; Judith Winterkamp
2015-01-01
Patches of live, dead, and dying trees resulting from bark beetle-caused mortality alter spatial and temporal variability in the canopy and surface fuel complex through changes in the foliar moisture content of attacked trees and through the redistribution of canopy fuels. The resulting heterogeneous fuels complexes alter within-canopy wind flow, wind fluctuations, and...
Specificity and timescales of cortical adaptation as inferences about natural movie statistics.
Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia
2016-10-01
Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation.
Specificity and timescales of cortical adaptation as inferences about natural movie statistics
Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia
2016-01-01
Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation. PMID:27699416
Lee, Young-Beom; Lee, Jeonghyeon; Tak, Sungho; Lee, Kangjoo; Na, Duk L; Seo, Sang Won; Jeong, Yong; Ye, Jong Chul
2016-01-15
Recent studies of functional connectivity MR imaging have revealed that the default-mode network activity is disrupted in diseases such as Alzheimer's disease (AD). However, there is not yet a consensus on the preferred method for resting-state analysis. Because the brain is reported to have complex interconnected networks according to graph theoretical analysis, the independency assumption, as in the popular independent component analysis (ICA) approach, often does not hold. Here, rather than using the independency assumption, we present a new statistical parameter mapping (SPM)-type analysis method based on a sparse graph model where temporal dynamics at each voxel position are described as a sparse combination of global brain dynamics. In particular, a new concept of a spatially adaptive design matrix has been proposed to represent local connectivity that shares the same temporal dynamics. If we further assume that local network structures within a group are similar, the estimation problem of global and local dynamics can be solved using sparse dictionary learning for the concatenated temporal data across subjects. Moreover, under the homoscedasticity variance assumption across subjects and groups that is often used in SPM analysis, the aforementioned individual and group analyses using sparse dictionary learning can be accurately modeled by a mixed-effect model, which also facilitates a standard SPM-type group-level inference using summary statistics. Using an extensive resting fMRI data set obtained from normal, mild cognitive impairment (MCI), and Alzheimer's disease patient groups, we demonstrated that the changes in the default mode network extracted by the proposed method are more closely correlated with the progression of Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Topography and Radiative Forcing Patterns on Glaciers in the Karakoram Himalaya
NASA Astrophysics Data System (ADS)
Dobreva, I. D.; Bishop, M. P.; Liu, J. C.; Liang, D.
2015-12-01
Glaciers in the western Himalaya exhibit significant spatial variations in morphology and dynamics. Climate, topography and debris cover variations are thought to significantly affect glacier fluctuations and glacier sensitivity to climate change, although the role of topography and radiative forcing have not been adequately characterized and related to glacier fluctuations and dynamics. Consequently, we examined the glaciers in the Karakoram Himalaya, as they exhibit high spatial variability in glacier fluctuation rates and ice dynamics including flow velocity and surging. Specifically, we wanted to examine the relationships between these glacier characteristics and temporal patterns of surface irradiance over the ablation season. To accomplish this, we developed and used a rigorous GIS-based solar radiative transfer model that accounts for the direct and diffuse-skylight irradiance components. The model accounts for multiple topographic effects on the magnitude of irradiance reaching glacier surfaces. We specifically used the ASTER GDEM digital elevation model for irradiance simulations. We then examined temporal patterns of irradiance at the grid-cell level to identify the dominant patterns that were used to train a 3-layer artificial neural network. Our results demonstrate that there are unique spatial and temporal patterns associated with downwasting and surging glaciers, and that these patterns partially account for the spatial distribution of advancing and retreating glaciers. Lower-altitude terminus regions of surging glaciers exhibited relatively low surface irradiance values that decreased in magnitude with time, demonstrating that high-velocity surging glaciers facilitate relief production and exhibit steeper surface irradiance gradients with altitude. Collectively, these results demonstrate the important role that local and regional topography play in governing climate-glacier dynamics in the Himalaya.
An open-population hierarchical distance sampling model
Sollmann, Rachel; Beth Gardner,; Richard B Chandler,; Royle, J. Andrew; T Scott Sillett,
2015-01-01
Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for direct estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for island scrub-jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying number of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.
Deterministic ripple-spreading model for complex networks.
Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel
2011-04-01
This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.
An open-population hierarchical distance sampling model.
Sollmann, Rahel; Gardner, Beth; Chandler, Richard B; Royle, J Andrew; Sillett, T Scott
2015-02-01
Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for Island Scrub-Jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying numbers of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.
Kurt, Simone; Sausbier, Matthias; Rüttiger, Lukas; Brandt, Niels; Moeller, Christoph K.; Kindler, Jennifer; Sausbier, Ulrike; Zimmermann, Ulrike; van Straaten, Harald; Neuhuber, Winfried; Engel, Jutta; Knipper, Marlies; Ruth, Peter; Schulze, Holger
2012-01-01
Large conductance, voltage- and Ca2+-activated K+ (BK) channels in inner hair cells (IHCs) of the cochlea are essential for hearing. However, germline deletion of BKα, the pore-forming subunit KCNMA1 of the BK channel, surprisingly did not affect hearing thresholds in the first postnatal weeks, even though altered IHC membrane time constants, decreased IHC receptor potential alternating current/direct current ratio, and impaired spike timing of auditory fibers were reported in these mice. To investigate the role of IHC BK channels for central auditory processing, we generated a conditional mouse model with hair cell-specific deletion of BKα from postnatal day 10 onward. This had an unexpected effect on temporal coding in the central auditory system: neuronal single and multiunit responses in the inferior colliculus showed higher excitability and greater precision of temporal coding that may be linked to the improved discrimination of temporally modulated sounds observed in behavioral training. The higher precision of temporal coding, however, was restricted to slower modulations of sound and reduced stimulus-driven activity. This suggests a diminished dynamic range of stimulus coding that is expected to impair signal detection in noise. Thus, BK channels in IHCs are crucial for central coding of the temporal fine structure of sound and for detection of signals in a noisy environment.—Kurt, S., Sausbier, M., Rüttiger, L., Brandt, N., Moeller, C. K., Kindler, J., Sausbier, U., Zimmermann, U., van Straaten, H., Neuhuber, W., Engel, J., Knipper, M., Ruth, P., Schulze, H. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing. PMID:22691916
From stage to age in variable environments: life expectancy and survivorship.
Tuljapurkar, Shripad; Horvitz, Carol C
2006-06-01
Stage-based demographic data are now available on many species of plants and some animals, and they often display temporal and spatial variability. We provide exact formulas to compute age-specific life expectancy and survivorship from stage-based data for three models of temporal variability: cycles, serially independent random variation, and a Markov chain. These models provide a comprehensive description of patterns of temporal variation. Our formulas describe the effects of cohort (birth) environmental condition on mortality at all ages, and of the effects on survivorship of environmental variability experienced over the course of life. This paper complements existing methods for time-invariant stage-based data, and adds to the information on population growth and dynamics available from stochastic demography.
Li, Chen; Nagasaki, Masao; Saito, Ayumu; Miyano, Satoru
2010-04-01
With an accumulation of in silico data obtained by simulating large-scale biological networks, a new interest of research is emerging for elucidating how living organism functions over time in cells. Investigating the dynamic features of current computational models promises a deeper understanding of complex cellular processes. This leads us to develop a method that utilizes structural properties of the model over all simulation time steps. Further, user-friendly overviews of dynamic behaviors can be considered to provide a great help in understanding the variations of system mechanisms. We propose a novel method for constructing and analyzing a so-called active state transition diagram (ASTD) by using time-course simulation data of a high-level Petri net. Our method includes two new algorithms. The first algorithm extracts a series of subnets (called temporal subnets) reflecting biological components contributing to the dynamics, while retaining positive mathematical qualities. The second one creates an ASTD composed of unique temporal subnets. ASTD provides users with concise information allowing them to grasp and trace how a key regulatory subnet and/or a network changes with time. The applicability of our method is demonstrated by the analysis of the underlying model for circadian rhythms in Drosophila. Building ASTD is a useful means to convert a hybrid model dealing with discrete, continuous and more complicated events to finite time-dependent states. Based on ASTD, various analytical approaches can be applied to obtain new insights into not only systematic mechanisms but also dynamics.
Frelat, Romain; Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A; Möllmann, Christian
2017-01-01
Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs.
The Effect of Dynamic Pitch on Speech Recognition in Temporally Modulated Noise.
Shen, Jing; Souza, Pamela E
2017-09-18
This study investigated the effect of dynamic pitch in target speech on older and younger listeners' speech recognition in temporally modulated noise. First, we examined whether the benefit from dynamic-pitch cues depends on the temporal modulation of noise. Second, we tested whether older listeners can benefit from dynamic-pitch cues for speech recognition in noise. Last, we explored the individual factors that predict the amount of dynamic-pitch benefit for speech recognition in noise. Younger listeners with normal hearing and older listeners with varying levels of hearing sensitivity participated in the study, in which speech reception thresholds were measured with sentences in nonspeech noise. The younger listeners benefited more from dynamic pitch for speech recognition in temporally modulated noise than unmodulated noise. Older listeners were able to benefit from the dynamic-pitch cues but received less benefit from noise modulation than the younger listeners. For those older listeners with hearing loss, the amount of hearing loss strongly predicted the dynamic-pitch benefit for speech recognition in noise. Dynamic-pitch cues aid speech recognition in noise, particularly when noise has temporal modulation. Hearing loss negatively affects the dynamic-pitch benefit to older listeners with significant hearing loss.
The Effect of Dynamic Pitch on Speech Recognition in Temporally Modulated Noise
Souza, Pamela E.
2017-01-01
Purpose This study investigated the effect of dynamic pitch in target speech on older and younger listeners' speech recognition in temporally modulated noise. First, we examined whether the benefit from dynamic-pitch cues depends on the temporal modulation of noise. Second, we tested whether older listeners can benefit from dynamic-pitch cues for speech recognition in noise. Last, we explored the individual factors that predict the amount of dynamic-pitch benefit for speech recognition in noise. Method Younger listeners with normal hearing and older listeners with varying levels of hearing sensitivity participated in the study, in which speech reception thresholds were measured with sentences in nonspeech noise. Results The younger listeners benefited more from dynamic pitch for speech recognition in temporally modulated noise than unmodulated noise. Older listeners were able to benefit from the dynamic-pitch cues but received less benefit from noise modulation than the younger listeners. For those older listeners with hearing loss, the amount of hearing loss strongly predicted the dynamic-pitch benefit for speech recognition in noise. Conclusions Dynamic-pitch cues aid speech recognition in noise, particularly when noise has temporal modulation. Hearing loss negatively affects the dynamic-pitch benefit to older listeners with significant hearing loss. PMID:28800370
Kuesten, Carla; Bi, Jian
2018-06-03
Conventional drivers of liking analysis was extended with a time dimension into temporal drivers of liking (TDOL) based on functional data analysis methodology and non-additive models for multiple-attribute time-intensity (MATI) data. The non-additive models, which consider both direct effects and interaction effects of attributes to consumer overall liking, include Choquet integral and fuzzy measure in the multi-criteria decision-making, and linear regression based on variance decomposition. Dynamics of TDOL, i.e., the derivatives of the relative importance functional curves were also explored. Well-established R packages 'fda', 'kappalab' and 'relaimpo' were used in the paper for developing TDOL. Applied use of these methods shows that the relative importance of MATI curves offers insights for understanding the temporal aspects of consumer liking for fruit chews.
Modeling Analysis of Biomechanical Changes of Middle Ear and Cochlea in Otitis Media
NASA Astrophysics Data System (ADS)
Gan, Rong Z.; Zhang, Xiangming; Guan, Xiying
2011-11-01
A comprehensive finite element (FE) model of the human ear including the ear canal, middle ear, and spiral cochlea was developed using histological sections of human temporal bone. The cochlea was modeled with three chambers separated by the basilar membrane and Reissner's membrane and filled with perilymphatic fluid. The viscoelastic material behavior was applied to middle ear soft tissues based on dynamic measurements of tissues in our lab. The model was validated using the experimental data obtained in human temporal bones and then used to simulate various stages of otitis media (OM) including the changes of morphology, mechanical properties, pressure, and fluid level in the middle ear. Function alterations of the middle ear and cochlea in OM were derived from the model and compared with the measurements from temporal bones. This study indicates that OM can be simulated in the FE model to predict the hearing loss induced by biomechanical changes of the middle ear and cochlea.
Network traffic behaviour near phase transition point
NASA Astrophysics Data System (ADS)
Lawniczak, A. T.; Tang, X.
2006-03-01
We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.
Wagner, Tyler; Irwin, Brian J.; James R. Bence,; Daniel B. Hayes,
2016-01-01
Monitoring to detect temporal trends in biological and habitat indices is a critical component of fisheries management. Thus, it is important that management objectives are linked to monitoring objectives. This linkage requires a definition of what constitutes a management-relevant “temporal trend.” It is also important to develop expectations for the amount of time required to detect a trend (i.e., statistical power) and for choosing an appropriate statistical model for analysis. We provide an overview of temporal trends commonly encountered in fisheries management, review published studies that evaluated statistical power of long-term trend detection, and illustrate dynamic linear models in a Bayesian context, as an additional analytical approach focused on shorter term change. We show that monitoring programs generally have low statistical power for detecting linear temporal trends and argue that often management should be focused on different definitions of trends, some of which can be better addressed by alternative analytical approaches.
Role of Updraft Velocity in Temporal Variability of Global Cloud Hydrometeor Number
NASA Technical Reports Server (NTRS)
Sullivan, Sylvia C.; Lee, Dong Min; Oreopoulos, Lazaros; Nenes, Athanasios
2016-01-01
Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.
Role of updraft velocity in temporal variability of global cloud hydrometeor number
Sullivan, Sylvia C.; Lee, Dongmin; Oreopoulos, Lazaros; ...
2016-05-16
Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Communitymore » Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Finally, coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.« less
Role of updraft velocity in temporal variability of global cloud hydrometeor number
NASA Astrophysics Data System (ADS)
Sullivan, Sylvia C.; Lee, Dongmin; Oreopoulos, Lazaros; Nenes, Athanasios
2016-05-01
Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demiralp, Metin
This work focuses on the dynamics of a system of quantum multi harmonic oscillators whose Hamiltonian is conic in positions and momenta with time variant coefficients. While it is simple, this system is useful for modeling the dynamics of a number of systems in contemporary sciences where the equations governing spatial or temporal changes are described by sets of ODEs. The dynamical causal models used readily in neuroscience can be indirectly described by these systems. In this work, we want to show that it is possible to describe these systems using quantum wave function type entities and expectations if themore » dynamic of the system is related to a set of ODEs.« less
NASA Astrophysics Data System (ADS)
Alexander, R. B.; Boyer, E. W.; Schwarz, G. E.; Smith, R. A.
2013-12-01
Estimating water and material stores and fluxes in watershed studies is frequently complicated by uncertainties in quantifying hydrological and biogeochemical effects of factors such as land use, soils, and climate. Although these process-related effects are commonly measured and modeled in separate catchments, researchers are especially challenged by their complexity across catchments and diverse environmental settings, leading to a poor understanding of how model parameters and prediction uncertainties vary spatially. To address these concerns, we illustrate the use of Bayesian hierarchical modeling techniques with a dynamic version of the spatially referenced watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes). The dynamic SPARROW model is designed to predict streamflow and other water cycle components (e.g., evapotranspiration, soil and groundwater storage) for monthly varying hydrological regimes, using mechanistic functions, mass conservation constraints, and statistically estimated parameters. In this application, the model domain includes nearly 30,000 NHD (National Hydrologic Data) stream reaches and their associated catchments in the Susquehanna River Basin. We report the results of our comparisons of alternative models of varying complexity, including models with different explanatory variables as well as hierarchical models that account for spatial and temporal variability in model parameters and variance (error) components. The model errors are evaluated for changes with season and catchment size and correlations in time and space. The hierarchical models consist of a two-tiered structure in which climate forcing parameters are modeled as random variables, conditioned on watershed properties. Quantification of spatial and temporal variations in the hydrological parameters and model uncertainties in this approach leads to more efficient (lower variance) and less biased model predictions throughout the river network. Moreover, predictions of water-balance components are reported according to probabilistic metrics (e.g., percentiles, prediction intervals) that include both parameter and model uncertainties. These improvements in predictions of streamflow dynamics can inform the development of more accurate predictions of spatial and temporal variations in biogeochemical stores and fluxes (e.g., nutrients and carbon) in watersheds.
Modelling larval dispersal dynamics of common sole (Solea solea) along the western Iberian coast
NASA Astrophysics Data System (ADS)
Tanner, Susanne E.; Teles-Machado, Ana; Martinho, Filipe; Peliz, Álvaro; Cabral, Henrique N.
2017-08-01
Individual-based coupled physical-biological models have become the standard tool for studying ichthyoplankton dynamics and assessing fish recruitment. Here, common sole (Solea solea L.), a flatfish of high commercial importance in Europe was used to evaluate transport of eggs and larvae and investigate the connectivity between spawning and nursery areas along the western Iberian coast as spatio-temporal variability in dispersal and recruitment patterns can result in very strong or weak year-classes causing large fluctuations in stock size. A three-dimensional particle tracking model coupled to Regional Ocean Modelling System model was used to investigate variability of sole larvae dispersal along the western Iberian coast over a five-year period (2004-2009). A sensitivity analysis evaluating: (1) the importance of diel vertical migrations of larvae and (2) the size of designated recruitment areas was performed. Results suggested that connectivity patterns of sole larvae dispersal and their spatio-temporal variability are influenced by the configuration of the coast with its topographical structures and thus the suitable recruitment area available as well as the wind-driven mesoscale circulation along the Iberian coast.
Higher temporal variability of forest breeding bird communities in fragmented landscapes
Boulinier, T.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Flather, C.H.; Pollock, K.H.
1998-01-01
Understanding the relationship between animal community dynamics and landscape structure has become a priority for biodiversity conservation. In particular, predicting the effects of habitat destruction that confine species to networks of small patches is an important prerequisite to conservation plan development. Theoretical models that predict the occurrence of species in fragmented landscapes, and relationships between stability and diversity do exist. However, reliable empirical investigations of the dynamics of biodiversity have been prevented by differences in species detection probabilities among landscapes. Using long-term data sampled at a large spatial scale in conjunction with a capture-recapture approach, we developed estimates of parameters of community changes over a 22-year period for forest breeding birds in selected areas of the eastern United States. We show that forest fragmentation was associated not only with a reduced number of forest bird species, but also with increased temporal variability in the number of species. This higher temporal variability was associated with higher local extinction and turnover rates. These results have major conservation implications. Moreover, the approach used provides a practical tool for the study of the dynamics of biodiversity.
NASA Astrophysics Data System (ADS)
Lin, Daw-Tung; Ligomenides, Panos A.; Dayhoff, Judith E.
1993-08-01
Inspired from the time delays that occur in neurobiological signal transmission, we describe an adaptive time delay neural network (ATNN) which is a powerful dynamic learning technique for spatiotemporal pattern transformation and temporal sequence identification. The dynamic properties of this network are formulated through the adaptation of time-delays and synapse weights, which are adjusted on-line based on gradient descent rules according to the evolution of observed inputs and outputs. We have applied the ATNN to examples that possess spatiotemporal complexity, with temporal sequences that are completed by the network. The ATNN is able to be applied to pattern completion. Simulation results show that the ATNN learns the topology of a circular and figure eight trajectories within 500 on-line training iterations, and reproduces the trajectory dynamically with very high accuracy. The ATNN was also trained to model the Fourier series expansion of the sum of different odd harmonics. The resulting network provides more flexibility and efficiency than the TDNN and allows the network to seek optimal values for time-delays as well as optimal synapse weights.
SPATIO-TEMPORAL ANALYSIS OF TOTAL NITRATE CONCENTRATIONS USING DYNAMIC STATISTICAL MODELS
Atmospheric concentrations of total nitrate (TNO3), defined here as gas-phase nitric acid plus particle-phase nitrate, are difficult to simulate in numerical air quality models due to the presence of a variety of formation pathways and loss mechanisms, some of which ar...
Can dynamically downscaled climate model outputs improve pojections of extreme precipitation events?
Many of the storms that generate damaging floods are caused by locally intense, sub-daily precipitation, yet the spatial and temporal resolution of the most widely available climate model outputs are both too coarse to simulate these events. Thus there is often a disconnect betwe...
Learning of spatio-temporal codes in a coupled oscillator system.
Orosz, Gábor; Ashwin, Peter; Townley, Stuart
2009-07-01
In this paper, we consider a learning strategy that allows one to transmit information between two coupled phase oscillator systems (called teaching and learning systems) via frequency adaptation. The dynamics of these systems can be modeled with reference to a number of partially synchronized cluster states and transitions between them. Forcing the teaching system by steady but spatially nonhomogeneous inputs produces cyclic sequences of transitions between the cluster states, that is, information about inputs is encoded via a "winnerless competition" process into spatio-temporal codes. The large variety of codes can be learned by the learning system that adapts its frequencies to those of the teaching system. We visualize the dynamics using "weighted order parameters (WOPs)" that are analogous to "local field potentials" in neural systems. Since spatio-temporal coding is a mechanism that appears in olfactory systems, the developed learning rules may help to extract information from these neural ensembles.
Transition Characteristic Analysis of Traffic Evolution Process for Urban Traffic Network
Chen, Hong; Li, Yang
2014-01-01
The characterization of the dynamics of traffic states remains fundamental to seeking for the solutions of diverse traffic problems. To gain more insights into traffic dynamics in the temporal domain, this paper explored temporal characteristics and distinct regularity in the traffic evolution process of urban traffic network. We defined traffic state pattern through clustering multidimensional traffic time series using self-organizing maps and construct a pattern transition network model that is appropriate for representing and analyzing the evolution progress. The methodology is illustrated by an application to data flow rate of multiple road sections from Network of Shenzhen's Nanshan District, China. Analysis and numerical results demonstrated that the methodology permits extracting many useful traffic transition characteristics including stability, preference, activity, and attractiveness. In addition, more information about the relationships between these characteristics was extracted, which should be helpful in understanding the complex behavior of the temporal evolution features of traffic patterns. PMID:24982969
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guanglei, E-mail: guangleizhang@bjtu.edu.cn; Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044; Pu, Huangsheng
2015-02-23
Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but alsomore » make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.« less
Linking dynamics of the inhibitory network to the input structure
Komarov, Maxim
2017-01-01
Networks of inhibitory interneurons are found in many distinct classes of biological systems. Inhibitory interneurons govern the dynamics of principal cells and are likely to be critically involved in the coding of information. In this theoretical study, we describe the dynamics of a generic inhibitory network in terms of low-dimensional, simplified rate models. We study the relationship between the structure of external input applied to the network and the patterns of activity arising in response to that stimulation. We found that even a minimal inhibitory network can generate a great diversity of spatio-temporal patterning including complex bursting regimes with non-trivial ratios of burst firing. Despite the complexity of these dynamics, the network’s response patterns can be predicted from the rankings of the magnitudes of external inputs to the inhibitory neurons. This type of invariant dynamics is robust to noise and stable in densely connected networks with strong inhibitory coupling. Our study predicts that the response dynamics generated by an inhibitory network may provide critical insights about the temporal structure of the sensory input it receives. PMID:27650865
Attentional load and attentional boost: a review of data and theory.
Swallow, Khena M; Jiang, Yuhong V
2013-01-01
Both perceptual and cognitive processes are limited in capacity. As a result, attention is selective, prioritizing items and tasks that are important for adaptive behavior. However, a number of recent behavioral and neuroimaging studies suggest that, at least under some circumstances, increasing attention to one task can enhance performance in a second task (e.g., the attentional boost effect). Here we review these findings and suggest a new theoretical framework, the dual-task interaction model, that integrates these findings with current views of attentional selection. To reconcile the attentional boost effect with the effects of attentional load, we suggest that temporal selection results in a temporally specific enhancement across modalities, tasks, and spatial locations. Moreover, the effects of temporal selection may be best observed when the attentional system is optimally tuned to the temporal dynamics of incoming stimuli. Several avenues of research motivated by the dual-task interaction model are then discussed.
Extinction phase transitions in a model of ecological and evolutionary dynamics
NASA Astrophysics Data System (ADS)
Barghathi, Hatem; Tackkett, Skye; Vojta, Thomas
2017-07-01
We study the non-equilibrium phase transition between survival and extinction of spatially extended biological populations using an agent-based model. We especially focus on the effects of global temporal fluctuations of the environmental conditions, i.e., temporal disorder. Using large-scale Monte-Carlo simulations of up to 3 × 107 organisms and 105 generations, we find the extinction transition in time-independent environments to be in the well-known directed percolation universality class. In contrast, temporal disorder leads to a highly unusual extinction transition characterized by logarithmically slow population decay and enormous fluctuations even for large populations. The simulations provide strong evidence for this transition to be of exotic infinite-noise type, as recently predicted by a renormalization group theory. The transition is accompanied by temporal Griffiths phases featuring a power-law dependence of the life time on the population size.
Attentional Load and Attentional Boost: A Review of Data and Theory
Swallow, Khena M.; Jiang, Yuhong V.
2013-01-01
Both perceptual and cognitive processes are limited in capacity. As a result, attention is selective, prioritizing items and tasks that are important for adaptive behavior. However, a number of recent behavioral and neuroimaging studies suggest that, at least under some circumstances, increasing attention to one task can enhance performance in a second task (e.g., the attentional boost effect). Here we review these findings and suggest a new theoretical framework, the dual-task interaction model, that integrates these findings with current views of attentional selection. To reconcile the attentional boost effect with the effects of attentional load, we suggest that temporal selection results in a temporally specific enhancement across modalities, tasks, and spatial locations. Moreover, the effects of temporal selection may be best observed when the attentional system is optimally tuned to the temporal dynamics of incoming stimuli. Several avenues of research motivated by the dual-task interaction model are then discussed. PMID:23730294
Agent-Based Model Approach to Complex Phenomena in Real Economy
NASA Astrophysics Data System (ADS)
Iyetomi, H.; Aoyama, H.; Fujiwara, Y.; Ikeda, Y.; Souma, W.
An agent-based model for firms' dynamics is developed. The model consists of firm agents with identical characteristic parameters and a bank agent. Dynamics of those agents are described by their balance sheets. Each firm tries to maximize its expected profit with possible risks in market. Infinite growth of a firm directed by the ``profit maximization" principle is suppressed by a concept of ``going concern". Possibility of bankruptcy of firms is also introduced by incorporating a retardation effect of information on firms' decision. The firms, mutually interacting through the monopolistic bank, become heterogeneous in the course of temporal evolution. Statistical properties of firms' dynamics obtained by simulations based on the model are discussed in light of observations in the real economy.
NASA Astrophysics Data System (ADS)
Huang, Libai
2015-03-01
The frontier in solar energy conversion now lies in learning how to integrate functional entities across multiple length scales to create optimal devices. To address this new frontier, I will discuss our recent efforts on elucidating multi-scale energy transfer, migration, and dissipation processes with simultaneous femtosecond temporal resolution and nanometer spatial resolution. We have developed ultrafast microscopy that combines ultrafast spectroscopy with optical microscopy to map exciton dynamics and transport with simultaneous ultrafast time resolution and diffraction-limited spatial resolution. We have employed pump-probe transient absorption microscopy to elucidate morphology and structure dependent exciton dynamics and transport in single nanostructures and molecular assemblies. More specifically, (1) We have applied transient absorption microscopy (TAM) to probe environmental and structure dependent exciton relaxation pathways in sing-walled carbon nanotubes (SWNTs) by mapping dynamics in individual pristine SWNTs with known structures. (2) We have systematically measured and modeled the optical properties of the Frenkel excitons in self-assembled porphyrin tubular aggregates that represent an analog to natural photosynthetic antennae. Using a combination of ultrafast optical microscopy and stochastic exciton modeling, we address exciton transport and relaxation pathways, especially those related to disorder.
Modeling of Receptor Tyrosine Kinase Signaling: Computational and Experimental Protocols.
Fey, Dirk; Aksamitiene, Edita; Kiyatkin, Anatoly; Kholodenko, Boris N
2017-01-01
The advent of systems biology has convincingly demonstrated that the integration of experiments and dynamic modelling is a powerful approach to understand the cellular network biology. Here we present experimental and computational protocols that are necessary for applying this integrative approach to the quantitative studies of receptor tyrosine kinase (RTK) signaling networks. Signaling by RTKs controls multiple cellular processes, including the regulation of cell survival, motility, proliferation, differentiation, glucose metabolism, and apoptosis. We describe methods of model building and training on experimentally obtained quantitative datasets, as well as experimental methods of obtaining quantitative dose-response and temporal dependencies of protein phosphorylation and activities. The presented methods make possible (1) both the fine-grained modeling of complex signaling dynamics and identification of salient, course-grained network structures (such as feedback loops) that bring about intricate dynamics, and (2) experimental validation of dynamic models.
Jolivet, Renaud; Coggan, Jay S.; Allaman, Igor; Magistretti, Pierre J.
2015-01-01
Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging. PMID:25719367
Jolivet, Renaud; Coggan, Jay S; Allaman, Igor; Magistretti, Pierre J
2015-02-01
Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain's metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.
Global continental and ocean basin reconstructions since 200 Ma
NASA Astrophysics Data System (ADS)
Seton, M.; Müller, R. D.; Zahirovic, S.; Gaina, C.; Torsvik, T.; Shephard, G.; Talsma, A.; Gurnis, M.; Turner, M.; Maus, S.; Chandler, M.
2012-07-01
Global plate motion models provide a spatial and temporal framework for geological data and have been effective tools for exploring processes occurring at the earth's surface. However, published models either have insufficient temporal coverage or fail to treat tectonic plates in a self-consistent manner. They usually consider the motions of selected features attached to tectonic plates, such as continents, but generally do not explicitly account for the continuous evolution of plate boundaries through time. In order to explore the coupling between the surface and mantle, plate models are required that extend over at least a few hundred million years and treat plates as dynamic features with dynamically evolving plate boundaries. We have constructed a new type of global plate motion model consisting of a set of continuously-closing topological plate polygons with associated plate boundaries and plate velocities since the break-up of the supercontinent Pangea. Our model is underpinned by plate motions derived from reconstructing the seafloor-spreading history of the ocean basins and motions of the continents and utilizes a hybrid absolute reference frame, based on a moving hotspot model for the last 100 Ma, and a true-polar wander corrected paleomagnetic model for 200 to 100 Ma. Detailed regional geological and geophysical observations constrain plate boundary inception or cessation, and time-dependent geometry. Although our plate model is primarily designed as a reference model for a new generation of geodynamic studies by providing the surface boundary conditions for the deep earth, it is also useful for studies in disparate fields when a framework is needed for analyzing and interpreting spatio-temporal data.
A coevolving model based on preferential triadic closure for social media networks
Li, Menghui; Zou, Hailin; Guan, Shuguang; Gong, Xiaofeng; Li, Kun; Di, Zengru; Lai, Choy-Heng
2013-01-01
The dynamical origin of complex networks, i.e., the underlying principles governing network evolution, is a crucial issue in network study. In this paper, by carrying out analysis to the temporal data of Flickr and Epinions–two typical social media networks, we found that the dynamical pattern in neighborhood, especially the formation of triadic links, plays a dominant role in the evolution of networks. We thus proposed a coevolving dynamical model for such networks, in which the evolution is only driven by the local dynamics–the preferential triadic closure. Numerical experiments verified that the model can reproduce global properties which are qualitatively consistent with the empirical observations. PMID:23979061
Momentum Flux Increases and Coherent-Structure Dynamics in a Subsonic Axisymmetric Free Jet
1988-08-19
CONTENTS I1. INTRODUCTION ....................................... .. 2. THE NUMERICAL MODEL ...used to study both planar and axisymmetric shear layers. A number of these have modeled temporally developing mixing layers (Patnaik et al. 1976...Riley & Metcalfe 1980; Moin et al. 1985). Others have modeled spatially developing layers (Ashurst 1979: Davis & Moore 1985; Grinstein et al. 1986), which
Evaluating crown fire rate of spread predictions from physics-based models
C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont
2015-01-01
Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...
A graphical vector autoregressive modelling approach to the analysis of electronic diary data
2010-01-01
Background In recent years, electronic diaries are increasingly used in medical research and practice to investigate patients' processes and fluctuations in symptoms over time. To model dynamic dependence structures and feedback mechanisms between symptom-relevant variables, a multivariate time series method has to be applied. Methods We propose to analyse the temporal interrelationships among the variables by a structural modelling approach based on graphical vector autoregressive (VAR) models. We give a comprehensive description of the underlying concepts and explain how the dependence structure can be recovered from electronic diary data by a search over suitable constrained (graphical) VAR models. Results The graphical VAR approach is applied to the electronic diary data of 35 obese patients with and without binge eating disorder (BED). The dynamic relationships for the two subgroups between eating behaviour, depression, anxiety and eating control are visualized in two path diagrams. Results show that the two subgroups of obese patients with and without BED are distinguishable by the temporal patterns which influence their respective eating behaviours. Conclusion The use of the graphical VAR approach for the analysis of electronic diary data leads to a deeper insight into patient's dynamics and dependence structures. An increasing use of this modelling approach could lead to a better understanding of complex psychological and physiological mechanisms in different areas of medical care and research. PMID:20359333
A dynamic nitrogen budget model of a Pacific Northwest salt ...
The role of salt marshes as either nitrogen sinks or sources in relation to their adjacent estuaries has been a focus of ecosystem service research for many decades. The complex hydrology of these systems is driven by tides, upland surface runoff, precipitation, evapotranspiration, and groundwater inputs, all of which can vary significantly on timescales ranging from sub-daily to seasonal. Additionally, many of these hydrologic drivers may vary with a changing climate. Due to this temporal variation in hydrology, it is difficult to represent salt marsh nitrogen budgets as steady-state models. A dynamic nitrogen budget model that varies based on hydrologic conditions may more accurately describe the role of salt marshes in nitrogen cycling. In this study we aim to develop a hydrologic model that is coupled with a process-based nitrogen model to simulate nitrogen dynamics at multiple temporal scales. To construct and validate our model we will use hydrologic and nitrogen species data collected from 2010 to present, from a 1.8 hectare salt marsh in the Yaquina Estuary, OR, USA. Hydrologic data include water table levels at two transects, upland tributary flow, tidal channel stage and flow, and vertical hydraulic head gradients. Nitrogen pool data include concentrations of nitrate and ammonium in porewater, tidal channel water, and extracted from soil cores. Nitrogen flux data include denitrification rates, nitrogen concentrations in upland runoff, and tida
Mean field model of acetylcholine mediated dynamics in the cerebral cortex.
Clearwater, J M; Rennie, C J; Robinson, P A
2007-12-01
A recent continuum model of the large scale electrical activity of the cerebral cortex is generalized to include cholinergic modulation. In this model, dynamic modulation of synaptic strength acts over the time scales of nicotinic and muscarinic receptor action. The cortical model is analyzed to determine the effect of acetylcholine (ACh) on its steady states, linear stability, spectrum, and temporal responses to changes in subcortical input. ACh increases the firing rate in steady states of the system. Changing ACh concentration does not introduce oscillatory behavior into the system, but increases the overall spectral power. Model responses to pulses in subcortical input are affected by the tonic level of ACh concentration, with higher levels of ACh increasing the magnitude firing rate response of excitatory cortical neurons to pulses of subcortical input. Numerical simulations are used to explore the temporal dynamics of the model in response to changes in ACh concentration. Evidence is seen of a transition from a state in which intracortical inputs are emphasized to a state where thalamic afferents have enhanced influence. Perturbations in ACh concentration cause changes in the firing rate of cortical neurons, with rapid responses due to fast acting facilitatory effects of nicotinic receptors on subcortical afferents, and slower responses due to muscarinic suppression of intracortical connections. Together, these numerical simulations demonstrate that the actions of ACh could be a significant factor modulating early components of evoked response potentials.
Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.
Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K
2013-03-01
Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.
Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction
Kazantsev, Daniil; Guo, Enyu; Kaestner, Anders; Lionheart, William R. B.; Bent, Julian; Withers, Philip J.; Lee, Peter D.
2016-01-01
X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding. PMID:27002902
NASA Astrophysics Data System (ADS)
Sivandran, G.; Bisht, G.; Ivanov, V. Y.; Bras, R. L.
2008-12-01
A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was applied to the semiarid Walnut Gulch Experimental Watershed in Arizona. The physically-based, distributed nature of the coupled model allows for parameterization and simulation of watershed vegetation-water-energy dynamics on timescales varying from hourly to interannual. The model also allows for explicit spatial representation of processes that vary due to complex topography, such as lateral redistribution of moisture and partitioning of radiation with respect to aspect and slope. Model parameterization and forcing was conducted using readily available databases for topography, soil types, and land use cover as well as the data from network of meteorological stations located within the Walnut Gulch watershed. In order to test the performance of the model, three sets of simulations were conducted over an 11 year period from 1997 to 2007. Two simulations focus on heavily instrumented nested watersheds within the Walnut Gulch basin; (i) Kendall watershed, which is dominated by annual grasses; and (ii) Lucky Hills watershed, which is dominated by a mixture of deciduous and evergreen shrubs. The third set of simulations cover the entire Walnut Gulch Watershed. Model validation and performance were evaluated in relation to three broad categories; (i) energy balance components: the network of meteorological stations were used to validate the key energy fluxes; (ii) water balance components: the network of flumes, rain gauges and soil moisture stations installed within the watershed were utilized to validate the manner in which the model partitions moisture; and (iii) vegetation dynamics: remote sensing products from MODIS were used to validate spatial and temporal vegetation dynamics. Model results demonstrate satisfactory spatial and temporal agreement with observed data, giving confidence that key ecohydrological processes can be adequately represented for future applications of tRIBS+VEGGIE in regional modeling of land-atmosphere interactions.
Dynamic CRM occupancy reflects a temporal map of developmental progression.
Wilczyński, Bartek; Furlong, Eileen E M
2010-06-22
Development is driven by tightly coordinated spatio-temporal patterns of gene expression, which are initiated through the action of transcription factors (TFs) binding to cis-regulatory modules (CRMs). Although many studies have investigated how spatial patterns arise, precise temporal control of gene expression is less well understood. Here, we show that dynamic changes in the timing of CRM occupancy is a prevalent feature common to all TFs examined in a developmental ChIP time course to date. CRMs exhibit complex binding patterns that cannot be explained by the sequence motifs or expression of the TFs themselves. The temporal changes in TF binding are highly correlated with dynamic patterns of target gene expression, which in turn reflect transitions in cellular function during different stages of development. Thus, it is not only the timing of a TF's expression, but also its temporal occupancy in refined time windows, which determines temporal gene expression. Systematic measurement of dynamic CRM occupancy may therefore serve as a powerful method to decode dynamic changes in gene expression driving developmental progression.
Quantization of systems with temporally varying discretization. II. Local evolution moves
NASA Astrophysics Data System (ADS)
Höhn, Philipp A.
2014-10-01
Several quantum gravity approaches and field theory on an evolving lattice involve a discretization changing dynamics generated by evolution moves. Local evolution moves in variational discrete systems (1) are a generalization of the Pachner evolution moves of simplicial gravity models, (2) update only a small subset of the dynamical data, (3) change the number of kinematical and physical degrees of freedom, and (4) generate a dynamical (or canonical) coarse graining or refining of the underlying discretization. To systematically explore such local moves and their implications in the quantum theory, this article suitably expands the quantum formalism for global evolution moves, constructed in Paper I [P. A. Höhn, "Quantization of systems with temporally varying discretization. I. Evolving Hilbert spaces," J. Math. Phys. 55, 083508 (2014); e-print arXiv:1401.6062 [gr-qc
Temporal Dynamics of the Human Vaginal Microbiota
Gajer, Pawel; Brotman, Rebecca M.; Bai, Guoyun; Sakamoto, Joyce; Schütte, Ursel M.E.; Zhong, Xue; Koenig, Sara S.K.; Fu, Li; Ma, Zhanshan; Zhou, Xia; Abdo, Zaid; Forney, Larry J.; Ravel, Jacques
2012-01-01
Elucidating the factors that impinge on the stability of bacterial communities in the vagina may help in predicting the risk of diseases that affect women’s health. Here, we describe the temporal dynamics of the composition of vaginal bacterial communities in 32 reproductive age women over a 16-week period. The analysis revealed the dynamics of five major classes of bacterial communities and showed that some communities change markedly over short time periods, whereas others are relatively stable. Modeling community stability using new quantitative measures indicates that deviation from stability correlates with time in the menstrual cycle, bacterial community composition and sexual activity. The women studied are healthy, thus it appears that neither variation in community composition per se, nor higher levels of observed diversity (co-dominance) are necessarily indicative of dysbiosis, in which there is microbial imbalance accompanied by symptoms. PMID:22553250
NASA Technical Reports Server (NTRS)
Rundle, John B.
1988-01-01
The idea that earthquakes represent a fluctuation about the long-term motion of plates is expressed mathematically through the fluctuation hypothesis, under which all physical quantities which pertain to the occurance of earthquakes are required to depend on the difference between the present state of slip on the fault and its long-term average. It is shown that under certain circumstances the model fault dynamics undergo a sudden transition from a spatially ordered, temporally disordered state to a spatially disordered, temporally ordered state, and that the latter stages are stable for long intervals of time. For long enough faults, the dynamics are evidently chaotic. The methods developed are then used to construct a detailed model for earthquake dynamics in southern California. The result is a set of slip-time histories for all the major faults, which are similar to data obtained by geological trenching studies. Although there is an element of periodicity to the events, the patterns shift, change and evolve with time. Time scales for pattern evolution seem to be of the order of a thousand years for average recurring intervals of about a hundred years.
Tisseuil, Clément; Velo, Enkelejda; Bino, Silvia; Kadriaj, Perparim; Mersini, Kujtim; Shukullari, Ada; Simaku, Artan; Rogozi, Elton; Caputo, Beniamino; Ducheyne, Els; Della Torre, Alessandra; Reiter, Paul; Gilbert, Marius
2018-02-01
The increasing spread of the Asian tiger mosquito, Aedes albopictus, in Europe and US raises public health concern due to the species competence to transmit several exotic human arboviruses, among which dengue, chikungunya and Zika, and urges the development of suitable modeling approach to forecast the spatial and temporal distribution of the mosquito. Here we developed a dynamical species distribution modeling approach forecasting Ae. albopictus eggs abundance at high spatial (0.01 degree WGS84) and temporal (weekly) resolution over 10 Balkan countries, using temperature times series of Modis data products and altitude as input predictors. The model was satisfactorily calibrated and validated over Albania based observed eggs abundance data weekly monitored during three years. For a given week of the year, eggs abundance was mainly predicted by the number of eggs and the mean temperature recorded in the preceding weeks. That is, results are in agreement with the biological cycle of the mosquito, reflecting the effect temperature on eggs spawning, maturation and hatching. The model, seeded by initial egg values derived from a second model, was then used to forecast the spatial and temporal distribution of eggs abundance over the selected Balkan countries, weekly in 2011, 2012 and 2013. The present study is a baseline to develop an easy-handling forecasting model able to provide information useful for promoting active surveillance and possibly prevention of Ae. albopictus colonization in presently non-infested areas in the Balkans as well as in other temperate regions.
Kotasidis, F A; Mehranian, A; Zaidi, H
2016-05-07
Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.
NASA Astrophysics Data System (ADS)
Kotasidis, F. A.; Mehranian, A.; Zaidi, H.
2016-05-01
Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image reconstruction can substantially prevent kinetic parameter error propagation either from erroneous kinetic modelling, inter-frame motion or emission/transmission mismatch. Furthermore, we demonstrate the benefits of TOF in parameter estimation when conventional post-reconstruction (3D) methods are used and compare the potential improvements to direct 4D methods. Further improvements could possibly be achieved in the future by combining TOF direct 4D image reconstruction with adaptive kinetic models and inter-frame motion correction schemes.
NASA Astrophysics Data System (ADS)
Taramelli, A.; Zanuttigh, B.; Zucca, F.; Dejana, M.; Valentini, E.
2011-12-01
Coastal marine and inland landforms are dynamic systems undergoing adjustments in form at different time and space scales in response to varying conditions external to the system. Coastal emerged and shallow submerged nearshore areas, affected by short-term perturbations, return to their pre-disturbance morphology and generally reach a dynamic equilibrium. Worldwide in the last century we have experienced in increased coastal inundation, erosion and ecosystem losses. However, erosion can result from a number of other factors, such as altered wind and current patterns, high-energy waves, and reduced fluvial sediment inputs. Direct impacts of human activities, including reclamation of coastal wetlands, deforestation, damming, channelization, diversions of coastal waterways, construction of seawalls and other structures, alter circulation patterns. Also indirect human impacts such as land-uses changes through time (eg. from agricultural to industrial use) have affected coastal ecosystems. The objective of this research is to propose innovative remote sensing applications to monitor specific coastal processes in order to use them within a physical modelling to quantify and model their time evolution. The research was applied in two dynamic and densely populated deltas and coastal areas (the Po and the Plymouth delta) by combining multi-sensor spaceborne remote sensing (SAR and OPTICAL) to physical modelling. The main results are: a) deformation and spatiotemporal variations maps in coastal morphology with a special focus to point out the temporal subsidence evolution, b) inter and intra-annual change detection maps that are both used a to feed a coastal physical modelling (MIKE 21). The basic strategy was to highlight the different components of the coastal system environment through: 1) deformation and spatio-temporal variations maps of coastal morphology, by the use of time-stack from 1992 up today of ESA SAR data (ERS-1/2 and ENVISAT-ASAR sensors) were used to produce deformation maps and to point out the temporal evolution and 2) multitemporal hyperspectral endmembers fractions map of coastal morphology, 3) numerical model well-established through remote sensed based procedures and results in order to produce spatio-temporal scenario in coastal areas. The objective was to locate and characterize important coastal indicators for different regions using multitemporal data from the multi-hyperspectral sensors, as well as topographic elevation, SAR and derived products (eg. coherence) data. The identification of different indicators was based on land spectral properties, topography/landforms (low topography), disturbed areas (agricultural, construction), and vegetation distribution. Moreover, the indicators were assessed at seasonal and interannual time scales over two temporal decades horizons starting from 1990 and 2000.
Child allowances, fertility, and chaotic dynamics.
Chen, Hung-Ju; Li, Ming-Chia
2013-06-01
This paper analyzes the dynamics in an overlapping generations model with the provision of child allowances. Fertility is an increasing function of child allowances and there exists a threshold effect of the marginal effect of child allowances on fertility. We show that if the effectiveness of child allowances is sufficiently high, an intermediate-sized tax rate will be enough to generate chaotic dynamics. Besides, a decrease in the inter-temporal elasticity of substitution will prevent the occurrence of irregular cycles.
High-frame-rate full-vocal-tract 3D dynamic speech imaging.
Fu, Maojing; Barlaz, Marissa S; Holtrop, Joseph L; Perry, Jamie L; Kuehn, David P; Shosted, Ryan K; Liang, Zhi-Pei; Sutton, Bradley P
2017-04-01
To achieve high temporal frame rate, high spatial resolution and full-vocal-tract coverage for three-dimensional dynamic speech MRI by using low-rank modeling and sparse sampling. Three-dimensional dynamic speech MRI is enabled by integrating a novel data acquisition strategy and an image reconstruction method with the partial separability model: (a) a self-navigated sparse sampling strategy that accelerates data acquisition by collecting high-nominal-frame-rate cone navigator sand imaging data within a single repetition time, and (b) are construction method that recovers high-quality speech dynamics from sparse (k,t)-space data by enforcing joint low-rank and spatiotemporal total variation constraints. The proposed method has been evaluated through in vivo experiments. A nominal temporal frame rate of 166 frames per second (defined based on a repetition time of 5.99 ms) was achieved for an imaging volume covering the entire vocal tract with a spatial resolution of 2.2 × 2.2 × 5.0 mm 3 . Practical utility of the proposed method was demonstrated via both validation experiments and a phonetics investigation. Three-dimensional dynamic speech imaging is possible with full-vocal-tract coverage, high spatial resolution and high nominal frame rate to provide dynamic speech data useful for phonetic studies. Magn Reson Med 77:1619-1629, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
A class of cellular automata modeling winnerless competition
NASA Astrophysics Data System (ADS)
Afraimovich, V.; Ordaz, F. C.; Urías, J.
2002-06-01
Neural units introduced by Rabinovich et al. ("Sensory coding with dynamically competitive networks," UCSD and CIT, February 1999) motivate a class of cellular automata (CA) where spatio-temporal encoding is feasible. The spatio-temporal information capacity of a CA is estimated by the information capacity of the attractor set, which happens to be finitely specified. Two-dimensional CA are studied in detail. An example is given for which the attractor is not a subshift.
Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Youngsoo; Carlberg, Kevin Thomas
Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over allmore » space and time in a weighted ℓ 2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.« less
Marinkovic, Ksenija; Courtney, Maureen G.; Witzel, Thomas; Dale, Anders M.; Halgren, Eric
2014-01-01
Although a crucial role of the fusiform gyrus (FG) in face processing has been demonstrated with a variety of methods, converging evidence suggests that face processing involves an interactive and overlapping processing cascade in distributed brain areas. Here we examine the spatio-temporal stages and their functional tuning to face inversion, presence and configuration of inner features, and face contour in healthy subjects during passive viewing. Anatomically-constrained magnetoencephalography (aMEG) combines high-density whole-head MEG recordings and distributed source modeling with high-resolution structural MRI. Each person's reconstructed cortical surface served to constrain noise-normalized minimum norm inverse source estimates. The earliest activity was estimated to the occipital cortex at ~100 ms after stimulus onset and was sensitive to an initial coarse level visual analysis. Activity in the right-lateralized ventral temporal area (inclusive of the FG) peaked at ~160 ms and was largest to inverted faces. Images containing facial features in the veridical and rearranged configuration irrespective of the facial outline elicited intermediate level activity. The M160 stage may provide structural representations necessary for downstream distributed areas to process identity and emotional expression. However, inverted faces additionally engaged the left ventral temporal area at ~180 ms and were uniquely subserved by bilateral processing. This observation is consistent with the dual route model and spared processing of inverted faces in prosopagnosia. The subsequent deflection, peaking at ~240 ms in the anterior temporal areas bilaterally, was largest to normal, upright faces. It may reflect initial engagement of the distributed network subserving individuation and familiarity. These results support dynamic models suggesting that processing of unfamiliar faces in the absence of a cognitive task is subserved by a distributed and interactive neural circuit. PMID:25426044
A multimodal approach to estimating vigilance using EEG and forehead EOG
NASA Astrophysics Data System (ADS)
Zheng, Wei-Long; Lu, Bao-Liang
2017-04-01
Objective. Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. Approach. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. Main results. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. Significance. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.
NASA Astrophysics Data System (ADS)
Molz, F. J.; Faybishenko, B.; Jenkins, E. W.
2012-12-01
Mass and energy fluxes within the soil-plant-atmosphere continuum are highly coupled and inherently nonlinear. The main focus of this presentation is to demonstrate the results of numerical modeling of a system of 4 coupled, nonlinear ordinary differential equations (ODEs), which are used to describe the long-term, rhizosphere processes of soil microbial dynamics, including the competition between nitrogen-fixing bacteria and those unable to fix nitrogen, along with substrate concentration (nutrient supply) and oxygen concentration. Modeling results demonstrate the synchronized patterns of temporal oscillations of competing microbial populations, which are affected by carbon and oxygen concentrations. The temporal dynamics and amplitude of the root exudation process serve as a driving force for microbial and geochemical phenomena, and lead to the development of the Gompetzian dynamics, synchronized oscillations, and phase-space attractors of microbial populations and carbon and oxygen concentrations. The nonlinear dynamic analysis of time series concentrations from the solution of the ODEs was used to identify several types of phase-space attractors, which appear to be dependent on the parameters of the exudation function and Monod kinetic parameters. This phase space analysis was conducted by means of assessing the global and local embedding dimensions, correlation time, capacity and correlation dimensions, and Lyapunov exponents of the calculated model variables defining the phase space. Such results can be used for planning experimental and theoretical studies of biogeochemical processes in the fields of plant nutrition, phyto- and bio-remediation, and other ecological areas.
Modeling the coupled return-spread high frequency dynamics of large tick assets
NASA Astrophysics Data System (ADS)
Curato, Gianbiagio; Lillo, Fabrizio
2015-01-01
Large tick assets, i.e. assets where one tick movement is a significant fraction of the price and bid-ask spread is almost always equal to one tick, display a dynamics in which price changes and spread are strongly coupled. We present an approach based on the hidden Markov model, also known in econometrics as the Markov switching model, for the dynamics of price changes, where the latent Markov process is described by the transitions between spreads. We then use a finite Markov mixture of logit regressions on past squared price changes to describe temporal dependencies in the dynamics of price changes. The model can thus be seen as a double chain Markov model. We show that the model describes the shape of the price change distribution at different time scales, volatility clustering, and the anomalous decrease of kurtosis. We calibrate our models based on Nasdaq stocks and we show that this model reproduces remarkably well the statistical properties of real data.
Tropical precipitation extremes: Response to SST-induced warming in aquaplanet simulations
NASA Astrophysics Data System (ADS)
Bhattacharya, Ritthik; Bordoni, Simona; Teixeira, João.
2017-04-01
Scaling of tropical precipitation extremes in response to warming is studied in aquaplanet experiments using the global Weather Research and Forecasting (WRF) model. We show how the scaling of precipitation extremes is highly sensitive to spatial and temporal averaging: while instantaneous grid point extreme precipitation scales more strongly than the percentage increase (˜7% K-1) predicted by the Clausius-Clapeyron (CC) relationship, extremes for zonally and temporally averaged precipitation follow a slight sub-CC scaling, in agreement with results from Climate Model Intercomparison Project (CMIP) models. The scaling depends crucially on the employed convection parameterization. This is particularly true when grid point instantaneous extremes are considered. These results highlight how understanding the response of precipitation extremes to warming requires consideration of dynamic changes in addition to the thermodynamic response. Changes in grid-scale precipitation, unlike those in convective-scale precipitation, scale linearly with the resolved flow. Hence, dynamic changes include changes in both large-scale and convective-scale motions.
Assessment of Climate Impact Changes on Forest Vegetation Dynamics by Satellite Remote Sensing
NASA Astrophysics Data System (ADS)
Zoran, Maria
Climate variability represents the ensemble of net radiation, precipitation, wind and temper-ature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Forest vegetation phenology constitutes an efficient bio-indicator of climate and anthropogenic changes impacts and a key parameter for understanding and modelling vegetation-climate in-teractions. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vege-tation Index (NDVIs), which requires NDVI time-series with good time resolution, over homo-geneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2008 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and to-pography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.
Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O.; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A.; Möllmann, Christian
2017-01-01
Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs. PMID:29136658
Roberts, James H.; Hitt, Nathaniel P.
2010-01-01
Five conceptual models of longitudinal fish community organization in streams were examined: (1) niche diversity model (NDM), (2) stream continuum model (SCM), (3) immigrant accessibility model (IAM), (4) environmental stability model (ESM), and (5) adventitious stream model (ASM). We used differences among models in their predictions about temporal species turnover, along with five spatiotemporal fish community data sets, to evaluate model applicability. Models were similar in predicting a positive species richness–stream size relationship and longitudinal species nestedness, but differed in predicting either similar temporal species turnover throughout the stream continuum (NDM, SCM), higher turnover upstream (IAM, ESM), or higher turnover downstream (ASM). We calculated measures of spatial and temporal variation from spatiotemporal fish data in five wadeable streams in central and eastern North America spanning 34–68 years (French Creek [New York], Piasa Creek [Illinois], Spruce Run [Virginia], Little Stony Creek [Virginia], and Sinking Creek [Virginia]). All streams exhibited substantial species turnover (i.e., at least 27% turnover in stream-scale species pools), in contrast to the predictions of the SCM. Furthermore, community change was greater in downstream than upstream reaches in four of five streams. This result is most consistent with the ASM and suggests that downstream communities are strongly influenced by migrants to and from species pools outside the focal stream. In Sinking Creek, which is isolated from external species pools, temporal species turnover (via increased richness) was higher upstream than downstream, which is a pattern most consistent with the IAM or ESM. These results corroborate the hypothesis that temperate stream habitats and fish communities are temporally dynamic and that fish migration and environmental disturbances play fundamental roles in stream fish community organization.
Determining Spatio-Temporal Cadastral Data Requirement for Infrastructure of Ladm for Turkey
NASA Astrophysics Data System (ADS)
Alkan, M.; Polat, Z. A.
2016-06-01
Nowadays, the nature of land title and cadastral (LTC) data in the Turkey is dynamic from a temporal perspective which depends on the LTC operations. Functional requirements with respect to the characteristics are investigated based upon interviews of professionals in public and private sectors. These are; Legal authorities, Land Registry and Cadastre offices, Highway departments, Foundations, Ministries of Budget, Transportation, Justice, Public Works and Settlement, Environment and Forestry, Agriculture and Rural Affairs, Culture and Internal Affairs, State Institute of Statistics (SIS), execution offices, tax offices, real estate offices, private sector, local governments and banks. On the other hand, spatio-temporal LTC data very important component for creating infrastructure of Land Administration Model (LADM). For this reason, spatio-temporal LTC data needs for LADM not only updated but also temporal. The investigations ended up with determine temporal analyses of LTC data, traditional LTC system and tracing temporal analyses in traditional LTC system. In the traditional system, the temporal analyses needed by all these users could not be performed in a rapid and reliable way. The reason for this is that the traditional LTC system is a manual archiving system. The aims and general contents of this paper: (1) define traditional LTC system of Turkey; (2) determining the need for spatio-temporal LTC data and analyses for core domain model for LADM. As a results of temporal and spatio-temporal analysis LTC data needs, new system design is important for the Turkish LADM model. Designing and realizing an efficient and functional Temporal Geographic Information Systems (TGIS) is inevitable for the Turkish LADM core infrastructure. Finally this paper outcome is creating infrastructure for design and develop LADM for Turkey.
Fiebig, Florian; Lansner, Anders
2014-01-01
Declarative long-term memories are not created in an instant. Gradual stabilization and temporally shifting dependence of acquired declarative memories in different brain regions—called systems consolidation—can be tracked in time by lesion experiments. The observation of temporally graded retrograde amnesia (RA) following hippocampal lesions points to a gradual transfer of memory from hippocampus to neocortical long-term memory. Spontaneous reactivations of hippocampal memories, as observed in place cell reactivations during slow-wave-sleep, are supposed to drive neocortical reinstatements and facilitate this process. We propose a functional neural network implementation of these ideas and furthermore suggest an extended three-state framework that includes the prefrontal cortex (PFC). It bridges the temporal chasm between working memory percepts on the scale of seconds and consolidated long-term memory on the scale of weeks or months. We show that our three-stage model can autonomously produce the necessary stochastic reactivation dynamics for successful episodic memory consolidation. The resulting learning system is shown to exhibit classical memory effects seen in experimental studies, such as retrograde and anterograde amnesia (AA) after simulated hippocampal lesioning; furthermore the model reproduces peculiar biological findings on memory modulation, such as retrograde facilitation of memory after suppressed acquisition of new long-term memories—similar to the effects of benzodiazepines on memory. PMID:25071536
NASA Astrophysics Data System (ADS)
Ringenberg, Hunter; Rogers, Dylan; Wei, Nathaniel; Krane, Michael; Wei, Timothy
2017-11-01
The objective of this study is to apply experimental data to theoretical framework of Krane (2013) in which the principal aeroacoustic source is expressed in terms of vocal fold drag, glottal jet dynamic head, and glottal exit volume flow, reconciling formal theoretical aeroacoustic descriptions of phonation with more traditional lumped-element descriptions. These quantities appear in the integral equations of motion for phonatory flow. In this way time resolved velocity field measurements can be used to compute time-resolved estimates of the relevant terms in the integral equations of motion, including phonation aeroacoustic source strength. A simplified 10x scale vocal fold model from Krane, et al. (2007) was used to examine symmetric, i.e. `healthy', oscillatory motion of the vocal folds. By using water as the working fluid, very high spatial and temporal resolution was achieved. Temporal variation of transglottal pressure was simultaneously measured with flow on the vocal fold model mid-height. Experiments were dynamically scaled to examine a range of frequencies corresponding to male and female voice. The simultaneity of the pressure and flow provides new insights into the aeroacoustics associated with vocal fold oscillations. Supported by NIH Grant No. 2R01 DC005642-11.
Radiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods
NASA Astrophysics Data System (ADS)
Fang, Ruogu; Raj, Ashish; Chen, Tsuhan; Sanelli, Pina C.
2012-03-01
In current computed tomography (CT) examinations, the associated X-ray radiation dose is of significant concern to patients and operators, especially CT perfusion (CTP) imaging that has higher radiation dose due to its cine scanning technique. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) parameter as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and degrade CT perfusion maps greatly if no adequate noise control is applied during image reconstruction. To capture the essential dynamics of CT perfusion, a simple spatial-temporal Bayesian method that uses a piecewise parametric model of the residual function is used, and then the model parameters are estimated from a Bayesian formulation of prior smoothness constraints on perfusion parameters. From the fitted residual function, reliable CTP parameter maps are obtained from low dose CT data. The merit of this scheme exists in the combination of analytical piecewise residual function with Bayesian framework using a simpler prior spatial constrain for CT perfusion application. On a dataset of 22 patients, this dynamic spatial-temporal Bayesian model yielded an increase in signal-tonoise-ratio (SNR) of 78% and a decrease in mean-square-error (MSE) of 40% at low dose radiation of 43mA.
NASA Astrophysics Data System (ADS)
Ma, J.; Xiao, X.; Zhang, Y.; Chen, B.; Zhao, B.
2017-12-01
Great significance exists in accurately estimating spatial-temporal patterns of gross primary production (GPP) because of its important role in global carbon cycle. Satellite-based light use efficiency (LUE) models are regarded as an efficient tool in simulating spatially time-sires GPP. However, the estimation of the accuracy of GPP simulations from LUE at both spatial and temporal scales is still a challenging work. In this study, we simulated GPP of vegetation in China during 2007-2014 using a LUE model (Vegetation Photosynthesis Model, VPM) based on MODIS (moderate-resolution imaging spectroradiometer) images of 8-day temporal and 500-m spatial resolutions and NCEP (National Center for Environmental Prediction) climate data. Global Ozone Monitoring Instrument 2 (GOME-2) solar-induced chlorophyll fluorescence (SIF) data were used to compare with VPM simulated GPP (GPPVPM) temporally and spatially using linear correlation analysis. Significant positive linear correlations exist between monthly GPPVPM and SIF data over both single year (2010) and multiple years (2007-2014) in China. Annual GPPVPM is significantly positive correlated with SIF (R2>0.43) spatially for all years during 2007-2014 and all seasons in 2010 (R2>0.37). GPP dynamic trends is high spatial-temporal heterogeneous in China during 2007-2014. The results of this study indicate that GPPVPM is temporally and spatially in line with SIF data, and space-borne SIF data have great potential in validating and parameterizing GPP estimation of LUE-based models.
Gouhier, Tarik C; Guichard, Frédéric
2007-03-01
In marine systems, the occurrence and implications of disturbance-recovery cycles have been revealed at the landscape level, but only in demographically open or closed systems where landscape-level dynamics are assumed to have no feedback effect on regional dynamics. We present a mussel metapopulation model to elucidate the role of landscape-level disturbance cycles for regional response of mussel populations to onshore productivity and larval transport. Landscape dynamics are generated through spatially explicit rules, and each landscape is connected to its neighbor through unidirectional larval dispersal. The role of landscape disturbance cycles in the regional system behavior is elucidated (1) in demographically open vs. demographically coupled systems, in relation to (2) onshore reproductive output and (3) the temporal scale of landscape disturbance dynamics. By controlling for spatial structure at the landscape and metapopulation levels, we first demonstrate the interaction between landscape and oceanographic connectivity. The temporal scale of disturbance cycles, as controlled by mussel colonization rate, plays a critical role in the regional behavior of the system. Indeed, fast disturbance cycles are responsible for regional synchrony in relation to onshore reproductive output. Slow disturbance cycles, however, lead to increased robustness to changes in productivity and to demographic coupling. These testable predictions indicate that the occurrence and temporal scale of local disturbance-recovery dynamics can drive large-scale variability in demographically open systems, and the response of metapopulations to changes in nearshore productivity.
Computational dynamic approaches for temporal omics data with applications to systems medicine.
Liang, Yulan; Kelemen, Arpad
2017-01-01
Modeling and predicting biological dynamic systems and simultaneously estimating the kinetic structural and functional parameters are extremely important in systems and computational biology. This is key for understanding the complexity of the human health, drug response, disease susceptibility and pathogenesis for systems medicine. Temporal omics data used to measure the dynamic biological systems are essentials to discover complex biological interactions and clinical mechanism and causations. However, the delineation of the possible associations and causalities of genes, proteins, metabolites, cells and other biological entities from high throughput time course omics data is challenging for which conventional experimental techniques are not suited in the big omics era. In this paper, we present various recently developed dynamic trajectory and causal network approaches for temporal omics data, which are extremely useful for those researchers who want to start working in this challenging research area. Moreover, applications to various biological systems, health conditions and disease status, and examples that summarize the state-of-the art performances depending on different specific mining tasks are presented. We critically discuss the merits, drawbacks and limitations of the approaches, and the associated main challenges for the years ahead. The most recent computing tools and software to analyze specific problem type, associated platform resources, and other potentials for the dynamic trajectory and interaction methods are also presented and discussed in detail.
Xia, Yongqiu; Weller, Donald E; Williams, Meghan N; Jordan, Thomas E; Yan, Xiaoyuan
2016-11-15
Export coefficient models (ECMs) are often used to predict nutrient sources and sinks in watersheds because ECMs can flexibly incorporate processes and have minimal data requirements. However, ECMs do not quantify uncertainties in model structure, parameters, or predictions; nor do they account for spatial and temporal variability in land characteristics, weather, and management practices. We applied Bayesian hierarchical methods to address these problems in ECMs used to predict nitrate concentration in streams. We compared four model formulations, a basic ECM and three models with additional terms to represent competing hypotheses about the sources of error in ECMs and about spatial and temporal variability of coefficients: an ADditive Error Model (ADEM), a SpatioTemporal Parameter Model (STPM), and a Dynamic Parameter Model (DPM). The DPM incorporates a first-order random walk to represent spatial correlation among parameters and a dynamic linear model to accommodate temporal correlation. We tested the modeling approach in a proof of concept using watershed characteristics and nitrate export measurements from watersheds in the Coastal Plain physiographic province of the Chesapeake Bay drainage. Among the four models, the DPM was the best--it had the lowest mean error, explained the most variability (R 2 = 0.99), had the narrowest prediction intervals, and provided the most effective tradeoff between fit complexity (its deviance information criterion, DIC, was 45.6 units lower than any other model, indicating overwhelming support for the DPM). The superiority of the DPM supports its underlying hypothesis that the main source of error in ECMs is their failure to account for parameter variability rather than structural error. Analysis of the fitted DPM coefficients for cropland export and instream retention revealed some of the factors controlling nitrate concentration: cropland nitrate exports were positively related to stream flow and watershed average slope, while instream nitrate retention was positively correlated with nitrate concentration. By quantifying spatial and temporal variability in sources and sinks, the DPM provides new information to better target management actions to the most effective times and places. Given the wide use of ECMs as research and management tools, our approach can be broadly applied in other watersheds and to other materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
A three-ions model of electrodiffusion kinetics in a nanochannel
NASA Astrophysics Data System (ADS)
Sebechlebská, Táňa; Neogrády, Pavel; Valent, Ivan
2016-10-01
Nanoscale electrodiffusion transport is involved in many electrochemical, technological and biological processes. Developments in computer power and numerical algorithms allow for solving full time-dependent Nernst-Planck and Poisson equations without simplifying approximations. We simulate spatio-temporal profiles of concentration and electric potential changes after a potential jump in a 10 nm channel with two cations (with opposite concentration gradients and different mobilities) and one anion (of uniform concentration). The temporal dynamics shows three exponential phases and damped oscillations of the electric potential. Despite the absence of surface charges in the studied model, an asymmetric current-voltage characteristic was observed.
Dynamic Controllability and Dispatchability Relationships
NASA Technical Reports Server (NTRS)
Morris, Paul Henry
2014-01-01
An important issue for temporal planners is the ability to handle temporal uncertainty. Recent papers have addressed the question of how to tell whether a temporal network is Dynamically Controllable, i.e., whether the temporal requirements are feasible in the light of uncertain durations of some processes. We present a fast algorithm for Dynamic Controllability. We also note a correspondence between the reduction steps in the algorithm and the operations involved in converting the projections to dispatchable form. This has implications for the complexity for sparse networks.
Spatiotemporal integration for tactile localization during arm movements: a probabilistic approach.
Maij, Femke; Wing, Alan M; Medendorp, W Pieter
2013-12-01
It has been shown that people make systematic errors in the localization of a brief tactile stimulus that is delivered to the index finger while they are making an arm movement. Here we modeled these spatial errors with a probabilistic approach, assuming that they follow from temporal uncertainty about the occurrence of the stimulus. In the model, this temporal uncertainty converts into a spatial likelihood about the external stimulus location, depending on arm velocity. We tested the prediction of the model that the localization errors depend on arm velocity. Participants (n = 8) were instructed to localize a tactile stimulus that was presented to their index finger while they were making either slow- or fast-targeted arm movements. Our results confirm the model's prediction that participants make larger localization errors when making faster arm movements. The model, which was used to fit the errors for both slow and fast arm movements simultaneously, accounted very well for all the characteristics of these data with temporal uncertainty in stimulus processing as the only free parameter. We conclude that spatial errors in dynamic tactile perception stem from the temporal precision with which tactile inputs are processed.
A Structural Characterization of Temporal Dynamic Controllability
NASA Technical Reports Server (NTRS)
Morris, Paul
2006-01-01
An important issue for temporal planners is the ability to handle temporal uncertainty. Recent papers have addressed the question of how to tell whether a temporal network is Dynamically Controllable, i.e., whether the temporal requirements are feasible in the light of uncertain durations of some processes. Previous work has presented an O(N5) algorithm for testing this property. Here, we introduce a new analysis of temporal cycles that leads to an O(N4) algorithm.
Oh, Sunghee; Song, Seongho
2017-01-01
In gene expression profile, data analysis pipeline is categorized into four levels, major downstream tasks, i.e., (1) identification of differential expression; (2) clustering co-expression patterns; (3) classification of subtypes of samples; and (4) detection of genetic regulatory networks, are performed posterior to preprocessing procedure such as normalization techniques. To be more specific, temporal dynamic gene expression data has its inherent feature, namely, two neighboring time points (previous and current state) are highly correlated with each other, compared to static expression data which samples are assumed as independent individuals. In this chapter, we demonstrate how HMMs and hierarchical Bayesian modeling methods capture the horizontal time dependency structures in time series expression profiles by focusing on the identification of differential expression. In addition, those differential expression genes and transcript variant isoforms over time detected in core prerequisite steps can be generally further applied in detection of genetic regulatory networks to comprehensively uncover dynamic repertoires in the aspects of system biology as the coupled framework.
NASA Astrophysics Data System (ADS)
Tsibidis, George D.
2018-02-01
We present a theoretical investigation of the dynamics of the dielectric constant of noble metals following heating with ultrashort pulsed laser beams and the influence of the temporal variation of the associated optical properties on the thermomechanical response of the material. The effect of the electron relaxation time on the optical properties based on the use of a critical point model is thoroughly explored for various pulse duration values (i.e., from 110 fs to 8 ps). The proposed theoretical framework correlates the dynamical change in optical parameters, relaxation processes and induced strains-stresses. Simulations are presented by choosing gold as a test material, and we demonstrate that the consideration of the aforementioned factors leads to significant thermal effect changes compared to results when static parameters are assumed. The proposed model predicts a substantially smaller damage threshold and a large increase of the stress which firstly underlines the significant role of the temporal variation of the optical properties and secondly enhances its importance with respect to the precise determination of laser specifications in material micromachining techniques.
Impact of cloud timing on surface temperature and related hydroclimatic dynamics
NASA Astrophysics Data System (ADS)
Porporato, A. M.; Yin, J.
2015-12-01
Cloud feedbacks have long been identified as one of the largest source of uncertainty in climate change predictions. Differences in the spatial distribution of clouds and the related impact on surface temperature and climate dynamics have been recently emphasized in quasi-equilibrium General Circulation Models (GCM). However, much less attention has been paid to the temporal variation of cloud presence and thickness. Clouds in fact shade the solar radiation during the daytime, but also acts as greenhouse gas to reduce the emission of longwave radiation to the outer space anytime of the day. Thus it is logical to expect that even small differences in timing and thickness of clouds could result in very different predictions in GCMs. In this study, these two effects of cloud dynamics are analyzed by tracking the cloud impacts on longwave and shortwave radiation in a minimalist transient thermal balance model of the land surface. The marked changes in surface temperature due to alterations in the timing of onset of clouds demonstrate that capturing temporal variation of cloud at sub-daily scale should be a priority in cloud parameterization schemes in GCMs.
Neural correlates of the perception of dynamic versus static facial expressions of emotion.
Kessler, Henrik; Doyen-Waldecker, Cornelia; Hofer, Christian; Hoffmann, Holger; Traue, Harald C; Abler, Birgit
2011-04-20
This study investigated brain areas involved in the perception of dynamic facial expressions of emotion. A group of 30 healthy subjects was measured with fMRI when passively viewing prototypical facial expressions of fear, disgust, sadness and happiness. Using morphing techniques, all faces were displayed as still images and also dynamically as a film clip with the expressions evolving from neutral to emotional. Irrespective of a specific emotion, dynamic stimuli selectively activated bilateral superior temporal sulcus, visual area V5, fusiform gyrus, thalamus and other frontal and parietal areas. Interaction effects of emotion and mode of presentation (static/dynamic) were only found for the expression of happiness, where static faces evoked greater activity in the medial prefrontal cortex. Our results confirm previous findings on neural correlates of the perception of dynamic facial expressions and are in line with studies showing the importance of the superior temporal sulcus and V5 in the perception of biological motion. Differential activation in the fusiform gyrus for dynamic stimuli stands in contrast to classical models of face perception but is coherent with new findings arguing for a more general role of the fusiform gyrus in the processing of socially relevant stimuli.
Functional Nonlinear Mixed Effects Models For Longitudinal Image Data
Luo, Xinchao; Zhu, Lixing; Kong, Linglong; Zhu, Hongtu
2015-01-01
Motivated by studying large-scale longitudinal image data, we propose a novel functional nonlinear mixed effects modeling (FN-MEM) framework to model the nonlinear spatial-temporal growth patterns of brain structure and function and their association with covariates of interest (e.g., time or diagnostic status). Our FNMEM explicitly quantifies a random nonlinear association map of individual trajectories. We develop an efficient estimation method to estimate the nonlinear growth function and the covariance operator of the spatial-temporal process. We propose a global test and a simultaneous confidence band for some specific growth patterns. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply FNMEM to investigate the spatial-temporal dynamics of white-matter fiber skeletons in a national database for autism research. Our FNMEM may provide a valuable tool for charting the developmental trajectories of various neuropsychiatric and neurodegenerative disorders. PMID:26213453
Temporal Dynamic Controllability Revisited
NASA Technical Reports Server (NTRS)
Morris, Paul H.; Muscettola, Nicola
2005-01-01
An important issue for temporal planners is the ability to handle temporal uncertainty. We revisit the question of how to determine whether a given set of temporal requirements are feasible in the light of uncertain durations of some processes. In particular, we consider how best to determine whether a network is Dynamically Controllable, i.e., whether a dynamic strategy exists for executing the network that is guaranteed to satisfy the requirements. Previous work has shown the existence of a pseudo-polynomial algorithm for testing Dynamic Controllability. Here, we greatly simplify the previous framework, and present a true polynomial algorithm with a cutoff based only on the number of nodes.
Modeling Nonstationary Emotion Dynamics in Dyads using a Time-Varying Vector-Autoregressive Model.
Bringmann, Laura F; Ferrer, Emilio; Hamaker, Ellen L; Borsboom, Denny; Tuerlinckx, Francis
2018-01-01
Emotion dynamics are likely to arise in an interpersonal context. Standard methods to study emotions in interpersonal interaction are limited because stationarity is assumed. This means that the dynamics, for example, time-lagged relations, are invariant across time periods. However, this is generally an unrealistic assumption. Whether caused by an external (e.g., divorce) or an internal (e.g., rumination) event, emotion dynamics are prone to change. The semi-parametric time-varying vector-autoregressive (TV-VAR) model is based on well-studied generalized additive models, implemented in the software R. The TV-VAR can explicitly model changes in temporal dependency without pre-existing knowledge about the nature of change. A simulation study is presented, showing that the TV-VAR model is superior to the standard time-invariant VAR model when the dynamics change over time. The TV-VAR model is applied to empirical data on daily feelings of positive affect (PA) from a single couple. Our analyses indicate reliable changes in the male's emotion dynamics over time, but not in the female's-which were not predicted by her own affect or that of her partner. This application illustrates the usefulness of using a TV-VAR model to detect changes in the dynamics in a system.
Modeling and Intervening across Time in Scientific Inquiry Exploratory Learning Environment
ERIC Educational Resources Information Center
Ting, Choo-Yee; Phon-Amnuaisuk, Somnuk; Chong, Yen-Kuan
2008-01-01
This article aims at discussing how Dynamic Decision Network (DDN) can be employed to tackle the challenges in modeling temporally variable scientific inquiry skills and provision of adaptive pedagogical interventions in INQPRO, a scientific inquiry exploratory learning environment for learning O'level Physics. We begin with an overview of INQPRO…
Zhang, Peng; Chen, Xiaoling; Lu, Jianzhong; Zhang, Wei
2015-12-01
Numerical models are important tools that are used in studies of sediment dynamics in inland and coastal waters, and these models can now benefit from the use of integrated remote sensing observations. This study explores a scheme for assimilating remotely sensed suspended sediment (from charge-coupled device (CCD) images obtained from the Huanjing (HJ) satellite) into a two-dimensional sediment transport model of Poyang Lake, the largest freshwater lake in China. Optimal interpolation is used as the assimilation method, and model predictions are obtained by combining four remote sensing images. The parameters for optimal interpolation are determined through a series of assimilation experiments evaluating the sediment predictions based on field measurements. The model with assimilation of remotely sensed sediment reduces the root-mean-square error of the predicted sediment concentrations by 39.4% relative to the model without assimilation, demonstrating the effectiveness of the assimilation scheme. The spatial effect of assimilation is explored by comparing model predictions with remotely sensed sediment, revealing that the model with assimilation generates reasonable spatial distribution patterns of suspended sediment. The temporal effect of assimilation on the model's predictive capabilities varies spatially, with an average temporal effect of approximately 10.8 days. The current velocities which dominate the rate and direction of sediment transport most likely result in spatial differences in the temporal effect of assimilation on model predictions.
On Patterns in Affective Media
NASA Astrophysics Data System (ADS)
ADAMATZKY, ANDREW
In computational experiments with cellular automaton models of affective solutions, where chemical species represent happiness, anger, fear, confusion and sadness, we study phenomena of space time dynamic of emotions. We demonstrate feasibility of the affective solution paradigm in example of emotional abuse therapy. Results outlined in the present paper offer unconventional but promising technique to design, analyze and interpret spatio-temporal dynamic of mass moods in crowds.
Analysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method
2010-01-25
2010 / Accepted: 19 January 2010 / Published: 25 January 2010 Abstract: Spatial and temporal soil moisture dynamics are critically needed to...scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial... dynamics is essential in the hydrological and meteorological modeling, improves our understanding of land surface–atmosphere interactions. Spatial and
A dynamic neural field model of temporal order judgments.
Hecht, Lauren N; Spencer, John P; Vecera, Shaun P
2015-12-01
Temporal ordering of events is biased, or influenced, by perceptual organization-figure-ground organization-and by spatial attention. For example, within a region assigned figural status or at an attended location, onset events are processed earlier (Lester, Hecht, & Vecera, 2009; Shore, Spence, & Klein, 2001), and offset events are processed for longer durations (Hecht & Vecera, 2011; Rolke, Ulrich, & Bausenhart, 2006). Here, we present an extension of a dynamic field model of change detection (Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) that accounts for both the onset and offset performance for figural and attended regions. The model posits that neural populations processing the figure are more active, resulting in a peak of activation that quickly builds toward a detection threshold when the onset of a target is presented. This same enhanced activation for some neural populations is maintained when a present target is removed, creating delays in the perception of the target's offset. We discuss the broader implications of this model, including insights regarding how neural activation can be generated in response to the disappearance of information. (c) 2015 APA, all rights reserved).
3D Dynamics of Magnetic Flux Ropes Across Scales: Solar Eruptions and Sun-Earth Plasma Coupling
NASA Astrophysics Data System (ADS)
Chen, James
2012-10-01
Central to the understanding of the eruptive phenomena on the Sun and their impact on the terrestrial plasma environment is the dynamics of coronal mass ejections (CMEs)---a 3D magnetic flux rope configuration---and the evolution of their magnetic fields. I will discuss the basic physics of CME eruption and solar flare energy release in the context of the analytic erupting flux rope model of CMEs. In this ideal MHD model, a CME is treated as a 3D flux rope with its two stationary footpoints anchored in the Sun. The model structure is non-axisymmetric and embedded in a model corona/solar wind. The initial flux rope is driven out of equilibrium by ``injection'' of poloidal flux and propagates under the Lorentz hoop force from the Sun to 1 AU, across a wide range of spatial and temporal scales. Comparisons of the model results and recent STEREO observations show that the solutions that best fit the observed CME position-time data (to within 1-2% of data) also correctly replicate the temporal profiles of associated flare X-ray emissions (GOES data) and the in situ magnetic field and plasma data of the CME ejecta at 1 AU where such data are available (e.g., ACE and STEREO/IMPAXCT/PLASTIC data), providing a unified basis of understanding CME dynamics and flare energetics.
Pouch, Alison M; Aly, Ahmed H; Lai, Eric K; Yushkevich, Natalie; Stoffers, Rutger H; Gorman, Joseph H; Cheung, Albert T; Gorman, Joseph H; Gorman, Robert C; Yushkevich, Paul A
2017-09-01
Transesophageal echocardiography is the primary imaging modality for preoperative assessment of mitral valves with ischemic mitral regurgitation (IMR). While there are well known echocardiographic insights into the 3D morphology of mitral valves with IMR, such as annular dilation and leaflet tethering, less is understood about how quantification of valve dynamics can inform surgical treatment of IMR or predict short-term recurrence of the disease. As a step towards filling this knowledge gap, we present a novel framework for 4D segmentation and geometric modeling of the mitral valve in real-time 3D echocardiography (rt-3DE). The framework integrates multi-atlas label fusion and template-based medial modeling to generate quantitatively descriptive models of valve dynamics. The novelty of this work is that temporal consistency in the rt-3DE segmentations is enforced during both the segmentation and modeling stages with the use of groupwise label fusion and Kalman filtering. The algorithm is evaluated on rt-3DE data series from 10 patients: five with normal mitral valve morphology and five with severe IMR. In these 10 data series that total 207 individual 3DE images, each 3DE segmentation is validated against manual tracing and temporal consistency between segmentations is demonstrated. The ultimate goal is to generate accurate and consistent representations of valve dynamics that can both visually and quantitatively provide insight into normal and pathological valve function.
Wu, Shuang; Liu, Zhi-Ping; Qiu, Xing; Wu, Hulin
2014-01-01
The immune response to viral infection is regulated by an intricate network of many genes and their products. The reverse engineering of gene regulatory networks (GRNs) using mathematical models from time course gene expression data collected after influenza infection is key to our understanding of the mechanisms involved in controlling influenza infection within a host. A five-step pipeline: detection of temporally differentially expressed genes, clustering genes into co-expressed modules, identification of network structure, parameter estimate refinement, and functional enrichment analysis, is developed for reconstructing high-dimensional dynamic GRNs from genome-wide time course gene expression data. Applying the pipeline to the time course gene expression data from influenza-infected mouse lungs, we have identified 20 distinct temporal expression patterns in the differentially expressed genes and constructed a module-based dynamic network using a linear ODE model. Both intra-module and inter-module annotations and regulatory relationships of our inferred network show some interesting findings and are highly consistent with existing knowledge about the immune response in mice after influenza infection. The proposed method is a computationally efficient, data-driven pipeline bridging experimental data, mathematical modeling, and statistical analysis. The application to the influenza infection data elucidates the potentials of our pipeline in providing valuable insights into systematic modeling of complicated biological processes.
Cellular and Network Mechanisms Underlying Information Processing in a Simple Sensory System
NASA Technical Reports Server (NTRS)
Jacobs, Gwen; Henze, Chris; Biegel, Bryan (Technical Monitor)
2002-01-01
Realistic, biophysically-based compartmental models were constructed of several primary sensory interneurons in the cricket cercal sensory system. A dynamic atlas of the afferent input to these cells was used to set spatio-temporal parameters for the simulated stimulus-dependent synaptic inputs. We examined the roles of dendritic morphology, passive membrane properties, and active conductances on the frequency tuning of the neurons. The sensitivity of narrow-band low pass interneurons could be explained entirely by the electronic structure of the dendritic arbors and the dynamic sensitivity of the SIZ. The dynamic characteristics of interneurons with higher frequency sensitivity required models with voltage-dependent dendritic conductances.
Bistability and State Transition of a Delay Differential Equation Model of Neutrophil Dynamics
NASA Astrophysics Data System (ADS)
Ma, Suqi; Zhu, Kaiyi; Lei, Jinzhi
This paper studies the existence of bistable states and control strategies to induce state transitions of a delay differential equation model of neutrophil dynamics. We seek the conditions that a stable steady state and an oscillatory state coexist in the neutrophil dynamical system. Physiologically, stable steady state represents the healthy state, while oscillatory state is usually associated with diseases such as cyclical neutropenia. We study the control strategies to induce the transitions from the disease state to the healthy state by introducing temporal perturbations to system parameters. This study is valuable in designing clinical protocols for the treatment of cyclical neutropenia.
NASA Astrophysics Data System (ADS)
Rahimi, Mina; Essaid, Hedeff I.; Wilson, John T.
2015-12-01
The role of temporally varying surface water-groundwater (SW-GW) exchange on nitrate removal by streambed denitrification was examined along a reach of Leary Weber Ditch (LWD), Indiana, a small, first-order, low-relief agricultural watershed within the Upper Mississippi River basin, using data collected in 2004 and 2005. Stream stage, GW heads (H), and temperatures (T) were continuously monitored in streambed piezometers and stream bank wells for two transects across LWD accompanied by synoptic measurements of stream stage, H, T, and nitrate (NO3) concentrations along the reach. The H and T data were used to develop and calibrate vertical two-dimensional, models of streambed water flow and heat transport across and along the axis of the stream. Model-estimated SW-GW exchange varied seasonally and in response to high-streamflow events due to dynamic interactions between SW stage and GW H. Comparison of 2004 and 2005 conditions showed that small changes in precipitation amount and intensity, evapotranspiration, and/or nearby GW levels within a low-relief watershed can readily impact SW-GW interactions. The calibrated LWD flow models and observed stream and streambed NO3 concentrations were used to predict temporal variations in streambed NO3 removal in response to dynamic SW-GW exchange. NO3 removal rates underwent slow seasonal changes, but also underwent rapid changes in response to high-flow events. These findings suggest that increased temporal variability of SW-GW exchange in low-order, low-relief watersheds may be a factor contributing their more efficient removal of NO3.
Rahimi Kazerooni, Mina N.; Essaid, Hedeff I.; Wilson, John T.
2015-01-01
The role of temporally varying surface water-groundwater (SW-GW) exchange on nitrate removal by streambed denitrification was examined along a reach of Leary Weber Ditch (LWD), Indiana, a small, first-order, low-relief agricultural watershed within the Upper Mississippi River basin, using data collected in 2004 and 2005. Stream stage, GW heads (H), and temperatures (T) were continuously monitored in streambed piezometers and stream bank wells for two transects across LWD accompanied by synoptic measurements of stream stage, H, T, and nitrate (NO3) concentrations along the reach. The H and T data were used to develop and calibrate vertical two-dimensional, models of streambed water flow and heat transport across and along the axis of the stream. Model-estimated SW-GW exchange varied seasonally and in response to high-streamflow events due to dynamic interactions between SW stage and GW H. Comparison of 2004 and 2005 conditions showed that small changes in precipitation amount and intensity, evapotranspiration, and/or nearby GW levels within a low-relief watershed can readily impact SW-GW interactions. The calibrated LWD flow models and observed stream and streambed NO3 concentrations were used to predict temporal variations in streambed NO3 removal in response to dynamic SW-GW exchange. NO3 removal rates underwent slow seasonal changes, but also underwent rapid changes in response to high-flow events. These findings suggest that increased temporal variability of SW-GW exchange in low-order, low-relief watersheds may be a factor contributing their more efficient removal of NO3.
Validating modelled variable surface saturation in the riparian zone with thermal infrared images
NASA Astrophysics Data System (ADS)
Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa
2015-04-01
Variable contributing areas and hydrological connectivity have become prominent new concepts for hydrologic process understanding in recent years. The dynamic connectivity within the hillslope-riparian-stream (HRS) system is known to have a first order control on discharge generation and especially the riparian zone functions as runoff buffering or producing zone. However, despite their importance, the highly dynamic processes of contraction and extension of saturation within the riparian zone and its impact on runoff generation still remain not fully understood. In this study, we analysed the potential of a distributed, fully coupled and physically based model (HydroGeoSphere) to represent the spatial and temporal water flux dynamics of a forested headwater HRS system (6 ha) in western Luxembourg. The model was set up and parameterised under consideration of experimentally-derived knowledge of catchment structure and was run for a period of four years (October 2010 to August 2014). For model evaluation, we especially focused on the temporally varying spatial patterns of surface saturation. We used ground-based thermal infrared (TIR) imagery to map surface saturation with a high spatial and temporal resolution and collected 20 panoramic snapshots of the riparian zone (ca. 10 by 20 m) under different hydrologic conditions. These TIR panoramas were used in addition to several classical discharge and soil moisture time series for a spatially-distributed model validation. In a manual calibration process we optimised model parameters (e.g. porosity, saturated hydraulic conductivity, evaporation depth) to achieve a better agreement between observed and modelled discharges and soil moistures. The subsequent validation of surface saturation patterns by a visual comparison of processed TIR panoramas and corresponding model output panoramas revealed an overall good accordance for all but one region that was always too dry in the model. However, quantitative comparisons of modelled and observed saturated pixel percentages and of their modelled and measured relationships to concurrent discharges revealed remarkable similarities. During the calibration process we observed that surface saturation patterns were mostly affected by changing the soil properties of the topsoil in the riparian zone, but that the discharge behaviour did not change substantially at the same time. This effect of various spatial patterns occurring concomitant to a nearly unchanged integrated response demonstrates the importance of spatially distributed validation data. Our study clearly benefited from using different kinds of data - spatially integrated and distributed, temporally continuous and discrete - for the model evaluation procedure.
NASA Astrophysics Data System (ADS)
von Keyserlingk, Jennifer; Paton, Eva Nora; Förster, Saskia; Bronstert, Axel
2017-04-01
Many of the dry rangelands of Southern Europe are threatened by land degradation. This process not only reduces the land's ecological functioning, but also its capacity to provide ecosystem goods and services for local land users. In rangelands, one important aspect is vegetation degradation, which reduces the land's capacity to support livestock. Thus, there is an urgent need to understand the complex dynamics and drivers of land degradation. In the past, both have been difficult to study due to the extensive spatial and temporal scales involved. In the last decade, a large number of remotely sensed imageries has become available for free, which enables a new approach to this topic. The aim of this research is to study land degradation as a multidimensional process incorporating its spatial and temporal components. We developed a methodological approach that makes use of long-term satellite Landsat data. Here, we use imagery of a typical degraded Mediterranean rangeland in Southern Cyprus (Randi Forest) for the years 1998-2015. We have chosen the NDVI as a proxy for vegetation greenness and applied different spatial landscape metrics to calculate changes in vegetation patterns over time. Further, we applied a time-series based approach (BFAST) on selected pixels, to look for sudden changes and trends in the vegetation dynamics. The results promoted our knowledge on how land degradation dynamics in Mediterranean rangelands can be captured through spatio-temporal vegetation dynamics and allowed us to select the most suitable metrics for further analysis. In the long-term, we aim at using Landsat satellite data covering 30 years. To gain a functional understanding of land degradation, we want to overlay our results from the remotely sensed data with results of an eco-hydrological model (SWAT).
NASA Astrophysics Data System (ADS)
Kuo, Yi-Ming; Lin, Hsing-Juh
2010-01-01
We examined environmental factors which are most responsible for the 8-year temporal dynamics of the intertidal seagrass Thalassia hemprichii in southern Taiwan. A dynamic factor analysis (DFA), a dimension-reduction technique, was applied to identify common trends in a multivariate time series and the relationships between this series and interacting environmental variables. The results of dynamic factor models (DFMs) showed that the leaf growth rate of the seagrass was mainly influenced by salinity (Sal), tidal range (TR), turbidity ( K), and a common trend representing an unexplained variability in the observed time series. Sal was the primary variable that explained the temporal dynamics of the leaf growth rate compared to TR and K. K and TR had larger influences on the leaf growth rate in low- than in high-elevation beds. In addition to K, TR, and Sal, UV-B radiation (UV-B), sediment depth (SD), and a common trend accounted for long-term temporal variations of the above-ground biomass. Thus, K, TR, Sal, UV-B, and SD are the predominant environmental variables that described temporal growth variations of the intertidal seagrass T. hemprichii in southern Taiwan. In addition to environmental variables, human activities may be contributing to negative impacts on the seagrass beds; this human interference may have been responsible for the unexplained common trend in the DFMs. Due to successfully applying the DFA to analyze complicated ecological and environmental data in this study, important environmental variables and impacts of human activities along the coast should be taken into account when managing a coastal environment for the conservation of intertidal seagrass beds.
Kinziger, Andrew P; Hellmair, Michael; McCraney, W Tyler; Jacobs, David K; Goldsmith, Greg
2015-11-01
Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction-colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field-based approaches for assessment of the extinction-colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction-colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction-colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within-site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20-30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction-colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction-colonization dynamics or as a stand-alone tool when field data are lacking. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Drótos, Gábor; Bódai, Tamás; Tél, Tamás
2016-08-01
In nonautonomous dynamical systems, like in climate dynamics, an ensemble of trajectories initiated in the remote past defines a unique probability distribution, the natural measure of a snapshot attractor, for any instant of time, but this distribution typically changes in time. In cases with an aperiodic driving, temporal averages taken along a single trajectory would differ from the corresponding ensemble averages even in the infinite-time limit: ergodicity does not hold. It is worth considering this difference, which we call the nonergodic mismatch, by taking time windows of finite length for temporal averaging. We point out that the probability distribution of the nonergodic mismatch is qualitatively different in ergodic and nonergodic cases: its average is zero and typically nonzero, respectively. A main conclusion is that the difference of the average from zero, which we call the bias, is a useful measure of nonergodicity, for any window length. In contrast, the standard deviation of the nonergodic mismatch, which characterizes the spread between different realizations, exhibits a power-law decrease with increasing window length in both ergodic and nonergodic cases, and this implies that temporal and ensemble averages differ in dynamical systems with finite window lengths. It is the average modulus of the nonergodic mismatch, which we call the ergodicity deficit, that represents the expected deviation from fulfilling the equality of temporal and ensemble averages. As an important finding, we demonstrate that the ergodicity deficit cannot be reduced arbitrarily in nonergodic systems. We illustrate via a conceptual climate model that the nonergodic framework may be useful in Earth system dynamics, within which we propose the measure of nonergodicity, i.e., the bias, as an order-parameter-like quantifier of climate change.
NASA Astrophysics Data System (ADS)
Hernandez, Olga; Lehodey, Patrick; Senina, Inna; Echevin, Vincent; Ayón, Patricia; Bertrand, Arnaud; Gaspar, Philippe
2014-04-01
The Spatial Ecosystem And Populations Dynamics Model "SEAPODYM", based on a system of Eulerian equations and initially developed for large pelagic fish (e.g., tuna), was modified to describe spawning habitat and eggs and larvae dynamics of small pelagic fish. The spawning habitat is critical since it controls the initial recruitment of larvae and the subsequent spatio-temporal variability of natural mortality during their drift with currents. A robust statistical approach based on Maximum Likelihood Estimation is presented to optimize the model parameters defining the spawning habitat and the eggs and larvae dynamics. To improve parameterization, eggs and larvae density observations are assimilated in the model. The model and its associated optimization approach allow investigating the significance of the mechanisms proposed to control fish spawning habitat and larval recruitment: temperature, prey abundance, trade-off between prey and predators, and retention and dispersion processes. An application to the Peruvian anchovy (Engraulis ringens) and sardine (Sardinops sagax) illustrates the ability of the model to simulate the main features of spatial dynamics of these two species in the Humboldt Current System. For both species, in climatological conditions, the main observed spatial patterns are well reproduced and are explained by the impact of prey and predator abundance and by physical retention with currents, while temperature has a lower impact. In agreement with observations, sardine larvae are mainly predicted in the northern part of the Peruvian shelf (5-10°S), while anchovy larvae extend further south. Deoxygenation, which can potentially limit the accessibility of adult fish to spawning areas, does not appear to have an impact in our model setting. Conversely, the observed seasonality in spawning activity, especially the spawning rest period in austral autumn, is not well simulated. It is proposed that this seasonal cycle is more likely driven by the spatio-temporal dynamics of adult fish constituting the spawning biomass and not yet included in the model.
Modeling the spatial and temporal dynamics of isolated emerald ash borer populations
Nathan W. Siegert; Andrew M. Liebhold; Deborah G. McCullough
2008-01-01
The ability to predict the distance and rate of emerald ash borer (EAB) spread in outlier populations is needed to continue development of effective management strategies for improved EAB control. We have developed a coupled map lattice model to estimate the spread and dispersal of isolated emerald ash borer populations. This model creates an artificial environment in...
Identifying spatio-temporal dynamics of Ebola in Sierra Leone using virus genomes
Proctor, Joshua L.
2017-01-01
Containing the recent West African outbreak of Ebola virus (EBOV) required the deployment of substantial global resources. Despite recent progress in analysing and modelling EBOV epidemiological data, a complete characterization of the spatio-temporal spread of Ebola cases remains a challenge. In this work, we offer a novel perspective on the EBOV epidemic in Sierra Leone that uses individual virus genome sequences to inform population-level, spatial models. Calibrated to phylogenetic linkages of virus genomes, these spatial models provide unique insight into the disease mobility of EBOV in Sierra Leone without the need for human mobility data. Consistent with other investigations, our results show that the spread of EBOV during the beginning and middle portions of the epidemic strongly depended on the size of and distance between populations. Our phylodynamic analysis also revealed a change in model preference towards a spatial model with power-law characteristics in the latter portion of the epidemic, correlated with the timing of major intervention campaigns. More generally, we believe this framework, pairing molecular diagnostics with a dynamic model selection procedure, has the potential to be a powerful forecasting tool along with offering operationally relevant guidance for surveillance and sampling strategies during an epidemic. PMID:29187639
Encoding dependence in Bayesian causal networks
USDA-ARS?s Scientific Manuscript database
Bayesian networks (BNs) represent complex, uncertain spatio-temporal dynamics by propagation of conditional probabilities between identifiable states with a testable causal interaction model. Typically, they assume random variables are discrete in time and space with a static network structure that ...
Circular tomosynthesis for neuro perfusion imaging on an interventional C-arm
NASA Astrophysics Data System (ADS)
Claus, Bernhard E.; Langan, David A.; Al Assad, Omar; Wang, Xin
2015-03-01
There is a clinical need to improve cerebral perfusion assessment during the treatment of ischemic stroke in the interventional suite. The clinician is able to determine whether the arterial blockage was successfully opened but is unable to sufficiently assess blood flow through the parenchyma. C-arm spin acquisitions can image the cerebral blood volume (CBV) but are challenged to capture the temporal dynamics of the iodinated contrast bolus, which is required to derive, e.g., cerebral blood flow (CBF) and mean transit time (MTT). Here we propose to utilize a circular tomosynthesis acquisition on the C-arm to achieve the necessary temporal sampling of the volume at the cost of incomplete data. We address the incomplete data problem by using tools from compressed sensing and incorporate temporal interpolation to improve our temporal resolution. A CT neuro perfusion data set is utilized for generating a dynamic (4D) volumetric model from which simulated tomo projections are generated. The 4D model is also used as a ground truth reference for performance evaluation. The performance that may be achieved with the tomo acquisition and 4D reconstruction (under simulation conditions, i.e., without considering data fidelity limitations due to imaging physics and imaging chain) is evaluated. In the considered scenario, good agreement between the ground truth and the tomo reconstruction in the parenchyma was achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiali; Swati, F. N. U.; Stein, Michael L.
Regional climate models (RCMs) are a standard tool for downscaling climate forecasts to finer spatial scales. The evaluation of RCMs against observational data is an important step in building confidence in the use of RCMs for future prediction. In addition to model performance in climatological means and marginal distributions, a model’s ability to capture spatio-temporal relationships is important. This study develops two approaches: (1) spatial correlation/variogram for a range of spatial lags, with total monthly precipitation and non-seasonal precipitation components used to assess the spatial variations of precipitation; and (2) spatio-temporal correlation for a wide range of distances, directions, andmore » time lags, with daily precipitation occurrence used to detect the dynamic features of precipitation. These measures of spatial and spatio-temporal dependence are applied to a high-resolution RCM run and to the National Center for Environmental Prediction (NCEP)-U.S. Department of Energy (DOE) AMIP II reanalysis data (NCEP-R2), which provides initial and lateral boundary conditions for the RCM. The RCM performs better than NCEP-R2 in capturing both the spatial variations of total and non-seasonal precipitation components and the spatio-temporal correlations of daily precipitation occurrences, which are related to dynamic behaviors of precipitating systems. The improvements are apparent not just at resolutions finer than that of NCEP-R2, but also when the RCM and observational data are aggregated to the resolution of NCEP-R2.« less
Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping
2014-01-01
Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.
NASA Astrophysics Data System (ADS)
Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.
2014-12-01
The growing availability of high-resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the possibilities offered for improving crop-growth dynamic simulation with the distributed agro-hydrological model: topography-based nitrogen transfer and transformation (TNT2). We used a leaf area index (LAI) map series derived from 105 Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2005-2010 data set (climate, land use, agricultural practices, and discharge and nitrate fluxes at the outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and amount of fertilizer, were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop-field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori input parameters displayed temporal shifts from those observed LAI profiles that are irregularly distributed in space (between field crops) and time (between years). By resetting the seeding date at the crop-field level, we have developed an optimization method designed to efficiently minimize this temporal shift and better fit the crop growth against both the spatial observations and crop production. This optimization of simulated LAI has a negligible impact on water budgets at the catchment scale (1 mm yr-1 on average) but a noticeable impact on in-stream nitrogen fluxes (around 12%), which is of interest when considering nitrate stream contamination issues and the objectives of TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial and temporal resolution products from the Sentinel-2 satellite mission for improving agro-hydrological modeling by constraining the spatial representation of crop productivity.
Punctuated equilibrium dynamics in human communications
NASA Astrophysics Data System (ADS)
Peng, Dan; Han, Xiao-Pu; Wei, Zong-Wen; Wang, Bing-Hong
2015-10-01
A minimal model based on network incorporating individual interactions is proposed to study the non-Poisson statistical properties of human behavior: individuals in system interact with their neighbors, the probability of an individual acting correlates to its activity, and all the individuals involved in action will change their activities randomly. The model reproduces varieties of spatial-temporal patterns observed in empirical studies of human daily communications, providing insight into various human activities and embracing a range of realistic social interacting systems, particularly, intriguing bimodal phenomenon. This model bridges priority queueing theory and punctuated equilibrium dynamics, and our modeling and analysis is likely to shed light on non-Poisson phenomena in many complex systems.
Spatio-temporal behaviour of medium-range ensemble forecasts
NASA Astrophysics Data System (ADS)
Kipling, Zak; Primo, Cristina; Charlton-Perez, Andrew
2010-05-01
Using the recently-developed mean-variance of logarithms (MVL) diagram, together with the TIGGE archive of medium-range ensemble forecasts from nine different centres, we present an analysis of the spatio-temporal dynamics of their perturbations, and show how the differences between models and perturbation techniques can explain the shape of their characteristic MVL curves. We also consider the use of the MVL diagram to compare the growth of perturbations within the ensemble with the growth of the forecast error, showing that there is a much closer correspondence for some models than others. We conclude by looking at how the MVL technique might assist in selecting models for inclusion in a multi-model ensemble, and suggest an experiment to test its potential in this context.
Signatures of ecological processes in microbial community time series.
Faust, Karoline; Bauchinger, Franziska; Laroche, Béatrice; de Buyl, Sophie; Lahti, Leo; Washburne, Alex D; Gonze, Didier; Widder, Stefanie
2018-06-28
Growth rates, interactions between community members, stochasticity, and immigration are important drivers of microbial community dynamics. In sequencing data analysis, such as network construction and community model parameterization, we make implicit assumptions about the nature of these drivers and thereby restrict model outcome. Despite apparent risk of methodological bias, the validity of the assumptions is rarely tested, as comprehensive procedures are lacking. Here, we propose a classification scheme to determine the processes that gave rise to the observed time series and to enable better model selection. We implemented a three-step classification scheme in R that first determines whether dependence between successive time steps (temporal structure) is present in the time series and then assesses with a recently developed neutrality test whether interactions between species are required for the dynamics. If the first and second tests confirm the presence of temporal structure and interactions, then parameters for interaction models are estimated. To quantify the importance of temporal structure, we compute the noise-type profile of the community, which ranges from black in case of strong dependency to white in the absence of any dependency. We applied this scheme to simulated time series generated with the Dirichlet-multinomial (DM) distribution, Hubbell's neutral model, the generalized Lotka-Volterra model and its discrete variant (the Ricker model), and a self-organized instability model, as well as to human stool microbiota time series. The noise-type profiles for all but DM data clearly indicated distinctive structures. The neutrality test correctly classified all but DM and neutral time series as non-neutral. The procedure reliably identified time series for which interaction inference was suitable. Both tests were required, as we demonstrated that all structured time series, including those generated with the neutral model, achieved a moderate to high goodness of fit to the Ricker model. We present a fast and robust scheme to classify community structure and to assess the prevalence of interactions directly from microbial time series data. The procedure not only serves to determine ecological drivers of microbial dynamics, but also to guide selection of appropriate community models for prediction and follow-up analysis.
Robust temporal alignment of multimodal cardiac sequences
NASA Astrophysics Data System (ADS)
Perissinotto, Andrea; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.; Barbosa, Daniel
2015-03-01
Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1.6 +/- 1.9% and 4.0 +/- 4.2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.
2010-01-01
Background With an accumulation of in silico data obtained by simulating large-scale biological networks, a new interest of research is emerging for elucidating how living organism functions over time in cells. Investigating the dynamic features of current computational models promises a deeper understanding of complex cellular processes. This leads us to develop a method that utilizes structural properties of the model over all simulation time steps. Further, user-friendly overviews of dynamic behaviors can be considered to provide a great help in understanding the variations of system mechanisms. Results We propose a novel method for constructing and analyzing a so-called active state transition diagram (ASTD) by using time-course simulation data of a high-level Petri net. Our method includes two new algorithms. The first algorithm extracts a series of subnets (called temporal subnets) reflecting biological components contributing to the dynamics, while retaining positive mathematical qualities. The second one creates an ASTD composed of unique temporal subnets. ASTD provides users with concise information allowing them to grasp and trace how a key regulatory subnet and/or a network changes with time. The applicability of our method is demonstrated by the analysis of the underlying model for circadian rhythms in Drosophila. Conclusions Building ASTD is a useful means to convert a hybrid model dealing with discrete, continuous and more complicated events to finite time-dependent states. Based on ASTD, various analytical approaches can be applied to obtain new insights into not only systematic mechanisms but also dynamics. PMID:20356411
Deng, Mingge; Grinberg, Leopold; Caswell, Bruce
2015-01-01
We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a viscous stagnation-point flow, by employing both a continuum model represented by Langevin type stochastic partial differential equations (SPDEs) and a Dissipative Particle Dynamics (DPD) method. Unlike previous works1, the filament is free to rotate and the tension along the filament is determined by the local inextensible constraint. The kinematics of the filament is recorded and studied with normal modes analysis. The results show that the filament displays an instability induced by negative tension, which is analogous to Euler buckling of a beam. Symmetry breaking of normal modes dynamics and stretch-coil transitions are observed above the threshold of the buckling instability point. Furthermore, both temporal and spatial noise are amplified resulting from the interaction of thermal fluctuations and nonlinear filament dynamics. Specifically, the spatial noise is amplified with even normal modes being excited due to symmetry breaking, while the temporal noise is amplified with increasing time correlation length and variance. PMID:26023834
Corneal biomechanical properties from air-puff corneal deformation imaging
NASA Astrophysics Data System (ADS)
Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos
2014-02-01
The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.
Belowground adaptation and resilience to drought conditions
NASA Astrophysics Data System (ADS)
Sivandran, G.; Gentine, P.; Bras, R. L.
2012-12-01
The most expansive drought in 50 years stretched across the Midwest in 2012. In light of predicted increases in the variability of climate, this type of event can no longer be considered extreme. Understanding the resilience of both managed and natural vegetation and how these systems may adapt to this new climate reality is critical in predicting changes to the global carbon, energy and water balance. An eco-hydrological model (tRIBS+VEGGIE) was employed to model the sensitivity of vegetation to varying drought intensities. Point scale simulations were carried out using two vertical root distribution schemes: (i) Static - a temporally invariant root distribution; and (ii) Dynamic - a temporally variable root carbon allocation scheme. A stochastic climate generator was used to create a series of synthetic climate realizations varying the drought characteristics - in particular the interstorm period. This change in the seasonal distribution of precipitation impacts the spatial (soil layers) and temporal distribution of soil moisture which directly impacts the water resource niche for vegetation. This change in resource niche is reflected in a shift in the optimal static rooting strategy further highlighting the need for the incorporation of a dynamic scheme that responds to local conditions.
Spatial analysis and statistical modelling of snow cover dynamics in the Central Himalayas, Nepal
NASA Astrophysics Data System (ADS)
Weidinger, Johannes; Gerlitz, Lars; Böhner, Jürgen
2017-04-01
General circulation models are able to predict large scale climate variations in global dimensions, however small scale dynamic characteristics, such as snow cover and its temporal variations in high mountain regions, are not represented sufficiently. Detailed knowledge about shifts in seasonal ablation times and spatial distribution of snow cover are crucial for various research interests. Since high mountain areas, for instance the Central Himalayas in Nepal, are generally remote, it is difficult to obtain data in high spatio-temporal resolutions. Regional climate models and downscaling techniques are implemented to compensate coarse resolution. Furthermore earth observation systems, such as MODIS, also permit bridging this gap to a certain extent. They offer snow (cover) data in daily temporal and medium spatial resolution of around 500 m, which can be applied as evaluation and training data for dynamical hydrological and statistical analyses. Within this approach two snow distribution models (binary snow cover and fractional snow cover) as well as one snow recession model were implemented for a research domain in the Rolwaling Himal in Nepal, employing the random forest technique, which represents a state of the art machine learning algorithm. Both bottom-up strategies provide inductive reasoning to derive rules for snow related processes out of climate (temperature, precipitation and irradiance) and climate-related topographic data sets (elevation, aspect and convergence index) obtained by meteorological network stations, remote sensing products (snow cover - MOD10-A1 and land surface temperatures - MOD11-A1) along with GIS. Snow distribution is predicted reliably on a daily basis in the research area, whereas further effort is necessary for predicting daily snow cover recession processes adequately. Swift changes induced by clear sky conditions with high insolation rates are well represented, whereas steady snow loss still needs continuing effort. All approaches underline the technical difficulties of snow cover modelling during the monsoon season, in accordance with previous studies. The developed methods in combination with continuous in situ measurements provide a basis for further downscaling approaches.
Floral Morphogenesis: Stochastic Explorations of a Gene Network Epigenetic Landscape
Aldana, Maximino; Benítez, Mariana; Cortes-Poza, Yuriria; Espinosa-Soto, Carlos; Hartasánchez, Diego A.; Lotto, R. Beau; Malkin, David; Escalera Santos, Gerardo J.; Padilla-Longoria, Pablo
2008-01-01
In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity genes in the Arabidopsis thaliana flower as a stochastic system. This network has previously been shown to converge to ten fixed-point attractors, each with gene expression arrays that characterize inflorescence cells and primordial cells of sepals, petals, stamens, and carpels. The network used is binary, and the logical rules that govern its dynamics are grounded in experimental evidence. We introduced different levels of uncertainty in the updating rules of the network. Interestingly, for a level of noise of around 0.5–10%, the system exhibited a sequence of transitions among attractors that mimics the sequence of gene activation configurations observed in real flowers. We also implemented the gene regulatory network as a continuous system using the Glass model of differential equations, that can be considered as a first approximation of kinetic-reaction equations, but which are not necessarily equivalent to the Boolean model. Interestingly, the Glass dynamics recover a temporal sequence of attractors, that is qualitatively similar, although not identical, to that obtained using the Boolean model. Thus, time ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in the Boolean model. Therefore, our model provides a novel explanation for the emergence and robustness of the ubiquitous temporal pattern of floral organ specification. It also constitutes a new approach to understanding morphogenesis, providing predictions on the population dynamics of cells with different genetic configurations during development. PMID:18978941
Correlated lateral phase separations in stacks of lipid membranes
NASA Astrophysics Data System (ADS)
Hoshino, Takuma; Komura, Shigeyuki; Andelman, David
2015-12-01
Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, Tc, for larger inter-layer interaction. When the temperature ratio, T/Tc, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction.
Hashimoto, Shoji; Matsuura, Toshiya; Nanko, Kazuki; Linkov, Igor; Shaw, George; Kaneko, Shinji
2013-01-01
The majority of the area contaminated by the Fukushima Dai-ichi nuclear power plant accident is covered by forest. To facilitate effective countermeasure strategies to mitigate forest contamination, we simulated the spatio-temporal dynamics of radiocesium deposited into Japanese forest ecosystems in 2011 using a model that was developed after the Chernobyl accident in 1986. The simulation revealed that the radiocesium inventories in tree and soil surface organic layer components drop rapidly during the first two years after the fallout. Over a period of one to two years, the radiocesium is predicted to move from the tree and surface organic soil to the mineral soil, which eventually becomes the largest radiocesium reservoir within forest ecosystems. Although the uncertainty of our simulations should be considered, the results provide a basis for understanding and anticipating the future dynamics of radiocesium in Japanese forests following the Fukushima accident. PMID:23995073
Statistical Mechanics of Temporal and Interacting Networks
NASA Astrophysics Data System (ADS)
Zhao, Kun
In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide a new framework to quantify the information encoded in these networks and to answer a fundamental problem in network science: how complex are temporal and growing networks. Finally, we consider two examples of critical phenomena in interacting networks. In particular, on one side we investigate the percolation of interacting networks by introducing antagonistic interactions. On the other side, we investigate a model of political election based on the percolation of antagonistic networks. The aim of this research is to show how antagonistic interactions change the physics of critical phenomena on interacting networks. We believe that the work presented in these thesis offers the possibility to appreciate the large variability of problems that can be addressed in the new framework of temporal and interacting networks.
Yeh, Hsiang J.; Guindani, Michele; Vannucci, Marina; Haneef, Zulfi; Stern, John M.
2018-01-01
Estimation of functional connectivity (FC) has become an increasingly powerful tool for investigating healthy and abnormal brain function. Static connectivity, in particular, has played a large part in guiding conclusions from the majority of resting-state functional MRI studies. However, accumulating evidence points to the presence of temporal fluctuations in FC, leading to increasing interest in estimating FC as a dynamic quantity. One central issue that has arisen in this new view of connectivity is the dramatic increase in complexity caused by dynamic functional connectivity (dFC) estimation. To computationally handle this increased complexity, a limited set of dFC properties, primarily the mean and variance, have generally been considered. Additionally, it remains unclear how to integrate the increased information from dFC into pattern recognition techniques for subject-level prediction. In this study, we propose an approach to address these two issues based on a large number of previously unexplored temporal and spectral features of dynamic functional connectivity. A Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is used to estimate time-varying patterns of functional connectivity between resting-state networks. Time-frequency analysis is then performed on dFC estimates, and a large number of previously unexplored temporal and spectral features drawn from signal processing literature are extracted for dFC estimates. We apply the investigated features to two neurologic populations of interest, healthy controls and patients with temporal lobe epilepsy, and show that the proposed approach leads to substantial increases in predictive performance compared to both traditional estimates of static connectivity as well as current approaches to dFC. Variable importance is assessed and shows that there are several quantities that can be extracted from dFC signal which are more informative than the traditional mean or variance of dFC. This work illuminates many previously unexplored facets of the dynamic properties of functional connectivity between resting-state networks, and provides a platform for dynamic functional connectivity analysis that facilitates its usage as an investigative measure for healthy as well as abnormal brain function. PMID:29320526
Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks
NASA Astrophysics Data System (ADS)
Gosangi, Rakesh; Gutierrez-Osuna, Ricardo
2011-09-01
We present a data-driven probabilistic framework to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Although building these models provides an insight into the sensor behavior, they also require a thorough understanding of the underlying operating principles. Here we propose a data-driven approach to characterize the dynamical relationship between sensor inputs and outputs. Namely, we use dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations between a set of random variables. We identify a set of control variables that influence the sensor responses, create a graphical representation that captures the causal relations between these variables, and finally train the model with experimental data. We validated the approach on experimental data in terms of predictive accuracy and classification performance. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well as capture the discriminatory information present in the sensor transients.
Modeling change from large-scale high-dimensional spatio-temporal array data
NASA Astrophysics Data System (ADS)
Lu, Meng; Pebesma, Edzer
2014-05-01
The massive data that come from Earth observation satellite and other sensors provide significant information for modeling global change. At the same time, the high dimensionality of the data has brought challenges in data acquisition, management, effective querying and processing. In addition, the output of earth system modeling tends to be data intensive and needs methodologies for storing, validation, analyzing and visualization, e.g. as maps. An important proportion of earth system observations and simulated data can be represented as multi-dimensional array data, which has received increasingly attention in big data management and spatial-temporal analysis. Study cases will be developed in natural science such as climate change, hydrological modeling, sediment dynamics, from which the addressing of big data problems is necessary. Multi-dimensional array-based database management and analytics system such as Rasdaman, SciDB, and R will be applied to these cases. From these studies will hope to learn the strengths and weaknesses of these systems, how they might work together or how semantics of array operations differ, through addressing the problems associated with big data. Research questions include: • How can we reduce dimensions spatially and temporally, or thematically? • How can we extend existing GIS functions to work on multidimensional arrays? • How can we combine data sets of different dimensionality or different resolutions? • Can map algebra be extended to an intelligible array algebra? • What are effective semantics for array programming of dynamic data driven applications? • In which sense are space and time special, as dimensions, compared to other properties? • How can we make the analysis of multi-spectral, multi-temporal and multi-sensor earth observation data easy?
Gong, Wuming; Koyano-Nakagawa, Naoko; Li, Tongbin; Garry, Daniel J
2015-03-07
Decoding the temporal control of gene expression patterns is key to the understanding of the complex mechanisms that govern developmental decisions during heart development. High-throughput methods have been employed to systematically study the dynamic and coordinated nature of cardiac differentiation at the global level with multiple dimensions. Therefore, there is a pressing need to develop a systems approach to integrate these data from individual studies and infer the dynamic regulatory networks in an unbiased fashion. We developed a two-step strategy to integrate data from (1) temporal RNA-seq, (2) temporal histone modification ChIP-seq, (3) transcription factor (TF) ChIP-seq and (4) gene perturbation experiments to reconstruct the dynamic network during heart development. First, we trained a logistic regression model to predict the probability (LR score) of any base being bound by 543 TFs with known positional weight matrices. Second, four dimensions of data were combined using a time-varying dynamic Bayesian network model to infer the dynamic networks at four developmental stages in the mouse [mouse embryonic stem cells (ESCs), mesoderm (MES), cardiac progenitors (CP) and cardiomyocytes (CM)]. Our method not only infers the time-varying networks between different stages of heart development, but it also identifies the TF binding sites associated with promoter or enhancers of downstream genes. The LR scores of experimentally verified ESCs and heart enhancers were significantly higher than random regions (p <10(-100)), suggesting that a high LR score is a reliable indicator for functional TF binding sites. Our network inference model identified a region with an elevated LR score approximately -9400 bp upstream of the transcriptional start site of Nkx2-5, which overlapped with a previously reported enhancer region (-9435 to -8922 bp). TFs such as Tead1, Gata4, Msx2, and Tgif1 were predicted to bind to this region and participate in the regulation of Nkx2-5 gene expression. Our model also predicted the key regulatory networks for the ESC-MES, MES-CP and CP-CM transitions. We report a novel method to systematically integrate multi-dimensional -omics data and reconstruct the gene regulatory networks. This method will allow one to rapidly determine the cis-modules that regulate key genes during cardiac differentiation.
Sibly, Richard M; Nabe-Nielsen, Jacob; Forchhammer, Mads C; Forbes, Valery E; Topping, Christopher J
2009-01-01
Background Variation in carrying capacity and population return rates is generally ignored in traditional studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the environment in order to obtain statistical replicates, and because of the scale and expense of experimenting on populations. There may also be ethical issues. To circumvent these problems we used detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra. This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the population dynamics of the four species. Results Both spatial and temporal heterogeneity affected the relationship between population growth rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance in population growth rate after accounting for the effects of density, reflecting big differences in local carrying capacity associated with the landscape features important to individual species. Temporal heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The associated temporal variation in carrying capacity would be problematic in traditional analyses of density dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations in local population sizes. Conclusion Our analyses estimated the traditional parameters of carrying capacities and return rates, but these are now seen as varying continuously over the landscape depending on habitat quality and the mechanisms of density dependence. The importance of our results lies in our demonstration that the effects of spatial and temporal heterogeneity must be accounted for if we are to have accurate predictive models for use in management and conservation. This is an area which until now has lacked an adequate theoretical framework and methodology. PMID:19549327
Reasoning about real-time systems with temporal interval logic constraints on multi-state automata
NASA Technical Reports Server (NTRS)
Gabrielian, Armen
1991-01-01
Models of real-time systems using a single paradigm often turn out to be inadequate, whether the paradigm is based on states, rules, event sequences, or logic. A model-based approach to reasoning about real-time systems is presented in which a temporal interval logic called TIL is employed to define constraints on a new type of high level automata. The combination, called hierarchical multi-state (HMS) machines, can be used to model formally a real-time system, a dynamic set of requirements, the environment, heuristic knowledge about planning-related problem solving, and the computational states of the reasoning mechanism. In this framework, mathematical techniques were developed for: (1) proving the correctness of a representation; (2) planning of concurrent tasks to achieve goals; and (3) scheduling of plans to satisfy complex temporal constraints. HMS machines allow reasoning about a real-time system from a model of how truth arises instead of merely depending of what is true in a system.
NASA Astrophysics Data System (ADS)
Yamana, Teresa K.; Eltahir, Elfatih A. B.
2011-02-01
This paper describes the use of satellite-based estimates of rainfall to force the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a hydrology-based mechanistic model of malaria transmission. We first examined the temporal resolution of rainfall input required by HYDREMATS. Simulations conducted over Banizoumbou village in Niger showed that for reasonably accurate simulation of mosquito populations, the model requires rainfall data with at least 1 h resolution. We then investigated whether HYDREMATS could be effectively forced by satellite-based estimates of rainfall instead of ground-based observations. The Climate Prediction Center morphing technique (CMORPH) precipitation estimates distributed by the National Oceanic and Atmospheric Administration are available at a 30 min temporal resolution and 8 km spatial resolution. We compared mosquito populations simulated by HYDREMATS when the model is forced by adjusted CMORPH estimates and by ground observations. The results demonstrate that adjusted rainfall estimates from satellites can be used with a mechanistic model to accurately simulate the dynamics of mosquito populations.
Temporal rainfall estimation using input data reduction and model inversion
NASA Astrophysics Data System (ADS)
Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.
2016-12-01
Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a demonstration of equifinality. The use of a likelihood function that considers both rainfall and streamflow error combined with the use of the DWT as a model data reduction technique allows the joint inference of hydrologic model parameters along with rainfall.
Temporal self-regulation theory: a neurobiologically informed model for physical activity behavior
Hall, Peter A.; Fong, Geoffrey T.
2015-01-01
Dominant explanatory models for physical activity behavior are limited by the exclusion of several important components, including temporal dynamics, ecological forces, and neurobiological factors. The latter may be a critical omission, given the relevance of several aspects of cognitive function for the self-regulatory processes that are likely required for consistent implementation of physical activity behavior in everyday life. This narrative review introduces temporal self-regulation theory (TST; Hall and Fong, 2007, 2013) as a new explanatory model for physical activity behavior. Important features of the model include consideration of the default status of the physical activity behavior, as well as the disproportionate influence of temporally proximal behavioral contingencies. Most importantly, the TST model proposes positive feedback loops linking executive function (EF) and the performance of physical activity behavior. Specifically, those with relatively stronger executive control (and optimized brain structures supporting it, such as the dorsolateral prefrontal cortex (PFC)) are able to implement physical activity with more consistency than others, which in turn serves to strengthen the executive control network itself. The TST model has the potential to explain everyday variants of incidental physical activity, sport-related excellence via capacity for deliberate practice, and variability in the propensity to schedule and implement exercise routines. PMID:25859196
[Wave-type time series variation of the correlation between NDVI and climatic factors].
Bi, Xiaoli; Wang, Hui; Ge, Jianping
2005-02-01
Based on the 1992-1996 data of 1 km monthly NDVI and those of the monthly precipitation and mean temperature collected by 400 standard meteorological stations in China, this paper analyzed the temporal and spatial dynamic changes of the correlation between NDVI and climatic factors in different climate districts of this country. The results showed that there was a significant correlation between monthly precipitations and NDVI. The wave-type time series model could simulate well the temporal dynamic changes of the correlation between NDVI and climatic factors, and the simulated results of the correlation between NDVI and precipitation was better than that between NDVI and temperature. The correlation coefficients (R2) were 0.91 and 0.86, respectively for the whole country.
Multiobjective optimization of temporal processes.
Song, Zhe; Kusiak, Andrew
2010-06-01
This paper presents a dynamic predictive-optimization framework of a nonlinear temporal process. Data-mining (DM) and evolutionary strategy algorithms are integrated in the framework for solving the optimization model. DM algorithms learn dynamic equations from the process data. An evolutionary strategy algorithm is then applied to solve the optimization problem guided by the knowledge extracted by the DM algorithm. The concept presented in this paper is illustrated with the data from a power plant, where the goal is to maximize the boiler efficiency and minimize the limestone consumption. This multiobjective optimization problem can be either transformed into a single-objective optimization problem through preference aggregation approaches or into a Pareto-optimal optimization problem. The computational results have shown the effectiveness of the proposed optimization framework.
The role of tropical deforestation in the global carbon cycle: Spatial and temporal dynamics
NASA Technical Reports Server (NTRS)
Houghton, R. A.; Skole, David; Moore, Berrien; Melillo, Jerry; Steudler, Paul
1995-01-01
'The Role of Tropical Deforestation in the Global Carbon cycle: Spatial and Temporal Dynamics', was a joint project involving the University of New Hampshire, the Marine Biological Laboratory, and the Woods Hole Research Center. The contribution of the Woods Hole Research Center consisted of three tasks: (1) assist University of New Hampshire in determining the net flux of carbon between the Brazilian Amazon and the atmosphere by means of a terrestrial carbon model; (2) address the spatial distribution of biomass across the Amazon Basin; and (3) assist NASA Headquarters in development of a science plan for the Terrestrial Ecology component of the NASA-Brazilian field campaign (anticipated for 1997-2001). Progress on these three tasks is briefly described.
Hierarchic spatio-temporal dynamics in glycolysis
NASA Astrophysics Data System (ADS)
Shinjyo, Takahiro; Nakagawa, Yoshiyuki; Ueda, Tetsuo
Yeast extracts exhibit oscillations when the glycolytic system is far away from equilibrium. Spatio-temporal dynamics in this system was studied in the newly developed gel as well as in the solution. Small regions (about 10 um) with very complex shape with high or low concentrations of NADH appeared, and upon these small structures large-scale dynamics were superimposed. Concentration waves propagated, and the source of wave was induced by contact with high ADP. Sink of waves was generated by contacting the reaction gel to two small gels rich in ADP. Upon these spatio-temporal dynamics were superimposed much slower global oscillations throughout the system with a period of about 40 min. Similar dynamics was seen in a solution of yeast extract, but the size of domains was about ten times larger than that in the gel. In this way, the multi-enzyme system of glycolysis exhibits self-organization of hierarchy in spatio-temporal dynamics.
Dynamic Control of Plans with Temporal Uncertainty
NASA Technical Reports Server (NTRS)
Morris, Paul; Muscettola, Nicola; Vidal, Thierry
2001-01-01
Certain planning systems that deal with quantitative time constraints have used an underlying Simple Temporal Problem solver to ensure temporal consistency of plans. However, many applications involve processes of uncertain duration whose timing cannot be controlled by the execution agent. These cases require more complex notions of temporal feasibility. In previous work, various "controllability" properties such as Weak, Strong, and Dynamic Controllability have been defined. The most interesting and useful Controllability property, the Dynamic one, has ironically proved to be the most difficult to analyze. In this paper, we resolve the complexity issue for Dynamic Controllability. Unexpectedly, the problem turns out to be tractable. We also show how to efficiently execute networks whose status has been verified.
Albouy, Philippe; Mattout, Jérémie; Sanchez, Gaëtan; Tillmann, Barbara; Caclin, Anne
2015-01-01
Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and short-term memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the short-term memory retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in "Different" trials and to its equivalent (original) tone in "Same" trials were compared between groups using Dynamic Causal Modeling (DCM). DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with notably an increase in "Same" trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain.
Dynamic Divisive Normalization Predicts Time-Varying Value Coding in Decision-Related Circuits
LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W.
2014-01-01
Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. PMID:25429145
Seasonally forced disease dynamics explored as switching between attractors
NASA Astrophysics Data System (ADS)
Keeling, Matt J.; Rohani, Pejman; Grenfell, Bryan T.
2001-01-01
Biological phenomena offer a rich diversity of problems that can be understood using mathematical techniques. Three key features common to many biological systems are temporal forcing, stochasticity and nonlinearity. Here, using simple disease models compared to data, we examine how these three factors interact to produce a range of complicated dynamics. The study of disease dynamics has been amongst the most theoretically developed areas of mathematical biology; simple models have been highly successful in explaining the dynamics of a wide variety of diseases. Models of childhood diseases incorporate seasonal variation in contact rates due to the increased mixing during school terms compared to school holidays. This ‘binary’ nature of the seasonal forcing results in dynamics that can be explained as switching between two nonlinear spiral sinks. Finally, we consider the stability of the attractors to understand the interaction between the deterministic dynamics and demographic and environmental stochasticity. Throughout attention is focused on the behaviour of measles, whooping cough and rubella.
Tranmer, Mark; Marcum, Christopher Steven; Morton, F Blake; Croft, Darren P; de Kort, Selvino R
2015-03-01
Social dynamics are of fundamental importance in animal societies. Studies on nonhuman animal social systems often aggregate social interaction event data into a single network within a particular time frame. Analysis of the resulting network can provide a useful insight into the overall extent of interaction. However, through aggregation, information is lost about the order in which interactions occurred, and hence the sequences of actions over time. Many research hypotheses relate directly to the sequence of actions, such as the recency or rate of action, rather than to their overall volume or presence. Here, we demonstrate how the temporal structure of social interaction sequences can be quantified from disaggregated event data using the relational event model (REM). We first outline the REM, explaining why it is different from other models for longitudinal data, and how it can be used to model sequences of events unfolding in a network. We then discuss a case study on the European jackdaw, Corvus monedula , in which temporal patterns of persistence and reciprocity of action are of interest, and present and discuss the results of a REM analysis of these data. One of the strengths of a REM analysis is its ability to take into account different ways in which data are collected. Having explained how to take into account the way in which the data were collected for the jackdaw study, we briefly discuss the application of the model to other studies. We provide details of how the models may be fitted in the R statistical software environment and outline some recent extensions to the REM framework.
NASA Astrophysics Data System (ADS)
Li, Shuangcai; Duffy, Christopher J.
2011-03-01
Our ability to predict complex environmental fluid flow and transport hinges on accurate and efficient simulations of multiple physical phenomenon operating simultaneously over a wide range of spatial and temporal scales, including overbank floods, coastal storm surge events, drying and wetting bed conditions, and simultaneous bed form evolution. This research implements a fully coupled strategy for solving shallow water hydrodynamics, sediment transport, and morphological bed evolution in rivers and floodplains (PIHM_Hydro) and applies the model to field and laboratory experiments that cover a wide range of spatial and temporal scales. The model uses a standard upwind finite volume method and Roe's approximate Riemann solver for unstructured grids. A multidimensional linear reconstruction and slope limiter are implemented, achieving second-order spatial accuracy. Model efficiency and stability are treated using an explicit-implicit method for temporal discretization with operator splitting. Laboratory-and field-scale experiments were compiled where coupled processes across a range of scales were observed and where higher-order spatial and temporal accuracy might be needed for accurate and efficient solutions. These experiments demonstrate the ability of the fully coupled strategy in capturing dynamics of field-scale flood waves and small-scale drying-wetting processes.
The effects of temporal variability of mixed layer depth on primary productivity around Bermuda
NASA Technical Reports Server (NTRS)
Bissett, W. Paul; Meyers, Mark B.; Walsh, John J.; Mueller-Karger, Frank E.
1994-01-01
Temporal variations in primary production and surface chlorophyll concentrations, as measured by ship and satellite around Bermuda, were simulated with a numerical model. In the upper 450 m of the water column, population dynamics of a size-fractionated phytoplankton community were forced by daily changes of wind, light, grazing stress, and nutrient availability. The temporal variations of production and chlorophyll were driven by changes in nutrient introduction to the euphotic zone due to both high- and low-frequency changes of the mixed layer depth within 32 deg-34 deg N, 62 deg-64 deg W between 1979 and 1984. Results from the model derived from high-frequency (case 1) changes in the mixed layer depth showed variations in primary production and peak chlorophyll concentrations when compared with results from the model derived from low-frequency (case 2) mixed layer depth changes. Incorporation of size-fractionated plankton state variables in the model led to greater seasonal resolution of measured primary production and vertical chlorophyll profiles. The findings of this study highlight the possible inadequacy of estimating primary production in the sea from data of low-frequency temporal resolution and oversimplified biological simulations.
NASA Astrophysics Data System (ADS)
Feigin, Alexander; Gavrilov, Andrey; Loskutov, Evgeny; Mukhin, Dmitry
2015-04-01
Proper decomposition of the complex system into well separated "modes" is a way to reveal and understand the mechanisms governing the system behaviour as well as discover essential feedbacks and nonlinearities. The decomposition is also natural procedure that provides to construct adequate and concurrently simplest models of both corresponding sub-systems, and of the system in whole. In recent works two new methods of decomposition of the Earth's climate system into well separated modes were discussed. The first method [1-3] is based on the MSSA (Multichannel Singular Spectral Analysis) [4] for linear expanding vector (space-distributed) time series and makes allowance delayed correlations of the processes recorded in spatially separated points. The second one [5-7] allows to construct nonlinear dynamic modes, but neglects delay of correlations. It was demonstrated [1-3] that first method provides effective separation of different time scales, but prevent from correct reduction of data dimension: slope of variance spectrum of spatio-temporal empirical orthogonal functions that are "structural material" for linear spatio-temporal modes, is too flat. The second method overcomes this problem: variance spectrum of nonlinear modes falls essentially sharply [5-7]. However neglecting time-lag correlations brings error of mode selection that is uncontrolled and increases with growth of mode time scale. In the report we combine these two methods in such a way that the developed algorithm allows constructing nonlinear spatio-temporal modes. The algorithm is applied for decomposition of (i) multi hundreds years globally distributed data generated by the INM RAS Coupled Climate Model [8], and (ii) 156 years time series of SST anomalies distributed over the globe [9]. We compare efficiency of different methods of decomposition and discuss the abilities of nonlinear spatio-temporal modes for construction of adequate and concurrently simplest ("optimal") models of climate systems. 1. Feigin A.M., Mukhin D., Gavrilov A., Volodin E.M., and Loskutov E.M. (2013) "Separation of spatial-temporal patterns ("climatic modes") by combined analysis of really measured and generated numerically vector time series", AGU 2013 Fall Meeting, Abstract NG33A-1574. 2. Alexander Feigin, Dmitry Mukhin, Andrey Gavrilov, Evgeny Volodin, and Evgeny Loskutov (2014) "Approach to analysis of multiscale space-distributed time series: separation of spatio-temporal modes with essentially different time scales", Geophysical Research Abstracts, Vol. 16, EGU2014-6877. 3. Dmitry Mukhin, Dmitri Kondrashov, Evgeny Loskutov, Andrey Gavrilov, Alexander Feigin, and Michael Ghil (2014) "Predicting critical transitions in ENSO models, Part II: Spatially dependent models", Journal of Climate (accepted, doi: 10.1175/JCLI-D-14-00240.1). 4. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 5. Dmitry Mukhin, Andrey Gavrilov, Evgeny M Loskutov and Alexander M Feigin (2014) "Nonlinear Decomposition of Climate Data: a New Method for Reconstruction of Dynamical Modes", AGU 2014 Fall Meeting, Abstract NG43A-3752. 6. Andrey Gavrilov, Dmitry Mukhin, Evgeny Loskutov, and Alexander Feigin (2015) "Empirical decomposition of climate data into nonlinear dynamic modes", Geophysical Research Abstracts, Vol. 17, EGU2015-627. 7. Dmitry Mukhin, Andrey Gavrilov, Evgeny Loskutov, Alexander Feigin, and Juergen Kurths (2015) "Reconstruction of principal dynamical modes from climatic variability: nonlinear approach", Geophysical Research Abstracts, Vol. 17, EGU2015-5729. 8. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm. 9. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/.
Chen, Shi; Ilany, Amiyaal; White, Brad J; Sanderson, Michael W; Lanzas, Cristina
2015-01-01
Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS) to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density), subgroup clustering (modularity), triadic property (transitivity), and dyadic interactions (correlation coefficient from a quadratic assignment procedure) at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level) or temporal (aggregated at daily level) resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc.) also changed substantially at different time and locations. There were certain time (feeding) and location (hay) that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect) disease transmission pathways.
NASA Astrophysics Data System (ADS)
Reeder, W. Jeffery; Quick, Annika M.; Farrell, Tiffany B.; Benner, Shawn G.; Feris, Kevin P.; Tonina, Daniele
2018-03-01
Dissolved oxygen (DO) concentrations and consumption rates are primary indicators of heterotrophic respiration and redox conditions in the hyporheic zone (HZ). Due to the complexity of hyporheic flow and interactions between hyporheic hydraulics and the biogeochemical processes, a detailed, mechanistic, and predictive understanding of the biogeochemical activity in the HZ has not yet been developed. Previous studies of microbial activity in the HZ have treated the metabolic DO consumption rate constant (KDO) as a temporally fixed and spatially homogeneous property that is determined primarily by the concentration of bioavailable carbon. These studies have generally treated bioactivity as temporally steady state, failing to capture the temporal dynamics of a changeable system. We demonstrate that hyporheic hydraulics controls rate constants in a hyporheic system that is relatively abundant in bioavailable carbon, such that KDO is a linear function of the local downwelling flux. We further demonstrate that, for triangular dunes, the downwelling velocities are lognormally distributed, as are the KDO values. By comparing measured and modeled DO profiles, we demonstrate that treating KDO as a function of the downwelling flux yields a significant improvement in the accuracy of predicted DO profiles. Additionally, our results demonstrate the temporal effect of carbon consumption on microbial respiration rates.
NASA Astrophysics Data System (ADS)
Cui, Yiqian; Shi, Junyou; Wang, Zili
2017-11-01
Built-in tests (BITs) are widely used in mechanical systems to perform state identification, whereas the BIT false and missed alarms cause trouble to the operators or beneficiaries to make correct judgments. Artificial neural networks (ANN) are previously used for false and missed alarms identification, which has the features such as self-organizing and self-study. However, these ANN models generally do not incorporate the temporal effect of the bottom-level threshold comparison outputs and the historical temporal features are not fully considered. To improve the situation, this paper proposes a new integrated BIT design methodology by incorporating a novel type of dynamic neural networks (DNN) model. The new DNN model is termed as Forward IIR & Recurrent FIR DNN (FIRF-DNN), where its component neurons, network structures, and input/output relationships are discussed. The condition monitoring false and missed alarms reduction implementation scheme based on FIRF-DNN model is also illustrated, which is composed of three stages including model training, false and missed alarms detection, and false and missed alarms suppression. Finally, the proposed methodology is demonstrated in the application study and the experimental results are analyzed.
Umile, Eric M; Sandel, M Elizabeth; Alavi, Abass; Terry, Charles M; Plotkin, Rosette C
2002-11-01
To determine whether patients with mild traumatic brain injury (TBI) and persistent postconcussive symptoms have evidence of temporal lobe injury on dynamic imaging. Case series. An academic medical center. Twenty patients with a clinical diagnosis of mild TBI and persistent postconcussive symptoms were referred for neuropsychologic evaluation and dynamic imaging. Fifteen (75%) had normal magnetic resonance imaging (MRI) and/or computed tomography (CT) scans at the time of injury. Neuropsychologic testing, positron-emission tomography (PET), and single-photon emission-computed tomography (SPECT). Temporal lobe findings on static imaging (MRI, CT) and dynamic imaging (PET, SPECT); neuropsychologic test findings on measures of verbal and visual memory. Testing documented neurobehavioral deficits in 19 patients (95%). Dynamic imaging documented abnormal findings in 18 patients (90%). Fifteen patients (75%) had temporal lobe abnormalities on PET and SPECT (primarily in medial temporal regions); abnormal findings were bilateral in 10 patients (50%) and unilateral in 5 (25%). Six patients (30%) had frontal abnormalities, and 8 (40%) had nonfrontotemporal abnormalities. Correlations between neuropsychologic testing and dynamic imaging could be established but not consistently across the whole group. Patients with mild TBI and persistent postconcussive symptoms have a high incidence of temporal lobe injury (presumably involving the hippocampus and related structures), which may explain the frequent finding of memory disorders in this population. The abnormal temporal lobe findings on PET and SPECT in humans may be analogous to the neuropathologic evidence of medial temporal injury provided by animal studies after mild TBI. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation